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Abstract 

Coordination between energy intake, storage, and expenditure is necessary for energy 

homeostasis. Variations in one of these processes are often balanced out in healthy 

individuals by control of the other two. On the other hand, metabolic disorders result 

from deviations from the improper balance of the caloric equation. A comprehensive 

investigation over the following century identified two key roles of mitochondria: 

producing ATP, the cell's energy currency, and creating biosynthetic intermediates to 

maintain energy homeostasis. This abstract summarized the findings from three 

independent studies linking the pivotal role of microRNA-128 (miR-128) in 

mitochondrial biogenesis and function as well as its implications for metabolic 

disorders. First, we had established a direct link between miR-128 and extensively 

described as a master regulator of mitochondrial biogenesis and oxidative 

phosphorylation PGC1α in vitro and in vivo. Overexpression of miR-128 in C2C12 

myoblasts reduced mitochondrial biogenesis, altered dynamics, and impaired ATP 

production leading to mitochondrial dysfunction. Conversely, Inhibition of miR-128 

expression improved mitochondrial health and oxidative phosphorylation. Second, we 

have tried to identify the key genes associated with mitochondrial function and their 

mRNA-miRNA network by employing an integrated approach of machine learning-

based feature selection and explainable artificial intelligence. We found BAX, a target 

of the miR-128 gene, as one of the top features in the study. We have previously shown 

the role of miR-128 in mitochondrial dysfunction by directly targeting BAX.  In 

addition, the interaction network highlighted the regulatory role of miR-375, miR-30a-

5p, miR-16-5p, miR-129-5p, miR-1229-3p, and miR-1224-3p, offering insights into 

novel therapeutic targets. Third, we have identified miR-128's potential as a regulator 

of BICD1 as a target, impacting intracellular transportation of HIF1α which correlates 

with reduced activity and affects mitochondrial metabolism. In summary, these studies 

collectively contributed to our understanding of the molecular mechanisms linked to 

miR-128, mitochondrial function, and metabolic disorders, offering insights into 

potential therapeutic targets and early intervention strategies for metabolic disorders 

like obesity and T2DM. 
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1.1 Rationale of the study  

The mitochondria are an endosymbiont double-membrane active and dynamic organelle 

and a significant energy producer (Picard, Wallace, and Burelle 2016). In addition to 22 

tRNAs and 2 rRNAs, the mitochondria's ~16.6 kb genome also contains the genes for 13 

proteins involved in oxidative phosphorylation (Peng et al. 2022). The control of 

intracellular pathways such as the tricarboxylic acid cycle, electron transport chain, 

intracellular ion homeostasis, oxidative stress, lipid metabolism, and amino acid 

metabolism depends on mitochondria as it actively transduces biological signaling 

(Friedman and Nunnari 2014).  

Mitochondrial biogenesis is highly flexible in response to cellular energy needs, 

developmental cues, and environmental influences (Dorn and Kitsis 2015). The primary 

regulator of mitochondrial biogenesis is peroxisome proliferator-activated receptor 

gamma coactivator 1 (PGC1α) (Rodgers et al. 2005). The nuclear respiratory factors 

NRF1 and NRF2 are then activated by PGC1α. These nuclear respiratory regulators 

regulate the signaling of mitochondrial DNA replication-related transcriptional regulators 

including TFAM (mitochondrial transcription factor A) and genes responsible for 

oxidative phosphorylation (Cardanho-Ramos and Morais 2021). Mitochondria undergo 

physical interactions that facilitate the brief exchange of information to cater to the need 

for cellular energy and homeostasis.  

Recent discoveries have highlighted the dynamic nature of mitochondria, undergoing 

fission, fusion, transport, and degradation for fine-tuning mitochondrial health and cellular 

homeostasis (Detmer and Chan 2007; Liesa, Palacín, and Zorzano 2009). A state of flux 

is maintained between these processes to meet the energy demands of the cell. Any 

impairment of mitochondria is also correlated with secondary diseases such as obesity, 

cardiovascular diseases, and respiratory ailments leading to increased morbidity and 

mortality either directly or indirectly (Mengeste, Rustan, and Lund 2021; Prasun 2020). 

Mitofusin 1 and Mitofusin 2 (MFN1 and MFN2, localized in the outer membrane of the 

mitochondria) and optic atrophy 1 (OPA1, localized in the inner membrane of the 
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mitochondria), help in the fusion of the outer membrane and inner membrane of the 

mitochondria respectively. The fusion helps in increased ATP synthesis capacity and 

sharing of the metabolites, as well as aid in the biogenesis to produce newly formed 

organelles.  Conversely, the division of the mitochondria into two mitochondria is known 

as fission and is regulated by dynamin-related protein 1 (DRP1, localized in the 

cytoplasm). Fission occurs usually to remove the damaged part of the mitochondria when 

overabundant damaged mitochondria or/ dysfunctional mitochondria are present within 

the cell. Therefore, there is a need for a greater understanding of these pathway and 

functions that would lead to novel clinical approaches as well as a better understanding of 

disease molecular mechanisms.  

MicroRNAs are single-stranded small noncoding RNAs that are ~22 nucleotides long. 

MicroRNA is transcribed in the nucleus as a long primary RNA transcript and then cleaved 

into a ~70 nucleotide precursor RNA (pre-RNA) with the help of the enzyme drosha. The 

pre-miRNA is then transported into the cytosol with the help of exportin-5 and Ran-GTP-

dependent pathway and further processed by the complex of RNase III, Dicer, and TRBP 

to form the mature miRNA (O’Brien et al. 2018). miRNAs can target and affect more than 

one gene by the process of translational repression or mRNA degradation. Each miRNA 

has a specific 2-8 bases of seed sequence which align according to the Watson-Crick base 

pairing and bind to the 3’UTR of the target gene (Huang, Xiang, and Song 2022). This 

makes them a potential key to understanding the role of miRNA in modulating 

mitochondrial biogenesis and function. Recent studies have shown evidence that miRNA 

also binds to the gene's intronic region, exonic region, and 5’UTR (Kotagama and 

McJunkin 2023). Earlier, miR-494-3p, miR-133, and miR-149 have been found to play a 

role in maintaining mitochondrial homeostasis in skeletal muscle during metabolic 

disorders (Mohamed et al. 2014; Yin et al. 2013). 
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Previously, our laboratory has shown that miR-128 targets BAX which in turn leads to 

mitochondrial dysfunction by regulating the membrane potential (Yogita K. Adlakha and 

Saini 2011). In addition, our laboratory has established that miR-128 targets SIRT1, an 

NAD+ dependent deacetylase exerts the regulation of that gene expression through histone 

deacetylation. It also plays role in pro-apoptotic effect in a p53 transcription-dependent 

and independent manner via PUMA-BAK axis (Y. K. Adlakha and Saini 2013). The 

literature strongly suggests that SIRT1 directly interacts with and deacetylates the master 

regulator PGC1α causes mitochondrial malfunction by inducing apoptosis through the 

release of cytochrome c (Zhou et al. 2018).  

Prelimnary, in silico analysis of microarray expression data (Control vs miR-128 

overexpression in HEK cells) led us to identify various target genes of miR-128 involved 

in mitochondrial biogenesis and function. This list included the extensively researched 

key regulator PGC1α and various genes in oxidative phosphorylation such as NDUFS4, 

and NDUFS7. PGC1α and NDUFS4 are the direct targets of miR-128 as predicted by the 

miRNA target prediction databases such as TargetScan, miRDB, and miRTarbase.  

Luciferase reporter assay revealed that miR-128 directly targets PGC1α by binding in its 

3’UTR.  

Based on our preliminary findings, we hypothesized that miR-128 might play a role in the 

regulation of mitochondrial biogenesis and function. To this end, we framed our objectives 

to examine the possibility of a coordinated regulation of mitochondrial biogenesis and 

function by miR-128. 
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1.2 Objectives   

1.2.1 To investigate the role of miR-128 in regulating mitochondrial biogenesis. 

 

1.2.2 To understand the role of miR-128 in regulating networks involved in 

mitochondrial function.  

 

 

Figure 1.1: Flowchart represents the methodology used for the studies. 
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2.1   Mighty Mitochondria  

Mitochondria are central to the production of energy as they have been known as the 

powerhouse of the cells and are crucial to the homeostasis of life (Al Amir Dache and 

Thierry 2023). This organelle is supposed to have evolved from Alphaproteo bacteria. The 

theory of the evolution of mitochondria is known as the endo-symbiotic theory (Hill 2020; 

Wallace 2018). They have evolved certain transcriptional and translational machinery 

alongside the nuclear genome over the millennia as they have incorporated their 

mitochondrial DNA (mtDNA). Preserving the double membraned structure from their 

ancestors, the circular mtDNA (~16 KB for humans) encodes 37 genes. Thirteen proteins 

code for the respiratory complex subunits (I-V), twenty-two genes code for tRNAs 

necessary for the translation of the mtDNA-encoded proteins, and two for 12S and 16S 

rRNAs (El-Hattab, Craigen, and Scaglia 2017).  

 

 

Figure 2.1: Labelled gene and regulatory areas on the human mitochondrial DNA genome (Picard, Wallace, 

and Burelle 2016). 

 



Page | 6  
 

The mtDNA polymerase γ (POLG), which consists of the catalytic subunit expressed by 

the POLG gene. The RNA Polymerase Mitochondrial (POLRMT) mitochondrial RNA 

polymerase transcribes the mtDNA (Do et al. 2020). TFAM (transcription factor A, 

mitochondrial), which ensures mtRNA unwinding and flexing necessary for the POLRMT 

binding to the mtDNA promoters, is the essential enhancer protein. The unique 

dissociation factor TFB2M (transcription factor B2, mitochondrial) facilitates interaction 

between POLRMT and TFAM. TFB1M and TFB2M can both act as rRNA modifiers 

because they attach to rRNA di-methyltransferases. It has been proposed that rather than 

acting as a transcription factor, TFB1M's main function is rRNA methylation 

(Ramachandran et al. 2017).  Additionally essential to mtDNA transcription, TFAM's 

expression regulates the amount of mtDNA copies, therefore serving as a key component 

in mtDNA maintenance and transmission (Ekstrand et al. 2004). 

Nuclei are host to additional proteins that are essential for maintaining the integrity of 

mtDNA. About 1500 mitochondrial proteins are delivered into the mitochondria encoded 

by nuclear genes to maintain their homeostasis. These comprise ribosomal proteins, DNA 

replication and transcription-related proteins, and citric acid cycle-related enzymes. The 

electron transport chain complexes are composed of proteins encoded by both nucleus and 

mitochondria genes (Peng et al. 2022). Energy conversion is one of the salient functions 

of mitochondria. Adenosine triphosphate (ATP), which is produced by aerobic respiration 

in the mitochondrion, is necessary to maintain bioenergetics and cell energy metabolism. 

The two primary series of processes that contribute to the production of ATP are the TCA 

cycle and oxidative phosphorylation (OXPHOS) (Brand et al. 2013). The integration of 

many metabolic pathways, controlling cellular death, and maintaining the calcium 

homeostasis mechanism are just a few examples of the molecular systems that control 

cellular metabolism, which requires the consumption and production of energy. 

Mitochondria produces metabolic building blocks for macromolecules like lipids, 

proteins, DNA, and RNA. Therefore, any potential disruption of the mitochondrial system 

has an impact on the energy equilibrium and controls cellular metabolism (Spinelli and 

Haigis 2018).  



Page | 7  
 

The primary requisite for healthy mitochondria requires dynamic activities including 

mitochondrial biogenesis, transportation, fission, fusion, and mitophagy. The two healthy, 

identical mitochondria can be produced from an pre-existing one through biogenesis, 

which occurs after full growth and successful mitochondrial DNA replication (Das, 

Sauceda, and Webster 2021). Although the dynamics of mitochondria vary depending on 

the kind of cell and the tissue, the essential protein machinery that powers the process has 

been surprisingly maintained over time (Glancy et al. 2020). Each dynamic process is 

necessary to maintain a healthy mitochondrial population, which is important in normal 

physiology and organism conditions (W. Chen, Zhao, and Li 2023). The inability of the 

mitochondria to provide and maintain the required ATP for the needs of the cell. An 

imbalance affecting mitochondrial function is caused by the reduction and acceleration of 

any of these dynamic processes because of pathological or physiological stressors, 

ultimately causing numerous illnesses in cardiovascular, neurological, metabolic, and 

cancer diseases (Jomova et al. 2023). Controlled regulation of nuclear-encoded and 

mitochondrial transcription factors is required. It is said that PGC1α is the main regulator 

of mitochondrial biogenesis and function.  

2.2 Regulation of the Key modulator: PGC1α  

PGC1α is a transcriptional regulator that is part of the PGC family. PGC1β and PRC 

(PGC1-related coactivator) are further members of the family (Puigserver et al. 1998). 

PGC1α family lacks a DNA-binding domain. Furthermore, PGC1α lacks the intrinsic 

histone acetyltransferase activity that triggers chromatin remodeling and gene activation 

in other transcriptional coactivators. PGC1α functions more like a transcriptional regulator 

by giving proteins a docking platform. Consequently, transcription is indirectly promoted 

by PGC1α (Bost and Kaminski 2019). 
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Figure 2.2: Depiction of summary of PGC1α effectors. (A) PGC1α posttranscriptional regulation.  (B) 

PGC1α posttranslational alterations. For PGC1α, several modifications have been identified, including 

phosphorylation, acetylation, methylation, ubiquitination, O linked N-acetylglucosylation, and sumoylation. 
(Fernandez-Marcos and Auwerx 2011) 
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Many transcription factors and external cues transcriptionally control the primary 

pathways for signaling to target via signaling cascades, including the environment, 

insulin/glucagon levels, Ca2+, and exercise.  PGC1α is subject to many changes at the 

posttranslational level, including acetylation, phosphorylation, methylation, and 

ubiquitination as shown in the Figure 2.2A (Fernandez-Marcos and Auwerx 2011). PGC1α 

expression is stimulated by MEF2 and ATF2, which are both regulated by p38 MAPK. 

Exercise elevates Ca2+ levels, which in turn cause calcineurin A and Ca2+/calmodulin-

dependent protein kinase 2 (CAMK2) to activate MEF and CREB factors (Booth et al. 

2015). When the ratio of cellular AMP to ATP rises, AMPK is triggered. Thus, it plays a 

crucial role in maintaining the energy balance of the cells. PGC1α in muscle cells is 

specifically bound by AMPK, which phosphorylates at Thr177 and Ser538. This PGC1α 

phosphorylation increases its transcription. These phosphorylations are also necessary for 

the AMPK-induced regulation of mitochondrial or nuclear genes and PGC1α itself 

(Parsamanesh et al. 2021). Furthermore, p38 MAPK-induced phosphorylation of PGC1α 

at Thr262, Ser265, and Thr298 results in enhanced protein stability (Fernandez-Marcos 

and Auwerx 2011).  

The main driver of mitochondrial energy metabolism is the AMPK/PGC1α axis. Persistent 

overeating can upset this equilibrium by inhibiting PGC1α activity, which causes AMPK 

expression to shut down and mitochondrial malfunction (Kong, Cai, and Nie 2022). 

Whereas, it is shown that Akt phosphorylates many C-terminal locations on PGC1α. Akt 

suppresses fatty acid oxidation (FAO) and gluconeogenesis via phosphorylating PGC1α 

(Li et al. 2007). Heras et al showed that the phosphate 3 kinase Akt mechanistic target of 

the rapamycin transduction pathway. It regulates growth, differentiation, metabolism, and 

cell death along with PGC1α inhibition (Heras-Sandoval et al. 2014). GSK3β controls 

PGC1α stability in 3T3 cells by directing PGC1α toward intranuclear degradation by 

proteasomal enzymes (Anderson et al. 2008).  

Sirtuin 1 is a member of the histone deacetylase family related to silent information 

regulators. Nicotinamide adenine dinucleotide (NAD) is necessary for sirtuin proteins to 
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conduct the deacetylation of target substrates (Cantó et al. 2009). It is suggested that 

SIRT1 is a sensor that directly connects metabolic disorders to the cellular balance of 

NAD+ and NADH, which is intimately related to catabolic metabolism. Consequently, 

SIRT1 engages in a NAD+-dependent deacetylation of PGC1α (Rodgers et al. 2005). 

Mitochondrial biogenesis and function is then coactivated by elevated PGC1α (Michishita 

et al. 2005).  

About above Figure 2.2B the protein PRMT1, arginine methyltransferase 1, catalyzes 

methylation, which boosts PGC1α expression and triggers the transcription of genes 

crucial for mitochondrial biogenesis (Teyssier et al. 2005). Hence, diverse 

posttranslational changes establish a flexible and effective range for controlling PGC1α 

levels and intracellular localization, eventually contributing to its crucial function in 

mitochondrial biogenesis and energy metabolism.  

2.3 Mitochondrial biogenesis 

The mechanism that controls mitochondrial biogenesis involves PGC1α-NRF1/2-TFAM 

(Figure 2.2). When brown adipose tissue was first exposed to cold, it was observed that 

PGC1α was elevated. This, in turn, caused the production of several respiratory chain 

genes and an increase in the amount of mtDNA (Puigserver et al. 1998). This involvement 

was substantiated by the gain of function tests in transgenic mice and cultured cells. 

Eukaryotic cells undergo mitochondrial biogenesis to produce healthy mitochondria and 

increase the number of mitochondria by dividing the old ones, which are already fully 

developed and have finished their DNA replication (Uittenbogaard and Chiaramello 

2014). John Holloszy was the first to describe it in the 1960s. During his experiment, he 

found that physical endurance training causes larger mitochondrial content levels, which 

resulted in better glucose uptake by muscles (Holloszy and Coyle 1984). PGC1α, is a 

transcription factor and a key regulator of mitochondrial biogenesis (Friedman and 

Nunnari 2014).   
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Figure 2.3: Potential molecular signals involved in the regulation of mitochondrial biogenesis (Cardanho-

Ramos and Morais 2021). 

Through the deacetylation of its primary targets, the NAD+-dependent protein deacetylase 

SIRT1 regulates a variety of biological processes, including inflammation, cell death, and 

metabolism (Imai et al. 2000). SIRT1 deacetylates several non-histone proteins, such as 

PGC1α to activate the transcription via SIRT1/PGC1α pathway that plays a role in 

protecting mitochondrial biogenesis (Zhou et al. 2018). Furthermore, Hu et al have shown 

that in ischemic heart disease, PGC1α is decreased by SIRT1 suppression (Hu et al. 2016).  

Whereas experiments involving decreased function demonstrated that AMPK is involved 

in the upkeep of mitochondrial biogenesis. Irregularities have been observed in the 

regulation of mitochondrial biogenesis and function induced by muscle-specific deletion 
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of AMPK α-subunits. It appears that AMPK regulates the downstream effector molecules 

such as PGC1α by phosphorylation at two different sites (Jäer et al. 2007). The estrogen-

related receptor (ERR) family, NRF1, and NRF2 are the most often observed transcription 

factors activating promoters of mitochondrial genes (Ivanova et al. 2013). PGC1α's 

interactions with both NRF1 and NRF2 have been proven. Wu et al have shown that 

deleting NRF1's N-terminal segment eliminates PGC1α's influence on mitochondrial 

biogenesis (Z. Wu et al. 1999). In the respiratory complex, cytochrome C oxidase subunit 

IV (COXIV), cytochrome c, mitochondrial protein import machinery (TOMM34), and 

transcription of mtDNA transcription factor A mitochondrial (TFAM), transcription factor 

B1 mitochondrial (TFB1M), transcription factor B2 mitochondrial (TFB2M) are among 

the many target genes that NRF1 regulates (Ivanova et al. 2013; Satoh, Kawana, and 

Yamamoto 2013). Multiple tasks are carried out by TFAM for mtDNA, and their 

interactions play a role in the regulation of mitochondrial biogenesis. Among these, it has 

been shown that TFAM and TFB2M are necessary for the replication and transcription of 

the mitochondrial genome.   

2.4 Mitochondrial Dynamics: Fusion and Fission  

Mitochondria are highly dynamic and constantly alter their shape through fusion and 

fission events. The size, quantity, distribution, quality control, and transit of mitochondria 

in cells are all governed by mitochondrial dynamics in addition to mitochondrial 

morphology (Green, Hossain, and Eckmann 2022). Numerous cellular activities, 

including the cell cycle, immunology, apoptosis, and mitochondrial quality control, 

depend on these brief and rapid morphological modifications. Numerous human diseases 

have been linked to mutations in the basic machinery parts and flaws in mitochondrial 

dynamics. The joining of two mitochondria into one functional mitochondrion is known 

as mitochondrial fusion (Figure2.3). Two mitochondria collide end to end in a normal  
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mitochondrial fusion and the membrane fusion event take place there to create ring-like 

structures, fusion reactions can also take place inside a single mitochondrion or end-to-

side.  As mitochondria have two membranes, fusion occurs first at the outer membrane 

and then at the inner membrane. Outer membrane fusion is ensured by the two large 

GTPases homologs Mitofusion 1 (MFN1) and Mitofusion 2 (MFN2) (Meeusen, 

McCaffery, and Nunnari 2004). Inner membrane fusion occurs downstream of outer 

membrane fusion and is mediated by the large GTPase Optic Atrophy 1 (OPA1) (Ono et 

al. 2001). OPA1 performs a separate role in preserving cristae structure in addition to 

fusing the inner membrane.  

 

Figure 2.4: Representation depicts the dynamic process of mitochondrial fusion and fission (Dorn and Kitsis 

2015). 

 

The respiratory chain super complexes are significantly diminished, and the ultrastructure 

of the cristae is substantially disturbed when OPA1 is absent (Hsiuchen Chen et al. 

2010). Whereas the process in which the mitochondrion divides into two smaller 
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mitochondria is known as mitochondrial fission (Figure 2.3). Mitochondrial fission is 

majorly controlled by the dynamin-like protein 1 (DRP1), a GTP-hydrolyzing enzyme 

(Detmer and Chan 2007). DRP1 is an ortholog of yeast Dnm1p, and the two proteins have 

a 42% homology  (Pitts et al. 1999). One important step in DRP1-mediated fission is the 

recruitment of cytosolic DRP1 to mitochondria. DRP1 appears to undergo significant 

structural changes after being recruited to mitochondria, which restricts the mitochondrial 

tubule and starts the event. 

Mitochondrial fission and fusion contribute to the maintenance of the following:  

• Mitochondrial integrity,  

• Electrical and biochemical connectivity  

• Mitochondrial turnover  

• Segregation and protection of mitochondrial DNA (mtDNA) 

The shape of the mitochondria is dynamic and responsive to changes in metabolism. 

Increased ATP production is positively correlated with mitochondrial fusion, while its 

inhibition is linked to reduced OXPHOS, mtDNA depletion, and ROS production. 

Changes in nutritional supply and metabolic needs can tilt the balance of fission and fusion 

in either direction, resulting in mitochondrial fragmentation or hypertubularity 

(Mitsopoulos et al. 2015). In response to different physiological and environmental cues, 

two opposing processes, fusion, and fission along with mitophagy and mitobiogenesis 

cooperate to maintain the homeostasis of mitochondria.  

2.5 Mitophagy 

Lemasters coined the term "mitophagy," which describes a conserved cellular mechanism 

that permits autophagy to selectively eliminate diseased or superfluous mitochondria. 

Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative 

stress, mitochondrial dysfunction, and aging (Lemasters 2005). Most of the time, 

oxidative stress causes mitophagy, which is a cellular defense process that eliminates 

damaged mitochondria as a side effect of high ROS generation (Schofield and Schafer 
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2021). By interacting with the necessary autophagy protein LC3, the mitophagy receptor 

selectively destroys impaired mitochondria in response to a variety of mitochondrial 

stresses, including hypoxia, loss of mitochondrial membrane potential, and oxidative 

stress (Onishi and Okamoto 2021). Unlike those linked to mitobiogenesis, the signaling 

pathways that trigger mitophagy have not yet been fully investigated. The control of 

mitophagy has been linked to a number of pathways, however the exact molecular 

processes behind these pathways are yet unknown (L. Liu et al. 2023). Autosomal 

recessive parkinsonism (ARP) is caused by mutations in the Parkin gene, which is a 

cytosolic E3 ubiquitin ligase. Subsequent research also revealed a connection between 

ARP and a serine/threonine kinase found in mitochondria called PTEN-induced kinase 1 

(PINK1). According to preliminary studies, the Parkin/PINK1 pathway supports both the 

maintenance of mitochondrial function and the regulation of mitophagy (Poole et al. 

2008).  

It is well acknowledged that optimal mitochondrial quantity and function are necessary 

for sustaining physiological and biological equilibrium of the cell, and that their lack of 

regulation is closely related to the development of metabolic disorders like obesity and 

type 2 diabetes (Kim, Wei, and Sowers 2008). Nutrient overload, like excess free fatty 

acids or hyperglycemia, promotes the generation of reactive oxygen species (ROS) and 

decreases mitochondrial biogenesis and oxidative phosphorylation, leading to the 

malfunction of the mitochondria. Insulin resistance, obesity, diabetes, and cardiovascular 

disease are caused by enhanced ROS generation, reduced oxidative phosphorylation, and 

ATP synthesis resulting in mitochondrial dysfunction (Caturano et al. 2023; Cojocaru et 

al. 2023).    

2.6 Mitochondrial dysfunction in metabolic disorders. 

The traditional definition of mitochondrial dysfunction is when they are incapable of 

producing adequate amounts of ATP to cater to the requirements of the cells (Kusminski 

and Scherer 2012). One crucial node that unifies the cell's need for energy with the 

availability of nutrients is the mitochondrial network. As a result, identifying the reason 
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behind mitochondria's inability to perform important functions necessitates combining 

measurements of the structure and function and the quality control of the organelles 

(Anello et al. 2005; Glancy et al. 2020).  Literature has demonstrated a correlation between 

obesity and reduced mitochondrial respiration, elevated generation of reactive oxygen 

species inside the mitochondria, dysregulation of mitochondrial biogenesis, reduced 

mitophagy signaling, and elevated apoptosis (W. Chen, Zhao, and Li 2023; Rocha et al. 

2020). Similarly, in those with type 2 diabetes or obesity, there is a correlation between 

reduced tissue sensitivity to insulin and mitochondrial dysfunction. Increased ROS 

generation and oxidative stress are caused by high nutrition concentrations found in these 

metabolic diseases. Such disorders also activate many signaling pathways that mediate 

repercussions on the mitochondrial function (Lu et al. 2020; Newsholme et al. 2016). The 

process of β-oxidation of fatty acid into acetyl-CoA, which provides a basis for the TCA, 

is interfered with obesity. Reduced β-oxidation results in tri-glycerol production and 

ectopic lipid accumulation, which impair cellular function. Increased lipid peroxidation 

byproducts, or lipotoxicity, are caused by increased free fatty acids, which also encourages 

mitochondrial dysfunction. Raising the NADH/NAD+ ratio in conjunction with a 

sedentary lifestyle, which reduces energy need, may cause an increase in the production 

of mitochondrial ROS. It's probable that high fragmentation of mitochondria is a 

defensive mechanism by lowering OCR (Whitley, Engelhart, and Hoppins 2019). 

Mitochondrial biogenesis is also a tightly regulated process, taking place in coordination 

with mitochondrial dynamics through various transcription factors within healthy cells. It 

should come as no surprise that mitochondria appear to play a significant role in several 

facets of metabolic disease, including etiology, consequences, therapy, and prevention, 

given that they are the primary locations for energy disposal (Filippi et al. 2017; Volpe et 

al. 2018). 

Reduced mitochondrial shape and size, quantity, and impaired cristae have been linked 

with a diminished ability of mitochondrial function in skeletal muscle tissue obtained 

from obese and type 2 diabetes patients compared to control (Whytock et al. 2023). 

Approximately forty percent of the mass of the human body is made up of skeletal muscle 
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tissue, a highly flexible tissue that's vital for sustaining posture of the limbs and 

movement. Skeletal muscle tissue loss due can raise the morbidity and mortality of many 

diseases and have a major negative effect on patient’s quality of life (Yan et al. 2022). The 

ability of these mitochondrial homeostatic mechanisms to identify and address 

mitochondrial malfunction is crucial for the preservation of skeletal muscle mass 

(Egerman and Glass 2014). Gene expression is promoted by catabolic signaling pathways 

that become activated by mitochondria's inability and feed back to the nucleus in skeletal 

muscle of obese and type 2 diabetic patients (Shen et al. 2022) 

The morphological analysis of mitochondria has long been considered a crucial adjunct to 

functional research, as altered morphology of mitochondria is a characteristic of several 

distinct myopathies known to cause disruptions of the metabolic activity of mitochondria 

(Vogel 2001). For mitochondrial biosynthesis, energy metabolism, and oxidative stress, 

the AMP-activated protein kinase (AMPK), silent information regulator Sirutin 1 

(SIRT1), PGC1α signaling pathway functions as an energy sensing network (Tian et al. 

2019). By collaborating with SIRT1, AMPK regulates the expression of genes related to 

energy metabolism in mouse skeletal muscle by causing downstream SIRT1 targets, such 

as PGC1α, to become deacetylated (Cantó et al. 2009). By promoting mitochondrial 

biogenesis and oxidative phosphorylation through the AMPK/PGC1α pathway, FGF19 

may mitigate the effects of mitochondrial dysfunction and oxidative stress in obesity-

induced skeletal muscle (Guo, Li, and Xiao 2020). An imbalance in the availability and 

consumption of nutrients in several tissues, including the liver, adipose tissue, and skeletal 

muscle, results in Insulin resistance (Petersen and Shulman 2018).  

The expression of the electron transport chain complexes governs the mitochondrial 

capacity for oxidative phosphorylation (OXPHOS). Since some of subunits in these 

structures have been encoded by mitochondrial DNA, this is a possible explanation for the 

mitochondrial malfunction. The decrease in mitochondria number in diabetes is probably 

due to decreased PGC1α expression and activity; the reduced activity will be explained 

by an increase in reductive stress caused by excess diet. However, the reduced respiration 
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was linked to lower mitochondrial content, as determined by mitochondrial DNA and 

citrate synthase efficiency. ETS activity was reduced in diabetic muscle and this decrease 

was only partially due to a reduction in mitochondria, indicating that mitochondrial 

content and function are interdependent. Activating PI 4,5bisphosphate to PI 3,4,5-

triphosphate, phosphatidylinositol 3-kinase (PI3K) stimulates many downstream serine 

kinases, such as PI-dependent kinase-1, Akt, and atypical PKC (Heras-Sandoval et al. 

2014). Though mitochondrial dysfunction and subsequent lipid buildup are the main 

candidates, increased activity of phosphatases involved in the negative regulation of the 

pathway and reduced activation of enzymes like Akt via PGC1α could be equally 

important (Koliaki and Roden 2016).  

Schrauwen et al in the study discuss the challenges and treatment approach of 

mitochondrial dysfunction, which are boosting mitochondrial biogenesis, removing 

inactive mitochondria and replacing them with functional ones, supplying or swapping 

out malfunctioning parts, addressing the fallout from mitochondrial malfunction, and 

altering the mitochondrial DNA (Y. Chen et al. 2022; Schrauwen et al. 2006). However, 

to date, almost none of these strategies have yielded satisfactory results. The primary 

issues are choosing appropriate targets and the absence of a trustworthy technique for 

focusing on mitochondrial dysfunction.  

2.7 MicroRNA, the fine tuners: Biogenesis and Function 

A family of endogenous non-coding RNAs known as microRNAs (miRNAs) 

predominantly acts through post-transcriptional processes to regulate and fine-tune the 

genome. The majority of miRNA loci are located in the introns of genes that code for 

proteins, while they can also be embedded in exonic regions or distinct transcriptional 

units (Winter et al. 2009). During a 1993 study on C. elegans evolution, Victor Ambros 

and colleagues found lin-4, miRNA. When antisense RNA was injected into C. elegans in 

1995, it was seen that the corresponding gene it was injected into was suppressed in terms 

of expression (Slack et al. 2000; Wightman, Ha, and Ruvkun 1993). This phenomenon 

was subsequently dubbed RNA interference (RNAi). However, it wasn't until three years 
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later when Andrew Fire and Craig C. Mello provided previously unheard-of levels of 

clarity on the RNA interference mechanism was discovered in Drosophila, effectively 

utilized to mute a gene in Xenopus, and reported in mice (Svoboda et al. 2000; Wianny 

and Zernicka-Goetz 2000).  

 

 

Figure 2.5: Overview of the key steps in miRNA biogenesis, their functional role in post-transcriptional 

gene regulation (Winter et al. 2009). 
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The Drosha (RNAse III enzyme) protein complex processes the transcripts of miRNA 

genes that have been produced by RNA polymerase II (pol II) in the nucleus with the help 

of DiGeorge syndrome critical region 8 (DGCR8). Long primary miRNAs (Pri-miRNAs) 

are cut into 70–100 nt precursor miRNAs (Pre-miRNAs) by the Drosha-DGCR8 complex, 

and exportin-5 (XPO5) ultimately exports the pre-miRNAs outside of the nuclei into the 

cytoplasm. A protein complex consisting of the human immunodeficiency virus 

transactivating response RNA-binding protein (TRBP) and enzyme Dicer cleaves the pre-

miRNA hairpins to produce double-stranded RNA (ds-RNA), which is ~22 nucleotide bp 

in the cytoplasm. This dsRNA contains two miRNA strands in both arms of pre-miRNA, 

which are referred to as miRNA-3p and miRNA-5p. Formerly, it was believed that one 

strand is a mature miRNA and the other is degradable; however, recent research indicates 

that, depending on the tissue, either arm may be chosen as a mature miRNA. The RNA-

induced silencing complex (RISC) interacts with the mature miRNA, which induces 

posttranscriptional gene silencing by base-pairing to partly complementary sequence 

motifs within the 3' untranslated regions (3'UTR) of target mRNAs. The miRNA does not 

carry out the regulatory role of translational suppression or mRNA degradation on its own.  

The complementarity of miRNA sequences to the sequence of their target transcript 

indicates that miRNAs have recognized their target. The portion of RISC that directly 

binds the miRNA is a protein that belongs to the Argonaute family (Ago1, Ago2, Ago3, 

and Ago4). These genes are found in the mammalian genome. It is believed that all four 

Ago proteins are capable of functioning as RISC components; however, only Ago2 can 

catalyze RNAi through endo-nucleolytic activity.  

Consequently, it is believed that the primary function of Ago proteins in animals is 

the miRNA-mediated translation inhibition or target mRNA degradation. Both the 

beginning and elongation phases of translation are inhibited. RISC may obstruct 

80S ribosome assembly or the initiation complex. Ribosomes may stall during the 

elongation step and then drop off the transcript because of RISC (Cai et al. 2009; O’Brien 

et al. 2018). Additional in-depth details about the molecular process underlying miRNA-
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mediated translational repression and mRNA destabilization are provided elsewhere 

(Bofill-De Ros and Vang Ørom 2024).   

2.8 miRNA-mediated regulation of mitochondrial biogenesis 

and function.  

A preclinical study done by Wu et al states that overexpression of the miR-499 enhanced 

mitochondrial biogenesis and skeletal muscle mass (L. Wu et al. 2019).  The intrinsic 

regulator of mitochondrial dynamics, miR-181a, acts by cooperatively regulating Park2, 

p62/SQSTM1, and DJ-1 in vitro. In elderly mice, increasing the levels of miR-181a 

reduced the build-up of these autophagy genes, and enhanced muscular function and 

mitochondrial quality (Goljanek-Whysall et al. 2020). MiR-133a is a skeletal muscle 

tissue-enriched miRNA that promotes the proliferation of C2C12 myoblast by 

downregulating PRDM16 and reducing brown fat accumulation in tissue by targeting 

SRFs (Serum response factors). MiR-133a expression was downregulated in the skeletal 

muscle of individuals with insulin resistance and type 2 diabetes, comparable. This was 

accompanied by a reduction in the mRNA expression levels of key factors associated with 

mitochondrial biosynthesis in the skeletal muscle (Yin et al. 2013).   

MiR-149 suppresses PARP-2 expression in healthy skeletal muscle, upregulates the 

NAD+ levels, and activates SIRT-1, which in turn activates PGC1α and the mitochondrial 

biogenesis pathway. On the other hand, the high-fat diet-induced skeletal muscle showed 

a downregulation in the expression level of miR-149 and as well as SIRT1/PGC1α 

pathway.  As a result a downregulation was observed in the levels of the mitochondrial 

biogenesis markers such as COX1, Cyt C,  TFAM,  NRF1/2, and UCP1 (Mohamed et al. 

2014). Targeting the 3′UTR of PGC1α mRNA and controlling PGC1α protein expression 

in vitro and in vivo, miR-23a might have some function as a regulator of mitochondrial 

biogenesis. Aaron et al has indicated in their study that, the expression of miR-23a is 

upregulated in the skeletal muscle tissue of insulin resistance mice model of type 2 

diabetes and an inverse relation is observed with the expression of PGC1α.  
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The downregulation of COX IV protein expression suggests that miR-23a can adversely 

influence mitochondrial biogenesis. The enzyme adenosine kinase (ADK) converts 

adenosine to adenosine monophosphate and then into adenosine diphosphate. 

Overexpression of miRNA-96-5p inhibits ADK and has been associated with oxidative 

phosphorylation leading to mitochondrial dysfunction (Russell et al. 2013). Furthermore, 

it has been demonstrated that obesity causes a decrease in the amount expression of 

glucagon-like peptide-1 (GLP-1), which can result in metabolic disorders. Since GLP-1 

was decreased in expression and miR-194 was enhanced in the plasma and ileum tissue 

of obese mice, miR-194 has been identified as a regulator of GLP-1. Overexpression of 

miR-194 and suppression of GLP-1 expression caused worsening of myocardial damage 

and mitochondrial dysfunction in obese mice. Therefore, miR-194 is a crucial biomarker 

for GLP-1 expression as well as for the relationship between obesity and its underlying 

metabolic processes (J. Wang et al. 2021). It appears that miR-221/222 and miR-33 have 

a significant pro-atherogenic impact on oxidative phosphorylation and mitochondrial 

biogenesis. Their overexpression lowers PGC1̑ɑ, which in turn causes endothelial 

mitochondria to malfunction (Karunakaran et al. 2015; Xue et al. 2015). 

In conclusion, many studies collectively indicate that miRNAs play a significant role 

within the tissue of individuals with metabolic disorders in the regulation of mitochondrial 

metabolism. However, based on the reviewed literature, it is determined that further study 

is necessary to fully comprehend the role that miRNA activity plays in the mechanisms 

that lead to the development of obesity and the potential applications of these small 

molecules for the treatment of diseases.  

2.9 miR-128 and Human Diseases 

2.9.1 miR-128 biogenesis 

On chromosome 2 (q21.3), hsa-miR-128-1 is in the intronic region of the R3HDM1 gene, 

whereas on chromosome 3 (p22.3), hsa-miR-128-2 is embedded within the intronic region 

of the ARPP21 gene. RNA polymerase II/III transcribes the microRNA gene R3HDM1 or  
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Figure 2.6: Figure represents the canonical pathway of miR-128 biogenesis(Kiel et al. 

2024). 

ARPP-21, producing the long primary transcript (pri-microRNA) for the biogenesis of the 

mature miR-128 via the canonical pathway. Regarding the mature transcripts, the seed 

sequence is most important for target recognition and silencing, miR-128-1-5p 

(CGGCCCCA) and miR-128-3p (target sequence CACUGUGA). However, independent 

of the location of origin, miR-128-5p expression is hardly noticeable, whereas miR-128-

3p is one of the most abundant in the brain, skeletal muscle, and other tissues.  

2.9.2 Role of miR-128 in human diseases.  

MiR-128 is a multipurpose molecule that plays several roles in the physiopathology of 

different human diseases such as cancer, neurodegenerative disorders, metabolic disorders 

like type 2 diabetes and obesity, cardiovascular disorders, and musculoskeletal diseases as 

shown in Figure 2.7. Herein, based on the current literature, we provide an overview of 

miR-128 playing a role in multiple disorders. 



Page | 24  
 

 

Figure 2.7: Highlighting the relationship between miR-128, different diseases, and their 

target genes. 

Role of miR-128 in neurodegenerative diseases 

miR-128 is a brain-enriched miRNA involved in modulating various aspects of brain 

function, including neuronal plasticity. Interestingly, a recent study found that the Mini-

Mental State Examination scores positively and strongly correlate with changes in miR-

128 levels, which are likewise increased in the sera of  Alzheimer’s Disease patients 

(Miners et al. 2009). In the hippocampus of both fetal brains and adult Alzheimer's disease 
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patients, miR-128 exhibits aberrant accumulation, and its direct target, peroxisome 

proliferator-activated receptor gamma (PPARG), which is known to reduce amyloid beta 

levels, is downregulated. Restoring PPARG expression with deletion of miR-128-3p 

reduces amyloid beta-induced inflammation and cytotoxicity by blocking NF-κB activity 

in vitro (Geng et al. 2018). When miR-128 is deleted in mice, many mRNAs involved in 

the mitogen-activated protein kinase (MAPK) pathway are overexpressed, which causes 

fatal epilepsy (Vidigal and Ventura 2015).  

Similarly, increased expression of miR-128-3p has been shown to reduce neuronal 

apoptosis and inflammation, while also enhancing motor function after spinal cord injury 

(SCI). This effect is achieved by suppressing serine/threonine-protein kinase ULK1 and 

upregulating Fas ligand (FasL) (LIU et al. 2021). Elevated levels of miR-128-3p have 

been shown to markedly decrease the apoptosis of dopaminergic neurons by restoring 

activity in the Wnt/beta-catenin signaling pathway. This restoration helps safeguard 

neurons from disorders caused by protein misfolding, in Parkinson’s disease (PD) (Lanza 

et al. 2023).  

Role of miR-128 in the pathophysiology of cancer 

It has been demonstrated that some malignancies, including lung cancer, glioma, and 

hepatocellular carcinoma, have differential expression of miR-128 (Weiss et al. 2008; 

Zhang et al. 2009). Besides miR-128 inhibition assists tumor cells evade stressors. By 

targeting ARP5, BMI1, and E2F3A, miR-128 functioned as a tumor suppressor molecule, 

slowing the growth of gliomas (Cui et al. 2010). Similarly, Bmi-1 maintains tumorigenic 

laryngeal development and aids in the evolution of laryngeal squamous cell carcinoma 

(LSCC), indicating that miR-128 has a tumor suppressor function in laryngeal cancer (Hui 

Chen et al. 2011). Additionally, by inhibiting the BMI1 proto-oncogene, Polycomb Ring 

Finger (Bmi1), miR-128 also increases ROS. In addition, under hypoxia, miR-128 levels 

reduce, and MAFG and heme oxygenase 1 (HMOX-1) protein levels elevate in both in 

vitro and in vivo experiments (Caggiano et al. 2017; Venkataraman et al. 2010). 
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The expression of miR-128-2 is notably higher in individuals with hepatocellular 

carcinoma (HCC) compared to healthy individuals. Additionally, this increased level of 

miR-128-2 is closely associated with the levels of alpha-fetoprotein (AFP), a biomarker 

commonly used in diagnosing and monitoring HCC (Jin and Ren 2024). In the cells treated 

with TRAIL, the overexpression of miR-128 increased the formation of ROS via 

suppressing SIRT1 expression. A spike in ROS then caused DR5 expression, which in turn 

boosted the amount of TRAIL-induced apoptosis in colorectal cancer (Lian et al. 2018). 

Research suggests that miR-128 regulates oxidative stress-induced damage to cells, 

antioxidant defense systems, and oxidative ROS generation. The eukaryotic group II 

chaperone TRiC, sometimes called CCT or C-CPN, is essential for the folding and 

conformational assembly of cytosolic proteins. This complex guarantees that 15% of 

proteins fold correctly within the cell. It was discovered that miR-128-mediated CCT3 

inhibition reduced the potential of the mitochondrial membrane and was associated with 

higher ROS levels in CRL-2329 and PC3 cells. The apoptotic pathway and CCT3 

inhibition inadvertently interfered, changing the morphology, and speeding up the rate of 

cell death in prostate cancer (Temiz, Koyuncu, and Sahin 2021).  

Changda Qu et al demonstrated that miR-128 suppressed PDK1 expression, which in turn 

caused most of the pyruvate generated by glycolysis to be transported into the matrix of 

the mitochondria and enter the citric acid cycle. This induces a significant amount of ROS 

and aids in the demise of glioma cells by impairing the function of the mitochondria (Qu 

et al. 2020). The TMZ-repressed mTOR signaling was impacted by the overexpression or 

inhibition of miR-128 expression, indicating that miR-128-targeted mTOR signaling, by 

directly targeting mTOR, RICTOR, IGF1, and PIK3R1 transcripts, and regulates TMZ-

mediated apoptosis along with mitochondrial dysfunction, ER stress, and autophagy in 

glioma cells (P. H. Chen et al. 2016).  

It has been observed that miR-128-3p can inhibit the proliferation, differentiation, and 

motility of breast cancer (BC) cells. In all TNBC cell lines, miR-128 overexpression also 

resulted in decreased mitochondrial DNA content and ATP concentrations. TNBC cell 
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proliferation, mitochondrial respiration, and glucose utilization were all inhibited by miR-

128. These outcomes were in line with the suppression of the insulin receptor and insulin 

receptor substrate 1 caused by miR-128 targeting (Xiao et al. 2018). Additionally, 

increased levels of miR-128-3p may influence cell cycle progression by downregulating 

the expression of CDK2/Cyclin E1 and CDK4/6/Cyclin D1. Moreover, miR-128-3p 

inhibits the LIM domain kinase 1 (LIMK1) signaling pathway in BC by directly targeting 

the LIMK1 gene. These insights suggest a potential regulatory role of the miR-128-3p-

LIMK1/CFL1 axis in BC, which could pave the way for novel therapeutic strategies 

(Zhao, Li, and Fang 2019). 

Role of miR-128 in metabolic diseases 

miR-128-1 seems to directly regulate the expression of several crucial metabolic proteins, 

including, PPARγ, SIRT1, InsR, and IRS1, which play significant roles in adipose tissue, 

liver, and skeletal muscle. Yogita et al. established that miR-128 directly targets SIRT1 

(Yogita K. Adlakha and Saini 2011). Additionally, miR-128 controlled genes linked to 

lipid metabolism. Through targeting of key genes that regulated cholesterol metabolism, 

such as retinoid X receptor α (RXRα), ATP-binding cassette A1 (ABCA1), ATP-binding 

cassette G1 (ABCG1), and LDL receptor (LDLR), miR-128 was found to be positively 

correlated with cholesterol levels in previous investigations (Y. K. Adlakha et al. 2013). 

The studies provide experimental validation that miR-128 is not only a pro-apoptotic 

molecule.  

Remarkably, IGF-1 counteracts the effects of FOXO3a's nuclear translocation by 

encouraging PI3K/AKT phosphorylation, which in turn causes FOXO3a phosphorylation, 

which causes FOXO3a to relocate from the nucleus to the cytoplasm and is inhibited. This 

additionally safeguards the skeletal muscle of diabetic mice's mitochondrial respiratory 

function and complex activity (PI3K/AKT activation attenuates acute kidney injury 

following liver transplantation by inducing FoxO3a nuclear export and deacetylation. 

Insulin-like growth factor-1 (IGF-1) is the direct target of miR-128, and its inhibition 

increases the expression of IGF-1. Through the activation of PI3K/AKT, IGF-1 may 
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further boost the phosphorylation of FOXO3a, and alterations in PGC1α may enhance 

mitochondrial activity (Z. L. Chen et al. 2023). Sarcopenia is a condition that is more 

common in sedentary individuals than in regular exercisers. It is characterized by a 

decreased skeletal muscle mass and poor function. As cells age, they express more 

FOXO3a, and the localization changes from the cytoplasm to the nucleus, causing 

impairment in the mitochondria function (Zhuan et al. 2022).  

The decreased translocation of GLUT4 and inhibition of insulin-stimulated glucose 

consumption via IRS1, and miR-128 also affected the PI3K/Akt pathway's activity in 

C2C12 myotubes (Motohashi et al. 2013). Moreover, it has been shown that in the visceral 

adipose tissue (VAT) of obese individuals, a negative correlation exists between rising 

body mass index and falling insulin receptor activation. miR-128 reduces insulin receptor 

mRNA stability in adipocytes, VAT-specific insulin receptor downregulation is an early 

event in obesity-related adipose cell dysfunction that exacerbates systemic insulin 

resistance in obese humans and mice (Arcidiacono et al. 2020). 

Role of miR-128 and cardiovascular diseases 

Literature has several pieces of evidence such as in the cardiac muscle cells, elevation in 

miR-128 level plays a role in cardiomyocyte proliferation and heart regeneration 

(Sucharov et al. 2017).  Interestingly, a small number of additional research has also 

discussed the therapeutic potential of miR-128a during myoblast development (Sun et al. 

2010). On the other hand, miR-128 inhibiting elevates Sp1 protein levels, which leads to 

decreased proliferation and myogenic differentiation. Sp1 suppresses cyclin-dependent 

kinase inhibitor 1A (CDKN1A) and is necessary to activate MyoD which suggests that 

the miR-128 has an impact on myogenesis (Dai et al. 2016). In a mouse heart model, it 

was also shown that downregulating miR-128 attenuated Ang II (Angiotensinogen)-

induced apoptosis, autophagy, and oxidative stress by directly targeting the SIRT1 and/or 

via PI3K/Akt target of rapamycin complex 1 (mTOR1) pathways (Zhan et al. 2021). It's 

interesting to note that while miR-128-3p suppression reduces myocardial insulin 

resistance, it is overexpressed in the mice model with severe cardiac dysfunction together 



Page | 29  
 

with IRS1 degradation and insulin resistance (Ruiz-Velasco et al. 2020). In our previous 

pilot study, we observed a reduction in miR-128-3p levels in coronary artery disease 

(CAD) patients compared to healthy individuals. Additionally, we demonstrated that miR-

128-3p plays a key role in regulating cholesterol efflux in macrophages, a critical process 

in the progression of CAD (Choudhury et al. 2024). 

MiRNA inhibition frequently has subtle phenotypic effects. However phenotypic 

consequences might be severe even from moderate overexpression of several target 

mRNAs, especially if the targets are functionally related.  

Understanding the molecular mechanisms that govern mitochondrial function is important 

for developing targeted therapeutic strategies. However, functional characterization was 

required to fully understand the biology of miR-128. Herein, skeletal muscle myoblast 

cells were transfected with miR-128/Antimir-128 to elucidate how it regulates 

mitochondrial function.  
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3.1 Introduction 

Double-membrane organelles called mitochondria regulate the balance of life and death 

of eukaryotic cells in a pervasive manner. In addition to serving as eukaryotic cell’s 

primary energy transducers, they also actively control several biosynthetic processes, 

including metabolism, intracellular signaling, and apoptosis. Regular cycles of fusion and 

fission allow mitochondria to dynamically change their size and form in response to 

different pathological situations and the metabolic demands of the cell. While dynamin-

related protein 1 protein is required for fission, mitofusin 1 and 2 (MFN1 and MFN2, 

respectively) and OPA1 mitochondrial dynamin-like GTPase (OPA1) proteins are 

required for mitochondrial fusion. The metabolic dysfunctions of skeletal muscle are 

closely associated with impaired mitochondrial biogenesis and dysfunction, which is seen 

in many diseases including diet-induced obesity and type 2 diabetes. The identification of 

peroxisome proliferator-activated receptor gamma coactivator 1α as the primary regulator 

led to a significant advancement in our knowledge of mitochondrial biogenesis and 

function. By controlling mitochondrial transcription factor, A through the co-activation of 

nuclear respiratory factors 1 and 2 (NRF1 and NRF2, respectively), PGC1α triggers the 

transcription and replication of mitochondrial DNA. In the current chapter, we aim to 

elucidate the mechanism behind miR-128's mode of action in controlling mitochondrial 

biogenesis and function. 

3.2 Material and Methods 

3.2.1 miR-128 Target Prediction Genes  

The miR-128 predicted targets were identified using TargetScan (version 8.0) 

(https://www.targetscan.org/vert_80/). 

3.2.2 Cell culture and transfections 

Cell lines used for the experiments in the thesis are in Table 3.1.1 and were procured from 

the National Centre of Cell Sciences, Pune, India. All cell lines were cultured in 

Dulbecco′s Modified Eagle′s Medium (D7777, Sigma). Additionally, the media was 
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supplemented with 3.7 g/L sodium bicarbonate, 10% FBS (Gibco, Thermo Fisher 

Scientific, MA, USA), and 100 IU/mL penicillin-streptomycin (Gibco, Thermo Fisher 

Scientific, MA, USA). The cells were maintained in a humidified atmosphere at 37°C and 

5% CO2 in a separate room designated for cell culture. These cells were seeded and 

cultured in the 6-well or 12-well plates at 70–80% confluency in subsequent experiments. 

Transfection with miR-128 plasmid vector previously cloned in pSilencer 4.1 Vector, 

(Ambion, Thermo Fisher Scientific, MA, USA) in the lab or with antimiR-128 AM17000, 

assay ID AM11746, Thermo Fisher Scientific, MA, USA) along with their respective 

controls i.e., pSilencer 4.1 vector (P(Sil)) or antimiR negative control (AMNC) was done 

in C2C12 myoblast cells. Lipofectamine LTX and PlusTM (Invitrogen, Thermo Fisher 

Scientific, MA, USA) were used for all transfections at a 1:1 ratio as per instructions.  

Table 3.1: Lists of cell lines used as cited below 

Type Cell line 

Mouse C2C12 myoblasts 

Human HEK293 

 

3.2.3 Animal experiments 

C57BL/6 mice (Male, 4 weeks old) were purchased from Livon Biolabs (Bengaluru), 

India. They were kept under an alternating cycle of dark and light for 12 hours long periods 

at the animal house facility in CSIR-Institute of Genomics and Integrative Biology, New 

Delhi. According to NIH’s "Guide for the Care and Use of Laboratory Animals," every 

animal was treated humanely. All the experiments and methods were given the nod of 

approval by the CSIR-IGIB's Animal Ethics Committee. Hypercholesterolemia was 

induced in the mouse by feeding them a high-fat diet that provides 60% energy from an 

(HFD; Cat. #D12492, Research Diets. Inc., NJ, USA) for 13 weeks. A second group of 

mice received the same amount of normal chow (ND), which had 10% fewer calories than 

fats.   
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Table 3.2 Formulation and caloric information of the high-fat diet used in the study 

(D12492; Research Diet Inc., https://researchdiets.com/formulas/d12492) 

 

The hypercholesterolemic mice were allocated into three groups of five each, randomly. 

On alternate days, each mouse in two HFD-fed groups received five intraperitoneal 

injections (5 i.p. injections) of antimiR-128 or vehicle control (HFD control) at a 

concentration of 5 mg/kg. antimiR-128 is a custom designed hairpin inhibitor of mmu-

128-3p from Dharmacon Inc. in the United States (ref #IH-310398- 08). For the in vivo 

delivery of antimiR-128, we followed the manufacturer's instructions when using the In 

vivo-jetPEI reagent (Polyplus-36 transfection® SA, Illkirch, France). Following the 12-

hour fast, all mice were harvested 48 hours following the previous injection. Skeletal 

muscles from all the control and treated group were kept at -80 °C until additional analysis 

was done. 

Class description Ingredients Grams Caloric 

information 

Protein Casein, Lactic, 30 Mesh 200.00 g 20 % Kcal 

Protein Cystine, L 3.00 g 

Carbohydrate Lodex 10 125.00 g 20 % Kcal 

Carbohydrate Sucrose, Fine 

Granulated 

72.80 g 

Fiber Solka Floc, FCC200 50.00 g 

Fat Lard 245.00 g 60 % Kcal 

Fat Soybean Oil, USP 25.00 g 

Mineral S10026B 50.00 g  

Vitamin Choline Bitartrate 2.00 g 

Vitamin V10001C 1.00 g 

Dye Dye, Blue FD&C #1, 

Alum. Lake 35-42% 

0.05 g  

 Total: 773.85 g Energy density: 

5.21 Kcal/g 

https://researchdiets.com/formulas/S10026B
https://researchdiets.com/formulas/V10001C
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3.2.4 RNA isolation and TaqMan assay 

Following the manufacturer's instructions, total RNA was extracted from the skeletal 

muscle tissues and cell pellets post 24 h transfections using the TRIzol reagent (15596026 

Thermo Fisher Scientific). By passing the RNA samples (500 ng) across a 1% agarose gel, 

the integrity of the samples was assessed. The measurement of the quantity of RNA 

samples was carried out using a NanoDrop spectrophotometer (ND 1000, NanoDrop 

Technologies, Inc., USA). Following that, cDNA was created from 500 ng of total RNA 

with miR-128 specific RT primers (AB Assay ID PN442795, Applied Biosystems, Foster 

City, CA, USA) and was prepared using the TaqMan™ MicroRNA Reverse Transcription 

Kit as given in the Table 3.3.1. For normalization, 18S rRNA (AB Assay ID 4333760F) 

was used. cDNA was prepared using the Revert Aid H Minus first-strand cDNA synthesis 

kit (K1631, Thermo Fisher Scientific). 

Table 3.3 Component used for cDNA Synthesis with miR-128 specific RT Primers/ 

Random hexamer Primers 

Reaction Mix components 10 µl reaction 

10X Reaction Buffer 1 µl 

100mM DNTP Mix 0.1 µl 

RiboLock RNase Inhibitor 0.13µl 

RTase 0.67 µl 

RNA 500ng 

miR-128 specific RT Primers/ 

Random hexamer Primers 

0.5 µl 

NF water to 10 µl 

 

TaqMan probes were used to quantify the expression using TaqMan Assay. This TaqMan-

based assay was performed using PowerUp™ SYBR Green Master Mix in an ABI Prism 

7500 Sequence Detection System (Applied Biosystems, ThermoFisher Scientific, 

Waltham, MA, USA). The results of the TaqMan-based assay were analyzed using Pfaffl’s 

method (research and 2001 n.d.). 

https://www.thermofisher.com/order/catalog/product/A25741
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3.2.5 Quantitative Real-time PCR  

This technique was used to detect transcript expression patterns at tissue and cellular 

levels. cDNA synthesis from 500 ng to 1000 ng of total RNA was synthesized using 

Revert-Aid H minus first strand cDNA kit as mentioned in Tabe 3.3. Subsequently, qRT-

PCR was performed by using 1 µl to 2 µl of cDNA using the specific transcript primers 

mentioned in Table 3.4 either on ABI Prism 7500 Sequence Detection System (Applied 

Biosystems, ThermoFisher Scientific, Waltham, MA, USA) or on LightCycler 480 

(Roche, Indianapolis, USA) using SYBR green master mix. The results were normalized 

with the mouse or human 18S rRNA according to the tissue/cells. 

Table 3.4: Lists of primers used for qRTPCR 

Gene name Forward Primer 5'-3' Reverse Primer 5'-3' 

DRP1 CGGTTCCCTAAACTTCACGA GCACCATTTCATTTGTCACG 

MFN1 TTGCCACAAGCTGTGTTCGG TCTAGGGACCTGAAAGATGGGC 

MFN2 GGGGCCTACATCCAAGAGAG GCAGAACTTTGTCCCAGAGC 

OPA1 GATGACACGCTCTCCAGTGAAG CTCGGGGCTAACAGTACAACC 

PGC1α GAACAAGACTATTGAGCGAACC GAGTGGCTGCCTTGGGTA 

NRF1 GTGCCCGTGTCCAATCAG TGACATAGCCATTCCCAACG 

TFAM CACCCAGATGCAAAACTTTCAG CTGCTCTTTATACTTGCTCACAG 

COX2 ATAACCGAGTCGTTCTGCCAAT TTTCAGAGCATTGGCCATAGAA 

NRF2 CCTGAGAGCTGTAGGCCC GGAATGGAAAATAGCTCCTGCC 

ND1 GTGGCTCATCTACTCCACTGA TCGAGCGATCCATAACAATAA 

NDUFS4 CAGACAACCAGACTCGGGAC TGCATGTTATTGCGAGCAGG 

COX1 ACTATACTACTACTAACAGACCG GGTTCTTTTTTTCCGGGAGT 

Mouse 18S 

rRNA 

AGAAACGGCTACCACATCCA CCCTCCAATGGATCCTCGTT 

 

3.2.6 Cloning of UTR Constructs used in the study. 

Ensembl genome browser (https://asia.ensembl.org/index.html) was used to retrieve the 

3′ UTR sequence of PGC1α, and NDUFS4 (Ensembl Release 97, July 2019). The 3′ UTR 
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has the binding site of miR-128 in the region between 3078 and 3084 nucleotides of 

PGC1α and 27–33 nucleotides of NDUFS4 mRNA transcripts. The site containing the 

seed sequence was amplified from the mouse genome respectively, using the primers 

enlisted in Table 3.5. The amplified regions were inserted in the pMIR REPORT luciferase 

vector (Ambion Inc., TX, USA) at cut sites of MluI and SpeI for PGC1α (742 bp), MluI 

and HindIII for NDUFS4 (518 bp) and. The constructs cloned hereafter are denoted as 3′ 

UTR PGC1α, and 3′ UTR NDUFS4. Control plasmid was constructed with no miR-128 

binding site using a completely unrelated mouse sequence, denoted as unrelated UTR. All 

plasmids were verified by sequencing.  

Table 3.5: Lists of primers used for the construction of UTR clones. 

Gene Forward Primer 5'-3' Reverse Primer 5'-3' 

PGC1α  

3’ UTR 
CTAGACTAGTAAGGACCAGATGCGTTCTCT CGACGCGTACAGCCATCAAAAAGGGACA 

NDUFS4 

3’ UTR 
CGACGCGTGGAGCTGGCTACATCTCTGC CCCAAGCTTGGGAAGAACGGGCTTAACTT 

 

3.2.7 Luciferase assay  

Luciferase assay was performed with C2C12 myoblast cells at 70–80% confluency in 12 

well cell culture plates. Cells were then co-transfected with the 200 ng of firefly luciferase 

reporter construct with 3’ UTR site of PGC1α and NDUFS4 in pmiR-Report vector and 

50 ng of renilla luciferase containing pRL-CMV plasmid (Promega, WI, USA). At the 

same time, cells were also transfected with either 2 ug of P(128) or 100 nM of antimiR-

128, or their respective negative control. Post 24 h transfection, luciferase activity was 

measured using a dual luciferase reporter assay system according to the manufacturer’s 

protocol.  

 

 



Page | 36  
 

3.2.8 Western blotting 

For the lysis and protein extraction from tissues or mammalian cells, RIPA buffer 

(Radioimmunoprecipitation assay buffer) was used. The formulation includes two ionic 

detergents and one non-ionic detergent (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% NP-

40, 0.25% Na-deoxycholate, 1 mM EDTA, pH 7.4). The protease and phosphatase 

inhibitors (G-Biosciences, MO, USA) were added. As previously mentioned, protein 

quantification was carried out using the BCA method (Sigma, MO, USA) (Y. K. Adlakha 

and Saini 2013). SDS-PAGE (10–12%) was used to separate an equal amount of total 

protein (40 – 60 μg) and then transferred to the PVDF membrane (mdi; Advanced 

Microdevices, Ambala Cantt., India). 5 % of BSA blocking buffer was used to block the 

membrane on the rocking platform for 2 h at room temperature. The primary antibody, 

which may be acquired from Santa Cruz (Santa Cruz Biotechnology, CA, USA), Abcam 

(Abcam, MA, USA) respectively were used at a dilution of 1:500 to 1:1000 depending on 

the antibody, were incubated on the membranes for either 2 hours or 16 hours. Followed 

by the secondary HRP-linked antibody for 1 hr at a dilution of 1:5000. The primary 

antibodies against PGC1α (sc13067), and NRF1 (sc101102), were procured from Santa 

Cruz, whereas those against TFAM (ab272885), NRF2 (ab92946), NDUFS4 (ab137064), 

DRP1 (ab154879), MFN2 (ab56889), and OPA1 (ab42364), were purchased from Abcam. 

GAPDH (G9545, Sigma Aldrich, Merck KgaA, Darmstadt, Germany) was used as the 

loading control. The blots were developed using the enhanced chemiluminescence 

(Thermo Fisher Scientific, CA, USA) method. Integrated density values were obtained 

and quantified using AlphaImager 3400 (Alpha Inno Tech, CA, USA). 

3.2.9 Fluorescent microscopy  

C2C12 myoblast cells were grown in chambered culture slides till 60- 70 % confluency 

and then transfected either with miR-128 or antimir-128 along with their respective 

controls. Post 24 h transfection to assess the morphology, cellular mitochondria were then 

fluorescently labeled with a mitochondria-specific cationic dye- MitoTracker Green FM 

(M7514, Thermo Fisher Scientific). Cells were incubated with 200nM of Mitotracker 
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Green FM for 30 min at 37◦C according to the manufacturer’s instructions. A Leica SP8 

confocal laser scanning microscope with 60X magnification was used to capture the 

images. Using ImageJ software, mitochondrial morphology was measured according to 

standard parameters as previously stated (Iannetti et al., 2016). 

3.2.10 Oxygen consumption rate (OCR)  

The Sea Horse (Bioscience, CA, USA), Xfe24 Analyzer was used to measure cellular 

bioenergetics. After seeding each well with about 30,000 C2C12 myoblasts, the wells 

were treated with either 400 ng of P(128), 60 nM of anti-miR-128, or their corresponding 

negative controls. Following a 24-hour transfection, cells were rinsed and then incubated 

with XF assay medium for 1 h at 37 °C in a CO2-free atmosphere. OCR was evaluated 

after the inhibitors—oligomycin (1.5 μM), FCCP (0.5 μM), rotenone (0.5 μM), and 

antimycin A (0.5 μM)—were successively introduced to each well following the 

manufacturer’s instructions. Total protein was used to normalize the data. 

3.3 Results 

3.3.1 miR-128 negatively regulates peroxisome proliferator-activated receptor 

gamma coactivator 1α by binding to its 3’UTR.  

Remarkably, in our earlier investigation, we’ve shown that miR-128 targets the NAD+-

dependent protein deacetylase Sirtuin 1 (SIRT1) (Y. K. Adlakha and Saini 2013). Through 

its regulation of various histone and non-histone proteins, including PGC1α, SIRT1 is 

widely linked to mitochondrial biogenesis as well as several other biological processes 

like apoptosis, inflammation, and metabolism (Zhou et al. 2017). In addition, we found 

that the overexpression of miR-128 in the transcriptome profile of HEK293T cells, PGC1α 

was shown to be among the downregulated genes (uploaded in the GEO database, 

accession number GSE31297). We then checked the protein expression of PGC1α in 

HEK293 cells and found the expression was downregulated at the higher dose of miR-128 

and vice versa as shown in Figure 3.1. 
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Figure 3.1: Western blot analysis of PGC1α protein 24h post-treatment in HEK293. GAPDH was used as 

the loading control. The graph depicts the relative fold change of PGC1α protein levels versus control. 

AntimiR-128 = AM- 128, AntimiR negative control = AMNC, pSilencer vector = P(Sil), plasmid (128) = 

P(128),. *p < 0.05, **p < 0.01. 

Since the largest metabolic tissue, skeletal muscle is critically regulated by mitochondrial 

impairment, we next investigated into the downstream effects of cellular miR-128 level in 

C2C12 myoblasts and mouse skeletal muscle tissues. The TargetScan database (Release 

7.2) indicated that PGC1α mRNA harbors the target sequence (3078–3084 nucleotide) for 

miR-128 in its 3′ UTR. Remarkably, this region was shown to be broadly conserved in 

mammals, including humans, chimpanzees, and rhesus monkeys (Figure 3.2). 

 

 

Figure 3.2: Diagram showing the expected binding locations for miR-128 in the PGC1α 3'UTR (highlighted 

in red) which shows an evolutionary conservation among mammals. Numbers are the binding positions in 

the 3’ UTR of PGC1α as predicted by TargetScan database 
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Next, we first checked whether miR-128 targets PGC1α, the quantification of mature miR-

128 levels post 24 h of transfection in C2C12 myoblast was done using TaqMan qRT-PCR 

assay. After miR-128 was overexpressed, there was a significant increase in miR-128 

levels by 13.46 fold (p = 0.0040), while treatment with antimiR-128 significantly reduced 

miR-128 levels by 6.23 fold (p = 0.0086) as shown in Figure 3.3A.  

 

Figure 3.3: miR-128 directly targets PGC1α (A) MiR-128 overexpression and inhibition was examined 

using TaqMan qRT-PCR after transfection for 24 hours with P(128), P(Sil), AM-128, or negative control 

treatment in C2C12 cells. (B) Using qRT-PCR the relative mRNA expression of PGC1α was estimated. (C 

& D) Western blotting was used to quantify the expression of PGC1α protein. The integrated densitometry 

results are displayed as a bar graph normalized to GAPDH. AntimiR-128 = AM- 128, AntimiR negative 

control = AMNC, pSilencer vector = P(Sil), plasmid (128) = P(128). (mean ± S.E.M), n=3. *p < 0.05, **p 

< 0.01. 

 

Additionally, we measured the transcriptional levels of PGC1α expression. When miR-

128 was overexpressed, PGC1α mRNA levels dramatically dropped by 2.46 fold (p = 

0.0124) and increased by 2.18 fold (p = 0.1214) when antimiR-128 treatment was applied. 
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In a comparable direction, western blot analysis showed that PGC1α protein levels 

decreased by miR-128 overexpression in a dose-dependent manner to 1.76 fold (p = 0.023) 

and 1.80 fold (p = 0.0029) and increased by 1.23 fold (p = 0.291) and 1.70 fold (p = 

0.0655) upon antimir-128 treatment. Both transcriptional and translational quantification 

are shown in Figure 3.3B-3.3D. All these results thereby confirm that miR-128 is involved 

in regulating the mitochondrial biogenesis and function by down-regulation of PGC1α 

protein.  

To further determine whether miR-128 directly targets PGC1α 3’UTR, we cloned the 

containing seed sequence of miR-128 from the 3′ UTR region of PGC1α mRNA into the 

PmiR-luciferase reporter vector.  PCR amplification using the forward primer and reverse 

primer specifically designed to amplify the 742 bp region 3’UTR of PGC1α from mouse 

genomic DNA as mentioned in the material and methods. The amplified product was gel 

purified, digested, and inserted at cut sites of MluI and SpeI for PGC1α 3’UTR in PmiR 

report vector and construct was verified using sequencing (Figure 3.4 and Figure 3.5). 

When miR-128 was overexpressed, the luciferase activity was found to be significantly 

reduced by 1.41 fold (p = 0.0482), however when antimiR-128 was used, it was found to 

be significantly enhanced by 1.97 fold (p = 0.0266) as shown in Figure 3.6. Thus, it can 

be confirmed that miR-128 directly targets PGC1α.  
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Figure 3.4: (A) Schematic representation of  PGC1α 3’UTR cloning into PmiR luciferase reporter vector.  
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Figure 3.5: The clone constructed for PGC1α was confirmed by sequencing 
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Figure 3.6:Luciferase assay of PGC1α 3′ UTR. C2C12 cells were transfected with PGC1α 3′ UTR and 

either P(128), P(Sil), AM-128, or negative control, and luciferase activity was assessed. AntimiR-128 = 

AM- 128, AntimiR negative control = AMNC, pSilencer vector = P(Sil), plasmid (128) = P(128). (mean ± 

S.E.M), n=3. *p < 0.05, **p < 0.0 

 

3.3.2 Mitochondrial biogenesis is inhibited via miR-128-PGC1α/NRF1-2/TFAM 

pathway. 

The effects of miR-128 on the regulatory crosstalk between NRF1, NRF2, and TFAM 

expression at the transcriptional and translational levels were then investigated. The 

elevated expression of miR-128 led to a 2.43-fold (p = 0.1138) decrease in NRF1 mRNA 

levels and a 1.94-fold (p = 0.0235) decrease in NRF2 mRNA levels. Conversely, treatment 

with antimiR-128 notably raised NRF1 mRNA levels by 1.68-fold (p = 0.0100) and NRF2 

mRNA levels by 2.27-fold (p = 0.2432). In a qRT-PCR experiment conducted 24 hours 

after transfection, we found that overexpression of miR-128 decreased the mRNA levels 

of TFAM by 2.42-fold (p = 0.0853), whereas anti-miR-128 therapy increased the mRNA 

levels of TFAM by 1.15-fold (p = 0.404). Figure 3.7A and 3.7B has shown that the 

downstream pathway was downregulated concomitant with overexpression of miR-128.  
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Figure 3.7: Depicts the relative mRNA expression of (A) NRF1, NRF2 and (B) TFAM was quantified using 

qRT-PCR. AntimiR-128 = AM- 128, AntimiR negative control = AMNC, pSilencer vector = P(Sil), plasmid 

(128) = P(128). (mean ± S.E.M), n=3. *p < 0.05, **p < 0.01. 

 

Simultaneously, the protein levels of both nuclear respiratory factors significantly 

decreased that is NRF1 (1.12-fold and 1.47-fold) and NRF2 (1.13-fold and 1.34-fold) post 

overexpression of miR-128 and significantly increased the level of NRF1 (1.31-fold at 

200 nM) and NRF2 (1.78-fold and 1. 81-fold) upon antimiR-128 in a dose-dependent 

manner (Figure 4.5A). The protein that binds to mitochondrial DNA (mtDNA) and is 

crucial for maintaining genome integrity is called mitochondrial transcription factor A, or 

TFAM. Following the overexpression of miR-128, TFAM protein levels decreased by 1.54 

fold (p = 0.0131) and 1.44 fold (p = 0.0883), while following the treatment with anti-miR-

128, TFAM protein levels significantly rose by 1.35 fold (p = 0.184) and 1.63 fold (p = 

0.0473) as analyzed by western blots in Figure3.8. All these results confirm that the miR-

128 inhibits the downstream pathway that regulates mitochondrial biogenesis and 

function. 
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Figure 3.8: Western blotting was used to quantify the expression of protein (A) NRF1, NRF2 and (B) TFAM 

24h post-treatment in C2C12 myoblast cells. The integrated densitometry results are displayed as a bar 

graph normalized to GAPDH. AntimiR-128 = AM- 128, AntimiR negative control = AMNC, pSilencer vector 

= P(Sil), plasmid (128) = P(128). (mean ± S.E.M), n=3. *p < 0.05, **p < 0.01. 

High-fat diet (HFD) is a major contributor to mitochondrial dysfunction in metabolic 

conditions affecting the skeletal muscle (Kazeminasab et al., 2018). It is unknown, though, 
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how altered mitochondrial biogenesis and function lead to diet-induced abnormalities of 

skeletal muscle metabolism. Prior research have shown that human skeletal muscle 

samples from Type 2 diabetic or pre-diabetic patients had higher levels of miR-128 than 

did those from healthy controls (Prabu et al. 2015). Since downregulating miR-128 in 

vitro has the potential to enhance PGC1α mediated mitochondrial biogenesis and function, 

we investigated whether downregulating miR-128 in a model of hypercholesterolemic 

mice could reverse the effects of HFD-induced mitochondrial dysfunction by increasing 

PGC1α in the skeletal muscle of these mice. We next checked the expression of NRF2 and 

TFAM proteins in skeletal muscle tissue. As expected, the protein levels of all three 

proteins were increased in mice that were treated with the intraperitoneal dose of AntimiR-

128 as in Figure 3.9. 

 
 

Figure 3.9: Expression of miR-128 and PGC1α, NRF2, and TFAM  protein in the skeletal muscle tissues of 

high-fat-diet-fed mice. (A) Relative miR-128 expression as quantified by TaqMan assay. (B) Western blot 

analysis of PGC1α and TFAM protein from the skeletal muscle tissue. (C) Western blot analysis of NRF2 

protein from the skeletal muscle tissue. These values were normalized to GAPDH. Mice fed with a high-fat 

diet and treated with antimiR-128 (5mg/Kg) = HFD-AM128, Mice fed with a high-fat diet and treated with 

vehicle control =HFD-Control. Data are mean ± SD. n=4, *p < 0.05, **p < 0.01. 
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3.3.3 miR-128 inhibited mitochondrial function by targeting oxidative respiration via 

NDUFS4.  

Mitochondrial function have been linked to changes in the amount of mitochondrial DNA 

(MtDNA), which is commonly evaluated as the ratio of the mitochondrial genome to the 

nuclear genome using real-time quantitative PCR 

(https://pubmed.ncbi.nlm.nih.gov/23085537/). Using qRT-PCR analysis, we quantified a 

subset of electron transport chain transcripts that are exclusively transcribed by the 

mitochondrial genome: COX1, ND1, and COX2 by overexpressing miR-128 and 

inhibiting antimiR-128 treatment. As mitochondrial biogenesis is followed by 

mitochondrial DNA replication, we found that the transcription of mtDNA is reduced 

when cells are treated with miR-128 and vice versa (Figure 3.10A). Apart from that we 

also checked the mitochondrial mass by staining the C2C12 myoblast cells post 24 h 

transfection with non-acridine-orange because of its high affinity for phospholipid 

exclusive to inner membrane of mitochondria i.e., cardiolipin (CL). After miR-128 

overexpression, the mitochondrial mass decreased by 1.23 fold (p = 0.060), whereas the 

mitochondrial mass increased by 1.27 fold (p = 0.035) when treated with antimiR-12 

(Figure 3.10B) 

 
Figure 3.10: Mitochondrial DNA and mitochondrial mass quantification. (A) qRT-PCR quantification was 

done to assess the mitochondrial DNA with mRNA levels of COX1, ND1, and COX2 in C2C12 myoblast 

cells post 24h transfection. (B) Using flow cytometry and nonyl-acridine orange labeling, the mitochondrial 

mass was examined. AntimiR-128 = AM- 128, AntimiR negative control = AMNC, pSilencer vector = P(Sil), 

plasmid (128) = P(128). (mean ± S.E.M), n=3. *p < 0.05, **p < 0.01. 

https://pubmed.ncbi.nlm.nih.gov/23085537/
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Bioinformatic analysis using TargetScan database revealed that the 3′ UTR of several 

oxidative phosphorylation (Electron Transport Chain) subunits contain miR-128 binding 

sites. This might imply that there is a negative relationship between ATP levels and miR-

128 (Figure 3.11). 

 

 

Figure 3.11: Potential target genes for miR-128, predicted by the TargetScan database that builds different 

components of the mitochondrial respiratory complexes. 

To further validate that miR-128 targets NDUFS4 gene involved in the formation of the 

electron transport complex subunit I. According to the predicted binding location of miR-

128 is widely conserved in the 3′ UTR of NDUFS4 (TargetScan), we cloned the NDUFS4 

3’UTR region containing the miR-128 seed sequence in the luciferase PmiR reporter 

vector. The predicted binding location of miR-128 is widely conserved in the 3′ UTR of 

NDUFS4. The steps of cloning were followed as shown in Figure 3.12. 
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Figure 3.12: Schematic representation depicts the cloning of  NDUFS4 3’UTR region containing the miR-

128 seed sequence in the luciferase reporter vector.  
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Figure 3.13: The clone constructed for NDUFS4 was confirmed by sequencing 
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Next, we measured the luciferase activity by performing dual luciferase assay on co-

transfected cells with NDUFS4 3’UTR reporter vector and/or miR-128 or AntimiR-128 

or their respective control. Figure 3.14B demonstrates that the luciferase activity of 

NDUFS4 3′ UTR reporter construct was significantly reduced relatively by 4.72 fold (p = 

0.0044) on treating the cells with miR-128 and significantly increased 1.30 fold (p = 

0.0331) upon antimiR-128 treatment in C2C12 myoblast cells. 

 

 

Figure 3.14: miR-128 directly targets NDUFS4 (A) Diagrams represent the predicted binding site of miR-

128 on the 3′ UTR of NDUFS4 gene by TargetScan database. (B) Lufciferase activity was measured post 24 

h of co-transfected cells with PGC1α 3′ UTR and either P(128), P(Sil), AM-128, or negative control. 

AntimiR-128 = AM- 128, AntimiR negative control = AMNC, pSilencer vector = P(Sil), plasmid (128) = 

P(128). (mean ± S.E.M), n=3. *p < 0.05, **p < 0.01 

 

We next analyzed the mRNA and protein expression of NDUFS4 gene post 24 h 

transfection in C2C12 myoblast cells. We found that the mRNA levels of NDUFS4 were 

not changed upon overexpression or inhibition of miR-128. While the protein expression 

of the NDUFS4 gene is downregulated by 1.19 fold (p = 0.0123) and 1.47 fold (p = 0.0987) 

with overexpression of miR-128 treatment, it is found to be increased by 1.43 fold (p = 

0.153) and 1.34 fold (p = 0.041) with suppression of miR-128 with antimir-128 treatment 



Page | 52  
 

(Figure 3.15). The mRNA level of NDUFS4 in C2C12 myoblasts does not correspond 

with the protein expression after miR-128 treatment.  

 

 

Figure 3.15: NDUFS4 expression after transfection with miR-128.  (A) Using qRT-PCR, the relative mRNA 

expression of NDUFS4 was quantified. (F) NDUFS4 protein expression were evaluated by western blotting. 

Bar graph of the western blot represents IDVs normalized to GAPDH. AntimiR-128 = AM- 128, AntimiR 

negative control = AMNC, pSilencer vector = P(Sil), plasmid (128) = P(128). (mean ± S.E.M), n=3. *p < 

0.05, **p < 0.01 

 

All these results point towards a potential inverse relationship between miR-128 and ATP 

levels by downregulating the genes of mitochondrial biogenesis as well as genes involved 

in oxidative phosphorylation. Mitochondrial dysfunction refers to the mitochondria's 

inability to create and sustain adequate cellular ATP levels, and this dysfunction is related 

to the size of the mitochondrial pool. To examine the impact induced by miR-128 on ATP 

synthesis in the myoblast cells, we assessed the mitochondrial oxygen consumption rate 

(OCR).  The upregulation of miR-128 leads to a reduction in the mitochondrial respiration 

rate, whereas treatment with antimiR-128 results in an increase. Additionally, various 

respiratory parameters, such as basal respiration, maximal respiration, ATP production, 

and spare respiratory capacity, exhibit a decline following miR-128 overexpression and 

an elevation upon miR-128 inhibition (Figure 3.16A-3.16E). Decline in mitochondrial 

DNA, mitochondrial mass, and ATP level upon miR-128 overexpression suggest that miR-

128 inhibits mitochondrial function.  
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Figure 3.16: (A) Bioenergetics changes was assessed by measuring the changes in oxygen consumption 

rates (OCR) with time in response to a mitochondrial respiratory function using sequential applications of 

oligomycin, carbonyl cyanide-4-trifluoromethoxy phenylhydrazone (FCCP), antimycin, and rotenone post 

24 h transfection in C2C12 myoblasts cells. The data analysis of mitochondrial function was calculated 

from the OCR values (B) ATP production (C) Basal respiration (D) Maximal respiration, and (E) Spare 

respiratory capacity. Total cellular protein was used for normalization. AntimiR-128 = AM- 128, AntimiR 

negative control = AMNC, pSilencer vector = P(Sil), plasmid (128) = P(128). (mean ± S.E.M), n=3. *p < 

0.05, **p < 0.01 

 

3.3.4 Mitochondrial dynamics is regulated by miR-128, thereby shaping their 

morphology.  

 

As previous results reveal, miR-128 has impacted mitochondrial biogenesis and function. 

The alteration in mitochondrial biogenesis and function majorly correlates with 

mitochondrial dynamics. We then determined the regulatory role of miR-128 in 

mitochondrial dynamics, elucidating its impact on mitochondrial morphology. The MFN2 



Page | 54  
 

and OPA1 protein expression were significantly downregulated and the DRP1 protein 

expression was upregulated with miR-128 and vice versa (Figure 3.17A-3.17C). 

 

 

 

Figure 3.17: miR-128 inhibits mitochondrial fusion and promotes fission. Protein expression was quantified 

using a western blot of key fusion such as (A) MFN2, (B) OPA1, and fission (C) DRP1 genes. The bar graphs 

represent the IDV normalized to GAPDH. (D) Relative transcriptional levels of MFN1, MFN2, OPA1, and 

DRP1 were quantified using qRT-PCR post 24 h transfection in myoblast cells. AntimiR-128 = AM- 128, 

AntimiR negative control = AMNC, pSilencer vector = P(Sil), plasmid (128) = P(128). (mean ± S.E.M), 

n=3. *p < 0.05, **p < 0.01 
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Quantification of the genes involved in mitochondrial fusion (MFN1, MFN2, and OPA1) 

and mitochondrial fusion (DRP1) at the transcriptional level in C2C12 myoblast post 24 

h transfections. There was a significant increase in the mRNA expression of mitochondrial 

fission protein and the expression of mitochondrial fusion proteins were downregulated 

upon miR-128 overexpression as in Figure 3.17D. On the contrary this trend was inverted 

with the AntimiR-128 treatment.  

Simultaneously, MitoTracker Green FM dye cells were visualized for the mitochondrial 

morphology post 24 h transfection in C212 myoblasts as mentioned in material and 

methods. Increased mitochondrial fission was observed by the higher proportion of 

fragmented mitochondria in poorly linked networks in C2C12 myoblasts overexpressing 

miR-128 (Figure 3.18A). In contrast, cells treated with antimiR-128 showed clear signs 

of hyperfused mitochondria.  Numerous metrics, including ferret's diameter, form factor, 

mitochondrial area, and perimeter, were used to assess the mitochondrial morphology. The 

results showed that the overexpression of miR-128 considerably decreased the area and 

perimeter of mitochondria by 1.32-fold (p = 0.0045) and 1.36-fold (p = 0.0081), 

respectively. When miR-128 was overexpressed, the form factor—which symbolizes the 

branching feature of mitochondria—was decreased by 1.35-fold (p = 0.0009), indicating 

that miR-128 therapy increased mitochondrial circularity and vice versa. Similar trends 

were also seen in the ferret's diameter, which reduced to 1.32-fold (p = 0.0162) after miR-

128 overexpression and increased 1.10-fold (p = 0.1248) after receiving antimiR-128 

therapy. Together, these findings show that overexpression of miR-128 stimulates 

mitochondrial fission and is reversed by miR-128 inhibition (Figure 3.18B). 
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Figure 3.18: Visualization of mitochondrial morphology. (A) Fluorescence staining (MitoTracker Green 

FM) was used to visualize the mitochondrial morphology after 24 h of transfection in C2C12 myoblast cells. 

(B) The volume of mitochondria is represented by the surface area and perimeter; the complexity and 

branching nature of mitochondria are reflected in the mitochondrial form factor, which is computed as 

[(perimeter2)/(4π·surface area)]; and the longest stretch of distance across the two points within a 

particular mitochondrion is indicated by Feret's diameter. . AntimiR-128 = AM- 128, AntimiR negative 

control = AMNC, pSilencer vector = P(Sil), plasmid (128) = P(128). (mean ± S.E.M), n=3. *p < 0.05, **p 

< 0.01 
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3.4 Key Findings 

 

• MiR-128 targets PGC1α and NDUFS4, two important regulators that directly 

affect mitochondrial biogenesis and function. 

• Inhibition of PGC1α leads to reduced expression of crucial transcription factors 

(NRF1, NRF2, and TFAM), thereby hindering the transcription and translation of 

mitochondrial DNA. 

• MiR-128 plays a role mitochondrial dynamic, by promoting fission (increased 

DRP1 expression) and suppressing fusion (decreased MFN1, MFN2, and OPA1 

expression) affecting morphology, quantity, and size. 

• MiR-128 may emerge as a critical regulator in the intricate network of 

mitochondrial processes like mitochondrial biogenesis, mitochondrial function 

and mitochondrial dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

Determining the network 
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metabolism by integrating 

machine learning and 
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4.1 Introduction 
 

Understanding the interactions between miRNA and the genes in skeletal muscle 

responsible for mitochondrial biogenesis and function may help us better understand the 

molecular processes causing the various diseases, particularly metabolic and muscle-

related disorders. Mitochondria, as we know, is the powerhouse of the cell, and their 

efficient function is essential for energy metabolism, especially in skeletal muscles that 

require high energy during physical activity (Mengeste, Rustan, and Lund 2021). 

Understanding these interactions could provide insights into developing targeted 

therapies, such as miRNA-based treatments, to correct or mitigate these dysfunctions. 

High-throughput gene expression data has dramatically changed clinical research and 

patient treatment. By examining the linked biological roles of gene expression, underlying 

processes implicated in metabolic disorders such as obesity and diabetes, cancer, and drug 

development can be identified (Edsjö et al. 2024). However, it has proven challenging to 

interpret enormous volumes of data. Additionally, different platforms and approaches 

might yield different results. Machine learning is a subfield of computer science that uses 

data-driven methods to find patterns and predict behavior (Sarker 2021). The present work 

used the machine learning interpretation method known as "Shapley additive explanation" 

to highlight significant aspects in gene expression data associated with type 2 diabetes. 

This approach offered more comprehensiveness and explicability. The "Black box" of 

machine learning models, which typically yield exceptional results in terms of accuracy 

and predictive power but don't explain how they arrived at the prediction, is becoming less 

common as XAI (eXpaintable artificial intelligence) makes these models easier to 

understand. Disease prevention, risk stratification, and early identification of people at 

high risk of type 2 diabetes are critical. By utilizing the XGBoost technique to train the 

machine learning model, we concentrated on the target mitochondrial genes that are 

particular to skeletal muscle tissue in patients with type 2 diabetes in the current study.  
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4.2 Material and Methods  

4.2.1 Data selection and processing  

Studies that are publicly accessible and examine the mRNA and miRNA expression 

profiles of human Skeletal Muscle tissue, affected by type 2 diabetes were selected using 

the NCBI's Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) 

database. We prioritized the expression profile GSE IDs with many samples by 

concentrating on the tissue of origin and excluding any treatments or additional 

conditions. For the above-mentioned conditions, we were able to extract the pre-processed 

data, and the sample information presented in Table 4.1 from the GEO datasets.  

Table 4.1: Details of the gene expression datasets used in the study. 

GEO ID Disease Organism Tissue Platform Experimental 

Design 

GSE22309 Type 2 Diabetes Homo sapiens Skeletal 

Muscle 

Affymetrix 

Human Genome 

U95A Array 

20 control patients 

and 15 type 2 

diabetes patients 

GSE25462 Type 2 Diabetes Homo sapiens Skeletal 

Muscle 

Affymetrix 

Human Genome 

U133 Plus 2.0 

Array 

40 control patients 

and 10 type 2 

diabetes patients 

GSE18732 Type 2 Diabetes Homo sapiens Skeletal 

Muscle 

Affymetrix 

GeneChip Human 

Genome U133 

Plus 2.0 Array 

47 control patients 

and 45 type 2 

diabetes patients 

 

GSE22309, GSE25462, and GSE18732 were retrieved, and log 2 transformations and 

quantile normalization were performed after combining the three datasets. The samples in 

the dataset were classified as control samples (107) and type 2 diabetic samples (70).  
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4.2.2 Retrieval of genes involved in mitochondrial homeostasis. 

MitoCarta3.0 is centered on proteins contributing to mitochondrial homeostasis, 

encompassing 1,136 human genes sourced directly from the MitoCarta3.0 database 

(http://www.broadinstitute.org/mitocarta). 

4.2.3 Machine earning model and testing. 

A machine learning model was trained to uncover consistent patterns to predict features 

within a new dataset. XGBoost has been a popular option in Kaggle events combining 

structured data and applied machine learning due to its scalability. Gradient-boosted 

decision trees (GBM) have been made more effective and efficient using XGBoost. Since 

its introduction, GBM has routinely outperformed most other ML techniques, and 

conventional decision trees (boosting). To implement this approach, the dataset was 

partitioned into two distinct sets — training and testing sets, adhering to an 80:20 ratio. 

The construction of the model was executed using the Scikit-learn library (Pedregosa et 

al. 2012). The model’s accuracy was assessed and the confusion matrix for the test was 

evaluated. 

4.2.4 Interpreting the machine learning model using eXplainable Artificial 

Intelligence (XAI). 

Machine learning models, on the other hand, make it challenging to comprehend the stages 

that guide the model's decision-making process (Anguita-Ruiz et al. 2020). Most of the 

time, artificial intelligence is a "black box," meaning that not even experts can fully 

understand how it arrived at a given decision (Nelson et al. 2020). XAI is a means of 

implementing social rights to the explanation (Savage 2022). The SHAP approach which 

was derived from cooperative game theory helped the classifiers in this case to produce 

both a global and individualized interpretation of the expected result. The trained 

XGBoost model was subjected to an XAI analysis using the Python SHAP module. As 

characteristics, we identified the 20 genes with higher SHAP values. Using GraphPad 

Prism Software (v.5.01 GraphPad, Inc., CA, USA), we tested the expression of each gene 
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based on the combined expression data of the control and patient samples. An unpaired t-

test was used. A threshold of p-value <0.05 was employed to ascertain the statistical 

significance of genes.  

4.2.5 Protein-protein interaction network analysis 

Using String version 11.5 (https://string-db.org/), the role and interaction network of the 

proteins involved in mitochondrial homeostasis were identified by providing an input list 

of the 20 genes derived by SHAP values. For the interaction score, a medium confidence 

of 0.4 and a significance of p <0.05 were used. The network was subjected to k-means 

clustering to find genes in related complexes with important biological functionality. 

4.2.6 Pathway Enrichment Analysis 

We used the KEGG database to perform pathway enrichment analysis for the top genes. 

The study covered the following domains: molecular function, cellular component, and 

biological process. The genes were mapped against Homo sapiens as the reference species. 

Consideration of significant pathways was carried out employing a p-value < 0.05. 

4.2.7 mRNA-miRNA interaction network analysis  

Software for network analysis and visualization focusing on miRNAs and their functional 

insights is MiRNet 2.0 (https://www.mirnet.ca/). It was used to anticipate the possible 

mRNA-miRNA network. The number of interactions based on degree and betweenness is 

represented by the size of the shapes. Using the MIENTURNET platform, significant 

miRNAs with maximum target characteristics and mRNA-miRNA interaction based on 

strong evidence were found (http://userver.bio.uniroma1.it/apps/mienturnet/). The cut-off 

value for statistical significance was set at p-value < 0.05. For network visualization, the 

mRNA-miRNA network based on compelling evidence was loaded into Cytoscape 3.8.0. 
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4.3 Results 
 

4.3.1 Determining the genes responsible for mitochondrial homeostasis expressed in 

skeletal muscle of type 2 diabetes patients.  

First, the gene expression datasets were searched in the GEO database with the help of 

keywords ‘Diabetes + Skeletal Muscle’. In return for the search, we got thirty-six datasets. 

GSE22309, GSE25462, and GSE18732 microarray expression data were identified based 

on that expression consisting of skeletal muscle tissue samples from human control and 

type 2 diabetes patients. After obtaining pre-processed series matrix files, sample profiles 

from each of the three datasets were combined to form a single dataset.  

 

 
Figure 4.1: Depicts the methodology followed for the study. The NCBI GEO database was used to obtain 

the expression data for GSE22309, GSE25462, and GSE18732. Type 2 diabetes patient samples and control 

samples were categorized. Shared transcripts were then identified from the three datasets (5762 genes). The 

Venny tool was used to identify the overlapping genes from mitochondrial gene list from the Mitocarta 3.0 

database as well as a list of common genes from the three datasets.The XGboost technique was used to train 

the model, and SHapley Additive exPlanations were used to analyze the findings. Additionally, pathway 

enrichment analysis, miRNA-mRNA network analysis, and protein-protein interaction are used to 

functionally characterize the genes participation. 
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We limited our attention to the shared transcripts exclusively because of the differences 

in transcript coverage between the U133 Plus and U95A platforms. The flow charts in 

Figure 4.1 represent the schematics of the steps followed for data analysis. There were 

5762 genes shared by all three datasets after normalization of the datasets. We employed 

batch effect correction techniques together with normalization techniques for data 

harmonization. For a more seamless integration of the datasets and to minimize any biases 

coming from the use of two separate platforms or experimental variation, Log2 

transformation, and Quantile normalization were applied to this single file to normalize 

the expression data (Figure 4.2A and 4.2B).  

 

 
Figure 4.2: Data Normalization. (A & B) Expression data before and after log 2 transformation and 

quantile normalization respectively. (C) Heatmap displaying of the mitochondrial genes found from a single 

pooled dataset (all three GEO expression profiles) normalized using Z-score scaling. Z<0 (Red); Z>0 

(Green); Z=0 (Black). 

 

The list of 409 genes expressed for mitochondrial homeostasis in skeletal muscle of type 

2 diabetes patients was then obtained using the Venny 2.1.0 tool by giving an input list of 
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shared genes from three datasets (5762 genes) and 1136 genes from the Mitocarta 3.0 

database. Figure 4.2C shows the heatmap of the genes identified based on the Z- score.  

 

4.3.2 Utilizing the XGboost algorithm technique to train the ML model. 

 

To achieve the goal of predicting the genes altered in type 2 diabetes patient’s skeletal 

muscle tissue samples compared to that of control patients, XGboost machine learning 

algorithms were used for a better understanding of the mitochondrial etiology in the 

disease. We then trained the model on sample profile data containing the expression of 

409 mitochondrial genes in an 80% to 20% ratio. Hence, 80% of the data was supplied to 

the training set, while the remaining 20% was used for the test set. The model was trained 

by utilizing the Scikit-learn package.  

 

 

 

 

 

 
Figure 4.3: The machine learning model was assessed by using a confusion matrix from the test data. The 

grey squares of the matrix represent the true positive (TP), black squares represent the false positive (FP) 

and false negative (FN), and white squares represent the proportion of the True Negative (TN).  

 

 

The test set, or remaining data, was then used to evaluate the model. The test set was 

evaluated, and the machine learning model's precision and accuracy were computed using 

the confusion matrix for the test set shown in Figure 4.3. The contingency table created a 
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confusion matrix with four distinct sets of expected and actual values. For this test dataset, 

the precision is 77.7% and the accuracy is 80.55% percent. In machine learning, good 

accuracy is a subjective concept. However, anything above 70% to be excellent model 

performance. It is actually feasible to go for an accuracy measure of between 70% and 

90%. Additionally, this complies with industry norms.  

 

4.3.3 Explainable AI predicts genes responsible for mitochondrial health and 

function. 

 

 

 

 

 

 
Figure 4.4: Output of the Model. (A) The absolute average impact of the most important genes and their 

effects on Type 2 diabetes patients compared to Control patients are depicted in the bar plot. (B) A summary 

diagram illustrating the SHAP values. The sorted genes are arranged in decreasing order of feature 

importance on the y-axis. The x-axis displays the relationship between a gene's expression and a greater or 

lower prediction, indicating the gene's impact on the model's output. A minimum impact is shown in blue, 

and pink indicates a high impact of the gene. 
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The Python SHAP module aids in determining attributes that significantly affect the 

model's prediction confidence score. A machine learning model that makes decisions is 

the foundation of this study. Next, we plotted the global features, which is shown as a bar 

plot in Figure 4.4A, as the average of the SHAP values for each feature by gene of 

relevance arranged in decreasing order. To see how the feature affected the value and target 

prediction, we also created a SHAP summary graph (Figure 4.4B). Regardless of whether 

the genes are upregulated or downregulated, genes with high significance scores are 

thought to have a greater influence on the disease.  

The 20 genes based on the feature's importance score were selected. These genes could be 

good candidates for further investigation or as possible targets for therapy. Apart from 

that, we did a literature search and found there was a significant degree of consistency 

with previous reports (Table 4.2). RARS2, CMC4 (C-X9-C Motif Containing 4), 

TIMM17A (Translocase of Inner Mitochondrial Membrane 17A), MTG1 (Mitochondrial 

Ribosome Associated GTPase 1), and VWA8 (Von Willebrand Factor A Domain 

Containing 8) were investigated in several diseases besides type 2 diabetes.  

Table 4.2: Gene expression of the identified genes in type 2 diabetes. 

 
S. No. Gene Expression in type 2 

diabetes 

Reference 

1 BDH1 Low (Thai et al. 2021) 

2 YARS2 Low (López-Soldado et al. 2023) 

3 AKAP Low (Ando et al. 2018) 

4 RARS2 Low (López-Soldado et al. 2023) 

5 MRPS31 Low (Arden et al. 1996) 

6 EXOG Low (Pardo et al. 2016) 

7 HSP40/DNAJ Low (Gupte, Bomhoff, and Geiger 2008) (Abu-

Farha et al. 2015) (Abubaker et al. 2013) 

8 UCP3 Low (Schrauwen et al. 2006) (J. Liu et al. 2013) 

9 POLB Low (Grindel et al. 2016) 

10 STOML2 Low (Mitsopoulos et al. 2015) 

11 LDHB Low (Palsgaard et al. 2009) 

12 TIMM8A Low (Dubé et al. 2020) 

13 BAX Low (S. Wang et al. 2023) 

14 SLC25A42 Low (Khin, Lee, and Jun 2023) 

15 LIAS Low (Padmalayam et al. 2009) 
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In addition, we used GraphPad Prism 8 to calculate the overall relative expression and p-

value from the combined single dataset created after normalization from three GEO 

expression profiles to characterize the significance and importance of the genes that 

emerged as the features, as given in Table 4.3. We surprisingly discovered that each gene 

had decreased significant expression supporting mitochondrial homeostasis. UCP3 and 

BAX also decreased but was not significant. In this investigation, we did identify 

upregulated genes, however they were not in the list of twenty genes based on the SHAP 

values.  

 

Table 4.3: Statistical Analysis Results for Each Identified Gene from the Combined 

Dataset.  

 

 
Control vs Type 2 diabetes 

Genes Regulation p-value 

BDH1 Downregulated 0.0001 

YARS2 Downregulated 0.0017 

AKAP10 Downregulated 0.0082 

RARS2 Downregulated 0.0031 

MRPS31 Downregulated 0.0002 

AHCYL1 Downregulated 0.0306 

EXOG Downregulated 0.0003 

DNAJC4 Downregulated 0.0001 

UCP3 Downregulated Ns 

POLB Downregulated 0.0120 

STOML2 Downregulated 0.0001 

LDHB Downregulated 0.0001 

CMC4 Downregulated 0.0008 

TIMM8A Downregulated 0.0003 

BAX Downregulated Ns 

SLC25A42 Downregulated 0.0010 

VWA8 Downregulated 0.0010 

TIMM17A Downregulated 0.0007 

MTG1 Downregulated 0.0007 

LIAS Downregulated 0.0002 
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4.3.4 Pathways linked to the identified genes through Gene Set Analysis. 

 

Functional enrichment analysis is a widely used technique for finding commonalities in 

large biological datasets. The area of biomedicine uses functional enrichment analysis of 

gene expression data to identify the disease's pathophysiology. The protein-protein 

network of genes that were extracted based on SHAP values was examined using the 

String version 11.5 database to determine their function in the course of the disease. We 

used k-means clustering for this network, and as shown in Figure 4.5, the network was 

separated into three clusters: 23 genes in red-colored cluster 1, 11 genes in green-colored 

cluster 2, and 6 genes in blue-colored cluster 3.  

 

 

 
Figure 4.5: The identified mitochondrial genes are used as SHAP characteristics in constructing the 

protein-protein interactions (PPIs) network utilizing the String database. 
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Moreover, this network's analysis revealed that the greatest number of genes play a major 

role in biological processes such as base-excision repair, DNA ligation, apoptosis 

signaling factor release, mitochondrial membrane potential maintenance, and protein 

transport (import/export) as shown in Table 4.4. Collectively, the data point to the 

regulation of many nuclear and mitochondrial import, export, and assembly routes by 

nuclear genes in these pathways, which results in the necessity of multimeric proteins for 

mitochondrial biogenesis. Membrane potential collapse brought on by impaired glucose 

metabolism and mitochondrial malfunction might affect ATP generation and may 

contribute to insulin resistance. Mitochondria are the main players in apoptosis, or 

programmed cell death. Dysregulation of apoptosis might be linked to the death of 

pancreatic beta cells in type 2 diabetes. It may begin with the release of apoptotic signaling 

components from damaged mitochondria, which would then impact on insulin secretion. 

These dysfunctions simultaneously lower insulin secretion and contribute to insulin 

resistance. Research on understanding and treating these mitochondrial-related issues is 

ongoing in the context of managing and preventing diabetes. Four key molecular 

functions—protein transmembrane transporter activity, chaperone binding, BH3 domain 

binding, and P-P-bond-hydrolysis-driven protein transmembrane transporter activity—

were the predominant areas of enrichment in the PPI network. In type 2 diabetes, BH3 

protein binding to BAD and BCL lowers the threshold for apoptosis to occur and prevents 

anti-apoptotic proteins from acting.  

 

Table 4.4: Enrichment analysis of identified genes based on SHAP values. 

 

Biological Processes     

#term ID term description p-value 

matching proteins in the network 

(labels) 

GO:0072655 

Establishment of protein 

localization to 

mitochondrion 1.48E-15 

TIMM21, TIMM13, TIMM10, 

GRPEL1, TIMM44, BAX, PAM16, 

BID, PMAIP1, T IMM17A, TIMM50, 

TIMM23 

GO:0006839 Mitochondrial transport 2.00E-15 

TIMM21, TIMM13, TIMM10, 

GRPEL1, TIMM44, BAX, PAM16, 
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BID, UCP3, PMAIP1, STOML2, 

TIMM17A, BCL2, TIMM50, TIMM23 

GO:0007005 

Mitochondrion 

organization 2.00E-15 

TIMM21, TIMM13, TIMM10, 

GRPEL1, TIMM44, BAX, HSPA9, 

PAM16, BID, PMAIP1, STOML2, 

BECN1, PARP1, TIMM17A, LIG3, 

BCL2, TIMM50, TIMM23 

GO:0006626 

Protein targeting to 

mitochondrion 1.84E-13 

TIMM21, TIMM13, TIMM10, 

GRPEL1, TIMM44, PAM16, BID, 

TIMM17A, TIMM50, TIMM23 

GO:0030150 

Protein import into 

mitochondrial matrix 1.16E-10 

TIMM21, GRPEL1, TIMM44, 

PAM16, TIMM17A, TIMM50, 

TIMM23 

GO:1990542 

Mitochondrial 

transmembrane transport 1.02E-09 

TIMM21, GRPEL1, TIMM44, 

PAM16, UCP3, STOML2, TIMM17A, 

TIMM50, TIMM23 

GO:0071806 

Protein transmembrane 

transport 1.55E-09 

TIMM21, GRPEL1, TIMM44, 

PAM16, TIMM17A, MCL1, TIMM50, 

TIMM23 

GO:0007006 

Mitochondrial membrane 

organization 4.97E-07 

TIMM13, TIMM10, BAX, HSPA9, 

BID, PMAIP1, BCL2, TIMM50 

GO:0001836 

Release of cytochrome c 

from mitochondria 2.11E-06 BAX, BID, PMAIP1, BCL2, TIMM50 

GO:2001244 

Positive regulation of 

intrinsic apoptotic 

signaling pathway 3.47E-06 

BAX, BID, PMAIP1, BECN1, MCL1, 

BCL2 

GO:0006886 

Intracellular protein 

transport 4.67E-06 

TIMM21, TIMM13, TIMM10, 

GRPEL1, TIMM44, BAX, HSPA9, 

PAM16, BID, PMAIP1, TIMM17A, 

AHCYL1, TIMM50, TIMM23 

GO:0015031 Protein transport 1.05E-05 

TIMM21, TIMM13, TIMM10, 

GRPEL1, TIMM44, BAX, HSPA9, 

PAM16, BID, PMAIP1, TIMM17A, 

MCL1, AHCYL1, TIMM8A, 

TIMM50, TIMM23 

GO:0051881 

Regulation of 

mitochondrial membrane 

potential 1.05E-05 

BAX, BID, PMAIP1, STOML2, 

PARP1, BCL2 

GO:0046907 Intracellular transport 1.27E-05 

TIMM21, TIMM13, TIMM10, 

GRPEL1, TIMM44, BAX, HSPA9, 

PAM16, BID, PMAIP1, STOML2, 

BECN1, TIMM17A, AHCYL1, 

TIMM50, TIMM23 

GO:0071705 

Nitrogen compound 

transport 1.76E-05 

TIMM21, TIMM13, TIMM10, 

GRPEL1, TIMM44, BAX, HSPA9, 
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PAM16, BID, PMAIP1, SLC25A42, 

TIMM17A, MCL1, AHCYL1, 

TIMM8A, TIMM50, TIMM23 

GO:2001242 

Regulation of intrinsic 

apoptotic signaling 

pathway 2.45E-05 

BAX, BID, PMAIP1, BECN1, PARP1, 

MCL1, BCL2 

GO:0006288 

Base-excision repair, 

DNA ligation 7.46E-05 XRCC1, POLB, LIG3 

GO:0051204 

Protein insertion into 

mitochondrial membrane 8.07E-05 TIMM13, TIMM10, BAX, PMAIP1 

GO:0008104 Protein localization 0.00015 

TIMM21, TIMM13, AKAP10, 

TIMM10, GRPEL1, TIMM44, BAX, 

HSPA9, PAM16, BID, PMAIP1, 

TIMM17A, MCL1, AHCYL1, 

TIMM8A, TIMM50, TIMM23 

GO:2001020 

Regulation of response to 

DNA damage stimulus 0.00016 

XRCC1, BID, PNKP, PMAIP1, 

PARP1, MCL1, BCL2 

GO:0071702 

Organic substance 

transport 0.00017 

TIMM21, TIMM13, TIMM10, 

GRPEL1, TIMM44, BAX, HSPA9, 

PAM16, BID, PMAIP1, SLC25A42, 

TIMM17A, MCL1, AHCYL1, 

TIMM8A, TIMM50, TIMM23 

GO:0033036 

Macromolecule 

localization 0.00019 

TIMM21, TIMM13, AKAP10, 

TIMM10, GRPEL1, TIMM44, BAX, 

HSPA9, PAM16, BID, PMAIP1, 

STOML2, TIMM17A, MCL1, 

AHCYL1, TIMM8A, TIMM50, 

TIMM23 

GO:0055085 Transmembrane transport 0.00046 

TIMM21, GRPEL1, TIMM44, BAX, 

PAM16, UCP3, SLC25A42, STOML2, 

TIMM17A, MCL1, BCL2, TIMM50, 

TIMM23 

GO:1901030 

Positive regulation of 

mitochondrial outer 

membrane 

permeabilization involved 

in apoptotic signaling 

pathway 0.00051 BAX,  BID, PMAIP1, BCL2 

GO:2001233 

Regulation of apoptotic 

signaling pathway 0.00058 

BAX, PAM16, BID, PMAIP1, 

BECN1, PARP1, MCL1, BCL2 

GO:0097190 

Apoptotic signaling 

pathway 0.00061 

POLB, BAX, BID, PMAIP1, MCL1, 

BCL2, TIMM50 

GO:0072321 

Chaperone-mediated 

protein transport 0.00082 TIMM13, TIMM10, TIMM8A 

GO:0051402 Neuron apoptotic process 0.00091 POLB, BAX, BID, BCL2 
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GO:0006974 

Cellular response to DNA 

damage stimulus 0.00097 

XRCC1, POLB, BAX, BID, PNKP, 

PMAIP1, PARP1, MCL1, LIG3, BCL2 

GO:0032543 Mitochondrial translation 0.0011 

PTCD3, MRPS31, YARS2, RARS2, 

MRPS33 

GO:0090199 

Regulation of release of 

cytochrome c from 

mitochondria 0.0011 BAX, PAM16, BID, PMAIP1 

GO:0097345 

Mitochondrial outer 

membrane 

permeabilization 0.0016 BAX, BID, PMAIP1 

GO:0010332 

Response to gamma 

radiation 0.0018 POLB, BAX, PARP1, BCL2 

GO:0006915 Apoptotic process 0.0028 

POLB, EXOG, BAX, BID, PMAIP1, 

BECN1, PARP1, MCL1, BCL2, 

TIMM50 

GO:0006996 Organelle organization 0.0031 

TIMM21, TIMM13, TIMM10, 

XRCC1, GRPEL1, TIMM44, BAX, 

HSPA9, PAM16, BID, PMAIP1, 

STOML2, BECN1, PARP1, 

TIMM17A, LIG3, BCL2, TIMM50, 

TIMM23 

GO:0008630 

Intrinsic apoptotic 

signaling pathway in 

response to DNA damage 0.0034 POLB, BAX, MCL1, BCL2 

GO:0097193 

Intrinsic apoptotic 

signaling pathway 0.0034 POLB, BAX, PMAIP1, MCL1, BCL2 

GO:0033554 Cellular response to stress 0.0047 

XRCC1, POLB, BAX, HSPA9, BID, 

PNKP, PMAIP1, STOML2, BECN1, 

PARP1, MCL1, LIG3, BCL2 

GO:1903518 

Positive regulation of 

single strand break repair 0.0047 XRCC1, PARP1 

GO:0006810 Transport 0.0055 

TIMM21, TIMM13, TIMM10, 

GRPEL1, TIMM44, BAX, HSPA9, 

PAM16, BID, UCP3, PMAIP1, 

SLC25A42, STOML2, BECN1, 

TIMM17A, MCL1, AHCYL1, 

TIMM8A, BCL2, TIMM50, TIMM23 

GO:1900740 

Positive regulation of 

protein insertion into 

mitochondrial membrane 

involved in apoptotic 

signaling pathway 0.0057 BID, PMAIP1, BCL2 

GO:0090200 

Positive regulation of 

release of cytochrome c 

from mitochondria 0.0061 BAX, BID, PMAIP1 
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GO:0006808 

Regulation of nitrogen 

utilization 0.0071 BAX, BCL2 

GO:0010836 

Negative regulation of 

protein ADP-ribosylation 0.0071 XRCC1, PNKP 

GO:0090296 

Regulation of 

mitochondrial DNA 

replication 0.0071 STOML2, LIG3 

GO:0010821 

Regulation of 

mitochondrion 

organization 0.0086 BAX, PAM16, BID, PMAIP1, BCL2 

GO:0043029 T cell homeostasis 0.0092 BAX, PMAIP1, BCL2 

GO:0097191 

Extrinsic apoptotic 

signaling pathway 0.0092 BAX, BID, MCL1, BCL2 

GO:0008625 

Extrinsic apoptotic 

signaling pathway via 

death domain receptors 0.0098 BAX, BID, BCL2 

GO:0048872 

Homeostasis of number of 

cells 0.0098 POLB, BAX, HSPA9, PMAIP1, BCL2 

GO:0097192 

Extrinsic apoptotic 

signaling pathway in 

absence of ligand 0.0098 BAX, MCL1, BCL2 

GO:2001022 

Positive regulation of 

response to DNA damage 

stimulus 0.0108 XRCC1, PNKP, PMAIP1, PARP1 

GO:0016043 

Cellular component 

organization 0.0118 

TIMM21, TIMM13, PTCD3, 

TIMM10, XRCC1, GRPEL1, 

TIMM44, EXOG, BAX, HSPA9, 

MRPS31, PAM16, BID, PMAIP1, 

STOML2, BECN1, PARP1, 

TIMM17A, LIG3, MRPS33, BCL2, 

TIMM50, TIMM23 

GO:0006289 

Nucleotide-excision 

repair 0.0126 XRCC1, PNKP, PARP1, LIG3 

GO:0042149 

Cellular response to 

glucose starvation 0.0149 PMAIP1, BECN1, BCL2 

GO:0043504 

Mitochondrial DNA 

repair 0.0156 PARP1, LIG3 

GO:0080135 

Regulation of cellular 

response to stress 0.0156 

XRCC1, BAX, BID, PNKP, PMAIP1, 

PARP1, MCL1, BCL2 

GO:2001234 

Negative regulation of 

apoptotic signaling 

pathway 0.0158 BAX, PAM16, BID, MCL1, BCL2 

GO:0001844 

Protein insertion into 

mitochondrial membrane 0.019 BAX, PMAIP1 
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involved in apoptotic 

signaling pathway 

GO:0006979 

Response to oxidative 

stress 0.019 

LIAS, XRCC1, PNKP, UCP3, PARP1, 

BCL2 

GO:0007007 

Inner mitochondrial 

membrane organization 0.0197 TIMM13, TIMM10, HSPA9 

GO:0044271 

Cellular nitrogen 

compound biosynthetic 

process 0.0227 

PTCD3, POLB, BAX, MRPS31, 

YARS2, PNKP, STOML2, PARP1, 

RARS2, LIG3, MRPS33 

GO:0045039 

Protein insertion into 

mitochondrial inner 

membrane 0.0228 TIMM13, TIMM10 

GO:1903376 

Regulation of oxidative 

stress-induced neuron 

intrinsic apoptotic 

signaling pathway 0.0228 PARP1, MCL1 

GO:0048087 

Positive regulation of 

developmental 

pigmentation 0.0266 BAX, BCL2 

GO:0090150 

Establishment of protein 

localization to membrane 0.0266 

TIMM13, TIMM10, BAX, BID, 

PMAIP1 

GO:0006950 Response to stress 0.029 

AKAP10, LIAS, XRCC1, POLB, 

BAX, HSPA9, BID, PNKP, UCP3, 

PMAIP1, STOML2, BECN1, PARP1, 

MCL1, LIG3, BCL2, DNAJC4 

GO:0010918 

Positive regulation of 

mitochondrial membrane 

potential 0.0352 BID, STOML2 

GO:2001236 

Regulation of extrinsic 

apoptotic signaling 

pathway 0.039 BID, PMAIP1, MCL1, BCL2 

GO:1902510 

Regulation of apoptotic 

DNA fragmentation 0.0403 BAX, PAM16 

GO:0010917 

Negative regulation of 

mitochondrial membrane 

potential 0.0456 BAX, PMAIP1 

GO:0051179 Localization 0.0456 

TIMM21, TIMM13, AKAP10, 

TIMM10, GRPEL1, TIMM44, BAX, 

HSPA9, PAM16, BID, UCP3, 

PMAIP1, SLC25A42, STOML2, 

BECN1, TIMM17A, MCL1, 

AHCYL1, TIMM8A, BCL2, TIMM50, 

TIMM23 

GO:0045739 

Positive regulation of 

DNA repair 0.0494 XRCC1, PNKP, PARP1 
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Molecular Processes  

#term ID term description p-value 

matching proteins in network 

(labels) 

GO:0051434 BH3 domain binding 0.0021 BAX, MCL1, BCL2 

GO:0008320 

Protein transmembrane 

transporter activity 0.0095 TIMM17A, MCL1, TIMM23 

GO:0051087 Chaperone binding 0.0286 TIMM10, GRPEL1, TIMM44, BAX 

GO:0015450 

P-P-bond-hydrolysis-

driven protein 

transmembrane 

transporter activity 0.0406 TIMM17A, TIMM23 

Cellular Components 

#term ID term description p-value 

matching proteins in network 

(labels) 

GO:0005739 Mitochondrion 1.16E-29 

TIMM21, TIMM13, AKAP10, 

PTCD3, TIMM10, LIAS, GRPEL1, 

TIMM44, EXOG, BAX, HSPA9, 

MRPS31, PAM16, BID, YARS2, 

MTG1, PNKP, UCP3, PMAIP1, 

SLC25A42, STOML2, BECN1, 

PARP1, TIMM17A, MCL1, CMC4, 

RARS2, TIMM8A, LIG3, VWA8, 

BDH1, MRPS33, BCL2, TIMM50, 

TIMM23 

GO:0005740 Mitochondrial envelope 9.81E-26 

TIMM21, TIMM13, PTCD3, 

TIMM10, GRPEL1, TIMM44, EXOG, 

BAX, HSPA9, MRPS31, PAM16, BID, 

MTG1, UCP3, PMAIP1, SLC25A42, 

STOML2, BECN1, TIMM17A, 

MCL1, CMC4, TIMM8A, BDH1, 

MRPS33, BCL2, TIMM50, TIMM23 

GO:0031966 Mitochondrial membrane 6.83E-25 

TIMM21, TIMM13, PTCD3, 

TIMM10, GRPEL1, TIMM44, EXOG, 

BAX, HSPA9, MRPS31, PAM16, BID, 

MTG1, UCP3, PMAIP1, SLC25A42, 

STOML2, BECN1, TIMM17A, 

MCL1, TIMM8A, BDH1, MRPS33, 

BCL2, TIMM50, TIMM23 

GO:0031967 Organelle envelope 2.33E-22 

TIMM21, TIMM13, PTCD3, 

TIMM10, GRPEL1, TIMM44, EXOG, 

BAX, HSPA9, MRPS31, PAM16, BID, 

MTG1, UCP3, PMAIP1, SLC25A42, 

STOML2, BECN1, PARP1, 

TIMM17A, MCL1, CMC4, TIMM8A, 
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BDH1, MRPS33, BCL2, TIMM50, 

TIMM23 

GO:0005743 

Mitochondrial inner 

membrane 8.26E-18 

TIMM21, TIMM13, PTCD3, 

TIMM10, GRPEL1, TIMM44, EXOG, 

MRPS31, PAM16, MTG1, UCP3, 

SLC25A42, STOML2, TIMM17A, 

TIMM8A, BDH1, MRPS33, TIMM50, 

TIMM23 

GO:0005744 

TIM23 mitochondrial 

import inner membrane 

translocase complex 2.04E-12 

TIMM21, TIMM10, GRPEL1, 

PAM16, TIMM17A, TIMM50, 

TIMM23 

GO:0098798 

Mitochondrial protein 

complex 3.25E-11 

TIMM21, TIMM13, TIMM10, 

GRPEL1, BAX, HSPA9, MRPS31, 

PAM16, TIMM17A, MRPS33, 

TIMM50, TIMM23 

GO:0031090 Organelle membrane 1.73E-09 

TIMM21, TIMM13, PTCD3, 

TIMM10, GRPEL1, TIMM44, EXOG, 

BAX, HSPA9, MRPS31, PAM16, BID, 

MTG1, UCP3, PMAIP1, SLC25A42, 

STOML2, BECN1, TIMM17A, 

MCL1, AHCYL1, TIMM8A, BDH1, 

MRPS33, BCL2, TIMM50, TIMM23 

GO:0005759 Mitochondrial matrix 3.94E-07 

LIAS, GRPEL1, TIMM44, HSPA9, 

MRPS31, PAM16, YARS2, MTG1, 

RARS2, BDH1, MRPS33 

GO:0005758 

Mitochondrial 

intermembrane space 2.85E-06 

TIMM13, TIMM10, STOML2, CMC4, 

TIMM8A, TIMM23 

GO:0005737 Cytoplasm 2.25E-05 

TIMM21, TIMM13, AKAP10, 

PTCD3, TIMM10, LIAS, GRPEL1, 

POLB, TIMM44, EXOG, BAX, 

HSPA9, MRPS31, PAM16, BID, 

YARS2, MTG1, PNKP, UCP3, 

PMAIP1, SLC25A42, STOML2, 

BECN1, PARP1, TIMM17A, MCL1, 

CMC4, RARS2, AHCYL1, TIMM8A, 

LIG3, VWA8, BDH1, MRPS33, 

LDHB, BCL2, TIMM50, TIMM23 

GO:0043231 

Intracellular membrane-

bounded organelle 2.67E-05 

TIMM21, TIMM13, AKAP10, 

PTCD3, TIMM10, LIAS, XRCC1, 

GRPEL1, POLB, TIMM44, EXOG, 

BAX, HSPA9, MRPS31, PAM16, BID, 

YARS2, MTG1, PNKP, UCP3, 

PMAIP1, SLC25A42, STOML2, 

BECN1, PARP1, TIMM17A, MCL1, 

CMC4, RARS2, TIMM8A, LIG3, 
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VWA8, BDH1, MRPS33, BCL2, 

TIMM50, TIMM23 

GO:0043227 

Membrane-bounded 

organelle 3.19E-05 

TIMM21, TIMM13, AKAP10, 

PTCD3, TIMM10, LIAS, XRCC1, 

GRPEL1, POLB, TIMM44, EXOG, 

BAX, HSPA9, MRPS31, PAM16, BID, 

YARS2, MTG1, PNKP, UCP3, 

PMAIP1, SLC25A42, STOML2, 

BECN1, PARP1, TIMM17A, MCL1, 

CMC4, RARS2, AHCYL1, TIMM8A, 

LIG3, VWA8, BDH1, MRPS33, 

LDHB, BCL2, TIMM50, TIMM23 

GO:0070013 

Intracellular organelle 

lumen 0.0001 

TIMM13, PTCD3, TIMM10, LIAS, 

XRCC1, GRPEL1, POLB, TIMM44, 

HSPA9, MRPS31, PAM16, YARS2, 

MTG1, PNKP, STOML2, PARP1, 

TIMM17A, MCL1, CMC4, RARS2, 

TIMM8A, LIG3, BDH1, MRPS33, 

BCL2, TIMM50, TIMM23 

GO:0005741 

Mitochondrial outer 

membrane 0.00024 

BAX, HSPA9, BID, PMAIP1, MCL1, 

BCL2 

GO:0098796 

Membrane protein 

complex 0.00089 

TIMM21, TIMM10, GRPEL1, BAX, 

HSPA9, PAM16, BECN1, TIMM17A, 

BCL2, TIMM50, TIMM23 

GO:0016020 Membrane 0.00092 

TIMM21, TIMM13,  AKAP10, 

PTCD3, TIMM10, GRPEL1, 

TIMM44, EXOG, BAX, HSPA9, 

MRPS31, PAM16, BID, MTG1, 

PNKP, UCP3, PMAIP1, SLC25A42, 

STOML2, BECN1, PARP1, 

TIMM17A, MCL1, AHCYL1, 

TIMM8A, BDH1, MRPS33, LDHB, 

BCL2, DNAJC4, TIMM50, TIMM23 

GO:0005622 Intracellular 0.0033 

TIMM21, TIMM13, AKAP10, 

PTCD3, TIMM10, LIAS, XRCC1, 

GRPEL1, POLB, TIMM44, EXOG, 

BAX, HSPA9, MRPS31, PAM16, BID, 

YARS2, MTG1, PNKP, UCP3, 

PMAIP1, SLC25A42, STOML2, 

BECN1, PARP1, TIMM17A, MCL1, 

CMC4, RARS2, AHCYL1, TIMM8A, 

LIG3, VWA8, BDH1, MRPS33, 

LDHB, BCL2, TIMM50, TIMM23 
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4.3.5 Integrated mRNA-miRNA Networks in Skeletal Muscle of Type 2 Diabetes 

 

Comprehending the factors that impact changes in gene expression is crucial for 

determining the exact molecular pathophysiology of intricate diseases such as type 2 

diabetes. Numerous research has indicated that type 2 diabetes is associated with altered 

miRNA and target expressions. As a result, we used the miRNET 2.0 database for 

constructing the possible miRNA network of the top 20 SHAP characteristics. We mapped 

all 20 of the genes to the human reference database. As seen in Figure 4.6, the network 

has 463 miRNA nodes and 19 gene nodes with a total of 717 edges (interactions).  In the 

network, TIMM8A, AKAP10, TIMM17A, BAX, and LIAS have the most interactions. 

 

 

 
Figure 4.6: The illustration depicts the miRNA-mRNA network of the identified genes from the machine 

learning model. 

 



Page | 79  
 

 

Figure 4.7A shows miR-375, miR-30a-5p, miR-16-5p, miR-129-5p, miR-1229-3p, and 

miR-1224-3p have the most significant interactions. Mienturnet database was used for 

the further studying the characteristics of the miRNAs based on compelling literature 

evidence, which revealed that miR-375, miR-766-3p, miR-298, and miR-24-3p had a 

large number of interactions (Figure 4.7B). miRNA-mRNA network previously developed 

bears similarities to miR-375, miR-298, and numerous additional miRNAs. A number of 

miRNAs also target BAX, which controls the mitochondrial apoptotic signaling, as 

illustrated by Figure 4.8B. In HEK cells, miR-128 is an endogenous regulator of the 

apoptotic signaling cascade via BAX, as we have earlier investigated. In addition, we have 

previously demonstrated that miR-128 inhibits mitochondrial biogenesis and function in 

skeletal muscle model cells.  

 

 

 
Figure 4.7: (A) Following enrichment analysis, significant miRNAs are shown as a bar plot with targeted 

mRNAs. (B) Cytoscape was used to visualize the interaction network based on compelling literature 

evidence. 
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4.4 Key Findings 

• We have predicted gene regulation in type 2 diabetic skeletal muscle using 

machine learning as a systems biology method. 

• The study employed the XGBoost algorithm and SHAP interpretations to identify 

the mitochondrial target genes associated with type 2 diabetes.  

• The study of the mRNA-miRNA interaction network was used to discover non-

coding biomarkers. 
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A bioinformatics analysis 

reveals miR-128 mediated 

mitochondrial dysfunction 

in major metabolic organs 

via Bicaudal D Homolog 1 

gene 
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5.1 Introduction  
 

The disruptions in cellular homeostasis, primarily in the liver, fat, skeletal muscle, and 

pancreas mainly impact the pathophysiology of metabolic diseases, including type 2 

diabetes and obesity. In multicellular animals, these metabolic organs have developed 

concurrently to preserve energy balance and meet the organism's metabolic requirements. 

Genes involved in transcription regulatory networks of these metabolic organs may be 

viable targets for therapy from a pathophysiological standpoint. As demonstrated earlier, 

miR-128 directly targets and adversely controls the production of the NAD+-dependent 

protein deacetylase known as SIRT1 (Sirutin 1). Furthermore, we have demonstrated that 

miR-128 also targets PGC1α (Peroxisome Proliferator Activated Receptor Gamma, 

Coactivator 1α), which is an essential regulator of oxidative phosphorylation and 

mitochondrial biogenesis. This limits the activity of mitochondria in skeletal muscle. miR-

128 came out to be a significant player in several metabolic pathways, as it regulates key 

molecules. Future therapeutics may benefit from our comprehension of its regulation 

mechanism. Thus, we postulated that miR-128 may be involved in a major way in 

controlling the gene regulatory network that links the many organs in human metabolism.  

5.2 Material and Methods 

5.2.1 miRNA target prediction and Functional enrichment analysis 

TargetScan (version 8.0) (https://www.targetscan.org/vert 80/) (Agarwal et al., 2015), was 

used to determine miR-128 predicted targets. We performed enrichment analysis for the 

predicted target genes of miR-128 using the DAVID database (Version 6.8) 

(https://david.ncifcrf.gov/tools.jsp) (D. W. Huang et al., 2007), and the analysis 

encompassed disease classification. For statistical significance for the disease 

classification analysis, a cutoff of p-value < 0.05 was used. 

5.2.3 Study selection and data extraction 

Expression data from Gene Expression Omnibus (GEO) 

(https://www.ncbi.nlm.nih.gov/geo/), including miRNA and mRNA microarray 
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expression profiling were downloaded (Edgar, Domrachev, and Lash 2002). PubMed 

provided the literature. GEO datasets used, and their sample information is presented in 

Table 1. Datasets used are of serum/tissue and are free of any therapies or other ailments 

that were retrieved.  

Table 5.1: Details of GEO expression profiles from serum and tissues used in the 

study. 

GEO 

Accession 

Platform  Sample Profile 

Selected 

Serum/Tissue Organism PMID 

GSE169290 Affymetrix 

Multispecies 

miRNA-4 

Array 

Unique samples from 

20 middle-aged obese 

individuals were 

included: 10 MHO 

(metabolically healthy 

obese) and 10 MUO 

(metabolically 

unhealthy obese). 

Serum Homo 

sapiens 

33801145 

(Rovira-

Llopis et al. 

2021) 

GSE148961 NanoString 

nCounter 

miRNA 

Expression 

Panel 

12 Control and 18 

Diabetes Patients 

Serum Homo 

sapiens 

32664305 

(Sidorkiewicz 

et al. 2020) 

GSE185845 NanoString 

nCounter 

miRNA 

Expression 

Panel 

20 serum samples of 

T2DM without IHD 

were collected. The 

control group consisted 

of 16 patients without 

T2DM and IHD. 

Serum Homo 

sapiens 

35663309 

(Bielska et al. 

2022) 

GSE83452 Affymetrix 

Human Gene 

2.0 ST Array 

44 Control samples Vs 

54 Obese samples 

Liver Homo 

sapiens 

28679947 

(Lefebvre et 

al. 2017) 

GSE12643 Affymetrix 

Human 

Genome U95 

Version 2 

Array 

10 Control samples Vs  

10 T2DM samples 

Skeletal 

Muscle 

Homo 

sapiens 

18719883 

(Frederiksen 

et al. 2008) 

GSE76894 Affymetrix 

Human 

Genome U133 

Plus 2.0 Array 

84 Control samples Vs  

19 T2DM/Obese 

samples 

Pancreas Homo 

sapiens 

30956117 

(Khamis et 

al. 2019) 

GSE27951 Affymetrix 

Human 

Genome U133 

Plus 2.0 Array 

12 Control sample Vs 

11 T2DM/Obese 

sample 

Adipose 

Tissue 

Homo 

sapiens 

21426570 

(Keller et al. 

2011)  
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5.2.3 Data Processing 

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r) was used to perform differential 

expression analysis between samples from the control/diseased group, and Benjamini & 

Hochberg (False discovery rate) was applied to obtain a corrected p-value. An auto-detect 

function that evaluates the values of chosen samples and does a log2 transformation on 

any values that are not in the log space was selected. Limma and quantile normalization 

were selected for each dataset to obtain DEGs, and a significance level cut-off at p <0.05 

was chosen for the DEG’s. 

5.2.4 Cell culture and transfections 

HepG2 cells were procured from the National Centre of Cell Sciences, Pune, India. All 

cell lines were cultured in Dulbecco′s Modified Eagle′s Medium (D7777, Sigma). 

Additionally, the media was supplemented with 3.7 g/L sodium bicarbonate, 10% FBS 

(Gibco, Thermo Fisher Scientific, MA, USA), and 100 IU/mL penicillin-streptomycin 

(Gibco, Thermo Fisher Scientific, MA, USA). The cells were maintained at 37°C and 5% 

CO2 humidified chamber. The cells were seeded and cultured in the 6-well at 70–80% 

confluency in subsequent experiments. Transfection with miR-128 plasmid vector 

previously cloned in pSilencer 4.1 Vector, (Ambion, Thermo Fisher Scientific, MA, USA) 

in the lab or with antimiR-128 AM17000, assay ID AM11746, Thermo Fisher Scientific, 

MA, USA) along with their respective controls i.e., pSilencer 4.1 vector (P(Sil)) or 

antimiR negative control (AMNC). Lipofectamine LTX and Plus TM (Invitrogen, Thermo 

Fisher Scientific, MA, USA) were used for transfection as per instructions. 

5.2.5 RNA isolation and qRT-PCR  

RNA was isolated from the transfected cell pellets using TRIzol reagent (15596026 

Thermo Fisher Scientific) as per the manufacturer’s instructions. The integrity of the RNA 

was checked on 1% agarose gel, it was quantified using NanoDrop spectrophotometer 

(ND 1000, NanoDrop Technologies, Inc., USA). 500ng of total RNA was used to 

synthesize the cDNA as mentioned using the Revert Aid H Minus first-strand cDNA 
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synthesis kit (K1631, Thermo Fisher Scientific) as given in Table 3.3.3. Following this, 

qRT-PCR technique was used to detect transcript expression post-transfection. 

Subsequently, qRT-PCR was performed by using 1 µl to 2 µl of cDNA using the specific 

transcript primers mentioned in Table 5.1 on LightCycler 480 (Roche, Indianapolis, USA) 

using SYBR green master mix. The results were normalized with the human 18S rRNA 

according to the tissue/cells.  

 

Table 5.2: List of primers and their sequences used in the study for qRT-PCR. 

Primer name Primer Sequence 5’- 3’ 

Hsa-miR-128 Stem 

Loop Primer 

CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAAAGAGAC 

miR-128 

Forward Primer 

ACACTCCAGCTGGGTCACAGTGAACCGGT 

miR-128 

Reverse Primer 

GTGTCGTGGAGTCGGCAATTC 

Sno Stem Loop 

Primer 

CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG 

 

Sno Forward 

Primer 

GGCTTTTGGAACTGAATCTAAGT 

 

Sno Reverse Primer GAGGTATTCGCACCAGAGGA 

BICD1 

Forward Primer 

TCCATCCACCGGAAGGTTG 

BICD1 

Reverse Primer 

GGCTCTGTTTCAGCTCGTTC 

Human 18s rRNA 

Forward Primer 

GAGGATGAGGTGGAACGTGT 

Human 18s rRNA 

Reverse Primer 

GGACCTGGCTGTATTTTCCA 
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5.2.6 Plasmid reporter Construct of BICD1 3’UTR 

Human genomic DNA was used to amplify the 3’UTR region of BICD1 mRNA harboring 

the seed sequence of miR-128 (2682-2688) using PCR. The primers (5’ to 3’) used to 

amplify the template of 511 bp in length were Forward Primer: 

CCGCTCGAGCCCACAAAACATTTCTTCCA and Reverse Primer: 

ATAAGAATGCGGCCGCAATCTTTGCTCACTCTGTTTGC. The amplified template 

was then inserted into the XhoI and NotI sites in psiCHECK-2 reporter plasmid (Promega, 

USA), yielding the BICD1 3’ UTR reporter construct. The reporter construct was verified 

by sequencing.  

5.2.7 Luciferase Assay 

HepG2 cells were seeded with the density of ~30000 cells/well in a 24-well plate. 100 ng 

of BICD1 3’ UTR reporter plasmid along with either 1 µg of miR-128 plasmid or 40 nM of 

AM-128, or their corresponding negative controls were co-transfected using 

Lipofectamine™ 3000 (Invitrogen, Thermo Fisher Scientific, MA, USA). Luciferase and 

Renilla reporter activity were measured post 24 h after co-transfection, using a dual-

luciferase reporter assay kit (Promega, USA). Luciferase activity was normalized against 

the Renilla activity as directed by the manufacturer.  

5.2.8 Western blotting  

BICD1 (NBP1-85843, Novus Biologicals, USA) and HIF1α (MAB1536-SP, R&D 

Systems, USA) were used for the primary antibody incubation done overnight. Β-Actin 

(ab8226, Abcam, USA) was used as loading control. Thermo Fisher Scientific’s HRP-

linked anti-rabbit (cat. #31460) or anti-mouse (cat. #31430) secondary antibody was 

incubated for 1 h at room temperature. Enhanced chemiluminescence (Bio-Rad 

Laboratories, Inc., CA, USA) was used to detect the bands. Quantitative analysis was done 

using AlphaImager 3400 (Alpha InnoTech, CA, USA).  
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5.3 Results 

5.3.1 miR-128, a possible blood biomarker for metabolic disorders including type 2 

diabetes and obesity. 

 

We obtained the miRNA-128 predicted target gene lists from TargetScan version 8.0 (5655 

genes) in order to further functionally characterize miR-128. To further understand the 

significance of miR-128-associated disorders, these genes were then examined disease 

classification (DAVID software), as seen in Figure 5.1. As seen by the dot plot, the 

metabolic abnormality was determined to be statistically significant and to have a 

substantial number of miR-128 target genes (1633 genes, p<0.05).  

 

 

Figure 5.1: DAVID analysis tool revealed miR-128 linked diseases represented as a bubble plot. The size 

of the bubbles indicates the number of genes, and the color gradation indicates the negative log10 p-value.  
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5.3.2 MiR-128, a putative circulating indicator for type 2 diabetes and obesity  

Literature has shown pieces of evidence that circulatory miRNAs are so persistent in 

serum and plasma, they are involved in a wide range of pathophysiological activities 

(Errafii et al. 2022).  An analysis of three different miRNA profiling of blood samples 

from type 2 diabetic and obese patients compared to control was done to investigate the 

expression of miR-128. For the differentially expressed miRNA  

 

Figure 5.2: miR-128 expression in blood serum samples (A) GSE169290 (Control vs obese) (B & C) 

GSE148961 and GSE185845 (Control vs. Type 2 diabetes) 

 

profiles, GSE169290 (Control vs. Obese), GSE148961 (Control vs. Type 2 diabetes), and 

GSE185845 (Control vs. Type 2 diabetes) were utilized. When compared to control serum, 

we discovered that obese individuals had higher expression of miR-128 (Figure 5.2A). 

Similarly, in Figures 5.2B and 5.2C, the expression of circulating miR-128 was 

significantly greater in T2DM patients. It was also one of the miRNAs that were 

differently expressed in both datasets (GSE148961 and GSE185845, p<0.001). Elevated 
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levels of miR-128 in obese, and type 2 diabetic individuals, may dysregulate the 

expression of target genes that are implicated in important metabolic processes. According 

to two distinct investigations conducted in the Asian Indian community, individuals with 

obesity, pre-diabetes, and type 2 diabetes had considerably higher levels of miR-128 than 

healthy control patients. While these results offer insightful information, more 

investigation is required to confirm miR-128's potential as a therapeutic target and to 

clarify the specific pathways by which it leads to metabolic dysfunction. These results 

suggest that miR-128 may be a novel circulatory miRNA marker in obese and type 2 

diabetes patients as it has never been reported in previous studies or other population 

groups. 

5.3.3 Determining the miR-128 associated differentially expressed genes from the 

Liver, Pancreas, Skeletal Muscle, and Adipose Tissue. 

To comprehend the physiological processes behind energy consumption and storage in 

obesity and type 2 diabetes. The mRNA expression patterns of metabolically active 

organs, including the liver, skeletal muscle, pancreas, and adipose tissue, were examined 

to determine the multidirectional association between miR-128 and the majorly 

affected metabolic organs. Accordingly, the steps of analysis are represented in the flow 

chart of Figure 3. The liver (GSE83452), skeletal muscle (GSE12643), adipose tissue 

(GDS3961), and pancreas (GSE76894) were analyzed using the GEO2R tool as 

mentioned in the material and method section. We found differentially expressed genes in 

the liver, skeletal muscle, pancreas, and adipose tissue were 2885, 464, 8553 and 2104 

genes respectively. Using the list of projected target genes for miR-128 and the DEG lists 

from the liver, skeletal muscle, pancreas, and adipose tissue, the Venn tool was used to 

find shared genes.  Bicaudal D Homolog 1 (BICD1) was the only link between the liver, 

pancreas, skeletal muscle, and adipose tissue as a target of miR-128 (Figure 5.3). By 

interacting with the motor complex (dynein-dynactin) and GTPase RAB6 between the 
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golgi apparatus and endoplasmic reticulum, mammalian BICD1 is known to aid in the 

movement of cargo. 

 

Figure 5.3: (A) This flowchart illustrates the bioinformatic workflow that was utilized to find shared genes 

between miR-128 predicted targets and the differentially expressed genes from the liver, skeletal muscle, 

pancreas, and adipose tissue. (B) Venn diagrams illustrating shared miR-128 predicted target genes among 

the four metabolic organs. 

 

5.3.4 Bicaudal D Homolog 1 gene is a direct target of miR-128.  

Many biological processes, including G protein signaling and internalization, RNA 

binding, translational repression, Golgi-endoplasmic reticulum transport, neurotrophin 

receptor signaling, and RNA binding, utilize BICD1. Also, R Depping et al suggested that 

HIF1α nuclear translocation is regulated by BICD1 gene. It interacts with HIF1α and 

forms the protein complex which then further regulates their transcription factors 

(Depping et al. 2008). We have examined the downstream impact of miR-128 on HepG2 
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cells in the present work. The liver is a vital metabolic organ that regulates the body's 

energy metabolism, which is why HepG2 cells were selected. It acts as the primary 

metabolic hub for the pancreas, skeletal muscle, and adipose tissue, among other organs. 

Remarkably, the miR-128 seed sequence of 7mer at position 2682-2688, which is 

conserved in humans, chimpanzees, and rhesus monkeys, is present in BICD1 3' UTR. 

First, the goal was to clone the 3' UTR of BICD1 mRNA to investigate whether it is a 

potential target for miR-128 binding. Figure depicts the steps followed to clone the 

reporter construct.  

As shown in Figure 5.4, we next quantified the expression of the mature miR-128 

expression in post-24 h of transfection in HepG2 cells. The miR-128 expression was 

elevated 5.73-fold (p=0.0481) on transfecting the cells with miR-128 plasmid. After 

receiving AM-128 treatment, cells showed a downregulation for miR-128 levels to 2.47-

fold (p=0.0134) significantly. We then checked the luciferase activity of the BICD1 

3’UTR reporter construct by co-transfecting it with miR-128 plasmid and/or AM-128 with 

their respective controls as mentioned in materials and methods.  

We also examined the effect of miR-128 on both the transcriptional and translational levels 

of the BICD1 gene using qRT-PCR and western blotting, respectively after its 

overexpression and inhibition. In both the presence and absence of miR-128, we 

discovered that the mRNA level of BICD1 did not vary significantly. It's interesting to 

note that miR-128 overexpression dramatically reduced the BICD1 protein expression to 

1.56-fold (p=0.015) and an increase was observed in cells treated with AM-128. As a 

downstream effector, HIF1α modifies gene expression by regulating many transcriptional 

regulators linked to mitochondrial glycolysis and respiration.  
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Figure 5.4: miR-128 directly targets BICD1 (A) qRT-PCR was used to determine the expression of miR-128 

in Hep G2 cells following transfection with either 4 µg of the miR-128 vector or 200 nM of AM-128, along 

with the corresponding negative controls. (B) mRNA expression of BICD1 gene was quantified using qRT-

PCR. (C & D) Using western blotting, the expression of BICD1 and HIF1α proteins was measured. Bar 

graphs utilizing densitometric analysis reflect relative fold change, with β-actin serving as the loading 

control. (E) TargetScan data bae predicts that BICD1 gene contains the seed region of miR-128 in its 3'UTR. 

Relative luciferase activity 24 hours after co-transfection of BICD1 3'UTR reporter construct with either 1 

µg of miR-128 plasmid or 40 nM of Am-128 together with their corresponding controls. Data are mean ± 

SEM, n=3, *p < 0.05, **p < 0.01  

 

Therefore, following the overexpression of miR-128 in HepG2 cells, we examined the 

translational expression of HIF1α. The protein expression of HIF1α showed a similar 
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trend to that of BICD1 but was not significant as in Figure. These findings suggest that 

BICD1 is a direct target of miR-128 and is negatively regulated when miR-128 is 

overexpressed in HepG2 cells. 

5.4 Key Findings 

• miR-128 is upregulated in the serum of type 2 diabetes and obese patients and 

could be a potential biomarker. 

• Inhibition of miR-128 mediates mitochondrial dysfunction via BICD1-HIF1α 

axis. 

• miR-128 silencing might have potential therapeutic implications in type 2 diabetes 

and obesity.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 

Conclusion 
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6.1 Conclusion 

• MiR-128 directly targets PGC1α and downregulates mitochondrial biogenesis. 

• MiR-128 inhibits mitochondrial fusion and induces fission. 

• MiR-128 promotes impairment in cellular ATP production by targeting NDUFS4. 

• Inhibition of miR-128 reverses the HFD-induced mitochondrial dysfunction.  

• Machine learning as a systems biology approach helped with the discovery of fresh 

therapeutic targets and the prospect of new disease biomarkers 

• miR-128 targets BICD1 gene expression and could be responsible for 

mitochondrial dysfunction via HIF1α.  

 

 

Figure 7.1: Proposed model for miR-128 mediated regulation of mitochondrial biogenesis and function 



Chapter 7 

Discussion 

 



Page | 94  
 

7.1 Discussion  

Metabolic disorders such as type 2 diabetes and obesity are currently serious public health 

issues.  They have become  worldwide epidemic in the last 20 years that threatened 

people's lives by impacting nearly every organ system (Glovaci, Fan, and Wong 2019; 

Whytock et al. 2023). Increased prevalence of such metabolic disorders and other related 

comorbidities shows that there is an urgent need to understand the molecular mechanisms 

and to find effective therapeutic interventions to prevent this rise. Innovative treatment 

approaches can be thought of because of the recent developments in miRNAs that can 

modulate the expression and functions of the mRNAs using miRNA mimics or antimiRs 

(Diener, Keller, and Meese 2022). 

Previous evidence from our laboratory has shown that miR-128 directly targets SIRT1, a 

deacetylase that is reliant on nicotinamide adenosine dinucleotide (NAD) (Y. K. Adlakha 

and Saini 2013). It eliminates acetyl groups from a vast range of proteins including PGC1α 

(Yap et al. 2020), that enhances the biosynthesis of mitochondria and oxidative 

phosphorylation by acting upstream (Abu Shelbayeh et al. 2023). We showed that miR-

128 directly targets PGC1α and the region is conserved at the miR-128 binding in its 3′ 

UTR. We next examined the expression of important downstream proteins and RNAs 

involved in the pathway.  Our findings revealed an increase in the total mitochondrial mass 

and mitochondrial DNA content in C2C12 myoblasts after miR-128 inhibition. 

Simultaneously, there was an increase in the expression of NRF1 and NRF2, two 

important nuclear respiratory transcription factors that support the TFAM-mediated 

replication of mitochondrial DNA necessary for mitochondrial biogenesis and function. 

We also showed that miR-128 decreases the protein levels of MFN1, MFN2, and OPA1, 

three genes involved in the fusion of mitochondria. Furthermore, after miR-128 

overexpression, the expression of DRP1, which causes fission was increased. Together all 

these results validate the fragmented shape of mitochondria that became apparent after 

overexpression of miR-128 in C2C12 myoblasts and corroborate the notion that 

overexpression of miR-128 causes smaller, fragmented mitochondria with compromised 
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functioning. Similar to our findings, Li et al. demonstrated that miR-30-induced DRP1 

inhibition lowers fragmentation of the mitochondria and triggers apoptosis (Mao et al. 

2014). Further, Wang et al showed upregulation in miR-140 and miR-195 levels inhibited 

mitochondrial fusion, and the cells are unable to preserve mitochondrial homogeneity and 

functional stability in congenital heart defects (G. Wang et al. 2024).  

There are five multi-subunit complexes arranged in the electron transport chain that are 

involved in ATP generation during mitochondrial respiration (Vedel et al. 1999). 

Interestingly we found 24 genes in the electron transfer chain to be predicted targets of 

miR-128 according to the TargetScan database including NDUFS4. In this study, we 

experimentally proved that miR-128 directly targets NDUFS4 by binding to its 3’ UTR. 

According to  Zhu et al when kidney transplants from cadaver donors are used, miR-147 

expressed after Cold Storage-Associated Transplantation (CST) injury represses 

NDUFS4, resulting in mitochondrial damage and renal tubular cell death (Zhu et al. 2023).  

Interestingly an increase in PGC1α mediated NRF2 expression in HFD-fed mice was also 

observed because of anti-miR-128 therapy in the skeletal muscle tissue. Our findings 

support that inhibiting endogenous miR-128 levels could repair the decrease in 

mitochondrial biogenesis and skeletal muscle dysfunction brought on by a high-fat diet. 

Concurrently, Wang et al. demonstrated genetic deletion of miR-128 in mice models, 

which greatly improves glucose tolerance, increases consumption of energy and reduces 

obesity caused by high-fat diets (L. Wang et al. 2020).  

Using another approach to understand the mitochondrial network via machine learning 

and explainable artificial intelligence in skeletal muscle of metabolic disorders like type 

2 diabetes can forecast novel patterns more accurately than previous strategies (Nazarov 

et al. 2017). In this study, we identified genes responsible for mitochondrial homeostasis 

from skeletal muscle transcript data of 70 patients with type 2 diabetes and 107 control 

subjects using the recognized mitochondrial database MitoCarta 3.0 for the first time. 

Using the pooled expression dataset, we came across 409 mitochondrial genes in total. 

Applying the SHAP values to the genes after quantifying the machine learning predictions 
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allowed us to eventually identify 20 genes. The SHAP values were applied, and the results 

were compared before and after. Since the accuracy was comparable in both situations, it 

can be concluded that each of the genes that were discovered using feature values are 

reliable predictors of important information.  

We have cross-referenced our findings with previously published literature to verify the 

validity of the conclusions drawn from our investigation, even with the different platforms 

and gene expressions as shown in Table 4.2. We discovered that the data that had been 

previously reported showed a notable level of consistency. These genes are important for 

a wide range of biological processes, including transport, structure, membrane potential 

regulation, and intrinsic apoptotic signaling in the mitochondria. Impairment in any of the 

pathways, it may be possible that they are contributing significantly to the initiation and 

progression of the metabolic disorder.  

The significance of miRNAs, such as miR-375, miR-30a-5p, miR-16-5p, miR-129-5p, 

and miR1229-3p, in regulating mitochondrial metabolism in type 2 diabetic patients is 

further highlighted by our research. The disease-related mitochondrial functions may be 

changed by these dysregulated miRNAs, and these processes may be crucial in controlling 

gene expression. Furthermore, using the Mienturnet database based on significant literary 

evidence, we observed that one of the top features, i.e., BAX is a direct target of miR-128. 

Research from our laboratory has demonstrated that miR-128 can affect apoptosis in a 

variety of cell types by targeting BAX mRNA (Yogita K. Adlakha and Saini 2011). This 

interaction draws attention to the complex regulatory networks that control biological 

processes like apoptosis and emphasizes how crucial it is to comprehend the functions of 

miR-128 and BAX in metabolic disorders like type 2 diabetes and obesity.  

Using several miRNA profiling experiments, we found that miR-128 is considerably 

elevated in the serum of patients with metabolic disorders as a circulatory miRNA. There 

is the possibility of miR-128 to influence homeostasis and intercellular communication in 

the liver, pancreas, adipose tissue, and skeletal muscle in such metabolic disorders. Herein, 
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we used clinical sample data and did a computational analysis to find out if BICD1 has 

significant differential expressions in all tissues and is a target of miR-128. 

The human equivalent of the Drosophila Bicaudal-D gene, or BICD1, is in charge of the 

intracellular cargo transport cofactor that regulates the loading of cargo onto the dynein 

motor complex through microtubules (Swift et al. 2010). Through direct targeting in the 

3' UTR region of the BICD1 transcript, we have experimentally shown that the 

overexpression of miR-128 negatively influences the expression of the protein. It's 

interesting to note that BICD1 protein, the microtubule-associated factors have recently 

been connected to the nuclear translocation of hypoxia-inducible factor 1 α (HIF1α) (Lee 

et al. 2018). HIF1α expression in cells is decreased by overexpression of miR-128, and 

vice versa. We think that one possible cause of aberrant mitochondrial metabolism could 

be reduced HIF1α signaling but further research in this area is warranted. 

Altogether, it has previously been shown that miR-128 is essential for initiating apoptosis 

via pathways that include the release of cytochrome c and the activation of caspases, which 

ultimately lead to the insufficiency of mitochondrial function. Also shown before that 

miR-128 targets the NAD+-dependent protein deacetylase Sirtuin 1 (SIRT1).  As a 

metabolic sensor, SIRT1 has a major role in the biogenesis of mitochondria via 

PGC1α/TFAM axis (Tang 2016). Herein, our research findings have demonstrated that 

miR-128 directly targets important regulators including PGC1α and NDUFS4 in myoblast 

cells, suppressing both the synthesis and function of mitochondria. The overexpression of 

miR-128 upregulates mitochondrial fission via DRP1 and downregulates the genes 

involved in the fusion of the mitochondria. Growing evidence suggests that DRP1 

participates in several biological processes by interacting with p53, including mitophagy, 

oxidative stress, and cell death (Duan et al. 2020; D. B. Wang et al. 2014). These results 

imply that miR-128 modulates the homeostasis of mitochondria and impacts the tissue's 

overall health. The suppression of miR-128 using antimiR treatment may provide a 

foundation for diagnostic and therapeutic approaches for metabolic disorders linked to 

mitochondrial dysfunction. 
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ANNEXURE I 

Solution Preparation 

DMEM Complete Media (1 L)  

- DMEM powder 

-HEPES:3.7 g   

- Sodium biocarbonate: 3.9g  

- Antibiotic-Antimycotic solution: 10 ml  

- Fetal Calf Serum (FCS): 100 ml 

Dissolve all the contents in 890 ml of autoclaved Milli-Q water and adjust the pH to 7.2 

with 1N NaOH. Add 10 ml of Antibiotic-Antimycotic solution and 100 ml fetal calf serum 

and filter it through a 0.22μ membrane filter. Store the media at 4 °C until use. 

 

0.50%Trypsin -EDTA solution (100 ml) 

- Trypsin: 500 mg  

- EDTA: 200 mg 

- PBS: 100 ml 

First, dissolve EDTA in PBS (Less than 60 ml) and set the pH to 7. Add trypsin to this 

clear solution and after trypsin, add PBS to make the solution up to 100ml. Filter the 

solution through a 0.22μ membrane filter, stored at 4 °C. 

 

10X Phosphate Buffer Saline (100 ml) 

- Na₂HPO₄: 1.44 g  

- KH₂PO₄: 0.24 g  

- KCl: 0.20 g  

- NaCl: 8.00 g 

Dissolve in 80 ml of Milli-Q water and adjust the pH to 7.4 with 1N HCl. Make up the 

volume to 100 ml, Filter the solution through a 0.22μ membrane filter, autoclave, and 

store at 4 °C. 
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Freezing Solution (10 ml) 

- Fetal Calf Serum (FCS): 9 ml  

- DMSO: 1 ml  

Dissolve and Filter the solution through a 0.22 μ membrane filter and store it at 4 °C. 

 

RIPA Buffer for Cell Lysis (100 ml) 

- Tris base: 790 mg  

- NaCl: 900 mg  

- NP-40: 1 ml  

- Na-deoxycholate: 2.5 g  

Dissolve Tris base and NaCl in 80 ml of Milli-Q water and adjust the pH to 7.4 with 1N 

HCl. Then add 1ml of NP-40 and 2.5 g of Na-deoxycholate to the solution. Mix the 

contents and make up the volume to 100 ml with Milli-Q water. Store the buffer at 4°C.  

 

30%: Acrylamide: Bis-acrylamide Solution (100 ml) 

- Acrylamide: 29 g  

- Bis-acrylamide: 1 g 

 

Dissolve in Milli-Q water and make the volume up to 100 ml. Filter sterilize and store in 

a dark bottle at 4°C. 

 

 

1 M Tris, pH 6.8 (100 ml) 

- Tris base: 12.11 g 

 

Dissolve in Milli-Q water and adjust the pH to 6.8 using concentrated HCl. Make the 

volume up to 100 ml. Autoclave and store at 4°C. 

 

 

1.5 M Tris, pH 8.8 (100 ml) 

- Tris base: 18.16 g 
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Dissolve in Milli-Q water and adjust the pH to 8.8 using concentrated HCl. Make the 

volume up to 100 ml. Autoclave and store at 4°C. 

 

10% SDS (100 ml) 

 

- SDS: 10 g 

 

Dissolve in Milli-Q water and make the volume up to 100 ml and store at room 

temperature. 

 

 

10% APS (10 ml) 

 

- APS: 1 g 

 

Dissolve in Milli-Q water and make the volume up to 10 ml. Make aliquots of 1 ml and 

store them at -20°C.  

 

 

 

12% Resolving Gel for SDS-PAGE (10 ml) 

 

- Distilled water: 3.3 ml  

- 30% Acrylamide mix: 4.0 ml  

- 1.5 M Tris-HCl (pH 8.8): 2.5 ml  

- 10% SDS: 100 μL  

- 10% APS: 100 μL  

- TEMED: 4 μL 

 

5% Stacking Gel for SDS-PAGE (4 ml) 

 

- Distilled water: 2.7 ml  

- 30% Acrylamide mix: 0.67 ml  

- 1.5 M Tris-HCl (pH 8.8): 0.5 ml  

- 10% SDS: 40 μL  

- 10% APS: 40 μL  

- TEMED: 4 μL 
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5X SDS-PAGE Running Buffer (1 L) 

 

- Tris: 15.1 g  

- Glycine: 72 g  

- SDS: 5 g 

 

Dissolve in Milli-Q water up to 900 ml and adjust the pH of the buffer to 8.3 with 1N HCl. 

Make up the volume to 1 liter after adjusting the pH and store at room temperature. 

 

 

Transfer Buffer (1 L) 

 

- Tris base: 1.452 g  

- Glycine: 7.2 g  

- Methanol: 200 ml 

 

Dissolve in Elix water, make up the volume to 800 ml, and then add 200 ml of methanol. 

Store the buffer at 4oC. 

 

 

5X SDS-PAGE Loading Dye (10 ml) 

 

 

- 1 M Tris-HCl (pH 6.8): 2.5 ml  

- SDS: 1 g  

- Bromophenol blue: 50 mg  

- Glycerol: 5 ml  

- DTT: 0.771 g 

 

 

Dissolve in Milli-Q water and make up the volume to 10 ml. Make aliquots and store at 

room temperature.  

 

10X TBS (500 ml) 

 

- Tris base: 12.1 g  

- NaCl: 40 g 

 

Dissolve in 900 ml of Milli-Q water and adjust the pH to 7.6 with 1N HCl. Make up the 

volume to 1 liter and store at room temperature. For making TBST add 0.01% Tween20  

in 1x TBS. 
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A B S T R A C T   

The size and morphology of mitochondria are very heterogeneous and correlates well with their healthy func-
tioning. In many pathological conditions, mitochondrial morphology is altered due to impaired mitochondrial 
dynamics (a collective term for mitochondrial fusion and fission) and dysfunction. The current study aimed at 
identifying the role of microRNA-128 (miR-128) in regulating mitochondrial biogenesis. Previously, peroxisome 
proliferator activator receptor γ coactivator 1α (PGC1α) has been shown to co-activate key intermediates of 
mitochondrial biogenesis, function, and dynamics; however, the upstream regulatory network remains largely 
unknown. We, herein using in silico analysis followed by in vitro experiments in C2C12 myoblasts, showed that 
miR-128 reduces mitochondrial biogenesis by directly targeting PGC1α. The expression of downstream genes, 
nuclear respiratory factors 1 and 2 (NRF1 and NRF2, respectively), and mitochondrial transcription factor A 
(TFAM) were decreased in C2C12 myoblasts upon overexpression of miR-128. Also, miR-128 is shown to pro-
mote mitochondrial dysfunction by directly targeting NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 
(NDUFS4). The mitochondrial dynamics and morphology were impaired post miR-128 overexpression, as 
revealed by downregulation of fusion proteins (mitofusin1 and 2, i.e., MFN1 and MFN2, respectively) and 
upregulation of fission protein (dynamin-related protein 1, i.e., DRP1). Conversely, inhibition of miR-128 
expression improved mitochondrial biogenesis, function, and dynamics, as evidenced by increased mitochon-
drial mass and ATP production after antimiR-128 treatment. Our findings reveal that inhibition of miR-128 can 
be a new potential target for reversing the effects of metabolic disorders of skeletal muscle as observed during 
many pathophysiological conditions such as obesity and type II diabetes.   

1. Introduction 

Mitochondria are double-membrane organelles that play a permis-
sive role in establishing the life and death of eukaryotic cells. Besides 
being the central energy transducer of eukaryotic cells, they actively 
regulate several biosynthetic processes such as apoptosis, intracellular 
signaling, metabolism (Anderson et al., 2019). Regular cycles of fusion 
and fission can dynamically regulate the size and shape of mitochondria 
as an adaptation to metabolic needs of cells and under various patho-
logical conditions. Mitochondrial fusion requires mitofusin 1 and 2 
(MFN1 and MFN2 respectively), and OPA1 mitochondrial dynamin like 
GTPase (OPA1) proteins, whereas fission requires dynamin-related 

protein 1 (DRP1) protein. Impaired mitochondrial biogenesis and 
dysfunction is critically linked with the metabolic dysfunctions of skel-
etal muscle and is observed in various disorders such as diet-induced 
obesity and type II diabetes (Mohamed et al., 2014). 

A major breakthrough in understanding mitochondrial biogenesis 
and function came with the discovery of peroxisome proliferator acti-
vated receptor gamma coactivator 1α (PGC1α) as the key regulator 
(Handschin and Spiegelman, 2006). PGC1α induces the transcription 
and replication of mitochondrial DNA by regulating mitochondrial 
transcription factor A (TFAM) via co-activation of nuclear respiratory 
factors 1 and 2 (NRF1 and NRF2, respectively) (Kelly and Scarpulla, 
2004; Scarpulla, 2008; Taherzadeh-Fard et al., 2011). PGC1α is also 

Abbreviations: COX1, Cytochrome c oxidase subunit 1; COX2, Cytochrome c oxidase subunit 2; ND1, NADH Dehydrogenase Subunit 1; UTR, Untranslated region. 
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known to regulate mitochondrial fusion and fission, thereby coordi-
nating mitochondrial biogenesis and function (Cannavino et al., 2015; 
Picard et al., 2016). Thus, regulating cellular PGC1α levels could provide 
a way for therapeutic interventions in several metabolic disorders. 
However, the upstream signaling mechanism is poorly understood. 

Non-coding RNAs, especially microRNAs (~22 nucleotides), are 
known to regulate post- transcriptional gene expression. Previously, 
miR-494-3p, miR-133 and miR-149 have been found to play a role in 
coordinating mitochondrial homeostasis in skeletal muscle during 
metabolic disorders (Mohamed et al., 2014; Lemecha et al., 2018; Nie 
et al., 2016). In the current study, we found that miR-128 directly targets 
PGC1α and NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 
(NDUFS4) by binding to their 3′ UTR. In addition, the overexpression of 
miR-128 downregulated the expression of NRF1, NRF2, and TFAM, and 
in turn, inhibited mitochondrial biogenesis leading to mitochondrial 
dysfunction. On the contrary, inhibition of miR-128 expression by 
antimiR-128 induced mitochondrial biogenesis and reversed mito-
chondrial dysfunction in C2C12 myoblasts. In conclusion, our current 
study helps to understand the mechanism behind the mode of action of 
miR-128 in regulating mitochondrial biogenesis and function. 

2. Materials and methods 

2.1. Cell culture 

Mouse myoblast cell line, C2C12, was purchased from National 
Centre for Cell Science, Pune, India, and cultured in DMEM supple-
mented with 10% FBS (Gibco, Thermo Fisher Scientific, MA, USA) and 
100 IU/mL penicillin-streptomycin (Gibco, Thermo Fisher Scientific, 
MA, USA) at 37◦C in a humidified atmosphere with 5% CO2. Cells were 
seeded in either 6-well or 24-well plates for subsequent growth and 
treatments. Transient transfections were done at 70–80% confluency 
with either precursor-microRNA-128 plasmid, designated hereafter as P 
(128), or antimiR-128, designated hereafter as AM- 128 (AM17000, 
assay ID AM11746, Thermo Fisher Scientific, MA, USA), using Lip-
ofectamine LTX and Plus reagent (Invitrogen, CA, USA) at 1:1 ratio ac-
cording to manufacturer’s protocol (Adlakha and Saini, 2011). The 
results from P(128) or AM-128 transfected cells were compared against 
cells transfected with their respective negative controls i.e., pSilencer 
4.1 vector or antimiR negative control designated as P(Sil) and AMNC as 
previously reported (Adlakha et al., 2013). Cells were trypsinized and 
harvested after 24 h of transfection and stored in − 80 ◦C until further 
use. 

2.2. Total RNA isolation, TaqMan microRNA assay, and quantitative 
Real-time PCR 

Total RNA was extracted from C2C12 myoblasts transfected with 
either 4 ug of P(128) or 200 nM of AM-128 or their respective negative 
controls and from the skeletal muscle tissues using TRIzol reagent 
(Invitrogen, Paris, France) according to the manufacturer’s protocol. 
RNA quantification was done on a NanoDrop spectrophotometer (ND 
1000, NanoDrop Technologies, Inc., Wilmington, USA). A TaqMan 
based qRT-PCR assay was used to quantify the expression of miR-128 
using specific RT primers and TaqMan probes (AB Assay ID 
PN442795, Applied Biosystems, Foster City, CA, USA) as described by 
the manufacturer. For normalization, 18S rRNA (AB Assay ID 
4333760F) was used. For qRT- PCR, cDNA synthesis was done using 
RevertAid H Minus first strand cDNA synthesis kit (Fermentas, MD, 
USA). The qRT-PCR was performed using SYBR Green PCR master mix in 
an ABI Prism 7500 Sequence Detection System (Applied Biosystems, 
ThermoFisher Scientific, Waltham, MA, USA). The results were 
normalized with 18S rRNA. Results of TaqMan assay and qRT-PCR were 
analyzed using Pfaffl’s method (Pfaffl, 2001). The sequence of primers 
used for detecting the expression levels of PGC1α, TFAM, NRF1, NRF2, 
MFN1, MFN2, OPA1, DRP1, and 18S rRNA are enlisted in Table 1. 

2.3. Cloning of luciferase reporter constructs 

The 3′ UTR sequence of PGC1α and NDUFS4 transcripts were 
retrieved from the Ensembl genome browser (Ensembl Release 97, July 
2019). The region of 3′ UTR (between 3078 and 3084 nucleotides of 
PGC1α, and 27–33 nucleotides of NDUFS4) containing the target site of 
miR-128 was amplified from the mouse genome, using primers enlisted 
in Table 1. The amplified region was inserted between cut sites of MluI 
and SpeI for PGC1α (742 bp) and MluI and HindIII for NDUFS4 (518 bp) 
for generating the pMIR REPORT luciferase vector (Ambion Inc., TX, 
USA). Hereafter, the constructs are represented as 3′ UTR PGC1α and 3′

UTR NDUFS4. A completely unrelated mouse sequence with no miR-128 
binding site was cloned and used as the control plasmid, designated 
hereafter as unrelated UTR. All plasmids were verified by sequencing. 

2.4. Luciferase reporter assay 

For the luciferase assay, C2C12 myoblasts were seeded at 70–80% 
confluency in 12-well plates. After 24 h, the cells were co-transfected 
with 200 ng of firefly luciferase reporter construct and 50 ng of renilla 
luciferase containing pRL-CMV plasmid (Promega, WI, USA). Simulta-
neously, C2C12 myoblasts were treated with 2 ug of P(128) or 100 nM of 
antimiR-128, or their respective negative control. Luciferase activity 
was measured post 24 h of transfection using the dual-luciferase reporter 
assay system according to the manufacturer’s protocol. 

2.5. Western blot analysis 

Total protein was extracted from C2C12 myoblasts transfected with 
either 2 ug or 4 ug of P(128) or 100 nM or 200 nM AM-128, or their 
respective negative control using RIPA lysis buffer (50 mM Tris-HCl, pH 
7.4, 150 mM NaCl, 1% NP-40, 0.25% Na-deoxycholate, 1 mM EDTA, pH 
7.4) containing protease and phosphatase inhibitors (G-Biosciences, 
MO, USA). Protein quantification was done by BCA method (Sigma, MO, 
USA) as described earlier (Adlakha et al., 2013). Equal amount of total 
protein (60 μg) was separated by SDS-PAGE (10–12%) and transferred to 
a PVDF membrane (mdi; Advanced Microdevices, Ambala Cantt., India). 
Blocking of the membrane was done in 5% BSA for 2 h at room tem-
perature. Incubation of membranes in primary antibody was done for 2 
h or 16 h, depending on the antibody at 1:500 to 1:1000 dilution, 
whether purchased from Santa Cruz (Santa Cruz Biotechnology, CA, 
USA) or Abcam (Abcam, MA, USA) respectively. This was followed by 
incubation in their respective HRP-linked secondary antibody for 1 h at 
room temperature at a dilution of 1 :5000. The primary antibodies 
against PGC1α (sc13067), and NRF1 (sc101102), were procured from 
Santa Cruz, whereas those against TFAM (ab272885), NRF2 (ab92946), 

Table 1 
List of Primers sequences used for experiments in the study.  

Gene Forward Primer 5′-3′ Reverse Primer 5′-3′

DRP1 CGGTTCCCTAAACTTCACGA GCACCATTTCATTTGTCACG 
MFN1 TTGCCACAAGCTGTGTTCGG TCTAGGGACCTGAAAGATGGGC 
MFN2 GGGGCCTACATCCAAGAGAG GCAGAACTTTGTCCCAGAGC 
OPA1 GATGACACGCTCTCCAGTGAAG CTCGGGGCTAACAGTACAACC 
PGC1α GAACAAGACTATTGAGCGAACC GAGTGGCTGCCTTGGGTA 
NRF1 GTGCCCGTGTCCAATCAG TGACATAGCCATTCCCAACG 
TFAM CACCCAGATGCAAAACTTTCAG CTGCTCTTTATACTTGCTCACAG 
COX2 ATAACCGAGTCGTTCTGCCAAT TTTCAGAGCATTGGCCATAGAA 
NRF2 CCTGAGAGCTGTAGGCCC GGAATGGAAAATAGCTCCTGCC 
ND1 GTGGCTCATCTACTCCACTGA TCGAGCGATCCATAACAATAA 
NDUFS4 CAGACAACCAGACTCGGGAC TGCATGTTATTGCGAGCAGG 
COX1 ACTATACTACTACTAACAGACCG GGTTCTTTTTTTCCGGGAGT 
18S 

rRNA 
AGAAACGGCTACCACATCCA CCCTCCAATGGATCCTCGTT 

PGC1α 3′

UTR 
CTAGACTAGTAAGGACCAGATGC 
GTTCTCT 

CGACGCGTACAGCCATCAAAAAG 
GGACA 

NDUFS4 
3′ UTR 

CGACGCGTGGAGCTGGCTACAT 
CTCTGC 

CCCAAGCTTGGGAAGAACGGGCT 
TAACTT  
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NDUFS4 (ab137064), DRP1 (ab154879), MFN2 (ab56889), and OPA1 
(ab42364), were purchased from Abcam. GAPDH (G9545), Sigma 
Alderich, Merck KGaA, Darmstadt, Germany) was used as the loading 
control. The blots were developed using enhanced chemiluminiscence 
(Thermo Fisher Scientific, CA, USA) method. Integrated density values 
were obtained and quantified using AlphaImager 3400 (Alpha Inno-
Tech, CA, USA). 

2.6. Mitochondrial mass and mitochondrial DNA quantification 

Mitochondrial mass was assessed from C2C12 myoblasts, after 
transfections with P(128) or antimiR-128, in DMEM supplemented with 
10 nM of 10-N-nonyl acridine Orange (NAO) dye (A1372; Thermo Fisher 
Scientific, CA, USA), and incubated at 37◦C in an atmosphere containing 
5% CO2 for 15 min in the dark. Fluorescence was measured for each 
sample counted to 5000 events each using GUAVA EasyCyte (Guava 
Technologies, CA, USA). Relative mitochondrial DNA content was 
determined using qRT- PCR assay by quantifying the expression of ND1, 
COX1, and COX2 genes. The Ct values were normalized with 18S rRNA. 
The sequences of primers are enlisted in Table 1. The results were 
analyzed using Pfaffl’s method (Pfaffl, 2001). 

2.7. Fluorescent microscopy 

A mitochondria-specific cationic dye, MitoTracker Green FM 
(M7514, Thermo Fisher Scientific) was used to fluorescently label 
cellular mitochondria. In brief, C2C12 myoblasts were grown on two 
chambered culture slides. After 24 h of transfection, cells were incu-
bated with 200 nM of Mitotracker Green FM for 30 min at 37◦C ac-
cording to the manufacturer’s instructions. Images were acquired using 
a Leica SP8 confocal laser scanning microscope (60X magnification). 
Mitochondrial morphology was quantified using standard parameters as 
previously described using ImageJ software (Iannetti et al., 2016). 

2.8. Oxygen consumption rate (OCR) 

Cellular bioenergetics was measured using XFe24 Analyzer (Sea-
horse Bioscience, CA, USA). C2C12 myoblasts (~30,000) were seeded in 
each well and then treated with either 400 ng of P(128) or 60 nM of 
antimiR-128, or their respective negative controls. Post 24 h of trans-
fections, cells were washed and incubated for 1 h at 37 ◦C in a CO2-free 
environment with XF assay media. The inhibitors, namely, oligomycin 
(1.5 μM), FCCP (0.5 μM), rotenone (0.5 μM), and antimycin A (0.5 μM), 
were sequentially added to each well as per the manufacturer’s in-
structions, and OCR was measured. The data were normalized to total 
protein. 

2.9. Animal studies 

Four-week-old male C57BL/6 mice were purchased from Livon 
Biolabs, Bengaluru, and housed in cages under 12 h of alternating dark 
and light periods. All animal experiments and procedures were 
approved by the Institutional Animal Ethics Committee (IAEC) of CSIR- 
Institute of Genomics and Integrative Biology, New Delhi, India. Mice 
were fed ad libitum with a high-fat diet (HFD) that provides 60% energy 
from fat (Research Diet, New Brunswick, NJ 08,901 USA) for 13 weeks. 
Anti-miR-128 (Custom miRIDIAN Hairpin inhibitor, mmu-128-3p, 
ref#IH-310398–08, in vivo) was purchased from Dharmacon Inc. (CO, 
USA). In vivo-jetPEI reagent (Polyplus-transfection® SA, Illkirch, 
France) was used as per the manufacturer’s instructions for delivering 
antimiR-128 in mice. Each mouse received five intraperitoneal in-
jections of either vehicle control (HFD- Control) or antimiR-128 (HFD- 
AM-128) on alternate days at a dose of 5 mg/kg body weight. Mice were 
sacrificed after 48 h of the last treatment following a 12 h fasting period. 
Skeletal muscle tissues were collected and snap-frozen until further use. 

2.10. Statistical analysis 

All results are presented as mean ± SEM. Student’s two-tailed t-test 
was used to compare the differences between the two groups. Values of 
p < 0.05 were considered statistically significant. 

3. Results 

3.1. MiR-128 directly targets peroxisome proliferator activated receptor 
gamma coactivator 1α. 

We have demonstrated previously that miR-128 targets Sirtuin 1 
(SIRT1), an NAD+ dependent protein deacetylase. SIRT1 is extensively 
implicated in mitochondrial biogenesis and multiple other biological 
processes such as apoptosis, inflammation, and metabolism by regu-
lating several histone and non-histone proteins, including PGC1α. 
Interestingly, in our previous study, PGC1α came out to be one of the 
downregulated genes in the transcriptome profile of HEK293T cells after 
overexpression of miR-128 (submitted in the GEO database, accession 
number GSE31297) (Adlakha et al., 2013). Herein, we investigated the 
downstream effects of cellular miR-128 level in C2C12 myoblasts and 
mouse skeletal muscle tissues, as the dysfunction of skeletal muscle 
(largest metabolic tissue) is critically regulated by mitochondrial 
impairment. 

We first quantified the levels of matured miR-128 by a TaqMan based 
qRT-PCR assay post 24 h of transfections in C2C12 myoblasts, as 
described in Materials and Methods. As shown in Fig. 1A, there was a 
significant increase in the miR-128 levels by 13.46 fold (p = 0.0040) 
after overexpression of miR-128, whereas antimiR-128 treatment 
significantly decreased miR-128 levels by 6.23 fold (p = 0.0086). 
Interestingly, PGC1α mRNA was found to harbor target sequence 
(3078–3084 nucleotide) for miR-128 in its 3′ UTR, as predicted by the 
TargetScan database (Release 7.2), and this sequence was found to be 
broadly conserved in mammals including human, chimpanzee, and 
rhesus monkey (Fig. 1B) (Agarwal et al., 2015). To check whether 
PGC1α is a direct target of miR-128, we herein made luciferase reporter 
construct containing the binding sequence of miR-128 from the 3′ UTR 
region of PGC1α mRNA and performed dual luciferase reporter assay. 
The luciferase activity was found to be significantly decreased by 1.41 
fold (p = 0.0482) upon miR-128 overexpression, while it was signifi-
cantly increased by 1.97 fold (p = 0.0266) upon antimiR-128 treatment 
(Fig. 1C). Thereby, confirming PGC1α is a direct target of miR-128. 

We also quantified the expression of PGC1α at transcriptional as well 
as translational level post transfections. The level of PGC1α mRNA was 
significantly decreased by 2.46 fold (p = 0.0124) upon overexpression of 
miR-128 and increased by 2.18 fold (p = 0.1214) after antimiR-128 
treatment (Fig. 1D). Similarly, western blot analysis revealed that 
PGC1α protein levels decreased by 1.76 fold (p = 0.023) and 1.80 fold 
(p = 0.0029) upon overexpression of miR-128 and increased by 1.23 
fold (p = 0.291) and 1.70 fold (p = 0.0655) after antimiR-128 treatment, 
in a dose-dependent manner (Fig. 1E and 1F). 

A central cause of mitochondrial dysfunction in skeletal muscle 
metabolic disorders is the intake of a high-fat diet (HFD) (Kazeminasab 
et al., 2018). However, the mechanism underlying diet-induced disor-
ders of skeletal muscle metabolism via altered mitochondrial function 
and biogenesis is unknown. Previously, Latouche et al. (2016) have re-
ported upregulation of miR-128 in the human skeletal muscle samples 
from pre-diabetic or Type II diabetic patients as compared to the healthy 
controls (Latouche et al., 2016). Since in vitro downregulation of miR- 
128 could improve the PGC1α mediated mitochondrial biogenesis and 
function; therefore, we checked if the downregulation of miR-128 in 
hypercholesterolemic mice model can rescue the HFD induced mito-
chondrial dysfunction by upregulating PGC1α in the skeletal muscle of 
HFD fed mice (Chandra et al., 2021). As expected, the downregulation of 
miR-128 leads to higher PGC1α expression in the HFD-AM-128 
compared to the HFD-Control but change was statistically insignificant 
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(Supplementary Fig. 1). Together, our data suggest that miR-128 
directly targets PGC1α. 

3.2. MiR-128 inhibits mitochondrial biogenesis by downregulating TFAM 
via NRF transcription factors in C2C12 myoblasts 

PGC1α, together with SIRT1, is known to regulate mitochondrial 
biogenesis through TFAM via nuclear respiratory factors (Tang, 2016). 
So, we next explored the effects of miR-128 on the expression of NRF1, 
NRF2, and TFAM at both transcriptional and translational levels. 
Overexpression of miR-128 decreased NRF1 mRNA levels by 2.43 fold 
(p = 0.1138) and NRF2 mRNA levels by 1.94 fold (p = 0.0235), whereas 
antimiR-128 treatment significantly increased NRF1 mRNA levels by 
1.68 fold (p = 0.0100) and NRF2 mRNA levels by 2.27 fold (p = 0.2432) 
(Fig. 2A). Further, there was also a dose-dependent significant decrease 
in NRF1 (1.12 fold and 1.47 fold) and NRF2 (1.13 fold and 1.34 fold) 
protein levels after overexpression of miR-128 and a significant increase 
in NRF1 (1.31 fold at 200 nM) and NRF2 (1.78 fold and 1. 81 fold) 
protein levels after antimiR-128 treatment (Fig. 2B and 2C). 

Simultaneously, we observed that overexpression of miR-128 
reduced the mRNA levels of TFAM by 2.42 fold (p = 0.0853), whereas 
antimiR-128 treatment increased the mRNA levels of TFAM as revealed 
by 1.15 fold (p = 0.404) in qRT-PCR experiment post 24 h of transfection 
(Fig. 2D). As shown in Fig. 2E-2F, western blot analysis revealed that the 
TFAM protein levels decreased by 1.54 fold (p = 0.0131) and 1.44 fold 
(p = 0.0883) after the overexpression of miR-128, whereas upon the 
antimiR-128 treatment, TFAM protein levels significantly increased by 
1.35 fold (p = 0.184) and 1.63 fold (p = 0.0473) in a dose-dependent 
manner. We also quantified NRF2 and TFAM protein levels in skeletal 
muscle and found that it was higher in HFD-AM-128 when compared 

with HFD-Control, although the changes were not statistically signifi-
cant (Supplementary Fig. 1). 

3.3. Overexpression of miR-128 decreased mitochondrial respiration by 
targeting energy metabolism gene NDUFS4 in C2C12 myoblasts 

To explore the changes in mitochondrial DNA content in response to 
miR-128 levels, we checked a subset of electron transport chain tran-
scripts, namely COX1, ND1, and COX2, which are encoded exclusively 
by the mitochondrial genome, using qRT-PCR analysis. As shown in 
Fig. 3A, we found that overexpression of miR-128 reduced transcripts of 
mitochondrial DNA while antimiR-128 treatment increased the tran-
scripts post 24 h of transfections. It has been reported that the replica-
tion of mitochondrial DNA precedes mitochondrial biogenesis, which is 
inherent to the cellular energy homeostasis and corresponds well with 
the mitochondrial mass (Li et al., 2012). Hence, we next quantified the 
mitochondrial mass following NAO treatment, which specifically stains 
cardiolipin of the inner mitochondrial membrane. The mitochondrial 
mass reduced following miR-128 overexpression by 1.23 fold (p =
0.060), while antimiR-128 treatment increased the mitochondrial mass 
by 1.27 fold (p = 0.035) (Fig. 3B). 

The 3′ UTR of NDUFS4 has a broadly conserved predicted binding 
site of miR-128 (Fig. 3C). We validated that NDUFS4 (Mitochondrial 
Energy Metabolism Gene) is directly targeted by miR-128 using dual 
luciferase assay. Fig. 3D shows that overexpression of miR-128 signifi-
cantly reduced the luciferase activity of NDUFS4 3′ UTR reporter 
construct by 4.72 fold (p = 0.0044) and significantly increased the 
luciferase activity of NDUFS4 3′ UTR reporter construct by 1.30 fold (p 
= 0.0331) upon antimiR-128 treatment post 24 h of transfection. The 
mRNA level of NDUFS4 does not correlate with miR-128 treatment in 

Fig. 1. miR-128 directly targets PGC1α in C2C12 myoblasts. (A) TaqMan qRT-PCR analysis of miR-128 overexpression post 24 h of transfection upon P(128), or P 
(Sil), or AM-128, or negative control treatment. (B) Predicted binding region of miR-128 seed sequence in the 3′ UTR of PGC1α mRNA. (C) Luciferase activity 
measured in C2C12 myoblasts transfected with PGC1α 3′ UTR and either P(128), or P(Sil), or AM-128, or negative control (D) Relative mRNA expression of PGC1α 
was estimated by qRT-PCR. (E & F) PGC1α protein expression were evaluated by western blotting. Bar graph represent the integrated densitometry values normalized 
to GAPDH AntimiR-128 = AM- 128, AntimiR negative control = AMNC, pSilencer vector = P(Sil), plasmid (128) = P(128). Data are mean ± SEM for three in-
dependent experiments, *p < 0.05, **p < 0.01. (2-column fitting). 
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Fig. 2. MiR-128 inhibits key genes of mitochondrial biogenesis in C2C12 myoblasts. Relative mRNA expression of (A) NRF1, NRF2, and (D) TFAM were quantified 
using qRT-PCR post 24 h of transfection with P(128), or P(Sil), or AM-128, or negative control. Western blotting was done to quantify the protein levels of (B, C) 
NRF1, NRF2, and (E, F) TFAM and Bar graph represent the integrated densitometry values normalized to GAPDH. AntimiR-128 = AM-128, AntimiR negative control 
= AMNC, pSilencer vector = P(Sil), plasmid (128) = P(128). Data are mean ± SEM for three independent experiments, *p < 0.05, **p < 0.01. (2-column fitting). 

Fig. 3. Downregulation of miR-128 reverses mitochondrial dysfunction in C2C12. myoblasts. (A) Mitochondrial DNA content was measured by quantifying the 
mRNA levels of COX1, ND1, and COX2 using qRT-PCR. (B) Mitochondrial mass was analyzed by NonylacridineOrange staining using flow cytometry. (C) Predicted 
binding region of miR-128 seed sequence in the 3′ UTR of NDUFS4 mRNA. (D) Luciferase activity measured in cells transfected with NDUFS4 3′ UTR and either P 
(128), or P(Sil), or AM-128, or negative control (E) Relative mRNA expression of NDUFS4 was estimated by qRT-PCR. (F) NDUFS4 protein expression were evaluated 
by western blotting. Bar graph represent the integrated densitometry values normalized to GAPDH. AntimiR-128 = AM-128, AntimiR negative control = AMNC, 
pSilencer vector = P(Sil), plasmid (128) = P(128). Data are mean ± SEM for three independent experiments, *p < 0.05, **p < 0.01. (2-column fitting). 
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C2C12 myoblasts whereas the protein expression of the NDUFS4 gene is 
downregulated by 1.19 fold (p = 0.0123) and 1.47 fold (p = 0.0987) 
with overexpression of miR-128 treatment and is found to be increased 
by 1.43 fold (p = 0.153) and 1.34 fold (p = 0.041) with inhibition of 
miR-128 with antimir-128 treatment (Fig. 3E and 3F). Interestingly, we 
found that several subunits of the electron transport chain (ETC) have 
miR-128 binding sites in their 3′ UTR (Fig. 4). This could possibly sug-
gest a negative correlation between miR-128 and ATP levels. 

Mitochondrial dysfunction is the inability of the mitochondrial pool 
to generate and sustain sufficient cellular ATP levels and is correlated 
with the size of the mitochondrial pool. To ascertain the influence of 
mitochondrial dysfunction (in response to miR-128 levels) on cellular 
ATP production, we next assessed the mitochondrial oxygen consump-
tion rate (OCR) as described in the Materials and Methods. As shown in 
Fig. 5A, overexpression of miR-128 decreases, whereas antimiR-128 
treatment increases the mitochondrial respiration rate. In addition, 
other respiratory parameters, such as basal respiration, maximal respi-
ration, ATP production, and spare respiratory capacity, decreased after 
miR-128 overexpression and increased upon miR-128 inhibition 
(Fig. 5C–F). 

3.4. MiR-128 regulates mitochondrial dynamics and affects 
mitochondrial morphology 

Accumulating evidence indicate that the alterations in mitochondrial 
biogenesis and function correlate with the changes in mitochondrial 
dynamics (Chen et al., 2021; Medala et al., 2021). Since the data till now 
suggested that miR-128 altered mitochondrial biogenesis and function, 
we further hypothesized that miR-128 would also be regulating mito-
chondrial dynamics. 

We quantified the expression of MFN1, MFN2, OPA1, and DRP1 at 
both transcriptional and translational levels post 24 h of transfection. 
Overexpression of miR-128 significantly decreased the levels of mito-
chondrial fusion promoting proteins (MFN2 and OPA1) and significantly 
increased the level of fission protein (DRP1). On the contrary, the trend 
was reversed following antimiR-128 treatment (Fig. 6A, B and C). 
Similar findings were also observed at the mRNA levels as quantified by 
the qRT-PCR assay (Fig. 6D). 

Simultaneously, visualization of mitochondrial morphology was 
done using MitoTracker Green FM dye using confocal microscopy. As 
shown in Fig. 7A, C2C12 myoblasts overexpressing miR-128 showed 
more fraction of fragmented mitochondria in poorly connected net-
works, suggesting increased mitochondrial fission. In contrast, hyper- 

fused mitochondria were evident in cells treated with antimiR-128. 
The mitochondrial morphology was quantified using various parame-
ters, namely, mitochondrial area, perimeter, form factor, and ferret’s 
diameter. We found that miR-128 overexpression significantly reduced 
mitochondrial area and perimeter by 1.32 fold (p = 0.0045) and 1.36 
fold (p = 0.0081), respectively. The form factor, which represents the 
branching aspect of mitochondria, was reduced upon miR-128 over-
expression by 1.35 fold (p = 0.0009), thus suggesting more mitochon-
drial circularity with miR-128 treatment and vice versa. The ferret’s 
diameter also showed a similar trend; it was decreased by 1.32 fold (p =
0.0162) post miR-128 overexpression and increased by 1.10 fold (p =
0.1248) upon antimiR-128 treatment. All this data together indicates 
that miR-128 overexpression promotes mitochondrial fission, and this 
effect is counteracted upon miR-128 inhibition (Fig. 7B). 

Taken together, these results demonstrate that miR-128 inhibits 
mitochondrial biogenesis and function by directly inhibiting PGC1α and 
NDUFS4 (Fig. 8). 

4. Discussion 

To date, studies have demonstrated that miR-128 has a role of 
skeletal muscle related miRNA but it is not yet fully characterized that 
how miR-128 regulate skeletal muscle health and regeneration. MiR-128 
regulate proliferation and differentiation of myoblast via insulin 
signaling pathway by targeting insulin receptor (IR), insulin receptor 
substrate 1 (IRS-1), and phosphatidylinositol 3-kinases receptor 1 (PI3K- 
R1). Another study by Motohashi et al shows negative regulation of miR- 
128 and its Tumor necrosis factor α (TNF-α) which is involved in regu-
lating skeletal muscle hypertrophy. In addition, miR-128 is also known 
to regulates its target myostatin inturn inhibiting myoblast proliferation 
and differentiation (Motohashi et al., 2013). Cellular energy levels are 
directly correlating with skeletal muscle regeneration (Ryten et al., 
2002). This correlations of miRNA with its target mRNAs, and cellular 
energy levels for skeletal muscle health and regeneration is yet unde-
termined. Furthermore, miR-128 has shown to target myostatin, inhib-
iting C2C12 myoblast proliferation and promoting its differentiation 
into myotubes in a study by Shi et al. (2015). 

The experiments performed in the current study were to understand 
the effects of miR-128 on mitochondrial regulators of biogenesis and 
function in C2C12 myoblasts apart from response of myogenic factors 
controlling mitochondrial activity in C2C12 myotubes. Hence, a study in 
differentiated myotube could possibly extend the physiological rele-
vance. The present study identifies a central role of miR-128 in 

Fig. 4. Putative target genes of miR-128 which forms various subunits of the mitochondrial respiratory complexes, as predicted by the TargetScan database.  
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promoting impairment of mitochondrial biogenesis and function by 
targeting the upstream transcriptional activator PGC1α. Several impor-
tant observations have been made in this study. First, we validated that 

the 3′ UTR of PGC1α is a direct target of miR-128. Second, miR-128 
inhibits mitochondrial biogenesis and promotes mitochondrial 
dysfunction. Third, miR-128 inhibits fusion and induces fission of 

Fig. 5. MiR-128 impairs bioenergetics profiles in C2C12 myoblasts. (A) Mitochondrial OCR was assessed post 24 h of transfection with P(128), or P(Sil), or AM- 128, 
or negative control Parameters of mitochondrial function were calculated from the OCR values (B) ATP production (C) Basal respiration (D) Maximal respiration, and 
(E) Spare respiratory capacity,. The OCR values were normalized by total cellular protein. AntimiR-128 = AM-128, AntimiR negative control = AMNC, pSilencer 
vector = P(Sil), plasmid (128) = P(128). Data are mean ± SE for three independent experiments, *p < 0.05, **p < 0.01. (2-column fitting). 

Fig. 6. MiR-128 regulates key fusion and fission genes in C2C12 myoblasts. Western blot analysis of (A) MFN2, (B) OPA1, and (C) DRP1 proteins. Bar graph represent 
the integrated densitometry values normalized to GAPDH (D) Relative mRNA levels of MFN1, MFN2, OPA1, and DRP1 were quantified using qRT-PCR. AntimiR-128 
= AM-128, AntimiR negative control = AMNC, pSilencer vector = P(Sil), plasmid (128) = P(128). Data are mean ± SEM for three independent experiments, *p <
0.05, **p < 0.01. (2- column fitting). 
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mitochondria. Lastly, we observed that the inhibition of endogenous 
miR-128 could reverse high-fat diet induced mitochondrial dysfunction 
in skeletal muscle. Collectively, for the first time, our study demon-
strates the role of miR- 128 in maintaining an optimum pool size of 
functional mitochondria in C2C12 myoblasts. 

We observed that the binding site of miR-128 to the 3′ UTR of PGC1α 
is broadly conserved. miR-128 restrains its target gene expression with 
the assistance of a guiding RNA complex to bind the seed sequence with 

the 3′ UTR of the target and this complex is known as RNA induced 
silencing complex (RISC). These events could lead to translational 
repression or even translational degradation of the target mRNAs. As 
PGC1α acts upstream in the pathway of mitochondrial biogenesis and 
improves its functions, we further tested the expression of key tran-
scripts and proteins involved in mitochondrial processes (LeBleu et al., 
2014). We observed that miR-128 inhibits the expression of genes 
involved in mitochondrial fusion, namely, MFN1, MFN2, and OPA1. 

Fig. 7. MiR-128 regulates mitochondrial morphology and dynamics in C2C12 myoblasts (A) Mitochondrial morphology as visualized by fluorescence staining 
(MitoTracker Green FM) following transfection with P(128), or P(Sil), or AM-128, or negative control. (B) Surface area and perimeter together represents mito-
chondrial volume; mitochondrial form factor is calculated as [(perimeter2)/(4π⋅surface area)] reflects the complexity and branching aspect of mitochondria; and 
Feret’s diameter represents the longest distance between any two points within a given mitochondrion. AntimiR-128 = AM-128, AntimiR negative control = AMNC, 
pSilencer vector = P(Sil), plasmid (128) = P(128). Data are mean ± SEM for three independent experiments, *p < 0.05, **p < 0.01. (2-column fitting). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Schematic of the mechanism by which miR- 
128 inhibits mitochondrial biogenesis and function. 
MiR-128 directly targets key regulators of mito-
chondrial biogenesis and function, PGC1α and 
NDUFS4, by binding to their respective 3′ UTR. In-
hibition of PGC1α further reduces the expression of 
downstream transcription factors, namely NRF1, 
NRF2, and TFAM, thus inhibiting the transcription 
and translation of mitochondrial DNA. As shown, 
miR-128 regulates the balance of mitochondrial dy-
namics (morphology, quantity, and size) by upregu-
lating fission (increased DRP1 expression) and 
downregulating fusion (decreased MFN1, MFN2, and 
OPA1 expression). Altogether, inhibition of miR-128 
may have potential therapeutic implications in 
improving mitochondrial biogenesis and function via 
PGC1α and NDUFS4. (2-column fitting).   
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Also, the expression of DRP1, which induces mitochondrial fission, was 
increased following overexpression of miR-128 (Fig. 6). These findings 
support the observed fragmented mitochondrial morphology following 
miR-128 overexpression in C2C12 myoblasts and strengthen the hy-
pothesis that miR-128 overexpression leads to smaller and fragmented 
mitochondria with impaired functions (Fig. 7). Similar to our study, 
Wang et al. (2020) have observed an increased mitochondrial frag-
mentation after miR-153-3p overexpression in cardiac hypertrophy 
(Wang et al., 2020). In a separate study, Li et al. (2010) have shown that 
the inhibition of DRP1 by miR-30 reduces mitochondrial fission and 
induces apoptosis (Li et al., 2010). The DRP1 induced fission could also 
trigger the mitopaghic effector molecules within a cell for maintaining 
the homeostatic function of mitochondria (Woo et al., 2021). 

In the current study, we also observed an increase in the mitochon-
drial DNA content and total mitochondrial mass following upregulation 
of mitochondrial fusion after miR-128 inhibition in C2C12 myoblasts. 
NRF1, and NRF2, the key transcription factors that promote the TFAM 
mediated replication of mitochondrial DNA essential for mitochondrial 
biogenesis, were increased after miR-128 inhibition (Roe and Qi, 2018). 

Furthermore, the oxygen consumption rate was found to be 
decreased after miR-128 overexpression, thereby suggesting the inhib-
itory role of miR-128 in mitochondrial respiration. The ATP production 
in mitochondrial respiration involves five multi-subunit complexes ar-
ranged in the ETC (Johnson et al., 2013; Melcher et al., 2017). Inter-
estingly, we found that the binding site of miR- 128 is present in the 3′

UTR of 24 mRNAs coding for various subsets in complex I-V of the ETC, 
including NDUFS4. In the current study, we validated NDUFS4 to be a 
direct target of miR-128. 

We also examined the effects of in vivo downregulation of miR-128 
in HFD fed hypercholesterolemic mice. Fat rich diet is known to promote 
mitochondrial dysfunction by inhibiting the expression of PGC1α 
(Kazeminasab et al., 2018; Barroso et al., 2018). To date, only a few 
microRNAs, such as miR- 133, and miR-696, have been reported to 
directly target PGC1α mRNA in skeletal muscle (Aoi et al., 2010). 
Herein, we observed that the downregulation of miR-128 in HFD fed 
mice positively induces the expression of PGC1α, NRF2, and TFAM in 
the skeletal muscle, although the observed changes were not statistically 
significant (Supplementary Fig. 1). 

HFD promotes skeletal muscle atrophy by inducing oxidative stress, 
which leads to mitochondrial dysfunction in metabolic disorders such as 
type II diabetes (Mohamed et al., 2014). The observed increase in PGC1α 
mediated NRF2 expression in HFD fed mice due to antimiR-128 treat-
ment can promote the expression of antioxidant genes (Cheng et al., 
2013). These results suggest that HFD induced impairment in mito-
chondrial biogenesis and dysfunction of skeletal muscle can be reversed 
by silencing endogenous miR-128 levels, although further studies in this 
area are warranted. 

In conclusion, we found that miR-128 directly targets PGC1α and 
NDUFS4, which is a key regulator of mitochondrial biogenesis and 
function. In parallel response, a reduced expression of the nuclear- 
encoded NRF1 and NRF2 has been observed. Endogenous miR-128 is 
shown to regulate the balance between mitochondrial dynamics 
(morphology, quantity, and size) by upregulating fission (increased 
DRP1 expression) and downregulating fusion (decreased MFN1, MFN2, 
and OPA1 expression) of mitochondria. Further, miR-128 is shown to 
reduce the transcription and translation of mitochondrial DNA 
(decreased expression of TFAM). Upregulation of mitochondrial 
biogenesis and dynamics have great implications in maintaining a 
healthy mitochondrial pool that can be crucial in preventing age-related 
muscle loss (Hood et al., 2019). Fig. 8 shows the proposed mechanism of 
action of miR-128 inhibition in C2C12 myoblasts. AntimiR-128 based 
drugs may have potential therapeutic implications in reversing mito-
chondrial biogenesis and function. 
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A B S T R A C T   

Imbalance in glucose metabolism and insulin resistance are two primary features of type 2 diabetes/diabetes 
mellitus. Its etiology is linked to mitochondrial dysfunction in skeletal muscle tissue. The mitochondria are vital 
organelles involved in ATP synthesis and metabolism. The underlying biological pathways leading to mito-
chondrial dysfunction in type 2 diabetes can help us understand the pathophysiology of the disease. In this study, 
the mitochondrial gene expression dataset were retrieved from the GSE22309, GSE25462, and GSE18732 using 
Mitocarta 3.0, focusing specifically on genes that are associated with mitochondrial function in type 2 disease. 
Feature selection on the expression dataset of skeletal muscle tissue from 107 control patients and 70 type 2 
diabetes patients using the XGBoost algorithm having the highest accuracy. For interpretation and analysis of 
results linked to the disease by examining the feature importance deduced from the model was done using SHAP 
(SHapley Additive exPlanations). Next, to comprehend the biological connections, study of protein-protien and 
mRNA-miRNA networks was conducted using String and Mienturnet respectively. The analysis revealed BDH1, 
YARS2, AKAP10, RARS2, MRPS31, were potential mitochondrial target genes among the other twenty genes. 
These genes are mainly involved in the transport and organization of mitochondria, regulation of its membrane 
potential, and intrinsic apoptotic signaling etc. mRNA-miRNA interaction network revealed a significant role of 
miR-375; miR-30a-5p; miR-16-5p; miR-129-5p; miR-1229-3p; and miR-1224-3p; in the regulation of mito-
chondrial function exhibited strong associations with type 2 diabetes. These results might aid in the creation of 
novel targets for therapy and type 2 diabetes biomarkers.   

1. Introduction 

Type 2 diabetes is described as a chronic metabolic disorder by world 
health organization (WHO) marked with high levels of blood glucose 
that, over time, causes substantial harm to several organs of the body 
such as pancreas, heart, eyes, blood vessels, kidneys, skeletal muscle 
(Stumvoll et al., 2005). Obesity, physical inactivity, improper nutrition, 
and genetic predisposition are all strongly linked to type 2 diabetes. An 
estimation done in 2019 by the international diabetes federation (IDF) 
states ~ 470 million individuals were predicted to have this disorder. 
This figure is expected to increase to 700 million approximately by the 
year 2045, highlighting the urgent need for preventative measures and 
efficient management techniques (Glovaci et al., 2019). In healthy 

people, the largest metabolic organ, and the primary site for the ab-
sorption of glucose is skeletal muscle. Therefore, skeletal muscle health 
is crucial for maintaining the body’s homeostasis of glucose. Insulin 
stimulated absorption and uptake of glucose is associated with insulin 
signaling in the skeletal muscle are considerably hampered in insulin- 
resistant conditions (Abdul-Ghani et al., 2006). Skeletal muscle mass 
is lost due to an imbalance between the protein production rate and its 
degradation rate. Muscle loss and inactivity combined with catabolic 
conditions can lower quality of life, limit the ability to do everyday 
tasks, and ultimately increase mortality. Degradation of proteins in a cell 
is caused by several pathways like proteasome via ubiquitin, autophagy, 
and caspases mediated proteolytic pathway, which contribute to the 
wasting of muscles (Lecker et al., 2006). To control insulin signaling in 
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skeletal muscle cells, mitochondria play an essential role. First, the 
translocation of glucose by GLUT4 is done by supplying ATP and other 
metabolic intermediates to the plasma membrane where mitochondria 
supports the insulin stimulated uptake of glucose (Yap et al., 2020). In 
type 2 diabetes, impaired glucose absorption and utilization can be 
caused by impaired mitochondrial function, which can result in 
decreased ATP generation. Second, secondary messengers produced in 
the form of reactive oxygen species (ROS) and nitric oxide (NO) by 
mitochondria contribute to the facilitation of insulin-mediated absorp-
tion of glucose. Additionally, Diacylglycerols (DAGs) and ceramides 
accumulate as a result of the decreased ability of mitochondria to 
oxidize fatty acids under type 2 diabetic conditions. Alterations in 
mitochondrial dynamics, such as fission and fusion events, can result 
from mitochondrial dysfunction in skeletal muscle (Leenders et al., 
2013; Cea et al., 2023). 

Increasing literature evidence points towards the involvement of 
non-coding microRNAs, in regulating the process of protein anabolism 
as well as catabolism pathways in skeletal muscle by targeting the re-
gions either in the 3′ UTR; 5′ UTR; or CDS of the mRNA (Kotagama and 
McJunkin, 2024). Dysregulated miRNA expression can be a factor in the 
mitochondrial dysfunction seen in the skeletal muscle of patients with 
type 2 diabetes. Numerous miRNAs have been found to be important 
regulators of protein involved in oxidative stress and mitochondrial 
activity in skeletal muscle (Zhu et al., 2023). The molecular mechanisms 
underlying the disease can be better understood by understanding the 
crosstalk between miRNA and genes responsible for mitochondrial 
biogenesis and function in the skeletal muscle. Clinical research and 
patient care have been completely transformed by high-throughput gene 
expression data. The identification of underlying mechanisms involved 
in cancer, metabolic disorders like obesity and diabetes, or in drug 
development is done by analyzing the gene expression to examine the 
associated biological functions. With the development of new technol-
ogies like RNA-seq and transcriptome arrays provided by various plat-
forms for example agilent and affymetrix, analysts now have a wide 
range of options for studying distinct gene expression (Painter et al., 
2013). However, it has been difficult to analyze humongous amounts of 
data. Also, according to Vescovo et al., varied platforms and method-
ologies can produce varied outcomes (Del Vescovo et al., 2013). A 
branch of computer science known as machine learning (ML) uses data- 
driven techniques to identify patterns and anticipate behaviors (Nelson 
et al., 2020). The identification of hidden patterns in type 2 diabetes risk 
variables are possible use for prediction on the basis of machine learning 
algorithm (Moon et al., 2021). For the prediction of underlying bio-
logical processes or biomarkers, a variety of ML models have been used, 
including logistic regression, random forests, artificial neural networks, 
k-nearest neighbors, support vector, decision trees, and extreme 
gradient boosting (XGBoost) (Hong et al., 2020). A common method 
used for determining the gene expression and whether the regulation is 
connected to that particular disease is differential expression analysis. It 
identifies quantifiable shifts in expression levels of the experimental 
group compared to the control group using a statistical method but in 
disciplines including data analysis of omics and sequencing where they 
have demonstrated exceptional execution, deep machine learning have 
seen a rise in popularity in recent years (Hong et al., 2020). 

This paper proposes the use of application of machine learning 
interpretation method “Shapley additive explanation” with more 
comprehensiveness and explicability to highlight the importance fea-
tures in gene expression data related to type 2 diabetes. The majority of 
machine learning models produce outstanding results in regards of its 
accuracy and prediction power without any explanations that how they 
reached to the prediction generally known as “Black box” of the model, 
and now these models are more interpretable and can be explained with 
the use of XAI (eXpainable Artificial Intelligence) (Anguita-Ruiz et al., 
2020). A few of the XAI frameworks that try to access this decision 
making of the ML which is a black box and explain their working are 
Local Interpretable Model-agnostic Explanation also known as LIME, 

SHAP, AIX360, Skaters, and ELI5. SHAP and LIME are the most used and 
consistent with any machine learning model. Early detection of patients 
with high-risk of type 2 diabetes, disease prevention, and risk stratifi-
cation is essential. In the current study, we are focusing on the skeletal 
muscle tissue specifically targeting the genes responsible for mito-
chondrial homeostasis by applying XGBoost algorithm to train the ML 
model in type 2 diabetes. These models can process a large amount of 
data and can predict new patterns compared to techniques used previ-
ously. In Addition, the mRNA-miRNA interaction network analysis is 
done to identify the non-coding biomarkers. These complex gene regu-
lation networks implicated in type 2 diabetes can also be fully under-
stood by deciphering the protein–protein interactions linked to these 
genes, opening new research directions and possibly paving the way for 
new therapeutic strategies. 

2. Material and methods 

2.1. Data retrieval and processing 

Publicly available studies exploring mRNA expression profiles of the 
human skeletal muscle tissue suffering from type 2 diabetes were 
identified from the GEO database, NCBI (Barrett et al., 2013). Excluding 
any treatments or other conditions, a large sample size served as a guide 
for choosing the gene expression datasets. To include a significant 
number of datapoints in the analysis including both control and type 2 
diabetes patient samples, preference was given to these top three 
expression profile GSE IDs in Table 1. For the conditions, we were able to 
extract pre-processed data with accession IDs GSE22309 (20 control 
patients and 15 type 2 diabetes patients) (Wu et al., 2007); GSE25462 
(40 control patients and 10 type 2 diabetes patients) (Jin et al., 2011), 
and GSE18732 (47 control patients and 45 type 2 diabetes patients) 
(Gallagher et al., 2010). We have performed log 2 transformation and 
quantile normalization after combining these three datasets. The sam-
ples in the dataset were classified as control samples (107) and type 2 
diabetic samples (70). Common genes (5762 genes) across the three 
datasets were identified. MitoCarta3.0 focuses on proteins involved in 
mitochondrial homeostasis and this database contains 1136 human 
genes. This list of genes was retrieved from MitoCarta3.0 (http://www. 
broadinstitute.org/mitocarta) (Rath et al., 2021). Using the Venny 2.1.0 
tool, common mitochondrial genes were identified between the datasets 
with all samples and MitoCarta3.0 (Fig. 1). 

2.2. ML model and testing 

A ML model train to unravel similar patterns in a dataset using 
different algorithm, and this supervised model is then used to predict 
features in a new dataset (Cordova et al., 2023). XGBoost, because of its 
scalability, is leading the Kaggle competition for structured data and 
applied machine learning. The performance and speed of gradient- 
boosted decision trees (GBM) is increased and were extended using 
XGBoost. It has consistently performed better than most other ML 
techniques since its introduction, surpassing traditional decision trees 
(boosting) and other models (Meena and Hasija, 2022; Kumar and Das, 
2023). Samples were divided into two different sets, that is training and 
testing sets randomly in an 80:20 percent ratio. The training set 
comprising of 80 % random expression data was used to train the 
XGBoost model. The Scikit-learn library was used to build the model 
(Pedregosa et al., 2012). The performance of the model was assessed 
using the remaining data as a test set. This test set was used to assess the 
model’s accuracy and the confusion matrix was evaluated. 

2.3. Interpreting the ML model using XAI 

In contrast, with ML models it is difficult to understand the steps 
directing the decision process of the model. It is generally a “black box,” 
where even the analysts are unable to explain how an artificial 
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intelligence came to a particular choice. XAI is a way to put social right 
to the explanation into practice (Savage, 2022). Here, the classifiers 
were able to generate both a global and personal interpretation of the 
anticipated outcome thanks to the SHAP approach, which was devel-
oped from cooperative game theory (Model development and valida-
tion) (Li et al., 2021). The Python SHAP library was used to conduct the 
XAI analysis on the trained XGBoost model. We determined the top 20 
genes with high SHAP values as features. We then cross-validated and 
assessed the performance of these genes on the newly trained model and 
compared them to the performance of the previous training set. Addi-
tionally, we also examined the expression of each gene based on the 
combined expression data of control and patient samples and an un-
paired t-test was applied using GraphPad Prism Software (v.5.01 
GraphPad, Inc., CA, USA). A cutoff of p value < 0.05, which was used to 

determine whether genes were statistically significant. 

2.4. Protein-protein network analysis 

Protein interaction network by giving an input list of the top 20 genes 
obtained by SHAP values to identify the role and interaction network of 
the proteins involved in mitochondrial homeostasis was done using 
String version 11.5 (https://string-db.org/) (Szklarczyk et al., 2021). 
Medium confidence of 0.4 was selected for the interaction score and a 
significance of p < 0.05. The k-means clustering was applied to the 
network for identifying the genes in similar complexes with significant 
biological functionality. 

Table 1 
Details of the studies taken from the GEO database.  

GEO ID Disease Organism Tissue Platform Experimental Design Data Preprocessing 

GSE22309 Type 2 
Diabetes 

Homo 
sapiens 

Skeletal 
Muscle 

Affymetrix Human Genome 
U95A Array 

20 control patients and 15 type 
2 diabetes patients 

Quantile normalization and RMA or MAS5.0 
(Microarray Suite version 5.0) implemented. 

GSE25462 Type 2 
Diabetes 

Homo 
sapiens 

Skeletal 
Muscle 

Affymetrix Human Genome 
U133 Plus 2.0 Array 

40 control patients and 10 type 
2 diabetes patients 

MAS5.0 algorithm was implemented 

GSE18732 Type 2 
Diabetes 

Homo 
sapiens 

Skeletal 
Muscle 

Affymetrix GeneChip Human 
Genome U133 Plus 2.0 Array 

47 control patients and 45 type 
2 diabetes patients 

Normalized using RMA and MAS 5.0  

Fig. 1. Schematics representing the proposed method of training data combined with explainable AI. GSE22309, GSE25462, and GSE18732 expression data were 
retrieved from NCBI GEO database. Samples were classified as Control and Type 2 Diabetes. Common genes (5762) shared by the three datasets were determined. 
409 overlapping genes from the input list of 1136 mitochondrial genes from the Mitocarta 3.0 database and a list of common genes from the three datasets were 
identified using venny tool. Model training was done using XGboost algorithm and results are interpreted by SHapley Additive exPlanations. Further, functional 
characterization of involvement of the genes is done by protein-protien interaction, pathway enrichment analysis, and miRNA-mRNA network analysis. 
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2.5. Pathway enrichment analysis 

Pathway enrichment analysis for the top genes was performed using 
the GO ontology database and KEGG database. The genes were mapped 
against Homo Sapiens as reference species and the analysis encompassed 
the following domain: biological process; cellular component; and mo-
lecular function. Significant pathways were taken into consideration by 
applying a limit of p value < 0.05. 

2.6. mRNA-miRNA interaction network analysis 

miRNet is a miRNA-centric network visualization and analytical 
software to gather functional insights. The potential mRNA-miRNA 
network was predicted by using miRNet 2.0 (https://www.mirnet.ca/) 
(Chang and Xia, 2023). The size of the shapes depicts the number of 
interactions based on degree and betweenness. Significant miRNAs with 
maximum target features and mRNA-miRNA interaction based on strong 
evidence were identified using the MIENTURNET platform (http://u 
server.bio.uniroma1.it/apps/mienturnet/) (Licursi et al., 2019). For 
statistical significance, a cut-off of p value < 0.05 was used. The mRNA- 
miRNA network based on strong evidence was imported into Cytoscape 
3.8.0 software for visualization of the network (Shannon et al., 2003). 

3. Results 

3.1. Identification of genes responsible for mitochondrial function 
expressed in the skeletal muscle tissue of control and type 2 diabetic 
patients 

In total, thirty-six datasets were retrieved from the NCBI GEO by 
giving the input keywords ‘Diabetes + Skeletal Muscle’, Three different 

microarray datasets were identified based on that the dataset consists of 
clinical samples of skeletal muscle tissue from human patients. Pre- 
processed series matrix files of GSE22309, GSE25462, and GSE18732 
were retrieved, and the sample profiles from all three datasets were then 
integrated to create a single dataset. Samples were classified as Control 
and Type 2 Diabetes. Compared to the U133 Plus platform, the U95A 
platform covers a far fewer number of genes. Due to the variations in 
transcript coverage between the U133 Plus and U95A platforms, we’ve 
restricted our focus to the shared transcripts only. We ensured a fair 
comparison of gene expression patterns across all datasets by concen-
trating on the subset of genes that are covered by both platforms. All 
three datasets had 5762 common genes. We used data harmonization 
approaches that included normalization and batch effect correction 
procedures to promote more seamless integration of the datasets to 
reduce potential biases resulting from the use of two different platforms 
or experimental variation. Log2 transformation and Quantile normali-
zation were performed on this single file to normalize the expression 
data. Fig. 2A and 2B show the preprocessed data received and data after 
normalization. Next, the genes expressed for healthy mitochondrial 
function were retrieved by giving an input list of common genes from 
three datasets and 1136 genes from Mitocarta 3.0 database into the 
Venny 2.1.0 tool. We found 409 genes responsible for mitochondrial 
function were expressed in the skeletal muscle as depicted in the heat 
map of Fig. 2C of control and type 2 diabetic patients. 

3.2. Training of the machine learning model using XGboost algorithm 

The gene expression studies from the skeletal muscle tissue of control 
patients to that of type 2 diabetic patients to predict the genes altered to 
understand the mitochondrial pathophysiology of the disease using 
XGboost machine learning algorithms was the main goal of this study. 

Fig. 2. (A) Expression data before normalization was performed, (B) Expression data after Log2 transformation and Quantile normalization was performed, and (C) 
Heatmap of the mitochondrial genes identified after normalization from a single combined dataset (All three GEO expression profile) based on the Z-score scaling. 
The genes with Z-score < 0 have lower expression (Red) and genes with Z > 0 have higher expression (Green). It was derived from all the samples (control patients as 
well as patients suffering from type 2 diabetes). Genes without any significant expression are black with a Z-score of 0. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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The sample profiles containing the expression data of 409 mitochondrial 
genes were randomly divided into a ratio of 80:20. To train the model, 
the training set was given 80 % of data and the remaining comprises the 
test set that is of 20 %. Herein, the training set was used to train the 
model through the implementation of the Scikit-learn library. The model 
was then assessed by using the remaining data which is the test set. The 
confusion matrix in Fig. 3A was used to assess the test set and calculate 
the precision and accuracy of the machine learning model. The confu-
sion matrix constructed by the contingency table contains four separate 
sets of actual and anticipated values. The matrix’s grey squares depict 
the proportion of true positives represented as TP, black squares depict 
the proportion of false negatives and false positives represented as FN 
and FP respectively, whereas white squares depict the proportion of true 
negatives represent as TN. Precision is equal to the number of TP divided 
by the total of TP and FP. The accuracy is calculated is done by dividing 
the total of TP and TN to the total of TP, TN, FP, and FN. The Precision is 
77.7 % and the Accuracy is 80.55 % for our combined dataset of skeletal 
muscle tissue of control vs type 2 diabetic patients. 

3.3. Prediction of the mitochondrial genes using explainable AI 

SHAP package in Python helps in identifying characteristics that 
have a significant impact on the confidence score of model’s prediction. 
This analysis is based on a decision-making machine learning model. 
Thus, we next identified the genes with a significant impact on mito-
chondrial health in skeletal muscle tissue in type 2 diabetes. The global 
feature plot is an average of the SHAP values per feature by gene of 
importance in decreasing order and is represented as a bar plot in 
Fig. 4A. First, 3-Hydroxybutyrate Dehydrogenase 1 (BDH1) is required 
for optimal enzymatic activity, to form a homotetrameric lipid of the 
mitochondrial membrane enzyme regulating ketosis, worsens the heart 
condition in db/db mice (Thai et al., 2021). Second, tyrosyl-tRNA syn-
thetase 2 (YARS2) catalyzes tyrosine attachment to tRNA (Tyr) in 
mitochondria. In vivo, studies show that ablation of YARS2 is known to 
destabilize the ETC complexes and their activity in the oxidative phos-
phorylation process in type 2 diabetic skeletal muscle (López-Soldado 
et al., 2023). A-kinase anchoring proteins (AKAPs) are scaffold proteins 
that bind to the PKA subunits and other signaling enzymes in close 
proximity to their target substrates. They are significantly responsible 
for controlling the intracellular distribution and substrate selectivity of 
PKA (Ando et al., 2018). Mitochondrial aminoacyl-tRNA synthetases is 
known to decrease in type 2 diabetic muscle by downregulating the 
OXPHOS subunits whereas RARS2 is not much explored (López-Soldado 
et al., 2023). The ribosomal protein Imogen 38, is a potential target for 
autoimmune assault in type 1 diabetes, is found to be encoded by 
MRPS31 (Arden et al., 1996). Literature evidence is present for the 

association of MRPS31 with type 2 diabetes but is based on bioinfor-
matics/computational analysis (Savas et al., 2011). In white adipose 
tissue (WAT), decrease of EXOG is correlated with an increase in the 
expression of uncoupling protein-1 (UCP1) and peroxisome proliferator- 
activated receptor-coactivator-1 alpha (PGC1α), which corresponds 
with the emergence of brown adipocyte-like cells scattered throughout 
white adipocytes and also, linked to improved glucose tolerance and 
decreased fat mass (Pardo et al., 2016). 

Aged rats with diabetes and adipose tissue from obese and T2D pa-
tients, have decreased expression of HSP40/DNAJ, a small class of heat 
shock protein (Gupte et al., 2008; Abu-Farha et al., 2015; Abubaker 
et al., 2013). UCP3 is known to mediate energy consumption by 
uncoupling, particularly in metabolism of fatty acids, and try to rescue 
the mitochondria from oxidative stress carried on by lipids. Patients 
with type 2 diabetes and prediabetic people both have lower levels of 
UCP3 protein (Schrauwen et al., 2006; Liu et al., 2013). To insert the 
proper complementary base, DNA polymerase beta (POLB) bridges the 
gap and forms a complex with DNA ligase 3 (LIG3) and X-ray repair 
cross-complementing protein 1 (XRCC1). While DNA damage and 
oxidative stress parameters increase in T2DM, it has been observed that 
the DNA repair system is downregulated (Grindel et al., 2016). STOML2 
is a cristae regulatory protein, generally interacts with NDUFS4 (subunit 
of Respiratory complex 1). In diabetic kidney tissue, the decreased levels 
of STOML2 and NDUFS4 leads to inappropriate cristae formation, res-
piratory super complexes assembly, and decreased mitochondrial 
respiration and dynamics (Mitsopoulos et al., 2015). LDHB, lactate de-
hydrogenase is essential for appropriate energy homeostasis as it cata-
lyzes the anaerobic glycolytic process that turns pyruvate into lactate 
and is downregulated in type 2 diabetic muscle tissue compared to 
control patients (Palsgaard et al., 2009). TIMM8A is associated with 
inner membrane translocation to contribute in mitochondrial function 
and is downregulated in type 2 diabetes (Dubé et al., 2020). Drp1 is co- 
expressed with pro-apoptotic proteins (like Bax) from the Bcl-2 family 
members near the fission site where Cyt c is released, a crucial first step 
in caspase 3 activation that ultimately leads to the induction of apoptosis 
in diabetes (Wang et al., 2023). The downregulation of SLC25A42 (a 
Coenzyme A importer) in islets isolated from βV59M diabetic mice, in 
which glycolysis was reduced and mitochondrial metabolism was 
significantly impaired, was discovered through extensive transcriptomic 
and proteomic profiling in conjunction with mitochondrial function 
analysis (Khin et al., 2023). Relative to age- and sex-matched controls, 
expression of LIAS (Lipoic acid synthase) is considerably lower in tissues 
from animal models of diabetes and obesity (Padmalayam et al., 2009). 
While RARS2, CMC4 (C-X9-C Motif Containing 4), TIMM17A (Translo-
case of Inner Mitochondrial Membrane 17A), MTG1(Mitochondrial 
Ribosome Associated GTPase 1), and VWA8 (Von Willebrand Factor A 

Fig. 3. Confusion matrix from the test set used to assess the ML model. The matrix’s grey squares represent the proportion of TP, black squares represent the 
proportion of FP and FN, and white squares represent the proportion of TN. TP: True Positive; TN: True Negative; FN: False Negative; and FP: False Positive. 
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Domain Containing 8) are explored in various disease other than type 2 
diabetes and further research in this area is warranted. 

Furthermore, we also plotted the SHAP summarization plot to visu-
alize the impact of the feature in relation to the value and target pre-
diction. As shown in Fig. 4B, the SHAP summarization plot depicts the 
‘BDH1 gene’ has a negative impact as shown on the x-axis. 

Genes with high importance scores are considered more impactful in 
the context of the disease, irrespective of whether they are upregulated 
or downregulated. Based on this feature’s importance scores, the top 20 
genes that have a significant impact on the disease. These genes could be 
candidates for further study or as potential therapeutic targets. Addi-
tionally, to characterize the significance and importance of the genes 
that came out as the features, we calculated the overall relative 
expression and p value as shown in Table 2 from the combined single 
dataset created after normalization from three GEO expression profiles 

using GraphPad Prism 8. Surprisingly, we found that all top genes 
contributing toward mitochondrial homeostasis were significantly 
downregulated except for UCP3 and BAX as shown in Fig. 5. We did find 
upregulated genes in the current study, but they were not among the top 
20 SHAP values. On the contrary, several genes were upregulated/ 
downregulated in the T2D muscle samples in their respective studies but 
were not identified while analyzing the combined dataset with the 
applied model. 

3.4. Gene set analysis and associated pathways of the identified key genes 

The method of functional enrichment analysis is frequently used to 
recognize similarities within huge biological datasets. Functional 
enrichment analysis of gene expression data is used in the field of 
biomedicine to discover the mechanism of the disease. To group regu-
lated gene expression profiles into clear functional categories, numerous 
techniques have been created. The selection of these functional cate-
gories from material found in the literature often reflects signaling or 
metabolic pathways. String version 11.5 database was used for the 
protein–protein network of the genes retrieved based on SHAP values to 
understand their role in the disease. To this network, we applied k- 
means clustering and the network was divided into three clusters; 23 
genes in cluster 1 which is red in color; 11 genes in cluster 2 which is 
green in color; and 6 genes in cluster 3 which is blue in color as depicted 
in Fig. 6. Furthermore, analysis of this network suggested that the 
maximum number of genes are involved significantly in biological 
processes like mitochondrial protein transport (import/export), mem-
brane organization, maintaining mitochondrial membrane potential, the 
release of apoptosis signaling factors, and base-excision repair, DNA 
ligation as shown in Table 3. Nuclear genes in these pathways regulates 
several nuclear and mitochondrial import, export, and assembly path-
ways resulting in multimeric proteins requirement for the mitochondrial 
biogenesis (Jornayvaz and Shulman, 2010). Impaired glucose meta-
bolism and mitochondrial dysfunction can cause membrane potential to 
collapse, which has an impact on ATP synthesis and might be a factor in 
insulin resistance (Montgomery and Turner, 2015). The key participants 
in apoptosis (programmed cell death) are mitochondria. The loss of 
pancreatic beta cells in T2D may be related to dysregulation of 

Fig. 4. The SHAP Summary plot depicts the top significant genes and their effects on Type 2 diabetes patients vs Control. (A) The bar plot represents the absolute 
average impact of the genes. (B) Summary plot representing the SHAP values and impact of the genes. On the y-axis, identified genes are ordered in decreasing order 
of feature relevance. It is shown on the x-axis whether a gene’s expression is linked to higher or lower prediction, illustrating the gene’s influence on the output of the 
model. The color that designates whether an individual gene’s impact on an observation is statistically significant is in pink and minimal gene’s impact is depicted in 
blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Results of each identified gene’s statistical analysis from the combined dataset.  

Control vs Type 2 diabetes 

Genes Regulation p-value 

BDH1 Downregulated 0.0001 
YARS2 Downregulated 0.0017 
AKAP10 Downregulated 0.0082 
RARS2 Downregulated 0.0031 
MRPS31 Downregulated 0.0002 
AHCYL1 Downregulated 0.0306 
EXOG Downregulated 0.0003 
DNAJC4 Downregulated 0.0001 
UCP3 Downregulated ns 
POLB Downregulated 0.0120 
STOML2 Downregulated 0.0001 
LDHB Downregulated 0.0001 
CMC4 Downregulated 0.0008 
TIMM8A Downregulated 0.0003 
BAX Downregulated ns 
SLC25A42 Downregulated 0.0010 
VWA8 Downregulated 0.0010 
TIMM17A Downregulated 0.0007 
MTG1 Downregulated 0.0007 
LIAS Downregulated 0.0002  
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Fig. 5. Each bar graph represents the expression of the identified mitochondrial gene after applying the machine learning framework from the combined dataset. 
SEM (standard error mean) has been plotted for each gene. For statistical significanc, a cut-off level of 0.05 was set for the p value. p value < 0.05: *; p value < 0.01: 
**; p value < 0.001: ***; and n.s.: not significant. 

Fig. 6. The protein–protein interactions (PPIs) network is built using String database with the identified mitochondrial genes as SHAP features. Three clusters were 
identified within this network by applying k-means clustering: red cluster, green cluster, and blue cluster. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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Table 3 
Functional enrichment analysis of the identified key genes from SHAP values 
(GO ontology).  

Biological Processes 

#term ID term description p-value matching proteins in 
network (labels) 

GO:0072655 Establishment of protein 
localization to 
mitochondrion 

1.48E- 
15 

TIMM21,TIMM13, 
TIMM10,GRPEL1, 
TIMM44,BAX,PAM16, 
BID,PMAIP1, 
TIMM17A,TIMM50, 
TIMM23 

GO:0006839 Mitochondrial transport 2.00E- 
15 

TIMM21,TIMM13, 
TIMM10,GRPEL1, 
TIMM44,BAX,PAM16, 
BID,UCP3,PMAIP1, 
STOML2,TIMM17A, 
BCL2,TIMM50, 
TIMM23 

GO:0007005 Mitochondrion organization 2.00E- 
15 

TIMM21,TIMM13, 
TIMM10,GRPEL1, 
TIMM44,BAX,HSPA9, 
PAM16,BID,PMAIP1, 
STOML2,BECN1, 
PARP1,TIMM17A, 
LIG3,BCL2,TIMM50, 
TIMM23 

GO:0006626 Protein targeting to 
mitochondrion 

1.84E- 
13 

TIMM21,TIMM13, 
TIMM10,GRPEL1, 
TIMM44,PAM16,BID, 
TIMM17A,TIMM50, 
TIMM23 

GO:0030150 Protein import into 
mitochondrial matrix 

1.16E- 
10 

TIMM21,GRPEL1, 
TIMM44,PAM16, 
TIMM17A,TIMM50, 
TIMM23 

GO:1990542 Mitochondrial 
transmembrane transport 

1.02E- 
09 

TIMM21,GRPEL1, 
TIMM44,PAM16, 
UCP3,STOML2, 
TIMM17A,TIMM50, 
TIMM23 

GO:0071806 Protein transmembrane 
transport 

1.55E- 
09 

TIMM21,GRPEL1, 
TIMM44,PAM16, 
TIMM17A,MCL1, 
TIMM50,TIMM23 

GO:0007006 Mitochondrial membrane 
organization 

4.97E- 
07 

TIMM13,TIMM10, 
BAX,HSPA9,BID, 
PMAIP1,BCL2, 
TIMM50 

GO:0001836 Release of cytochrome c 
from mitochondria 

2.11E- 
06 

BAX,BID,PMAIP1, 
BCL2,TIMM50 

GO:2001244 Positive regulation of 
intrinsic apoptotic signaling 
pathway 

3.47E- 
06 

BAX,BID,PMAIP1, 
BECN1,MCL1,BCL2 

GO:0006886 Intracellular protein 
transport 

4.67E- 
06 

TIMM21,TIMM13, 
TIMM10,GRPEL1, 
TIMM44,BAX,HSPA9, 
PAM16,BID,PMAIP1, 
TIMM17A,AHCYL1, 
TIMM50,TIMM23 

GO:0015031 Protein transport 1.05E- 
05 

TIMM21,TIMM13, 
TIMM10,GRPEL1, 
TIMM44,BAX,HSPA9, 
PAM16,BID,PMAIP1, 
TIMM17A,MCL1, 
AHCYL1,TIMM8A, 
TIMM50,TIMM23 

GO:0051881 Regulation of mitochondrial 
membrane potential 

1.05E- 
05 

BAX,BID,PMAIP1, 
STOML2,PARP1,BCL2 

GO:0046907 Intracellular transport 1.27E- 
05 

TIMM21,TIMM13, 
TIMM10,GRPEL1, 
TIMM44,BAX,HSPA9, 
PAM16,BID,PMAIP1, 
STOML2,BECN1, 
TIMM17A,AHCYL1, 
TIMM50,TIMM23  

Table 3 (continued ) 

Biological Processes 

#term ID term description p-value matching proteins in 
network (labels) 

GO:0071705 Nitrogen compound 
transport 

1.76E- 
05 

TIMM21,TIMM13, 
TIMM10,GRPEL1, 
TIMM44,BAX,HSPA9, 
PAM16,BID,PMAIP1, 
SLC25A42,TIMM17A, 
MCL1,AHCYL1, 
TIMM8A,TIMM50, 
TIMM23 

GO:2001242 Regulation of intrinsic 
apoptotic signaling pathway 

2.45E- 
05 

BAX,BID,PMAIP1, 
BECN1,PARP1,MCL1, 
BCL2 

GO:0006288 Base-excision repair, DNA 
ligation 

7.46E- 
05 

XRCC1,POLB,LIG3 

GO:0051204 Protein insertion into 
mitochondrial membrane 

8.07E- 
05 

TIMM13,TIMM10, 
BAX,PMAIP1 

GO:0008104 Protein localization 0.00015 TIMM21,TIMM13, 
AKAP10,TIMM10, 
GRPEL1,TIMM44,BAX, 
HSPA9,PAM16,BID, 
PMAIP1,TIMM17A, 
MCL1,AHCYL1, 
TIMM8A,TIMM50, 
TIMM23 

GO:2001020 Regulation of response to 
DNA damage stimulus 

0.00016 XRCC1,BID,PNKP, 
PMAIP1,PARP1,MCL1, 
BCL2 

GO:0071702 Organic substance transport 0.00017 TIMM21,TIMM13, 
TIMM10,GRPEL1, 
TIMM44,BAX,HSPA9, 
PAM16,BID,PMAIP1, 
SLC25A42,TIMM17A, 
MCL1,AHCYL1, 
TIMM8A,TIMM50, 
TIMM23 

GO:0033036 Macromolecule localization 0.00019 TIMM21,TIMM13, 
AKAP10,TIMM10, 
GRPEL1,TIMM44,BAX, 
HSPA9,PAM16,BID, 
PMAIP1,STOML2, 
TIMM17A,MCL1, 
AHCYL1,TIMM8A, 
TIMM50,TIMM23 

GO:0055085 Transmembrane transport 0.00046 TIMM21,GRPEL1, 
TIMM44,BAX,PAM16, 
UCP3,SLC25A42, 
STOML2,TIMM17A, 
MCL1,BCL2,TIMM50, 
TIMM23 

GO:1901030 Positive regulation of 
mitochondrial outer 
membrane permeabilization 
involved in apoptotic 
signaling pathway 

0.00051 BAX,BID,PMAIP1, 
BCL2 

GO:2001233 Regulation of apoptotic 
signaling pathway 

0.00058 BAX,PAM16,BID, 
PMAIP1,BECN1, 
PARP1,MCL1,BCL2 

GO:0097190 Apoptotic signaling pathway 0.00061 POLB,BAX,BID, 
PMAIP1,MCL1,BCL2, 
TIMM50 

GO:0072321 Chaperone-mediated protein 
transport 

0.00082 TIMM13,TIMM10, 
TIMM8A 

GO:0051402 Neuron apoptotic process 0.00091 POLB,BAX,BID,BCL2 
GO:0006974 Cellular response to DNA 

damage stimulus 
0.00097 XRCC1,POLB,BAX, 

BID,PNKP,PMAIP1, 
PARP1,MCL1,LIG3, 
BCL2 

GO:0032543 Mitochondrial translation 0.0011 PTCD3,MRPS31, 
YARS2,RARS2, 
MRPS33 

GO:0090199 Regulation of release of 
cytochrome c from 
mitochondria 

0.0011 BAX,PAM16,BID, 
PMAIP1 

(continued on next page) 
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Table 3 (continued ) 

Biological Processes 

#term ID term description p-value matching proteins in 
network (labels) 

GO:0097345 Mitochondrial outer 
membrane permeabilization 

0.0016 BAX,BID,PMAIP1 

GO:0010332 Response to gamma 
radiation 

0.0018 POLB,BAX,PARP1, 
BCL2 

GO:0006915 Apoptotic process 0.0028 POLB,EXOG,BAX,BID, 
PMAIP1,BECN1, 
PARP1,MCL1,BCL2, 
TIMM50 

GO:0006996 Organelle organization 0.0031 TIMM21,TIMM13, 
TIMM10,XRCC1, 
GRPEL1,TIMM44,BAX, 
HSPA9,PAM16,BID, 
PMAIP1,STOML2, 
BECN1,PARP1, 
TIMM17A,LIG3,BCL2, 
TIMM50,TIMM23 

GO:0008630 Intrinsic apoptotic signaling 
pathway in response to DNA 
damage 

0.0034 POLB,BAX,MCL1,BCL2 

GO:0097193 Intrinsic apoptotic signaling 
pathway 

0.0034 POLB,BAX,PMAIP1, 
MCL1,BCL2 

GO:0033554 Cellular response to stress 0.0047 XRCC1,POLB,BAX, 
HSPA9,BID,PNKP, 
PMAIP1,STOML2, 
BECN1,PARP1,MCL1, 
LIG3,BCL2 

GO:1903518 Positive regulation of single 
strand break repair 

0.0047 XRCC1,PARP1 

GO:0006810 Transport 0.0055 TIMM21,TIMM13, 
TIMM10,GRPEL1, 
TIMM44,BAX,HSPA9, 
PAM16,BID,UCP3, 
PMAIP1,SLC25A42, 
STOML2,BECN1, 
TIMM17A,MCL1, 
AHCYL1,TIMM8A, 
BCL2,TIMM50, 
TIMM23 

GO:1900740 Positive regulation of 
protein insertion into 
mitochondrial membrane 
involved in apoptotic 
signaling pathway 

0.0057 BID,PMAIP1,BCL2 

GO:0090200 Positive regulation of release 
of cytochrome c from 
mitochondria 

0.0061 BAX,BID,PMAIP1 

GO:0006808 Regulation of nitrogen 
utilization 

0.0071 BAX,BCL2 

GO:0010836 Negative regulation of 
protein ADP-ribosylation 

0.0071 XRCC1,PNKP 

GO:0090296 Regulation of mitochondrial 
DNA replication 

0.0071 STOML2,LIG3 

GO:0010821 Regulation of 
mitochondrion organization 

0.0086 BAX,PAM16,BID, 
PMAIP1,BCL2 

GO:0043029 T cell homeostasis 0.0092 BAX,PMAIP1,BCL2 
GO:0097191 Extrinsic apoptotic signaling 

pathway 
0.0092 BAX,BID,MCL1,BCL2 

GO:0008625 Extrinsic apoptotic signaling 
pathway via death domain 
receptors 

0.0098 BAX,BID,BCL2 

GO:0048872 Homeostasis of number of 
cells 

0.0098 POLB,BAX,HSPA9, 
PMAIP1,BCL2 

GO:0097192 Extrinsic apoptotic signaling 
pathway in absence of ligand 

0.0098 BAX,MCL1,BCL2 

GO:2001022 Positive regulation of 
response to DNA damage 
stimulus 

0.0108 XRCC1,PNKP,PMAIP1, 
PARP1 

GO:0016043 Cellular component 
organization 

0.0118 TIMM21,TIMM13, 
PTCD3,TIMM10, 
XRCC1,GRPEL1, 
TIMM44,EXOG,BAX, 
HSPA9,MRPS31, 
PAM16,BID,PMAIP1,  

Table 3 (continued ) 

Biological Processes 

#term ID term description p-value matching proteins in 
network (labels) 

STOML2,BECN1, 
PARP1,TIMM17A, 
LIG3,MRPS33,BCL2, 
TIMM50,TIMM23 

GO:0006289 Nucleotide-excision repair 0.0126 XRCC1,PNKP,PARP1, 
LIG3 

GO:0042149 Cellular response to glucose 
starvation 

0.0149 PMAIP1,BECN1,BCL2 

GO:0043504 Mitochondrial DNA repair 0.0156 PARP1,LIG3 
GO:0080135 Regulation of cellular 

response to stress 
0.0156 XRCC1,BAX,BID, 

PNKP,PMAIP1,PARP1, 
MCL1,BCL2 

GO:2001234 Negative regulation of 
apoptotic signaling pathway 

0.0158 BAX,PAM16,BID, 
MCL1,BCL2 

GO:0001844 Protein insertion into 
mitochondrial membrane 
involved in apoptotic 
signaling pathway 

0.019 BAX,PMAIP1 

GO:0006979 Response to oxidative stress 0.019 LIAS,XRCC1,PNKP, 
UCP3,PARP1,BCL2 

GO:0007007 Inner mitochondrial 
membrane organization 

0.0197 TIMM13,TIMM10, 
HSPA9 

GO:0044271 Cellular nitrogen compound 
biosynthetic process 

0.0227 PTCD3,POLB,BAX, 
MRPS31,YARS2,PNKP, 
STOML2,PARP1, 
RARS2,LIG3,MRPS33 

GO:0045039 Protein insertion into 
mitochondrial inner 
membrane 

0.0228 TIMM13,TIMM10 

GO:1903376 Regulation of oxidative 
stress-induced neuron 
intrinsic apoptotic signaling 
pathway 

0.0228 PARP1,MCL1 

GO:0048087 Positive regulation of 
developmental 
pigmentation 

0.0266 BAX,BCL2 

GO:0090150 Establishment of protein 
localization to membrane 

0.0266 TIMM13,TIMM10, 
BAX,BID,PMAIP1 

GO:0006950 Response to stress 0.029 AKAP10,LIAS,XRCC1, 
POLB,BAX,HSPA9,BID, 
PNKP,UCP3,PMAIP1, 
STOML2,BECN1, 
PARP1,MCL1,LIG3, 
BCL2,DNAJC4 

GO:0010918 Positive regulation of 
mitochondrial membrane 
potential 

0.0352 BID,STOML2 

GO:2001236 Regulation of extrinsic 
apoptotic signaling pathway 

0.039 BID,PMAIP1,MCL1, 
BCL2 

GO:1902510 Regulation of apoptotic DNA 
fragmentation 

0.0403 BAX,PAM16 

GO:0010917 Negative regulation of 
mitochondrial membrane 
potential 

0.0456 BAX,PMAIP1 

GO:0051179 Localization 0.0456 TIMM21,TIMM13, 
AKAP10,TIMM10, 
GRPEL1,TIMM44,BAX, 
HSPA9,PAM16,BID, 
UCP3,PMAIP1, 
SLC25A42,STOML2, 
BECN1,TIMM17A, 
MCL1,AHCYL1, 
TIMM8A,BCL2, 
TIMM50,TIMM23 

GO:0045739 Positive regulation of DNA 
repair 

0.0494 XRCC1,PNKP,PARP1 

Molecular Processes 
#term ID term description p-value matching proteins in 

network (labels) 
GO:0051434 BH3 domain binding 0.0021 BAX,MCL1,BCL2 
GO:0008320 Protein transmembrane 

transporter activity 
0.0095 TIMM17A,MCL1, 

TIMM23 

(continued on next page) 
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Table 3 (continued ) 

Biological Processes 

#term ID term description p-value matching proteins in 
network (labels) 

GO:0051087 Chaperone binding 0.0286 TIMM10,GRPEL1, 
TIMM44,BAX 

GO:0015450 P-P-bond-hydrolysis-driven 
protein transmembrane 
transporter activity 

0.0406 TIMM17A,TIMM23 

Cellular Components 
#term ID term description p-value matching proteins in 

network (labels) 
GO:0005739 Mitochondrion 1.16E- 

29 
TIMM21,TIMM13, 
AKAP10,PTCD3, 
TIMM10,LIAS, 
GRPEL1,TIMM44, 
EXOG,BAX,HSPA9, 
MRPS31,PAM16,BID, 
YARS2,MTG1,PNKP, 
UCP3,PMAIP1, 
SLC25A42,STOML2, 
BECN1,PARP1, 
TIMM17A,MCL1, 
CMC4,RARS2, 
TIMM8A,LIG3,VWA8, 
BDH1,MRPS33,BCL2, 
TIMM50,TIMM23 

GO:0005740 Mitochondrial envelope 9.81E- 
26 

TIMM21,TIMM13, 
PTCD3,TIMM10, 
GRPEL1,TIMM44, 
EXOG,BAX,HSPA9, 
MRPS31,PAM16,BID, 
MTG1,UCP3,PMAIP1, 
SLC25A42,STOML2, 
BECN1,TIMM17A, 
MCL1,CMC4,TIMM8A, 
BDH1,MRPS33,BCL2, 
TIMM50,TIMM23 

GO:0031966 Mitochondrial membrane 6.83E- 
25 

TIMM21,TIMM13, 
PTCD3,TIMM10, 
GRPEL1,TIMM44, 
EXOG,BAX,HSPA9, 
MRPS31,PAM16,BID, 
MTG1,UCP3,PMAIP1, 
SLC25A42,STOML2, 
BECN1,TIMM17A, 
MCL1,TIMM8A,BDH1, 
MRPS33,BCL2, 
TIMM50,TIMM23 

GO:0031967 Organelle envelope 2.33E- 
22 

TIMM21,TIMM13, 
PTCD3,TIMM10, 
GRPEL1,TIMM44, 
EXOG,BAX,HSPA9, 
MRPS31,PAM16,BID, 
MTG1,UCP3,PMAIP1, 
SLC25A42,STOML2, 
BECN1,PARP1, 
TIMM17A,MCL1, 
CMC4,TIMM8A,BDH1, 
MRPS33,BCL2, 
TIMM50,TIMM23 

GO:0005743 Mitochondrial inner 
membrane 

8.26E- 
18 

TIMM21,TIMM13, 
PTCD3,TIMM10, 
GRPEL1,TIMM44, 
EXOG,MRPS31, 
PAM16,MTG1,UCP3, 
SLC25A42,STOML2, 
TIMM17A,TIMM8A, 
BDH1,MRPS33, 
TIMM50,TIMM23 

GO:0005744 TIM23 mitochondrial import 
inner membrane translocase 
complex 

2.04E- 
12 

TIMM21,TIMM10, 
GRPEL1,PAM16, 
TIMM17A,TIMM50, 
TIMM23 

GO:0098798 Mitochondrial protein 
complex 

3.25E- 
11 

TIMM21,TIMM13, 
TIMM10,GRPEL1,BAX, 
HSPA9,MRPS31,  

Table 3 (continued ) 

Biological Processes 

#term ID term description p-value matching proteins in 
network (labels) 

PAM16,TIMM17A, 
MRPS33,TIMM50, 
TIMM23 

GO:0031090 Organelle membrane 1.73E- 
09 

TIMM21,TIMM13, 
PTCD3,TIMM10, 
GRPEL1,TIMM44, 
EXOG,BAX,HSPA9, 
MRPS31,PAM16,BID, 
MTG1,UCP3,PMAIP1, 
SLC25A42,STOML2, 
BECN1,TIMM17A, 
MCL1,AHCYL1, 
TIMM8A,BDH1, 
MRPS33,BCL2, 
TIMM50,TIMM23 

GO:0005759 Mitochondrial matrix 3.94E- 
07 

LIAS,GRPEL1, 
TIMM44,HSPA9, 
MRPS31,PAM16, 
YARS2,MTG1,RARS2, 
BDH1,MRPS33 

GO:0005758 Mitochondrial 
intermembrane space 

2.85E- 
06 

TIMM13,TIMM10, 
STOML2,CMC4, 
TIMM8A,TIMM23 

GO:0005737 Cytoplasm 2.25E- 
05 

TIMM21,TIMM13, 
AKAP10,PTCD3, 
TIMM10,LIAS, 
GRPEL1,POLB, 
TIMM44,EXOG,BAX, 
HSPA9,MRPS31, 
PAM16,BID,YARS2, 
MTG1,PNKP,UCP3, 
PMAIP1,SLC25A42, 
STOML2,BECN1, 
PARP1,TIMM17A, 
MCL1,CMC4,RARS2, 
AHCYL1,TIMM8A, 
LIG3,VWA8,BDH1, 
MRPS33,LDHB,BCL2, 
TIMM50,TIMM23 

GO:0043231 Intracellular membrane- 
bounded organelle 

2.67E- 
05 

TIMM21,TIMM13, 
AKAP10,PTCD3, 
TIMM10,LIAS,XRCC1, 
GRPEL1,POLB, 
TIMM44,EXOG,BAX, 
HSPA9,MRPS31, 
PAM16,BID,YARS2, 
MTG1,PNKP,UCP3, 
PMAIP1,SLC25A42, 
STOML2,BECN1, 
PARP1,TIMM17A, 
MCL1,CMC4,RARS2, 
TIMM8A,LIG3,VWA8, 
BDH1,MRPS33,BCL2, 
TIMM50,TIMM23 

GO:0043227 Membrane-bounded 
organelle 

3.19E- 
05 

TIMM21,TIMM13, 
AKAP10,PTCD3, 
TIMM10,LIAS,XRCC1, 
GRPEL1,POLB, 
TIMM44,EXOG,BAX, 
HSPA9,MRPS31, 
PAM16,BID,YARS2, 
MTG1,PNKP,UCP3, 
PMAIP1,SLC25A42, 
STOML2,BECN1, 
PARP1,TIMM17A, 
MCL1,CMC4,RARS2, 
AHCYL1,TIMM8A, 
LIG3,VWA8,BDH1, 
MRPS33,LDHB,BCL2, 
TIMM50,TIMM23 

GO:0070013 Intracellular organelle 
lumen 

0.0001 TIMM13,PTCD3, 
TIMM10,LIAS,XRCC1, 
GRPEL1,POLB, 

(continued on next page) 
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apoptosis.. It can start when damaged mitochondria release apoptosis 
signaling components and which would then affect insulin secretion 
(Prasun, 2020). These dysfunctions aid in insulin resistance, as well as 
decrease insulin secretion. The understanding and treatment of these 
mitochondrial-related problems is an active field of research in the 
management and prevention of diabetes. The PPI network was primarily 
enriched mainly in four significant molecular functions such as BH3 
domain binding, protein transmembrane transporter activity, Chap-
erone binding, and P-P-bond-hydrolysis-driven protein transmembrane 
transporter activity. BH3 protein binding to BAD and BCL decreases the 
threshold for apoptosis to occur and inhibits the action of anti-apoptotic 
proteins in type 2 diabetes (Tomita, 2016). Rest of the processes are 
involved in protein transport and solute transport across ATP synthase. 
Pathway enrichment analysis (KEGG) from the network showed that 
‘apoptosis’ is the most significantly enriched pathway both in humans 
and multiple species in type 2 diabetes. Base excision repair, platinum 
drug resistance, and p53 signaling pathways were also among others as 
given in Table 4. 

3.5. Identification of miRNA through integrated mRNA-miRNA network 
in skeletal muscle of type 2 diabetes 

Understanding the variables influencing gene expression variations 
is essential for the precise molecular pathophysiology of complex dis-
eases like type 2 diabetes. There have been numerous reports of altered 
miRNA and target expressions in type 2 diabetes. Hence, we constructed 
the potential miRNA network of the SHAP features using miRNET 2.0 
database. All 20 genes from Fig. 4B were mapped against the human 
reference database. As a result, the constructed network has 463 miRNA 
nodes and 19 gene nodes with a total of 717 edges (interactions) as 
shown in Fig. 7. Multiple targets were found to be controlled by different 
miRNAs. TIMM8A, AKAP10, TIMM17A, BAX, and LIAS have the highest 
number of interactions in the network. miR-375, miR-30a-5p, miR-16- 
5p, miR-129-5p, miR-1229-3p and miR-1224-3p have the most signifi-
cant interactions with high number of targets as depicted in Fig. 8A. 
Further analysis based on the strong literature evidence using Mien-
turnet database showed in Fig. 8B, miR-375, miR-766-3p, miR-298, and 
miR-24-3p have high number of interactions. miR-375 and miR-298 and 
several other miRNAs are similar to the miRNA-mRNA network con-
structed previously. Also, BAX which regulate the mitochondrial 
apoptosis signaling is targeted by several miRNAs as shown by the 
Fig. 8B. Previously, we have shown that miR-128 targets BAX and is an 
endogenous regulator of apoptotic signaling pathway in HEK cells 
(Adlakha and Saini, 2011). In another study, we have shown the mito-
chondrial biogenesis and function is inhibited by miR-128 in the model 
skeletal muscle cells (Sharma et al., 2021). 

4. Discussion 

Insulin resistance, activated inflammation, and elevated oxidative 
stress are typical symptoms of type 2 diabetes. These pathways lead to 
mitochondrial dysfunction and protein degradation, which poses a great 
threat to the health of skeletal muscle tissue including muscular mass, 
strength, quality, and function (Huang et al., 2022). A pro-inflammatory 
state such as type 2 diabetes generally leads to an imbalance in redox- 
sensitive events. Both cytoplasmic and mitochondrial pathways are 
responsible for ROS in the disease. The pathogenesis of type 2 diabetes is 
significantly influenced by mitochondrial dysfunction in the target or-
gans like skeletal muscle cells. Alterations in mitochondrial bio-
energetics have been linked to poor glucose and fatty acid metabolism 
because ATP is essential for the creation and release of insulin (Patti and 
Corvera, 2010; Grubelnik et al., 2010). We have used machine learning 
as a systems biology technique to assess and predict genetic components 
in type 2 diabetes compared to control. BMI (Body Mass Index) has lately 
been recognized by Owusu Adjah et al. as a risk factor for identifying the 
propensity of an ethnic group. In particular, a non-linear association 
exists between BMI and a higher prevalence of diabetes mellitus; some 
people, such as those in South Asia, are predisposed to the condition 
even at lower BMIs (Owusu Adjah et al., 2018). Our study used the 

Table 3 (continued ) 

Biological Processes 

#term ID term description p-value matching proteins in 
network (labels) 

TIMM44,HSPA9, 
MRPS31,PAM16, 
YARS2,MTG1,PNKP, 
STOML2,PARP1, 
TIMM17A,MCL1, 
CMC4,RARS2, 
TIMM8A,LIG3,BDH1, 
MRPS33,BCL2, 
TIMM50,TIMM23 

GO:0005741 Mitochondrial outer 
membrane 

0.00024 BAX,HSPA9,BID, 
PMAIP1,MCL1,BCL2 

GO:0098796 Membrane protein complex 0.00089 TIMM21,TIMM10, 
GRPEL1,BAX,HSPA9, 
PAM16,BECN1, 
TIMM17A,BCL2, 
TIMM50,TIMM23 

GO:0016020 Membrane 0.00092 TIMM21,TIMM13, 
AKAP10,PTCD3, 
TIMM10,GRPEL1, 
TIMM44,EXOG,BAX, 
HSPA9,MRPS31, 
PAM16,BID,MTG1, 
PNKP,UCP3,PMAIP1, 
SLC25A42,STOML2, 
BECN1,PARP1, 
TIMM17A,MCL1, 
AHCYL1,TIMM8A, 
BDH1,MRPS33,LDHB, 
BCL2,DNAJC4, 
TIMM50,TIMM23 

GO:0005622 Intracellular 0.0033 TIMM21,TIMM13, 
AKAP10,PTCD3, 
TIMM10,LIAS,XRCC1, 
GRPEL1,POLB, 
TIMM44,EXOG,BAX, 
HSPA9,MRPS31, 
PAM16,BID,YARS2, 
MTG1,PNKP,UCP3, 
PMAIP1,SLC25A42, 
STOML2,BECN1, 
PARP1,TIMM17A, 
MCL1,CMC4,RARS2, 
AHCYL1,TIMM8A, 
LIG3,VWA8,BDH1, 
MRPS33,LDHB,BCL2, 
TIMM50,TIMM23  

Table 4 
Pathway enrichment analysis of the identified key genes from SHAP values 
(KEGG Pathway).  

#term ID term description p-value Genes 

hsa04215 Apoptosis - multiple 
species 

2.84E- 
06 

BAX,BID,PMAIP1,BECN1, 
BCL2 

hsa04210 Apoptosis 5.77E- 
05 

BAX,BID,PMAIP1,PARP1, 
MCL1,BCL2 

hsa03410 Base excision repair 0.0001 XRCC1,POLB,PARP1,LIG3 
hsa01524 Platinum drug 

resistance 
0.0013 BAX,BID,PMAIP1,BCL2 

hsa04115 p53 signaling pathway 0.0013 BAX,BID,PMAIP1,BCL2 
hsa04217 Necroptosis 0.0147 BAX,BID,PARP1,BCL2 
hsa05152 Tuberculosis 0.0196 BAX,HSPA9,BID,BCL2 
hsa05210 Colorectal cancer 0.0291 BAX,PMAIP1,BCL2  
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authoritative mitochondrial proteome database MitoCarta 3.0 for the 
first time to identify mitochondria-related genes from the skeletal 
muscle expression data of 107 control patients and 70 type 2 diabetes 
patients. Altogether, we have identified 409 mitochondrial genes in the 
combined expression dataset. On the other hand, we want to point out 
the limitation of the study due to the difference in gene coverage by the 
platforms used or by experimental variations, we could have overlooked 
the expression of relevant mRNAs in the study. In order to confirm the 
validity of the conclusions reached from our study despite the differing 
platforms and expression of the genes, we have confirmed our findings 
with previously published literature. We found that there was a signif-
icant degree of consistency with the data that had been previously 

reported. 
After applying SHAP values to quantify the machine learning pre-

dictions, the top 20 genes were finally determined as shown in Fig. 4. 
Results were compared before and after applying the SHAP values. The 
accuracy was similar in both the cases, indicating that the identified 
genes using feature values are equally consistent for making a prediction 
and provide valuable insights. Literature search using PubMed gave us 
clues towards involvement of the genes. Svensson et al., showed that the 
mitochondria of non-hepatic organs use ketone bodies, which are sig-
nificant metabolic fuels produced, and that patient’s skeletal muscle had 
lower levels of BDH1, an essential catalyst of ketone metabolism 
(Svensson et al., 2016; Barberio et al., 2021). YARS2 and RARS2 encode 

Fig. 7. miRNA-mRNA interaction of top 20 mitochondrial gene altered in skeletal muscle of type 2 diabetic patients.  

Fig. 8. (A) Significant miRNAs after the enrichment analysis are represented by a bar plot, displaying the number of its target genes. The bars color corresponds to 
the p-values. (B) This network represents the mRNA-miRNA interaction based on strong literature evidence is visualized using Cytoscpe. 
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enzymes involved in protein synthesis whereas STOML2 controls the 
development of mitochondrial cristae, POLB takes a role in DNA repair, 
and UCP3 decouples oxidative phosphorylation. The cytochrome c oxi-
dase assembly process is assisted by CMC4, pyruvate metabolism is 
facilitated by LDHB, and disorders of the mitochondria are linked to 
TIMM8A. BAX regulates mitochondrial cytochrome c release leading to 
the process of apoptosis. 

Next, using the String database, protein–protein interaction network 
was analyzed to determine the influence of top 20 genes, for both their 
regulation and involvement in type 2 diabetes. The KEGG pathway 
enrichment analysis was used to identify the pathways for base excision 
repair, platinum drug resistance, and p53 signaling from the protein–-
protein interaction network. The base excision repair pathway is 
involved in DNA damage repair caused by oxidative stress due to 
excessive nutrients in type 2 diabetes. The development and progression 
of diabetes could also be accelerated by impaired base excision repair 
activity, which may also contribute to genomic instability. Moreover, 
different tissues have shown disruption of the p53 signaling pathway in 
type 2 diabetes. Pancreatic beta-cell function, glucose metabolism, and 
insulin signaling can all be affected by altered p53 activity, which can 
therefore influence insulin resistance and disease development. 

The miRNAs are small RNAs generally single-stranded, non-coding, 
that are highly conserved and 18 to 25 nucleotide long. They can control 
gene expression by preventing the translation of their target mRNAs or 
decreasing their post-transcriptional stability. Studies have intensively 
revealed that miRNAs, which are crucial regulators in malignancies and 
metabolic disorders, can control one-third of the human genome. We 
found several miRNAs like miR-375, miR-30a-5p, miR-16-5p, miR-129- 
5p, miR-1229-3p, and miR-1224-3p to be significant regulating factors 
in the homeostasis of skeletal muscle tissue in type 2 diabetes. Zebrafish 
pancreatic development has been linked to the pancreatic islet alpha and 
beta cell number regulation by miR-375 (Poy et al., 2009). MiR-375 can 
inhibit myotrophin (Mtpn), which reduces insulin secretion, and inhibit 
the expression of pyruvate dehydrogenase kinase 1 (PDK1), which is 
involved in glucose metabolism (El et al., 2008). Recent study by Chi-
gusa Higuchi et al., states that in comparison to control mice model, the 
levels of miR-375 are much higher in serum of type 2 diabetes mice 
model (Higuchi et al., 2015). Whereas inhibition of Beta 2/neurogenic 
differentiation D1 (BETA2/NeuroD) gene, miR-30a-5p has been 
discovered to be associated with ß-cell malfunction in the pancreas, 
resulting in glucotoxicity. Since newly diagnosed T2DM patients had 
higher levels of this miRNA in the first year following diagnosis 
compared to non-diabetic individuals (Weale et al., 2021). Furthermore, 
in gestational diabetes, there was a favorable correlation between miR- 
16-5p and insulin resistance. In animal models and in vitro mechanistic 
studies, miR-16-5p has at least 24 additional targets in the insulin 
signaling system, including genes encoding the insulin receptor (INSR), 
insulin receptor substrate (IRS) proteins 1 and 2, and ak strain trans-
forming (AKT) protein 1 and 3 (Calimlioglu et al., 2015; Hubal et al., 
2017; Catanzaro et al., 2021). MiR-129-5p has been linked to diabetes 
and shown to be elevated, which may be a factor in insulin resistance 
and beta-cell malfunction by inhibiting the expression of its targets PDX- 
1 and IRS1. Role of miR-1224-3p in type 2 diabetes is not well under-
stood, further validation can be crucial to processes in controlling 
skeletal muscle homeostasis. As the topic of miRNA research in T2D is 
still young, it is vital to recognize that more study is required to confirm 
the results and establish the clinical value of miRNAs to be considered as 
a biomarker. 

Altogether, for a better understanding of the relationship between 
characteristics and predictions in type 2 diabetes, machine learning, and 
the SHAP interpretations to the framework can be employed. By giving 
each attribute a value based on relevance, the model independent SHAP 
technique explains why certain predictions were made. Furthermore, 
SHAP can produce individual-level explanations that demonstrate how 
genetic features influence the forecast for a specific patient. This level of 
interpretability can aid physicians and researchers in comprehending 

the reasoning behind a specific prognosis and gaining knowledge of the 
disease’s underlying causes. It can show unique connections and intri-
cate interactions between variables that could help advance disease 
research and knowledge in the future. 

5. Conclusion 

In conclusion, the current study investigates mitochondrial 
dysfunction in skeletal muscle to shed some light on the molecular 
mechanisms causing type 2 diabetes. The mitochondrial target genes 
which are linked to type 2 diabetes were identified by examining gene 
expression data. XGBoost algorithm and SHAP interpretations were used 
for the identification. BDH1, YARS2, AKAP10, RARS2, MRPS31, 
AHCYL1, EXOG, DNAJC4, UCP3, POLB, STOML2, LDHB, CMC4, 
TIMM8A, BAX, SLC25A42, VWA8, TIMM17A, MTG1, and LIAS are top 
potential genes involved. These genes play a significant role in many 
different biological functions such as mitochondrial processes, including 
transport, structuring, controlling membrane potential, and intrinsic 
apoptotic signaling. The dysregulation in these processes in skeletal 
muscle of individuals with type 2 diabetes gives rise to the possibility 
that they are playing an important part in the onset and development of 
the condition. Our study also emphasizes the importance of miRNAs in 
controlling mitochondrial metabolism in type 2 diabetic patients, 
including miR-375, miR-30a-5p, miR-16-5p, miR-129-5p, and miR- 
1229-3p. These deregulated miRNAs could alter the mitochondrial 
processes seen in the disease, which could be essential in regulating the 
gene expression. Understanding these molecular pathways and in-
teractions of the identified genes and miRNAs with the help of machine 
learning model can help us in better understanding of the disease. It may 
help with the discovery of fresh therapeutic targets and the prospective 
of new disease biomarkers. 
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