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 Chapter 1 

 INTRODUCTION 

 1.1  Mechanism  of  generation  of  action  potential  in  the 

 brain: 

 To  comprehend  BMI  (Brain-Machine  Interface)  fully,  it  is  essential  to  first  have  a  clear 

 understanding  of  the  human  brain.  The  brain  is  a  vast  network  of  interconnected  neurons  and 

 supporting  cells,  with  neurons  constantly  communicating  with  each  other  through  electrical 

 pulses  referred  to  as  action  potentials.  Each  neuron  has  three  main  parts:  dendrites,  soma,  and 

 axon.  Dendrites,  which  are  hair-like  structures,  receive  information  from  the  environment  and 

 transfer  it  to  the  soma,  where  the  information  is  processed.  The  axon  sends  information  out  of 

 the  neuron  and  is  attached  to  the  soma.  Neurons  come  in  various  shapes  and  sizes,  and  their 

 distribution  throughout  the  nervous  system  is  determined  by  their  specific  functions.  For 

 example,  neurons  in  the  mesencephalic  nucleus  of  the  cranial  nerve  only  have  a  cell  body, 

 while neurons in the cerebral Purkinje cells have the most significant number of dendrites. 

 The  place  where  two  neurons  are  connected  is  called  a  synapse.  Based  on  the  location  of 

 neurons,  whether  before  or  after  a  synapse,  we  can  classify  them  as  presynaptic  and 

 postsynaptic  neurons,  respectively.  Whenever  a  piece  of  input  information  is  received  from  a 

 presynaptic  neuron,  the  firing  rate  of  postsynaptic  neurons  changes.  A  piece  of  excitatory 

 information  increases  the  frequency  of  firing  of  the  action  potential,  while  a  piece  of 

 inhibitory  information  decreases  the  frequency  of  firing  of  the  action  potential[2].  Amplitude 

 remains  the  same.  The  pathways  for  the  flow  of  information  are  also  different  for  different 

 stimuli.  Hence  This  increase  and  decrease  in  action  potential,  along  with  the  different 
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 pathways,  contribute  to  the  generation  of  different  waveforms  of  electrical  potential  for 

 different  kinds  of  stimuli  inside  the  nervous  system  [3][4][5].  If  we  can  differentiate  between 

 these  changes  in  the  waveforms,  we  can  use  them  to  generate  control  signals  for  operating 

 machines. 

 It  is  intriguing  to  note  that  each  neuron  in  the  human  nervous  system  continually  generates 

 action  potentials,  with  an  estimated  total  of  more  than  100  billion  neurons  in  the  human  brain. 

 This  means  that  a  massive  amount  of  electricity  is  generated  in  our  brains  every  second, 

 through  a  passive  mechanism  involving  the  diffusion  of  ions.  In  the  following  sections,  we 

 will delve further into the process of generating action potentials. 

 The  inside  environment  of  a  neuron  is  separated  from  its  outside  environment  with  the  help 

 of  a  neural  membrane.  This  neural  membrane  prevents  the  interaction  of  the  ions  inside  the 

 cell  with  the  ions  outside  the  cell.  The  interaction  can  only  occur  with  the  help  of  ion 

 channels  and  ion  transporters.  The  environment  inside  the  cell  is  generally  more  negative 

 than  the  outside  environment.  For  an  average  neuron,  the  difference  between  the  outside  and 

 inside is about -65 mV. It is known as resting membrane potential. 

 Nothing  happens  inside  and  outside  the  cell  when  there  is  no  concentration  gradient. 

 However, when there is a concentration gradient, the flow of ions starts. 

 If  the  membrane  is  selectively  permeable  to  K+  ions,  K+  ions  will  move  outside  of  the  cell 

 over  time  because  there  is  less  concentration  outside.  As  positive  ions  move  outside  the  cell, 

 the  inside  voltage  will  drop,  and  the  outside  voltage  will  increase.  The  negative  ions  used  to 

 balance  positive  ions  will  remain  uncoupled  inside  the  cell.  At  the  same  time,  the  positive 

 ions  which  come  outside  will  create  a  net  positive  charge  outside.  The  diffusion  will  continue 

 to happen until a resting membrane potential is reached. 

 Over  time,  K+  ions  that  went  outside  would  want  to  come  in  as  they  are  attracted  to  the 

 negative  uncoupled  ions  inside,  and  the  k+  ions  inside  would  continue  to  diffuse  out  due  to 
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 the  concentration  gradient;  when  there  is  a  balance  between  these  two,  the  resting  membrane 

 potential  reaches.  The  resting  membrane  potential  in  mammals  for  K+  is  about  -65  mV,  while 

 for  Na+  is  around  +20  mV.  If  there  is  any  change  in  the  concentration  gradient,  there  will  also 

 be a change in the resting membrane potential. 

 The resting membrane can be derived mathematically also[6][2] 

 Let 

 = Molar Flux from diffusion  𝑀 
 𝑑 

 = Molar flux from the electrophoretic effect  𝑀 
 𝑒 

 = Ion mobility in the medium  µ 

 = Concentration of a specific ion  𝐶 

 D=Diffusivity 

 x= Distance across the membrane 

 = Local potential Ψ

 = Molar flux of  ions  𝑀 
 𝐾 +

 𝐾 +

 = Current generated by  ions  𝐼 
 𝑘 +

 𝐾 +

 z= valence of ions of interest 

 f= Faraday’s Constant 

 R= Gas Constant 

 T= Absolute temperature 
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 Molar flux from diffusion 

 ……. eq. 1  𝑀 
 𝑑 

=−  𝐷  𝑑𝑐 
 𝑑𝑥 

 Molar flux from the electrophoretic effect 

 …....  eq. 2  𝑀 
 𝑒 

=−  µ  𝐶  𝑑  Ψ 
 𝑑𝑥 

 Total Flux 

 𝑀 
 𝑘 +

=     𝑀 
 𝑑 

+     𝑀 
 𝑒 

 …… eq. 3 =−  𝐷  𝑑𝑐 
 𝑑𝑥    −  µ  𝐶  𝑑  Ψ 

 𝑑𝑥 

 We  are  more  interested  in  the  Current  and  the  molar  flux,  so  let's  relate  this  molar  flux  to  the 

 current. 

 )  ……….. eq. 4  𝐼 
 𝑘 +

=  𝑀 
 𝑘 +

 𝑧𝑓 =−  𝑧𝑓 (    𝐷  𝑑𝑐 
 𝑑𝑥 +  µ  𝐶  𝑑  Ψ 

 𝑑𝑥 

 According to Einstein’s relationship 

 ………..   eq. 5  µ =  𝑧𝐷𝑓 
 𝑅𝑇 

 Putting the value of  from eq.5 in eq 4  µ 

 )  𝐼 
 𝑘 +

=−  𝑧𝑓𝐷 (    𝑑𝑐 
 𝑑𝑥 +  𝑧𝑓𝐶 

 𝑅𝑇 
 𝑑  Ψ 
 𝑑𝑥 

 At equilibrium i.e at resting membrane potential total current is zero 

 )= 0 −  𝑧𝑓𝐷 (    𝑑𝑐 
 𝑑𝑥 +  𝑧𝑓𝐶 

 𝑅𝑇 
 𝑑  Ψ 
 𝑑𝑥 

 𝑑  Ψ 
 𝑑𝑥 =    − 𝑅𝑇 

 𝑧𝑓 .  1 
 𝑐 .

 𝑑𝑐 
 𝑑𝑥    
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 Integrating the equation between inside and outside conditions 

 𝐼𝑛𝑠𝑖𝑑𝑒 

 𝑂𝑢𝑡𝑠𝑖𝑑𝑒 

∫  𝑑  Ψ 
 𝑑𝑥 =

 𝐼𝑛𝑠𝑖𝑑𝑒 

 𝑂𝑢𝑡𝑠𝑖𝑑𝑒 

∫ − 𝑅𝑇 
 𝑧𝑓 .  1 

 𝑐 .
 𝑑𝑐 
 𝑑𝑥 

Ψ
 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 

− Ψ
 𝑖𝑛𝑠𝑖𝑑𝑒 

=    − 𝑅𝑇 
 𝑧𝑓  𝑙𝑛 

 𝐾 +
 𝐼𝑛𝑠𝑖𝑑𝑒 

 𝐾 +
 𝑂𝑢𝑡𝑠𝑖𝑑𝑒 

 𝑉 
 𝑚 

=     𝑅𝑇 
 𝑧𝑓  𝑙𝑛 

 𝐾 +
 𝑂𝑢𝑡𝑠𝑖𝑑𝑒 

 𝐾 +
 𝐼𝑛𝑠𝑖𝑑𝑒 

 …….  Eq 6  𝑉 
 𝑚 

=     58 
 𝑧  𝑙𝑜𝑔 

 𝐾 +
 𝑂𝑢𝑡𝑠𝑖𝑑𝑒 

 𝐾 +
 𝐼𝑛𝑠𝑖𝑑𝑒 

 The  above  equation  is  valid  for  other  ions  too.  If  we  put  the  measured  values  of,  we  will  𝐾 +

 get  a  resting  potential  of  about  -65mV  once  the  resting  potential.  If  we  switch  the 

 permeability  of  the  neural  membrane  from  sodium  to  potassium,  we  will  get  a  resting 

 potential  of  about  +20  mV  for  sodium.  Once  the  resting  potential  of  sodium  has  reached, 

 changing  the  permeability  again  to  potassium  will  bring  the  resting  potential  back  to  -  65  mV. 

 This  change  of  potential  from  -65  mV  to  +20  mV  and  back  to  -65  mV  is  called  an  action 

 potential. 
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 Figure 1: Representation of different phases of action potential[3] 

 The  combined  action  potential  of  a  nerve  or  a  group  of  nerves  is  responsible  for  the  actuation 

 and control of sensory as well as motor functions of different parts of the human body. 

 1.2  Need for the present work 

 The  motivation  behind  this  dissertation  is  rooted  in  the  field  of  spinal  cord  injury  (SCI).  The 

 human  spinal  cord  is  divided  into  31  segments,  each  of  which  is  responsible  for  controlling 

 different  parts  of  the  body.  An  injury  to  any  segment  can  block  the  pathway,  leading  to  loss  of 

 voluntary  control  of  various  body  parts  depending  on  the  location  of  the  injury.  One  such 

 severe  form  of  disability  is  quadriplegia,  where  all  limb  functions  are  lost.  Every  year,  an 

 average  of  500,000  new  cases  of  spinal  cord  injury  are  reported  worldwide[7].  Rehabilitation 

 for  quadriplegia  is  extremely  challenging  and  often  leads  to  partial  or  total  dependence  on 

 caregivers.  This  dependence  on  others  can  pose  a  significant  challenge,  especially  for  patients 

 from nuclear families. 

 To  address  this  challenge,  the  development  of  self-help  devices  (SHD)  can  prove  to  be 

 extremely  beneficial.  These  devices  can  provide  partial  or  total  freedom  to  patients,  giving 
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 caregivers  the  peace  of  mind  to  attend  to  other  responsibilities,  such  as  work  or  shopping, 

 knowing  that  their  loved  ones  have  the  ability  to  take  care  of  some  of  their  needs 

 independently.  However,  the  development  of  SHDs  for  quadriplegic  individuals  is  a 

 challenging  task.  The  injury,  which  is  typically  located  in  the  upper  region  of  the  cervical 

 spinal  cord,  often  leads  to  paralysis  of  all  limbs  and  speech  impairment,  making  it  difficult  to 

 obtain  control  signals  for  the  SHD[8][9][10].  Brain-Machine  Interfaces  (BMI)  provide  a 

 solution  by  allowing  us  to  obtain  control  signals  from  these  severely  disabled  individuals  to 

 operate the SHD. 

 BMI-based  self-help  devices  provide  a  new  and  innovative  solution  to  the  rehabilitation  of 

 quadriplegia.  These  devices  use  electrodes  implanted  in  the  central  or  peripheral  nervous 

 system  or  placed  externally  on  the  scalp  to  monitor  brain  activity  and  translate  it  into  control 

 signals  for  a  rehabilitation  device.  This  enables  individuals  with  quadriplegia  to  regain  some 

 level  of  independence  and  control  over  their  limbs.  The  use  of  BMI  technology  in 

 rehabilitation  offers  numerous  benefits,  including  improved  mobility,  increased 

 independence, and enhanced quality of life. 

 The  aim  of  this  thesis  is  to  examine  the  development  and  implementation  of  BMI-based 

 self-help  devices  for  the  rehabilitation  of  quadriplegia.  The  focus  will  be  on  the  design  and 

 development  of  these  devices,  the  technology  used,  and  the  benefits  and  limitations  of  their 

 use.  The  thesis  will  also  explore  the  various  clinical  trials  and  studies  that  have  been 

 conducted to evaluate the effectiveness of these devices in the rehabilitation of quadriplegia. 

 The  use  of  BMI-based  self-help  devices  is  a  rapidly  evolving  field,  and  there  is  a  significant 

 amount  of  research  and  development  being  conducted  in  this  area.  The  objective  of  this  thesis 

 is  to  provide  a  comprehensive  overview  of  the  current  state  of  the  art  in  this  field  and  to 

 identify  the  key  challenges  and  opportunities  that  lie  ahead.  This  will  be  achieved  through  a 
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 thorough  review  of  the  existing  literature,  and  by  conducting  original  research  to  explore  the 

 use of these devices in rehabilitation. 
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 Chapter 2 

 LITERATURE REVIEW 

 The  primary  objective  of  self-help  devices  is  to  enhance  the  capabilities  of  individuals  with 

 disabilities,  enabling  them  to  perform  daily  tasks  and  interact  with  their  surroundings  more 

 efficiently.  Selecting  the  right  technology  and  features  for  a  self-help  device  is  crucial  in 

 ensuring its effectiveness and user acceptance. 

 Currently,  there  are  several  technologies  available  for  developing  self-help  devices,  including 

 EEG-based  brain-computer  interfaces,  Electromyography  devices,  speech  recognition-based 

 devices,  eye-tracking-based  devices,  and  more.  Each  of  these  technologies  comes  with  its 

 own  set  of  advantages  and  limitations  that  can  impact  the  usefulness  and  acceptability  of  the 

 device. 

 Despite  the  availability  of  technically  advanced  self-help  devices,  it  has  been  observed  that 

 the  rejection  rate  of  these  devices  is  still  quite  high.  This  highlights  the  need  for  further 

 research  and  analysis  of  the  existing  assistive  devices  in  the  literature.  It  is  crucial  to 

 understand  the  issues  and  barriers  associated  with  these  devices  and  to  identify  areas  for 

 improvement. 

 To  delve  deeper  into  this  topic,  we  conducted  a  thorough  literature  review  aimed  at 

 discovering  the  current  state-of-the-art  in  the  design  of  self-help  devices  for  individuals  with 

 quadriplegia,  identifying  the  functional  and  non-functional  requirements  for  these  devices, 

 and  exploring  any  barriers  that  may  hinder  the  development  and  implementation  of  these 

 devices. 
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 2.1  Methodology for the Review: 

 We  conducted  the  review  by  following  the  Systematic  Literature  Review  (SLR)  methodology. 

 The  review  was  done  as  per  the  PRISMA  guidelines.  PRISMA  (Preferred  Reporting  Items  for 

 Systematic  Reviews  and  Meta-Analyses)[116]  is  a  set  of  guidelines  for  reporting  systematic 

 reviews and meta-analyses. 

 In  order  to  get  the  targeted  results,  the  expert  boolean  search  was  conducted  in  multiple 

 databases  using  the  following  query-  (“Self-help  devices”  OR  “Assistive  Devices”  OR 

 “Assistive  Product”  OR  Assistive  Technology)  AND  “Quadriplegia.”  Only  original  articles, 

 technical  and  case  studies,  conference  articles,  and  literature  reviews  published  on  Science 

 Direct,  Pubmed,  IEEE  Xplore  digital  library,  and  Web  of  Science  between  2014  to  2021  were 

 taken  into  consideration  for  this  study.  After  discarding  the  duplicates,  articles  were  screened 

 based  on  their  title  and  abstracts.  Articles  unrelated  to  SHD  development  or  about  the  patients 

 who  require  mechanical  ventilation  or  where  the  upper  limb  is  functional  were  discarded. 

 Initially,  222  total  articles  were  found,  but  after  the  exclusion  of  articles  using  the 

 above-mentioned criterion, 77 articles were used for further review. 

 The  articles  were  categorized  based  on  the  type  of  control  signals.  After  that,  a  detailed 

 review  was  done.  Table  1  shows  the  results  obtained  from  the  literature  review.  The 

 discussion about them is available in the sections following the table. 
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 Table 1:  Descriptive analysis of studies included  in the present literature review 

 Title  Author  Year  Type 
 Type of Signal 

 Used 
 Purpose 

 Development  of  a  system  of  aid  for  use 

 the  computer  through  a  wireless  system 

 for people with quadriplegia in Ecuador 

 (Tello-Mor 

 ales, 

 Pinos-Vele 

 z  and 

 Serpa-And 

 rade [11] 

 2018  Experimental 

 Study 

 Head,  Neck 

 and 

 Shoulders 

 movements 

 To  design  and  implement  prototype 

 wireless  that  will  allow  the  interac�on 

 between  a  person  with  quadriplegia  and 

 the  computer,  through  the  control  of  your 

 head, neck, and shoulders. 

 Self-Help  Devices  for  Quadriplegic 

 Popula�on:  A  Systema�c  Literature 

 Review 

 Orejuela-Z 

 apata, 

 Rodriguez 

 and 

 Ramirez 

 [12] 

 2019  Review  --  To  find  primary  needs,  expecta�ons,  and 

 barriers  of  people  with  quadriplegia  and 

 caregivers 
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 Electrooculography  Based  iOS  Controller 

 for  Individuals  with  Quadriplegia  or 

 Neurodegenera�ve Disease 

 O’Bard  et 

 al.  [13] 

 2017  Experimental 

 Study 

 Electro 

 Oculography 

 Signals 

 To  Use  eye  movements  to  create 

 communica�on  capabili�es  are  tes�ng 

 through  the  administra�on  of  a  typing  test 

 to measure characters typed per minute 

 Facial  Posi�on  and  Expression-Based 

 Human–Computer  Interface  for  Persons 

 With Tetraplegia 

 Bian  et  al. 

 [14] 

 2015  Experimental 

 Study 

 Facial 

 Posi�on  And 

 Expression  & 

 Rgb Camera 

 To  use  nose  posi�on  along  with  the  mouth 

 status  (close/open)  to  control  and  navigate 

 the cursor as computer user input 

 Variability  Analysis  on  Gestures  for 

 People With Quadriplegia 

 Jiang, 

 Duerstock 

 and 

 Wachs 

 [15] 

 2018  Experimental 

 Study 

 Gesture-Base 

 d Interface 

 To  Use  a  gesture  based  interface  to  operate 

 a game called PAC-MAN 
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 Designing  a  Cost  Effec�ve  Prototype  of 

 an  Automated  Wheelchair  Based  on 

 EOG (Electrooculography) 

 Mubtasim 

 Rafid 

 Chowdhur 

 y  et 

 al.  [16] 

 2018  Experimental 

 Study 

 Electrooculog 

 raphy  (Eog) 

 Signal. 

 To  Design  an  automated  wheelchair  to  be 

 operated by eye movements 

 Assessment  of  the  Tongue-Drive  System 

 Using  a  Computer,  a  Smartphone,  and  a 

 Powered-Wheelchair  by  People  With 

 Tetraplegia 

 Kim  et 

 al.  [17] 

 2015  Experimental 

 Study 

 Tongue 

 Movements 

 (Magne�c 

 Tongue Stud) 

 To  control  computers,  wheelchairs,  and 

 smartphones  using  voluntary  tongue 

 mo�on 

 GOM-Face:  GKP,  EOG,  and  EMG-Based 

 Mul�modal  Interface  With  Applica�on 

 to Humanoid Robot Control 

 Nam  et 

 al.  [18] 

 2014  Experimental 

 Study 

 1)Tongue 

 Movement; 

 2) 

 Electrooculog 

 ram 

 (Eog);3)Teeth 

 To  communicate  with  the  robot  by 

 selec�ng  from  a  pre-defined  menu  using 

 eye,  tongue  movements  and  teeth 

 clenching 
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 Clenching 

 Emg 

 Simplis�c  Approach  to  Design  a 

 Prototype  of  an  Automated  Wheelchair 

 Based on Electrooculography 

 M  R 

 Chowdhur 

 y  et 

 al.  [19] 

 2018  Experimental 

 Study 

 EOG  To  develop  a  prototype  of  an  automated 

 wheelchair  which  can  be  controlled  by 

 direc�onal  movement  of  the  eye  using 

 electrooculography (EOG) signal 

 Movement  inten�on  detec�on  using 

 neural  network  for  quadriplegic  assis�ve 

 machine 

 Izzuddin 

 et al.  [20] 

 2015  Experimental 

 Study 

 EEG Signal  To Use EEG signals to operate a wheelchair 

 Error-Free  Text  Typing  Performance  of 

 an  Induc�ve  Intra-Oral  Tongue 

 Computer  Interface  for  Severely 

 Disabled Individuals 

 L  N  S 

 Andrease 

 n  Struijk 

 et al  [21] 

 2017  Experimental 

 Study 

 Tongue 

 Movements 

 To  use  tongue  movements  for  error  free 

 typing  in  a  generally  available  text  edi�ng 

 system 
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 An  EOG-Based  Human–Machine 

 Interface  to  Control  a  Smart  Home 

 Environment  for  Pa�ents  With  Severe 

 Spinal Cord Injuries 

 Zhang  et 

 al.  [22] 

 2018  Experimental 

 Study 

 Eye Blinking  To  develop  asynchronous  EOG-based 

 human  machine  interface  (HMI)  for  smart 

 home  environmental  control  with  the 

 purpose  of  providing  daily  assistance  for 

 severe spinal cord injury (SCI) pa�ents 

 Upper  Body-Based  Power  Wheelchair 

 Control  Interface  for  Individuals  With 

 Tetraplegia 

 Thorp  et 

 al.  [23] 

 2015  Experimental 

 Study 

 Residual 

 Shoulder 

 Mo�on 

 To  develop  a  body-machine  interface  (BMI) 

 that  leverages  the  flexibility  and 

 customizability  of  redundant  control  by 

 using  high  dimensional  changes  in  shoulder 

 kinema�cs  to  generate  propor�onal 

 controls commands for a power wheelchair 

 Semi-Autonomous  Tongue  Control  of  an 

 Assis�ve  Robo�c  Arm  for  Individuals 

 with  Quadriplegia. 

 Hildebran 

 d  et  al. 

 [24] 

 2019  Pilot Study  Tongue 

 Movements 

 To  perform  a  pilot  study  to  inves�gate 

 whether  semi-automa�on  might  further 

 improve  the  efficiency  of  the  intraoral 

 tongue  control  interface  when  controlling 

 an ARM. 
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 AMiCUS-A  Head  Mo�on-Based  Interface 

 for Control of an Assis�ve Robot. 

 Rudigkeit 

 and 

 Gebhard 

 [25] 

 2019  Experimental 

 Study 

 Head 

 Mo�ons 

 To  develop  a  Human-Robot  Interface  that 

 enables  tetraplegics  to  control  a 

 mul�-degree  of  a  freedom  robot  arm  in 

 real-�me using solely head mo�on 

 A  system  for  bedside  assistance  that 

 integrates a robo�c bed and a mobile 

 manipulator. 

 A.  Kapusta, 

 et al  [26] 

 2019  Experimental 

 Study 

 Person's 

 Pose 

 Es�ma�on 

 To  develop  a  robo�c  system  for  bedside 

 assistance  that  consists  of  a  robo�c  bed 

 and  a  mobile  manipulator  (i.e.,  a  wheeled 

 robot  with  arms  which  is  controlled  by 

 person’s  pose  using  a  pressure  sensing 

 mat. 

 A  Stand-Alone  Intraoral 

 Tongue-Controlled  Computer  Interface 

 for People With 

 Tetraplegia. 

 Kong  et 

 al.  [27] 

 2019  Experimental 

 Study 

 Tongue 

 Movements 

 To  use  embedded  wireless 

 tongue-operated  assis�ve  technology 

 developed  for  people  with  tetraplegia  to 

 provide  them  a  higher  level  of 

 independence  in  performing  daily  living 
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 tasks,  such  as  accessing  computers, 

 smartphones, and driving wheelchairs 

 Head  Mo�on  and  Head  Gesture-Based 

 Robot Control: A Usability Study 

 Jackowski, 

 Gebhard 

 and 

 Thietje 

 [28] 

 2018  Usability 

 Study 

 Head  Mo�on 

 And  Head 

 Gestures 

 To  control  a  six  degrees  of  freedom  robot 

 arm  with  gripper  is  controlled  with  head 

 mo�on and head gestures only 

 A  conceptual  framework  for  designing 

 Ambient assisted living services for 

 individuals  with  disabili�es  in  Uganda 

 and South Africa 

 Kyazze, 

 Wesson 

 and 

 Naudé 

 [29] 

 2019  Review  --  To  know  main  needs,  expecta�ons,  and 

 barriers  of  people  with  quadriplegia  and 

 caregivers 

 Beyond  the  gaze:  Communica�ng  in 

 chronic locked-in syndrome. 

 Lugo  et  al. 

 [30] 

 2015  Survey  --  To  study  Methods  for  communica�on  with 

 Locked in syndrome pa�ents 
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 Assessment  of  brain-machine  interfaces 

 from the perspec�ve of people with 

 paralysis. 

 Blabe  et 

 al  [31] 

 2015  Survey  --  To Survey about user preferences for 

 electroencephalography, 

 electrocor�cography,  intracor�cal 

 microelectrode  arrays,  as  well  as  a 

 commercially available eye tracking system 

 Safety  and  efficacy  of  medically 

 performed  tongue  piercing  in  people 

 with  tetraplegia  for  use  with 

 tongue-operated assis�ve technology. 

 Laumann 

 et al.  [32] 

 2015  Experimental 

 Study 

 --  To  develop  and  test  a  medically  supervised 

 tongue-piercing protocol 

 and  the  wearing  of  a  magnet-containing 

 tongue barbell for use with the Tongue 

 Drive  System  (TDS)  in  persons  with 

 tetraplegia. 

 Exploring  the  experience  of  clients  with 

 tetraplegia u�lizing assis�ve 

 technology for computer access. 

 Folan  et 

 al.  [33] 

 2015  Qualita�ve 

 Study 

 --  To  Understand  of  the  experiences  of  clients 

 with  tetraplegia  trailing  assis�ve 

 technologies for computer access 
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 Development  and  func�onal 

 demonstra�on  of  a  wireless  intraoral 

 induc�ve  tongue  computer  interface  for 

 severely disabled persons. 

 N  S 

 Andrease 

 n  Struijk 

 et al.  [34] 

 2017  Experimental 

 Study 

 Induc�ve 

 Tongue 

 Computer 

 Interface 

 To  implement  an  alterna�ve  computer 

 interface,  which  was  fully  embedded  into 

 the  oral  cavity  and  which  provided  mul�ple 

 control commands for typing in computer. 

 Wireless  intraoral  tongue  control  of  an 

 assis�ve robo�c arm for individuals 

 with tetraplegia. 

 Lo�e  N  S 

 Andrease 

 n  Struijk 

 et al.  [35] 

 2017  Experimental 

 Study 

 Tongue 

 Movements 

 To  fully  control  an  assis�ve  robo�c  arm 

 using a wireless intraoral tongue interface. 

 Augmenta�ve  and  Alterna�ve 

 Communica�on  Effects  on  Quality  of  Life 

 in  Pa�ents  with  Locked-in  Syndrome  and 

 Their Caregivers. 

 Corallo  et 

 al.  [36] 

 2017  Survey  --  To  survey  about  quality  of  life  in  locked  in 

 syndrome disease 

 Associa�ons  between  �me  since  onset 

 of injury and par�cipa�on in Dutch 

 people with long-term spinal cord injury. 

 de  Ruijter 

 et al.  [37] 

 2018  Mul�centre 

 Cross-Sec�on 

 al Study 

 --  To  describe  rela�onships  between  �me 

 since injury (TSI) and 
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 par�cipa�on  in  individuals  with  tetraplegia 

 and paraplegia 

 Qualita�ve  assessment  of  tongue  drive 

 system by people with high-level spinal 

 cord injury. 

 Kim  et  al. 

 [38] 

 2014  Qualita�ve 

 Study 

 --  To  perform  qualita�ve  assessment  of 

 tongue drive system 

 A  clinical  screening  protocol  for  the 

 RSVP  Keyboard  brain-computer 

 interface 

 Fried-Oke 

 n  et  al. 

 [39] 

 2015  Qualita�ve 

 Study 

 --  To  propose  a  screening  protocol  that 

 iden�fies  requisite  sensory,  motor, 

 cogni�ve  and  communica�on  skills  for 

 people  with  locked-in  syndrome  to  use 

 brain-computer interface 

 Virtual  typing  by  people  with  tetraplegia 

 using a self-calibra�ng intracor�cal 

 brain-computer interface. 

 Jarosiewic 

 z  et  al. 

 [40] 

 2015  Experimental 

 Study 

 Intracor�cal 

 Bci 

 To  Use  EEG  Signals  to  Type  in  Custom  made 

 so�ware 
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 Voice-Ac�vated  Lightweight  Reacher  to 

 Assist  with  Upper  Extremity  Movement 

 Limita�ons: A Case Study. 

 Khalid  et 

 al.  [41] 

 2015  Case Study  Voice 

 Instruc�ons 

 To  design  a  func�onal  and  user-friendly 

 reacher  arm  controlled  by  voice 

 instruc�ons  for  people  with  spinal  cord 

 injuries  (SCIs).  .  Comparison  study  with 

 healthy  par�cipants  and  an  SCI  par�cipant 

 was also done. 

 Time  and  Effort  Required  by  Persons 

 with Spinal Cord Injury to Learn to Use a 

 Powered  Exoskeleton  for  Assisted 

 Walking 

 Kozlowski, 

 Bryce  and 

 Dijkers[42 

 ] 

 2015  Qualita�ve 

 Study 

 --  To  quan�fy  the  �me  and  effort  required  by 

 persons  with  SCI  to  learn  to  use  an 

 exoskeleton for assisted walking 

 Speaking  Ability  while  Using  an 

 Induc�ve  Tongue-Computer  Interface 

 for 

 Individuals  with  Tetraplegia:  Talking  and 

 Struijk 

 LNSA, 

 Benstsen 

 B, 

 2018  Case Satudy  --  To  study  ability  of  speaking  while  using  an 

 induc�ve tongue-computer interface 
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 Driving a Powered Wheelchair - a Case 

 Study. 

 Gaihede 

 M [43] 

 Fully  Implanted  Brain-Computer 

 Interface in a Locked-In Pa�ent with ALS 

 Vansteens 

 el  et  al 

 [44] 

 2017  Experimental 

 Study 

 Invasive 

 Electrodes 

 On  Motor 

 Cortex 

 To  describe  a  method  for  communica�on 

 in  a  pa�ent  with  late  stage  amyotrophic 

 lateral  sclerosis  (ALS),  involving  a  fully 

 implanted  brain–computer  interface  that 

 consists  of  subdural  electrodes  placed  over 

 the motor cortex 

 A  vibrotac�le  p300-based 

 brain-computer  interface  for 

 consciousness detec�on 

 and communica�on. 

 Lugo  et  al. 

 [45] 

 2014  Experimental 

 Study 

 Eeg  (Elicit 

 Event-Related 

 Poten�als ) 

 To  determine  whether  pa�ents  with 

 locked-in  syndrome  (LIS)  could  elicit  a  P300 

 wave,  using  a  vibrotac�le  oddball  paradigm 

 for  establishing  somatosensory  BCI-based 

 communica�on 
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 An  emergency  call  system  for  pa�ents  in 

 locked-in state using an SSVEP-based 

 brain switch. 

 Lim  et  al. 

 [46] 

 2017  Experimental 

 Study 

 Steady-State 

 Visual  Evoked 

 Poten�al 

 To  develop  an  emergency  call  system  for 

 such  pa�ents  using  a  steady-state  visual 

 evoked  poten�al  (SSVEP)–based  brain 

 switch 

 Clinical  feasibility  of  brain-computer 

 interface  based  on  steady-state  visual 

 evoked  poten�al  in  pa�ents  with 

 locked-in syndrome: Case studies. 

 Hwang  et 

 al.  [47] 

 2017  Case Report  Steady-State 

 Visual  Evoked 

 Poten�al 

 To  share  experiences  of  SSVEP-based  BCI 

 experiments involving five pa�ents with LIS 

 Steer  by  ear:  Myoelectric  auricular 

 control of powered wheelchairs for 

 individuals with spinal cord injury 

 (Schmalfu 

 ß  et 

 al.  [48] 

 2016  Experimental 

 Study 

 EMG  To  develop  a  myoelectric  auricular  control 

 system  (ACS)  based  on  bilateral  ac�va�on 

 of the posterior auricular muscle 

 An  independent  SSVEP-based 

 brain-computer  interface  in  locked-in 

 syndrome 

 Lesenfant 

 s  et 

 al.  [49] 

 2014  Experimental 

 Study 

 EEG (SSVEP)  To  develop  an  independent  SSVEP-BCI 

 based on covert a�en�on 
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 Medical  tongue  piercing  -  development 

 and evalua�on of a surgical protocol and 

 the  percep�on  of  procedural  discomfort 

 of the par�cipants. 

 Bentsen 

 et al.  [50] 

 2014  Qualita�ve 

 Study 

 Tongue 

 Piercing 

 To  develop  a  protocol  for  safe  inser�on  of 

 tongue  piercing  and  observing 

 post-procedural  observa�ons  of  par�cipant 

 complica�ons  such  as  bleeding,  edema, 

 and infec�on 

 Hybrid  EEG/EOG-based  brain/neural 

 hand  exoskeleton  restores  fully 

 independent 

 daily living ac�vi�es a�er quadriplegia 

 Soekadar 

 et al.  [51] 

 2016  Experimental 

 Study 

 EEG/EOG  To  develop  a  noninvasive,  hybrid 

 brain/neural  hand  exoskeleton  (B/NHE)  to 

 open and close paralyzed hand 

 Mee�ng  brain-computer  interface  user 

 performance  expecta�ons  using  a  deep 

 neural network decoding framework. 

 Schwemm 

 er  et 

 al.  [52] 

 2018  Experimental 

 Study 

 EEG  To  develop  a  new  deep  neural  network 

 decoding framework for BCI systems. 
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 Non-causal  spike  filtering  improves 

 decoding of movement inten�on for 

 intracor�cal BCIs. 

 Masse  et 

 al.  [53] 

 2014  Experimental 

 Study 

 EEG/ECoG  To  develop  an  improved  filtering  technique 

 for EEG signal Processing. 

 Brain-computer  interface  with  language 

 model-electroencephalography  fusion 

 for locked-in syndrome 

 Oken  et 

 al.  [54] 

 2014  Experimental 

 Study 

 EEG  To  perform  a  counterbalanced,  interleaved 

 within-subject  comparison  between  an 

 auditory  streaming  BCI  that  used  beep 

 s�muli, and one that used word s�muli 

 Neural  Point-and-Click  Communica�on 

 by a Person With Incomplete Locked-In 

 Syndrome. 

 Bacher  et 

 al.  [55] 

 2015  Experimental 

 Study 

 EEG  To  type  using  a  virtual  keyboard  using  A 

 96-channel  intracor�cal  microelectrode 

 array  (Blackrock  Microsystems  Inc,  Salt 

 Lake  City,  UT)  surgically  implanted  in  the 

 arm/hand  area  of  her  motor  cortex  of  the 

 subject. 
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 Ethical  Considera�ons  in  Ending 

 Exploratory  Brain-Computer  Interface 

 Research  Studies  in  Locked-in 

 Syndrome. 

 Klein, 

 Peters 

 and 

 Higger 

 [56] 

 2018  Experimental 

 Study 

 EEG  To  study  presents  case  of  an  individual  with 

 presumed  LIS  enrolled  in  an  exploratory 

 BCI  study.  Study  was  done  to  consider 

 whether  two  common  ethical  frameworks 

 for  stopping  randomized  clinical 

 trials—equipoise  and  nonexploita�on—can 

 be  usefully  applied  to  elucida�ng 

 researcher  obliga�ons  to  end  exploratory 

 BCI research. 

 A  novel  spelling  system  for  locked-in 

 syndrome  pa�ents  using  only  eye 

 contact. 

 Kopsky  et 

 al.  [57] 

 2014  Experimental 

 Study 

 EEG  To  develop  and  evaluate  a  novel  spelling 

 system  for  pa�ents  with  locked-in 

 syndrome:  pa�ents  with  tetraplegia,  not 

 able  to  talk,  and  only  able  to  blink  their 

 eyes using EEG. 
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 Comparison  of  eye  tracking, 

 electrooculography  and  an  auditory 

 brain-computer  interface  for  binary 

 communica�on:  a  case  study  with  a 

 par�cipant in the 

 locked-in state. 

 Käthner, 

 Kübler 

 and 

 Halder 

 [58] 

 2015  Case Study  EOG,EEG,  Eye 

 Tracking 

 To  study  electrooculography  (EOG),  an  eye 

 tracker  and  an  auditory  brain-computer 

 interface  (BCI)  as  access  methods  to 

 augmenta�ve  and  alterna�ve 

 communica�on (AAC) 

 Noninvasive  brain-computer  interface 

 enables communica�on a�er brainstem 

 stroke. 

 Sellers, 

 Ryan  and 

 Hauser[59 

 ] 

 2014  Experimental 

 Study 

 EEG  To  demonstrate  that  an  individual  locked  in 

 owing  to  brainstem  stroke  was  able  to  use 

 a  noninvasive  BCI  to  communicate 

 voli�onal  messages  by  the  help  of 

 P300-based  event-related  poten�al 

 spelling system. 

 A  Novel  EMG  Interface  for  Individuals 

 With Tetraplegia to Pilot Robot Hand 

 Grasping. 

 Tigra  et  al. 

 [60] 

 2018  Experimental 

 Study 

 EMG  In  this  study  ability  to  voluntarily  contract  a 

 set  of  selected  muscles  was  assessed  in 

 five  people  with  spinal  cord-injury  through 

 electromyographic (EMG) analysis 
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 Current  state  of  digital  signal  processing 

 in  myoelectric  interfaces  and  related 

 applica�ons 

 Hakonen, 

 Piitulaine 

 n  and 

 Visala [61] 

 2015  Review  -  This  review  discusses  the  cri�cal  issues  and 

 recommended  prac�ces  from  the 

 perspec�ve of myoelectric interfaces 

 Hybrid  BCI  Coupling  EEG  and  EMG  for 

 Severe Motor Disabili�es 

 Rouillard 

 et al.  [62] 

 2015  Experimental 

 Study 

 EEG,EMG  To  develop  a  data  processing  and 

 classifica�on  technique  to  detect  right  and 

 le� hand movement. 

 Tongue-Controlled  Computer  Game:  A 

 New  Approach  for  Rehabilita�on  of 

 Tongue Motor Func�on 

 Kothari  et 

 al.  [63] 

 2014  Experimental 

 Study 

 Tongue  Drive 

 System (Tds) 

 To  inves�gate  the  influence  of  tongue 

 disability,  age,  and  sex  on  motor 

 performance  for  a  tongue-training 

 paradigm  involving  playing  a  computer 

 game using the Tongue Drive System 

 A  survey  on  different  human-machine 

 interac�ons  used  for  controlling  an 

 electric wheelchair 

 Ghorbel, 

 Amor  and 

 2019  Review  Smart 

 Wheelchair 

  To  present  a  survey  on  different 

 human-machine  interac�ons  used  for 

 controlling an electric wheelchair 
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 Jallouli 

 [64] 

 Review  of  assis�ve  strategies  in 

 powered  lower-limb  orthoses  and 

 exoskeletons 

 Yan  et  al. 

 [65] 

 2015  Review  Exoskeletons   To  provide  a  systema�c  overview  of  the 

 assis�ve  strategies  u�lized  by  ac�ve 

 locomo�on–augmenta�on  orthoses  and 

 exoskeletons 

 Upper  limb  sensorimotor  restora�on 

 through  brain–computer  interface 

 technology in tetraparesis 

 Bockbrad 

 er, [66] 

 2019  Experimental 

 Study 

 EEG  To  demonstrate  clinical  trials  with 

 individuals  with  paralysis  to  perform 

 dexterous  control  of  grasp  using  either 

 robo�c  neuroprosthe�cs  or  neuromuscular 

 s�mula�on  ortho�cs  controlled  by 

 intracor�cal BCI systems 

 An  Electrooculography  based  Human 

 Machine  Interface  for  wheelchair 

 control 

 Choudhari 

 AM 

 2019  Experimental 

 Study 

 EOG  To  propose  a  robust  system  that  generates 

 control  command  using  only  one  type  of 

 asynchronous  eye  ac�vity  (voluntary  eye 
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 blink)  to  navigate  the  wheelchair  without  a 

 need of graphical user interface. 

 Percep�ons  on  well-being  at  home  of 

 families  with  people  with  disabili�es:  A 

 psycho-environmental perspec�ve 

 Labbe  D, 

 Jutras  S, 

 Coulombe 

 S. [67] 

 2017  Survey  Review  To  conduct  interviews  with  31  people  with 

 spinal  cord  injury  (SCI)  and  their  families. 

 The  interviews  adressed  their  percep�ons 

 of  how  their  dwellings  were  promo�ng  or 

 hampering their well-being 

 Spinal  Cord  Injury:  Scenario  in  an  Indian 

 State 

 Mathur  et 

 al.  [7] 

 2014  Prospec�ve 

 Observa�onal 

 Study 

 --  Prospec�ve  observa�onal  study  about 

 spinal cord injury 

 Func�onal  priori�es,  assis�ve 

 technology,  and  brain-computer 

 interfaces a�er spinal cord injury 

 Collinger 

 et al.  [1] 

 2014  Prospec�ve 

 Observa�onal 

 Study 

 --  To  do  a  survey  about  Func�onal  priori�es, 

 assis�ve  technology,  and  brain-computer 

 interfaces 

 a�er spinal cord injury 
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 Flight  Simula�on  using  a 

 Brain-Computer  Interface:  A  Pilot,  Pilot 

 Study 

 Kryger  et 

 al.  [68] 

 2016  Pilot Study  EEG  The  purpose  of  this  pilot  study  was  to 

 determine  whether  proposed  BCI  system, 

 which  involves  decoding  the  signals  of  two 

 96-microelectrode  arrays  implanted  into 

 the  motor  cortex  of  a  subject,  could  also  be 

 used  to  control  an  aircra�  in  a  flight 

 simulator environment 

 An  Electrocor�cographic  Brain  Interface 

 in an Individual 

 with Tetraplegia 

 Wang  et 

 al.  [69] 

 2014  Experimental 

 Study 

 ECoG  To  inves�gate  the  feasibility  of  an 

 electrocor�cography  (ECoG)-based  BCI 

 system  in  an  individual  with  tetraplegia 

 caused by C4 level spinal cord injury. 

 Classifica�on  of  Wheelchair  Commands 

 using  Brain  Computer  Interface: 

 Comparison  between  Able-Bodied 

 Persons and Pa�ents with Tetraplegia 

 Chai  et  al. 

 [70] 

 2014  Experimental 

 Study 

 EEG  To  present  a  three-class  mental  task 

 classifica�on  for  an 

 electroencephalography  based  brain 

 computer interface. 

 31 



 Electrooculography  Based  iOS  Controller 

 for Individuals with Quadriplegia or 

 Neurodegenera�ve Disease 

 (O’Bard  et 

 al.  ) 

 2017  Experimental 

 Study 

 EOG  To  present  a  low-cost  commercial  off  the 

 shelf  (COTS)  assis�ve  communica�on 

 device  to  allow  individuals  with 

 quadriplegia  to  access  iOS  based  devices 

 through  electrooculography  signals 

 captured from their eye movements 

 Development  of  a  dual  control  system 

 applied  to  a  smart  wheelchair,  using 

 magne�c and speech control. 

 Ruíz-Serra 

 no  et 

 al  [71] 

 2014  Experimental 

 Study 

 Smart 

 Wheelchair 

 To  develop  a  speech  control  system  and  a 

 magne�c  control  system  to  drive  a 

 wheelchair  as  an  alterna�ve  for  pa�ents 

 with severe disabili�es. 

 A  wavelet-  and  neural  network-based 

 voice system 

 for a smart wheelchair control 

 AL-Rousa 

 n  and 

 Assaleh 

 [72] 

 2008  Experimental 

 Study 

 Voice 

 Commands 

 Based  Smart 

 Wheelchair 

 To  present  a  design  of  an  automated 

 powered  wheelchair  system  that  integrates 

 three  techniques  (a  joys�ck,  direc�on 

 bu�ons,  or  voice)  to  assist  users  with 

 motor  disability  in  moving  around  and 
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 sending  help  messages  to  four  dis�nct 

 des�na�ons using SMS message 

 The  physical  and  psychological  impact  of 

 using  a  computer-based  environmental 

 control system: a case study 

 Squires  et 

 al.  [73] 

 2014  Case Study  --  To  find  impact  of  using  computer  based 

 control environment 

 Persons  with  Mul�ple  Disabili�es 

 Choose  Among  Environmental  S�muli 

 Using  a  Smile  Response  and  a 

 Technology–Aided Program 

 Lancioni 

 et al  [74] 

 2014  Experimental 

 Study 

 Face 

 Gestures 

 To  extend  the  evalua�on  of  the  smile 

 response  and  op�c  microswitch  to  choose 

 the preferred s�muli. 

 The  design  and  evalua�on  of  a 

 peripheral  device  for  use  with  a 

 computer  game  intended  for  children 

 with motor disabili�es 

 Scardovell 

 i  and 

 Frère [75] 

 2014  Experimental 

 Study 

 Webcam  To  develop  and  test  video  game  which  uses 

 peripheral  access  device  consis�ng  of  a 

 webcam  and  a  supervisory  system  that 

 processes the images, for 
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 TongueWise:  Tongue-Computer 

 Interface  So�ware  for  People  with 

 Tetraplegia 

 Caltenco, 

 Andrease 

 n  Struijk 

 and 

 Breidegar 

 d [76] 

 2010  Experimental 

 Study 

 Tongue 

 Movements 

 To  present  TongueWise:  a  so�ware 

 developed  for  a  tongue  computer  interface 

 that  can  be  ac�vated  with  the  �p  of  the 

 tongue  and  that  provides  direct  input  that 

 covers  most  of  the  standard  keyboard  and 

 mouse commands 

 Design  of  induc�ve  sensors  for  tongue 

 control  system  for  computers  and 

 assis�ve devices 

 Lon�s  and 

 Struijk 

 [77] 

 2010  Experimental 

 Study 

 Tongue 

 Movement 

 Sensor 

 To  introduce  a  novel  design  of  air-core 

 induc�ve  sensors  in  printed  circuit  board 

 (PCB)  technology  for  a  tongue  control 

 system. 

 A  mul�ple  camera  tongue  switch  for  a 

 child  with  severe  spas�c  quadriplegic 

 cerebral palsy 

 Leung  and 

 Chau [78] 

 2010  Experimental 

 Study 

 Camera  For 

 Tongue 

 Movements 

 To  propose  a  video-based  access 

 technology  that  facilitated  a  non-contact 

 tongue  protrusion  access  modality  for  a 

 7-year-old  boy  with  severe  spas�c 

 quadriplegic cerebral palsy 
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 Microswitch  Technology  for  Enabling 

 Self-Determined  Responding  in  Children 

 with  Profound  and  Mul�ple  Disabili�es: 

 A Systema�c Review 

 Roche  et 

 al.  [79] 

 2015  Systema�c 

 Review 

 Micro  Switch 

 Technology 

  To  perform  review  of  studies  repor�ng  on 

 the use of microswitch technology 

 Results  of  the  first  interim  analysis  of 

 the  RAPPER  II  trial  in  pa�ents  with  spinal 

 cord  injury:  ambula�on  and  func�onal 

 exercise  programs  in  the  REX  powered 

 walking aid 

 Birch  et 

 al.  [80] 

 2017  Cohort Study  --  To  inves�gate  the  feasibility,  safety  and 

 acceptability  of  using  the  REX  self 

 stabilizing  robo�c  exoskeleton  in  people 

 with  spinal  cord  injury  (SCI)  who  are 

 obligatory wheelchair users 

 Table 1: Descriptive analysis of studies included in the present literature review 
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 2.2  Current state of the art 

 Our  review  of  the  literature  revealed  that  the  most  commonly  used  technology  for  developing 

 SHD  is  based  on  physiological  signals.  The  second  most  frequent  approach  is  motion 

 tracking-based  devices,  followed  by  mechanical  motion,  face  recognition,  and  multi-modal 

 methods. Only a few studies focused on the development of exoskeletons too. 

 After  establishing  a  very  broad  state  of  the  art  we  reviewed  all  of  these  approaches  to  develop 

 SDHs in detail. 

 2.2.1  Physiology based devices: 

 Physiological  signals  can  be  used  to  control  devices  by  detecting  and  processing  biological 

 signals  from  the  body.  The  use  of  these  signals  in  the  development  of  SHD  provides  a 

 non-invasive  and  convenient  way  for  individuals  with  physical  disabilities  to  control  devices 

 and  improve  their  quality  of  life.  These  devices  have  been  shown  to  be  effective  in  helping 

 individuals  with  disabilities  to  perform  various  tasks,  such  as  grasping  objects,  controlling 

 prosthetic limbs, and even operating wheelchairs 

 2.2.1.1  Electroencephalography (EEG) Based Devices 

 Electroencephalography  (EEG)  functions  as  a  technique  for  recording  and  assessing  the 

 brain's  electrical  activity.  It  gauges  the  electrical  signals  generated  by  neurons  in  the  brain. 

 EEG  has  found  extensive  application  across  diverse  fields,  including  neuroscience,  clinical 

 psychology,  and  medicine.  In  the  medical  realm,  EEG  aids  in  diagnosing  neurological 

 conditions  such  as  epilepsy,  sleep  disorders,  and  head  injuries.  In  psychology,  EEG  is 

 instrumental  in  studying  brain  activity  during  various  mental  states  like  sleep,  alertness,  and 

 meditation.  In  the  domain  of  neuroscience,  EEG  is  a  valuable  tool  for  probing  brain  function 

 and  its  temporal  dynamics.  Moreover,  EEG  plays  a  pivotal  role  in  developing  brain-computer 

 interfaces  (BCIs)  and  assistive  devices  (SHDs)  tailored  for  individuals  with  disabilities. 
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 These  EEG-based  BCIs  and  SHDs  offer  novel  avenues  for  enhancing  device  control  and 

 daily activities for people with diverse disabilities. 

 This  mode  of  signal  extraction  holds  particular  significance  for  the  design  of  SHDs.  Neurons 

 in  both  the  central  and  peripheral  nervous  systems  emit  action  potentials,  which  can  be 

 detected  via  scalp  recordings.  Different  brain  regions  are  responsible  for  distinct  tasks, 

 leading  to  variations  in  electrical  activity  based  on  the  task  at  hand.  Consequently,  specific 

 patterns  of  electric  signals  emerge  for  different  activities.  To  harness  these  signals  for  SHD 

 development,  efficient  signal  classification  is  essential.  However,  categorizing  these  signals 

 presents challenges due to the limited spatial resolution [40][68]. 

 The  utilization  of  EEG  signals  for  advancing  SHDs  faces  several  obstacles.  Primary  among 

 these  is  the  presence  of  considerable  noise  in  EEG  signals,  complicating  accurate 

 classification.  While  employing  invasive  electrodes  instead  of  scalp  electrodes  can  yield 

 better  results,  it  also  introduces  complications  [31].  Furthermore,  the  existing  EEG  signal 

 extraction  devices  are  non-portable  and  often  lead  to  user  discomfort,  potentially  causing 

 patients  to  reject  these  devices  due  to  aesthetic  concerns.  Nevertheless,  technological 

 advancements  have  led  to  the  availability  of  compact  devices  that  employ  techniques  such  as 

 machine  learning,  advanced  filtering,  sophisticated  feature  extraction,  and  wireless  electrodes 

 [20][53].  Despite  these  strides,  challenges  persist,  including  complex  calibration  procedures 

 and low signal consistency [1][68]. 

 Implementing  single-command  systems  is  simpler  compared  to  multi-command  systems,  as 

 recognizing  multiple  commands  can  diminish  system  efficiency.  Enhancing  system  efficiency 

 when  processing  multiple  signals  to  identify  tasks  poses  a  technical  challenge.  However, 

 classification  accuracy  can  be  improved  by  strategically  placing  electrodes  in  specific 

 locations.  This  allows  for  simultaneous  extraction  of  multiple  signals  and  pattern  combination 

 to  identify  particular  tasks  [69].  Yet,  this  endeavor  is  not  without  its  challenges,  as  even 
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 minor  shifts  in  electrode  placement  can  significantly  impact  classification  algorithms. 

 High-density  electrode  grids  and  microelectrode  arrays  can  enhance  signal  extraction  while 

 minimizing  noise.  By  integrating  EEG  signals  with  ocular  indicators  like  blinks  or  eye 

 movements,  hybrid  devices  can  be  developed  to  execute  multiple  tasks.  EEG  technology 

 holds  promise  in  various  fields  such  as  rehabilitation,  gaming,  cognitive  keyboards,  and  smart 

 mobility aids [14][40][68][81][82]. 

 While  some  scholars  suggest  the  development  of  novel,  user-friendly  devices,  in  countries 

 like  India  where  potential  users  often  have  limited  financial  resources  [7],  it  may  be  more 

 practical  to  focus  on  adapting  existing  devices  rather  than  creating  entirely  new  ones,  given 

 the high cost of development. 

 2.2.1.2  EMG Based SHD 

 Electromyography  (EMG)  is  a  method  employed  to  gauge  the  electrical  activity  emanating 

 from  muscles  during  their  contractions.  These  EMG  signals  furnish  valuable  insights  into 

 muscle  functionality,  activation  sequences,  and  the  harmonization  of  muscle  clusters  during 

 motion.  Electrodes  facilitate  the  collection  of  EMG  signals,  which  may  comprise  either 

 surface  electrodes  affixed  to  the  skin  overlaying  the  muscle  or  needle  electrodes  introduced 

 into the muscle tissue. 

 EMG  signals  find  diverse  applications  encompassing  clinical  and  investigative  domains.  In 

 clinical  contexts,  EMG  signals  contribute  to  diagnosing  and  monitoring  neuromuscular 

 disorders  like  muscular  dystrophy,  amyotrophic  lateral  sclerosis  (ALS),  and  myasthenia 

 gravis.  In  research  settings,  EMG  signals  facilitate  the  analysis  of  human  movement  and 

 neuromuscular  performance,  offering  understanding  into  muscle  activation  tendencies  and  the 

 underpinnings  of  muscle  fatigue  and  injury.  Additionally,  EMG  signals  hold  the  potential  to 

 govern  prosthetic  devices,  affording  a  natural  and  intuitive  avenue  for  maneuvering  artificial 

 limbs based on the user's muscular activity. 
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 Relative  to  other  biological  signals,  the  EMG  signal  boasts  an  enhanced  noise-to-signal  ratio. 

 Yet,  its  scope  is  constrained  by  the  subject's  physical  state.  Consequently,  it  may  not  be 

 suitable  for  all  individuals  with  quadriplegia  or  motor  impairments.  Despite  this  limitation, 

 EMG-based  systems  present  merits  such  as  reduced  user  attention  demand  compared  to 

 systems  like  EOG  and  EEG,  coupled  with  minimal  command  latency,  rendering  them  more 

 personalized and less susceptible to ambient noise [18][48][61]. 

 Developing  wearable  devices  hinged  on  EMG  signal-based  systems  can  incorporate 

 electrodes  discretely  positioned  beneath  clothing  or  embedded  within  fabric,  empowering 

 users  to  execute  control  commands  through  subtle  muscle  contractions.  This  concealment 

 feature  renders  these  devices  inconspicuous,  preserving  user  privacy  and  fostering  sustained 

 usability.  Nonetheless,  the  principal  challenge  of  EMG  signal-based  systems  remains  the 

 nuanced  classification  of  diverse  commands  originating  from  a  singular  electrode  set,  leading 

 to  diminished  command  classification  accuracy  in  scenarios  involving  distinct  signal  patterns. 

 While  mathematical  transformations  can  bolster  classification  outcomes,  EMG  systems 

 remain influenced by the physical conditions of the quadriplegic populace [48]. 

 Alternatively,  isolated  anatomical  positions  can  yield  untainted  EMG  signals  devoid  of 

 interference  from  neighboring  muscles.  As  an  illustration,  by  focusing  on  the  posterior 

 auricular  muscle,  researchers  succeeded  in  capturing  EMG  signals  from  both  sides  of  the 

 head  via  unilateral  and  bilateral  muscle  contractions,  thus  regulating  a  smart  wheelchair  [48]. 

 This  approach  surpasses  similar  devices  in  terms  of  swiftness  and  precision,  exhibiting 

 diminished  potential  for  misinterpreted  or  unrecognized  commands.  Achieving  voluntary 

 control  over  these  muscles  necessitates  structured  training  regimens,  while  monitoring 

 muscle force offers supplementary insights to potentially amplify device performance. 
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 2.2.1.3  Electro-oculographic (EOG) signal based systems 

 In  recent  decades,  Electrooculography  (EOG)  signals  have  emerged  as  a  valuable  avenue  for 

 providing  alternative  communication  methods  for  individuals  facing  physical  impairments.  The 

 appeal  of  EOG  signals  lies  in  their  accessibility  and  ease  of  capture  and  processing.  Particularly 

 noteworthy  is  the  resilience  of  nerve  fibers  connecting  facial  muscles  to  the  brain,  remaining  intact 

 even  after  spinal  cord  injuries  and  often  being  the  last  to  be  impacted  in  degenerative  neuromuscular 

 conditions.  This  attribute  renders  EOG  signals  viable  and  attainable  [13][14][19].  Employing  an 

 arrangement  of  superficial  electrodes  affixed  to  the  face,  these  signals  are  harnessed  to  detect  specific 

 eye  movements  or  blinks  linked  to  distinct  commands.  Applications  for  this  technology  span  from 

 rudimentary  interfaces  for  computers  and  smartphones  to  the  operation  of  intelligent  wheelchairs 

 [13][19]. 

 Nonetheless,  EOG-based  technology  is  accompanied  by  certain  technical  limitations.  Firstly,  the 

 system  might  encounter  challenges  if  the  user  shifts  their  gaze  or  turns  their  head,  potentially  resulting 

 in  unintended  command  execution  [14][61].  Secondly,  some  scenarios  may  necessitate  users  to 

 exaggerate  their  eye  movements  or  blinking,  a  practice  that  can  prove  fatiguing  over  prolonged 

 periods  of  use  [14].  This  fatigue-induced  strain  can  also  divert  the  user's  concentration  from  the  task, 

 leading  to  errors,  rework,  frustration,  and  stress.  Lastly,  the  surface  electrodes  integral  to  signal 

 acquisition  in  these  systems  can  be  uncomfortable,  lacking  aesthetic  appeal,  and  hindered  in 

 portability  in  wired  configurations.  These  factors  collectively  contribute  to  potential  user  reluctance 

 and diminished adherence to these devices. 

 2.2.1.4  Voice recognition based SHD 

 Recent  years  have  witnessed  remarkable  strides  in  signal  processing,  giving  rise  to 

 sophisticated  algorithms  designed  for  the  intricate  processing  and  extraction  of  features  from 

 vocal  signals.  This  advancement  has  significantly  elevated  the  efficacy  of  voice-controlled 

 devices,  spanning  both  clinical  and  general  applications.  This  technology  has  found  extensive 

 utility  within  smart  home  environments,  enabling  the  regulation  of  environmental  factors  and 
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 electronic  devices  [71][73][83].  Additionally,  its  application  extends  to  tailored  solutions  for 

 quadriplegic individuals, such as steering smart wheelchairs [41][71][72]. 

 Nonetheless,  certain  obstacles  persist,  inhibiting  the  widespread  adoption  of  these  devices. 

 Foremost  among  these  challenges  is  the  susceptibility  of  voice  recognition  accuracy  to 

 environmental  influences.  Fluctuating  conditions  can  induce  stress,  frustration,  and  even  pose 

 risks  to  the  user's  physical  safety  if  misinterpreted  vocal  commands  trigger  abrupt  changes  in 

 the  wheelchair's  trajectory  or  speed  [48][71].  While  certain  systems  are  designed  to 

 counteract  background  noise,  they  are  most  effective  in  noise-free  surroundings, 

 consequently  curtailing  user  mobility.  Furthermore,  the  temporal  gap  between  issuing  a  voice 

 command  and  the  subsequent  execution  of  the  task  by  the  wheelchair  may  not  align  with 

 immediate  expectations,  potentially  hampering  responsiveness  in  critical  scenarios 

 [61][72][73]. 

 Moreover,  voice-control  systems  hinge  significantly  on  calibration,  necessitating  users  to 

 ensure  that  calibration  procedures  replicate  the  intended  usage  environment  and  to  recalibrate 

 whenever environmental conditions shift. 

 While  some  researchers  have  harnessed  voice-controlled  systems  to  cultivate 

 Human-Computer  Interaction  (HCI),  unhindered  cursor  control  remains  a  challenge. 

 Consequently,  these  systems  typically  center  on  specific  functions  like  launching 

 applications,  composing  messages,  or  engaging  in  particular  games.  Despite  these  limitations, 

 voice-control  technology  remains  a  promising  arena  of  exploration.  Continuous 

 advancements  in  real-time  processing  and  recognition  precision  hold  the  potential  to  yield 

 more dependable and user-friendly devices [72][73]. 

 2.2.1.5  Motion-tracking and face-gesture recognition-based SHD 

 Assistive  technologies  have  emerged  as  indispensable  tools  for  individuals  grappling  with 

 severe  motor  disabilities,  furnishing  them  with  the  capability  to  govern  an  array  of  devices 
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 including  computers,  smartphones,  and  wheelchairs.  A  prevalent  technology  within  this 

 domain  is  motion-tracking  systems,  adept  at  monitoring  movements  of  distinct  body  parts, 

 such  as  eyes,  tongue,  or  markers  positioned  on  the  face.  These  systems  predominantly 

 facilitate  Human-Computer  Interaction  (HCI)  via  a  camera  embedded  within  the  computer 

 [40][51].  A  notable  advantage  of  these  systems  lies  in  their  real-time  data  processing  and 

 recognition  of  facial  gestures,  enabling  users  to  manipulate  devices  sans  external  accessories, 

 fostering  comfort  and  adoption  [40][51].  However,  the  conventional  cameras  utilized  in  these 

 setups  might  encounter  challenges  in  instances  of  drastic  environmental  lighting  shifts  or 

 rapid  user  motions  [21][40][51].  Calibration  is  a  customary  prerequisite  before  deploying 

 these  systems,  and  recalibration  becomes  necessary  if  markers  or  the  head  undergo 

 significant  displacement.  Notably,  when  leveraging  eye  movements  as  markers,  intricacies 

 arise from potential interference between interaction motion and natural eye motion [52]. 

 Motion-tracking  devices  centered  on  tongue  motion  have  also  exhibited  commendable 

 performance  in  controlling  cursor  movements  and  text  inputs.  These  devices,  typically 

 embedded  within  dental  retainers,  offer  nearly  imperceptible  integration  [51][52]. 

 Nevertheless,  the  insertion  of  an  external  device  into  the  oral  cavity  may  hinder  speech 

 functions  and  present  hygienic  concerns  [55][56].  This  limitation  is  a  recurring  challenge 

 among  all  tongue-based  technologies,  which  has  prompted  exploration  into  implantable  oral 

 devices.  Adoption,  however,  necessitates  meticulous  medical  supervision  due  to  the  invasive 

 nature  of  piercing  insertion,  associated  with  potential  risks  such  as  dental  enamel  chipping, 

 periodontal  complications,  and  infections  [55][56].  Given  the  superior  performance  of 

 tongue-based  systems  compared  to  other  mechanical  and  motion-tracking  counterparts,  they 

 have  been  earmarked  for  more  intricate  tasks  such  as  overseeing  entire  computers, 

 smartphones, or smart wheelchairs [24][57][58]. 
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 Proposals  encompass  facial  and  gesture  recognition-based  systems,  tailored  for  multifarious 

 HCI  [21][51].  A  straightforward  design  delineating  three  regions  of  interest,  with  each  area 

 linked  to  a  specific  function,  has  proven  efficacious  for  individuals  burdened  with  severe 

 motor  limitations.  Among  individuals  with  high-level  Spinal  Cord  Injuries  (SCIs),  residual 

 motor  functionality  might  be  confined  to  facial  muscles.  In  these  instances,  streamlined 

 devices  such  as  a  face  recognition  unit  coupled  with  a  smile-triggered  response  mechanism 

 offer  a  means  of  navigating  dynamic  menus  to  perform  designated  tasks  [52][40].  Moreover, 

 ongoing  research  aims  to  customize  gesture  sets  in  conventional  gesture-based  systems  and 

 adapt  existing  standard  interfaces  to  enhance  suitability,  considering  that  these  systems  might 

 not optimally accommodate the quadriplegic population. 

 An  innovative  study  introduces  an  intriguing  approach  amalgamating  face  detection  and  head 

 motion  to  capture  gesture  information  for  command  activation  and  movement  data  to  regulate 

 cursor  displacement  [21].  Implementing  an  infrared  depth  camera  insulates  the  system  from 

 color  and  illumination  fluctuations,  thereby  conferring  an  advantage  over  conventional 

 cameras  [21].  Enhanced  by  a  refined  randomized  decision  tree  algorithm,  the  system 

 accurately  detects  facial  features  [21].  Leveraging  a  nonlinear  function  for  identifying  nasal 

 position,  the  system  augments  user  experience  in  cursor  control.  It  surpasses  other  systems 

 reliant on gesture recognition and motion-tracking interfaces in precision and speed [21]. 

 Another  envisioned  advancement  centers  on  body-based  power  devices  that  deploy  inertial 

 measurement  units  to  estimate  minor  shoulder  motions.  This  approach  facilitates  control  over 

 translational  and  rotational  facets  of  a  smart  wheelchair  via  Euler  angles,  angular  velocities, 

 and  linear  accelerations  [63][64].  Notably,  these  devices  must  prioritize  robustness  and  safety, 

 orchestrating  the  coordinated  execution  of  diverse  components  with  requisite  speed  for 

 rotational  and  translational  actions  [63][64].  In  comparison  to  Electroencephalography 

 (EEG)-based  smart  wheelchairs,  the  body-based  power  device  is  less  computationally 
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 demanding,  demands  diminished  concentration,  and  boasts  a  shorter  user-training  phase  [64]. 

 A  proof-of-concept  experiment  involving  a  smart  wheelchair  reveals  that  two  degrees  of 

 freedom  suffice  for  executing  forward-stop  and  left-right  functions,  signifying  that 

 individuals  with  residual  motor  functions  can  competently  oversee  a  wheelchair  with  these 

 fundamental  controls  [63][65].  This  discovery  holds  profound  implications,  potentially 

 extending to devices governed by these four elemental functions. 

 2.2.2  Multimodal approach 

 The  integration  of  a  multimodal  strategy  into  the  creation  of  unified  devices,  proficient  in 

 capturing  and  processing  diverse  input  modes  cohesively,  has  exhibited  remarkable  potential 

 in  streamlining  daily  activities.  This  approach  not  only  minimizes  the  need  for  a  multitude  of 

 devices  but  also  enhances  resilience,  accuracy,  and  user-friendliness.  By  adopting  this 

 approach,  the  likelihood  of  heightened  user  engagement  and  improved  acceptance  of  Smart 

 Home Devices (SHDs) is amplified. 

 Illustratively,  the  GOM-Face  device  exemplifies  a  multimodal  creation,  harnessing  three 

 distinct  bioelectrical  potentials:  glosso-kinetic  data  for  a  tongue-operated  interface, 

 Electrooculography  (EOG)  signals  for  gaze-tracking  input,  and  Electromyography  (EMG) 

 potentials  to  gauge  teeth  clenching  actions  [18].  A  hierarchical  interface  architecture  was 

 meticulously  devised,  incorporating  discriminative  feature  extraction  and  classification 

 methodologies.  These  techniques  identified  horizontal  tongue  and  eye  movements,  as  well  as 

 states  of  teeth  contraction  [84].  The  amalgamated  data  empowered  the  control  of  a  versatile 

 robot  capable  of  executing  multifaceted  tasks  like  walking,  dancing,  and  uttering 

 pre-recorded  phrases.  Expanding  investigations  could  delve  into  intricate  tongue  and  eye 

 movements,  and  potentially  integrate  this  system  with  Electroencephalography  (EEG)-based 

 technologies. 
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 In  an  alternate  approach,  a  tooth-click  detecting  device  harmoniously  merged  with  a 

 gyrometer-equipped  head  mouse  to  govern  cursor  motion  and  mouse  clicks.  The  efficacy  of 

 this  setup  surpassed  that  of  voice-controlled  systems,  given  the  streamlined  nature  of  the 

 tooth-click  mechanism.  Unlike  speech  recognition  systems  which  necessitate  signal 

 acquisition,  processing,  and  categorization—culminating  in  delays  prone  to  inaccuracies 

 during  clicking—the  gyrometer  head  mouse  proved  to  be  an  apt  complement  to  the 

 tooth-click  system.  The  consolidation  of  these  elements  into  a  compact  unit  eliminates  the 

 need  for  external  accessories,  enabling  seamless  usage  across  diverse  computers  devoid  of 

 frequent calibration requirements. 

 At  its  core,  the  multimodal  methodology  unveils  substantial  potential  in  augmenting  the 

 user-friendliness  and  acceptance  of  SHDs.  Pioneering  instances  like  the  GOM-Face  device 

 and  the  tooth-click  detecting  apparatus  underscore  the  viability  of  this  approach,  paving  a 

 path for further evolution and exploration within this dynamic field. 

 2.2.3  Internet of things (IoT) 

 The  Internet  of  Things  (IoT)  offers  various  solutions  that  can  significantly  improve  the  lives 

 of  individuals,  particularly  in  terms  of  entertainment,  work,  social  interaction,  and  more. 

 Through  IoT,  people  can  easily  control  various  aspects  of  their  environment,  such  as  lights 

 and  doors.  Innovative  devices  such  as  automatic  beds  that  can  adjust  based  on  the  user's 

 clinical  condition  or  those  that  can  transfer  a  quadriplegic  person  from  a  bed  to  a  wheelchair 

 with  the  help  of  caregivers  can  also  provide  greater  independence  for  those  with 

 quadriplegia[85]. 

 However,  it  should  be  noted  that  these  devices  can  be  quite  expensive,  which  is  a  significant 

 disadvantage.  As  such,  more  research  should  be  conducted  to  focus  on  minimizing  the  cost  of 

 these  devices  while  maintaining  their  quality  and  effectiveness  in  enhancing  the  lives  of 

 people with quadriplegia. 
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 2.2.4  Exoskeletons 

 Assistive  devices  are  wearable  structures  that  help  to  enhance  and  restore  human  performance 

 for  individuals  with  quadriplegia.  These  devices  are  not  only  limited  to  quadriplegic 

 individuals  but  can  also  be  used  by  people  who  have  partial  disabilities  or  residual  upper  limb 

 movements.  Studies  have  demonstrated  that  assistive  devices  can  improve  the  ability  of  a 

 quadriplegic  individual  to  walk,  stand  and  sit  properly  [80].  However,  one  of  the  major 

 challenges  with  assistive  devices  is  their  high  cost,  including  the  costs  associated  with 

 maintenance. 

 2.3  The  primary  functional  and  non-functional  needs  of 

 quadriplegic users regarding the SHD 

 Functional  requirements  of  quadriplegic  individuals  have  been  identified  by  researchers 

 [33][68][86][87][88][89][90].  The  main  concerns  reported  by  them  are  emergency 

 communication,  the  use  of  personal  computers  for  academic  and  work  purposes,  robotic  arms 

 for  self-feeding,  and  smart  wheelchairs.  In  addition  to  these,  urinary  and  bowel  movement 

 controls  and  upper  body  controls  to  stay  in  a  vertical  position  were  also  among  the  main 

 functional  requirements  [1][86].  Several  surveys  have  been  conducted  to  specifically  evaluate 

 the  needs  of  quadriplegic  users  [33][86],  with  primary  interest  to  recover  natural  upper  body 

 functions  [1].  Additionally,  80%  of  individuals  with  quadriplegia  were  willing  to  adopt  any 

 technology  that  could  restore  some  grasp  functions,  while  60%  were  also  ready  to  accept 

 surgical procedures if the implant could restore some body functions [1][33]. 

 Several  studies  have  identified  key  interests  and  concerns  of  quadriplegic  individuals 

 regarding  the  use  of  external  devices,  such  as  robotic  arms,  computers,  and  smart  wheelchairs 

 [33][31][1][69][91].  In  addition,  there  is  a  need  for  human-computer  interface  (HCI)-based 

 systems  to  facilitate  communication  through  email,  word  processing  software  for  academic 
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 and  work  assignments,  and  internet  browsing,  which  were  identified  as  the  top  three  priorities 

 for  people  with  quadriplegia  in  several  surveys  [79][91].  Improving  communication  is  crucial 

 to  enhancing  the  quality  of  life  for  individuals  with  quadriplegia.  Smart  wheelchairs, 

 however,  raise  concerns  about  misinterpretation  of  commands,  leading  to  accidents  and 

 frustration  in  users,  particularly  in  emergency  situations  where  delays  in  recognizing  a 

 command can make them feel vulnerable. 

 Aesthetics  of  the  devices  are  also  a  concern  for  quadriplegic  individuals.  If  a  device  is  not 

 aesthetically  pleasing  or  reliable,  it  is  less  likely  to  be  used  [92][61][17].  Interestingly,  in 

 some  studies,  invasive  devices  were  more  accepted  than  non-invasive  devices  due  to  aesthetic 

 concerns [1][88]. 

 When  asked  about  their  primary  goals  after  suffering  a  spinal  cord  injury  (SCI),  quadriplegic 

 individuals identified several key goals. 

 Quadriplegic  individuals  express  a  desire  to  regain  their  independence  and  return  to  a  normal 

 life.  This  includes  being  able  to  perform  tasks  without  assistance  and  having  the  opportunity 

 to  work  again,  which  serves  as  motivation  for  their  use  of  assistive  devices  [33].  Additionally, 

 these  individuals  express  a  desire  to  adjust  to  their  injury,  overcome  their  physical  limitations, 

 and  accept  their  condition  [89].  Another  primary  goal  is  learning  new  skills,  which  brings  a 

 sense  of  fulfillment  and  enjoyment.  Assistive  devices  should  facilitate  learning  new  skills 

 since quadriplegic individuals may lack the ability to perform different tasks [33]. 

 Quadriplegic  individuals  express  a  desire  to  live  a  meaningful  life  and  participate  in  social 

 activities,  which  can  improve  their  quality  of  life  [33]  [89].  Increasing  their  independence 

 through  the  use  of  assistive  technologies,  such  as  Smarthomes,  can  improve  their  self-worth, 

 happiness,  and  confidence  [73].  Smarthomes  can  help  quadriplegic  individuals  with  daily 

 tasks  such  as  lighting  control,  answering  phone  calls,  and  opening  and  closing  doors, 
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 reducing  the  burden  on  caregivers.  In  fact,  81%  of  quadriplegic  individuals  living  in  smart 

 homes reported a reduction in caregiver burden and 21% were able to live alone [73][89]. 

 There  are  two  major  considerations  for  SHD  design  when  it  comes  to  disabled  individuals. 

 Firstly,  the  SHD  should  be  personalized  to  address  the  specific  needs  of  each  individual  and 

 have  the  ability  to  adapt  to  specific  circumstances  [85][38][20].  Secondly,  the  device  should 

 be  self-sufficient,  capable  of  managing  its  operations  on  its  own  without  the  requirement  of 

 caregivers. This includes the ability to self-calibrate, self-optimize, and self-protect [85][93]. 

 2.4  Main  barriers  in  the  development  of  SHDs  for 

 quadriplegic people 

 The  rate  of  abandonment  of  SHDs  is  high,  as  reported  by  various  studies  [73][38].  When 

 caregivers  of  quadriplegic  individuals  were  surveyed  to  determine  the  main  barriers  to  the  use 

 of SHDs, the following results were obtained: 

 ●  37% of respondents cited the high cost of the devices 

 ●  22% of quadriplegic individuals felt that the technology did not address their needs 

 ●  20%  of  respondents  believed  that  quadriplegic  individuals  would  not  accept  such 

 technologies. 

 However,  it  is  important  to  note  that  these  perceived  barriers  may  not  align  with  the  actual 

 reasons  for  abandonment  reported  by  quadriplegic  individuals  themselves.  Studies  have 

 found  that  poor  performance,  low  reliability,  failure  to  meet  expectations,  lack  of  training, 

 difficult  maintenance,  and  poor  customer  support  were  some  of  the  reasons  for  abandonment 

 from the end user's perspective [38][73][73][93]. 

 While  certain  factors  such  as  cost  and  reliability  are  quantifiable,  feedback  from  quadriplegic 

 individuals  and  their  caregivers  during  the  device  design  process  is  critical  for  increasing 
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 acceptance  rates.  Studies  show  that  individuals  with  a  more  optimistic  outlook  are  less  likely 

 to  abandon  the  device  if  it  meets  their  expectations.  Therefore,  it  is  essential  to  provide  clear 

 counseling  to  quadriplegic  individuals  about  the  device's  functions  and  limitations  to  avoid 

 generating false expectations that may lead to frustration and abandonment of the technology. 

 The  design  and  development  team  should  include  individuals  from  multiple  domains, 

 including  designers,  engineers,  doctors,  and  psychiatrists.  Health  professionals  should 

 evaluate  the  physical  and  mental  state  of  the  user,  and  together,  the  team  can  identify  the 

 functional  and  non-functional  requirements  of  the  SHD.  All  of  this  information  is  essential 

 for designing customized and more efficient devices. 

 2.5  Research Gaps 

 Based  on  the  literature  review,  there  are  several  research  gaps  that  need  to  be  addressed. 

 Firstly,  Brain-machine  interface-based  self-help  devices  available  in  the  literature  do  not 

 address  the  needs  of  quadriplegic  people  properly.  Additionally,  there  is  a  scarcity  of  research 

 work  and  available  solutions,  particularly  in  developing  countries  like  India  where  the 

 affected  group  is  mainly  industrial  workers  with  limited  financial  resources.  Furthermore, 

 many  patients  have  conveyed  that  the  available  devices  try  to  solve  their  problems  using 

 automatic  devices,  which  makes  them  feel  robotic  and  lack  control  over  their  limbs.  There  is 

 a  scarcity  of  research  that  addresses  this  issue.  To  add  further  the  gaps  in  research  can  be 

 summarized as 

 ●  Lack  of  customizability:  Many  current  assistive  technologies  are  not  customizable 

 enough  to  suit  the  individual  needs  of  quadriplegic  people.  This  may  include  factors 

 such as comfort, fit, and adjustability of the device. 

 ●  Limited  focus  on  user-centered  design:  The  review  highlights  the  importance  of 

 involving  quadriplegic  individuals  and  their  caregivers  in  the  design  process  of 
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 assistive  devices.  However,  many  existing  technologies  may  not  have  been  developed 

 with sufficient input from end-users. 

 ●  Cost:  While  there  are  many  advanced  technologies  available  to  help  quadriplegic 

 people,  they  can  be  prohibitively  expensive.  There  is  a  need  to  develop  more 

 cost-effective solutions that still address the needs of users. 

 ●  Limited  effectiveness  of  current  prosthetic  devices:  While  prosthetic  devices  can  be 

 helpful,  they  often  have  limited  functionality  and  may  not  be  well-suited  for  specific 

 tasks  or  activities.  There  is  a  need  for  prosthetic  devices  that  are  more  functional  and 

 can more accurately mimic the movements of a natural limb. 

 ●  Limited  availability  of  research  on  signal  acquisition  strategies  from  quadriplegic 

 individuals:  While  EMG  and  EEG  signals  can  be  useful  for  controlling  prosthetic 

 devices,  current  signal  acquisition  strategies  may  not  be  designed  with  the  unique 

 needs  of  quadriplegic  individuals  in  mind.  There  is  a  need  to  develop  strategies  that 

 are more comfortable, easy to use, and reliable for this population. 

 2.6  Research Objectives 

 Based  on  the  research  gaps  identified  in  the  literature  review,  the  following  research 

 objectives can be formulated: 

 ●  To  design  and  develop  a  novel  signal  acquisition  system  that  is  best  suitable  for 

 quadriplegic people. 

 ●  To use this signal acquisition system to operate SHDs 

 ●  To  develop  a  SHD,by  using  this  signal  acquisition  system,  for  quadriplegic  people  to 

 help improve their quality of life. 

 ●  To  develop  a  simple  and  easy-to-operate  prosthetic  hand  that  gives  the  ability  to 

 quadriplegic people to grasp common objects. 
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 Chapter 3 

 Developing a novel signal acquisition system for quadriplegic people 

 It  was  clear  from  the  literature  review  that  physiology  based  signals  are  most  prevalent  in 

 developing  SHDs  for  the  quadriplegic  people.  EEG  can  provide  a  non-invasive  way  to  record 

 electrical  activity  in  the  brain,  allowing  for  the  development  of  brain-machine  interfaces 

 (BMIs)  that  can  translate  a  person's  thoughts  into  actions.  This  is  particularly  useful  for 

 quadriplegic  individuals  who  are  unable  to  use  their  limbs  to  control  prosthetic  devices. 

 EEG-based  BMIs  have  been  shown  to  be  effective  for  controlling  prosthetic  hands  and  arms 

 in research studies[23] [53][62]. 

 EMG,  on  the  other  hand,  can  be  used  to  detect  electrical  activity  in  muscles,  which  can 

 provide  information  about  a  person's  intended  movements.  This  can  be  particularly  useful  for 

 controlling  a  prosthetic  hand  or  arm,  as  it  allows  for  more  natural  and  intuitive  movement 

 control.  EMG-based  control  systems  have  also  been  shown  to  be  effective  in  research  studies 

 [48][60] 

 Voice  recognition-based  systems  require  the  user  to  have  intact  vocal  capabilities,  which  may 

 not  be  suitable  for  quadriplegic  individuals.  Additionally,  these  systems  can  be  sensitive  to 

 environmental  noise  and  may  not  be  reliable  in  all  situations.  Motion  tracking  and  face 

 gesture-based  systems  require  the  user  to  have  some  level  of  residual  motion  or  facial  control, 

 which  may  not  be  feasible  for  quadriplegic  individuals  with  severe  motor  impairments. 

 Tongue  movement-based  systems  are  an  option,  but  these  require  a  significant  amount  of 

 training  to  master  and  may  be  uncomfortable  or  even  painful  for  the  user[55][56]. 

 Camera-based  systems  require  the  user  to  be  within  view  of  the  camera  at  all  times,  which 

 may  not  be  practical  in  all  situations,  especially  for  individuals  who  are  bedridden  or  have 

 limited mobility. 
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 Hence  in  this  present  work,  studies  were  conducted  to  examine  EEG  and  EMG  based 

 methods to extract signals for quadriplegic people. 

 3.1  Experimental study on EEG based methods 

 The  inception  of  electroencephalography  (EEG)  dates  back  to  1924  when  Berger  et  al.  first 

 employed  it  to  document  cerebral  electrical  potentials.  Since  its  inception,  this  technique  has 

 unfurled  a  multitude  of  research  avenues,  gaining  notable  traction  over  the  past  two  decades. 

 However,  the  raw  electrical  signals  garnered  from  subjects  are  inherently  intricate  and  cannot 

 be  directly  employed.  Consequently,  several  pre-processing  methods  are  applied  to  distill 

 pertinent insights from the signals, rendering signal classification a formidable undertaking. 

 Researchers  have  endeavored  to  unravel  the  genesis  of  these  potentials,  their  inherent  nature, 

 plausible  artificial  manipulation,  and  the  techniques  for  identification  and  prognostication.  In 

 practical  terms,  EEG  potentials  are  recorded  through  electrodes,  which  can  either  be 

 surgically  placed  on  the  brain  or  non-invasively  positioned  on  predetermined  scalp  locations. 

 Given  the  intricacy  of  surgical  placement,  the  non-surgical  approach  using  scalp  electrodes  is 

 more  prevalent.  Once  recorded,  signals  undergo  filtration  to  eliminate  extraneous  noise, 

 environmental  artifacts,  eye  blinks,  and  electrical  interference,  constituting  the  pre-processing 

 phase. 

 In  pursuit  of  predicting  cognitive  states,  researchers  typically  filter  the  electric  potential 

 waves  within  the  0-80  Hz  range.  Subsequently,  feature  extraction  ensues,  revealing  that 

 brain-generated  potential  waves  oscillate  across  multiple  frequencies.  These  oscillations  have 

 been  categorized  into  four  groups:  alpha,  beta,  theta,  and  delta  waves,  spanning  frequency 

 ranges of 0-4 Hz, 4-8 Hz, 8-16 Hz, and 16-32 Hz, respectively. 

 A  variety  of  methodologies  have  been  harnessed  for  feature  extraction,  including  Power 

 Spectral  Density  (PSD),  Hilbert-Huang  Transformation  (HHT),  Band  Power  features,  Fast 
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 Fourier  Transformation  (FFT),  Discrete  Wavelet  Transformation  (DWT),  and  the  Minimum 

 Energy  Combination  method.  These  extracted  features  are  subsequently  employed  to  predict 

 the cognitive state of the user. 

 Ultimately,  the  derived  features  are  channeled  into  classifying  brain  potentials  through 

 methodologies  such  as  Genetic  Algorithm  (GA),  Artificial  Neural  Networks  (ANN),  Linear 

 Discriminant Analysis (LDA), and Support Vector Machine (SVM). 

 An  important  consideration  pertains  to  the  theoretical  uncertainties  that  still  surround 

 information  processing  within  the  brain.  Consequently,  there  exists  a  considerable  potential 

 for  uncontrolled  events,  statistically  speaking,  within  data  collected  via  scalp  electrode 

 placement.  The  exploration  herein  seeks  to  ascertain  the  presence  of  such  uncontrolled  events 

 within  scalp-recorded  data  and  gauge  the  potential  impact  of  their  removal  on  classification 

 accuracy. 

 3.1.1  Experimental Study and Results 

 3.1.1.1  Techniques Used 

 Discrete Wavelet Transform(DWT) 

 Discrete  Wavelet  Transformation  (DWT)  is  a  mathematical  technique  used  to  analyze  and 

 decompose  signals,  such  as  audio  or  image  data,  into  different  frequency  bands.  It  is  a  type  of 

 wavelet  transform  that  uses  a  set  of  wavelets,  which  are  small  oscillating  waves,  to  represent 

 the signal in both time and frequency domains. 

 DWT  involves  a  series  of  filtering  and  down-sampling  operations  that  progressively  divide 

 the  signal  into  low-frequency  (approximation)  and  high-frequency  (detail)  components.  The 

 process  begins  with  a  low-pass  filter  that  removes  high-frequency  components  from  the 

 signal,  followed  by  a  down-sampling  operation  that  reduces  the  sampling  rate  of  the  signal  by 

 a factor of 2. The resulting signal is referred to as the approximation signal. 
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 The  high-frequency  components  are  obtained  by  passing  the  original  signal  through  a 

 high-pass  filter,  followed  by  down-sampling.  The  resulting  signal  is  referred  to  as  the  detail 

 signal.  The  process  is  repeated  on  the  approximation  signal  to  obtain  further  decomposition 

 levels, resulting in a tree-like structure of approximation and detail coefficients. 

 We  used  matlab  for  performing  the  DWT.  Matlab’s  Wavedec  function  was  used  for  the 

 same.Matlab's  wavedec  function  is  a  built-in  function  that  implements  the  wavelet 

 decomposition  of  a  one-dimensional  signal  using  the  discrete  wavelet  transform  (DWT).  The 

 wavedec  function  is  part  of  the  Wavelet  Toolbox  in  Matlab  and  uses  a  specified  wavelet  for 

 decomposition. 

 The syntax of the wavedec function is as follows: [C, L] = wavedec(X, N, wname) 

 where  X  is  the  input  signal,  N  is  the  number  of  decomposition  levels,  and  wname  is  the  name 

 of  the  wavelet.  The  function  returns  two  outputs:  C,  a  concatenated  vector  of  the 

 approximation  and  detail  coefficients,  and  L,  a  vector  containing  the  length  of  the 

 approximation and detail coefficients at each level. 

 Statistical Process Control 

 Statistical  Process  Control  (SPC)  is  a  method  for  monitoring,  controlling  and  improving  a 

 process  by  analyzing  and  interpreting  statistical  data.  SPC  is  used  to  monitor  and  control 

 quality  in  manufacturing  processes,  and  it  can  also  be  applied  in  other  types  of  processes  too. 

 SPC  involves  the  use  of  a  control  chart,  which  is  a  tool  used  to  monitor  a  process  and  detect 

 whether  it  is  in  a  state  of  statistical  control.  An  out  of  control  event  in  a  control  chart  occurs 

 when  the  process  being  monitored  is  exhibiting  unusual  or  unexpected  behavior  that  may 

 indicate that the process is not in a state of statistical control. 

 We  used  mean  and  range  charts  to  find  out  of  control  events.Mean  and  range  charts  are  a  type 

 of  statistical  process  control  (SPC)  chart  used  in  SQC  (Statistical  Quality  Control)  to  monitor 

 the  central  tendency  and  dispersion  of  a  process.In  mean  and  range  charts,  a  point  is 
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 considered  out  of  control  if  it  falls  outside  the  control  limits  or  if  it  exhibits  any  pattern  that 

 indicates the presence of special causes of variation. 

 In order to construct mean (  ) Chart  𝑋 

 ●  Central Line(CL) is obtained by  )  𝑋 = Σ( 𝑋  /  𝑔 

 ●  Upper Control Limit (UCL) for  Chart is obtained  𝑋  𝑈𝐶𝐿 
 𝑋 

=  𝑋 +  𝐴 
 2 
 𝑅 

 ●  Lower Control Limit (LCL) for  Chart is obtained  𝑋  𝐿𝐶𝐿 
 𝑋 

=  𝑋 −  𝐴 
 2 
 𝑅 

 In order to construct Range ( R ) Chart 

 ●  Central Line(CL) is obtained by  𝑅 = Σ( 𝑅  /  𝑔 )

 ●  Upper Control Limit (UCL) for  Chart is obtained  𝑅  𝑈𝐶𝐿 
 𝑅 

=  𝐷 
 4 
 𝑅 

 ●  Upper Control Limit (LCL) for  Chart is obtained  𝑅  𝐿𝐶𝐿 
 𝑅 

=  𝐷 
 3 
 𝑅 

 Where  g,  ,  ,  are  the  number  of  subgroups  and  the  factors  for  control  limits  𝐴 
 2 

 𝐷 
 3 

 𝐷 
 4 

 respectively. 

 A  point  can  be  categorized  as  out  of  control  in  a  mean  and  range  chart  if  it  falls  in  one  of  the 

 following category: 

 ●  Outliers:  A  data  point  that  falls  outside  the  control  limits  for  either  the  mean  or  the 

 range is considered an outlier and is classified as out of control. 

 ●  Trend:  A  series  of  consecutive  points  that  show  an  upward  or  downward  trend 

 indicate  that  there  is  a  systematic  shift  in  the  process  mean,  and  the  process  is 

 considered out of control. 

 ●  Shift:  A  point  that  is  significantly  different  from  the  other  data  points  indicates  a 

 sudden shift in the process mean, and the process is considered out of control. 

 ●  Cycles:  A  repeating  pattern  of  points  indicates  that  there  is  a  recurring  cause  of 

 variation in the process, and the process is considered out of control. 
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 Support Vector Machines (SVM): 

 SVM,  or  Support  Vector  Machine,  is  a  type  of  machine  learning  algorithm  that  can  be  used 

 for  both  classification  and  regression  tasks.  SVM  works  by  finding  a  hyperplane  in  a 

 high-dimensional  space  that  best  separates  the  data  into  different  classes.  The  hyperplane  is 

 chosen  so  that  the  margin  between  the  closest  points  from  each  class  is  maximized.  SVM  is 

 especially useful when working with complex datasets with multiple features. 

 In  SVM,  the  data  points  are  plotted  in  a  multidimensional  space,  and  each  point  is  assigned  to 

 a  particular  class.  The  algorithm  then  finds  the  hyperplane  that  maximizes  the  margin 

 between  the  closest  points  from  each  class.  The  data  points  closest  to  the  hyperplane  are 

 called support vectors. 

 One  advantage  of  SVM  is  that  it  works  well  with  high-dimensional  data  and  is  less  prone  to 

 overfitting  than  other  machine  learning  algorithms.  However,  SVM  can  be  computationally 

 expensive and may not work well with very large datasets. 

 3.1.1.2  Dataset 

 The  dataset  used  for  this  study  was  recorded  as  per  international  10-20  system.  The  10-20 

 system  is  the  most  widely  used  electrode  placement  system  for  EEG  recording.  It  defines 

 specific  locations  on  the  scalp  for  electrode  placement  based  on  the  distance  between  skull 

 landmarks,  with  electrodes  placed  at  intervals  of  10%  or  20%  of  the  total  distance  between 

 the  landmarks  [117].  Figure  2  shows  the  same  The  dataset  was  recorded  from  the  C3,C4  and 

 Cz  position  of  a  25-year-old  female  subject.  A  screen  was  positioned  in  front  of  her  and  she 

 was  prompted  to  imagine  moving  her  right  or  left  hand  when  the  corresponding  cues 

 appeared  on  the  screen.  The  dataset  was  sampled  at  a  frequency  of  128  Hz  and  recorded  in 

 accordance  with  the  international  10-20  system.  Each  trial  lasted  for  9  seconds,  with  the 

 participant  instructed  to  remain  still  for  the  initial  2  seconds.  After  2  seconds,  a  cue  was 

 presented on the screen indicating the start of the trial. A total of 140 trials were recorded. 
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 Figure 2 - Specific locations on the scalp for electrode placement as per international 10-20 

 system 

 3.1.1.3  Experimental Study 

 The  experimental  study  employed  a  methodology  that  involved  several  key  steps.  First,  the 

 dataset  was  pre-processed  to  prepare  it  for  analysis.  Next,  features  were  extracted  from  the 

 dataset.  Two  separate  datasets  were  then  formed,  with  one  containing  out-of-control  events 

 and  the  other  excluding  such  events.  Both  datasets  were  classified  using  a  SVM.  The 

 accuracy  of  classification  was  then  compared  between  the  two  datasets  to  determine  the 

 impact  of  out-of-control  events  on  the  accuracy  of  the  SVM-based  classification.  Overall,  this 

 methodology  allowed  for  a  comprehensive  evaluation  of  the  effect  of  out-of-control  events  on 

 the  accuracy  of  the  classification  system,  and  provided  insights  into  the  effectiveness  of  the 

 SPC-based approach for EEG analysis. Figure 3 shows the process of experimental study. 
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 Figure 3: Block diagram showing procedure of experimental study 

 Pre-Processing 

 The  dataset  was  sampled  at  128  Hz,  resulting  in  1,152  events  per  trial.  The  initial  3  seconds 

 of  each  trial  were  disregarded,  as  no  mental  task  was  performed  during  this  period.  The 

 remaining  6  seconds  of  data  produced  768  events  per  trial,  which  were  subsequently 

 processed  using  Matlab.  The  data  was  decomposed  using  the  wavedec  function  at  4  levels, 

 resulting  in  one  approximation  coefficient  (Ad)  and  four  detail  coefficients  (Db,  Dc,  and  Dd). 

 The  decomposition  tree  of  the  transformation  at  4  levels  is  shown  in  Figure  2.  Further  feature 

 extraction  was  performed  using  the  approximation  coefficient  Ad  and  detail  coefficients  Db, 

 Dc, and Dd. 

 Feature Extraction and Classification 

 To  extract  features,  we  used  the  three  detail  coefficients  and  one  approximation  coefficient 

 obtained  from  the  previous  process.  We  calculated  the  mean  of  all  four  coefficients 

 separately.  Thus,  for  a  single  trial  and  three  channels  (C4,  CZ,  and  C3),  we  obtained  four 
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 features  per  channel,  resulting  in  a  total  of  12  features  per  trial  for  all  three  channels.  The 

 extracted  features  were  then  used  for  further  analyses.  We  created  two  datasets  from  these 

 extracted  features.  In  one  dataset  the  features  were  used  as  it  is  while  in  the  other  dataset  the 

 out  of  control  datapoints  were  identified  using  the  statistical  process  control  and  removed 

 from the data. Figure 4 shows the control charts created and identified out of control events. 

 Figure 4 – Mean and Range charts of alpha, beta, theta and delta sub-bands over c3, cz and c4 

 channels to identify out of control processes. 

 The  classification  was  done  with  the  help  of  SVM.  The  two  datasets  obtained  in  previous  step 

 were  normalized  first  before  feeding  it  to  SVM  for  classification.  We  used  a  5  step  cross 

 validation  while  doing  the  classification.  Cross-validation  is  a  technique  used  to  evaluate  the 

 performance  of  a  machine  learning  model  by  splitting  the  available  data  into  training  and 

 testing  sets.  In  5-fold  cross-validation,  the  data  is  randomly  divided  into  five  subsets  of  equal 

 size.  The  model  is  then  trained  on  four  of  the  subsets  and  evaluated  on  the  remaining  subset. 

 This  process  is  repeated  five  times,  with  each  subset  serving  as  the  test  set  once.  Using  5-fold 
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 cross-validation  in  SVM  classification  is  advantageous  for  several  reasons.  Firstly,  it  helps  to 

 avoid  overfitting  by  assessing  the  model's  performance  on  different  subsets  of  the  data. 

 Secondly,  it  provides  a  more  reliable  estimate  of  the  model's  performance  by  averaging  the 

 results  of  five  different  evaluations.  Lastly,  it  maximizes  the  use  of  available  data  by  using 

 each subset of the data as both training and test sets. 

 The  classification  accuracy  showed  a  significant  improvement  when  the  out  of  control  events 

 were  removed  from  the  dataset.  The  first  dataset,  which  contained  out  of  control  events, 

 reported  a  classification  accuracy  of  73%,  whereas  the  second  dataset,  which  did  not  have 

 any  out  of  control  events,  reported  a  classification  accuracy  of  84%.  This  indicates  an 

 increase  of  11%  in  the  classification  accuracy  when  the  out  of  control  events  were  removed 

 from the dataset. 

 To  further  analyze  the  classification  results,  minimum  classification  error  and  confusion  plots 

 were  generated  for  both  datasets.  Figure  5  and  6  shows  the  minimum  classification  error  and 

 confusion  plots  of  the  first  dataset,  while  Figure  7  and  8  shows  the  minimum  classification 

 error  and  confusion  plots  of  the  second  dataset.  These  plots  provide  insights  into  the 

 performance  of  the  classification  model  and  help  to  identify  any  misclassifications  that 

 occurred  during  the  classification  process.  Overall,  the  removal  of  out  of  control  events  has 

 resulted  in  a  significant  improvement  in  the  classification  accuracy,  which  can  have  important 

 implications for the practical application of the classification model. 
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 Figure 5: Minimum classification error of data containing out-of-control events 

 Figure 6: Confusion plots of data containing out-of-control events 
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 Figure 7: Minimum classification error of data without out-of-control events 

 Figure 7 : Confusion plots of data without out-of-control events 
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 3.1.2 Conclusion 

 In  this  study  we  found  that  the  accuracy  of  EEG  based  BMI  classification  can  be  improved 

 significantly  when  using  a  dataset  without  out  of  control  events.  To  further  improve  the 

 results,  future  studies  could  focus  on  increasing  the  quality  of  data  acquisition  by  using 

 high-density  EEG  systems.  Additionally,  incorporating  more  channels  of  EEG  data  can 

 provide  a  more  comprehensive  view  of  brain  activity  during  the  task  and  may  improve 

 classification accuracy. 

 Despite  the  promising  results  of  using  EEG  for  developing  self-help  devices  (SHD),  it  is 

 challenging  to  use  it  outside  the  lab  environment  due  to  various  factors  such  as  movement 

 artifacts, electrode placement, and signal interference from other sources. 

 As  EMG  was  also  one  of  the  most  commonly  used  methods  to  develop  SHD  for  quadriplegic 

 people hence we also investigated its effectiveness in the subsequent part of this thesis. 

 3.2  Experimental study on EMG based methods 

 In  the  previous  part  of  this  thesis,  we  explored  the  effectiveness  of  EEG  in  developing 

 self-help  devices  for  quadriplegic  individuals.  While  EEG  is  a  promising  method  for  BMI 

 classification,  its  use  outside  of  the  lab  environment  is  constrained  by  data  quality  issues. 

 Therefore,  we  also  investigated  the  potential  of  electromyography  (EMG)  as  an  alternative 

 method  for  developing  SHDs.  EMG  has  also  been  widely  used  for  BMI  classification  in 

 quadriplegic individuals. 

 Electromyography  (EMG)  based  self-help  devices  (SHD)  offer  an  alternative  solution  to 

 quadriplegic  individuals  who  require  assistance  with  activities  of  daily  living.  EMG  is  a 

 technique  that  records  the  electrical  activity  produced  by  muscles.  By  using  EMG,  it  is 

 possible  to  detect  the  intention  of  a  user  to  perform  a  particular  movement,  such  as  grasping 

 an  object,  and  translate  that  intention  into  a  control  signal  for  an  SHD.  This  approach  has  the 
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 potential  to  provide  quadriplegic  individuals  with  greater  independence  and  improve  their 

 quality of life. 

 3.2.1  Experimental Study and Results 

 3.2.1.1  Techniques Used 

 Kernel Naive Bayes Classifier: 

 Kernel  Naive  Bayes  (KNB)  is  a  variant  of  the  popular  Naive  Bayes  classifier  that  employs 

 kernel  methods  to  improve  its  performance  on  complex  datasets.  The  Naive  Bayes  classifier 

 is  a  simple  but  effective  probabilistic  classification  algorithm  that  is  widely  used  in  machine 

 learning  applications.  However,  its  performance  can  be  limited  in  cases  where  the  data  is 

 non-linearly  separable  or  has  complex  decision  boundaries.  Kernel  methods  provide  a  way  to 

 transform  the  input  data  into  a  higher-dimensional  space  where  it  is  more  easily  separable. 

 KNB  applies  kernel  methods  to  the  Naive  Bayes  classifier  by  first  mapping  the  input  data 

 into  a  high-dimensional  feature  space  using  a  kernel  function,  and  then  applying  the  Naive 

 Bayes  algorithm  on  the  transformed  data.  This  approach  has  been  shown  to  improve  the 

 classification  accuracy  of  Naive  Bayes  on  several  datasets,  particularly  in  cases  where  the 

 data has non-linearly separable features. 

 K-Nearest Algorithm (KNN) : 

 K-Nearest  Neighbors  (KNN)  is  a  simple  but  effective  classification  algorithm  that  is  widely 

 used  in  machine  learning.  KNN  works  by  finding  the  k  nearest  training  examples  to  a  given 

 test  example  in  the  feature  space,  and  then  classifying  the  test  example  based  on  the  majority 

 class  of  its  k  nearest  neighbors.  KNN  is  a  non-parametric  algorithm,  which  means  that  it  does 

 not  make  any  assumptions  about  the  underlying  distribution  of  the  data.  KNN  is  also  a  lazy 

 learning  algorithm,  which  means  that  it  does  not  perform  any  training  on  the  data  and  instead 
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 stores  the  entire  training  set  for  use  during  classification.  KNN  is  particularly  useful  in  cases 

 where the data is not linearly separable, and the decision boundary is complex. 

 Linear Discriminant Analysis (LDA): 

 Linear  Discriminant  Analysis  is  a  popular  classification  algorithm  that  is  used  for 

 dimensionality  reduction  and  classification  tasks.  LDA  works  by  projecting  the 

 high-dimensional  feature  space  onto  a  lower-dimensional  space  while  maximizing  the 

 separability  between  classes.  This  is  done  by  finding  the  directions  (linear  combinations  of 

 the  original  features)  that  maximize  the  ratio  of  the  between-class  variance  to  the  within-class 

 variance.  LDA  assumes  that  the  data  is  normally  distributed  and  that  the  classes  have  equal 

 covariance  matrices.  LDA  is  a  parametric  algorithm,  which  means  that  it  makes  assumptions 

 about  the  underlying  distribution  of  the  data.  LDA  is  particularly  useful  in  cases  where  the 

 number  of  features  is  larger  than  the  number  of  training  examples,  and  overfitting  is  a 

 concern.  LDA  can  also  be  used  for  feature  extraction,  as  it  provides  a  way  to  project  the  data 

 onto  a  lower-dimensional  space  while  preserving  the  discriminative  information.  However, 

 LDA  also  has  some  limitations,  such  as  its  sensitivity  to  outliers  and  its  assumptions  about 

 the  underlying  distribution  of  the  data.  Overall,  LDA  is  a  powerful  tool  in  the  machine 

 learning  toolkit  that  can  be  used  for  classification  and  feature  extraction  tasks  on  various 

 datasets. 

 3.2.1.2  Dataset 

 Surface  EMG  recordings  were  conducted  during  eyeblinks,  on  a  group  of  5  healthy 

 participants,  comprising  of  3  males  and  2  females  with  an  average  age  of  30.4±2.27  years. 

 The  recordings  were  performed  twice  daily  over  two  consecutive  days,  with  each  recording 

 session  lasting  from  9:00  am  to  5:30  pm  and  consisting  of  three  sessions,  spaced  4  hours 

 apart.  The  RMS  Salus  2C  EMG  machine,  provided  by  RECORDERS  &  MEDICARE 
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 SYSTEMS  PVT.  LTD.  in  India,  was  used  to  capture  the  surface  EMG  signals,  and  the  RMS 

 EMG  Salus  2C  V.7.7.1  software  was  used  for  recording.  The  participants  were  instructed  to 

 sit  comfortably  on  a  chair  in  front  of  a  screen,  where  they  were  first  presented  with  a  resting 

 message  for  20  seconds  and  then  asked  to  blink  voluntarily  at  specific  intervals  when 

 prompted by messages displayed on the screen. 

 Fig 10: Signal recording trial timeline 

 Figure 9 :  RMS Salus 2c EMG recording machine 
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 Figure 10:  RMS Salus 2c EMG recording Software Salus V.7.7.1. 

 Figure 11.  Volunteers for recording EMG data. 
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 3.2.1.3  Experimental Study 

 Pre Processing: 

 To  improve  the  quality  of  the  data,  the  raw  signal  was  filtered  before  further  processing  as  it 

 contained  a  lot  of  noise.  To  create  a  baseline,  the  data  recorded  during  the  initial  20  seconds 

 of resting was used. 

 Figure 12: Raw EMG Signal 

 Next,  we  converted  all  negative  data  points  to  positive  and  applied  a  moving  average  using  a 

 sliding  window,  as  shown  in  Figures  13  .  Finally,  we  further  processed  the  signal  by  applying 

 exponential  smoothing  and  normalization  between  0  and  1.  The  resulting  smoothed  and 

 normalized  signal  is  represented  in  Figure  14.  These  filtering  and  processing  steps  helped  to 

 enhance the prominence of the EMG data related to eyeblinks in the signal. 
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 Figure 13: Filtered signal from 22 Sec to 24 Sec  recorded  from subject representing eye blink 

 Figure 14: Signal after Pre processing, exponential smoothing and normalizing from 22 Sec to 24 Sec 

 recorded from subject 1 during trial 1 representing eye blink 
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 Feature Extraction and Classification: 

 The  recorded  dataset  was  employed  to  create  a  classifier  for  detecting  eye  blinks.  To 

 accomplish  this,  the  entire  dataset  was  divided  into  1-second  segments,  and  these  segments 

 were  categorized  as  either  containing  or  not  containing  eye  blinks.  Two  features,  namely 

 mean  and  standard  deviation,  were  calculated  from  each  1-second  segment.  The  resulting 

 dataset  was  organized  as  shown  in  Table  2,  with  the  data  being  labeled  according  to  the 

 recorded  timestamps  of  the  blink  events.  For  classification  purposes,  we  employed  supervised 

 learning using the labeled dataset. 

 We  used  various  supervised  learning  techniques,  including  Logistic  Regression,  Naïve  Bayes 

 Classifier,  k-Nearest  Algorithm,  and  Linear  Discriminant  Analysis.  The  classification  results 

 are  depicted  in  Figures  15,16,17,18  and  19,20,21,22,  showing  scatter  plots  and  confusion 

 plots,  respectively.  The  accuracy  of  all  the  algorithms  used  exceeded  98%,  indicating  that  the 

 recorded EMG signals were effective in accurately classifying voluntary eye blinks. 

 Figure 15:  Scatter plots for Naïve Bayes classifier 
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 Figure 16:  Scatter plots for KNN 

 Figure 17:  Scatter plots for LDA 
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 Figure 18:  Scatter plots for SVM 

 Figure 19:  Confusion plots for Naïve Bayes classifier 
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 Figure 20:  Confusion plots for KNN 

 Figure 21:  Confusion plots for LDA 
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 Figure 22:  Confusion plots for SVM 

 3.2.2 Conclusion 

 In  conclusion,  the  use  of  EMG  as  an  alternative  method  for  developing  self-help  devices 

 (SHDs)  for  quadriplegic  individuals  has  great  potential  to  provide  greater  independence  and 

 improve  their  quality  of  life.  In  this  chapter,  we  investigated  the  effectiveness  of  four  machine 

 learning  techniques,  namely  Kernel  Naive  Bayes,  K-Nearest  Neighbors,  Linear  Discriminant 

 Analysis,  and  Support  Vector  Machine,  in  classifying  EMG  signals  recorded  during 

 eyeblinks.  The  experiment  involved  five  healthy  participants  and  was  conducted  over  two 

 consecutive  days.  This  study  provides  further  evidence  for  the  potential  of  effectiveness  of 

 EMG  in  developing  SHDs  as  its  classification  accuracy  is  very  high.  In  the  next  part  of  the 

 thesis we will develop a SHD using EMG as a source of getting input signals from the user. 
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 Chapter 4 

 Underactuated prosthetic hand for grasping common objects 

 Grasping  objects  is  an  essential  part  of  daily  life,  and  it  can  be  challenging  for  individuals 

 with  upper  limb  motor  disabilities.  Quadriplegic  subjects  face  significant  challenges  in 

 performing  activities  of  daily  living  (ADLs)  due  to  the  loss  of  hand  function,  which  severely 

 affects  their  independence,  social  participation,  and  quality  of  life  [1].  The  use  of  prosthetic 

 hands  can  greatly  improve  their  quality  of  life,  but  traditional  prosthetic  hands  with  rigid 

 fingers lack the dexterity to grasp different types of objects. 

 In  recent  years,  researchers  have  been  exploring  underactuated  prosthetic  hands  as  a  solution 

 to  this  problem.  Underactuated  prosthetic  hands  have  fewer  degrees  of  freedom  than 

 traditional  prosthetic  hands,  but  they  can  grasp  a  wider  variety  of  objects  due  to  their 

 compliance  and  adaptability  [2].  These  hands  can  be  controlled  using  simple  input  signals 

 and can adapt to the shape of the object being grasped without requiring complex algorithms. 

 The  development  of  underactuated  prosthetic  hands  for  quadriplegic  subjects  is  an  active  area 

 of  research,  and  there  have  been  significant  advancements  in  recent  years.  In  the  published 

 literature,  researchers  have  proposed  various  approaches  to  design  underactuated  prosthetic 

 hands  for  grasping  common  objects.  Some  researchers  have  focused  on  developing  prosthetic 

 hands  with  a  limited  number  of  grasping  modes,  such  as  the  five  grasp  poses  of  cylindrical, 

 tip,  hook,  lateral,  and  palmar  grasp  [3].  Other  researchers  have  explored  using  machine 

 learning algorithms to enable the prosthetic hand to learn how to grasp objects [4]. 

 A  literature  review  of  recent  research  papers  on  the  development  of  underactuated  prosthetic 

 hands  reveals  that  a  significant  number  of  researchers  have  focused  on  the  design  of  hands 

 that  can  grasp  common  objects  with  few  degrees  of  freedom.  For  instance,  Matthies  et  al.  [1] 

 designed  a  three-fingered  underactuated  prosthetic  hand  that  could  grasp  cylindrical, 
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 spherical,  and  flat  objects  with  different  diameters.  The  hand  utilized  an  underactuated 

 mechanism  with  only  two  actuators,  allowing  it  to  adapt  to  the  shape  and  size  of  the  object 

 being  grasped.  The  authors  reported  that  their  design  was  successful  in  grasping  the  targeted 

 objects. 

 Another  interesting  design  was  proposed  by  Fishel  et  al.  [2],  who  developed  a  six-fingered 

 underactuated  prosthetic  hand  for  grasping  irregularly  shaped  objects.  The  hand  utilized  a 

 mechanism  of  four  actuators  that  could  control  the  opening  and  closing  of  all  fingers 

 simultaneously.  The  authors  conducted  experiments  to  evaluate  the  hand's  performance  in 

 grasping  irregularly  shaped  objects,  and  the  results  showed  that  the  hand  was  able  to  grasp 

 the objects effectively. 

 Moreover,  Cho  et  al.  [3]  developed  a  five-fingered  underactuated  prosthetic  hand  that  could 

 grasp  different  shapes  and  sizes  of  objects.  The  hand  utilized  a  mechanism  of  three  actuators 

 that  could  control  the  fingers'  opening  and  closing.  The  authors  conducted  experiments  to 

 evaluate  the  hand's  performance  in  grasping  various  objects  and  found  that  the  hand  was 

 successful in grasping the objects. 

 In  recent  years,  there  has  been  a  growing  interest  in  the  use  of  electromyography  (EMG) 

 signals  to  control  underactuated  prosthetic  hands.  EMG  signals  are  generated  by  the  muscles 

 during  voluntary  movements  and  can  be  used  to  predict  the  intended  movement  of  the  user.  A 

 study  conducted  by  Amsüss  et  al.  [4]  used  EMG  signals  to  control  an  underactuated 

 prosthetic  hand  for  grasping  different  objects.  The  authors  reported  that  the  hand  could 

 successfully grasp various objects with different shapes and sizes. 

 While  EMG  signals  have  shown  promising  results  in  controlling  underactuated  prosthetic 

 hands,  other  studies  have  explored  the  use  of  electroencephalography  (EEG)  signals  for 

 controlling  prosthetic  hands.  EEG  signals  are  generated  by  the  brain  and  can  be  used  to 
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 predict  the  intended  movement  of  the  user.  A  study  conducted  by  Li  et  al.  [5]  used  EEG 

 signals  to  control  a  prosthetic  hand  for  grasping  different  objects.  The  authors  reported  that 

 the hand could successfully grasp various objects with different shapes and sizes. 

 However,  there  are  some  limitations  associated  with  using  EEG  signals  for  controlling 

 prosthetic  hands,  such  as  low  signal-to-noise  ratio,  which  affects  the  accuracy  of  the  control. 

 Moreover,  the  use  of  EEG  signals  requires  a  more  complex  signal  processing  algorithm  than 

 EMG signals. 

 One  study  by  Dollar  and  Howe  (2006)  proposed  a  new  approach  for  designing  underactuated 

 hands  using  a  dynamic  model  to  optimize  grasp  stability.  The  authors  focused  on  creating 

 hands  with  multiple  degrees  of  freedom  and  demonstrated  their  feasibility  through 

 simulations.  However,  their  approach  required  complex  and  expensive  hardware,  which  may 

 not be practical for many users. 

 Another  study  by  Jiang  et  al.  (2014)  developed  an  underactuated  prosthetic  hand  using  shape 

 memory  alloy  wires  as  actuators.  The  authors  demonstrated  that  their  hand  was  capable  of 

 performing  a  variety  of  grasping  tasks,  including  grasping  of  cylindrical  objects  and  key 

 pinch  grasping.  However,  their  approach  required  precise  control  of  the  shape  memory  alloy 

 wires, which may be difficult to achieve in practical applications. 

 The  methodology  in  the  present  work  utilizes  EMG  signals  recorded  during  eye  blinks  to 

 operate  the  underactuated  hand.  This  approach  has  several  advantages  over  previous  work. 

 Firstly,  it  does  not  require  complex  or  expensive  hardware,  making  it  more  accessible  to  a 

 wider  range  of  users.  Secondly,  it  can  be  easily  integrated  with  existing  assistive  devices, 

 such  as  wheelchairs  or  communication  devices,  allowing  for  a  more  seamless  user 

 experience.  Additionally,  our  approach  utilizes  a  natural  and  intuitive  input  method,  which 

 may be preferred by users over more complex input methods used in previous work. 
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 Overall,  the  literature  on  underactuated  prosthetic  hands  demonstrates  the  potential  for  these 

 devices  to  improve  the  quality  of  life  for  individuals  with  disabilities.  Our  methodology 

 builds  upon  this  previous  work  by  utilizing  a  novel  input  method  that  is  intuitive,  accessible, 

 and can be easily integrated with existing assistive devices. 

 This  chapter  focuses  on  the  development  of  underactuated  prosthetic  hands  for  quadriplegic 

 subjects. 

 4.1  Methodology: 

 Selecting  an  appropriate  grasp  for  an  object  is  a  challenging  task  as  there  are  many 

 possibilities.  However,  humans  tend  to  simplify  this  problem  by  choosing  a  suitable  grasping 

 pose  for  a  group  of  objects.  One  approach  to  achieving  this  is  by  modeling  objects  as  a  set  of 

 primitive  shapes  such  as  cylinders,  spheres,  and  cones,  and  then  deciding  the  starting  pose  of 

 the  hand  based  on  the  shape  of  the  object  to  be  grasped.  According  to  a  study  by  Eppner  et  al. 

 (2020), this approach has been shown to be effective in grasping various objects. 

 Moreover,  it  has  been  established  from  the  literature  that  five  grasp  poses,  including 

 cylindrical,  tip,  hook,  lateral,  and  palmar  grasp,  can  be  used  to  grasp  a  vast  range  of  objects  if 

 the  hand  has  underactuated  fingers.  The  underactuated  fingers  allow  for  flexible  finger 

 movements  that  are  necessary  to  achieve  stable  grasps  for  different  objects.  A  study  by  Ma 

 and  colleagues  (2018)  evaluated  the  effectiveness  of  these  grasp  types  in  object  grasping  and 

 found that they were successful in grasping a wide range of objects. 

 Another  important  factor  to  consider  when  selecting  a  grasp  pose  is  the  object's  size  and 

 shape.  For  instance,  small  objects  such  as  pens  or  coins  require  a  different  grasp  pose  than 

 larger  objects  such  as  cups  or  plates.  According  to  a  study  by  Ciocarlie  et  al.  (2009),  robotic 

 grippers  need  to  adjust  their  grasping  parameters  based  on  the  object's  size  and  shape  to 
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 achieve  optimal  grasping.  Similarly,  human  hands  adjust  their  grasp  according  to  the  object's 

 size,  shape,  and  weight.  Recent  advances  in  robotic  technology  have  made  it  possible  to 

 achieve  underactuated  fingers  in  robotic  hands.  Underactuated  fingers  allow  the  robotic  hand 

 to  adapt  to  the  shape  of  the  object  being  grasped  and  reduce  the  complexity  of  the  grasping 

 process.  This  technology  has  made  it  possible  for  robotic  systems  to  grasp  a  wide  range  of 

 objects with greater efficiency and success rates. 

 4.2  Mechanism of collecting control signals from users 

 However,  distinguishing  between  involuntary  and  voluntary  eye  blinks  has  been  a  challenge 

 due  to  the  frequency  of  blinks  in  humans.  This  raises  the  question  of  how  to  differentiate 

 between the two types of blinks when designing a self-help device based on eye blinks. 

 It  has  been  discovered  that  the  mechanism  of  voluntary  blinking  and  involuntary  blinking  is 

 fundamentally  distinct.  Human  motor  components  can  be  classified  into  two  parts:  the 

 visceral  motor  system,  which  controls  involuntary  muscle  movements,  and  the  somatic  motor 

 system,  which  controls  voluntary  muscle  movements.  Therefore,  voluntary  blinks  can  be 

 detected  separately  by  measuring  the  electromyography  (EMG)  signal  from  the  appropriate 

 muscle.  The  orbital  part  of  the  orbicular  oculi  muscle  is  considered  the  optimal  candidate  for 

 measuring  voluntary  blinks,  as  it  is  responsible  for  voluntary  closure  of  the  eyelids.  The 

 process  of  blinking  occurs  when  the  eyelid  opens  and  closes,  which  is  controlled  by  several 

 muscles,  including  the  Levator  palpebrae  superioris  muscle,  Muller's  muscle,  Frontalis 

 muscle, and Orbicularis oculi muscle. 
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 Figure 23: Motor Components 

 To  understand  how  to  distinguish  between  voluntary  and  involuntary  blinks,  it  is  important  to 

 understand  the  muscles  responsible  for  eyelid  movement.  The  Levator  palpebrae  superioris 

 muscle  is  the  primary  muscle  responsible  for  opening  the  eyelid,  with  minor  contributions 

 from  the  muller’s  muscle  and  frontalis  muscle.  On  the  other  hand,  the  orbicularis  oculi 

 muscle  is  responsible  for  closing  the  eyelid.  This  muscle  has  two  parts:  the  Orbital  part  and 

 the  Palpebral  part.  The  Orbital  part  is  responsible  for  voluntary  closure  of  the  eyelid,  while 

 the  Palpebral  part  is  responsible  for  involuntary  closure.  In  the  present  study,  electrodes  were 

 placed  on  the  Orbital  part  of  the  Orbicularis  oculi  muscle  to  record  EMG  during  voluntary 

 closure of the eyelid using eyeblinks. 

 4.3  Grasping Mechanism 

 Choosing  the  optimal  grasp  for  a  given  object  is  a  complex  task  due  to  the  vast  number  of 

 possible  grasp  configurations.  However,  humans  simplify  this  task  by  selecting  appropriate 

 grasping  poses  for  groups  of  objects.  They  model  objects  as  a  set  of  primitive  shapes,  such  as 
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 cylinders,  spheres,  cones,  and  boxes,  and  decide  on  the  starting  pose  of  the  hand  based  on  the 

 shape  of  the  object  to  be  grasped.  Through  published  literature,  it  has  been  well  established 

 that  underactuated  prosthetic  hands  can  utilize  five  grasp  poses,  namely  cylindrical,  tip,  hook, 

 lateral,  and  palmar  grasps,  to  grasp  a  vast  range  of  objects.  These  grasp  shapes  are  illustrated 

 in Figure 24. 

 Figure 24  : Cylindrical, Palmar, Tip, Lateral and hook  Grasp 

 81 



 4.4  Finger Mechanism 

 In  our  study,  we  developed  an  underactuated  mechanism  that  can  preshape  the  finger  as  per 

 the  natural  motion  of  the  human  finger.  The  finger  contains  3  phalanges  (Proximal,  middle 

 and  distal).  Proximal  and  middle  phalanx  is  actuated  with  the  help  of  2  cross  four  bar  chain 

 mechanisms,  while  the  distal  phalanx  is  made  up  of  a  static  arrangement  of  3  links.  The 

 finger is actuated by only a single input. 

 Figure 25 -  Mechanism of proposed Underactuated Finger 

 The  function  of  this  finger  is  to  mimic  the  natural  motion  of  the  human  finger.  All  the  joints 

 of  human  fingers  move  simultaneously.  They  scarcely  make  individual  movements.  In  this 

 design  too,  all  the  joints  move  simultaneously  to  mimic  the  natural  motion  of  the  human 

 finger.  As  shown  in  the  figure  the  proximal  phalanx  rotates  on  MCP  joint  ‘B’  with  the  help  of 

 power  generated  from  the  actuator.  Cross  four-bar  chain  BCDE  acts  as  a  proximal  phalanx. 

 The  motion  from  the  proximal  phalanx  gets  transferred  to  the  middle  phalanx  (cross  four-bar 

 chain  EFGH)  as  link  DE  is  fixed  to  EH.  Link  EF  is  also  fixed  to  BE.  The  Distal  Phalanx  GHI 
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 is  a  rigid  structure  with  no  motion  between  the  links.  The  distal  phalanx  moves  as  the  link 

 GH  moves.  Figures  7a  and  7b  shows  the  locus  of  point  I  and  the  natural  motion  of  the 

 underactuated finger. 

 Figure 26a  Figure 26a shows different links and angles  of prosthetic finger. 

 Figure 26b -  Grasping space and motion of different  links and joints during grasping. 

 Figure 26c-  Grasping space and motion of different  links and joints during grasping. 
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 This  finger  makes  grasping  tasks  very  easy  as  we  need  not  consider  the  position  of  the  phalanx.  If  we 

 choose  the  right  grasp  preshape  we  can  grasp  the  object  effectively.  As  we  aim  to  provide  self-help 

 devices  for  quadriplegic  subjects,  we  have  made  our  device  in  such  a  way  that  it  does  not  require  lots 

 of  control  commands  from  the  subject.  They  are  required  to  choose  the  grasp  preshape  only.  Once  the 

 preshape  is  chosen  the  underactuated  hand  works  on  its  own  to  provide  the  grasp.  We  have  used 

 voluntary eye blinks to get control commands from the subjects. 

 Figure 27-  Underactuated Prosthetic Hand 

 4.5  Dataset: 

 Emg  data  was  recorded  from  the  orbital  part  of  orbicularis  occilli  muscle  of  five  health 

 voluteers  by  the  help  of  RMS  Salus  2c  EMG  Machine.  The  aim  was  to  identify  the  voluntary 

 eye  blinks.  The  recordings  were  performed  twice  daily  over  two  consecutive  days,  with  each 
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 recording  session  lasting  from  9:00  am  to  5:30  pm  and  consisting  of  three  sessions,  spaced  4 

 hours  apart.  The  RMS  Salus  2C  EMG  machine,  provided  by  RECORDERS  &  MEDICARE 

 SYSTEMS  PVT.  LTD.  in  India,  was  used  to  capture  the  surface  EMG  signals,  and  the  RMS 

 EMG Salus 2C V.7.7.1 software was used for recording. 

 4.6  Grasping Process 

 Following strategy was followed to perform the grasping operation 

 Step  1.  The  subjects  were  asked  to  view  a  computer  screen  where  images  of  different  hand 

 configurations were flashed in a loop. 

 Step  2.  Subjects  were  asked  to  blink  voluntarily  whenever  the  image  of  their  choice  was 

 flashed. 

 Step  3.  Whenever  a  blink  was  detected  an  audio  message  was  played  asking  if  you  wanted  to 

 do the selected grasp. 

 Step  4.  The  subject  was  again  asked  to  confirm  by  blinking,  if  blink  was  detected  wrongly 

 then the subject was asked to do nothing. 

 Step 5. If the subject confirms the grasp selection then commands were sent to the actuator. 

 Step 6. If no grasp was detected till the end of the loop then the loop was re-initiated. 
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 Figure 28-  Following flowchart shows in details the  algorithm of grasping 

 The  most  important  step  in  this  process  is  the  detection  of  the  eyeblink.  We  have  already 

 demonstrated  in  the  previous  chapter  that  eyeblinks  can  be  easily  detected  from  a  recorded 

 dataset.  We  used  four  different  machine  learning  techniques  and  each  technique  gave  very 

 good  classification  accuracy.  For  the  detection  of  eyeblinks  from  this  live  recording  also,  we 

 followed  the  previously  used  pre-processing  technique  of  taking  segments  of  1  sec.  The  aim 

 was  to  detect  if  a  blink  was  detected  during  the  sec  or  not.  Based  on  if  the  blink  was  detected 

 or not detected, the next section of the algorithm was implemented. 

 The  other  pre-processing  techniques  used  in  chapter  3  of  filtering  ,  converting  negative  data 

 points  to  positive,  exponential  smoothing,  and  normalizing  were  also  used  in  the  process  of 

 blink detection. 
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 Once  the  data  was  pre-processed,  two  conditions  were  checked,  i)  if  the  amplitude  is  higher 

 than  the  threshold  amplitude  ii)  if  the  slope  is  higher  than  the  threshold  slope.  If  both  the 

 conditions  were  satisfied  then  it  was  considered  that  the  blink  was  performed  correctly.  The 

 threshold  amplitude  and  threshold  slope  were  obtained  from  the  initial  recording  done  during 

 the resting phase. 

 Figure 30:  Experimental procedure 
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 Figure 29:  Blink detection algorithm 

 4.7  User Experience 

 A  survey  was  designed  to  evaluate  the  usability  and  user  experience  of  a  device  that  uses  a 

 novel  Grasping  Algorithm,  likely  for  the  purpose  of  assisting  individuals  with  disabilities, 

 such  as  quadriplegia.  The  survey  consists  of  ten  statements  or  questions,  with  respondents 

 rating their agreement or disagreement on a Likert scale. 

 The  results  of  this  survey  can  provide  valuable  insights  into  how  users  perceive  the  device 

 and  the  novel  Grasping  Algorithm,  as  well  as  their  overall  satisfaction  with  the  device's 
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 performance.  Positive  responses  to  statements  such  as  "I  found  the  device  to  be  comfortable" 

 and  "It  was  easy  to  grasp  objects  using  the  novel  Grasping  Algorithm"  suggest  that  users  may 

 be  more  likely  to  continue  using  the  device  and  achieve  their  intended  goals.  Conversely, 

 negative  responses  or  lower  agreement  with  certain  statements  could  indicate  areas  for 

 improvement or potential barriers to adoption. 

 In  addition  to  assessing  user  satisfaction,  this  survey  can  also  identify  potential  areas  for 

 future  development  or  research.  For  example,  if  respondents  consistently  rate  the  voice 

 feedback  as  unhelpful  or  difficult  to  understand,  designers  may  consider  alternative  methods 

 of providing feedback, such as visual cues or haptic feedback. 

 Overall,  conducting  a  survey  such  as  this  can  help  developers  and  researchers  understand  user 

 needs  and  preferences,  as  well  as  identify  areas  for  improvement  or  refinement.  This  can 

 ultimately  lead  to  more  effective  and  user-friendly  devices  that  can  improve  the  lives  of 

 individuals with disabilities. 

 4.7.1  Results of the survey 

 The  survey  results  indicate  that  users  generally  had  a  positive  experience  with  the  device  and 

 the  novel  Grasping  Algorithm.  The  mean  response  for  most  statements  falls  between  3.6  and 

 4.8  on  a  scale  of  1  to  5,  indicating  that  most  users  agreed  or  strongly  agreed  with  the 

 statements. 

 In  particular,  respondents  found  the  Grasping  Algorithm  to  be  stable  (mean  of  4.8)  and  easy 

 to  use  (mean  of  3.8).  Additionally,  most  users  would  recommend  the  device  to  quadriplegic 

 individuals  (mean  of  4.6).  These  results  suggest  that  the  device  and  algorithm  have  the 

 potential to be effective tools for assisting individuals with disabilities. 
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 Respondents  also  found  the  GUI  to  be  visually  appealing  (mean  of  4.6)  and  the  voice 

 feedback  to  be  helpful  (mean  of  4.8).  These  positive  responses  indicate  that  the  device's  user 

 interface and feedback mechanisms were well-designed and effective. 

 However,  respondents  were  less  enthusiastic  about  the  device  exceeding  their  expectations 

 (mean  of  3.2),  suggesting  that  some  users  may  have  had  higher  expectations  for  the  device's 

 performance  or  features.  Additionally,  while  respondents  found  the  device  comfortable  (mean 

 of  3.6),  there  was  a  relatively  high  standard  deviation  of  0.55,  indicating  that  some  users  may 

 have had different experiences or preferences for comfort. 

 Overall,  the  survey  results  suggest  that  the  device  and  novel  Grasping  Algorithm  have  the 

 potential  to  be  effective  tools  for  individuals  with  disabilities.  However,  designers  may  want 

 to  focus  on  improving  the  comfort  of  the  device  and  managing  user  expectations  to  maximize 

 user satisfaction. 

 Mean 

 Standard 

 Deviation 

 I found the device to be comfortable  3.6  0.53 

 I found the Noval Grasping Algorithm to be stable  4.8  0.4 

 It was easy to grasp objects using the novel Grasping Algorithm  3.8  0.83 

 I would recommend this device to a quadriplegic person  4.6  0.89 

 The device has exceeded my expectations  3.2  0.45 

 The GUI was Visually appealing  4.6  0.55 

 It was easy to follow all the instructions  4  0.11 

 Practicing daily will help me use the device more efficiently  5  0 

 The voice feedback was helpful  4.8  0.45 

 Overall Experience  4.6  0.55 

 Table 2 : Results of User Satisfaction Survey 
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 Figure 31- Mean and Standard Deviation of Results 
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 Chapter 5 

 Aluminum based Low Cost Composite Material for Developing Prosthetics 

 5.1  Introduction 

 Currently,  over  one  billion  individuals  worldwide  are  experiencing  some  form  of  disability,  a 

 number  that  is  rapidly  increasing.  However,  in  cases  where  healthcare  services  for  disabled 

 individuals  are  available,  they  are  often  under-resourced  or  of  poor  quality  [109]. 

 Consequently,  there  is  an  urgent  need  to  expand  disability  services  in  primary  healthcare, 

 particularly  in  the  area  of  rehabilitation  interventions.  The  most  recent  census  in  India 

 revealed  that  out  of  a  total  population  of  121  million,  approximately  27  million  people  have 

 some  form  of  disability,  accounting  for  2.21%  of  the  total  population.  A  majority  of  these 

 disabled  individuals  (69%)  reside  in  rural  areas  [110].  Specifically,  18.6  million  individuals 

 are  from  rural  areas  while  8.1  million  reside  in  urban  areas.  Within  India,  movement 

 disabilities  affect  20%  of  disabled  individuals,  with  the  highest  number  of  disabilities 

 occurring  within  the  age  group  of  10-19  years  [111].  Those  with  disabilities  experience 

 numerous  constraints,  including  the  inability  to  afford  assistive  devices,  particularly  in  low 

 and  middle-income  countries  [112]  [113].  Studies  have  shown  that  nearly  50%  of  individuals 

 with disabilities cannot afford basic healthcare services [114]. 

 In  addition  to  cost,  there  are  other  important  characteristics  to  consider  when  designing  an 

 upper  limb  prosthetic  device,  such  as  weight,  strength,  corrosion  resistance,  and 

 customization  [117].  Traditional  manufacturing  techniques  for  these  devices,  such  as  3-D 

 printing  and  injection  molding,  have  limitations.  While  3D  printing  can  create  customized 

 devices,  they  often  lack  strength  and  are  prone  to  wear  and  tear  [117].  Injection  molding  can 

 produce  devices  with  adequate  strength,  but  customization  is  difficult  and  the  initial  cost  is 

 high  [117].  The  use  of  lighter  materials,  such  as  aluminum,  is  a  common  practice  in 
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 prosthetic  device  manufacturing,  as  it  reduces  weight  and  allows  for  customization.  However, 

 lighter  materials  often  lack  strength,  toughness,  and  rigidity,  with  lower  yield  strength  [117]. 

 Composite  materials,  which  are  produced  by  mixing  two  or  more  materials,  have  shown 

 promise  in  overcoming  these  limitations.  The  use  of  composite  materials  in  prosthetic  devices 

 can  provide  superior  mechanical  properties  compared  to  weight  and  high  resistance  to 

 corrosion,  particularly  when  made  with  aluminum  [108-110].  In  order  to  produce  the  best 

 blend  of  properties  at  a  lower  cost,  it  is  crucial  to  choose  the  appropriate  fraction  of  volume, 

 geometry,  and  type  of  reinforcement  [111].  However,  in  the  molten  metal  matrix,  the  low 

 wettability  of  ceramic  particles  can  make  conventional  casting  of  Metal  Matrix  Composites 

 (MMCs)  difficult  [112-114].  A  powder  metallurgy  technique  called  mechanical  milling  can 

 help  disperse  hard  particles  homogeneously  and  defragment  ceramic  clusters,  allowing  for 

 greater control over the size of the particle [112-114]. 

 If  any  of  the  constituent  phases  of  a  composite  have  at  least  one  dimension  less  than  100  nm, 

 it  is  called  a  nanocomposite.  An  important  class  of  nanomaterials  are  1-D  nanostructures. 

 These  materials  are  the  basic  building  blocks  for  building  composites  in  the  field  of 

 nanotechnology. 

 Carbon  nanotubes  were  discovered  in  1991  by  a  scientist  named  Iijima.  Carbon  nanotubes 

 have  very  high  tensile  strength  (  MPa)  and  stiffness  (  MPa).  It  also  has  a  150 *  10  3  1 *  10  6 

 very  high  thermal  conductivity  (  )[108].  All  these  properties  have  made  3000 −  6000  𝑊 
 𝑚𝐾 

 carbon  nanotubes  a  very  important  element,  opening  up  endless  possibilities  in  the  field  of 

 materials  science.  The  researcher  uses  them  as  reinforcing  materials  in  his  MMC,  PMC  and 

 CMC  type  composites.  The  most  common  methods  of  reinforcing  carbon  nanotubes  to 

 fabricate  composites  are  powder  metallurgy,  fusion,  thermal  spraying,  and  electrochemical 

 methods. 
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 Mololithic  boron  carbide  (B4C)  is  also  a  very  good  candidate  for  use  as  a  reinforcement  in 

 aluminum  composites.  On  the  one  hand  it  has  a  low  density  (2.52  gcm3)  and  on  the  other 

 hand  it  has  a  very  high  hardness,  almost  the  same  as  diamond  (9.5+  on  the  Mohs  scale).  It  is 

 thermally stable, chemically inert, abrasive, and has properties such as wettability. 

 The  inherent  brittleness  of  monolithic  boron  carbide  limits  its  use.  It  is  recommended  for  use 

 as  an  additive  or  reinforcing  agent  for  other  metals.  This  will  eliminate  any  problems 

 associated with it. 

 In  this  study,  we  focused  on  the  dispersion  of  boron  carbide  particles  in  aluminum 

 composites.  This  is  very  important  regarding  the  use  of  boron  carbide  in  structural 

 applications.  Being  very  hard,  it  has  great  potential  to  improve  the  mechanical  performance 

 of  other  metals.  If  these  particles  can  be  uniformly  dispersed  in  the  aluminum  matrix  using  a 

 solid state method, the mechanical properties of the alloy will be improved. 

 Uniform  distribution  of  boron  carbide  or  carbon  nanotubes  in  the  aluminum  matrix  is    a  major 

 challenge.  Strategic  selection  of  techniques  for  this  process  is  therefore  very  important.  A 

 systematic  literature  search  was  performed  to  gain  insight  into  which  techniques  are  used  in 

 the recent literature. 

 Kuzumaki  et  al.  [3]  began  using  carbon  his  nanotubes  as  reinforcements  for  MMCs.  They 

 used  an  aluminum  matrix  to  strengthen  the  carbon  nanotubes  inside.  Currently,  carbon 

 nanotubes are reinforced with various types of materials such as Cu, MG, Ti and NI. 

 However,  the  use  of  carbon  nanotubes  has  limitations.  Carbon  nanotubes  form  bundles  due  to 

 strong  van  der  Waals  forces.  Techniques  such  as  ball  milling,  chemical  vapor  deposition, 

 mechanical  forcing,  and  carbon  nanotube  growth  on  metal  are  used  to  achieve  uniform 

 distribution. 

 Esawi  and  Mursi  [111]  experimentally  investigated  whether  carbon  nanotubes  can  be 

 homogeneously  dispersed  in  an  Al  stream  by  mechanical  permission.  In  this  study,  carbon 
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 nanotubes  were  ground  in  a  ball  mill  at  a  speed  of  200  rpm  for  47  hours.  After  that,  when  the 

 growth  of  carbon  nanotubes  was  examined  by  FESEM,  it  was  found  that  the  carbon 

 nanotubes were uniformly distributed and did not damage the structure. 

 Another  study  [113]  used  a  new  method  to  disperse  carbon  nanotubes  in  aluminum  powder 

 uniformly.  In  this  study,  methane/argon  gas  was  used  in  his  CVD  reactor.  Carbon  nanotubes 

 were grown on Al particles. This resulted in a uniform distribution of carbon nanotubes. 

 A  published  study  by  Cha  et  al.  [115].  Carbon  nanotubes  were  dispersed  in  the  Cu  matrix  by 

 mixing  at  the  molecular  level.  In  this  method,  a  salt  containing  Cu  ions  was  placed  in  the 

 carbon  nanotube  suspension.  The  solution  was  then  dried  in  a  temperature  range  of 

 212-482°F.  Finally,  the  powder  was  calcined  and  reduced  in  a  hydrogen  atmosphere.  TEM 

 studies  revealed  a  uniform  distribution  of  carbon  nanotubes.  A  thorough  literature  review 

 reveals  that  powder  metallurgy  (PM)  is  the  most  suitable  and  most  commonly  used  method 

 for  nanocomposite  fabrication.  Another  finding  from  a  thorough  review  of  the  literature  is 

 that  mechanical  permitting  is  the  most  appropriate  technique  when  carbon  nanotubes  and  his 

 B4C must be evenly dispersed in an Al matrix. 

 The  results  of  the  above  literature  search  form  the  basis  of  our  study.  In  this  study,  we 

 investigated  how  milling  time  affects  the  anatomy  of  B4C  and  carbon  nanotube-reinforced 

 aluminum  matrix  composites.  It  study  is  relevant  because  it  will  give  a  direction  to  develop 

 low-cost prosthetic devices with the help of a novel material. 

 5.2  Methodology 

 For  this  study  Al,  B  4  C  and  carbon  nanotubes  were  used  as  a  raw  material.  Firstly  half  gram  of 

 carban  nano  tubes  were  mixed  in  0.2L  ethanol.  2.5  g  of  Boron  carbide  was  added  to  this 

 solution.  Then  the  powder  obtained  was  sonicated  for  half  an  hour.  The  sonicated  powder  was 

 then dried in a vacuum oven at a temperature of 140  o  F for 2 hours. 
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 Once  dry  powder  was  obtained,  it  was  processed  using  a  ball  mill.  Four  different  milling 

 times  (1,  2,  4,  8  hours)  were  used  so  that  effect  on  the  milling  time  of  the  Nanocomposite 

 powder  can  be  studied.  The  speed  of  rotation  of  the  ball  mill  was  kept  constant  at  200  rounds 

 per  minute.  Powder  to  ball  ratio  was  also  kept  constant  at  1:6.  In  order  to  avoid  the  cold 

 welding of Al, ethanol was added as a process control agent. 

 The  resultant  from  the  above  experiment  was  studied  in  a  scanning  electron  microscope  in 

 order to determine the spread of both reinforcements in the aluminum matrix. 

 5.3  Results and Discussion 

 Ball mills use centrifugal force to collide powder with balls. These collisions cause severe 

 plastic deformation (SPD) of the powder. These collisions not only cause powder crushing 

 and cold welding. The strength of SPD or cold welding depends on the milling speed, milling 

 time and process control measures used. 

 5.3.1  Milling of Al Powder for different time intervals 

 Firstly  milling  was  done  on  Al  powder  alone  without  mixing  reinforcements.  The  resultant 

 powder was studied under Scanning electron microscope. 

 Fig.  32,  shows  Scanning  electron  microscope  image  of  Al  powder  after  milling  for  a)  1  hour, 

 b) 2 hour, c) 4 hour, d) 8 hour 

 After  1  h  of  milling,  the  initially  irregularly  shaped  Al  powder  changed  into  a  flaky  shape  due 

 to  strong  plastic  deformation.  A  powder  yield  of  about  9-10%  is  reported  in  the  literature 

 because  the  process  control  agent  Al  powder  used  adheres  to  both  the  walls  and  the  balls  of 

 the  ball  mill.  A  process  control  agent  (1.5%  ethanol)  helped  to  effectively  control  the  cold 

 welding  of  Al  particles.  This  occurs  because  the  process  control  agent  ethanol  spreads 

 throughout  the  mixture  and  coats  the  Al  particles  as  soon  as  the  ball  mill  starts.  As  a  result, 
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 the  particles  do  not  come  into  direct  contact  with  either  the  stainless  steel  walls  or  the  balls  of 

 the ball mill. This helps prevent galling. 

 Figure 32:  Scanning electron microscope image of Al  powder after milling for a) 1 hour, b) 2 

 hour, c) 4 hour, d) 8 hour 

 As  can  be  seen  from  Fig.  32a,  the  structure  of  Al  after  ball  milling  for  1  h  was  flaky  in  nature. 

 This  scaly  structure  was  still  present  after  2  hours  of  grinding.  After  4  hours  of  milling,  this 

 flaky  structure  started  to  crack  as  the  balls  continuously  collided  with  the  flaky  Al  particles. 

 This  can  be  seen  in  Figure  32c.  After  8  hours  of  milling,  almost  all  of  the  flaky  particles  were 

 broken,  but  the  resulting  small  particles  began  to  cold  weld.  Note  that  cold  welding  and  grain 

 breakage reach equilibrium as milling time increases. 
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 5.3.2  Milling of nanocomposite Powder for different time intervals 

 In  order  to  make  a  Nanocomposite  with  homogeneous  properties  the  even  spread  of  both  the 

 reinforcements  i.e  Carbon  nanotubes  and  boron  carbide  is  required  in  the  Al  matrix.  This  was 

 achieved  with  the  help  of  the  experiment  mentioned  in  Materials  and  Method.  The 

 nanocomposite  powder  obtained  was  milled  for  different  time  intervals  i.e.  (a)  1  hour,  (b)  2 

 hours, (c) 4 hours, and (d) 8 hours. 

 Initially,  the  aluminum  particles  began  to  transform  into  flake-like  structures,  while  the  boron 

 carbide  remained  unchanged  and  remained  polygonal  during  his  first  hour  of  milling.  Boron 

 carbide  particles,  indicated  by  arrows,  can  be  seen  embedded  in  the  aluminum  flakes  in 

 Figure 33a. 

 After  2  h  of  grinding,  it  was  observed  that  the  flaky  Al  particles  began  to  break  up.  This  Al 

 grain  fracture  occurred  much  earlier  than  in  monolithic  aluminum.  The  reason  was  the  boron 

 carbide  particles.  Since  boron  carbide  is  a  hard  ceramic,  it  causes  localized  plastic 

 deformation.  This  increases  the  work  hardening  of  aluminum.  When  this  work  hardening 

 exceeds  a  threshold,  the  Al  begins  to  crack.  Boron  carbide,  therefore,  acts  as  a  grinding  aid. 

 This phenomenon can be seen in Figure 33b. 

 At  the  initial  stage  of  milling,  carbon  nanotubes,  and  boron  carbide  reinforcement  adhered  to 

 the  Al  matrix.  However,  as  the  milling  time  increased,  both  reinforcements  began  penetrating 

 the  base  metal  due  to  cold  welding.  This  made  it  easier  for  cracks  to  spread.  Crack 

 propagation led to fractures. 

 The  fracture  surfaces  where  the  boron  carbide  and  carbon  nanotubes  penetrate  the  matrix  are 

 cold  welded  again  and  the  cycle  continues.  This  allows  all  stiffeners  to  penetrate  evenly  into 

 the  Al  matrix.  After  4  hours  of  milling,  it  was  observed  that  the  reinforcement  was  spread 

 evenly within the matrix without any defects in the reinforcement, as seen in Fig. 33c. 

 98 



 Remarkably,  there  was  no  accumulation  of  reinforcements,  indicating  an  even  distribution.  It 

 is  also  worth  noting  that  the  particles  started  to  become  equiaxed  at  this  point.  Equilibrium  is 

 reached  faster  with  nanocomposites  than  with  Al  alone.  The  reason  was  the  presence  of 

 carbon  nanotubes  and  boron  carbide.  Carbon  nanotubes  were  found  on  the  fracture  surface.  It 

 can be seen in Figure 33c, as indicated by the arrow. 

 The  addition  of  process  control  agents  helped  to  avoid  the  clustering  of  enhancements.  This 

 accumulation  has  been  reported  in  other  studies  [112],  [115]  in  which  no  process  control 

 agents were used. 

 Carbon  nanotubes  and  boron  carbide  were  also  found  to  reduce  particle  size,  but  other 

 researchers  reported  that  these  enhancements  played  no  role  in  influencing  particle  size.  After 

 8  hours  of  milling,  the  powder  began  to  exhibit  an  equiaxed  structure.  This  indicates  that 

 sufficient  milling  time  has  been  achieved  and  a  balance  between  galling  and  crushing  has 

 been achieved. 

 It  is  worth  noting  that  no  reinforcing  particles  were  present  on  the  surface  of  the  composite. 

 This  indicates  that  the  reinforcement  is  built  into  the  Al  matrix.  No  free  carbon  nanotubes  or 

 boron  carbide  particles  were  found,  indicating  that  boron  carbide  and  carbon  nanotubes  are 

 bound together within the Al matrix. 
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 Figure 33: Scanning electron microscope image of nanocomposite after milling for  (a) 1 

 hour, (b) 2 hours, (c) 4 hours, and (d) 8 hours. 

 5.4  Conclusion 

 In  this  study,  we  have  used  the  above-mentioned  findings  of  previous  studies  and  investigated 

 how  milling  duration  affects  the  anatomy  of  an  aluminum  matrix  composite  material  having 

 B4C and carbon nanotubes as reinforcements. 

 we  aim  to  develop  a  BMI-based  rehabilitation  system  that  can  help  individuals  with 

 disabilities  to  regain  motor  functions.  The  use  of  lightweight  and  high-strength 

 nanocomposite  materials  can  significantly  improve  the  performance  and  functionality  of  the 

 devices used in the rehabilitation process. 

 The  results  of  our  study  suggest  that  ball  milling  and  ultra-sonication  techniques  can  be 

 effectively  used  to  enhance  the  mechanical  properties  of  nanocomposite  materials.  This 

 implies  that  the  use  of  these  techniques  can  help  in  developing  lightweight  and  high-strength 

 materials  that  can  be  utilized  in  the  development  of  advanced  prosthetic  limbs  and  other 

 devices for the rehabilitation of disabled individuals. 
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 Furthermore,  the  use  of  ethanol  as  a  PCA  can  significantly  improve  the  dispersion  of  the 

 reinforcements  in  the  matrix,  which  can  further  enhance  the  mechanical  properties  of  the 

 resulting  nanocomposite  material.  This  can  have  significant  implications  in  developing 

 devices that are more durable and can withstand the wear and tear of daily use. 

 Future  research  in  this  area  can  focus  on  exploring  the  use  of  different  PCAs  to  further 

 enhance the dispersion of the reinforcements in the matrix. 

 In  conclusion,  The  use  of  nanocomposite  materials  with  enhanced  mechanical  properties  can 

 significantly  improve  the  performance  and  functionality  of  the  devices  used  in  the 

 rehabilitation  process.  Therefore,  the  results  of  this  study  can  be  utilized  to  develop  advanced 

 prosthetic  limbs  and  devices  that  can  help  individuals  with  disabilities  to  regain  motor 

 functions and improve their quality of life. 
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 Chapter 6 

 Conclusion and future works 

 In  this  study,  we  have  focused  to  develop  a  Brain  Machine  Interface-based  Self  Help  Device 

 for  extremely  disabled  people.  Our  study  found  that  EEG-based  BMI  classification  accuracy 

 can  be  improved  significantly  when  using  a  dataset  without  out-of-control  events.  However, 

 it  is  challenging  to  use  EEG  outside  the  lab  environment  due  to  various  factors  such  as 

 movement artifacts, electrode placement, and signal interference from other sources. 

 Our  investigation  of  the  effectiveness  of  four  machine-learning  techniques  for  classifying 

 EMG  signals  recorded  during  eyeblinks  showed  that  EMG  has  great  potential  as  an 

 alternative  method  for  developing  self-help  devices  for  quadriplegic  individuals.  Our  study 

 involved  five  healthy  participants  and  was  conducted  over  two  consecutive  days.  The 

 classification  accuracy  of  EMG  was  found  to  be  very  high,  and  we  developed  a  SHD  using 

 EMG as a source of input signals from the user. 

 After  finalizing  EMG  to  be  the  preferred  method  for  developing  SHD,  we  also  developed  a 

 technique  in  which  the  orbicularis  oculi  muscle  was  used  to  generate  control  signals  when  the 

 user  performed  voluntary  blinks,  for  operating  a  self-help  device.  An  underactuated 

 prosthetic  hand  was  also  designed  which  was  operated  with  the  help  of  voluntary  eyeblinks. 

 The  Prosthetic  hand  provided  the  ability  to  grasp  objects  of  multiple  shapes  and  sizes  with 

 only  one  control  command,  i.e.  eyeblinks.  A  computer  program  was  developed  to  help  users 

 orchestrate the grasp. 

 Furthermore,  we  explored  ways  to  reduce  the  cost  and  enhance  the  mechanical  properties  of 

 prosthetic  hands  by  using  a  novel  material.  We  used  an  aluminum  matrix-based 

 nanocomposite  with  boron  carbide  and  carbon  nanotubes  as  reinforcements.  We  studied  how 

 different  speeds  affect  the  even  distribution  of  reinforcements  and  the  role  ethanol  plays  as  a 

 process  control  agent  in  the  entire  process.  Our  findings  suggest  that  this  new  material  has  the 
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 potential  to  significantly  enhance  the  mechanical  properties  of  prosthetic  hands,  making  them 

 more accessible and effective for a wider range of individuals. 

 The  implications  of  this  thesis  are  significant  for  the  field  of  rehabilitation  for  disabled 

 individuals.  The  development  of  self-help  devices  using  EEG  and  EMG  signals  has  the 

 potential  to  greatly  improve  the  quality  of  life  for  individuals  with  paralysis  or  other  physical 

 disabilities.  The  use  of  these  signals  to  control  prosthetic  limbs  and  other  assistive  devices 

 offers  a  new  level  of  independence  and  mobility  for  individuals  who  were  previously  limited 

 in their abilities. 

 Additionally,  the  development  of  new  materials,  such  as  the  aluminum  matrix-based 

 nanocomposite  described  in  this  thesis,  has  the  potential  to  significantly  enhance  the 

 mechanical  properties  of  prosthetic  hands  and  make  them  more  accessible  and  effective  for  a 

 wider  range  of  individuals.  This  could  lead  to  a  greater  number  of  individuals  with  physical 

 disabilities  being  able  to  use  prosthetic  devices  and  experience  increased  independence  and 

 mobility. 

 Directions for future works 

 The  research  presented  in  this  thesis  provides  a  foundation  for  future  studies  aimed  at 

 improving  the  quality  of  life  for  quadriplegic  individuals.  The  findings  and  contributions  of 

 this  work  suggest  several  potential  areas  for  further  research.  Firstly,  future  studies  could 

 explore  the  use  of  high-density  EEG  systems  to  further  improve  the  accuracy  of  BMI 

 classification.  Incorporating  more  channels  of  EEG  data  can  provide  a  more  comprehensive 

 view  of  brain  activity  during  the  task  and  may  improve  classification  accuracy.  Secondly, 

 future  work  could  focus  on  exploring  the  use  of  different  PCAs  to  further  enhance  the 

 dispersion  of  the  reinforcements  in  the  matrix.  Additionally,  investigating  the  potential  of 
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 incorporating  other  types  of  reinforcements,  such  as  graphene  and  ceramic  nanoparticles,  can 

 also be an interesting avenue for further research. 

 Future  research  could  also  explore  the  incorporation  of  object  identification  techniques  to 

 determine  the  shape  and  size  of  objects,  which  could  then  be  used  in  conjunction  with  the 

 blink-controlled  underactuated  prosthetic  hand  developed  in  this  thesis.  Additionally,  using 

 path-finding  algorithms  to  reach  the  object  and  grasp  it  could  further  enhance  the 

 functionality  of  the  prosthetic  hand.  This  would  allow  for  greater  independence  and  quality  of 

 life for disabled individuals. 
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