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                                           ABSTRACT 

 

Colorectal cancer remains a significant global health challenge, particularly affecting 

individuals aged 50 and older. Primary prevention strategies, including healthy 

lifestyle choices, risk avoidance, and early detection through regular screening, are 

crucial in reducing its incidence and impact. Early detection methods such as stool-

based tests and colonoscopies, along with treatments tailored to the cancer stage, play 

a pivotal role in managing the disease. While current treatments like surgery, 

chemotherapy, radiotherapy, targeted therapy, and immunotherapy are effective, they 

often come with substantial side effects. The effectiveness of FDA-approved 

anticancer drugs in treating colorectal cancer is limited, and they often come with 

significant side effects.  

 Our research delves into the alterations in gene expression induced by 

chemotherapeutic agents and explores the potential of various natural compounds to 

counteract these disruptions. We aim to mitigate the dysregulation in gene expression 

provoked by chemotherapy administration by strategically using natural compounds. 

By elucidating these mechanisms, we seek to enhance the efficacy of cancer treatment 

while minimizing adverse effects on gene expression. The current research performs 

expression profiling of gene alterations in colorectal cancer and the effects of 

chemotherapy with an irinotecan based on datasets GSE62322 and GSE72484. Parsing 

differentially expressed genes in colorectal cancer versus normal tissue and in samples 

after chemotherapy versus not-treated ones helped explain irinotecan's effect on gene 

expression and its relation to serious side effects. Our findings demonstrate that many 

genes altered by chemotherapy are involved in crucial cancer progression pathways 

and are thus associated with adverse effects, such as anemia, bone marrow depression, 

nausea, fatigue, diarrhea, neutropenia, and cholinergic syndrome. 

We intended to identify specific molecular targets that could be associated with the 

side effects of FDA-approved drugs. In this respect, such unintended adverse reactions 

could be expected when these drugs interact with their targets. While considering 

substitutes for traditional chemotherapy, we focused on the potential use of natural 
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compounds, especially EGCG, as potent agents against cancer with minimized side 

effects. Our study in molecular dynamics revealed a promising interaction of EGCG 

against human TOPO I, showing its potential to act as an inhibitor of the tumor as 

irinotecan does and evade AChE that causes cholinergic syndrome. While EGCG is a 

naturally occurring substance, it can potentially produce dose-dependent toxicity in 

normal human cells. To address this issue, we have developed drug delivery through 

nanoparticle-mediated mechanisms. Because calcium carbonate nanoparticles (CCN) 

have been shown in the literature to have the following properties: abundant, less 

harmful to cells, safe, biocompatible, pH-responsive, and gradually biodegradable, we 

synthesized CCN using the chemical precipitation method. 

Calcium carbonate nanoparticles (CaCO3) would be ideal for targeted drug delivery to 

cancer cells during therapy because they are stable in neutral and basic pH conditions 

but dissolve in an acidic environment. 

Because cancerous cells have a low pH, they cause CaCO3 to dissolve and release 

encapsulated medications, such as EGCG. The drug releases very little at a neutral pH, 

similar to healthy tissues' pH, but a lot more when the pH is acidic (pH 4-6). By 

maintaining therapeutic levels, this controlled release minimizes potential risks 

associated with EGCG overdose, including nephrotoxicity and myelosuppression. 

Furthermore, it was observed that the drug-loaded CaCO3 nanoparticles showed 

decreased cell viability based on the results of the MTT assay. Flow cytometry analysis 

revealed significantly higher incidents of both the early and late apoptosis stages than 

the drug administered alone. The results thus indicate that the CaCO₃ nanoparticle 

delivery system has improved the therapeutic efficacy of the drug while potentially 

reducing its cytotoxic side effects. 

In conclusion, our discovery opens up prospective pathways for customized medicine 

and improved patient care in the field of cancer treatment by offering insights into the 

molecular reactions responsible for the side effects of FDA-approved drugs. The 

findings of the study might act as a basis for further investigation and treatment 

advancements in the field of oncology. In conclusion, different cancers have high death 

rates and varied biology and molecular characteristics. We can learn more about the 

pathogenic mechanisms behind colorectal cancer by employing bioinformatics 

techniques and undertaking thorough investigations of gene expression, biological 
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processes, and pathways. This information offers insightful information for further 

investigation of treatment plans, including combinatorial therapies. Continued 

research can lead to innovative cancer treatments inspired by nature, transforming the 

therapeutic landscape for better outcomes.  

In summary, our findings provide significant insight into the molecular mechanisms 

underlying irinotecan-mediated side effects and thereby offer a new dimension in 

cancer therapy through the rational use of natural compounds and nanoparticle-

mediated drug delivery. This nanoparticle-mediated delivery system showed promise 

for safe and efficient targeted cancer therapy. Future research should elucidate the 

mechanisms of selective toxicity and conduct in vivo testing to evaluate the 

pharmacokinetics, biodistribution, and therapeutic efficacy of EGCG-loaded CCNPs 

using animal models. Additionally, exploring this nanocarrier system for other 

therapeutic agents could broaden its application within nanomedicine. Expanding 

studies to include various natural compounds could identify new candidates with 

superior efficacy and minimal side effects. Our study underscores the potential of 

integrating bioinformatics, molecular biology, and nanotechnology to develop novel, 

targeted cancer treatments, enhancing patient care and overcoming limitations of 

conventional therapies. We shall strive to unravel these mechanisms with the idea of 

developing better cancer treatment strategies with reduced adverse effects, thus 

leading to the ultimate goal of personalized medicine and improved patient care in 

oncology.  Further research in this line could lead to nature-inspiring and innovative 

cancer therapies that will transform treatment landscapes and be more effective for 

patients with colorectal cancer and beyond. 
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interaction hinders the resealing of DNA single-strand breaks 

(SSBs), resulting in the accumulation of DNA double-strand 
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disruption of DNA structure and impaired repair processes hinder 

normal cell division and replication, effectively inhibiting cancer 

cell growth and reducing tumor size. Nevertheless, irinotecan can 

also affect normal cells, causing side effects such as 
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control drugs with the same gene and a mechanism that is similar 

to the drug that causes cholinergic symptoms................................  
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Figure 4. 9 A bioavailability radar was developed based on the 
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Phyllanthus emblica to evaluate its potential for oral 

bioavailability. The radar serves as a tool to assess the likelihood 

of the compound being absorbed and utilized by the body through 

oral ingestion. The radar takes into account various chemical 

characteristics of the compound, including solubility, molecular 

weight, stability, and permeability, to provide insight into its 

suitability for oral administration. .................................................  
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complex, respectively. Based on the protein-ligand docked 

complexes (blue for 1k4t and green for 4ey6), RMSD values are 
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bioavailability. This radar functions as a tool for estimating the 

compound's potential absorption and utilization within the body 

through oral ingestion. The radar incorporates a range of 
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Figure 4. 15  Topoisomerase I inhibitors' cellular effects on both proliferating 

and non-dividing cells. To reduce torsional stress, topoisomerase 

I attaches to double-stranded DNA and causes single-strand 

breaks. A topoisomerase I inhibitor called irinotecan stops the 
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conversion of acetylcholine (ACh) substrate to choline. This 

inhibition of AChE by Irinotecan can lead to an accumulation of 

ACh, resulting in a condition known as cholinergic syndrome. 

Cholinergic syndrome is characterized by a range of symptoms, 

diaphoresis, including abdominal cramping, diarrhoea, and 

excessive salivation, sweating, and flushing of the skin. On the 

other hand Epigallocatechin gallate (EGCG), derived from 

Phyllanthus emblica, exhibits minimal binding affinity towards 

acetylcholinesterase. Consequently, it is unlikely to effectively 

inhibit the enzyme and is thereby associated with a low probability 

of causing any side effects typically attributed to AChE inhibition.
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mechanisms of cell apoptosis. The nanoparticles facilitate 

targeted drug delivery and induce mitochondrial damage by 
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Figure 5. 8 The drug release profiles of EGCG-loaded CCNPs were evaluated 

at pH 7.4 and pH 4.8, with concentrations of 4mg/ml (A) and 

6mg/ml (B). Initial burst followed by the extended release of the 

Drug until equilibrium favors pH-specific targeting in cancer. (C) 

The MTT assay results demonstrated a significant cytotoxic effect 

of the EGCG-loaded CCNPs compared to CCNPs and free 

EGCG. This validates the successful targeting of cancer cells and 

induction of apoptotic cell death. (D) More dose dependency 

towards the apoptotic and morphological changes in EGCG-

loaded NNPs treated COLO-320 DM cell against the varying 

concentrations with a minimum side effect in control groups. ......  
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death using Annexin V-FITC/PI staining in COLO320DM cells. 

The quantification of the percentage of cell death was determined. 

The infusion of EGCG-loaded calcium carbonate nanoparticles 

(CCNPs)(D) results in a notable increase in both early (Q3) and 

late (Q2) apoptosis when compared to the control COLO-320 DM 

cells(A), CCNPs(B) alone and free EGCG(C). The control flask 
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Abbreviation  

CRC- Colorectal cancer 

AChE - acetylcholinesterase 

EGCG- epigallocatechin gallate  

CIN - Chromosome Instability  

MSI-H - microsatellite instability  

MMR - mismatch repair  

HNPCC - Hereditary Non-Polyposis CRC  

FIT - fecal immunochemical test  

ICIs - immune checkpoint inhibitors  

DC - dendritic cells  

MDSC - myeloid-derived suppressor cells  

MHCI - MHC class I  

NK cell - natural killer cells  

NKT cell - natural killer T cells  

PD-L1 - programmed cell death 1 ligand 1  

TAM - tumor-associated macrophages 

 Cytotoxic T cells, and  

Treg cell - regulatory T cells  

APCs - antigen-presenting cells 

CTLA-4 - Cytotoxic T-Lymphocyte Associated Antigen 4  
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PD-1 - Programmed Death Receptor 1  

NSCLC - non-small cell lung cancer  

ES-SCLC - extensive-stage small cell lung cancer  

HRS -  Hodgkin Reed-Sternberg  

ACT - Adoptive cell transfer therapy  

5-FU - 5-fluorouracil  

VEGF - Vascular Endothelial Growth Factor  

TP - Thymidine Phosphorylase  

PPIs - protein-protein interactions  

DMSO - dimethyl sulfoxide 

DEGs - differentially expressed genes  

COAD - colorectal Adenocarcinoma  

GEPIA - Gene Expression Profiling Interactive Analysis 

TOPO I - Topoisomerase I  

SSBs - single-strand breaks  

DSBs - DNA double-strand breaks  

PLIP - Protein-Ligand Interaction Profiler  

MD - molecular dynamics  

RMSD - root mean square deviation  

RMSF - root mean square fluctuation 

MMGBSA - Molecular Mechanics Generalized Born Surface Area 
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MMPBSA - Molecular Mechanics/Poisson-Boltzmann Surface Area 

BBB- Blood Brain Barrier 

PAINS - Pan Assay interference compounds 

TPSA- Topological Polar Surface Area 

CCN - calcium carbonate nanoparticles  

MTT - 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide  

PI - propidium iodide
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                              CHAPTER 1:  INTRODUCTION 

 

1.1.OVERVIEW  

 

Colorectal cancer (CRC) stands as a significant global health concern, ranking as 

the third most prevalent malignancy and the second leading cause of cancer-related 

deaths[1]. According to the American Cancer Society, 2018, CRC affects about 1.8 

million people globally[2]. It is the third most common cancer after lung and breast 

cancers. Alarming statistics indicate that in 2020 alone, approximately 1.9 million 

new cases of CRC were reported worldwide, accompanied by a staggering 0.9 

million fatalities[3, 4]. Notably, the burden of CRC is more pronounced in highly 

developed nations, although its incidence is steadily rising in middle- and low-

income countries due to the influence of Westernization[5]. While modern 

treatments like surgical resection, radiotherapy, and chemotherapy have made 

substantial strides, a pressing need remains for more sophisticated prognostic tools 

and innovative treatment approaches[6]. The intricate interplay between genetic 

and epigenetic factors significantly contributes to the initiation and advancement 

of colon cancer[7]. These abnormalities can disrupt the normal gene regulation in 

crucial cellular processes like cell growth, division, and programmed cell death. 

Consequently, uncontrolled cell proliferation occurs, leading to the formation of 

tumors[8]. In the realm of CRC treatment, surgery remains a primary approach. At 

the same time, first-line chemotherapeutic agents like 5-fluorouracil, irinotecan, 

and oxaliplatin are commonly employed as stand-alone treatments or as part of 

post-surgical regimens [9]. There might be systemic side effects from the treatment 

that include fatigue, headache, pain, musculoskeletal symptoms, increased risk of 

bleeding and bruising, changes in cognitive function, and bone loss, hair loss, 

making patients go through a lot of discomfort and hence diminishing their quality 

of life (Fig.1.1). These side effects are mostly seen after chemotherapy sessions. 

However, different effects and their intensity vary from person to person. The basis 

of drugs involved, dosage, and individual response are major contributory factors. 

High doses of chemotherapy drugs can be toxic to the bone marrow and may 

suppress it. Bone marrow suppression is one of the significant toxicities that 

decreases the production of red blood cells, white blood cells, and platelets. This 
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may cause delay, dose reduction, or even interruption in the chemotherapy regimen 

being followed by a patient, affecting treatment effectiveness [10]. 

 

Figure 1. 1 Overview of Cancer Therapies and Their Side Effects. The figure depicts some of the 

cancer therapies: chemotherapy, immunotherapy, hormone, radiotherapy, surgery, and targeted 

drug delivery; their common side effects include nausea, fatigue, pain, and organ-specific 

problems. 

The development of chemoresistant cancer cells forces oncologists to increase drug 

dosages for patients, which then accumulate in the kidneys, liver, heart, and lungs. This 

increased level of toxicity not only worsens the side effects of the chemotherapy but 

also decreases its general effectiveness, leading to failures in treatment[11]. Lastly, 

such massive use of chemotherapy leads to suppression of the immune system and the 

appearance of neutropenia—the severe decrease in white blood cells, mainly 

neutrophils, responsible for fighting infections in human organisms. Thus, patients 

become more susceptible to bacterial superinfections[12]. 

An alternative approach needs to be adopted for the treatment of cancer that would 

avoid adverse side effects caused by the presently available chemotherapy drugs. The 

alternative treatment must utilize a mechanism that would act specifically to kill cancer 

cells and thus exhibit anticancer activity without eliciting the side effects due to 

binding with non-intended molecular targets. Natural compounds offer an excellent 



Ph.D. thesis 

 

4 | P a g e  

 

alternative to conventional drugs with lower inherent toxicity[13]. Many natural 

compounds have been found to suppress tumor growth in colorectal cancer by arresting 

the cell cycle in a specific phase of proliferation or inducing apoptosis in the cancer 

cells[14]. A modern approach to cancer treatment is generally termed combination 

therapy, where one or more substances are combined, including conventional 

chemotherapeutic agents with natural or multiple natural agents simultaneously. This 

approach, practically in many applications, achieves greater efficacy than the sum of 

the separate effects of agents, leading to higher drug concentrations or amplifying the 

applied combined impact of the agents[15]. Additionally, some natural products elicit 

cytotoxic effects on tumor cells. 

Combination therapy has also targeted several signaling pathways by using several 

mechanisms to reduce the development of resistance against the antitumor drug. This 

approach reduces the patient's burden by replacing part of the conventional 

chemotherapeutic dose with a natural substance with a defined effect[16]. Most natural 

compounds are generally well-tolerated by patients and have not been found to cause 

toxic effects even when administered at high doses. The most studied plant-derived 

compounds for improving the effectiveness of conventional chemotherapeutic drugs 

in colorectal cancer are curcumin (diferuloylmethane), resveratrol (3,4',5-

trihydroxystilbene), and (-)-Epigallocatechin gallate (EGCG). Besides, these 

compounds are particularly noticed to block or reverse the acquired drug resistance. 

Further, for the enhanced therapeutic efficacy of these natural compounds, a 

sophisticated delivery system in the form of nanoparticles should be considered. The 

basis of nanotechnology in drug delivery is to provide a controlled drug release 

mechanism, improved bioavailability, and targeting of tumor sites. Thus, a steady 

exposure of tumor cells to the natural compounds is obtained by a sustained release 

mechanism for maximum therapeutic efficacy. 

Nanoparticles can also be incorporated as a vehicle for delivering such 

phytochemicals, increasing the potency of the natural compounds at the site of cancer. 

Nanoparticles engineered with natural compounds can enhance phyto-bio availability 

and make them available at target sites, concentrate on the desired amount in the tumor 

area, and minimize exposure to healthy tissues. This targeted approach improves the 

treatment's therapeutic impact and reduces systemic toxicity and side effects. Such 
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compounds will be utilized to develop an effective, risk-reduced cancer treatment and 

advanced delivery systems like nanoparticles. This new strategy genre addresses 

conventional chemotherapy's failures and gives a more precise and patient-friendly 

approach to cancer therapy.  
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                    CHAPTER 2: LITERATURE REVIEW 

 

2.1. Etiology of cancer 

 

The majority of colorectal malignancies (CRC) are thought to arise from precursor 

lesions called colorectal adenomas, according to a widely recognized paradigm[17]. 

The term "adenoma-to-carcinoma sequence" refers to the phenomenon. According to 

this model, the natural history of CRC proceeds along a specific course. When the first 

mutations arise, the normal colon and rectum epithelium changes into colorectal 

adenoma[18]. 

 Adenomas then develop into advanced adenomas after that. After significant genetic 

alterations, progressed adenoma becomes colorectal cancer[19]. According to the 

American Joint Committee on Cancer (AJCC), colorectal cancer advances through 

stages, from stage I to stage IV, if it is not discovered and treated[20]. The serrated 

pathway is one of the various colorectal carcinogenesis pathways that have been 

identified. This route is poorly understood and may account for up to 30% of colorectal 

malignancies[21] 

 

2.1.1. The Adenoma-Carcinoma Pathway 

 

The development of malignant adenomas in the colon's mucosal lining is the cause of 

colorectal cancer. The majority of CRC cases (70–80%) are caused by this mechanism, 

which primarily follows the adenoma-carcinoma pattern[22]. This process, which is 

sometimes referred to as the Chromosome Instability (CIN) pathway, is caused by a 

sequence of genetic changes that eventually proceed from adenomas to cancer[23]. 

Mutations in the adenomatous polyposis coli (APC) gene, which controls cell division 

and proliferation, are usually the first step in the process[24]. The malignant 

conversion of adenomas into carcinomas is further encouraged by subsequent 

mutations, such as those in the TP53 tumor suppressor gene and the KRAS 

oncogene(Fig. 2.1). Remarkably, the left colon and rectum are where this route is most 

commonly seen[25]. 
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2.1.2.  The Serrated Adenoma Pathway 

 

About 10–30% of cases of colorectal cancer have the serrated adenoma route, which 

is more frequently located in the right colon[26]. A characteristic molecular 

characteristic of cancers arising from this route is high-level microsatellite instability 

(MSI-H)[27]. Mutations in DNA mismatch repair (MMR) genes, including MLH1, 

MSH2, and MSH6, cause this instability and decrease MMR function[28]. As a result, 

tumors bearing the MSI-H mutation have a tendency to accumulate genetic changes 

that aid in the tumors' development into malignancies(Fig.2.1). Remarkably, MSI-H 

tumors are linked to Lynch syndrome, a genetic disorder marked by an elevated risk 

of many malignancies in addition to sporadic colorectal cancer[29]. The effectiveness 

of screening colonoscopies in avoiding right-sided colon cancer may be impacted by 

the difficulty in detecting sessile serrated adenomas, a precursor lesion in this route[30, 

31]. 

2.1.3.  Genetic Colorectal Cancer 

 

Although most CRC occurrences are incidental, about 5% of cases are genetically 

related[32]. One such genetic condition is called Familial Adenomatous Polyposis 

(FAP), which is characterized by the development of numerous colonic adenomatous 

polyps, frequently starting at an early age[33]. If surgery is not performed to remove 

the colon and rectum, individuals with FAP have a nearly 100% lifetime risk of getting 

CRC. A small percentage (3-5%) of all instances of CRC are caused by Lynch 

syndrome, commonly referred to as Hereditary Non-Polyposis CRC (HNPCC)[34]. 

Germ-line mutations, mostly in the MLH1 and MSH2 genes, which encode proteins 

essential for DNA repair, cause this disease[35]. In addition to colorectal cancer, Lynch 

syndrome leads to gastric, ovarian, endometrial, and small bowel cancers. Early 

detection and prevention efforts rely heavily on the identification and treatment of 

these inherited illnesses[36]. 
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Figure 2.1 Mechanisms of development and progression of CRC from stage 0 to metastatic 

phase.This figure illustrates the multistep process in colorectal cancer development, from normal 

epithelial cells to adenocarcinoma and finally metastatic carcinoma. All events occurring at each 

step are depicted, which range from genetic mutations to environmental influences and 

behavioral lifestyles. Progression from stage 0 carcinoma in situ through stages I-III of local and 

regional spread to stage IV distant metastasis is described with its morphologic and molecular 

alterations in each phase. 

2.2. Screening 

 

Advanced stages of CRC, particularly stages III and IV, are closely linked to increased 

mortality rates, underscoring the critical importance of early detection[37]. It's 

estimated that approximately 25% of individuals aged 50-79 years in Western 

countries harbor colorectal polyps. While not all polyps progress to cancer, if they do, 

the process typically spans over 10-15 years[38]. The primary goal of CRC screening 

programs is to identify and remove polyps and detect CRC before symptoms manifest. 
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There are two main screening strategies available first is Fecal Occult Blood Testing 

and endoscopics strategies. 

 

 2.2.1. Fecal Occult Blood Testing (FOBT) 

 

FOBT is the most widely used screening test for CRC. The technique detects hidden 

blood in stool, indicating possible CRC. This is a non-invasive, inexpensive, easy to 

use, and at-home test. As bleeding from CRC is intermittent, FOBTs are repeated 

annually or biennially to increase sensitivity. There are two main types: guaiac-based 

FOBT and fecal immunochemical test. 

 

i. Guaiac Fecal Occult Blood Test (gFOBT) 

 

The gFOBT detects hidden blood in stool through a chemical reaction using the 

pseudo-peroxidase activity of hemoglobin. The test is carried out by applying a stool 

sample onto guaiac paper and it turns blue on contact with hemoglobin due to an 

oxidative reaction. The most common CRC screening test method used is gFOBT due 

to its simplicity, wide availability, and very low cost. however, dietary and 

gastrointestinal factors can affect results. This test has low sensitivity for CRC of 25%-

38% and for advanced adenomas of 16%-31%[39]. 

 

ii. Fecal Immunochemical Test (FIT) 

 

The fecal immunochemical test uses monoclonal or polyclonal antibodies that 

recognize and bind to intact globin of human hemoglobin and thereby offer higher 

specificity for colorectal bleeding. It has higher sensitivity for CRC and advanced 

adenomas than gFOBT, though with slightly lower specificity[40]. FIT can either be 

qualitative or quantitative, the latter providing automated reading and adjustable 

thresholds. Compliance is higher with FIT compared to gFOBT. The majority of 

Western nations have implemented CRC screening programs, with the most prevalent 

method being the FIT administered annually to biennial individuals aged 50-74 

years[41]. A positive FIT result prompts further evaluation through colonoscopy. For 
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example, in the Stockholm-Gotland Region, CRC screening targeting individuals aged 

60-69 commenced in 2008. During the inaugural year, 64% of the targeted population 

participated in the screening. Of those with a positive test result, 88% underwent 

subsequent colonoscopy procedures[42, 43]. 

 

 2.2.2. Flexible Sigmoidoscopy (FS) 

 

Flexible sigmoidoscopy represents an endoscopic screening method for colorectal 

cancer. It visualizes directly the rectum, sigmoid, and part of the descending colon. Its 

usage is restricted only to the left side of the colon while permitting examination by 

direct vision of the colon, tissue sampling, and removal of polyps[44]. FS allows for 

the direct investigation of the distal colon, biopsy, and polyp removal. RCTs (Random 

control trials) showed that FS decreased CRC mortality by 22%-31% and incidence 

by 18%-23%. However, proximal lesions can be missed, particularly in women. FS 

also entailed variable adherence rates of 14%-81%, but it detected more adenomas 

than stool tests[45]. 

2.2.3. Colonoscopy 

 

A colonoscopy assesses the whole colon and allows biopsy and polyp removal in one 

sitting. It has the advantage of longer screening intervals—typically every 10 years 

after a normal examination. In addition, for lesions, colonoscopy can evaluate 

characteristics of the lesions, like adenomas versus hyperplastic polyps, and 

precancerous or early malignant changes[46]. This is an extremely sensitive and 

specific tool; however, it lacks RCTs associating its usage with decreased CRC 

mortality. Observational studies associate its use with a 67%-77% reduction in CRC 

incidence and a 31%-65% reduction in mortality. However, this is an invasive, 

expensive procedure requiring rigorous bowel preparation[47].   

 

i. Virtual Colonoscopy 

 

Virtual colonoscopy includes CT colonography and MR colonography. The former, 

CTC, is a test with good accuracy for CRC and large adenomas, but it uses radiation. 
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The latter, MRC, although with good results, is still hampered by higher costs and 

more complex logistics[48]. Positive findings by both techniques need to be followed 

up with endoscopy, and neither of these modalities has been shown to lower CRC 

incidence or mortality. 

 

ii.  Colon Capsule Endoscopy(CCE) 

 

Colon capsule endoscopy of the small bowel rapidly emerged as a first-line imaging 

modality for patients with obscure gastrointestinal bleeding; CCE had an early phase 

of skepticism. This was due to high procedural costs, an extensive bowel cleansing 

undertaken to achieve only reasonable adenoma detection rates, and a limitation of not 

being able to take biopsies [49]. In 2006, the first generation of colon capsule 

endoscopy, CCE-1, PillCam Colon; Given Imaging Inc., Yoqneam, Israel, now 

Covidien/Medtronic, a less invasive and wireless technique for the visualization of the 

large bowel, was introduced[50]. By 2009, a second generation of colon capsule 

endoscopy was developed, called CCE-2, which significantly improved the viewing 

angle and adjusted the frame rate for a panoramic view. Since then, indications have 

been evaluated and established for several CCE purposes[51]. 

2.3. Therapeutic Approaches 

 

2.3.1. Local Approaches - Radiation Therapy: 

 

In the treatment of rectal cancer, neoadjuvant therapy—a combination of 

chemotherapy and radiotherapy—has successfully decreased tumor burden at 

intermediate and advanced stages, with the goal of lowering the risk of local recurrence 

and enhancing overall survival[52]. Though it doesn't considerably improve overall 

survival, preoperative radiation therapy seems to be more successful in lowering local 

recurrence than postoperative therapy[53]. There are two types of radiotherapies: 

short-course and long-course. The long-course has a higher rate of acute toxicity and 

similar late adverse effects[54]. Precisely targeting tumors with little exposure to 

healthy tissue, novel delivery techniques such as intensity-modulated radiotherapy 
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(IMRT) present encouraging benefits for patients with rectal cancer[55, 56]. Potential 

benefits of IMRT include accelerated surgery, aided healing following surgery, and 

enhanced tolerance to adjuvant chemotherapy. Although radiation treatments are 

beneficial for stage II and III colorectal cancer (CRC), they carry a risk of long-term 

harm to important organs[57]. The large-scale implementation of IMRT has been quite 

challenging due to the high cost and complexity involved, with sophisticated 

equipment and comprehensive QA (quality assurance) systems required, along with a 

multi-disciplinary team. 

2.3.2. Immunotherapy as an option for cancer treatment 

In 2018, the Nobel Prize in Medicine or Physiology recognized the ground breaking 

impact of checkpoint blockade therapy in cancer treatment[58]. As part of their 

immune response, tumors have developed mechanisms to produce an 

immunosuppressive microenvironment, which hampers the immune system's ability 

to remove cancer cells effectively(Table 2.1)[59]. Several processes contribute to this 

immunosuppression, as described below [60]. Firstly, there is a significant increase in 

CD25+ regulatory T cells (Tregs): Tregs, a distinct subgroup of T cells, play a critical 

role in preventing exaggerated immune responses and upholding immune tolerance. 

Tregs accumulate in the TME, suppressing the activity of effector T cells and other 

immune cells.  Tregs employ diverse strategies to exert their suppressive function. One 

of their mechanisms involves the secretion of immunosuppressive cytokines such as 

interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β). Additionally, 

Tregs can establish inhibitory interactions through direct cell-to-cell contact [61, 62]. 

Reduced diffusion of cancer-specific CD4+ and CD8+ effector T cells: Cancer cells 

are likely to be killed by CD4+ helper T cells as well as CD8+ cytotoxic T cells(Fig. 

2.3). Infiltration of these effector T cells into tumors can, however, be limited by the 

TME [63] By removing regulatory barriers that separate immune cells like T-cells from 

malignant cells, this strategy unleashes the immune system's potential to identify and 

combat cancer cells[64]. Development of Anti-CTLA-4 and anti-PD-1/PD-L1 

therapies have revolutionized the field of cancer immunotherapy by targeting key 

immune checkpoint molecules and enhancing anti-tumor immune responses[65]. There 

have been numerous attempts to develop monoclonal antibodies that specifically target 

co-inhibitory transmembrane receptors (PD-1). PD-L1 and PD-L2 ligands are present 
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in a small subset of NK cells, dendritic cells, and antigen-stimulated B and T 

lymphocytes[66]. PD-1 inhibits adaptive immunity during sustained antigen exposure 

in multiple cancers. CTLA-4, an additional immune checkpoint that has been used for 

the survival of metastatic melanoma, helps in decreasing the T-cell response[67]. 

Ipilimumab, an approved anti-CTLA-4 therapy, blocks the CTLA-4 receptor on T 

cells, allowing the immune system to decipher and combat tumor cells [68].  Notably, 

the use of checkpoint inhibitors, such as pembrolizumab and nivolumab, has been 

approved for a variety of cancers with high genomic instability[69]. However, it is a 

major breakthrough in cancer treatment that they are able to use the immune system's 

capacity against cancer along with several challenges [70]. The treatment of highly 

mutated tumors in CRC that are mismatch-repair-deficient (dMMR) or have high 

levels of microsatellite instability (MSI-H)—referred to as dMMR–MSI-H tumors—

with immune checkpoint therapy was approved by the FDA in 2017. The tumors that 

are mismatch-repair-proficient (pMMR), microsatellite-stable (MSS), or have low 

levels of microsatellite instability (MSI-L) are referred to as pMMR–MSI-L tumors, 

and they do not respond well to the existing immune checkpoint inhibitors (ICIs). 

Although these medications are good at increasing T-cell activity against cancer, they 

can also trigger autoimmune reactions as a result of T-cell activation, which can lead 

to related side effects(Fig.2.2)[71]. A very important role that antibodies play in 

targeted cancer therapy is in the recognition and binding of epitopes formed on the 

surface antigens of malignant cells to inhibit their growth and spread. These treatments 

often lead to the development of some side effects like infusion reactions, fatigue, 

nausea, diarrhea, skin reactions, infections, hematologic toxicities, and damage to 

organs such as kidneys, hearts, livers, and lungs(Table. 2.2). For example, the 

monoclonal antibody bevacizumab (Avastin), when taken in conjunction with 

chemotherapy, prevents new blood vessels from supplying tumors, therefore 

decreasing the growth of malignancies[117](Table. 2.2). However, it has a significant 

risk of intestinal perforation in addition to vascular adverse effects including 

hypertension and infrequent instances of stroke or heart attack[118]. Immune 

resistance mechanisms in these tumors have been proposed to include low tumour 

mutation burden and absence of immune cell infiltration. 
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Figure 2.2. Tumor microenvironment and Response to Cancer Immunotherapy. This figure 

elucidates the intricate phases of cancer—initiation, development, and metastasis. In the 

development phase, the innate and adaptive immune systems collaborate to seek out and 

obliterate transformed cells that have eluded natural tumor-suppression mechanisms, halting 

tumor growth before clinical detection. Tumors move on to the development stage, which is 

characterized by restricted growth and adaptive immune sculpting of tumor immunogenicity, if 

the metastatic phase fails. The metastasis phase follows, where tumors, through activation of 

immunosuppressive and immunoevasive pathways, surge unhindered into clinical visibility. 

Immunotherapy's effectiveness lies in its ability to rekindle antitumor immune responses; its 

success is marked by a complete response when tumors revert to the initiation phase, or a partial 

response when they are pushed into on-treatment development phase. Acquired resistance may 

emerge if immunotherapy fails to fully conquer tumor-induced immune suppression, permitting 

the outgrowth of immune-resistant tumor clones. Key immune players include dendritic cells 

(DC), myeloid-derived suppressor cells (MDSC), MHC class I (MHCI), natural killer cells (NK 

cell), natural killer T cells (NKT cell), programmed cell death 1 ligand 1 (PD-L1), tumor-

associated macrophages (TAM), Cytotoxic T cells, and regulatory T cells (Treg cell). 
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Table 2.1. The specific name or trade name of the antibody and their Mechanism of Action: The 

primary mode of action or mechanism by which the antibody functions in cancer treatment, such 

as blocking signaling pathways, targeting immune checkpoints, delivering payloads, etc.   

Classes of 

immunomodulatory 

antibodies 

 Mechanism of Action Examples of Drugs 

Monoclonal antibodies Target tumor-associated 

antigens to induce an 

immune response 

Trastuzumab, Rituximab, Cetuximab, 

Brentuximab vedotin, Daratumumab, 

Mogamulizumab, Atezolizumab 

Checkpoint inhibitors Block immune 

checkpoint pathways to 

unleash T cells 

Ipilimumab, nivolumab, pembrolizumab, 

atezolizumab, durvalumab, and relatlimab are 

among the approved antibodies targeting 

CTLA-4, PD-1, PD-L1, and LAG-3 for various 

therapeutic purposes. 

Bispecific T-cell 

engagers 

Link T cells and cancer 

cells to induce T cell-

mediated lysis 

Blinatumomab, Catumaxomab, Mosunetuzumab 

Antibody-drug 

conjugates 

Deliver cytotoxic drugs 

selectively to cancer cells 

Ado-trastuzumab emtansine (T-DM1), 

Brentuximab vedotin (Adcetris), Trastuzumab 

deruxtecan (Enhertu), Sacituzumab govitecan 

(Trodelvy) 

Immunomodulatory 

cytokines 

Activate T cells and NK 

cells to kill cancer cells 

Interleukin-2 (IL-2), Interferon-alpha (IFN-

alpha), Interleukin-12 (IL-12), Interleukin-15 

(IL-15), and Interleukin-21 (IL-21) are 

examples of immunomodulatory molecules that 

have been studied for their potential therapeutic 

applications in various diseases. 
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Figure 2.3. Monoclonal antibody therapeutics, T-cell interaction with APC and tumor cell. The 

rejections of tumor cells are mediated by several types of leukocytes and monoclonal antibodies 

which act on their surface glycoproteins and help in initiating optimal immune responses by APCs 

(antigen-presenting cells), B-cell, and T-cells. Different Immunostimulatory mAbs upon binding 

to their specific receptor either promote lymphocyte/immune activation (agonist) or promote 

activation of dendritic cells (APC) that contribute to immune evasion. Many antibodies 

conjugated with different molecules like toxins, enzymes, and radioisotopes directly activate 

mitochondrial apoptosis and result in the direct killing of malignant cells. The interaction between 

APC and T cells can initiate the secretion of interleukin-12, Transforming Growth Factor β, and 

interleukin-2 and which activates and recalls of Th1-type immune response against cancer, the 

distinction of unsophisticated T-cells into effector cells, and inhibition of normal stromal, 

hematopoietic and epithelial cell growth respectively. 
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                                        Table 2.2  Immune checkpoint inhibitors (ICIs) as Immune Boosters: 

Name of 

antibodies and 

their 

combinations 

Targets Type FDA 

Appr

oval 

Type of cancer and targeting cells Common side 

effects 

References 

Alemtuzumab 

 

Anti-CD52 Humanized 

monoclonal 

antibody 

2001 

 

 

 

2014 

In B-cell chronic lymphocytic leukemia, 

Alemtuzumab targets CD52, a cell surface 

antigen expressed on these immune cells. By 

binding to CD52, Alemtuzumab induces 

depletion of B-CLL lymphocytes, leading to 

reduced tumor burden.  

 

 

Multiple Sclerosis (MS) 

Depletion of B-

CLL 

lymphocytes, 

potentially leading 

to reduced 

immune function, 

infusion reactions, 

increased risk of 

infections. 

[72] 

 

 

 

[73][74] 

Atezolizumab  

 

 

Chemotherapy 

(cisplatin + 

gemcitabine 

 

 

Bevacizumab + 

chemotherapy 

(carboplatin + 

paclitaxel) 

 

Chemotherapy 

(carboplatin + 

paclitaxel) 

Chemotherapy 

(etoposide + 

carboplatin) 

 

daratumumab 

 

 

 

PD-L1 Humanized 

Fc-

engineered 

2016 

 

 

2016 

 

 

 

N/A 

 

 

 

N/A 

 

 

 

 

 

N/A 

 

Targets macrophages, activated T-cells, 

keratinocytes, and dendritic cells in 

Urothelial carcinoma, NSCL. 

 

The addition of atezolizumab to cisplatin 

and gemcitabine regimens has demonstrated 

the potential to enhance overall survival and 

progression-free survival in patients 

diagnosed with advanced or metastatic 

urothelial carcinoma and non-small cell lung 

cancer.  

The treatment regimen combines the 

targeting of tumor vasculature with the 

augmentation of the anti-tumor immune 

response. Encouraging findings from 

clinical studies have shown positive 

outcomes when atezolizumab is added to 

bevacizumab and chemotherapy, 

particularly in advanced ovarian cancer and 

non-squamous non-small cell lung cancer. 

The combination therapy of atezolizumab 

with carboplatin and nab-paclitaxel has 

demonstrated substantial advancements in 

both progression-free survival and overall 

survival, surpassing the outcomes achieved 

with chemotherapy alone. This establishes 

the effectiveness of this combination as a 

viable first-line treatment option for patients 

with metastatic non-squamous non-small 

cell lung cancer (NSCLC). 

The inclusion of atezolizumab alongside 

chemotherapy has shown significant 

improvements in both overall survival and 

progression-free survival among patients 

Fatigue, nausea, 

diarrhea, 

decreased 

appetite, skin rash, 

immune-related 

adverse events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[75][76] 

 

 

[77] 

 

 

 

[78] 

 

 

 

 

[79] 

 

 

 

 

[80] 
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Varlilumab 

(agonist anti-

CD27 mAb) 

 

 

 

Durvalumab 

 

 

Anti-OX40 

mAb 

(MOXR0916) 

 

N/A 

 

 

 

2019/

20 

 

 

 

2019/

20 

diagnosed with extensive-stage small cell 

lung cancer (ES-SCLC). 

 

Daratumumab has demonstrated immune-

modulating effects, including enhancing T-

cell responses and NK cell-mediated 

cytotoxicity. By combining it with 

atezolizumab, which blocks the PD-L1/PD-

1 immune checkpoint pathway, the aim is to 

further enhance the anti-tumor immune 

response 

 

Preclinical studies and early-phase clinical 

trials have explored the synergistic effects of 

these two agents in activating the immune 

system and enhancing anti-tumor responses. 

The rationale behind combining varlilumab 

and atezolizumab is to target different 

immune checkpoints simultaneously, 

promoting a more robust and sustained 

immune response against cancer cells. 

Durvalumab and atezolizumab are immune 

checkpoint inhibitors that effectively target 

the PD-L1/PD-1 pathway, thereby 

augmenting the immune response against 

tumors.   Restoring antitumor surveillance 

through T-cell activation In patients 

previously treated with platinum-based 

chemotherapy in advanced NSCLC, it did 

not improve efficacy compared to 

atezolizumab monotherapy. 

 

 

 

 

Infusion reactions, 

fatigue, nausea, 

respiratory 

infections, 

neutropenia. 

 

Fatigue, cough, 

dyspnea, rash, 

diarrhea, 

decreased 

appetite, pruritus. 

 

[81] 

 

 

[82] 

 

 

 

[83] 

 

 

[84] 

Avelumab 

 

 

 

 

 

Utomilumab 

(an anti-

CD137mAb)  

PD-L1 

 

 

 

 

 

Fully human N/A 

 

 

2017 

 

2018 

 

N/A 

Targets macrophages, DCs, activated T-

cells, and keratinocytes, in refractory 

ovarian cancer. Further studies are 

warranted to confirm these findings and 

explore their long-term benefits.  

Merkel Cell Carcinoma 

 

PD-L1 PD-L1 inhibitor Locally and 

advanced urothelial carcinoma  

Suppress signaling through the immune 

checkpoint. One antibody releases the 

inhibitory effects of the immune checkpoint 

(Nivolumab) and another antibody directly 

activates the adaptive immunity. 

Infusion reactions, 

fatigue, nausea, 

diarrhea, 

decreased 

appetite, rash, 

peripheral edema, 

musculoskeletal 

pain, Immune-

mediated 

pneumonitis, 

hepatitis, colitis, 

endocrinopathies, 

severe infusion 

reactions, 

hepatotoxicity, 

thrombocytopenia 

 

[85] 

[86] 

 

[87] 

 

 

[88, 89] 

Blinatumomab  Anti-

CD3/CD19 

Bispecific 

antibody 

N/A Targets B-cells, follicular DCs in B-cell 

precursor acute lymphoblastic leukemia. 

fatigue, nausea, 

diarrhea, 

decreased 

appetite, rash, 

peripheral edema, 

[90] 
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musculoskeletal 

pain, 

Brentuximab 

vedotin 

Anti-CD30 Chimeric 

IgG1, ADC 

with MMAE 

payload 

N/A Targets Hodgkin Reed-Sternberg (HRS) cell 

in classical Hodgkin lymphomas 

Fatigue, nausea, 

vomiting,  

diarrhea    

[91] 

Camrelizumab 

Gemcitabine + 

cisplatin 

PD-1 Humanized 

IgG4 

antibody 

N/A Osteosarcoma, Nasopharyngeal carcinoma Infusion reactions, 

fatigue, nausea, 

back pain, fever, 

cough, upper 

respiratory tract 

infection. 

[92] 

 

Cantuzumab 

mertansine 

CanAg (a 

glycoform 

of MUC1) 

Humanized 

IgG1 with 

DM1 payload 

N/A Activated T-cell, B-cell, and epithelial cell 

in colorectal cancer 

Diarrhea, nausea, 

mulculoskeletal 

pain 

[93] 

 

Cemiplimab PD-1 Fully human 

IgG4 

2018 Cutaneous squamous-cell carcinoma Respiratory 

infection,  

diarrhea, nausea 

[94][95] 

Daratumumab  

Durvalumab 

CD38 Humanized 

IgG1 

N/A 

N/A 

Multiple myeloma 

Multiple myeloma Decreased regulatory T-

cell frequency and LAG3+ T-cell proportion 

and CD8+ T-cell expression of TIM-3, 

without affecting T- or NK-cell frequencies 

Infusion reactions, 

fatigue, nausea, 

back pain, fever, 

cough, upper 

respiratory tract 

infection. 

[96] 

[97] 

Durvalumab 

 

 

 

Chemotherapy 

(cisplatin + 

gemcitabine) 

PD-L1 and 

PD-1 

 

 

 

PD-L1  

Engineered 

human 

2019

  

 

 

 

 

2017 

Durvalumab prevents the interaction 

between PD-L1 and its receptor PD-1 on T 

cells, effectively inhibiting the PD-1/PD-L1 

immune checkpoint pathway. The immune 

system's restrictions are lifted by this 

blockage, enabling T cells to identify and 

target cancer cells for attack. By restoring 

anti-tumor immune responses, Durvalumab 

offers a promising approach for the 

treatment of urothelial carcinoma, NSCLC 

Urothelial carcinoma 

fatigue, nausea, 

diarrhea, 

decreased 

appetite, rash, 

peripheral edema, 

musculoskeletal 

pain, 

 

[98] 

[99] 

 

Gemtuzumab 

Ozogamicin 

CD-33 Humanized 

IgG4, ADC 

with 

calicheamicin 

payload 

N/A Targets Monocytes, granulocytes, and 

myeloblasts cells in Acute myeloid leukemia 

fatigue, nausea, 

diarrhea, 

decreased 

appetite,Infusion 

reactions, back 

pain, fever, cough, 

upper respiratory 

tract infection. 

rash, peripheral 

edema, 

musculoskeletal 

pain, 

[100] 

Imalumab 

(BAX69) +  

Panitumumab 

 MIF–

mediated 

emission of 

cytokines 

(IL-1β, 

TNFα) 

N/A Hampering the proliferation of MIF 

overexpressing malignant cells 

fatigue, nausea, 

diarrhea, 

decreased 

appetite, rash, 

peripheral edema, 

[101] 
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musculoskeletal 

pain, 

Ipilimumab CTLA-4 Recombinant 

fully human 

antibody 

IgG1 

N/A 

2011 

Melanoma, kidney tumor 

CD80/CD86 interact with CTLA-4 to induce 

T-cell activation and block the interaction of 

CTLA-4 with its ligands Metastatic 

melanoma  

fatigue, nausea, 

diarrhea, 

decreased 

appetite, rash, 

peripheral edema, 

musculoskeletal 

pain, 

[102, 103] 

[104, 105] 

 

Nivolumab  

 

 

 

Cabiralizumab 

 

 

Anti-CD40 

mAb  

 

PD-1 Fully human 

IgG4 

 

 

 

 

 

 

N/A 

 

 

 

N/A 

 

 

 

 

 

N/A 

 

 

 

2015 

Melanoma, NSCLC, renal cell carcinoma. 

Prevent conversion of adenosine-

monophosphate to adenosine, It induces the 

activity of macrophages and down-regulates 

regulatory T cells 

Prevents osteoclast activation by blocking 

the inflammatory mediators secreted 

through macrophages. The basic aim 

behind the combination is to impede cancer-

prompted immune suppression and the 

conscription of CSF1R-dependent tumor-

associated macrophages. It can also enhance 

Tcell infiltration and induce adaptive 

immune responses 

the combination therapy of APX005M 

(sotigalimab) with chemotherapy, with or 

without nivolumab, showed promising 

efficacy in the treatment of metastatic 

pancreatic adenocarcinoma. The therapy 

was generally well-tolerated, with 

manageable side effects. 

 

PD-1 and CTLA-4, Blocking the T cell 

inhibitory pathway by obstructing ligand 

interaction with PD-L1/2 Metastatic, 

NSCLC, colorectal cancer, and squamous 

cell lung cancer, 

fatigue, nausea, 

diarrhea, 

decreased 

appetite,Infusion 

reactions, back 

pain, fever, cough, 

upper respiratory 

tract infection. 

rash, peripheral 

edema, 

musculoskeletal 

pain, 

[106] 

 

[107][108] 

 

 

[109] 

 

[110] 

Obinutuzumab CD20 Humanized 

IgG1 

N/A 

 

Pre-B-cell, resting B-cell, follicular DCs, 

circulatory T-lymphocytes in chronic 

lymphocytic leukemia. 

peripheral edema, 

diarrhea, 

bonemarrowsupre

ssion  

[111] 

Ofatumumab CD20 Humanized 

IgG1 

N/A 

 

Targets Pre-B-cell, resting B-cell, follicular 

DCs, circulatory T-lymphocytes in chronic 

lymphocytic leukemia 

peripheral edema, 

fatigue, muscles 

pain, heart 

deseases 

[112] 

Pembrolizuma

b 

 

BRAF 

inhibitor + 

MEK 

PD-1 or 

PD-L1/L2 

Human 

Antibody 

IgG4 

2016 

 

 

 

 

 

2014 

Its binding hinders the antineoplastic 

responses by preventing PD-1 from 

engaging its ligands head and neck cancer, 

NSCLC  

 

Melanoma  

 

 

fatigue, nausea, 

diarrhea, 

decreased 

appetite,Infusion 

reactions, back 

pain, fever, cough, 

upper respiratory 

tract infection. 

rash, 

[113] 

 

 

[114, 115] 
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2.3.3. T-Cell Boosting Therapies: 

 

I. Adoptive Cell Transfer Therapy: Adoptive cell transfer therapy (ACT) 

involves using either autologous or allogeneic cells to enhance immune 

function[118]. Tumor-infiltrating lymphocytes (TILs), chimeric antigen 

receptor T (CAR-T) cells, and T cell receptor (TCR) modified T cells are 

utilized in ACT[119]. While TILs have shown potential in identifying multiple 

targets in cancer cells, CAR-T cells are designed to target specific antigens like 

carcinoembryonic antigens (CEA) in CRC. However, challenges such as 

producing tumor-specific T cells for each patient and the risk of graft-versus-

host disease in allogeneic transplants need to be addressed[120, 121]. 

II. Vaccines: Cancer vaccines aim to elicit an immune response against tumor-

associated antigens, either through molecular-based, cell-based, or vector-

based strategies[122]. While mRNA and DNA vaccines have shown impressive 

antitumor responses in CRC, cell-based vaccines utilizing dendritic cells and 

tumor cells have demonstrated potential efficacy, particularly in combination 

with chemotherapy and immunotherapy[123]. Vector-based vaccines, 

including live attenuated viruses, yeasts, and bacterial vectors, are emerging 

options for therapeutic vaccines against CRC, though clinical efficacy remains 

limited[124, 125]. 

III. Role of Cytokines in CRC: Cytokines play a crucial role in immune responses, 

with various cells secreting them to regulate immune function[126]. Cytokine-

based therapies are complex, requiring a deep understanding of cytokine 

inhibitor; 

Ipilimumab 

 

Chemotherapy 

(carboplatin + 

pemetrexed); 

Chemotherapy 

 

 

 

2015 

 

 

 

 

Non-Small Cell Lung Cancer 

 

musculoskeletal 

pain, 

 

 

[116] 

 

Tremelimumab CTLA-4 Humanized 

IgG2 

N/A 

 

Targets T-cell activated B-cells in 

melanoma, solid tumors 

 [117] 
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biology to maximize antitumor activity while minimizing toxicity[127]. 

Clinical trials investigating cytokine-based therapies for CRC are ongoing, 

though preclinical studies are needed to assess potential toxicity. Cytokines 

have the potential to enhance natural killer (NK) cell and T lymphocyte 

function, promote lymphocyte infiltration into tumors, and persist in the tumor 

microenvironment, making them essential molecules in future CRC treatment 

strategies[128]. Many cytokines such as IL-1 and TNF-α are inherently toxic 

because of their marked proinflammatory activities[129]. 

2.3.4.  Limitations and Challenges: Despite the promise of immunotherapy and T-

cell boosting therapies, they come with long-term effects and limitations[130]. 

Monoclonal antibodies have a short half-life, limiting their efficacy, while 

sustained immune activation can lead to immune-related adverse effects (Fig. 

2.4)[131]. Challenges such as solid tumor architecture hindering CAR-T cell 

infiltration and the technical and financial demands of personalized ACT need 

to be addressed[132]. Additionally, vaccination efficacy may be limited by 

immune rejection, and cytokine-based therapies may induce toxicity if not 

carefully regulated[133]. 

 
Figure 2.4. Figure illustrates a selection of immune-related adverse events (irAEs) associated 

with immune checkpoint blockade.  
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2.3.5. Systemic Approach - Chemotherapy: 

A key component of treatment for colorectal cancer (CRC), chemotherapy slows the 

disease's progression and lengthens survival[134]. It is used in both the neoadjuvant 

and adjuvant stages of the disease. These results are largely attained with the use of 

approved cytotoxic medications like capecitabine, oxaliplatin, irinotecan, trifluridine-

tipiracil, fluoropyrimidines, and 5-fluorouracil (5-FU)(Table. 2.3)[135]. As a common 

procedure in the adjuvant scenario, fluoropyrimidine-based chemotherapy is 

administered after surgery to effectively lower the risk of recurrence and increase 

overall survival rates[136]. But it's important to be aware of any possible negative 

effects these therapies may have. 

Chemotherapy is essential in the treatment of cancer because it slows down or prevents 

the growth of cancerous cells, kills cancerous cells, or relieves cancer symptoms. On 

the other hand, chemotherapy presents several side effects on its patients: nausea, 

vomiting, hair loss, changes in bone marrow, and changes in mouth and skin 

health[137]. Other factors include changes in sexual function, fertility problems, and 

memory malfunctioning[138]. These are side effects which vary according to the type 

and location of the cancer, its stage, the general health of the patient, the kind of 

medication that is taken, and the dosage of the prescription. 

Table 2.3 FDA approved drugs and their approval with their associated side effects 

Targets  FDA-approved drug for 

colorectal cancer 

FDA 

approv

al  

Side effects References  

Antiangiogenic 

inhibitors 

[Vascular 

Endothelial 

Growth Factor 

(VEGF)] 

Adagrasib 2022 

 

Diarrhea, nausea, vomiting, 

fatigue, increased liver enzymes. 

[139] 

Alymsys (Bevacizumab) 2022 Hypertension, bleeding, 

thromboembolic events, 

gastrointestinal perforation, 

wound healing complications. 

[140] 

Avastin (Bevacizumab) 2004 Hypertension, bleeding, 

thromboembolic events, 

gastrointestinal perforation, 

wound healing complications. 

[141] 

Bevacizumab 2004 Hypertension, bleeding, 

thromboembolic events, 

 [142] 
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gastrointestinal perforation, 

wound healing complications. 

Topoisomerase 

inhibitor 

Camptosar (Irinotecan 

Hydrochloride)/ 

Irinotecan 

Hydrochloride 

1996 Diarrhea, neutropenia, nausea, 

vomiting, alopecia. 

[143][144, 

145] 

Thymidine 

Phosphorylase 

(TP) inhibitors 

Xeloda 

Capecitabine 

1998 Diarrhea, hand-foot syndrome, 

nausea, vomiting, fatigue. 

[146, 147] 

Lonsurf (Trifluridine 

and Tipiracil 

Hydrochloride) 

2015 Myelosuppression,Fatigue, 

nausea, vomiting, decreased 

appetite 

[148] 

Epidermal 

Growth Factor 

Receptor (EGFR) 

inhibitors 

Cetuximab/Erbitux 

(Cetuximab) 

2004 Acneiform rash, infusion 

reactions, hypomagnesemia,  

fatigue, diarrhea. 

[149] 

Cyramza 

(Ramucirumab) 

2014 Hypertension, diarrhea, fatigue, 

decreased appetite, proteinuria. 

[150, 151] 

Topoisomerase 

inhibitor 

Eloxatin (Oxaliplatin) 2004 Peripheral neuropathy, nausea, 

vomiting, diarrhea, 

myelosuppression. 

[152] 

Thymidine 

Phosphorylase 

(TP) inhibitors 

5-FU (Fluorouracil 

Injection)/ Fluorouracil 

Injection 

1962 Myelosuppression, mucositis, 

diarrhea, hand-foot syndrome, 

cardiotoxicity. 

[152, 153] 

Fruquintinib/Fruzaqla 

(Fruquintinib) 

2023 Hypertension, proteinuria, hand-

foot syndrome, diarrhea, 

decreased appetite. 

[154, 155] 

Ipilimumab 2011 Colitis, dermatitis, hepatitis, 

endocrinopathies, pneumonitis. 

[156, 157] 

Keytruda 

(Pembrolizumab) 

2014 Fatigue, pruritus, diarrhea, 

nausea, rash. 

[158] 

Krazati (Adagrasib)  Allergic reactions, diarrhea, 

nausea, vomiting, mucositis. 

[140] 

Leucovorin Calcium 1982 Neutropenia, anemia, 

thrombocytopenia, fatigue, 

nausea. 

[159] 

Mvasi (Bevacizumab) 2017 Hypertension, bleeding, 

thromboembolic events, 

gastrointestinal perforation, 

wound healing complications. 

[160, 161] 

Nivolumab/Opdivo 

(Nivolumab) 

2014 Fatigue, rash, musculoskeletal 

pain, diarrhea, nausea. 

[162–164] 
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Oxaliplatin 2002 Peripheral neuropathy, nausea, 

vomiting, diarrhea, 

myelosuppression. 

[165, 166] 

Epidermal 

Growth Factor 

Receptor (EGFR) 

inhibitors 

Panitumumab 2006 Dermatologic toxicity, 

hypomagnesemia, paronychia, 

fatigue, diarrhea. 

[167, 168] 

Pembrolizumab 2014 Dermatologic toxicity, 

hypomagnesemia, paronychia, 

fatigue, diarrhea. 

[169, 170] 

Vascular 

Endothelial 

Growth Factor 

Receptor 2 

(VEGFR2) 

Ramucirumab 2014 Hypertension, diarrhea, fatigue, 

decreased appetite, proteinuria. 

[171, 172] 

 Regorafenib 2012 Hand-foot skin reaction, 

hypertension, fatigue, diarrhea, 

hepatotoxicity. 

[173, 174] 

Multiple Kinases, 

VEGFRR1-3, 

TIE2 

Stivarga (Regorafenib) 2012 Hand-foot skin reaction, 

hypertension, fatigue, diarrhea, 

hepatotoxicity. 

[175, 176] 

Human 

Epidermal 

Growth Factor 

Receptor 2 

(HER2) 

inhibitors 

Tucatinib 2020 Diarrhea, nausea, fatigue, 

vomiting 

[177, 178] 

Tukysa (Tucatinib) 2020 Diarrhea, nausea, fatigue, 

vomiting 

[179] 

 

2.4. The urgency for an alternative approach in cancer therapy: 

 

There is an urgent need for novel strategies like complementary and alternative 

medicine since efforts to improve the efficacy of cancer treatments have encountered 

significant obstacles in recent decades[180]. In this field, natural herbal remedies have 

attracted much interest from researchers and medical professionals because of their 

potential to prevent or improve the treatment of chronic illnesses, such as cancer[181]. 

As potential forms of complementary cancer treatments, several natural compounds 

alone or in combination shows promise. They are appealing because they can interact 

with various biological targets implicated in metastasis, medication resistance, and 

tumor growth [182]. Here are several reasons highlighting the need for natural 

compounds in cancer therapy. 
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I. Diverse mechanism of action: Natural compounds have the potential to 

improve the effectiveness of current cancer treatments or reduce treatment 

resistance due to their multitargeting properties[183]. This is crucial as cancer 

cells can develop resistance to treatments targeting a single pathway. 

II. Epigenetic modulation: some natural compounds can modulate the epigenetic 

marks thereby influencing gene expression and potentially reversing abnormal 

cancer cell behavior [184]. 

III. Reduced toxicity and side effects: The delicate balance between eradicating or 

killing tumor cells while protecting healthy ones is crucial to cancer treatment. 

A chemopreventive medication must show an acceptable safety profile and 

efficacy at low dosages to reduce serious side effects before it can be beneficial 

in human populations[185]. Natural dietary interventions, including eating 

more fruits and vegetables, are highly promising in chemopreventive research 

because of their proven ability to prevent and reduce cancer[186]. Recent 

studies have highlighted the significance of natural products as anticancer 

agents, offering low toxicity and durable effects, thereby enhancing the quality 

of life for patients[187]. These agents, derived from animals, plants, 

microorganisms, and marine organisms, constitute a significant portion 

(approximately 50%-60%) of chemotherapeutic agents[187–189]. Natural 

medicines have been shown to provide several benefits over conventional 

treatments, such as lower toxicity, lower costs, fewer side effects, and a well-

established profile regarding carcinogenic potential. 

IV. Overcoming drug resistance  

Multidrug resistance: Natural compounds can bypass or reverse the 

multidrug resistance mechanisms in cancer cells, forming a significant barrier 

to chemotherapy[190]. 

Modulation of Drug Efflux: arious natural compounds have been reported as 

inhibitors against drug efflux pumps, including P-glycoprotein, raising the 

intracellular concentration of chemotherapeutic drugs[191]. 

V. Immunomodulatory Effects 

Boosting Immune Response: Natural products enhance an immune response 

to cancer cells within the body, elevating immunotherapy's efficacy[192]. 
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Anti-Inflammatory: Chronic inflammation is a risk factor for cancers. Natural 

compounds may have anti-inflammatory aspects that reduce the chance of 

developing and progressing toward cancer[193]. 

VI. Availability and Cost Effectiveness 

Natural Abundance: Many natural compounds are readily obtained from 

plants, marine organisms, microorganisms, etc., and are cost-effective reagents 

in drug design and discovery[194]. 

Traditional Medicine Integration: Many natural products have a very long 

history in traditional medicine that lays the basis for their safety profile and 

efficacy[195]. 

VII. Chemical Diversity and Novelty 

Structural Diversity: The vast chemical space covered by natural products 

provides a rich source of novel structures that might be optimized for 

anticancer activity[196]. 

Identification of Lead Compounds: Natural products act as leads for drugs in 

development, therefore leading to the synthesis of analogues of enhanced 

potency and selectivity[194]. 

 

2.5. Natural compounds in cancer therapy 

 

I. Alkaloids: Berberine, derived from various plants like Berberis 

vulgaris and Oregon grape, inhibits nuclear factor-kappa B and Wnt/β-

catenin signaling pathways, exerting antiproliferative and antiapoptotic 

effects in cancer cells. It also modulates drug resistance mechanisms, 

making it promising for CRC treatment[197].  

II. Etoposide: Etoposide is derived from the plant Mayapple and inhibits 

DNA topoisomerase II, blocking the replication of DNA with a 

consequent inability of the cell to divide[198]. 

III. Vincristine and Vinblastine: These amines are derived from the 

periwinkle plant, have the function of inhibiting microtubule formation, 

and are currently applied in practice to the therapy of many cancers, 

such as leukemia or lymphoma[199]. 
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IV. Polysaccharides: Fucoidan, obtained from seaweed, has been found to 

suppress the toxicity of anticancer drugs in CRC, showing potential in 

combination therapy approaches[200]. 

V. Polyphenols: Curcumin, a well-known polyphenol, downregulates 

gene products involved in antiapoptosis, cell proliferation, invasion, 

and angiogenesis. It exhibits anticancer activities in various cancer cell 

lines and preclinical models, with phase I clinical trials demonstrating 

its safety and minimal side effects in CRC patients[201]. Gingerol, 

another potent polyphenol found in ginger, regulates multiple cell 

signaling pathways implicated in cancer initiation and 

progression[202]. In human colon cancer cell lines, gingerol reduces 

cell viability and induces cell cycle arrest, showing promise for CRC 

treatment. 

VI. Terpenoids: Andrographolide, a terpenoid, activates proapoptotic 

signaling cascades and induces apoptosis in CRC cells, highlighting its 

potential as an anticancer agent[203]. 

VII. Polyunsaturated Fatty Acids: Eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), polyunsaturated fatty acids, have shown 

efficacy in treating various malignancies, including CRC. Their ability 

to target cancer cells holds promise for CRC therapy[204]. 

 

While conventional therapies such as surgery, radiation, and chemotherapy have 

advanced, they still fall short of ideal outcomes. Chemotherapy, in particular, is widely 

used but faces limitations such as poor water solubility, short elimination half-life, and 

toxicity[205]. Combination therapy has emerged as a strategy to address these 

limitations by simultaneously targeting multiple cellular or microenvironmental 

factors, leading to enhanced therapeutic benefits [206]. However, challenges such as 

differences in drug pharmacokinetics and biodistribution, low selectivity, and inherent 

biological complexity hinder its efficacy[207]. 
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2.6. Enhancing Therapeutic Efficacy with Nanoparticle-Mediated Drug 

Delivery Systems 

 

Nanotechnology, propelled by the development of nanomaterial-based drug delivery 

systems, has played a crucial role in cancer prevention and treatment[208]. Drug-

loaded nanoparticles, known as nanomedicines, hold promise in overcoming the 

limitations of conventional drugs by improving bioavailability, achieving targeted drug 

delivery, and reducing systemic side effects[209]. Some nanotechnology-based 

formulations, such as Doxil® and Abraxane®, have already received FDA 

approval[210]. 

Natural compounds have shown significant potential in cancer therapy due to their 

diverse mechanisms of action and reduced toxicity as discussed above. Their clinical 

application has been limited by various challenges, such as poor solubility, stability, 

bioavailability, and targeted delivery[211]. In relation, nanoparticle-mediated drug 

delivery systems have been found to become a very promising solution to these 

challenges in enhancing therapeutic efficacy against cancer through natural 

compounds[212]. Here are key reasons pinpointing the necessity of nanoparticle-

mediated drug delivery systems for natural compounds in cancer therapy: 

 

The field of nanoparticle-mediated drug delivery represents a promising frontier in 

overcoming the limitations of conventional medications. By utilizing a diverse array 

of materials and chemical strategies, drug delivery systems have been developed to 

enhance the therapeutic outcomes of various chemotherapeutic agents[213]. These 

systems achieve this by controlling the release rate of drugs, stabilizing them, and 

localizing their effects within the body. The rise of pharmaceutical nanotechnology has 

led to the development of nanoparticle-based drug delivery systems, including 

liposomes, polymeric nanoparticles, micelles, and dendrimers, which offer significant 

potential for improving human health[214]. 

The integration of nanomedicines with combination therapy offers even greater 

therapeutic potential by overcoming drug resistance and minimizing side effects[215]. 

Nanomedicines have been combined with conventional formulations to enhance 

therapeutic benefits, and novel nanomedicines for co- and dual-drug delivery have 
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been developed. Co-loading multiple therapeutic agents in a single nanocarrier can 

synchronize their pharmacokinetics and biodistribution, leading to synergistic 

anticancer effects[216]. Dual nanomedicines designed to target different cellular 

components or tumor microenvironment components can further improve therapeutic 

outcomes by reducing resistance and enhancing efficacy[217]. 

 

The present work focuses on the design, development, and evaluation of 

nanomedicine-based delivery of natural agents. Nanoparticles have been synthesized 

and characterized for their physicochemical properties. The efficacy of these 

nanoformulations has been evaluated in vitro using cancer cell lines, COLO320 DM-

Human colorectal cell lines.  

 

 

2.7. RATIONALE OF THE STUDY 

 

✓ Global cancer burden emphasizes the challenges in identifying effective therapeutic 

targets due to genetic variability across cancer types. 

✓ The high incidence of chemotherapy-related toxicities, systemic side effects, and the 

development of chemoresistant cancer cells, highlights the urgent need for more 

effective and targeted, less harmful therapeutic options.  

✓ The use of Natural Compounds are good alternatives due to their low toxicity, 

sustainability, potential anticancer properties and multi-targeting.  

✓ Nanoparticle-mediated drug delivery systems (DDSs) can enhance the bioavailability 

of natural compounds, provide controlled and sustained drug release, and ensure 

targeted delivery to tumor sites, thereby maximizing therapeutic efficacy while 

minimizing systemic toxicity. 
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2.8. AIM AND OBJECTIVES 

 

2.8.1. AIM 

To conduct a computational analysis for identifying therapeutic targets, mitigate 

chemotherapeutic drug side effects using natural compounds, and synthesize 

nanoparticles for effective drug loading, with comprehensive response studies on 

toxicity and delivery efficiency. 

 

2.8.2. OBJECTIVES 

1. Screening of natural compounds for the anticancer properties and 

Computational analysis of therapeutic targets 

2. Mitigation of side effects of chemotherapeutic drugs using Natural compounds 

3. Synthesis and characterization of nanoparticles for drug loading, Response 

study for drug toxicity and drug delivery. 
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CHAPTER:III 

 

 

 

 

 

 

 

 

 

 

 

Objective 1 

➢ Screening of natural compounds for the anticancer properties 

and Computational analysis of therapeutic targets 
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                                  CHAPTER III: OBJECTIVE 1 

 

3.1. Rationale of the study 

 

Colorectal cancer remains one of the leading causes of cancer-related mortality  

globally, despite the use of surgery, radiation, chemotherapy, targeted therapy, and 

other forms of treatments [218]. Nowadays, the objective has been to treat cancer as 

effectively as possible while reducing adverse effects. Irinotecan and 5-FU-based 

chemotherapy have been the conventional first-line treatment for mCRC, which was 

introduced some decades ago. Chemotherapeutic drugs can be harmful to normal cells 

because they attach to receptors that are not intended for them, which can cause 

unexpected side effects[137, 219]. As a result, the chemotherapeutic agent's selectivity 

for cancer cells compared to normal host cells has significant effects on the success 

rate of chemotherapy. Using the IntSide database (https://intside.irbbarcelona.org), a 

side effect analysis of FDA-approved chemotherapy drugs for colorectal cancer has 

been carried out.  The most often prescribed medication for colorectal cancer has been 

included along with any adverse effects. The results showed that each treatment had 

unique side effects. 

 

5-fluorouracil (5-FU): Depending on the dosage and individual variables, 5-

fluorouracil (5-FU) frequently causes nausea and vomiting. When used with 

leucovorin, it can cause diarrhea, increased oral mucositis, and gastrointestinal tract 

ulcers. Even though severe myelosuppression is uncommon with typical dosages, it is 

nevertheless a major risk associated with chemotherapy[220, 221]. 

 

Irinotecan: Irinotecan induces two types of diarrhea: late-onset diarrhea brought on 

by oxidative stress-induced mucosal damage and early-onset diarrhea associated with 

cholinergic activity[222, 223]. 

 

Capecitabine (Xeloda): Known side effects of capecitabine include coronary 

vasospasm, cardiomyopathy, and other major artery damage. The most common 



Ph.D. thesis 

 

35 | P a g e  

 

gastrointestinal hazard is diarrhea, and hand-foot syndrome may require dose 

withdrawal or reduction[224, 225].  

 

Oxaliplatin: Adverse actions of oxaliplatin primarily include the gastrointestinal tract, 

peripheral nerves, and hematological system. It is mildly myelotoxic, causes peripheral 

neuropathy, and provokes nausea, vomiting, and diarrhea[226, 227]. 

Regorafenib: the most frequent adverse events are fatigue, hand-foot-skin responses, 

hoarseness, weight loss, nausea or vertigo, and hypertension. There are also more 

occurrences of weight loss and nausea or vertigo, but fewer of the other side 

effects[228, 229]. 

Trifluridine/tipiracil: the associated side effects include fatigue, nausea or vertigo, 

anemia, diarrhea, vomiting, leukopenia, neutropenia, weight loss or anorexia, and 

stomach discomfort. There were more cases of anemia and fatigue, but fewer reports 

of other adverse effects. The frequency of weight loss and anorexia was in line with 

previously published research[230, 231]. 

For example, cisplatin, oxaliplatin, and 5-fluorouracil (5-FU) are cytotoxic 

chemotherapy drugs that are frequently used in conjunction with irinotecan[232]. 

Furthermore, irinotecan-containing chemotherapy regimens are frequently combined 

with molecularly targeted medications such as aflibercept beta, bevacizumab, 

cetuximab, panitumumab, and ramucirumab. The combined effects of these 

molecularly targeted medications and chemotherapeutic medicines on cholinergic 

syndrome produced by irinotecan are still unknown, though. There is currently no 

comprehensive list of risks associated with irinotecan-related cholinergic 

syndrome[233, 234]. However, diarrhea, nausea, vomiting, hypotension (low blood 

pressure), hypersalivation (excessive saliva production), bradycardia (slow heart rate), 

abdominal cramps, acute diaphoresis (excessive sweating), and other symptoms often 

occur following irinotecan treatment. These symptoms are collectively referred to as 

cholinergic syndrome [235, 236].  

To address this problem, we must first understand the gene expression levels in healthy 

versus non-healthy colorectal cancer samples and analyze the differences in their 
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expression patterns. Additionally, it is crucial to identify genes associated with 

irinotecan therapy by comparing the gene expression profiles of irinotecan-treated 

colorectal cancer samples with those that have not received the treatment. 

According to recent studies, bioactive compounds produced from plants can increase 

therapeutic efficacy at lower doses, which lowers toxicity. Moreover, these substances 

have the ability to re-sensitize chemoresistant cells via a variety of molecular 

pathways, indicating a promising direction for cancer research. The potential of these 

substances to improve the effects of traditional chemotherapy medications on CRC has 

been thoroughly investigated. These include curcumin (diferuloylmethane), 

resveratrol (3,4',5-trihydroxystilbene), and (-)-Epigallocatechin gallate (EGCG). 

Blocking and reversing acquired drug resistance mechanisms is a specialty of these 

natural substances. Curcumin, resveratrol, and EGCG have been shown to be effective 

in re-sensitizing chemoresistant cells.  

 

3.2.Methodology and materials required  

 

 

Figure 3. 1 Overview of Chapter Two methodology. 

3.2.1. Data retrieval: 

 

The datasets used in the study were obtained from the NCBI-GEO Database to analyse 

the differentially expressed genes in colorectal cancer versus normal samples. The 

GEO database contains a vast collection of valuable genomic studies, providing 
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processed and standardized information through various techniques. Two datasets 

were selected based on suitable numbers of samples and matching queries: 

GSE62322: This dataset contains 114 samples, including 36 samples from normal 

women’s colon samples 40 samples from primary colorectal cancer patients, and 38 

samples from patients in which cancer metastasis to the liver (liver metastasis CRC 

samples). 

GSE72484: The dataset comprises a total of 41 samples, including 9 from individuals 

with untreated CRC and 16 from those who received irinotecan treatment for CRC. 

This dataset is being examined to gain insights into alterations in gene expression 

resulting from irinotecan treatment and how these changes are linked to various side 

effects. 

3.2.2. Differential gene expression analysis 

 

To identify and analyze differentially expressed genes (DEGs) between colorectal 

cancer and control samples, we utilized the GEO2R tool available at 

http://www.ncbi.nlm.nih.gov/geo/geo2r/. This online tool makes it easier to compare 

microarray data and offers a list of genes with differential expression. We utilized the 

corrected and adjusted p-value (adj.P) to address the issue of false positive findings in 

our data analysis. The default option in GEO2R, the Benjamini and Hochberg false 

discovery rate approach, was used to produce the adj.P values, thus controlling for 

potential false positives. A lower adj.P value corresponds to a reduced false positive 

rate. Log FC values were employed to measure variations in gene expression, where 

positive values signified an increase in expression, and negative values indicated a 

decrease compared to the control group. Moreover, we considered a decrease in sample 

size during our analysis, categorizing genes with Log FC < 0 as down-regulated and 

those with Log FC > 0 as up-regulated. 

The GSE62322 dataset was normalized before being put through a differential gene 

expression analysis with an adjusted (adj.) P-value 0.05 significant level, logFC values 

of 1 for upregulated genes, and -1 for downregulated genes. Similar to this, GEO2R 

was used to analyze the GSE72484 dataset, with a cut-off of adj. P-value 0.05, logFC 

value >0 for upregulated genes, and logFC value 0 for downregulated genes. 
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To identify shared differentially expressed genes, we compared the upregulated and 

downregulated genes in tumor samples with those in post-drug treatment CRC samples 

using Microsoft Excel. The DEG lists from datasets GSE62322 and GSE72484 were 

analyzed through conditional formatting, specifically, the "highlight cells rule" 

function, to identify and highlight duplicate values, thereby revealing the common set 

of differential genes. 

3.2.3. Gene comparison with side-effects associated with genes 

 

A comprehensive analysis was conducted on the gene dataset provided by the National 

Center for Biotechnology Information (NCBI) to identify genes associated with 

various side effects of FDA-approved drugs. Relevant genes related to side effects in 

the dataset were found upon close review, for comparison with the upregulated and 

downregulated genes previously collected from the two different datasets. The 

comparison study was thus carried out by manually cross-referencing the collected 

genes from the NCBI GENE dataset with a group of often-found differential genes so 

as to get a better understanding of specific genes associated with chemotherapeutic 

side effects. Use of Excel was made for this analysis. The goal of this strategy was to 

find any shared genes between the common differential genes and the side effect-

associated genes.  

 

3.2.4. Gene enrichment analysis 

 

Using the ShinyGO 0.77 database, functional and route enrichment analysis was 

conducted. ShinyGO 0.77 offers thorough functional annotation tools to help in better 

understanding of biological roles of genes. It provides KEGG (Kyoto Encyclopedia of 

Genes and Genomes) pathway analysis and Gene Ontology (GO) analysis. To find 

enriched functional categories among the DEGs, GO enrichment analysis was carried 

out using the ShinyGO 0.77 database. The three primary components of the GO are 

molecular function, which refers to gene product activities at the molecular level, 

cellular component, which refers to gene product positions within cellular structures, 

and biological process, which refers to larger biological programs carried out by 

several molecular activities. P 0.05 was used as the significance threshold. These 
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include KEGG pathway diagrams that highlight your genes, hierarchical clustering 

trees and networks that summarize overlapping terms and pathways, protein-protein 

interaction networks, and plots illustrating gene characteristics. 

 

3.2.5. Protein-protein interaction 

 

The STRING database was used to assess functional protein interaction networks, 

specifically protein-protein interactions (PPIs). To analyze the PPI network, molecular 

complex detection was performed, focusing on modules that exhibited significant 

differences in gene expression (|Log FC| > 2 and P < 0.05). The PPI interactions were 

visualized using Cytoscape, a powerful software platform. 

 

3.2.6. Exploring Natural Compounds with Extensive Gene Impact 

 

This study mainly aimed at identifying the natural compounds that induced common 

DEGs and probably modulated various biological pathways and activities. The present 

study was conducted based on the GEO dataset GSE85871, which includes gene 

expression information for 102 different natural compounds. Each compound was 

assayed in two experiments, the results of which were compared with a blank group 

consisting only of DMSO. GEO2R, a program for comparing gene expression profiles, 

was used in the investigation to find DEGs for each natural compound in comparison 

to the control group (https://www.ncbi.nlm.nih.gov/geo/geo2r/). By contrasting the 

expression profiles of all substances in Microsoft Excel, common upregulated and 

downregulated genes were found. These naturally occurring compounds were 

screened for their potential to modulate these commonly expressed DEGs. The ranking 

of the compounds inducing the most significant changes in genes relative to standard 

DEGs was emphasized. First, the compound controlling the most substantial number 

of genes was selected. Then, subsequent compounds were picked for the capacity to 

change the expression of the most significant number of genes that hadn't been affected 

by the initial batch of compounds. 

3.2.7. Analyzing the combination of natural compounds 
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After selecting the combination of natural compounds, the researchers mapped the 

genes overlapped by these compounds in a Venn diagram. After finding the shared 

genes, we submitted them for enrichment analysis through the ShinyGO tool for 

biological pathways and processes affected by the combination of compounds. We 

have conducted literature research to understand better the biological meaning of the 

chosen cocktail of natural compounds, covering all available information from 

PubMed, Google Scholar, SCOPUS, and other scientific databases. Such a literature 

review should have suggested which compounds regulate biological processes and 

pathways and thus completed the entire interpretation of the experimental results. 

 

3.2.8. Natural Compound-Regulated Gene Survival and Mutation Analysis 

 

The mutational frequencies within the identified candidate genes were thoroughly 

investigated using TCGA data accessed through the Gepia tool. Concurrently, survival 

analysis was performed to assess the impact of alterations in these genes on overall 

survival in colorectal cancer patients. Utilizing the TCGA dataset, the Kaplan-Meier 

estimator was employed for visualization, with statistical significance determined 

using the Logrank test P-value. Survival analyses, leveraging gene expression status, 

were conducted utilizing GEPIA2, with specific parameters set: Group Cutoff at 

Median and Cutoff-High and Cutoff-Low percentages, both at 50%. Additionally, 

survival maps were generated with a significance level set at 0.05 to represent the 

findings visually. 

 

3.2.9. In silico and ADME and drug-likeness prediction 

 

We utilized the SwissADME web tool for in silico ADME screening and drug-likeness 

evaluation of four natural compound that regulate the eight genes in combination. This 

platform, developed by the Swiss Institute of Bioinformatics, provided insights into 

four natural compounds targeting eight specific genes. Simple physicochemical 

properties such as molecular weight, refractivity, atom counts, and polar surface area 

were computed using PubChem. Drug-likeness was assessed against Lipinski, Ghose, 

Veber, Egan, and Muegge rules, with Abbot Bioavailability scores predicting oral 
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bioavailability. Lipophilicity and solubility were evaluated through Swiss ADME 

database. 

 

3.3.Results 

 

3.3.1. Analysis of Differential Gene Expression 

 

Differential gene expression analysis was performed on the GSE62322 and GSE72484 

datasets. In GSE62322, 953 genes were found to be upregulated in colorectal tumor 

samples compared to their respective normal samples, while 941 genes were 

downregulated. In the dataset GSE72484, a total of 528 genes exhibited upregulation 

in drug-treated samples from colorectal cancer (CRC) compared to non-treated 

samples(Fig.3.2). Additionally, 786 genes demonstrated downregulation in the same 

comparison. This analysis focused on identifying meaningful differences in gene 

expression and generating volcano plots for both datasets. In the plots, blue dots 

represent genes that do not exhibit significant differences between colorectal cancer 

patients and healthy individuals, indicated by P ≥ 0.05 or |Log FC| < 2. Red dots, on 

the other hand, represent genes with significant differences (P < 0.05 and |Log FC| > 

2). The genes represented by the red dots are considered candidate genes for further 

analysis, as they may have clinical significance. The results of this analysis are 

presented in Figure 3.3, showcasing the genes of interest and their differential 

expression patterns. 
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 Figure 3. 2 figure illustrates the overall methodology used to analyze the gene expression data of 

colorectal cancer patient data and irinotecan-treated data. 

 

 

Figure 3. 3 Volcano Plots Depicting Differential Gene Expression. The plots show the results of 

gene expression analysis in colorectal tumor samples (GSE62322) and drug-treated colorectal 

cancer samples (GSE72484) compared to respective controls. Red dots represent genes with 

significant differences (P < 0.05, |Log FC| > 2), indicating potential clinical significance. Blue dots 

represent non-differentially expressed genes (P ≥ 0.05, |Log FC| < 2). Upregulated and 

downregulated gene counts are provided for each dataset, highlighting the molecular differences 

in colorectal cancer.  
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3.3.2. Common gene screening  

 

By comparing the differentially expressed genes in CRC tumors and drug-treated 

samples, common DEGs were screened. Among the 953 upregulated DEGs in CRC 

tumors, 132 genes were found to be common with the 786 downregulated DEGs in 

drug-treated samples. These genes, upregulated in CRC tumor samples and 

downregulated in drug-treated samples, may be involved in the side effects of FDA-

approved drugs. Similarly, out of the 941 downregulated DEGs in CRC tumors, 280 

genes were common with the 528 upregulated DEGs in the drug-treated sample. 

3.3.3. Identifying Genetic Culprits Behind CRC Therapy Side Effects 

 

A comparison between multiple gene groups was done to find potential genetic 

influences connected to different side effects. These gene sets included 34 genes linked 

to abdominal pain, 117 genes linked to diarrhea, 26 genes linked to vomiting, 104 

genes linked to fatigue, 60 genes linked to anemia, 55 genes linked to 

thrombocytopenia, nine genes linked to decreased appetite, 200 genes linked to 

neutropenia, 1252 genes linked to bone marrow depression, and 200 genes linked to 

neutropenia. This analysis aimed to find any genes that shared regulatory patterns with 

the groupings of upregulated and downregulated genes, as well as those linked to the 

aforementioned adverse effects. By looking at these overlapped genes, it was feasible 

to learn more about putative genetic pathways behind the incidence of these side 

effects. This thorough technique compared genes implicated in diverse side effects and 

looked for parallels to understand better the genetic mechanisms influencing side 

effects. By comparing gene expression data, we could pinpoint 46 common genes that 

were up and down-regulated(Table 3.1). Thirty four common genes among the 

elevated genes: THBS1, FGFR, WAS, B3GALT1, TRPM, KRT19, RAB27A, 

ABCB1, FAS, IL6R, ARRB1, PTGS1, NEDD4L, ROR1, SOCS2, DUSP1, DCN, 

TLR4, NR2F2, ADH1B, PDE4D, MYLK, SOCS3, PRKCB, GSN, CDKN2B, 

PTPN22, NT5E, SMAD1, KLF6, IGF1, AHNAK, GPR39, and MLXIP. Additionally, 

we found 12 common genes that were downregulated: ANGPT2, ETS2, PML, BRIP1, 

CD47, HMGB1, CYP3A5, HSPD1, PDPN, CDK1, GDF15, and FANCI(Table 3.1). 

The upregulated genes indicate increased activity and potential functional roles, while 
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the downregulated genes suggest decreased activity or regulation in the observed 

conditions. 

3.3.4. Gene enrichment analysis 

 

Functional enrichment analysis of DEGs revealed that the 46 discovered genes are 

implicated in critical functions across diverse biological processes, bringing novel 

insights into the molecular mechanisms underlying the side effects of FDA-approved 

medications. These include some key signaling channels among these activities, such 

as the P53 signal transduction system involved in controlling the cell cycle and 

preventing the development of tumors. It was further found that these DEGs affected 

the Fanconi anemia pathway, retinol metabolism, drug metabolism, and cytochrome 

P450 metabolism of xenobiotics(Fig. 3.4). They were also found to be associated with 

growth hormone synthesis, natural killer cell-mediated cytotoxicity, JAK-STAT, focal 

adhesion, and the mechanism for EGFR tyrosine kinase inhibitor resistance often 

developed by cancer cells. Other biological processes affected by these genes are the 

transport systems, protein metabolism, immunological response, and cell development 

and maintenance. Noticeably, these DEGs enriched the HIF-1, Rap1, and PI3K-Akt 

signaling pathways that play a central role in cell survival, proliferation, and 

angiogenesis(Fig.3.4) and (Fig.3.5). These results strongly suggest that these 

biological mechanisms and signal pathways are causally connected with the 

development of the aforementioned adverse effects and tumor progression (Fig.3.6). 

Considering the implications of these findings, identifying drugs that can modulate the 

expression of these genes and restore their normal levels and function holds excellent 

potential for restoring normal biological processes. By targeting these genes, it may be 

possible to develop interventions to mitigate the aberrant activities associated with 

tumor progression. 
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Figure 3. 4 Enrichment Analysis and hierarchical clustering trees of Differentially Expressed 

Genes (DEGs) in Colorectal Cancer. The figure shows the enriched biological processes and 

signaling pathways impacted by the 46 DEGs in drug-treated colorectal cancer samples 

(GSE72484). These genes are associated with key pathways, including P53 signaling, drug 

metabolism, EGFR tyrosine kinase inhibitor resistance, and cell survival pathways (HIF-1, Rap1, 

and PI3K-Akt). Targeting these DEGs may offer potential therapeutic strategies to counter tumor 

progression and improve treatment outcomes. 

 



Ph.D. thesis 

 

46 | P a g e  

 

Figure 3. 5 Hierarchical diagram displaying gene interactions and links across multiple biological 

pathways. This picture illustrate a very entangled network of gene interactions, where nodes 

represent the single genes, while edges represent the interconnections between them. Nodes, 

colored and shaped differently, mark participation in different biological pathways. This image 

reflects how complicated the relationships and mechanisms of regulation between cellular 

processes are and how genes coordinate with and influence each other within the context of the 

larger environment of the biological systems. 

The STRING database was used to analyze the PPI network, which revealed 46 

Differentially Expressed Genes. These DEGs showed a close relationship within the 

network and were divided into three distinct groups using the Hidden Markov Model 

[237](Figure 3.7). Node degree analysis highlighted a strong association among 

BIRC5, MELK, CDC20, CCNA2, and EZH2, suggesting a clear positive correlation 

among these five gene clusters. Figure 3.7 displays the selected genes from these 

DEGs, emphasizing the major regulatory nodes. Furthermore, there was a significant 

association observed in other gene clusters such as ICAM1, IL6, CDH5, and 

PECAM1. Among these DEGs, EZH2 and IL6 were identified as intermediary hubs, 

playing important roles in the network. 

 

Figure 3. 6 Diagram of the interlinked biological pathways and related side effects implicated by 

FDA-approved drugs. Green dots represent common hubs linking differentially expressed genes 

that were identified in the study. 
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Figure 3. 7 Protein-Protein Interaction (PPI) Network of Differentially Expressed Genes (DEGs) 

in Drug-Treated Colorectal Cancer. The PPI network analysis using the STRING database 

identified 46 DEGs with close relationships.   

3.3.5. Prioritizing Natural Compounds: Impact on Reversing DEG Expression 

 

The GEO2R database was used to analyze detailed expression profiles for a sample 

containing 102 naturally occurring compounds with anticancer activity. These DEGs 

are those genes whose expression levels change upon exposure to each unique natural 

compound, as per a previously generated list of 46 common genes from two datasets 

in which 12 genes were downregulated, and 32 genes were upregulated. These lists 

were then compared with the DEGs from the 102 naturally occurring compounds. It 

was essential to find out which natural compounds had the most significant influence 

on reversing the expression of these widespread DEGs. Based on the findings, the 

natural substances were ranked according to how well they could reduce the expression 

of the most significant number of genes. 

3.3.6. Synergistic Effects of Natural Compounds on Gene Regulation 

 

The ability of a combination of natural substances to change the expression of a 

maximum number of genes among 46 frequent DEGs was carefully considered. 

Resibufogenin, the first compound tested, demonstrated modulation of 28 genes out of 
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the 46 DEGs. Other natural substances were examined for their ability to restore gene 

expression to address the remaining 18 genes. As a result, the genes curcullgoside, 

borneol, and β-ecdysterone, which regulated the remaining genes, were discovered. 

Out of the 46 prevalent DEGs, these four compounds were able to regulate 44 genes, 

effectively restoring gene expression to levels resembling those found in healthy 

matched tissues. Notably, the combination of natural compounds did not adequately 

activate two genes, FGFR and TRPM (Fig.3.8, 3.9). 

Table 3.1. Common differentially expressed genes(46 in number) from two different datasets. 

Upregulated genes fc value adjusted P 

value 

Downregulated 

genes 

fc value adjusted 

P value 

IL6R -2.88041 1.65E-10 BRIP1 2.305483 4.08E-04 

MLXIP -1.117 0.00000788 GDF15 1.309853 2.81E-04 

RAB27A -1.0795 0.0000115 ANGPT2 2.407143 3.02E-04 

SOCS3 -3.879 1.7570999 FANCI 2.135601 1.58E-05 

WAS -3.87944 1.0017901 HMGB1 0.67892 2.60E-04 

TNFRSF10A -3.91571 1.4540995 CYP3A5 0.938172 2.52E-04 

MYLK -3.92336 1.0737074 IGF1 1.099079 4.08E-04 

PDE4D -3.92742 1.0317549 PML 0.526942 2.60E-04 

GPR39 -3.94142 1.0300514 CDK1 0.558689 2.59E-04 

THBS1 -3.96528 1.0307419 HSPD1 0.70852 2.81E-04 

KRT19 -3.98752 1.0206616 PDPN 0.673437 3.02E-04 

PTGS1 -4.02027 1.0412291 CD47 0.611183 2.41E-04 

ABCB1 -4.02674 1.0823671 ETS2 1.214165 2.25E-04 

ADH1B -4.05624 1.0677919 
   

BAALC -4.0724 1.0320565 
   

IGF1 -4.14012 1.1995141 
   

B3GALT1 -4.16194 1.0087634 
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TRPM -4.1831 1.2646012 
   

KLF6 -4.18669 1.5390172 
   

TLR4 -4.22594 1.0825319 
   

FAS -4.22904 1.0205674 
   

FGFR -4.32038 1.0304485 
   

PTPN22 -4.38816 2.0021747 
   

DUSP1 -2.76418 0.0000137 
   

PRKCB -1.46792 0.0000174 
   

CDKN2B -1.52918 0.0000132 
   

GSN -1.84632 0.0000156 
   

NT5E -1.95191 0.0000167 
   

DCN -1.57158 0.0000153 
   

ARRB1 -1.0622 0.0000172 
   

NEDD4L -1.38851 0.0000178 
   

SMAD1 -2.27255 0.0000153 
   

ROR1 -1.06307 0.0000154 
   

NR2F2 -1.17045 0.0000199 
   

SOCS2 -1.77994 0.000016 
   

AHNAK -1.15056 0.000016 
   

 

Table 3.2.  Natural comounds and the number of genes regulated by them. 

Natural Compound Genes Natural Compound Genes Natural 

Compound 

Genes 

Salidroside 18 Phillyrin 19 Nitidine chloride 16 

Schisantherin A 16 Resibufogenin 30 Bruceine 23 

Oxymatrine 16 Alantolactone 14 Ginsenoside Rb3 23 

Silybin 21 Ginkgolide B 14 Macrozamin 23 
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Daidzin 22 Hyodeoxycholic acid 14 Tanshinone IIA 23 

Scutellarein 23 Matrine 14 Bufalin 15 

Gastrodin 19 Osthole 14 Cinnamic acid 15 

Ginseooside Rd 24 stachydrine 

hydrochloride 

14 Honokiol 15 

Glycyrrhizic acid (2) 14 Ursodeoxycholic acid 14 Hyperoside 15 

Schizandrin 16 ethyl caffeate 20 Puerarin 15 

Astragaloside IV 21 Ferulic acid 20 Saikosaponin A 15 

Benzoylaconitine 21 Isoalantolactone 20 Sanguinarine 15 

Ginsenoside Rc 21 Tetrahydropalmatine 20 Sennoside A 15 

Imperatorin 21 1bita- 

hydroxyalantolactone 

22 Acteoside 17 

L-scopolamine 21 Benzyl benzoate 22 Hesperidin 17 

Saikosaponin D 21 Gallic acid 22 Hydroxysafflor 

yellow 

17 

Aconitin 18 Ginsenoside Rb1 22 Magnolol 17 

Arenobufagin 18 Isoborneol 22 Resveratrol 17 

Chlorogenic acid 18 Protocatechuic aldehyde 22 6-gingerol 24 

Cinnamaldehyde 18 Salvianic acid A sodium 22 Andrographolide 24 

Cinobufotain 18 Bacopaside l 23 Cholic acid 24 

Deoxycholic acid 18 Benzoylhypaconitine 23 Ginsenoside Re 24 

Gamabufatalin 18 bita-ecdysterone 25 Japonicone A 24 

Uridonin 18 Chenodeoxycholic acid 23 Narciclasine 24 

Anhydroicaritin 19 Ginsenoside Rb2 23 Notoginsenoside 

R1 

24 

Borneol 26 Muscone 23 Hypaconitine 12 

Chelerythrine 19 Paeoniflorin 23 Liquiritin 12 

Curcullgoside 26 Salvianolic acid B 23 Berberine 

hydrochloride 

13 
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Dioscin 19 Telocinobufagin 23 Bufotaline 13 

Emodin 19 Bilobalide 16 Ainsliadimer A 11 

Gentiopicroside 19 Britanin 16 Geniposide 11 

Ginsenoside Rg1 19 Cinobufogenin 16 Santonin 10 

Lobetyolin 19 Ephedrine 

hydrochloride 

16 Strychnine 10 

Oleanic acid 19 Glycyrrhizic acid 16 Artemisinin 36 

 

 

 

Figure 3. 8 Analysis of 34 Common Upregulated Genes and 12 Common Downregulated Genes in 

relation to the modulation/reversal of their expression by four natural compounds. (DEG - 

Differential gene expression)  

Additional analysis compared the four natural compound individual impacts on the 46 

DEGs. These 46 often targeted genes' involvement in crucial biological processes such 

as transport, immunological response, signal transduction, and nucleic acid 

metabolism control was revealed by enrichment analysis. These mechanisms 

significantly impact the immune system and the development of cancer.  When these 

compounds were combined, it was found that numerous genes were more effectively 

regulated than when they were used separately(Table 3.2).. This implied the possibility 
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of synergistic effects, which could help minimize drug resistance and harmful side 

effects related to targeting single pathways. 

On the other hand, different combinations of natural compounds targeted additional 

genes, with eight genes being regulated by all four compounds, ten genes by any three 

compounds, and 12 genes by any two compounds, according to the Venn diagram(Fig. 

3.9). These additional genes included B3GALT1, NEDD4L, SOCS2, TLR4, PRKCB, 

GSN, ANGPT2 and CD47, which were controlled by all four compounds namely 

resibufogenin, curcullgoside, borneol, and β-ecdysterone. Only one of the four 

compounds impacted twenty-eight genes(Fig. 3.9 and Fig. 3.10). These genes also play 

a critical role in cancer progression and the manifestation of side effects from 

chemotherapy. As a result, the coordinated targeting of these genes offers hope for the 

successful treatment of colorectal cancer malignancies and decreases chemotherapy's 

side effects(Table 3.3). 

 

Figure 3. 9 Synergistic Modulation of Gene Expression in Colorectal Cancer by natural 

compounds. The Venn diagram shows the impact of combining natural substances on 46 

Differentially Expressed Genes (DEGs) in drug-treated colorectal cancer. Resibufogenin 

modulated 28 genes, while curcullgoside, borneol, and β-ecdysterone regulated the remaining 18 

genes. Together, these compounds restored gene expression in 44 DEGs, resembling healthy tissue 

levels. Combining the substances demonstrated synergistic effects, potentially minimizing side 

effects. Different combinations targeted additional genes, providing valuable insights for 

therapeutic strategies. 
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Figure 3. 10 The figure depicts the regulation of specific genes influenced by a subset of four 

natural compounds selected from a pool of 102 compounds. 

3.3.7. Mutational and survival analysis of eight genes 

 

The survival analyses on the TCGA-colorectal Adenocarcinoma (COAD) patient 

cohort were used to investigate the impact of B3GALT1, NEDD4L, SOCS2, TLR4, 

PRKCB, GSN, ANGPT2, and CD47 expression status on patient survival (Fig 3.11). 

Our findings revealed that in the COAD cohort, patients with high ANGPT2, PRKCB, 

NEDD4L, and CD47 expression experienced significantly worse disease-free survival 

(hazard ratio between 0.90 and 1.1). In contrast, high GSN and TLR4 expression 

showed no discernible effect on survival. Moreover, survival maps (Fig 3.12) 

uncovered cancer-type-specific effects of ANGPT2, PRKCB, NEDD4L, and CD47 

expression levels on patient survival. These results indicate that in Colorectal cancer 

patients, reduced ANGPT2, PRKCB, GSN, TLR4, NEDD4L, and CD47 expression 

might lead to improved survival, potentially due to enhanced antigen presentation. 

However, it's important to note that these survival effects are not universally applicable 

across all cancer types. Given the considerable variability in immune infiltration, 

tumor mutational burden, and genomic profiles among different cancer types, it's 

expected that survival patterns will vary significantly based on cancer type. 

Table 3.3. Commonly targeted genes and their roles in cancer progression as well as in the side 

effects 
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Gene Role in Cancer Progression Role in Chemotherapy Side Effects References 

B3GALT1 Implicated in tumor progression and 

metastasis 

Potential influence on drug response or 

cellular mechanisms 

[238] 

NEDD4L Regulates protein degradation; 

involved in cancer 

May impact drug response or cellular 

pathways 

[239, 240] 

SOCS2 Negative regulation of cytokine 

signaling 

Possible influence on  treatment 

response or cellular processes 

[241] 

TLR4 Complex role in immune responses 

and cancer context 

Variably affects immune responses and 

treatment outcomes 

[242] 

PRKCB Role in cell proliferation, survival, 

and apoptosis 

Potential impact on treatment response 

or cell processes 

[243] 

GSN Impacts actin filament assembly; 

linked to cancers 

Influence on cellular functions and 

possibly treatment 

[244, 245] 

CD47 Regulates cell death; implicated in 

immune evasion 

Possible impact on immune response and 

treatment outcomes 

[246, 247] 

ANGPT2 Involved in angiogenesis; impacts 

tumor progression 

Potential influence on vascularization 

and treatment effects 

[248] 
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Figure 3. 11 Boxplots illustrating the expression profiles of B3GALT1, NEDD4L, SOCS2, TLR4, 

PRKCB, GSN, ANGPT2 and CD47 genes in Coloractal cancer, comparing tumor tissues (T, red 

box, n=275) to normal tissues (N, grey box, n=349) within the GEPIA database. Statistical 

significance (P<0.01) denoted by an asterisk (*) indicates differences in expression compared to 

normal tissues. (GEPIA stands for Gene Expression Profiling Interactive Analysis). 
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Figure 3. 12 Validation and survival analysis based on The Cancer Genome Atlas (TCGA) data 

conducted using the GEPIA platform (http://gepia.cancer-pku.cn/index.html), focusing on 

significant hub genes within the COAD cohort for overall survival analysis. Gene expression 

analysis of B3GALT1, NEDD4L, SOCS2, TLR4, PRKCB, GSN, ANGPT2 and CD47 across all 

stages (I–IV) of colorectal cancer (CRC). Conducting Kaplan-Meier overall survival analyses and 

predict stage plot on the top eight hub genes expressed in colorectal carcinoma patients using the 

GEPIA database. 

ADME Analysis 

All four designed compounds successfully cleared the drug-likeliness test, as 

demonstrated in Table 3.4. Additionally, they met the Lipinski rule of five criteria, a 

standard guideline in drug design. According to this rule, adherence to three out of the 

four criteria indicates compliance. Notably, all four developed compounds exhibited 

high gastrointestinal absorption rates. This breakthrough signifies significant progress 

in the quest for a cure for colorectal cancer(Fig 3.13). 

 

Figure 3. 13 The SwissADME bioavailability radar illustrates four bioactive drug-like molecules, 

where the pink segments highlight essential characteristics such as lipophilicity, molecular weight, 

solubility, and flexibility. 

Table 3.4.  Pharmacokinetic Assessments and Drug-likeness Calculations by SwissADME for 

Four Natural Compounds. 
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3.3.8. The Biological Network of Natural Compounds in CRC Regression 

By locating their modes of action in the literature, the congruence analysis of the 

combination of chosen natural compounds was performed. This investigation sought 

to evaluate their ability to work in concert to target various pathways that interact to 

successfully promote tumor regression without producing unfavorable side effects. 

i. Resibufogenin, a naturally occurring bufadienolide compound found in the 

skin and parotid venom glands of Bufo toads, has emerged as a potential 

candidate for cancer therapy due to its intriguing pharmacological 

properties[249]. Extensive research has explored its effects on various 

cancer types and their underlying molecular pathways. Resibufogenin has 

demonstrated its ability to inhibit cell proliferation by inducing cell cycle 

arrest, preventing rapid cancer cell growth and division[250–252]. One of 

the ingredients in the mixture, resibufogenin, stimulates autophagy by 

activating the PI3K/Akt/mTOR signaling pathway, which is a protein 

kinase B/mammalian target of rapamycin. Resibufogenin controls this 

mechanism, which results in caspase-dependent and mitochondria-

mediated apoptotic cell death by reducing anti-apoptotic proteins and 

Parameters Resibufogenin Borneol Curcullgoside β-ecdysterone 

BBB Yes Yes  No No  

Human intestinal 

absorption 

High High Low High 

Log P 3.46 2.29 1.86 2.92 

TPSA(Å) 62.97 20.23 164.37 138.45 

Molecular weight( 

g/mol) 

384.51  154.25 302.24 480.63 

Class Moderately Soluble soluble soluble soluble 

Log Kp(skin 

permeation) 

-5.99 cm/s -5.31 -8.65 -8.91 

Lipinski Yes Yes Yes Yes 

Ghose Yes No Yes No 

Veber Yes Yes No  No 

PAINS 0 alert 0 alert 0 alert 0 alert 

Bioavailability score 0.55 0.55 0.55 0.55 
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increasing pro-apoptotic factors[253]. Resibufogenin reduces reactive 

oxygen species (ROS) by activating the Akt/ERK signaling pathway, 

which prevents tumor cell proliferation, migration, and invasion[254]. It 

also activates the IkB/NF-B pathway, which reduces the release of pro-

inflammatory cytokines while increasing apoptosis via p53 and caspase 

signaling. Additionally, it has pro-apoptotic properties that cause cancer 

cells to undergo programmed cell death[255]. Resibufogenin prevents the 

creation of new blood vessels required for tumor growth and metastasis, 

another crucial anticancer strategy. It alters vital signaling pathways 

including PI3K/AKT and MAPK, which are frequently dysregulated in 

cancer, and it prevents cancer cell invasion and migration, hence reducing 

the likelihood of metastatic spread. By regulating apoptosis-related 

proteins, such as Bcl-2, Bax, and caspases, resibufogenin orchestrates the 

apoptotic process in cancer cells (Fig.3.14)[254]. Despite these 

encouraging results, additional preclinical and clinical research is 

necessary to determine the drug's safety and effectiveness in cancer 

treatment. Resibufogenin might aid in defending healthy tissues from harm 

brought on by chemotherapy drugs by lowering inflammation. According 

to some research, Resibufogenin may also preserve bone marrow, which is 

particularly vulnerable to damage from several chemotherapy treatments. 

It may lessen the severity and length of chemotherapy-induced 

myelosuppression, which results in low blood cell counts, by promoting 

bone marrow activity. 

ii. Borneol, a bicyclic organic compound commonly found in aromatic herbs 

like Blumea balsamifera and Dryobalanops aromatica, has been 

investigated for its potential anticancer properties through involvement in 

various cancer-related pathways[256]. The compound has shown 

chemopreventive attributes, likely stemming from its antioxidative 

capacity, which could modulate the Nrf2-ARE pathway and counteract 

harmful free radicals, thus mitigating DNA damage implicated in cancer 

initiation. Additionally, borneol exhibits antiproliferative capabilities by 

potentially downregulating the PI3K/AKT and MAPK pathways, hindering 
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cancer cell growth and division[257]. Moreover, in vitro investigations 

have revealed its ability to induce apoptosis in cancer cells by activating 

caspase cascades, which may involve the p53 pathway. This, in turn, 

promotes programmed cell death and diminishes tumor size[258]. [258]. 

Borneol also enhances drug delivery mechanisms could involve the 

modulation of ABC transporters, thereby increasing the intracellular 

accumulation of chemotherapeutic agents [259]. Additionally, its anti-

inflammatory properties, likely linked to the inhibition of NF-κB signaling, 

might contribute to cancer prevention and treatment, given the association 

between chronic inflammation and cancer development(Fig.3.14) [260]. 

Despite these promising findings, most studies have been confined to 

cellular or animal models, with limited clinical trials in humans. Thus, the 

efficacy of borneol in cancer treatment necessitates further exploration, and 

any potential applications should be approached with caution, guided by 

evidence-based medical practices and under the supervision of qualified 

healthcare professionals.  

In drug metabolism, borneol interacts with key Cytochrome P450 enzymes 

(CYP3A4, CYP2D6, and CYP1A2)[261]. Its role in neuroprotection is 

linked to BDNF, promoting neuronal survival and growth. In pain 

modulation, borneol interacts with OPRM1 (mu-opioid receptor) and 

TRPV1 (transient receptor potential vanilloid type 1 ion channel) genes, 

affecting pain perception[262, 263]. Borneol's cardiovascular effects, 

characterized by vasodilation and vascular function, are influenced by the 

NOS3 gene[264]. Borneol's impact on gastrointestinal integrity is 

associated with COX-1 and COX-2 genes, involved in prostaglandin 

production[265].  

iii. Curcullgoside is a metabolite of Curcumin, a bioactive compound derived 

from turmeric, exerts its anticancer effects through modulation of several 

critical signaling pathways. By interfering with the nuclear factor-kappa B 

(NF-B) pathway, it reduces inflammatory reactions and impairs the growth 

and survival of cancer cells[266]. Curcumin hinders the growth of cancer 

cells by blocking the phosphatidylinositol 3-kinase (PI3K)/protein kinase 
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B (AKT) pathway. This increases apoptosis. Curcumin also affects the 

Mitogen-Activated Protein Kinase (MAPK) pathway, altering cell cycle 

progression and death[267]. Its downregulation of Cyclooxygenase-2 

(COX-2) expression contributes to its anti-inflammatory and anticancer 

properties. Moreover, curcumin inhibits angiogenesis by targeting vascular 

endothelial growth factor (VEGF) expression and impairs new blood vessel 

formation crucial for tumor growth. Lastly, curcumin induces apoptosis 

through the modulation of Bcl-2 family proteins and caspases, providing 

an additional mechanism to combat cancer cells[268]. 

Additionally, it reduced the levels of a number of pro-inflammatory 

cytokines in the serum, including TNF-, IL-1, IL-6, IL-10, IL-12, and IL-

17A[269]. Curculigoside dramatically reduced cell proliferation in a 

concentration- and time-dependent manner in in vitro experiments 

employing fibroblast-like synoviocytes (MH7A cells) obtained from 

patients with rheumatoid arthritis. In terms of mechanism, curculigoside 

increased cytosolic NF-κB p65 and IB while downregulating the levels of 

JAK1, JAK3, and STAT3(Fig.3.14). These results imply that the regulation 

of the JAK/STAT/NF-κB signaling pathway by curculigoside may be the 

cause of the compound's anti-arthritic actions[270, 271]. 

iv. β-ecdysterone, a plant sterol similar to estrogen, shows promising potential 

as a bone regeneration regulator. It also enhanced alkaline phosphatase 

activity and calcium nodule formation, indicating improved bone 

regeneration capacity[272]. Mechanistically, β-ecdysterone activated the 

BMP-2/Smad/Runx2/Osterix signaling pathway, as confirmed by DNA 

sequencing. By suppressing VEGF-induced regulation of the Akt/mTOR 

signaling pathways, β-ecdysterone prevents VEGF-induced migration, 

tube formation, and proliferation as well as cell proliferation[272, 273]. 

Through the inhibition of IKK1/IKK2, which regulates tumor cell 

proliferation and angiogenesis, β-ecdysterone suppresses NF-kB. Through 

the downregulation of cMyc and HIF1 through upstream effectors like 

mTOR, it demonstrates an anti-inflammatory response that prevents 

angiogenesis and cell proliferation(Fig.3.14)[274].  
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By targeting multiple pathways and processes, the combination of these 

natural compounds demonstrates a highly potent multifaceted antitumor 

and immunomodulatory role, contributing to the regression of colorectal 

cancer. The biological network formed by these compounds offers a 

promising approach for combating CRC tumors effectively(Fig.3.14). 

 

Figure 3. 14 the figure illustrates the proposed mechanisms of action of a combination of selected 

natural compounds in colorectal cancer regression. The compounds—Resibufogenin, Borneol, 

Curcullgoside, and β-ecdysterone—work synergistically to target various pathways involved in 

colorectal cancer progression. The combination of these compounds offers a multifaceted 

approach to induce tumor regression in colorectal cancer therapy while minimizing side effects. 

Table 3.5 Irinotecan-Mediated Side Effects and Associated Genes. 
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Side effects Gene involved in side-effects Common 

genes 

after drug 

treatment 

Anemia GATA1,AGT,BRIP1, LPIN2, MAOB, REN, SOD2, RPS7, EGFR, ABCC2, 

TNFSF10, PARP1, FANCI, RPL35A, CASP9, RPS14, EPB41, PARP1, BRCA1, 

SOD2, BRIP1, RPS7, CYP3A4, RPS14, FANCI, PARP1, MAOB, LPIN2, EPB41, 

NFKBIA, ABCB1, AGT, RPL35A, GATA1, PARP1,CASP8, CYP3A7 

ABCB1, 

BRIP1, 

FANCI,  

Thrombocytopenia  TNFRSF10A, VERFA ,WAS, GATA1, CYCS, ETV6, TNFSF10, ABCC2, THBS1, 

CYP3A4, MGMT, CYP2B6, GASP3, CYP3A5, CASP9, ABCG2, CASP8, ABCB1, 

CYP2B6, SUMO1, CDC42 

TNFRSF1

0A,WAS,

THBS1, 

CYP3A5, 

ABCB1 

Decrease apetite CASP8, CASP3, CYP3A7, ABCC2, CYP3A4, POLE2, ABCB1, CYP3A5ABCG2 ABCB1, 

CYP3A5 

Neutropenia CYP3A5, TNFRSF10A, CYP3A7, UGT1A6, VPS45, CASP8, ABCB1, ABCG2, 

CASP3, WAS, TP53, UGT1A1, RELA, CASP9, CDC42, GATA1, PDE4D, AGR2, 

VPS45, SCARA5, PTPN5, ADAMTS18, MLXIP, UGT1A, BAALC, KRT19, 

ANGPT2, GATA1, TNFSF10, CASP8, CYP3A5, ERCC1, PTX3, SOCS3, BRCA1, 

TLR4, NPPB, HLA-DQB1, ABCC2, TREM1, DPYD, TNF, IL10, UGT1A1, CXCL8, 

TP53, ABCB1, IL6, TGFB1, MTHFR, CRP, SCARA5, PTPN5, ADAMTS18. 

CYP3A5, 

TNFRSF1

0A, 

ABCB1, 

WAS, 

PDE4D, 

MLXIP, 

BAALC, 

KRT19, 

ANGPT2, 

SOCS3, 

TLR4,  

Diarrhea ABCG2, CYP3A5, HTR3A, ABCB1, TNF, EGFR, IL6, IL10, CXCL8, BDNF, IL1B, 

LEP, TLR4, SLC6A4, UGT1A1, GPR39, UGT1A, MYLK, RAB27A, DPYD, TRPV1, 

CACNA1A, TREM1, AGR2, HLA-DQB1, RELA, ABCG2, S100A9. 

CYP3A5, 

ABCB1, 

TLR4,GP

R39, 

MYLK, 

RAB27A,  

Nausea POLE2, CYP3A4, TNFRSF10, TNFRSF10A, MAPRE1, ABCB1, CASP8, MTHFR, 

CGB5, SLC6A4, DRD2, CYP2D6, ABCG2, OPRM1, ERCC1, MAOA, ADH1B, 

PAPPA, TACR1, FAAH, TBX19, POU2F1, HTR3A, TRAP1, SERPINA6, HTR3B, 

HTR3C. 

TNFRSF, 

ABCB1, 

ADH1B 

Fatigue 

 

TNFRSF10A, CASP8, CYP3A5, ABCB1, CYP3A7, CYP3A4, TNFRSF10, AR, 

PARP1, STX17, RIN2, IKZF4, IL2RA, TNFRSF10A, VDR, TP53, CASP8, CYP3A4, 

TNFSF10, RELA, ABCG2, CASP9, UGT1A1, NFKBIA, ABCC2, EGFR 

CASP3, ABCB1, CYP3A5, SUMO1, PTGES3, CDH1, CASP8, 

CYP3A5, 

ABCB1, 

IGF1 

Bradycardia HCN4, Chrm2, COMT, SLC6A4, NPPB, ATP2A2, CYP2D6, SCN5A, KCNQ1, crhr1, 

CHRM2, SCN5A, NPPB, ATP1A3, ATP2A2, PRKAG2, ESRRA, KCNQ1, HCN4, 

ESRRA, EPB41, PRKAG2. 

 

Abdominal pain ABCG2, CYP3A5, CYP3A7, ABCB1, CYP3A4, CRP, IL10, BDNF, IL1B, CDH1, 

IGF1, PTX3, S100A9, TNFRSF10A, DMD, TRPV1, CACNA1A, TREM1. 

CYP3A5, 

ABCB1, 

IGF1, 
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Bone marrow 

depression  

TP53, TERT, S100A4, CD82, IL24, KLF6, RECK, TNF, VEGFA, IL6, TGFB1, MMP9, 

EGFR, CD274, NFKB1, HIF1A, IL10, PTGS2, ST7, AKT1, STAT3, ERBB2, TLR4, 

ESR1, CXCR4, IL1B, CTNNB1, MIR21, IFNG, SIRT1, PTEN, ST13, CXCL8, BCL2, 

NOTCH1, ADIPOQ, KRAS, MYC, CDKN1A, MTOR, MMP2, PPARG, AR, BRCA1, 

NFE2L2, BRAF, CDKN2A, SNCA, BIRC5, PDCD1, IL17A, JAK2, MAPK1, ITGB1, 

MAPK14, HLA-B, EZH2, MDM2, BRCA2, ABCB1, CD44, ZNF24, LEP, CDH1, 

ST7L, FOXP3, MIR146A, APP, BCL2L1, RB1, HGF, VDR, RELA, CDKN1B, 

GSK3B, HMGB1, RHOA, TLR2, HMOX1, MTHFR, ICAM1, SPP1, CXCL1, MCL1, 

IGF1, FOXP3, JUN, CRYBG1, KIT, BMP2, MAPK3, SRC, PIK3CA, LCN2, SP1, 

RPA1, E2F1, ATM, WT1, YAP1, FGF2, RAC1, CASP8, INS, CTLA4, RUNX2, CCL2, 

MDM4, STAT1, NR3C1, IGF1R, IL4, TNFSF11, RUNX1, TNFRS11B, FOXM1, CD4, 

IDO1, NLRP3, FAS, PTK2, PROM1, SERPINE1, NOS3, LGALS3, FGFR2, MAPK8, 

CREBBP, MIR34A, PARP1, TP63, HMGA2, HLAG, FLT3, MET, PTPN11, COMT, 

CCR5, FOXO1, POU5F1, PLAU, TWIST1, DKK1, VHL, IL2, CHEK1, IL33, SMAD3, 

H19, TNFSF10, NPM1, DNMT1, PML, AURKA, EP300, IL18, MYD88, ZEB1, EPO, 

MIF, MMP1, APOBEC3G, BAX, KDR, ITGB3, CASP3, MIR145, NOS2, TARDBP, 

TP73, PTH, HRAS, STK11, FLT1, NPPB, TIMP1, SNAI1, SOCD3, KCNH2, IL1RN, 

MAMT1, BECN1, ESR2, HLADQB1, SOD1, PLAUR, APC, CYP19A1, BMI1, 

SMAD4, GSTP1, CXCL10, AGT, RAD51, NOD2, GDF15, FGFR1, SOCS1, VIM, 

FN1, HDAC1, ABL1, MSH2, ABCA1, MIR221, PLK1, XRCC1, MECP2, SKP2, 

TNFSF13B, XIAP, TLR9, CD34, IL2RA, CHI3L1, EDN1, HAMP, PTPRC, CD40LG, 

CREB1, FTO, S100A9, NF1, VCAM1, EPAS1, SOD2, GJA1, FGF23, CD14, ABCG2, 

CCL5, VWF, CHEK2, MYCN, RAF1, FASLG, APOA1, YBX1, ROCK1, ELAVL1, 

HTT, CX3CL1, COL1A1, MLH1, CCN2, BSG, MGM2, TNFRSF1A, TGFBR2, 

HSPA5, PSEN1, SMAD7, AHR, LGALS1, CFLAR, HDAC2, LMNA, ATF3, RETN, 

EIF2AK2, SREBF1, IRF3, CHUK, SOX2, KLF4, PRKCD, GRB2, HSPB1, PRKAA1, 

BTK, FMR1, CDK2, SQSTM1, JAK1, DICER1, APOB, SMAD2, ILR6R, PDCD4, 

LDLR, RASSF1, NAMPT, IGFBP3, NOTCH3, CYP3A4, IL15, BMP7, SLC2A1, 

IL12B, PKM, FBXW7, CDK1, NFKBIA, TCF7L2, PAK1, BCR, SYK, CDC42, CD40, 

HSP90AA1, MMP14, AURKB, PCNA, P2RX7, EGF, CDK4, GRN, SERPINA1, 

KLRK1, INSR, IL7, KCNQ1, ERCC2, IFNB1, HNF4A, CALR, BCL2L11, TPMT, 

PIK3R1, MIR143, BMP4, HOTAIR, TNFRSF1B, EGRF1, ITGAV, PTPN22, STAT5A, 

TNFAIP3, THBS1, ENG, SMARCA4, TGFBR1, ANXA2, DNMT3A, MIR126, 

HAVCR2, IKZF1, ALOX5, STIM1, TYMS, JAG1, BRD4, AXL, CSNK2A1, SIRT6, 

NF2, TFRC, RUNX3, OGG1, IL21, MICA, HSPA4, ERBB3, TLR3, ADAM17, 

TRPV1, CCNE1, GZMB, DNMT3B, STAT6, HSF1, TET2, TIMP2, S100A8, CSF3, 

IL13, PIN1, NRAS, PINK1, PTPN6, YY1, SERPINF1, NME1, KWAP1, IKBKB, 

SPARC, SHC1, TOP2A, CXCL1, RIGI, CBL, USP7, MAP3K7, ANGPT2, SMARCB1, 

FCGR2A, WNT5A, MIR223, BCL6, IRF4, MIR222, SHH, ERG, CCL3, NBN, ID1, 

HSPD1, PARK7, FUS, CDH2, ITGB2, NGF, ARID1A, NDRG1, VCP, FKBP5, ADM, 

S100B, CD28, STMN1, PIM1, MAP2K1, PRKDC, IDH2, EIF4E, TGM2, CD163, 

BAP1, FYN, NANOG, IFIH1, MTDH, AMH, XPO1, PPIA, ADORA2A, FOS, DAPK1, 

CAMP, IRF1, ABCC1, MECOM, MEN1, NEAT1, TSC2, GATA2, HSP8, MYB, 

GAS6, SPHK1, NRP1, PDGFB, MEG3, IL27, IL12A, MIR30A, SUMO1, CDK9, 

STING1, HPSE, ITGA2, KDM1A, ATR, GAPDH, MIR214, SIRT3, XBP1, PDGFRB, 

VEGFC, ERN1, TSHR, IL1RL1, ARG1, VKORC1, PPARD, ITGA2B, WRN, MYH9, 

POSTN, MITF, AFP, NGFR, AGO2, ETS1, FOXA1, RXRA, NTRK1, DUSP1, 

PRKCB, RPS6KB1, PTPN1, TBK1, PDPN, INHBA, PTTG1, HDAC6, MIR200B, 

MIR16-1, ORAI1, FLNA, ITGA4, TJP1, CTTN, HDAC3, RACK1, SELE, PRKCE, 

CALM1, PGF, EWSR1, SOST, ATF4, IRAK1, ADAR, CASP9, TRIM28, SAMHD1, 

PVT1, NES, TGFB3, ILK, TGFB2, DNM1L, CASP2, PLCG1, SCARB1, FHIT, 

TBX21, PIK3CG, YWHAZ, TXN, MFN2, TP53BP1, BTRC, METTL3, LDHA, 

CDKN2B, TLR7, NOTCH2, CTCF, TNFRSF10B, HMGA1, TRIM21, ITGA6, 

MIR29B1, CCNT1, GP1BA, NCOA3, DDIT3, CSF2, XRCC6, POMC, CHGA, 

ACKR3, KPNA2, CHRNA7, ST7OT3, PHB1, PF4, ATG7, RAN, STUB1, CEACAM1, 

MMP13, HNRNPK, PKD1, NCL, TRAF3, BARD1, BLM, TRAF2, MSH6, CYLD, 

WWOX, MIR27B, RARB, XRCC5, FANCD2, DISC1, GDNF, SLC9A1, UHRF1, 

KLF6, 

ABCB1,  

HMGB1, 

IGF1, 

FAS, 

FGFR2, 

PML, 

GDF15, 

CDK1, 

PTPN22, 

THBS1, 

ANGPT2, 

HSPD1, 

DUSP1, 

PRKCB, 

PDPN,  

CDKN2B, 

TRPM7, 

GSN, 

PTGS1, 

NT5E,  

CD47, 

DCN, 

ARRB1, 

WAS, 

NEDD4L, 

SMAD1, 

BRIP1, 

RAB27A, 

ROR1, 

NR2F2, 

ETS2,  

SOCS2, 

AHNAK 
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BAK1, NEDD4, NR4A1, MIR182, RARA, STAT5B, OPA1, PTK2B, CTSB, TEK, 

TXNIP, TREM1, PRMT5, UCA1, GAS5, CTSD, XIST, PPP2CA, NFATC1, GNAQ, 

ABCC2, ADIPOR1, TRPM7, AREG, AXIN1, SMURF1, CXCR3, MTA1, CDK5, 

LOX, POLR2A, TBP, UBE3A, LGALS9, ETV6, TRIM5, AKT2, ISG15, CA2, IL32, 

MAVS, PTBP1, PALB2, SPI1, GSN, BIN1, HDAC4, CASP1, MAP3K5, CCN1, KAT5, 

PXN, TLR8, CUL1, PTGS1, ZFP36, MIR375, FADD, REST, OSM, ENO1, FLT4, 

NT5E, RHD, LYN, NR4A2, CD200, TRIM25, BAD, COPS5, ZEB2, BBC3, BID, 

ATRX, WNT1, SIN3A, KLF2, CNR2, DAXX, MIR144, GATA4, MED12, MAPK7, 

CD47, IRF5, HK2, RAP1A, WNT3A, MCAM, MIR31, ADA, ROCK2, DCN, NCOR1, 

TUG1, ULK1, PERP2, KLF5, RASA1, CDH5, SLC7A5, FLI1, SRSF1, MIR15A, 

DYRK1A, ATF2, APAF1, BAG1, SGK1, NR5A1, TFPI, CFL1, MAD2L1, MIR140, 

MIR141, AGT16L1, CD9, WEE1, CD1D, DKC1, BRMS1, MIR22, S1PR1, ARRB1, 

KIF11, MIR137, FEN1, DIABLO, MIR23A, LOXL1, HSP90B1, BAG3, WAS, IRS2, 

MALT1, YWHAQ, MIR148A, SEMA3A, SIRT2, THY1, SKP1, FCGR2B, HIPK2, 

PRDX1, PIEZO1, MIR139, PAX5, CTSL, TUBB3, MIR338, APOBEC3B, ATF6, 

RAD50, TAC1, IL17F, EEF1A1, RIPK3, ENTPD1, UBE2N, PPM1D, CGAS, MIR96, 

HSPA9, DHX9, CD8A, MIR10A, CD247, NAT1, FADS1, MIR204, NCOR2, TERF2, 

CTBP1, ATXN3, MTHFD1, SLC16A1, PTGER4, ABCC4, FZR1, NOX1, MX1, 

TGFA, NEDD4L, MIR196A2, HBEGF, CCND2, MDK, PIK3CB, TIRAP, EIF2S1, 

NCOA1, RAB5A, IFITM3, JAK3, CUL4A, CD80, ITCH, PRKAB1, ACTN4, LIF, 

IGF2BP2, PRDM1, IGF2R, ARNT, SMAD1, GAA, MAP1LC3B, SET, MIR93, 

XRCC4, KHDRBS1, IFI16, NHERF1, ILF3, MSLN, PDPK1, PYCARD, MIR26A1, 

KDM6B, APOBEC3F, NFATC2, HES1, BRIP1, PDX1, CSF3R, ITGAL, KMT2D, 

NOP10, ADD1, LILRB1, FLCN, TCF3, SRSF2, MIR101-1, EIF2AK3, PTGER2, 

GLO1, SP3, PLD1, CCL4, POLE, MUC4, KCNJ2, MERTK, RGS2, TTK, CDC25C, 

MICB, CD19, PPP1CA, HAX1, GADD45A, CRKL, DHFR, DYSF, FECH, CSK, 

MAPK9, LOXL2, TYMP, IL11, MYML2, MIR18A, SSB, CAPN3, UBE2C, TFEB, 

CRBN, ESRRA, C1QBP, SETD2, CD226, CD63, PGK1, ZBTB16, CTSS, ID2, NEK2, 

FADS2, SLIT2, MIR199A1, PTN, IKBKE, FPR2, RPGR, TXNRD1, CTS5, PLA2G6, 

MIR378A, ITPA, HOXA9, HNRNPU, PAK2, FHL2, LMNB1, RPL1, RRM1, PSMD4, 

RUX1T1, FCER2, SFPQ, IRF7, SLPI, ELK1, FGF7, PFKFB3, RRM2, MACC1, IRF8, 

SDHD, PVR, ADIPOR2, MIR130A, ALOX5AP, MIR181A1, MRTFA, TLR1, RPTOR, 

VIP, MIR183, EPHB4, TPX2, CBX5, GPX4, PLK4, IL10RA, RAB11A, TIGIT, 

STAT2, NEDD9, ING4, PRDX6, SUMO2, MAP2K4, CPT1A, CD33, E2F4, LATS1, 

TERF1, PBRM1, MDC1, CDKAL1, GNL3, HUWE1, ALDOA, IGFBP5, LDHB, 

SPINT2, PNPLA2, LMO2, RUVBL1, HDGF, HNRNPL, CLIC1, MASP2, DOT1L, 

TAF1, XRCC2, CTNNA1, LAG3, IMPDH2, TNFRSF4, DUSP6, NUMB, RBL2, 

SRSF3, S100A10, TNFRSF9, SPOP, STNNA1, DDIT4, PAK4, RPS19, GNAI2, 

PTGES, GLB1, MAPRE1, RBBP4, LONP1, GTF2B, TRIB3, KAT2A, MAP2K2, 

PIAS1, TAFAZZIN, CARM1, SUZ12, RBBP8, CSNK1A1, NUDT1, CXCL2, MIR152, 

TOPBP1, SIAH1, SMURF2, ADAM9, GOLPH3, TRAP1, RUVBL2, SLC25A5, 

SH2D1A, CBX3, CBLB, DDX21, BCL3, DLL1, MATR3, SCRIB, MIR124-3, RAD21, 

PCBP2, CASP10, NEU1, HGS, NFAT5, PBK, EXT2, PRDX3, SPTAN1, SERPINB2, 

SKI, EIF5A, ATXN1, RAD52, GCLC, TRIM27, CHFR, LAMP1, ASPM, PSME3, 

BUB1, SFRP2, CUL5, MAP3K1, VPS35, HAS2, RNF2, CASP6, ERCC3, KMT5A, 

SYVN1, SDCBP, BHLHE40, MBD2, PSMC5, ROR1, NR4A3, CSNK1E, PTMA, 

ATG3, MSX2, NPPC, CDK8, ATP5F1B, ATP5F1A, ACACA, JUNB, SSRP1, 

SMARCA3, GFER, SIRPA, SOAT1, ELOB, CPT2, MCOLN1, IRF2, RPL5, CREM, 

TLR6, CXCR6, CKAP4, DNAJB6, CDC25B, RHEB, HOTTIP, ILF2, DANCR, SAT1, 

NR2F2, EBAG9, NPR2, ETS2, CTBP2, DNAJB1, PELP1, FBL, MIR483, LTBR, 

GPBAR1, MYH10, SYMYD3, UBTF, DDX6, AMFR, KLRB1, KCNH1, PLSCR1, 

CARD9, PPP2R2A, FOXO4, RB1CC1, NEUROD1, CCAR2, BCL11B, PTPN13, 

PSMB5, PRDM2, CPS1, PRC1, TRIB1, FUT8, CAST, DVL2, SOCS2, MEF2D, 

RPLP0, ALKBH5, CKB, RECQL, NRIP1, RALA, PDK1, PSMD2, GRK5, CTNNBIP1, 

TIMELESS, TRADD, BANF1, XAF1, UROD, LILRB2, FIS1, PIAS3, ABCE1, 

SERPINA5, METTL14, ETF1, S100A11, APOBEC3C, CD2, ACD, OLFM4, SMAD5, 

RPS14, NME2, GFI1, CFP, DDX39B, GDF11, CLCN3, SLC6A8, CKS1B, PSMC2, 
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SIAH2, MAP2K7, TBL1XR1, RPL7A, CRNDE, SRD5A1, TOLLIP, TRAF4, 

TARBP2, PPP5C, TAB1, PRPS1, CAMKK2, PSMC3, PTPRA, CRY2, PEX5, SKIL, 

MAP2K6, FERMT3, MIR196A1, CRY1, RNF31, AGO1, CDH11, OUTB1, SETD1A, 

GARS1, BCL2L2, PCLAF, EIF6, MIR485, PHF6, MAP3K11, CSTA, MIR181A2, 

ARHGEF7, UBE2T, PRPF19, CAD, LIMS1, MGAT5, REV3L, CCT3, DDAH2, 

EGLN2, DNAJA3, PSMB9, NUP62, AHNAK, PLCD1, TNFAIP8L2, TRIM11, 

SNAP23, RPS15A, USP39, ANLN, ZFHX3, PSMC4, PSMD1, BLK, PHLPP1, 

SELENBP1, RPS2, IER3, PSMA3, HIF1AN, TAF15, NCBP1, LAMA1, MYO9B, 

MIR30E, BIK, MIR92A2, KIF14, ATAD2, MELK, IL1RAP, TRAF5, CHD8, GRB10, 

TRIM22, HOXD13, AFF1, CCNH, CHCHD2, RPS8, RPS3A, SP100, PIM2, POLR3A, 

SUFU, PSMC1, RASSF5, TNRC6A, KAT8, SRRT, GALNT3, MIR199A2, MAP4K4, 

DVL3, MAP2K3, RPL3, CAMK4, MR1, RPS4X, FBXW11, CRISP3, MYBBP1A, 

MTSS1, MBD3, CIB1, TNFRSF10C, AKAP9, SPAG2, LILRB4, FLII, NCOA4, 

APOBEC3H. 

 

3.4.Discussion  

 

Colorectal cancer, the most common cancer, continues to have high incidence and 

mortality rates worldwide despite advancements in understanding molecular 

mechanisms. For our study, we utilized two datasets. In one GSE62322 dataset of gene 

expression data from tumor colon samples of twenty-one patients with advanced 

colorectal cancer. After analyzing the dataset, we identified 953 upregulated genes, 

showing higher expression in tumor samples than normal samples, and 941 

downregulated genes, exhibiting lower expression in tumor samples. These genes play 

a role in different pathways of cancer progression such as angiogenesis p53 mediated 

apoptosis, RTK-RAS, lipid metabolism, PI3K/Akt, ubiquitylation, β-catenin/Wnt 

signaling, Notch signaling mechanisms, cell cycle regulation, cytokine signaling 

mechanisms; cell proliferation process and filament assembly. 

The second dataset(GSE72484) was also analyzed using the GEO2R tool. The patient 

data set consists of gene expression profiles from irinotecan-treated colorectal cancer 

samples that had received chemotherapy versus the colorectal cancer sample of 

patients who did not receive any chemotherapeutic treatment. The analysis revealed 

528 upregulated genes and 786 downregulated genes in post-chemotherapy. These 

genes are linked to pathways related to cancer progression and adverse effects, such 

as vascularization, natural killer cell-mediated cytotoxicity, Rap1 signaling, 

necroptosis, hepatitis B, and aldosterone-regulated sodium reabsorption. 
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Therapeutic genes that were upregulated and downregulated in dataset one were 

analyzed for their impact on dataset two. Upon comparison, it was found that 280 

genes were upregulated and 132 genes were downregulated in a manner that consisted 

of tumor treatment. However, Topoisomerase inhibitor (irinotecan) treatment is known 

to suffer from multiple side effects like bone marrow depression, abdominal pain, 

bradycardia, neutropenia, decreased appetite, thrombocytopenia, anemia, and 

cholinergic syndrome (diarrhea, fatigue, nausea). We studied the literature to identify 

genes that were directly or indirectly involved in such side effects. Two thousand fifty-

seven such genes and their pathways were studied, and it was found that several 

pathways that indirectly affected tumor progression were impacted, decreasing the 

therapeutic impact of topoisomerase inhibitor therapy. Also, several genes were 

known to be affecting stimulated pathways due to the nonspecific binding of these 

topoisomerase inhibitors to non-target receptors. 

In our study, we looked at the genes that were potentially related to side effects based 

on our literature review, and it was found that 46 genes were associated with direct 

and indirect side effects of irinotecan treatment. 

 DEGs from colorectal tumors (953 genes) with the downregulated DEGs from 

irinotecan-treated samples (786 genes), and the downregulated DEGs from CRC 

samples (941 genes) with the upregulated DEGs from irinotecan-treated samples (528 

genes), we identified 46 common genes. These genes are significantly affected by 

chemotherapy and may play roles in tumor progression and side effects pathways.  

Functional Validation of Common Genes 

Among the 46 common genes, 36 were identified with a logFC value ≥ 1 and 10 with 

a logFC value < 1. These genes are potentially involved in pathways associated with 

tumor progression (such as cell proliferation and metastasis) and chemotherapy-related 

side effects (including anemia, bone marrow depression, nausea, fatigue, neutropenia, 

bradycardia, decreased appetite, diarrhea, and abdominal pain). Functional annotation 

from the literature validated their association with these processes. 

Furthermore, gene enrichment analysis shows the direct impact on pathways such as 

signal transduction, cell migration, anti-apoptosis, cell cycle regulation, and protein 

metabolism that directly support tumor progression. These genes are also involved in 

side effects pathways like hepatitis B, Fanconi anemia pathway, TGF beta pathway, 
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serotonergic synapses, ubiquitin-mediated proteolysis, Rap 1 signaling pathway, etc. 

(Fig.3.14); therefore, overexpression of these genes can lead to the enhancement of the 

above biological pathways which could adversely affect cancer progression and side 

effects. The PPI network analysis pinpointed critical regulatory nodes and intermediate 

hubs within the gene interactions, emphasizing significant genes with crucial roles in 

the network. This discovery underscores the importance of these shared genes in 

elucidating the molecular mechanisms behind the adverse effects of irinotecan. It 

raises the possibility of their involvement in the detected changes in gene expression.  

Hence, this necessitates the exploration of natural compounds that would potentially 

impact cancer remediation but would not suffer from the side effects associated with 

irinotecan treatment. 

Identification of natural compounds to restore the function of dysregulated genes 

The study also investigated the differential gene expression of 102 naturally occurring 

compounds known for their anticancer property, which were further studied in the 

context of colorectal cancer treatment. The 102 natural compounds (NC) included in 

our study were shown to have anticancer properties similar to topoisomerase inhibitor 

therapy by direct or indirect impact on differentially expressed genes (DEGs). It was 

also elucidated whether these NCs had any role to play specifically on the genes 

associated with topoisomerase inhibitor therapy-mediated side effects. The most 

commonly associated side effects related to irinotecan treatment were found to be 

thrombocytopenia, fatigue, nausea, neutropenia, decreased appetite, diarrhea, 

abdominal pain, and fatigue that were the direct or indirect impact of commonly 

founded genes(ABCB1, BRIP1, FANCI, TNFRSF10A, WAS, THBS1, CYP3A5, 

ABCB1, PDE4D, MLXIP, BAALC, KRT19, ANGPT2, SOCS3, TLR4, GPR39, 

MYLK, RAB27A, TNFRSF, ADH1B, KLF6, HMGB1, FAS, FGFR2, PML, GDF15, 

CDK1, PTPN22, HSPD1, DUSP1, PRKCB, PDPN,  CDKN2B, TRPM7, GSN, 

PTGS1, NT5E,  CD47, DCN, ARRB1, NEDD4L, SMAD1, BRIP1, RAB27A, ROR1, 

NR2F2, ETS2,  SOCS2, AHNAK. GPR39, BAALC, KRT19). The natural compounds 

studied were investigated for their impact on some of the genes related to side effects. 

By comparing these common DEGs with those altered by each natural compound, we 

identified compounds that most effectively reversed the expression of these genes. The 

NC were ranked based on their ability to reverse the maximum number of DEGs, with 
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results summarized in Table 3.1 showing the number of genes affected by each 

compound. For example, TNFRSF10A, WAS, THBS1, ABCB1, and CYP3A5 were 

related to thrombocytopenia, fatigue, nausea, and decreased appetite. TLR4, GPR39, 

MYLK, and RAB27A were related to diarrhea, abdominal pain, and fatigue, while 

dysregulation in PDE4D, MLXIP, BAALC, KRT19, ANGPT2, CYP3A5, SOCS3, 

CYP3A5, TNFRSF10A leads to neutropenia condition. Natural compounds, being 

multitargeting, can influence multiple pathways involved in tumor suppression, 

reducing the likelihood of drug side effects.  This multitargeting nature makes them 

promising candidates for combination therapies in cancer treatment. Drug resistance 

and adverse side effects may be reduced by this combination, which shows positive 

synergistic benefits. 

3.5.Conclusion  

 

The present study provides a comprehensive analysis of alterations in gene expression 

in colorectal cancer and the effects of irinotecan chemotherapy (topoisomerase 

inhibitor) and their relationship to the emergence of severe side effects using datasets 

GSE62322 and GSE72484. Through differential gene expression, we identified 

upregulated and downregulated genes in colorectal cancer samples versus normal 

tissue samples to identify the manifested targets of colorectal cancer. Furthermore, we 

analyzed gene expression in post-chemotherapy samples compared to untreated 

samples to determine the impact of irinotecan. Irinotecan, although an FDA-approved 

topoisomerase inhibitor, suffers from many side effects. By cross-referencing these 

findings with pre-existing literature on genes associated with irinotecan-induced side 

effects, we identified a significant overlap. Specifically, we found common genes that 

were significantly affected by chemotherapy. These genes are involved in critical 

cancer progression pathways. They are linked to adverse effects commonly observed 

with topoisomerase inhibitor therapy, such as anemia, bone marrow depression, 

nausea, fatigue,  diarrhea, and neutropenia, which is collectively known as cholinergic 

syndrome.  Natural compounds have long been explored as alternate cancer treatments 

due to their reduced side effects. This study emphasizes the complex correlation 

between gene expression changes caused by chemotherapy and the side effects of 

irinotecan, offering valuable insights that might help reduce such adverse effects 
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throughout the treatment of colorectal cancer by using natural compounds. However, 

natural compounds can also exert some side effects. Therefore, molecular targets 

directly associated with the side effects were identified for irinotecan treatment. 

Afterward, an assessment of the side effects of natural compounds with similar 

interactions to these molecular targets was performed to investigate whether they had 

the potential to cause adverse effects similar to those exerted by irinotecan therapy. 
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                               CHAPTER: IV: OBJECTIVE 2 

 

 4.1. Rationale of the study:  

 

The term cancer refers to a group of diseases characterized by the out-of-control 

growth of cells caused by the accumulation of errors or mutations in their DNA and 

the potential for invasion or spread to other organs or parts of the body[275]. Two 

drugs that have received FDA (Food and Drug Administration) approval and are 

currently being used to treat particular forms of cancer are Topotecan and Irinotecan. 

In contrast to Irinotecan, which is used to treat colon cancer, rectal, and lung cancers, 

Topotecan is predominantly used to treat ovarian cancer. It works by inhibiting the 

activity of an enzyme called DNA Topoisomerase I (TOPO I)[276]. The TOPO I 

enzyme plays a crucial role in the regulation of DNA structure and function. Its 

primary function involves the cleavage and resealing of a single strand of DNA, 

enabling the unwinding and untangling of the DNA molecule. This process is 

necessary for relieving supercoiling, which can only be resolved locally due to the 

large size of eukaryotic chromosomes[277]. Due to a temporary nick in the DNA 

strand, the broken segment has the ability to rotate around its intact complementary 

strand, allowing it to eliminate any local supercoils. The transesterification of an 

active-site tyrosine (Tyr-723) at a DNA phosphodiester linkage facilitates the 

development of a covalent complex between the enzyme and DNA, which in turn 

triggers the nicking of the strand. The damaged strand's released 5-OH group then 

undergoes a second transesterification event, in which it attaches to the 

phosphotyrosine intermediate, effectively reversing the covalent state [278]. This 

process is necessary for DNA replication and transcription, which are essential for cell 

division and growth.  

Irinotecan functions by interacting with the TOPO I enzyme, inhibiting its ability to 

reseal the DNA strand that has been cut during normal cellular processes. As a result, 

this inhibition leads to an accumulation of DNA strand breakage. The presence of 

excessive DNA strand breaks can activate cell death pathways, ultimately leading to 

the elimination of cancer cells (Fig.4.1)[279].  
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Figure 4. 1. Irinotecan, a topoisomerase I inhibitor, functions by binding to the complex formed 

between topoisomerase I and DNA. This interaction hinders the resealing of DNA single-strand 

breaks (SSBs), resulting in the accumulation of DNA double-strand breaks (DSBs). The resulting 

stable ternary complexes between irinotecan, topoisomerase I, and DNA trigger cellular responses 

for DNA repair. However, excessive accumulation of DSBs overwhelms the repair mechanisms, 

leading to cell death. The disruption of DNA structure and impaired repair processes hinder 

normal cell division and replication, effectively inhibiting cancer cell growth and reducing tumor 

size. Nevertheless, irinotecan can also affect normal cells, causing side effects such as 

gastrointestinal toxicity, myelosuppression, and hair loss.  

Irinotecan is a successful cancer treatment because cancer cells are more sensitive to 

this procedure than normal cells. 

However, Irinotecan can also have side effects on normal cells that are dividing 

rapidly, such as those in the bone marrow and digestive tract. These side effects can 

include nausea, vomiting, diarrhea, and decreased blood cell counts[279, 280]. This 

investigation aims to tackle the unfavorable side effects of Irinotecan, specifically the 

emergence of cholinergic syndrome. 

 

4.2. The Cholinergic Syndrome and Adverse Effects: 

 

Irinotecan is a prodrug that is extensively metabolized by the enzyme carboxylesterase 

in the liver, resulting in the production of the active metabolite 7-ethyl-10-

hydroxycamptothecin (SN-38). Irinotecan has both antitumor and toxic effects, and its 

active metabolite, 7-ethyl-10-hydroxy camptothecin (SN-38) has antitumor activity 
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but is also toxic because it is bearing 4-piperidinopiperidine moiety is reported to 

inhibit Acetylcholinesterase (AChE) predominantly through this moiety, which is 

known to be a major factor determining enzyme activity loss[281]. AChE is an enzyme 

that breaks down acetylcholine, a neurotransmitter that is involved in many processes 

in the body, including the regulation of the gastrointestinal tract[282]. The interaction 

between AChE and its substrate acetylcholine (ACh) is crucial for the regulation of 

ACh levels at the synapse. AChE is an enzyme that belongs to the serine hydrolase 

family[283]. The breakdown of acetylcholine by AChE involves a series of steps. 

Initially, AChE forms a complex with ACh, and this interaction triggers the hydrolysis 

and inactivation of ACh. The active site of AChE contains a catalytic triad, which 

consists of three amino acid residues: serine, histidine, and an acidic residue. The 

catalytic triad facilitates the creation of a tetrahedral intermediate through acid-base 

reactions. Histidine plays a crucial role in transferring a proton between the oxygen 

molecules in serine and ACh[284]. This transfer leads to the removal of choline from 

ACh, resulting in the formation of a new acylated serine residue. Subsequently, the 

acylated serine undergoes deacylation, where it is deacylated to regenerate the free 

AChE enzyme. In this step, aspartate stabilizes the protonated histidine, leading to the 

release of acetic acid and the generation of a new, free enzyme. In addition to the 

catalytic site, AChE possesses a peripheral anionic site, which is formed by specific 

amino acid residues such as tyrosine, phenylalanine, and tryptophan. The interaction 

between these amino acids influences the conformational binding of ACh to the 

peripheral anionic site[285]. This binding can modulate the activity of AChE and 

affect the overall enzymatic function. Overall, the interaction between AChE and ACh, 

mediated by the catalytic triad and the peripheral anionic site, ensures the efficient 

breakdown of ACh, preventing its excessive accumulation at the synapse and allowing 

for precise control of neurotransmission. Irinotecan is not directly related to AChE . 

However, one of the side effects of irinotecan treatment is the development of 

cholinergic syndrome, which is characterized by symptoms such as diarrhea, nausea, 

vomiting, and abdominal cramps (Fig.4.2) [222]. Irinotecan and its active metabolite 

SN-38 have the ability to block AChE, causing the body to accumulate acetylcholine 

and the onset of cholinergic syndrome[281]. It has been shown in clinical studies that 

patients who receive irinotecan often experience effects associated with the cholinergic 



Ph.D. thesis 

 

74 | P a g e  

 

syndrome, such as hypotension (low blood pressure), hypersalivation (excessive saliva 

production), bradycardia (slow heart rate), abdominal cramps, acute diarrhea, and 

diaphoresis (excessive sweating) [233]. 

 

Figure 4. 2. This illustrates how irinotecan works effectively against cancer by interacting with 

different genes and transporters. Additionally, it interacts with another gene to cause different 

side effects. Furthermore, the figure shows the interactions between our control drugs with the 

same gene and a mechanism that is similar to the drug that causes cholinergic symptoms.  

Cholinergic syndrome is caused by the accumulation of acetylcholine in the body due 

to the inhibition of AChE [286]. It is estimated that about 15%–20% of patients who 

take irinotecan will experience diarrhea and myelosuppression. A rapid cholinergic 

surge from acetylcholinesterase inhibition causes diarrhea within hours after 

administration[287]. It has been found that 23-31% of patients with late diarrhea 

develop severe or life-threatening complications within 24 hours (Fda, n.d.). Several 

in vitro studies show irinotecan inhibits AChE to cause cholinergic syndrome. The 

pathophysiology of irinotecan-induced cholinergic syndrome is not yet fully 

understood, and there are several aspects that remain unexplained. To further 

understand the pathophysiological processes that underlie this syndrome's particular 

pathogenesis and its underlying mechanisms, more research is required. According to 

Dodds and Rivory, the mechanism of inhibition of irinotecan was instantly reversible 

and non-competitive at clinically relevant concentrations[288]. Numerous studies 



Ph.D. thesis 

 

75 | P a g e  

 

demonstrate fusion leads to rhinitis, lacrimation, miosis, increased salivation and 

diaphoresis, more salivation, flushing, cholinergic syndrome after drug infusion, and 

intestinal hyperperistalsis leading to diarrhea(Fig.4.2). To prevent or manage 

cholinergic syndrome in patients undergoing irinotecan treatment, medications such 

as atropine and loperamide may be prescribed [236]. Atropine is an anticholinergic 

medication that can block the effects of acetylcholine in the body, while loperamide is 

an antidiarrheal medication that can relieve the symptoms of diarrhea [289]. 

Consequently, the development of more potent and targeted antitumor agents remains 

a significant concern and challenge within the field of medicinal chemistry.  

4.4. Natural compounds as an alternative 

In the quest for potential therapeutic drugs, researchers have traditionally turned to 

natural substances or their synthetic derivatives. Specifically, natural or derived 

compounds that inhibit the activity of the enzyme TOPO I have demonstrated 

effectiveness in chemotherapy for the treatment of cancer. These TOPO I inhibitors 

have shown promise as anticancer agents and continue to be an area of active research 

and development. There are many Asian traditional medicine systems that use 

Phyllanthus emblica Linn (PE) to treat a wide array of diseases, including cancer[290]. 

The P. emblica plant possesses multiple biological effects, including analgesics, 

antibacterial, antifungals[291], antimutagens[292], antioxidants[293], antipyretics, 

antitumours, chemopreventatives and hepatoprotectives[294], some of which can be 

detrimental to human health. The most prevalent and biologically active polyphenol in 

Phyllanthus emblica, Epigallocatechin Gallate (EGCG), is believed to be responsible 

for many of the beverage's health advantages.  

Tea, derived from the Camellia sinensis plant, is a globally favored beverage, with 

green tea being particularly notable for its abundance of catechins, among which (-)-

epigallocatechin-3-gallate (EGCG) stands out. EGCG constitutes over 50% of total 

catechins in green tea and is renowned as its most potent and extensively studied 

component[295].The mechanisms underlying EGCG's anticancer effects are 

multifaceted and include antioxidant activities, modulation of carcinogen metabolism, 

prevention of DNA damage, induction of cell cycle arrest and apoptosis, inhibition of 
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metastasis, proteasome inhibition, and modulation of multiple signal transduction 

pathways such as EGFR, HER2, VEGF receptor, IGF1R, PI3K/AKT, MAPK, and NF-

κB signaling[296–298].  

Combination therapy involving EGCG and other anticancer agents has shown 

promising synergistic effects in preclinical studies, although caution is warranted as 

EGCG may interfere with the efficacy of certain anticancer drugs. 

 

Figure 4. 3 figure illustrating the overall methodology of screening the molecular targets for 

natural compounds. 

4.5.The collection and data analysis 

 

4.5.1. Analysis of the active site and sequence for the chosen target molecule 

(Receptor) 

A PDB file containing the crystal structure of human topoisomerase I and its inhibitor 

topotecan (FDA-approved drug and analog of irinotecan) PDB ID 1K4T, with the 

DOI:10.1073/pnas.242259599, is available through the RCSB 

(https://www.rcsb.org/). Topotecan is a chemotherapy medication categorized as a 

TOPO I inhibitor and serves as the reference ligand in this study. To investigate the 

side effects, the crystal structure of the AChE enzyme (4EY6) obtained from the 

Protein Data Bank. In this analysis (-)-galanthamine, a widely recognized and 

approved inhibitor of AChE was employed as the reference ligand. By utilizing these 

references, the aim was to explore potential interactions and elucidate the mechanisms 

underlying the side effects of the investigated compounds. Using the Protein-Ligand 
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Interaction Profiler (PLIP) (https://plip-tool.biotec.tu-dresden.de/plip-

web/plip/index), it has been confirmed that 1K4T and 4EY6 possess functional 

domains and amino acid residues within the pocket of the active site. Based on the Co-

crystallized ligands in crystal structures, these findings were confirmed and used to 

determine the binding site. 

4.5.2. Screening of natural compounds 

A set of sixty-three ligand structures in the "sdf" file format was obtained from the 

freely available IMPPAT database (https://cb.imsc.res.in/imppat/)  for the study (Table 

4.1). To ensure compatibility and facilitate further analysis, the three-dimensional 

structures of these ligands were downloaded from PubChem, a database maintained 

by the National Center for Biotechnology Information (NCBI) 

(www.pubchem.ncbi.nih.gov) [28].   The downloaded "sdf" files were then processed 

using BIOVIA Discovery Studio Visualizer to generate the corresponding PDB files 

for further analysis. 

i. The preparation of ligands (Phyllanthus emblica active compounds) 

and proteins 

To facilitate the analysis, the BIOVIA Discovery Studio Visualizer software was used 

to prepare the X-ray crystal structures of the TOPO I complex (PDB ID: 1K4T) and 

the AChE complex (PDB ID: 4EY6). These structures were processed and visualized 

using the aforementioned software. This step allowed us to examine and explore the 

structural details of these complexes for the study. Applying an all-atom force field 

added hydrogen atoms to the fixed structure after fixing structures, removing unwanted 

chains and water, and Polar hydrogens were added to it. The ionization power, energy 

minimization, torsion level, degree of freedom, and stereochemical variation of the 

Ligand were adjusted using EasyDock vina Tool. The gasteiger charges were 

calculated using the Easy Dock vina Tool, and stored in the form of PDBQT files. The 

AutoDock Grid tool created 25Å, 25 Å, 25 Å grid boxes with 0.375 Å spacing and 

21.242 Å, 03.973 Å, 28.129 Å grid box dimensions in X, Y, Z for 1K4T and -2.435 Å, 

-30.710 Å, 53.141 Å for 4EY6 respectively. 
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ii. Molecular Docking Analysis of Active Compounds from Phyllanthus 

emblica with their Target Proteins 

The crystal structure of TOPO I obtained from the RCSB Protein Data Bank (PDB ID: 

1K4T) has a resolution of 2.1 Å. Its free R-value is reported as 0.269, while the work 

R-value is 0.229. Similarly, the crystal structure of AChE enzyme from the RCSB 

Protein Data Bank (PDB ID: 4EY6) has a resolution of 2.40 Å. Its free R-value is 

reported as 0.206, and the work R-value is 0.167. These values provide information 

about the quality and reliability of the crystal structures, with lower R-values 

indicating better agreement between the observed data and the model. Sixty-three 

phytochemicals from Phyllanthus emblica docked individually against 1K4T as well 

as for 4EY6 using an in silico docking program, Easy Dock Vina. Before docking was 

performed, the ligand and enzyme preparation conditions must be met. The 

phytochemicals with the highest rankings were selected based on their strong binding 

affinities with the proteins. To visualize these interactions, PyMol, a software tool 

developed by Schrödinger (http://www.pymol.org/pymol), and BIOVIA Discovery 

Studio Visualizer were employed. 

 

Table 4.1.  An analysis of the binding energies between macromolecules and natural compounds 

(phytochemicals of Phyllanthus emblica) 

 Phytochemical name Source of 

phytochemicals  

Binding energies with  

topoisomerase-I (1K4T) 

Binding 

energies with  

Acetylcholinest

erase (4EY6) 

Procyanidin bark -7.8 -7.3 

Proanthocyanidin bark -9.1 -6.5 

Tannic acid  bark -8.9 -7.7 

Leucodelphidin  bark -4.4 -5.4 

Pyrogallol fruit -4.0 -5.2 

1,3,6-tri-O-galloyl-beta-D-glucose fruit -8.6 -7.0 

Riboflavin Fruit and seed -6.6 -5.7 

Furosin  fruit -8.3 -7.0 

Terchebin  fruit -8.6 -7.4 

Phloroglucinol  fruit -5.2 -6.9 

trans-Zeatin fruit -5.2 -6.2 
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Catechol fruit -5.2 -6.4 

Quercetin fruit -9.1 -6.5 

Chebulagic acid  Fruit and leaf -6.4 -7.6 

Ellagic acid Fruit ,Leaf and root -7.9 -7.0 

Methyl gallate fruit -6.0 -5.5 

Ascorbic acid  Fruit, seed and leaf -5.7 -5.9 

Kzeyiyxacmutrm-uhfffaoysa-  fruit -8.6 -7.3 

Phyllantidine  Fruit and leaf -7.6 -6.7 

Ethyl gallate fruit -6.0 -5.6 

beta-Glucogallin fruit -7.6 -7.0 

Galactaric acid  Fruit, leaf and seed -5.5 -5.9 

Chebulinic acid  Fruit and leaf -9.1 -8.2 

Corilagin Fruit and leaf -8.3 -7.8 

Chebulic acid  Fruit and leaf -6.4 -6.6 

Geraniin fruit -8.6 -6.0 

Gallic acid Fruit and leaf -8.8 -5.8 

Trigalloylglucose  fruit -5 -5.6 

Tryptase fruit -9.0 -6.7 

Kaempferol leaf -4.4 -5.6 

Lupeol  Leaf, bark  and root -6.4 -6.4 

Astragalin leaf -6.6 -6.2 

beta-Sitosterol Leaf, seed  and stem -8.0 -6.8 

Oleanolic aldehyde  root -7.0 -6.4 

Epigallocatechin gallate  root -9.1 -4.4 

Myristic acid  seed -9.0 -8.0 

Stearic acid seed -8.7 -7.0 

Palmitic acid seed -7.9 -6.7 

Nicotinic acid seed -5.5 -5.0 

alpha-Carotene  seed -7.7 -6.9 

Oleic acid seed -8.9 -7.8 

Linolenic acid  seed -5.6 -8.6 

D-Galacturonic Acid  seed -6.0 -5.8 

Eriodictyol-7-O-glucoside  stem -7.0 -8.9 

Inositol   -7.3 -5.5 

Linoleic acid   -4.6 -6.5 
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4.5.3. Drug likeness prediction 

In order to forecast the pharmacokinetic characteristics of the top six compounds 

displaying the highest binding affinities, SWISSADME server 

(http://www.swissadme.ch/) was used. This server facilitated the assessment and 

prediction of various pharmacokinetic parameters for these compounds. Through this 

platform, an analysis of the chosen compounds was performed to evaluate their ADME 

(absorption, distribution, metabolism, excretion) properties. The major ADME-

associated parameters that were assessed included drug solubility, pharmacokinetic 

properties, and predictions related to absorption, metabolism, distribution, excretion, 

and toxicity. This comprehensive analysis provided valuable insights into the ADME 

characteristics of the potential compounds and aided in evaluating their potential as 

drug candidates. 

4.5.4. Molecular dynamic simulation 

The molecular dynamic simulation method provides an initial understanding of the 

dynamics of protein-ligand interactions, but it is critical to understand how these 

connections are maintained and how they affect the protein. The goal was to determine 

whether the drug-like properties of the model would be met as well as how the 

interaction would play out. The dynamics of docked complexes can be analyzed 

through MD simulations. In this research, molecular dynamics simulations were 

emplyoed to explore how the top-ranking compounds with high binding energies 

interact with both TOPO I and AChE enzymes. The initial configurations of  Top1 and 

AChE were described using docked crystal structures 1K4T and 4EY6, respectively. 

The GROMACS molecular dynamics (MD) package version 3.3.3 was employed for 

the simulations. To accurately represent the intermolecular interactions and dynamics 

of the systems, the AMBER03 all-atom force field was utilized. The complexes of 

TOPO I and AChE with the highest ranked phytochemicals were positioned within a 

rectangular container measuring 93 Å x 110 Å x 130 Å. This arrangement was 

accomplished using the genion feature of the GROMACS package, which substitutes 

solvent molecules with ions in areas demonstrating optimal electrostatic potential. To 

simulate a realistic environment, the container was filled with TIP3P water molecules 

(34) representing the solvent. To maintain overall electro neutrality, 23 or 24 Na+ 
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counter ions were added to balance the system's charge. This setup ensured that the 

simulations accurately represented the physiological conditions and allowed for the 

study of the protein-ligand complexes in a realistic aqueous environment. Various 

analyses were conducted, including direct hydrogen bonding analysis, RMSD (root 

mean square deviation) calculations, RMSF (root mean square fluctuation) 

calculations, and MMGBSA (Molecular Mechanics Generalized Born Surface Area) 

and MMPBSA (Molecular Mechanics/Poisson-Boltzmann Surface Area) analyses. 

The simulations were run for a duration of 100 nanoseconds to examine the sustained 

interactions between the proteins and ligands. Prior to analyzing the ligand-receptor 

interactions, the trajectory obtained from the simulation was evaluated to ensure 

structural stability. 

4.6.Result and discussion 

 

4.6.1. Molecular docking 

The docking studies performed on TOPO I demonstrated that the six compounds 

exhibited a free binding energy of 9.1 kcal/M, indicating a strong interaction between 

the compounds and the protein(Fig 4.4). However, it was observed that only a subset 

of these compounds displayed favorable binding affinities with AChE. The observed 

inhibition of enzyme activity in our study was primarily attributed to non-covalent 

interactions established between the ligand and TOPO I or AChE. These interactions 

included hydrogen bonds, steric interactions, and van der Waals interactions. The 

strength and specificity of these non-covalent interactions played a crucial role in 

determining the overall inhibitory effect of the ligand on the enzyme's activity. 

Through the formation of these interactions, the ligand disrupted the normal 

functioning of the enzyme, leading to the observed inhibition. Figure 4.6  illustrates 

the relative bindings of the highest ranked compounds with 1K4T and 4EY6, along 

with their corresponding reference molecules.  

These types of interactions played a significant role in determining the binding affinity 

and stability of the receptor-drug complex. Hydrophobic interactions occur between 

nonpolar regions of the receptor and drug, while Van der Waals forces involve 

attractive forces between atoms or molecules due to fluctuations in their electron 
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distribution. These interactions contribute to the overall binding strength and 

specificity between the receptor and drug molecule, ultimately influencing their 

pharmacological effects. Due to its hydrophobic properties, EGCG was also believed 

to interact with TOPO I at first, before modifying TOPO I's receptor protein via the 

active hydrophobic pocket. It was shown that EGCG interacts with Asp 533, Lys 532, 

and Arg 364 in TOPO I 's active site (Table 4.2), where previously reported Asp 533 

and Arg 364 were required for DNA TOPO I to bind topotecan (Table 4.3)[29].  H-

bonds formed between the hydroxyl group of EGCG and the TOPO I  residues Arg 

364, Asp 533, Glu 418, Lys 493, Ala493, Thr501 improved binding capacity, 

indicating an important role for H-bonds in EGCG binding (Fig.4.5).  According to 

the molecular docking studies discussed above, EGCG impacts amino acid residues 

and stabilises the TOPO I cleavage complex to effectively reduce TOPO I’s activity. 

The residual phytochemicals similarly engage with comparable affinities, primarily 

interacting with alternate binding sites within the hydrophobic pocket of TOPO I. For 

instance, Quercetin demonstrates hydrophobic interactions with Glu 418, Hse 367, and 

Ser 423, whereas Astragalin predominantly engages in hydrophobic interactions with 

Arg 434, Asn 408, and Asp 344. The comprehensive depiction of these additional 

comparative interactions for the top ranked compounds is presented in Figure 4.4. The 

reference molecule [(-)-galantamine] associated with AChE exhibits a hydrophobic 

interaction with Arg 13, as well as numerous hydrogen interactions involving Pro 

52(A), Leu 178, Gln 181(A), Glu 185, Pro 55(A), Lys 53, Asn 186, Gly 14, Pro 36, 

Trp 56, Phe 37, and Trp 182. The detailed comparative interactions of AChE with the 

top ranked compounds are elaborated in Figure 4.6. The interaction of AChE with 

EGCG shows hydrophobic and hydrogen bonding on Pro36, Trp56, Val60, Tyr98, and 

57Ser, 61Asp, 66Gln, Tyr98, respectively which does not have any match with its 

reference drug (-)-galantamine (approved acetylcholinesterase inhibitor) (Table 4.5). 

EGCG has been found to not bind to its specific binding residue of AChE (4EY6), 

indicating that it does not inhibit AChE activity (Fig. 4.6). This suggests that the 

presence of EGCG results in a decrease in the levels of acetylcholine within the cell. 

These findings imply that related ligand may be a key ingredient in the creation of 

anticancer drugs. 
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 Figure 4. 4 Ligplot representations illustrating the interactions between TOPO I and a) 

Topotecan, b) EGCG, c) Quercetin, d) Myristic Acid, e) Astragalin, f) Gallic Acid, and g) 

Proanthocyanidin. Hydrogen bonds are denoted by green lines, while red dotted lines highlight 

hydrophobic interactions. 

 

Figure 4. 5. The figure presents an analysis of the docked complex of Topotecan, an structure 

analog of approved anticancer drug Irinotecan, on the upper side (A), and the DNA TOPO I-

EGCG complex on the lower side (B). The middle portion of the figure illustrates the 3D structure, 

highlighting the interactions between DNA TOPO I with the reference ligand and EGCG. In this 

representation, polar interactions are denoted by the color red, while non-polar interactions are 

depicted in yellow color. The 2D structure on the right side showcases the interactions in a 
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simplified form, where green color represents hydrogen bonds and Van der Waals interactions 

between amino acid residues, protein atoms, and the ligand. 

Table 4.2.  This table shows the interaction between TOPO I and EGCG. 

     Hydrophobic Interactions 

Index Residue AA Distance Ligand Atom Protein Atom 

1 364A ARG 3.99 5816 1712 

2 532A LYS 3.63 5810 3435 

Hydrogen Bonds 

Index Residue AA Distance 

H-A 

Distance 

D-A 

Donor 

Angle 

Donor Atom Acceptor 

Atom 

1 364A ARG 2.81 3.66 146.08 5827 [O3] 1711 [O2] 

2 418A GLU 2.47 2.81 100.06 5831 [O3] 2265 

[O.co2] 

3 493A LYS 2.00 2.86 135.53 3074 [N3+] 5829 [O3] 

4 499A ALA 2.34 2.83 110.30 5828 [O3] 3126 [O2] 

5 499A ALA 3.15 3.75 116.23 3123 [Nam] 5829 [O3] 

6 501A THR 2.27 2.84 112.39 3144 [O3] 5828 [O3] 

7 501A THR 2.79 3.21 106.41 5824 [O3] 3144 [O3] 

8 533A ASP 2.07 3.02 145.53 3443 [Nam] 5824 [O3] 

π-Stacking 

Index Residue AA Distance Angle Offset Stacking 

Type 

Ligand 

Atoms 

1 361A PHE 5.09 67.76 1.79 T 5802, 5803, 

5804, 5805, 

5806, 5807 

Salt Bridges 

Index Residue AA Distance Ligand Group Ligand 

Atoms 

1 364A ARG 4.25 Carboxylate 5822, 5823 

2 532A LYS 5.39 Carboxylate 5822, 5823 
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Table 4.3. A table showing the interaction between Topotecan (control) ligand and TOPO I. 

                                                     Hydrogen Bonds 

Index Residue AA Distance 

H-A 

Distance 

D-A 

Donor 

Angle 

Donor 

Atom 

Acceptor Atom 

1 364A ARG 2.97 3.95 175.00 2299 

[Ng+] 

5634 [Nar] 

Salt Bridges 

Index Residue AA Distance Ligand Group Ligand Atoms 

1 532A LYS 3.88 Carboxylate 5624, 5625 

 

 

Figure 4. 6 Ligplot representations illustrating the interactions between AChE and a) 

Galantamine, b) EGCG, c) Quercetin, d) Myristic Acid, e) Astragalin, f) Gallic Acid, and g) 

Proanthocyanidin. Hydrogen bonds are denoted by green lines, while red dotted lines highlight 

hydrophobic interactions. 
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Figure 4.7  A detailed Analysis of the docked complex of (-)-galantamine, an approved 

acetylcholinesterase inhibitor, on the upper side (A), and the AChE-EGCG complex on the lower 

side (B). The middle panel displays a 3D structure illustrating the interactions between 

acetylcholinesterase with the reference ligand and EGCG. Polar interactions are highlighted in 

red, while non-polar interactions are depicted in orange. The right panel shows a 2D 

representation, where hydrogen bonds and van der Waals interactions are denoted by green 

color. The bonds between amino acid residues, protein atoms, and the ligand are visualized in the 

2D representation. 

Table 4.4. this table describes the different types of interactions between acetylcholinesterase and 

EGCG. 

                                                                       Hydrogen interactions 

Index Residue AA Distance H-A Distance D-A Donor 

Angle 

Donor Atom Acceptor Atom 

1 57A SER 2.37 3.20 132.94 498 [Nam] 5024 [O3] 

2 57A SER 2.98 3.80 135.65 503 [O3] 5024 [O3] 

3 57A SER 2.87 3.80 161.29 5024 [O3] 503 [O3] 

4 61A ASP 2.36 3.37 157.04 527 [Nam] 5018 [O3] 

5 66A GLN 3.13 3.97 136.05 579 [Nam] 5019 [O3] 

6 98A TYR 2.32 2.94 115.75 898 [O3] 5022 [O3] 

7 98A TYR 2.25 3.15 153.87 5021 [O3] 898 [O3] 

                                                                Hydrophobic interactions 

 Residue AA Distance Ligand Atom Protein Atom 

8 36A PRO 3.93 5008 299 

9 56A TRP 3.72 4995 486 

10 60A VAL 3.55 5003 525 
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11 60A VAL 3.87 5008 524 

12 98A TYR 3.99 5008 895 

                                                                        Salt Bridges  

Index Residue AA Distance Ligand 

Group 

Ligand Atoms 

1 53A LYS 3.84 Carboxylate 5017, 5016 

 

Table 4.5. In this table, different types of interactions between acetylcholinesterase and (-)-galantamine 

are presented. 

Water Bridges   

Index Residue AA Distance 

A-W 

Distance D-W Donor 

Angle 

Water 

Angle 

Donor 

Atom 

Acceptor 

Atom 

Water 

Atom 

1 120A GLY 3.30 2.62 154.92 84.25 936 [Nam] 8469 [O3] 8557 

2 122A GLY 3.12 2.89 156.95 82.89 944 [Nam] 8468 [O3] 8710 

3 125A SER 3.80 2.63 112.90 90.76 976 [O3] 8461 [N3] 8665 

4 133A TYR 2.84 3.30 116.36 80.15 8469 [O3] 1032 [O3] 8557 

5 204A ALA 3.04 3.08 169.54 73.55 1562[Nam] 8469 [O3] 8710 

Hydrogen interactions   

Index Residue AA Distance 

H-A 

Distance D-A Donor 

Angle 

Donor 

Atom 

Acceptor Atom   

1 203A SER 2.89 3.83 163.70 1561 

[O3] 

8456 [O3]   

2 337A TYR 2.19 2.86 128.04 2544 

[O3] 

8461 [N3]   

Hydrophobic Interactions   

Index Residue AA Distance Ligand Atom Protein Atom   

1 86A TRP 3.86 8463 649   

2 86A TRP 3.60 8451 654   

3 86A TRP 3.79 8453 657   

4 124A TYR 3.80 8459 968   

5 297A PHE 3.65 8458 2229   

6 337A TYR 3.97 8463 2542   
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7 338A PHE 3.87 8458 2554   

 

4.6.2. ADME analysis 

Drug molecules need to have a balance between hydrophilicity and lipophilicity in 

their physicochemical qualities in order to pass through the cell membrane and connect 

with the target receptor. The cell membrane is hydrophilic because of the protein and 

water in the cytoplasm, while lipophilic because of the phospholipid content. Two 

variables—Log P and Topological Polar Surface Area (TPSA)—are used to assess a 

compound's lipophilicity. The majority of the substances utilised in this investigation 

were found to be lipophilic substances, with log P = 5 and TPSA = 140. 

Proanthocyanidin, astragalin, and quercetin are three substances with low log P values 

and TPSA values above 140, which suggest that they will have a hard time passing 

through lipophilic cell membranes and have a low bioavailability (Figs. 4.8 and 4.9). 

The acceptable ranges of all ADME parameters are summarized in table 4.6. There 

was no violation of Veber rule for ECGC and Myristic acid in the selected hits. 

However, gallic acid, and quercetin violated one parameter in the selected hits. The 

selected hits appear to have drug-like properties based on these results. Out of the 

initial 6 compounds, 3 molecules were identified to adhere to Lipinski's rule of five, 

exhibiting characteristics such as non-mutagenicity, non-irritation, non-

tumorigenicity, and no adverse effects on reproductive health (Table 4.6). The five 

parameters that make up Lipinski's rule of five are molecular weight (MW), cLogP 

(partition coefficient between n-octanol and water), the number of hydrogen bond 

donors (HBD), and the number of hydrogen bond acceptors (HBA). A compound is 

considered orally bioactive if it satisfies these criteria. 
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Figure 4. 8. Boiled egg diagram showing the pharmacokinetic behavior and bioavailability of 6 

herbal phytochemicals. The diagram was created using Swiss ADME and represents 

gastrointestinal absorption and brain access capability. The size of the yolk indicates brain access 

capability, while the size of the white indicates gastrointestinal absorption. 

Table 4.6.  Using computational parameters of drug likeness (swiss ADME analysis) to assess 

the compliance of compounds. (BBB- Blood Brain Barrier, PAINS-Pan Assay interference 

compounds, TPSA- Topological Polar Surface Area). 

 

 

Parameters Epigallocatec

hingallate 

Gallic acid Quercetin Myristic 

acid 

Proanthocy

anidin 

Astragalin 

BBB No No No Yes No No 

Human intestinal 

absorption 

High High High High Low Low 

Log P 2.05 0.21 1.23 4.45 1.85 -0.25 

TPSA(Å) 81.86 97.99 131.36 37.30 209.76 190.28 

Molecular weight 320.38 g/mol 170.12 302.24 228.37 592.55 448.38 

Class Soluble Moderately 

soluble 

soluble Moderately 

soluble 

Poorly 

soluble 

Moderately 

soluble 

Log Kp(skin 

permeation) 

-6.57 cm/s -6.84 -7.05 -3.35 -8.00 -8.52 

Lipinski Yes Yes Yes Yes No No 

Ghose Yes No Yes Yes No Yes 

Veber Yes Yes Yes No No No 

PAINS 0 alert 1 alert 1 alert 0 alert 0 alert 0 alert 

Bioavailability 

score 

0.55 0.56 0.55 0.85 5.45 5.29 
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Figure 4. 9. A bioavailability radar was developed based on the physicochemical properties of an 

isolated compound from Phyllanthus emblica to evaluate its potential for oral bioavailability. The 

radar serves as a tool to assess the likelihood of the compound being absorbed and utilized by the 

body through oral ingestion. The radar takes into account various chemical characteristics of the 

compound, including solubility, molecular weight, stability, and permeability, to provide insight 

into its suitability for oral administration. 

4.6.3. MD simulation  

To assess the stability of the six docked complexes, we performed molecular dynamics 

simulations. The outcomes of these simulations revealed that EGCG forms a robust 

binding with the active site of TOPO I. This binding is characterized by the 

establishment of multiple hydrogen bonds with crucial amino acid residues, 

consequently enhancing the stability of the protein-ligand complex. Moreover, the 

analysis of binding energies indicates that the interaction between EGCG and TOPO I 

was notably favorable when compared to other top-ranked compounds. A 

comprehensive compilation of comparative energies can be found in the Table 4.7. 

Throughout the simulation, the EGCG-topoisomerase complex demonstrated 

remarkable stability, exhibiting notably fewer conformational alterations when 
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contrasted with the dynamic simulations of other molecules(fig.4.10). In the first 10 

ns, the ligand (EGCG) demonstrated remarkable stability, with RMSD values 

remaining steady between 0.4-0.6Å until a slight fluctuation occurred at around 25 ns. 

EGCG is a substantial molecule with flexible sections and is similar in size to the 

control molecule (topotecan) simulation for EGCG. The LINCS algorithm ensured that 

the lengths of all bonds remained consistent. Every ten steps, the neighbour list was 

updated. The ligand engaged in significant interactions with several residues, such as 

Arg364, via H-bond interactions and with Lys532 via hydrophobhic interactions till 

the last step of simulation. Additionally, stacking interactions were observed between 

EGCG and Trp203. Previous research has shown that TOPO I interacts with several 

crucial residues, such as Asp364, Lys 532[30].  In each frame, we measured the 

displacement and average distance between atoms as compared to the original 

structure by using root mean square deviation (RMSD) and root mean square 

fluctuation (RMSF), and observed the primary structural changes in proteins and 

ligands (Fig. 4.11). The RMSD and RMSF graphs displayed in figure 4.10 illustrate 

the RMSD for the ligands and protein receptors. Figure 4.11 displays the analogous 

binding interactions of the selected ligands with the TOPO I complex, elucidating their 

consistency across diverse stages of molecular dynamic simulation. As for AChE, it 

was observed that AChE's docked structure remained stable throughout simulation, 

but its inhibitory pocket was not occupied by its ligand based on our docking results. 

As a result, the ligand does not undergo any conformational changes during the 

simulation since it binds to enzyme at a separate site from its inhibitory site throughout 

the 100 ns molecular dynamic simulation. Figure 4.12 illustrates the comparative 

bindings of various ligands with AChE at distinct stages of molecular dynamic 

simulation. At the conclusion of the MD simulation, the results indicated that both the 

AChE control [(-)-galantamine] and the AChE-EGCG complex remained stable at 

their respective sites, as determined by the molecular docking studies conducted 

earlier. Interestingly, our natural compound (EGCG) was observed to occupy a distinct 

site on the AChE molecule, which differed from the known inhibitory sites targeted 

by approved AChE inhibitors [(-)-galantamine]. This suggests that EGCG may exert 

its effects on AChE through a different mechanism or site of action compared to the 

approved inhibitors. 
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Analysis of the simulation results also suggests that EGCG may inhibit the activity of 

topoisomerase by blocking access to the DNA substrate. Topotecan interacted mainly 

with Arg364 and Lys532 during most of the simulation run. Arg364 and Lys532 were 

also the interacting sites for EGCG and TOPO I complex. Molecular docking and 

Molecular dynamic simulations demonstrated that EGCG interacted with the residues 

Arg364 and Lys532, forming a sustained H-bond with Arg364 and Lys532. These 

results offer fresh insights into the molecular mechanism of inhibition while being 

compatible with earlier research on the interaction between EGCG and TOPO I. 
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Figure 4.10  Plotting the root mean square deviation (RMSD) and root mean square fluctuation 

(RMSF) for the 1K4T complex and the 4EY6 complex, respectively. Based on the protein-ligand 

docked complexes (blue for 1k4t and green for 4ey6), RMSD values are extracted from protein fit 

ligand (orange for 1k4t and red for 4ey6). In a 100-ns MD simulation, the RMSF graph was 

plotted for each complex along with the protein. 
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Figure 4. 11. Variations in residue interactions and their spatial relationships around TOPO I 

complexes are examined across distinct time frames during molecular simulations. 



Ph.D. thesis 

 

95 | P a g e  

 

 

Figure 4. 12. Variations in residue interactions and their spatial relationships around AChE 

complexes are examined across distinct time frames during molecular simulations. 

Table 4.7.  This table compares the binding energy components calculated using two commonly 

used computational methods, AMBER MM-PBSA and MMGBSA. The table shows the values of 

four different energy components: van der Waals , polar solvation, nonpolar solvation, and total 

binding free energy, obtained from each method for a given protein-ligand complex(1K4T- TOPO 

I and 4EY6 - Acetylcholinesterase). 
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Energy component 

(average) 

MM/GBSA 

(Delta complex-receptor-ligand) 

MM/PBSA 

(Delta complex-receptor-ligand) 

1K4T control EGCG Control EGCG 

ΔVan der waal -27.35 kcal/mol -31.01 kcal/mol -27.35 kcal/mol -31.01 kcal/mol 

ΔGGAS -48.26 kcal/mol -74.35 kcal/mol -48.26 kcal/mol -74.35 kcal/mol 

ΔGSOLV 32.34 kcal/mol -49.53 kcal/mol 52.49 kcal/mol 74.35 kcal/mol 

ΔGbinding energy -15.92 kcal/mol -24.82 kcal/mol 4.23 kcal/mol 0.56 kcal/mol 

Energy component 

(average) 

MM/GBSA 

(Delta complex-receptor-ligand) 

MM/PBSA 

(Delta complex-receptor-ligand) 

4EY6 control EGCG Control EGCG 

ΔVan der waal -33.83 kcal/mol -18.11 kcal/mol -33.83 kcal/mol -18.11 kcal/mol 

ΔGGAS -67.97 kcal/mol -49.63 kcal/mol -67.97 kcal/mol -49.63 kcal/mol 

ΔGSOLV 47.84 kcal/mol -31.08 kcal/mol 70.56 kcal/mol 43.61 kcal/mol 

ΔGbinding energy -20.13 kcal/mol -18.55 kcal/mol 2.59 kcal/mol -6.02 kcal/mol 

To substantiate the binding energies of the protein-ligand complexes, we additionally 

conducted MMGBSA and MMPBSA analyses. Table 4.7 within the study presents the 

energy constituents and corresponding numerical values for both topotecan and 

EGCG, acquired through the employment of MM/GBSA and MM/PBSA 

methodologies. The results of the calculations indicate that EGCG has a binding free 

energy of -24.82 kcal/mol according to MM/GBSA and 0.56 kcal/mol according to 

MM/PBSA. These noteworthy findings suggest that EGCG could potentially function 

as a Top1 inhibitor by binding to interaction sites, ultimately leading to the inhibition 

of tumor growth and replication process. On the other hand, the results also exhibits 

the energetic constituents and quantitative estimates for (-)-galantamine and EGCG 

for AChE, acquired via MM/GBSA and MM/PBSA methodologies. The outcomes of 

the computations indicate that EGCG has a binding free energy of -18.55 kcal/mol 

(MM/GBSA) and -06.02 kcal/mol (MM/PBSA). As compare to its control results, 

these consequential findings propose that EGCG do not have enough potential to 

function as an AChE inhibitor by binding at different interaction sites, thereby do no 

obstract the function of AChE.  
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4.7.Comparative analysis of EGCG  with other approved topoisomerase 

inhibitors:  

 

A comparative study on the toxicity and drug-likeness properties of EGCG was 

conducted with other approved topoisomerase inhibitors. These were camptothecin, 

irinotecan, topotecan, epirubicin, etoposide, teniposide, amsacrine, and anthracyclines. 

This comparison would therefore enable the evaluation of the potential of EGCG as a 

topoisomerase inhibitor with desirable pharmacological properties. 

Drug-Likeness Property: Drug-likeness is the qualitative approximate "drug-like" 

nature of a compound, considering such parameters as bioavailability, solubility, and 

chemical stability. These properties have been considered very important for the 

efficacy and safety of a pharmaceutical compound. On this note, EGCG showed quite 

promising drug-likeness. In this regard, it resulted in very good Lipinski's Rule of Five 

parameters, often considered an index for drug-likeness. These parameters include 

molecular weight, hydrogen bond donors, hydrogen bond acceptors, and partition 

coefficient log P. Compliance of EGCG with these criteria indicates that it holds all 

the desirable pharmacokinetic properties, and thus its potential as a very effective 

therapeutic agent is raised(Fig.4.13) & (Table 4.8). 

Comparison of Toxicity: The toxicity assessment for the plausible therapeutic 

compounds is an exercise that cannot be evaded if safe clinical applications must be 

ensured. We compared the toxicity profile of EGCG with other topoisomerase 

inhibitors using in silico prediction. Our results indicated that EGCG has lower values 

of toxicity compared to camptothecin, irinotecan, topotecan(Fig.4.14). 
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Figure 4. 13. bioavailability radar was created using the physicochemical attributes of approved 

inhibitory drugs for Top I and EGCG. Its purpose is to gauge the compound's viability for oral 

bioavailability. This radar functions as a tool for estimating the compound's potential absorption 

and utilization within the body through oral ingestion. The radar incorporates a range of chemical 

properties such as solubility, molecular weight, stability, and permeability to offer an assessment 

of the compound's appropriateness for oral administration. 

Table 4.8. A comparative of drug likeness prediction of EGCG and approved Top 1 and Top 2 

inhibitors. These parameters encompass factors such as BBB (Blood Brain Barrier) permeability, 

the potential for PAINS (Pan Assay Interference Compounds), and TPSA (Topological Polar 

Surface Area). 
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 Topoisomerase 1 inhibitor Topoisomerase II Inhibitor 

Parameter

s 

EGCG Camptot

hecin 

Irinotecan  Topoteca

n 

Etoposide  Tenipos

ide 

Amsac

rine 

Anthracycl

ins 

Epirub

in 

BBB No No No No No No No  No No  

Human 

intestinal 

absorption 

High High High Low Low Low High  Low  Low  

Log P 2.05 2.49 3.73 1.67 1.15 1.98 3.47 0.69 0.44 

TPSA(Å) 81.86 81.42 114.20 104.89 160.83 189.07 88.70 163.18 206.07 

Molecular 

weight 

320.38 

g/mol 

348.35 586.68 457.97 588.56 656.65 393.46 444.48 543.52 

Class Solubl

e 

Soluble Moderatel

y soluble 

Moderatel

y soluble 

Soluble Modera

tely 

soluble 

Poorly 

solubl

e 

Moderatel

y soluble 

Solubl

e  

Log 

Kp(skin 

permeatio

n) 

-6.57 

cm/s 

-7.19 -7.22 -7.66 -9.46 -9.43 -5.85 -8.30 -8.71 

Lipinski Yes Yes Yes Yes No No Yes  Yes  No  

Ghose Yes            

Yes  

No Yes No No  Yes  No  No  

Veber Yes Yes Yes Yes  No No Yes  No  No  

PAINS 0 alert 0 alert 0 alert 1 alert 0 alert 0 alert 1 alert  2 alert 1 alert 

Bioavailab

ility score 

0.55 0.55 0.55 0.55 0.17 0.17 0.55 0.55 0.17 
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Figure 4. 14. Comparative assessment of the toxicity profiles between the approved Top1 inhibitor 

and EGCG. 

4.8.Discussion  

The current landscape of tumor treatment encompasses surgical resection and 

chemotherapy administration, with several FDA-approved medications such as 

Irinotecan hydrochloride liposome, Topotecan hydrochloride, Erlotinib, Mitomycin, 

and Olaparib targeting various signaling pathways and DNA synthesis processes. 

These chemotherapeutic agents have effectively slowed cancer progression by 

disrupting key cellular processes within rapidly dividing cells. Among these, 

Irinotecan and Topotecan have demonstrated a focused approach by targeting TOPO 

1, a crucial enzyme involved in DNA replication and transcription. By impeding the 

repair of single-strand DNA breaks generated by this enzyme, these drugs accumulate 

DNA strand breaks in tumor cells, thereby hindering their ability to replicate and 

transcribe. This selective action offers a promising strategy for curbing malignant 

growth while minimizing damage to healthy cells. 

However, the use of these chemotherapeutic agents is not devoid of adverse effects, 

ranging from gastrointestinal disturbances to severe cholinergic syndrome. Notably, 

the cholinergic syndrome associated with Irinotecan has been linked to its potential to 
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inhibit acetylcholinesterase (AChE), resulting in the accumulation of acetylcholine. To 

address these undesirable effects, research has shifted towards exploring natural 

compounds that mimic the functionalities of approved medications while mitigating 

their negative consequences. The congruity between the inhibitory mechanisms of 

topotecan and phytochemical compounds arises from their shared ability to replicate 

critical interactions involving Arg364 and Asp533 amino acids. This emulation 

facilitates a parallel inhibitory effect similar to Camptothecin (CPT), disrupting the 

enzyme-DNA complex. Through molecular docking and dynamics simulations, our 

study suggests that the novel inhibitor can access the enzyme-DNA interface and 

position itself akin to the established Topotecan inhibitor. This augments the potential 

for inhibiting DNA replication and transcription, which is crucial for cancer 

proliferation. Significantly, their interaction with acetylcholinesterase does not hinder 

the enzyme's function in non-dividing cells, suggesting a more targeted approach to 

intervention. The present study employs a comprehensive methodology involving 

virtual screening, molecular docking, and dynamics simulations to elucidate the 

structural insights into the binding mechanisms of bioactive compounds derived from 

Phyllanthus emblica (P. emblica). These compounds have demonstrated interactions 

with molecular targets crucial to cancer pathogenesis, hinting at their potential in 

advancing cancer treatment. Notably, Epigallocatechin gallate (EGCG) stands out 

among these compounds due to its minimal side effects compared to standard 

treatments like Irinotecan. The study's findings highlight EGCG's superior binding 

energy to TOPO I protein, which was -9.1 kcal compared to topotecan (-8.2 kcal), an 

FDA-approved drug. Additionally, our study shows a weak binding affinity of EGCG 

to acetylcholinesterase (-4.4 kcal), suggesting a reduced likelihood of inducing 

associated side effects. 

A notable finding is the consistent interaction of EGCG with the active site of 

topoisomerase 1, as evidenced by molecular docking and dynamics simulations. 

Simultaneously, its limited interaction with acetylcholinesterase further supports its 

potential as a therapeutic agent. This evidence collectively underscores EGCG's 

promise to address not only cancer but also other ailments associated with 

chemotherapy. 
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In conclusion, the research findings shed light on the potential of naturally occurring 

compounds, particularly EGCG from P. emblica, as viable candidates for cancer 

treatment. These compounds offer a dual advantage of effective cancer intervention 

and reduced side effects through their ability to interact selectively with TOPO I and 

limited interaction with acetylcholinesterase. Further studies and clinical trials are 

warranted to validate and translate these findings into clinical practice, potentially 

revolutionizing the landscape of cancer therapy and advancing toward more targeted 

and safer treatment options. 

 

Figure 4. 15. Topoisomerase I inhibitors' cellular effects on both proliferating and non-dividing 

cells. To reduce torsional stress, topoisomerase I attaches to double-stranded DNA and causes 

single-strand breaks. A topoisomerase I inhibitor called irinotecan stops the enzyme from 

mending these fractures. DNA double-strand breaks and the consequent induction of apoptosis 

can result from the complex made up of DNA, topoisomerase I, and irinotecan colliding with 

replication forks in rapidly growing cells. AChE, an enzyme involved in the neuromuscular 

junction, catalyses the conversion of acetylcholine (ACh) substrate to choline. This inhibition of 

AChE by Irinotecan can lead to an accumulation of ACh, resulting in a condition known as 

cholinergic syndrome. Cholinergic syndrome is characterized by a range of symptoms, 

diaphoresis, including abdominal cramping, diarrhoea, and excessive salivation, sweating, and 

flushing of the skin. On the other hand Epigallocatechin gallate (EGCG), derived from 

Phyllanthus emblica, exhibits minimal binding affinity towards acetylcholinesterase. 

Consequently, it is unlikely to effectively inhibit the enzyme and is thereby associated with a low 

probability of causing any side effects typically attributed to AChE inhibition. 
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4.9.Conclusion 

 

In the landscape of global health concerns, cancer stands as the second leading cause 

of mortality worldwide, following cardiovascular disease. Given the drawbacks of 

conventional therapies, including drug resistance and adverse effects, mounting 

evidence suggests that plant-derived remedies hold significant potential for effective 

cancer treatment. 

Our study has addressed a significant complication associated with chemotherapy. Our 

findings underscore the latent capacity of natural compounds to selectively inhibit 

human TOPO I, impeding the progression of tumors. Our molecular dynamics study 

sheds light on the interaction between EGCG and TOPO I. It gives evidence for the 

valuable potential of the natural compound in inhibiting the replication process in cells. 

To deepen our understanding, it is imperative to delve into the intricacies of the 

EGCG-TOPO I interaction and to probe the broader potential of other natural 

substances in cancer treatment. These natural agents hold the promise of equaling or 

surpassing FDA-approved drugs while evading interactions with AChE that trigger the 

cholinergic syndrome. However, it is important to note that natural compounds can 

also exhibit concentration-dependent toxicity to healthy cells.  

In our study, we have therefore evaluated the potential risk of side effects for natural 

compounds with efficient anticancer properties by evaluating their direct binding 

capabilities with receptors associated with side effects of irinotecan cancer therapy. 

Clinical application of these natural compounds was limited by several challenges in 

solubility, stability, bioavailability, and targeted delivery. In this context, nanoparticle-

mediated drug delivery systems have been an up-and-coming solution for these 

problems, more especially in improving the therapeutic efficacy of natural compounds 

against cancer. 

Adding nanoparticles in drug delivery systems improves the potential of using natural 

compounds in cancer treatment. These agents can be made more potent and degradable 

by nanoparticles, effectively delivering them only to cancer cells, thereby reducing the 

harm caused to healthy tissues due to their toxicity. Specifically, the drug delivery 

method increases plant extracts' effectiveness and lowers their side effects, meaning 

better outcomes for patients generally. 
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Objective 3: 

➢ Synthesis and characterization of nanoparticles for drug loading, 

Response study for drug toxicity and drug delivery. 
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                                CHAPTER V : OBJECTIVE 3                                                          

 

5.1. Rationale of study  

 

Although several natural compounds have advantages for cancer therapy, the frequent 

limitations are poor solubility and poor bioavailability[299]. Nanoparticle-mediated 

delivery of drugs resolved such problems by increasing stability and solubility of 

natural compounds, hence improving the therapeutic effects[300]. Here are several 

reason to choose nanoparticle mediated drug delivery system to enhance the 

therapeutic efficacy of natural compounds in cancer treatment: 

• Nanoparticles further make it possible to bypass putative cellular mechanisms 

of resistance in cancer cells, hence a possible solution to drug resistance. The 

EPR effect, coupled with an increased permeability and retention, allows for 

nanoparticle accumulation in tumor tissues, increasing treatment efficacy[301].  

• Some of the benefits which can be attained by utilizing NPs as vehicles for 

drug delivery include: i) Overcoming the problems associated with the low 

solubility and bioavailability of the drug[302], ii) Increasing permeability of 

the drug across cancer cell and controlling its release, iii) NPs are non-toxic, 

biodegradable, highly fluorescent particles of small size, 1–100 nm, on which 

the cancer drug is effortlessly loaded[303]. 

• Nanoparticles could be engineered for targeted delivery into certain types of 

cancerous cells to reduce any possible impacts on normal tissues and thus 

minimize adverse side effects[304]. They provide controlled release of the 

drug, hence sustained therapeutic levels at the site of the tumor.  

• Nanoparticles protect natural compounds from degradation and can carry 

multiple therapeutic agents to allow for combination therapy. It is the versatility 

and the customizability of nanoparticles that allow them to be optimized 

according to certain compounds and targets, which blend with the trends of 

personalized medicine and promise great potential for clinical translation into 

effective therapies against cancer[305, 306]. 
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Calcium carbonate (CaCO3) is highly valued in biomedical applications due to its 

abundance, cost-effectiveness, safety profile, biocompatibility, pH responsiveness, and 

gradual biodegradability[307]. CCNPs are especially potential candidate for cancer 

therapy because they have the potential to induce the death of tumor cells, increase 

intracellular Ca2+ levels, and even cause mitochondrial damage(Fig. 5.1)[308]. They 

are normally engineered in a way that makes dissolution, entrapment, or covalent 

adsorption attach them to drugs, thereby releasing the drugs onto the cancer tissues 

with remarkable precision and minimizing exposure on healthy cellular levels[309]. 

The specific properties of CCNPs include very high loading capacity and 

biocompatibility, thereby making them very excellent choices for drug delivery 

systems[310]. 

Within these nanoparticles, drugs can be dissolved, entrapped, adsorbed, or covalently 

attached. The size of colloidal particles is a critical determinant of their drug delivery 

effectiveness. Particles larger than 1 μm cannot passively diffuse through epithelial 

membranes and typically remain localized at the site of administration.  

They've been also utilized for biosensing, and encapsulating proteins in 

pharmaceuticals[311]. Despite their extensive use, there have been no significant 

reports of hazardous properties associated with CaCO3 nanoparticles.  

 

Figure 5. 1 Schematic representation of drug-loaded calcium carbonate nanoparticles within 

cells, illustrating their role in various mechanisms of cell apoptosis. The nanoparticles facilitate 

targeted drug delivery and induce mitochondrial damage by increasing ROS levels, leading to 

cell apoptosis. 
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CaCO3 can exist in three crystalline forms: calcite, aragonite, and vaterite. Calcite is 

the most stable form, while aragonite and vaterite are less stable and can transform 

into calcite over time. The choice of crystalline form depends on synthesis conditions 

like reactant concentration and temperature[312]. Each form has unique properties and 

applications. For example, vaterite's high porosity and surface area make it ideal for 

controlled drug delivery systems, while aragonite's biocompatible properties make it 

suitable for bone repair and tissue engineering[313]. 

• Calcite: Calcite, being the most thermodynamically stable phase, is often used 

in industrial applications, especially when combined with copolymers for 

targeted drug release in cancer treatment[313].  

• Vaterite: Vaterite's rapid decomposition under mild conditions makes it a 

promising candidate for controlled drug delivery systems[314].  

• Aragonite: Aragonite, denser than calcite, can integrate well with bone tissue, 

making it valuable for bone repair and as a carrier for anticancer drugs[315].  

These diverse properties highlight the versatility of CaCO3 in biomedical applications. 

In particular, CaCO3 nanoparticles have emerged as promising candidates for 

delivering drugs to cancer tissues and cells.  

 

5.2. Materials and methods 

 

Calcium chloride, sodium bicarbonate salts, fetal bovine serum, RPMI-1640, and 

trypsin ethanol were purchased from Sigma Eldritch. Glasswares for cell culture and 

nanoparticle synthesis were purchased from Tarson Pvt Limited and NEST. Colorectal 

cancer cell lines (COLO320 DM) were obtained from the National Centre for Cell 

Science (NCCS) Pune. The compound 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-

H-tetrazolium bromide (MTT) was acquired from  Krishgen Biosystems Pvt Ltd. All 

the remaining reagents were of high purity and were acquired from commercially 

accessible sources. 

5.2.1. Preparation of calcium carbonate nanoparticles 
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In the present study, nano-sized calcium carbonate has been synthesized through 

chemical precipitation. For this process, the aqueous solutions of sodium carbonate 

and calcium chloride were mixed, which immediately resulted in precipitates of 

calcium carbonate. The powder obtained was characterized further in detail for 

structure and morphology. 

• Chemical precipitation: One of the most used procedures in the synthesis of 

CaCO3 micro and nanoparticles is the precipitation technique. This technique 

involves a straightforward process without additives and is conducted by the 

mere mixing of supersaturated solutions of Na2CO3 and CaCl2[316]. Control 

over the size and morphology of synthesized particles was attained by tuning 

parameters such as reactant concentration, reaction time, and 

temperature[317]. The solutions of sodium carbonate Na2CO3, 0.1M, and 

calcium chloride CaCl2 (0.1) solutions were stirred together and mixed at 

various speeds ranging from 300 to 30,000 rpm with a temperature range of 25 

°C to 37 °C followed by continuous stirring for 20 minutes. The obtained 

solution was then taken in falcon tubes for centrifugation. After centrifugation, 

the pellet was washed a few times with ethanol and dried to be stored for further 

use (Fig.5.2). 

 

Figure 5. 2 Synthesis process of calcium carbonate nanoparticles through the chemical 

precipitation method. The controlled chemical reaction between calcium chloride (CaCl₂) and 

sodium carbonate (Na₂CO₃), under well-defined environmental conditions, should yield calcium 
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carbonate (CaCO₃) nanoparticles. Thereafter, the said nanoparticles shall be collected, washed, 

and dried for reuse.  

5.2.2. Characterization of calcium carbonate nanoparticles 

 

The characterization of synthesized nanoparticles was done using several techniques. 

Scanning Electron Microscopy  and transmission electron microscopy was conducted 

to study the morphology of synthesized calcium carbonate nanoparticles and drug 

loaded nanoparticles respectievely. XRD /max 2500 V diffractometer was used to 

measure the X-ray diffraction patterns, and an FTIR-7600 instrument was used to get 

the Fourier transform infrared spectra. Dynamic light scattering (DLS) was used to 

determine the particle size distribution of calcium carbonate nanoparticles. 

5.2.3. Drug loading to synthesized nanoparticle 

Two dilutions of EGCG were prepared with distilled water at 2 mg/ml and 4 mg/ml 

concentrations to conjugate nanoparticles with EGCG. 10mg of CaCO3 was dispersed 

in 2 ml of ethanol. The 1 ml of the EGCG solution was added to 2 ml of ethanol-CaCO3 

nanoparticles mixture. The obtained mixture was ultrasonicated for 20 minutes for the 

conjugation of EGCG with the CaCO3 nanoparticles. After sonication, dark incubation 

was carried out using an orbital shaker for up to 24 hours. Then, the samples were 

ultra-centrifugated for 10 min at 2000 rpm(Fig.5.3). The supernatant from each sample 

was taken to measure the percentage encapsulation using the UV–vis 

spectrophotometer at a wavelength of 480 nm. The loading efficiency and loading 

capacity were determined from the readings in the UV–vis spectrophotometer at 480 

nm. 

5.2.4. Drug Release Study 

 

The release behaviors of EGCG from calcium carbonate nanoparticles were studied at 

pH 4.8 and 7.4 in PBS buffers. Drug release kinetics was investigated using a standard 

curve to calculate the concentration of EGCG. Centrifuge pellet containing the EGCG-

loaded Calcium Carbonate nanoparticles was placed in dialysis tubing along with 3 ml 

of buffer solution. First, the test sample suspension of 3 mL EGCG-loaded sample 

(4mg/mL and 6 mg/mL) was added to the dialysis bag (34 kDa). This dialysis bag was 

then immersed in a PBS buffer of 100 mL and shaken at 70 rpm in a water bath at 37 

°C. At a preset time interval, 3 mL of the PBS buffer was withdrawn from the medium, 
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which was replaced by an equal volume of fresh PBS. The released EGCG was 

determined in triplicate using a UV–vis spectrophotometer at 424 nm. The experiment 

was conducted at two different pH, 4.8 and 7.4, to find out any effect of pH on the drug 

release property(Fig.5.3).  

 

 

Figure 5. 3 Schematic representation of EGCG drug loading and release in CaCO3 nanoparticles. 

The process involves EGCG solution and dispersing CaCO3, followed by mixing and ultra-

sonication. After incubation on an orbital shaker, the mixture is ultra-centrifuged, and the 

supernatant is analyzed for loading efficiency. The EGCG-loaded CaCO3 is then used for UV–vis 

analysis, and Drug release is compared at pH 4.8 and 7.4. 

5.2.4. Cell cytotoxicity analysis  

 

The human colon cell line, derived from the colon of a 55-year-old male and procured 

from NCCS Pune, was cultured on a 96-well plate using complete Roswell Park 

Memorial Institute (RPMI-1640) medium at a density of 1 × 104 cells per well. 

Cytotoxicity of calcium carbonate nanoparticles (CCN), EGCG loaded-CCN, and 

EGCG alone were tested on a colorectal cancer cell line (COLO-320 DM). The cells 

were subjected to different concentrations of Calcium carbonate nanoparticles (1-

150μg/L), EGCG-loaded Calcium carbonate nanoparticles (1-150μg/L), and EGCG 

(1-150μg/L). The cells were cultured at 37 °C. Then, 50 μL of MTT solution (with a 

concentration of 5 mg/mL in PBS) was introduced to the plates. The ELISA plate 

reader manufactured by Bio-rad was employed to measure the absorbance at 570 nm 
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and 630 nm (with 630 nm serving as the reference wavelength). The cells were 

incubated in 96 well plates at 37 ̊ C, 5% CO2 for 24 hours. 

5.2.5. Cell apoptosis study 

The flow cytometry test was employed to quantify apoptosis in COLO320 DM. The 

cells were seeded in six-well plates at a density of 3 × 105 and 4 × 105 cells per well, 

respectively. The plates were then incubated at 37 °C in a 5% CO2 environment for 24 

hours. Subsequently, the cells were subjected to varying concentrations of Calcium 

carbonate nanoparticles (100μg/L), EGCG-loaded Calcium carbonate ( 100μg/L), and 

EGCG (100 μg/L) for 48 hours. The cells were harvested by trypsinization. 

Subsequently, the cells were rinsed twice with PBS. The cells were treated with a 

binding buffer (100 mL), Annexin V-fluorescein isothiocyanate (FITC) (2.5 μL), and 

propidium iodide (PI) (2.5 μL) as directed by the kit instruction manual from Krishgen 

Biosystem, Mumbai. Subsequently, the cells were placed in a dark environment and 

kept at room temperature for 20 minutes. The assay findings were detected using flow 

cytometry (BD FACSCalibur™). 

5.3. Results and Discussion 

 

5.3.1. Scanning Electronic Microscope and transmission electron microscope 

analysis 

 

The SEM image represented that the synthesized particles used to form several quasi-

spherical particles with a rough surface texture. Figure 5.4 shows the existence of 

particle agglomeration as well. This was more obvious in the samples synthesized by 

lower molarity concentrations of reactants. A low vacuum mode of operation was used 

with the imaging process since the CaCO3 nanopowder is nonconductive. As observed 

from the SEM images themselves, these CaCO3 nanoparticles are primarily made of 

flower-shaped crystal formations. Many aggregates are also identifiable, making it 

appear that the NPs might have an inherent tendency to agglomerate (Fig.5.4). The 

likely reason for their very probable agglomeration is the very high surface energy 

expected from the small particle size, an allegation that is later verified from the results 

of the XRD phase study. The morphology investigation revealed that the nanoparticles 

are circular and flower-like in shape, with diameters from 80 to 300 nm. The TEM 
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images indicated irregular aggregates, proving the homogeneous distribution and 

encapsulation of the drug. These images proved that the drug was uniformly loaded 

and highly integrated into the calcium carbonate nanoparticles(Fig.5.5). 

 

 

Figure 5. 4(A)SEM images of synthesized calcium carbonate nanoparticles, confirming particle 

sizes in the range of 100-200 nanometers.(B) Drug loaded CaCO3 nanopartilces. 

 

Figure 5. 5 TEM for morphology analysis of drug loaded calcium carbonate nanoparticles. 

5.3.3. XRD Analysis 

The crystalline structure of the synthesized samples was characterized by X-ray 

Diffraction analysis. Obtained XRD patterns demonstrated that the formed samples 

have a single-phase structure and calcite crystal symmetry, which substantiated the 

formation of pure calcium carbonate without the signature of any detectable secondary 

phases. The crystal size of the particles was also estimated from the obtained XRD 
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data, which again confirmed the nanoscale dimensions of the synthesized material. 

The intensity and sharpness of the XRD peaks reflect the degree of crystallinity of the 

CaCO3 nanoparticles. The predominant XRD peak signifying calcite was typically 

observed at approximately 2θ = 26.5, 27.7,37.4 degrees[318]. Additional notable peaks 

were observed at 2θ values of 45.9, 48.6, and 51.4 degrees, thereby confirming the 

formation of calcite. Calcite is the most stable polymorph of CaCO3(Fig.5.6). 

 

Figure 5. 6(A) X-ray diffraction and (B) FTIR spectra of CaCO3 nanoparticles, drug(EGCG) 

loaded CaCO3 nanoparticles, and Drug alone. 

5.3.4.FTIR analysis 

 

FTIR spectroscopy is essential in identifying various phases of organic and inorganic 

compounds, mainly calcium carbonate phases, due to differences in their carbonate 

ions, CO3 
2-[319]. Carbonate ions and similar molecules exert four normal modes of 

vibration peaks: The bands at 712, 848, and 872/cm were assigned to the calcite 

vibration mode of a calcium carbonate nanoparticle(Fig.5.6). 

5.3.5. DLS analysis 

 

To further elucidate the nanoparticles' size distribution, Dynamic Light Scattering 

measurements were performed. From DLS analyses, information related to average 

particles' size in synthesized samples, as well as their size distribution, emerges. The 

evidence established that variations of synthesis parameters alter the size of the 

particles, clearly expounding on the phenomenon involved in the synthesis process 

affecting the final characteristics of the particles[320]. The particle size distributions 

of drug-loaded and blank CaCO3 nanoparticles are shown in Figure 5.7. The CaCO3 
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nanoparticles without EGCG and those with it loaded had average diameters of 114.64 

nm and 289.09 nm, respectively. With polydispersity index (PDI) values of 0.465 for 

the drug-loaded CaCO3 nanoparticles and 0.196 for the blank CaCO3 nanoparticles, 

both formulations showed comparatively monodisperse particle size distributions. 

 

 

Figure 5. 7 The graph illustrates the size distribution of (A)  CaCO3 nanoparticles and 

(B)EGCG Loaded CaCO3 nanoparticles 

5.3.6. In-vitro drug release kinetics 

 

The drug release properties of EGCG-loaded CCNPs were performed at a temperature 

of 37 °C with a gentle and consistent stirring motion. At fixed time intervals (0, 30, 

60, 90, 120, 150, and 180 minutes), 1000 µl of each solution was transferred into a 

cuvette for spectrophotometry absorbance measurements at every time interval Fig. 

5.8 (A & B). The encapsulation efficiency of EGCG inside CCNPs was 66.2%. This 

might be due to a large surface area of the CCNPs and/or protective effects of calcium 

carbonate, leading to the awry of premature drug release within the biological system. 

The drug release profile showed a controlled release of EGCG from CCNPs at both 

pH 7.4 and 4.8 PBS (Fig. 5.8 ). A burst drug release was followed by a much slower 

and steady release until the equilibrium stage at both pH levels. Results indicate that 

CCNPs loaded with EGCG are suitable drug carriers for targeting pH-specific cancer 

cells, with a leveled reduction of early drug release in nontarget body regions. 

Further evaluavation of EGCG release in the presence of acidic conditions at pH 4.8 

(mimicking the tumor microenvironment) also showed much faster release at pH 4.8 

compared to pH 7.4. Precisely, at pH 4.8, around 50% of EGCG was monitored to be 

released within the first hour, while it was nearly 20% at pH 7.4, as demonstrated in 

Fig 5.8 (A&B). The acidic medium assists in the solubilization of the calcium 
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carbonate nanoparticles, thus liberating calcium ions (Ca²⁺) along with carbon dioxide 

(CO₂) gas, as represented in the reaction: 

CaCO3(s) + 2H+(aq)  →  Ca2
+(aq) + CO2(g)+H2O(l) 

This rapid dissolution of the calcium carbonate matrix leads to an immediate release 

of the Drug encapsulated inside the matrix. All these results taken together 

demonstrated that CCNPs exhibited a good response in the release profile of EGCG in 

the presence of ROS, indicative of the potential of the nanoparticles to be used as a 

carrier for the site-specific delivery of drugs in the cancer treatment process. 

5.3.7. Cell cytotoxicity analysis 

 

The cytotoxicity of calcium carbonate nanoparticles (CCNPs), EGCG-loaded CCNPs, 

and free EGCG was evaluated in the COLO-320 DM cell line. EGCG-loaded CCNPs 

showed a more significant cytotoxic effect on the COLO-320 DM cell line compared 

to CCNPs and free EGCG. These results could suggest that EGCG-loaded CCNPs had 

effective interaction with the outer layer of the cancer cells. Controlled release of 

EGCG, specifically at the site of cancer, will facilitate robust interaction between 

EGCG and the DNA base pair of the cancer cells, leading to apoptotic cell death. 
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Figure 5. 8 The drug release profiles of EGCG-loaded CCNPs were evaluated at pH 7.4 and pH 

4.8, with concentrations of 4mg/ml (A) and 6mg/ml (B). Initial burst followed by the extended 

release of the Drug until equilibrium favors pH-specific targeting in cancer. (C) The MTT assay 

results demonstrated a significant cytotoxic effect of the EGCG-loaded CCNPs compared to 

CCNPs and free EGCG. This validates the successful targeting of cancer cells and induction of 

apoptotic cell death. (D) More dose dependency towards the apoptotic and morphological changes 

in EGCG-loaded NNPs treated COLO-320 DM cell against the varying concentrations with a 

minimum side effect in control groups. 

 

Figure 5. 9 Flow cytometry analysis was performed to assess cancer cell death using Annexin V-

FITC/PI staining in COLO320DM cells. The quantification of the percentage of cell death was 

determined. The infusion of EGCG-loaded calcium carbonate nanoparticles (CCNPs)(D) results 

in a notable increase in both early (Q3) and late (Q2) apoptosis when compared to the control 

COLO-320 DM cells(A), CCNPs(B) alone and free EGCG(C). The control flask was treated with 

DMSO control for 24 hours. 

5.3.8.Apoptosis analysis 

 

The incidence of early and late apoptosis in the COLO-320 DM cell line treated with 

EGCG-loaded CCNPs increased considerably compared to other treatment 

methods(CCNPs alone and EGCG alone). The percentage of cell fractions in early 

(Q3) and late (Q2) apoptosis increased in the EGCG-loaded CCNPs treated group, 

indicating the cytotoxic effects of the developed nanoparticles against the COLO-320 

DM cell line. No significant changes were seen between the control group and the 

other groups, which confirms that the NPs had minimal side effects on normal cells. 

The results align with the MTT findings, suggesting that the EGCG-loaded calcium 
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carbonate NPs exhibit more significant cytotoxic effects on the malignant cell line than 

the other treatment(Fig.5.9).  

5.4. Discussion 

 

Surgery, radiotherapy, and chemotherapy are some of the conventional modalities, but 

they have considerable side effects and long-term disadvantages. In that direction, the 

dose-dependent and insolubility-related toxicities of drugs also become a significant 

challenge in cancer treatment. Therefore, nanoparticle-mediated Drug Delivery 

Systems are feasible to ensure targeted and effective delivery for better therapy 

outcomes. Many types of NPs have been studied to determine their possibility of being 

used as nanocarriers. The present study describes the successful synthesis, detailed 

characterization, and biological evaluation of calcium carbonate nanoparticles as 

carriers for the anticancer agent epigallocatechin gallate. Chemical precipitation 

produced the nanoparticles with the desired properties in structure and morphology. 

SEM results showed the formation of quasi-spherical nanoparticles with a rough 

surface and aggregation behavior that could be due to high surface energy. The 

crystalline nature of the powder was confirmed by the XRD pattern, which shows 

calcite crystal symmetry and hence indicates the purity of calcium carbonate. FTIR 

spectra indicated characteristic peaks of carbonate ions, thereby justifying the 

preparation of calcium carbonate. According to DLS analysis, size distribution, and 

average particle size were noted whereby blank CaCO3 nanoparticles were about 

114.64 nm, and that of the drug-loaded nanoparticle was 289.09 nm; hence, EGCG 

was successfully loaded.  

Drug release patterns of EGCG from the prepared calcium carbonate nanoparticles 

were carried out in PBS buffers at pH 4.8 and 7.4. Release kinetics indicated that 

EGCG-loaded CCNPs provided controlled and sustained drug release. The release rate 

was pH-dependent, with faster release at the lower pH of 4.8, simulating the acidic 

tumor microenvironment. This is typical pH-responsive release behavior, which is 

advantageous for targeted cancer therapy by ensuring preferential drug release at the 

tumor site and, therefore, reducing system toxicity. The cytotoxic effects on the human 

colorectal cancer cell line COLO-320 DM were evaluated for CCNPs, EGCG-loaded 

CCNPs, and free EGCG. Results demonstrated that EGCG-loaded CCNPs exhibited 
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more significant cytotoxicity than CCNPs alone and free EGCG. Flow cytometry 

analysis revealed a substantial increase in early and late apoptosis in cells treated with 

EGCG-loaded CCNPs compared to the other treatments. This underscores their potent 

apoptotic-inducing effects on colorectal cancer cells, which agrees with the 

cytotoxicity results.  

5.5 Conclusion  

 

Our study demonstrates the successful synthesis of EGCG-loaded calcium carbonate 

nanoparticles as an effective drug delivery system. This approach holds significant 

promise for developing calcium carbonate nanoparticles as a carrier for EGCG. It 

showed that such nanoparticles had proper structural properties and controlled release 

with improved anticancer efficacy. The utilization of calcium carbonate nanoparticles 

reduced the unfavorable effects in cell lines that were reliant on the dosage and 

preserved the anticancer efficacy of EGCG in COLO-320 DM cells. Consequently, it 

demonstrated that, due to the pH-dependent drug release activity of the drug-loaded 

nanoparticles, EGCG-loaded CCNPs can be employed as a safe, efficient method of 

targeted cancer therapy. The results demonstrate that the cytotoxicity effects of 

Calcium carbonate nanoparticles, EGCG-loaded Calcium carbonate nanoparticles, and 

EGCG were influenced by the dosage and duration of exposure. As a result, such 

nanoparticle-mediated drug delivery systems would significantly enhance the potential 

to improve efficacy, as well as enhance safety in cancer treatment. Future studies 

should aim at clearly resolving mechanisms of selective toxicity, and in vivo testing 

for evaluating the pharmacokinetics, biodistribution, and therapeutic efficacy of 

EGCG-loaded CCNPs using animal models is of prime importance. Furthermore, 

exploring the potential of this nanocarrier system for other therapeutic agents could 

broaden its application within nanomedicine.  
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                          CHAPTER VI: CONCLUSION  

 

Colorectal cancer remains a significant global health challenge, particularly affecting 

individuals aged 50 and older. Primary prevention strategies, including healthy 

lifestyle choices, risk avoidance, and early detection through regular screening, are 

crucial in reducing its incidence and impact. Early detection methods such as stool-

based tests and colonoscopies, along with treatments tailored to the cancer stage, play 

a pivotal role in managing the disease. While current treatments like surgery, 

radiotherapy, targeted therapy, and immunotherapy are effective, they often come with 

substantial side effects. The effectiveness of FDA-approved anticancer chemotherapy 

drugs in treating colorectal cancer is limited, as they often come with significant side 

effects.  

 Our research delves into the alterations in gene expression induced by 

chemotherapeutic agents and explores the potential of various natural compounds to 

counteract these disruptions. We aim to mitigate the dysregulation in gene expression 

provoked by chemotherapy administration through the strategic use of natural 

compounds. By elucidating these mechanisms, we seek to enhance the efficacy of 

cancer treatment while minimizing adverse effects on gene expression. The current 

research performs expression profiling of gene alterations in colorectal cancer and the 

effects of chemotherapy with an irinotecan based on datasets GSE62322 and 

GSE72484. Parsing differentially expressed genes in colorectal cancer versus normal 

tissue and in samples after chemotherapy versus not-treated ones helped to explain the 

effect of irinotecan on gene expression and its relation to serious side effects. Our 

findings demonstrate that many genes altered by chemotherapy are involved in crucial 

cancer progression pathways and are thus associated with adverse effects, such as 

anemia, bone marrow depression, nausea, fatigue, diarrhea, neutropenia, and 

cholinergic syndrome. 

We intended to identify specific molecular targets that could be associated with the 

side effects of FDA-approved drugs. In this respect, such unintended adverse reactions 

could be expected when these drugs interact with other unintented targets. While 
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considering substitutes for traditional chemotherapy, we focused on the potential use 

of natural compounds, especially EGCG, as potent agents against cancer with 

minimized side effects. Our study in molecular dynamics revealed a promising 

interaction of EGCG against Human TOPO I, showing its potential to act as an 

inhibitor of the tumor as irinotecan does and evade AChE that caused cholinergic 

syndrome. While EGCG is a naturally occurring substance, it has the potential to 

produce dose-dependent toxicity to normal human cells. To address this issue, we have 

developed drug delivery through nanoparticle-mediated mechanisms. Because 

calcium carbonate nanoparticles (CCN) have been shown in the literature to have the 

following properties: they are abundant, less harmful to cells, safe, biocompatible, pH-

responsive, and gradually biodegradable, we synthesized CCN using the chemical 

precipitation method. 

Calcium carbonate (CaCO3) nanoparticles stay stable in neutral and basic pH 

conditions but dissolve in acidic conditions. This makes them suitable for delivering 

drugs specifically to cancer cells throughout therapy. Because cancerous cells have a 

low pH, they cause CaCO3 to dissolve and release medications that are encapsulated, 

such as EGCG. The drug releases very little at neutral pH, which is similar to the pH 

of healthy tissues but a lot more when the pH is acidic (pH 4-6). By maintaining 

therapeutic levels, this controlled release minimizes potential risks associated with 

EGCG overdose, including nephrotoxicity and myelosuppression. Furthermore, it was 

observed that the drug-loaded CaCO₃ nanoparticles showed enhanced cell cytotoxicity 

based on the results of the MTT assay. Flow cytometry analysis revealed significantly 

higher incidents of both the early and late stages of apoptosis compared to the drug 

administered alone. The results thus indicate that the CaCO₃ nanoparticle delivery 

system has improved the therapeutic efficacy of the drug while potentially reducing its 

cytotoxic side effects. 

In summary, our findings provide significant insight into the molecular mechanisms 

underlying irinotecan-mediated side effects and thereby offer a new dimension in 

cancer therapy through the rational use of natural compounds and nanoparticle-

mediated drug delivery. This nanoparticle-mediated delivery system showed promise 

for safe and efficient targeted cancer therapy. Future research should elucidate the 
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mechanisms of selective toxicity and conduct in vivo testing to evaluate the 

pharmacokinetics, biodistribution, and therapeutic efficacy of EGCG-loaded CCNPs 

using animal models. Additionally, exploring this nanocarrier system for other 

therapeutic agents could broaden its application within nanomedicine. Expanding 

studies to include various natural compounds could identify new candidates with 

superior efficacy and minimal side effects. Our study underscores the potential of 

integrating bioinformatics, molecular biology, and nanotechnology to develop novel, 

targeted cancer treatments, enhancing patient care and overcoming limitations of 

conventional therapies. We shall strive to unravel these mechanisms with the idea of 

developing better cancer treatment strategies with reduced adverse effects, thus 

leading to the ultimate goal of personalized medicine and improved patient care in 

oncology.  Further research in this line could lead to nature-inspiring and innovative 

cancer therapies that will transform treatment landscapes and be more effective for 

patients with colorectal cancer and beyond. 
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BOOK CHAPTER PUBLISHED 

 

➢ Ritu, Apoorva, Simran singh, Prakash Chandra, and Asmita Das Nanotechnological 

aspects and future perspective of nanocoatings for medical devices and implants      

Woodhead Publishing Series in Biomaterials 2024, Pages 251-281  book: Next-

Generation Antimicrobial Nanocoatings for Medical Devices and Implants. DOI: 

10.1016/B978-0-323-95756-4.00005-1.  

➢ Ritu, Shruti Sounkaria, Gunjan Sachdeva, Asmita Das , Prakash Chandra , 

“Potentialities of nanobiotechnology in nutrient management in the livestock 

products”, January 2023, Elsevier 

➢ Shweta Gulia, Ritu ,Asmita Das , Prakash Chandra ,  “Bioremediation of PAHs using 

nanotechnology” June 2023, Elsevier 

 

BOOK CHAPTER ACCEPTED 

➢ Ritu, Prachi Pannu, Pooja, Asmita Das and Prakash Chandra “Safety and 

Biocompatibility of Nanogels: Addressing Current Concerns”) for Inclusion in Our 

Approved Book entitled Nanogels: Fundamentals to Pharmaceutical and Biomedical 

Applications Elsevier. 
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controlled drug release in the GI tract", " IOP Publishing. 
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