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Abstract 

 

This research presents a comprehensive exploration of hybrid deep learning 

architectures designed to address class imbalance and generalization problems in image 

classification, focusing on breast cancer and brain tumor diagnosis while tackling challenges 

like data scarcity, imbalance, and feature inconsistency. Key contributions include novel 

hybrid architectures integrating CNNs, ViTs, and GANs, enhancing robustness and 

adaptability. A dual-modification approach combining data augmentation with algorithmic 

adjustments, such as optimized loss functions, effectively balanced class representation. 

Additionally, the incorporation of GANs and auxiliary neural networks for tumor 

classification demonstrates a substantial increase in diagnostic performance by generating 

diverse synthetic data and using auxiliary spatial features. The introduction of an Efficient 

Attention Mechanism and a Resource-Efficient Optimization model further refines breast 

cancer detection, providing high-dimensional feature integration that enhances diagnostic 

precision while reducing computational overhead. The proposed models demonstrated 

improved performance by effectively addressing class imbalance and generalization, 

achieving 9% to 10% gains in multi-class classification and 1% to 2% gains in binary 

classification. Additionally, the model complexity, in terms of time and space, was reduced 

by 2% to 4%, while scalability improved by 1% to 2% in binary tasks and 9% to 10% in multi-

class tasks, highlighting their efficiency and adaptability. Through the extensive evaluation 

this research establishes a robust, generalizable framework for image classification, with 

future implications for integrating multi-modal data and advancing interpretability in clinical 

settings. 
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Chapter One: Introduction 
 

This chapter introduces the concept of class imbalance and generalization in image 

processing. The objectives of the research work are highlighted. Chapter wise thesis coverage 

is summarized at the end of the chapter. 

1.1 Background Study 

In Today’s modern society, Image processing has emerged as a vital tool in various 

fields, significantly enhancing the way, we analyse and interpret data. Its popularity stems from 

its ability to transform raw images into valuable insights, facilitating applications ranging from 

facial recognition to autonomous driving [1]. As technology evolves, image processing 

techniques are becoming increasingly sophisticated, allowing for the extraction of intricate 

patterns and features that were previously difficult to understand. In recent years, the 

application of machine learning (ML) techniques has further advanced the capabilities of image 

processing. ML algorithms can learn from data, improving their performance over time and 

making it possible to automate complex image analysis tasks [2]. This innovation has led to 

remarkable advancements in various domains, including healthcare, autonomous driving, 

satellite imaging etc. 

However, despite these advancements, employing ML techniques for image processing 

currently faces significant challenges. One of the most notable issues is class imbalance, a 

situation where one class contains disproportionately high number of samples compared to 

another. For example, in object detection tasks, common objects often dominate the dataset, 

while rare objects may be severely underrepresented [3]. As a result, ML models may become 

biased, favoring the majority class and underperforming in identifying critical minority-class 
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instances. Various applications grapple with the challenges posed by class imbalance, leading 

to biased models that fail to accurately predict all classes effectively [4]. 

Moreover, a lack of generalization in these models poses additional challenges. Models 

that are not generalized enough may perform well on training data but struggle with unseen 

data, leading to overfitting. This situation is particularly problematic in real-world applications 

where data can vary significantly due to environmental changes, lighting conditions, or 

variations in object appearance. When a model fails to generalize, it may misidentify or 

overlook critical features, which can result in significant consequences, such as inaccurate 

object detection or flawed analysis [5]. Therefore, addressing both class imbalance and 

generalization issues is crucial to enhance the reliability and effectiveness of machine learning 

applications in image processing, ensuring these systems provide accurate and equitable results 

across diverse contexts. 

1.2 Overview of Image Processing and Its Types 

Image processing involves the manipulation of digital images to enhance their quality 

or extract valuable information. This process encompasses a series of operations applied to an 

image, transforming it into a desired format or improving its visual attributes. Image processing 

is fundamental in various fields, including medical imaging, remote sensing, and computer 

vision, where it facilitates the analysis and interpretation of visual data. The emergence of 

digital technologies has significantly transformed image processing, rendering it more efficient 

and versatile than ever [6]. Image processing can be classified into two primary categories: 

analog and digital. 

1.2.1 Analog Image Processing 

This type involves manipulating images in their continuous form using various physical 

mechanisms. Techniques such as filtering and noise reduction are employed, but analog 
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methods generally lack the precision and flexibility offered by digital approaches. Analog 

image processing techniques utilize physical devices to manipulate continuous signals that 

represent images. Common operations include enhancement through analog filtering, which 

may involve optical filters or chemical processes applied to photographic images [7]. However, 

these techniques are constrained by their limited precision and repeatability. As digital 

processing evolved, reliance on analog methods diminished. Nevertheless, a foundational 

understanding of analog processing is essential for comprehending the principles that inform 

contemporary digital methods, thereby providing insight into the technological evolution in the 

imaging field. 

1.2.2 Digital Image Processing 

Digital image processing involves using computer methods to manipulate digital 

images, modifying the original pixel values to create a new output. A digital image is 

represented mathematically as a two-dimensional function, where the coordinates correspond 

to specific locations and the intensity or gray level of the image is represented by amplitude 

values [8]. These images consist of pixels, which are the smallest elements, each linked to a 

specific spot and value. Modern imaging technologies, such as ultrasound and electron 

microscopy, produce images from sources that are often invisible to the naked eye, extending 

beyond what humans can naturally perceive. This has made digital image processing a vast 

field with many practical applications. 

Advancements in digital technology now allow for the manipulation of multi-

dimensional signals using various systems, from simple circuits to complex computing 

architectures. Digital image processing techniques can significantly enhance performance 

through tasks like image enhancement, restoration, compression, and segmentation. One 

notable feature of these systems is their ability to focus on specific parts of an image, known 
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as regions of interest (ROIs) [9]. For example, different areas of an image can be processed to 

reduce blur or improve color accuracy. While both analog and digital image processing have 

their own methods and uses, digital image processing has become more widely used due to its 

flexibility and extensive range of applications. 

1.3 Artificial Intelligence 

Artificial Intelligence (AI) is a dynamic branch of computer science focused on 

developing systems and machines that can mimic human intelligence. These systems perform 

tasks such as pattern recognition, language processing, problem-solving, and decision-making, 

all of which typically require cognitive abilities. AI utilizes algorithms and computational 

models to analyze large datasets, learn from them, and make informed predictions or decisions. 

The ultimate goal is to create autonomous machines that can think, learn, and adapt, thereby 

expanding the possibilities of technology. AI is already transforming various industries, from 

healthcare diagnostics to autonomous vehicles and smart assistants, reshaping daily life [10]. 

Machine Learning (ML) is a vital subset of AI that enables machines to learn from data 

without explicit programming for each task. By employing statistical techniques, ML systems 

identify patterns in data and enhance their performance over time. For example, 

recommendation systems on platforms like Netflix and Amazon analyze user behavior to 

suggest personalized content. ML finds applications in numerous fields, including fraud 

detection, financial forecasting, and image recognition [11]. A more specialized area of ML is 

Deep Learning (DL), which utilizes artificial neural networks modeled after the human brain. 

These networks consist of multiple layers of interconnected nodes (neurons) that process data 

in increasingly abstract ways. DL has driven advancements in speech recognition, image 

classification, and natural language processing, powering technologies like voice assistants. 

Together, AI, ML, and DL represent a hierarchy of technologies that are revolutionizing 
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machine interactions with the world, automating tasks and addressing complex problems, with 

their impact expected to grow as research progresses. AI has emerged as a transformative force, 

fueling innovation across various sectors [12]. 

1.3.1 Machine Learning 

Machine learning (ML) is a branch of artificial intelligence (AI) that focuses on 

developing algorithms and statistical models enabling machines to improve their performance 

through experience and data. Unlike traditional programming, where explicit instructions 

dictate task execution, ML allows computers to learn patterns and relationships directly from 

the data they process. This capability enables machines to make predictions or decisions, 

applying insights gained from past examples to new situations. The power of ML lies in its 

ability to generalize from observed data, adapting and refining performance over time without 

constant human intervention. 

At the core of machine learning are algorithms that optimize model parameters to 

minimize errors in predictions or decisions. These algorithms iteratively adjust model weights 

based on input data and feedback, striving to accurately map inputs to outputs. A key concept 

in ML is the loss function, which measures the difference between the model's predictions and 

the true values. The goal is to minimize this loss, improving accuracy through optimization 

techniques such as gradient descent. However, it’s essential to maintain a balance in model 

complexity; overfitting occurs when a model becomes too closely aligned with the training 

data, capturing noise rather than true patterns, while under fitting happens when a model is too 

simplistic to grasp the data's complexity. Techniques like cross-validation, regularization, and 

pruning are employed to avoid these pitfalls, ensuring that the model can learn essential 

patterns without being overly sensitive to specific training data [13]. 

Lastly, scalability is crucial in machine learning. As datasets grow in size and 

complexity, models must handle increasing amounts of data without sacrificing performance. 
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Distributed computing and advanced optimization techniques enable efficient training on large 

datasets, while managing computational complexity ensures feasibility in real-world scenarios 

where data continuously evolves [14]. Overall, machine learning revolves around creating 

systems that autonomously learn from data, optimize performance, and generalize to new 

situations, continuously evolving as data complexity increases. Through iterative learning and 

refinement, ML systems become more accurate and reliable, pushing the boundaries of data-

driven technologies. 

1.3.2 Types of Machine Learning Algorithms 

Machine learning employs a diverse array of techniques to tackle data-related 

challenges. Data scientists emphasize that no single solution exists for every problem; the 

chosen approach depends on several factors, including the nature of the issue, the number of 

variables, and the most suitable model for the task [15]. Figure 1.1 shows different types of 

machine learning algorithms which are explained in further subsections. 

 

Figure 1.1 Type of Machine Learning Algorithms 
 

A. Supervised Learning 

Supervised learning is an approach in which models are trained on labelled data to 

achieve desired outcomes. The input dataset is typically divided into two parts: training data 
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and testing data. Each labelled training example consists of an input and its corresponding 

target output. The objective is to predict or classify an output variable in the test dataset based 

on patterns learned from the training set. Algorithms employed in supervised learning discern 

relationships between input variables and target outputs, thereby enhancing prediction 

accuracy. A common example of this method is regression, which is utilized to automatically 

fit models [16]. 

B. Unsupervised Learning 

Unsupervised learning involves analysing and identifying patterns in data without 

predefined labels [17]. In this approach, models learn from the inherent structure of the data to 

recognize trends or classify information based on features. Key applications include feature 

reduction and clustering. Unsupervised learning identifies natural groupings in data without 

specifying an output variable. Techniques such as principal component analysis (PCA) are 

employed to uncover hidden relationships or patterns of covariance within the data [17]. 

C. Semi-Supervised Learning 

Semi-supervised learning combines elements of both supervised and unsupervised 

techniques. This approach typically involves a small set of labelled data alongside a larger 

quantity of unlabelled data. The initial phase uses unsupervised learning to cluster similar data 

points, which then aids in labelling the unlabelled data [18]. This method is particularly 

beneficial when predictions are desired but most data points lack clear outcome information. 

D. Reinforcement Learning 

Rooted in early cybernetics, reinforcement learning has influenced multiple fields, 

including statistics, psychology, neuroscience, and computer science. Recently, it has garnered 

significant attention within the machine learning and artificial intelligence communities. 

Unlike traditional methods that rely on predefined datasets, reinforcement learning systems 

learn through interaction with their environment, receiving feedback in the form of rewards or 
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penalties. This feedback mechanism allows the system to refine its decision-making processes 

over time. Reinforcement learning is particularly advantageous for online data collection and 

monitoring, where the system adjusts its actions to maximize rewards [18]. This approach 

enables an agent to learn how to act within an environment by continuously adapting based on 

the rewards and penalties received while pursuing a defined objective. 

1.4 Generalisation 

Generalization is a fundamental concept in machine learning, referring to a model's 

ability to perform effectively on new, unseen data that wasn't part of its training set. The 

primary objective of any machine learning model is to learn from the available data in a way 

that enables accurate predictions on new inputs. A well-generalized model captures the 

essential trends and patterns of the data instead of merely memorizing specific examples from 

the training set. When a model becomes too closely aligned with the training data, it may start 

to learn noise, leading to a phenomenon known as overfitting [19]. An over-fitted model may 

excel on the training dataset but struggle with new data, as it fails to account for variations and 

unseen instances. In contrast, a model that generalizes effectively maintains its performance 

across different datasets and real-world scenarios. Achieving strong generalization is vital for 

the practical deployment of machine learning models, as it ensures the model can adapt to the 

inherent variability of data encountered in real-world situations. Therefore, evaluating and 

improving generalization capabilities are essential components of the machine learning model 

development process [20]. 

1.4.1 Steps to Evaluate Model Generalization 

Evaluating model generalization is essential for determining a model's effectiveness on 

unseen data that are not included in the training set. This evaluation is crucial for real-world 

applications, where the model encounters diverse variations [21]. The evaluation process 

involves analysing performance metrics and employing various techniques to assess how well 
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the model can adapt to new inputs, ensuring its reliability and effectiveness in practical 

scenarios. Below are the steps to evaluate model’s generalization: 

Step 1: Train-Test Split: First, the dataset should be divided into two distinct subsets: a training 

set and a testing set. Typically, 70-80% of the data is used for training, while 20-30% is 

reserved for testing. This split allows for assessing the model's performance on unseen data, 

providing a clear indicator of its generalization capabilities [22]. 

Step 2: Cross-Validation: Next, cross-validation techniques, such as k-fold cross-validation, 

can be employed to obtain a more reliable estimate of the model's performance and mitigate 

overfitting. In this approach, the dataset is divided into ‘k’ subsets, where the model is trained 

on ‘k-1’ folds and validated on the remaining fold [23]. This process is repeated for each fold, 

allowing every data point to be used for both training and validation, which helps ensure that 

the evaluation is not overly reliant on any specific subset. 

Step 3: Performance Metrics: Using various performance metrics is essential to evaluate the 

model's effectiveness on the test set. Common metrics include accuracy, precision, recall, F1 

score, and ROC-AUC. These metrics provide insights into the model's performance across 

different aspects, such as its ability to identify relevant instances and distinguish between 

classes. Plotting learning curves can also be beneficial, as they visualize the training and 

validation loss or accuracy over time. By analyzing these curves, one can identify signs of 

overfitting or under fitting, enabling further adjustments to the model as needed [24]. 

Step 4: Hyper parameter Tuning: Hyper parameter tuning is another critical step in evaluating 

generalization. Techniques like grid search or randomized search can be utilized to optimize 

the model's parameters for better performance [25]. Hyper parameters significantly influence 

the model’s ability to generalize, so systematically exploring combinations of hyper parameters 

can help identify optimal settings. 
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Step 5: Regularization Techniques: Additionally, implementing regularization techniques, 

such as L1 (Lasso) or L2 (Ridge) regularization, can prevent overfitting by constraining the 

model complexity [26]. Dropout, a technique used in neural networks, randomly disables a 

fraction of neurons during training to promote more robust feature learning [27]. 

Step 6: Ensemble Methods: Ensemble methods, such as bagging and boosting, can also 

enhance generalization by combining predictions from multiple models. These techniques 

reduce variance and bias, resulting in a more robust final model. Common ensemble methods 

include Random Forests (bagging) and Gradient Boosting Machines (boosting), both of which 

have proven effective in various tasks [28]. 

Step 7: Testing on Diverse Datasets: Finally, testing the model on diverse datasets or in real-

world conditions is vital to ensure it generalizes across different scenarios. This step validates 

the model's performance in practical applications, confirming its reliability and robustness 

when faced with new data [29]. 

By following these steps, you can effectively assess and enhance the generalization capabilities 

of the proposed models, ensuring they are well-suited for deployment in real-world 

applications. 

1.5 Class Imbalance 

In the context of the Fourth Industrial Revolution, deep learning and machine learning 

have garnered significant interest from the scientific community due to their wide-ranging 

applications, including smart energy management, social network analysis, business 

intelligence, medical informatics, computer vision, software management, and structural 

engineering. Despite extensive training, recent observations reveal a decline in the performance 

of machine learning models when applied to real-world situations. Some researchers attribute 

this issue to deficiencies in the modeling and training processes, while others emphasize the 
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importance of model robustness, particularly regarding generalization to varying data 

distributions [30]. Additionally, the quality of the dataset is critical, as high-quality data is 

essential for maintaining performance, especially since neural networks often require more 

extensive training data compared to traditional methods. 

A significant challenge impacting dataset quality is class imbalance, which arises when 

certain classes have a disproportionately higher number of samples than others. This problem 

is common across various tasks, including classification, object detection, and image 

segmentation, and has gained increasing attention in real-world scenarios. The implications of 

class imbalance have become more pronounced as machine learning techniques evolve across 

industries, compounded by noisy data and the high costs of labeling, which further diminish 

performance when models are deployed [31]. Class imbalance can adversely affect various 

applications, such as financial fraud detection, bankruptcy prediction, medical decision-

making, fault diagnosis, pattern recognition, cancer gene expression analysis, and 

telecommunications fraud. Recent research has proposed several techniques to mitigate this 

issue, particularly through data augmentation in deep learning models, which generates 

synthetic data to increase the number of labeled samples, thus enhancing model performance. 

Addressing class imbalance involves understanding the distribution of samples in the dataset. 

Even when disparities exist, satisfactory results can still be achieved if both classes are 

adequately represented and drawn from non-overlapping distributions [32]. Therefore, 

accurately capturing the majority and minority classes is essential for improving model 

performance. While class imbalance in single-label classification has been extensively studied, 

multi-label classification presents additional challenges. In scenarios where instances can be 

associated with multiple labels, there is a heightened risk of bias towards the majority class, 

necessitating innovative approaches to enhance performance in these complex situations. 
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1.5.1 Evaluation Metrics and Methods for Assessing Class Imbalance 

Before constructing a robust model, it is crucial to understand the properties of the 

dataset, particularly the degree of class imbalance. A thorough analysis of these properties 

enables informed decisions regarding model selection and training strategies [33]. The process 

of assessing class imbalance involves several systematic steps aimed at quantifying the 

disparities between the frequencies of different classes. 

Step 1: Basic Dataset Analysis 

The initial step in addressing class imbalance involves conducting a basic analysis of 

the dataset. This includes evaluating the number of samples within each class, as well as the 

total number of distinct classes and subclasses [34]. Let N represent the total number of samples 

in the dataset, C denote the number of distinct classes, and Ni signify the number of samples in 

class. By employing equation (1.1) analysis can be performed. 

𝑁 =  ∑ 𝑁𝑖
𝐶
𝑖=0                           (1.1) 

Understanding this information helps identify underrepresented classes, which adds 

complexity to the classification task. For example, a dataset containing numerous subclasses 

may introduce additional layers of imbalance, complicating the model's learning process. By 

calculating the number of samples per class, we gain initial insights into the level of imbalance, 

guiding further analysis. 

Step 2: Class Distribution Analysis 

Once basic statistics are gathered, the next step is to analyse class distribution. This can 

be achieved by visualizing the distribution of classes through bar or pie charts, which help 

highlight significant disparities between majority and minority classes [35]. To quantify these 

differences, we can calculate the proportion of samples in each class relative to the total number 

of samples using equation (1.2): 
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𝑃𝑖 =
𝑁𝑖

𝑁
               (1.2) 

where Pi is the proportion of class i. 

  A comprehensive understanding of class distribution is vital, as it influences decisions 

related to model selection and pre-processing techniques, ultimately affecting model 

performance. 

Step 3: Class Relationship Examination 

Step three involves examining the relationships between classes, particularly relevant 

in multi-label datasets where certain classes frequently co-occur. Identifying unique and 

frequently co-occurring classes enhances our understanding of the dataset's underlying 

structure. This examination also reveals which labels are more prone to confusion, guiding 

feature selection and model optimization strategies [36]. A thorough analysis of these 

relationships strengthens our ability to develop more effective classification models. 

Step 4: Calculating the Level of Imbalance 

In step four the level of Imbalance is calculated to quantify the overall percentage of 

imbalance within the dataset. This can be achieved using several evaluation metrics, each 

providing unique insights into the degree of class disparity present. Understanding these 

metrics allows for improved model training and more informed decision-making [37]. 

A. Imbalance Ratio per Label (IRLbl): The Imbalance Ratio per Label (IRLbl) measures the 

extent of class imbalance by comparing the sample count of the majority class Nmajority to that 

of the minority class Nminority. This ratio is calculated by employing equation (1.3) provides 

insight into the level of skewness in the data distribution, highlighting any disparities between 

class representations. 

𝐼𝑅𝐿𝑏𝑙 =  
𝑁𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

𝑁𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦
               (1.3) 
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A high IRLbl value indicates a significant disparity between the majority and minority classes, 

which may lead to model bias towards the majority class [38]. 

B. Mean Imbalance Ratio (MeanIR): The Mean Imbalance Ratio (MeanIR) provides an 

average view of imbalance across all classes in the dataset. By employing the following 

equation (1.4) the mean of all individual class imbalance ratios can be calculated. 

MeanIR =
1

C
∑ IRLbl C

i=1              (1.4) 

This metric is particularly useful for summarizing the overall state of class balance in multi-

class problems, allowing for a quick assessment of the model's training environment [38]. 

C. Maximum Imbalance Ratio (MAXIR): The Maximum Imbalance Ratio (MAXIR) 

identifies the class exhibiting the greatest imbalance within the dataset. This metric highlights 

the most significant concerns regarding class distribution, enabling practitioners to focus on 

these problematic classes during model training. Equation (1.5) analyses how MAXIR ration 

can be calculated. 

MAXIR = max(IRLbli) for i = 1 to C              (1.5) 

By analysing the class with the highest imbalance, strategies can be developed to address this 

specific issue, thereby improving overall model performance [39]. 

D. Coefficient of Variation of IRLbl (CVIR): The Coefficient of Variation of IRLbl (CVIR) 

calculated by employing equation (1.6), offers insights into the variation of imbalance ratios 

across different classes. It measures the extent of disparity among classes by calculating the 

ratio of the standard deviation (σ) of the imbalance ratios to the mean (μ) of the imbalance 

ratios [40]. 

   CVIR =
σ(IRLbl)

μ(IRLbl)
                                    (1.6) 

This metric helps identify whether the imbalance is uniformly distributed across classes 

or concentrated in specific areas. A higher CVIR suggests greater variability in class imbalance, 
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indicating that certain classes may need more focused attention during model training. 

Evaluating the level of imbalance using metrics such as IRLbl, MeanIR, MAXIR, and CVIR 

provides critical insights into the structure of the dataset. These evaluations clarify the severity 

of class imbalance and inform subsequent modelling strategies [41]. By understanding these 

metrics, data scientists and machine learning practitioners can make more informed decisions, 

leading to the development of more robust and effective classification models. Systematically 

addressing class imbalance not only improves model performance but also enhances the 

model's generalization to real-world applications. 

 

Figure 1.2 Characteristic Measures of Imbalance. 

1.5.2 Strategies for Addressing Class Imbalance 

After calculating the class imbalance percentage, the next step is to apply one of the 

three primary approaches to address the issue [42]. Each approach has its strengths and is suited 

to different contexts depending on the dataset's characteristics as shown in Figure 1.2.  
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Figure 1.3 Approached to address Class Imbalance 

Three primary approaches exist for tackling class imbalance are as follows: 

1. Data-level Transformation Approach 

2. Algorithmic Adaptation Approach 

3. Hybrid Approach 

These approaches as shown in Figure 1.3 aim to address the skewed distribution of data; 

wherein certain classes have a significantly higher number of samples than others. Below is a 

detailed examination of each approach, including relevant techniques and formulas [43]. 

1.5.2.1 Problem Transformation (Data-Level Approaches) 

The first strategy, problem transformation, seeks to modify the distribution of imbalanced 

data using data-level techniques [44]. This method involves converting multi-label 

classifications into one or more single-label classifications to create a more balanced dataset. 

Key techniques in this category include Binary Relevance (BR), Label Power Set (LP), and 

Classifier Chains (CC). 

Binary Relevance (BR) simplifies a multi-label problem by decomposing it into multiple 

independent binary classification tasks. Each label is treated as a distinct binary classifier, 
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allowing for straightforward implementation. The formula for a binary classifier hi for the i-th 

label is given as equation (1.7): 

ℎ𝑖(𝑥) = {0,1}, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛            (1.7) 

While effective for various applications, BR does not account for correlations between 

labels, potentially leading to suboptimal performance when such dependencies exist [45]. 

Label Power Set (LP) transforms the problem into a multi-class classification task by treating 

each unique combination of labels as a single class. This transformation can be represented as 

equation (1.8): 

𝑦𝑛𝑒𝑤  =   {(𝑦1, 𝑦2, … , 𝑦𝑛)}                                    (1.8)  

 

for each unique combination of labels       

Although LP captures label dependencies, it can result in a substantial increase in the number 

of classes, complicating the model training process [46]. 

Classifier Chains (CC) constructs a sequence of binary classifiers, where each classifier 

predicts a label based on input features and the predictions made by preceding classifiers in the 

chain. The prediction for the i-th label can be represented as equation (1.9): 

ℎ𝑖(𝑥) =  𝑓𝑖(𝑥, ℎ1 (𝑥), ℎ2(𝑥), … , ℎ𝑖−1(𝑥))                       (1.9) 

This approach effectively captures label dependencies; however, it may suffer from 

error propagation, where mistakes in earlier predictions negatively affect subsequent 

classifications. 

To modify the distribution of imbalanced data, various resampling techniques can be 

employed. Oversampling increases the number of samples in the minority class, often using 

methods like SMOTE (Synthetic Minority Over-Sampling Technique), which generates 

synthetic examples [47]. The formula for SMOTE is given in equation (1.10): 

𝑥𝑛𝑒𝑤 = 𝑥𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 + 𝜆 ⋅ (𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 − 𝑥𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦)         (1.10) 
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where λ is a random number between 0 and 1. Conversely, under-sampling reduces the number 

of samples in the majority class to achieve a more balanced distribution. While both techniques 

aim to equalize class representation, oversampling can lead to overfitting, and under-sampling 

may result in the loss of critical information. 

1.5.2.2 Algorithmic Adaptation 

The second approach, algorithmic adaptation, modifies the machine learning 

algorithms themselves to better handle class imbalance. This method focuses on reducing the 

inherent bias towards the majority class and enhancing the model’s ability to recognize and 

prioritize minority classes [48]. 

Cost-Sensitive Learning assigns different penalties to misclassifications, imposing 

higher costs for errors related to the minority class. The modified loss function can be 

represented employing equation (1.11): 

𝐿(𝑥, 𝑦) = ∑ 𝐶𝑖
𝑛
𝑖=1 ∙ 𝐼(𝑦𝑖 ≠ y𝑖)                     (1.11) 

Here, Ci represents the cost associated with the I -th class, and I is an indicator function. 

This approach ensures that the model focuses more on the minority class by imposing greater 

penalties for misclassifications [49]. 

Ensemble Techniques involve combining multiple models to improve performance on 

imbalanced datasets. Methods like AdaBoost concentrate on misclassified instances by 

adjusting their weights. Additionally, Balanced Random Forests modify the bootstrap sampling 

process to ensure balanced data within each tree by under sampling the majority class [49]. 

1.5.2.3 Hybrid Techniques 

The third approach combines both data-level and algorithm-level modifications to 

create a more comprehensive solution to class imbalance. Hybrid techniques leverage the 

strengths of both problem transformation and algorithmic adaptation to enhance model 

performance. 
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For example, combining SMOTE with a boosting algorithm like AdaBoost can bolster 

robustness against imbalanced data distributions. This hybrid method aims to balance the 

dataset while focusing on challenging instances that are more difficult to classify [50]. Another 

example is the integration of data augmentation techniques with cost-sensitive learning, 

ensuring adequate representation of minority classes while effectively penalizing 

misclassifications. By blending resampling strategies and algorithmic adjustments, hybrid 

techniques yield balanced and high-performing models suited for complex imbalanced 

datasets. 

1.6 Class Imbalance in Healthcare: Challenges and Impacts 

Class imbalance poses significant challenges in various fields, with particularly critical 

implications in healthcare. Machine learning models are essential for aiding diagnosis, 

treatment planning, and predicting patient outcomes. However, these models are often trained 

on datasets where certain conditions are disproportionately represented [51]. Common diseases 

frequently dominate the data (majority class), while rare but critical conditions, such as genetic 

disorders and specific cancers (minority class), remain underrepresented. This uneven 

distribution can lead to biased models that struggle to accurately predict or detect instances of 

minority classes, which are crucial for effective patient care. 

The reliance on real-world data further complicates the issue of class imbalance in 

healthcare. Medical datasets reflect the natural occurrence of diseases within populations, 

inherently making them imbalanced [52]. For example, rare diseases account for a small 

percentage of overall medical cases, yet misclassifying these conditions can have severe 

consequences. Acquiring sufficient data for these minority classes is often costly and time-

consuming, necessitating expert annotation from healthcare professionals, such as doctors or 

radiologists. Moreover, the quality of medical data can suffer from issues like noise, missing 
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values, and inconsistencies. These challenges make medical datasets more prone to imbalance 

compared to other domains, where techniques like resampling or synthetic data generation may 

be more feasible. 

Following are some examples of how imbalanced datasets can impact automated 

diagnosis systems. 

 Disease Detection and Diagnosis:  

One of the most profound effects of class imbalance is evident in disease detection systems. 

For instance, in cancer screening, where the majority of patients are healthy, models tend to 

favor the majority class, resulting in higher rates of false negatives for rare diseases. This can 

lead to delays in critical diagnoses, adversely affecting patient outcomes [53]. A model biased 

toward healthy diagnoses may miss early detection opportunities for patients with less common 

diseases, illustrating how imbalance directly impacts the quality of care. 

 Personalized Treatment Recommendations:  

Machine learning models that offer personalized treatment options also suffer when trained on 

imbalanced data. If most patients in a dataset respond well to a standard treatment, models may 

overwhelmingly recommend this option, even for patients who could benefit from alternative 

therapies [54]. This is particularly concerning in oncology, where treatment effectiveness can 

vary widely among patients. An imbalance can cause models to overlook valuable treatment 

options for minority-class patients, undermining the potential of personalized medicine. 

 Prognostic Modeling: 

Predictive models used to forecast patient outcomes, such as disease progression or survival 

rates, are equally vulnerable to class imbalance. Often, high-risk patients are underrepresented 

in datasets, leading models to over fit majority-class outcomes. This can result in inaccurate 

predictions for patients with rare or complex conditions, especially when models are expected 
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to generalize to atypical cases. In medical contexts where prognosis informs patient care 

decisions, the implications of these prediction errors can be severe [55]. 

Addressing class imbalance is critical for developing effective machine learning models in 

healthcare. The underrepresentation of rare diseases and high-risk cases can lead to models that 

fail in critical situations, affecting diagnoses, treatment options, and patient prognoses. 

Therefore, it is essential to develop strategies that effectively tackle class imbalance while 

enhancing data quality and employing advanced modeling techniques that accommodate the 

unique challenges presented by medical datasets. 

1.7 Cancer: The Leading Cause of Death Beyond Infectious Diseases 

Globally, cancer ranks as a leading cause of death, surpassing diseases such as malaria 

or tuberculosis. The American Cancer Society (ACS) reported approximately 609,300 cancer 

deaths out of about 1,918,030 diagnosed cases in 2020, with projections suggesting this figure 

may exceed 28 million by 2030. Among the various cancer types, brain and breast cancer 

warrant significant attention due to their prevalence, profound impact on quality of life, and 

ongoing challenges in diagnosis and treatment [56], [57]. 

Breast cancer is the most commonly diagnosed cancer worldwide, representing 

approximately 12.5% of all new cancer cases and about 25% of all cancers in women. In 2020, 

an estimated 2.3 million women were diagnosed with breast cancer globally, with projections 

of about 281,550 new cases of invasive breast cancer in the U.S. for 2021. Conversely, brain 

tumors, while less common, are among the most aggressive cancers, accounting for about 1.5% 

of all new cancer cases. In the U.S., it was estimated that 24,530 new cases of brain and other 

central nervous system (CNS) tumors would occur in 2021 [58], [59], [60], [61], [62]. Although 

brain tumors are less prevalent, they are often diagnosed at advanced stages, leading to higher 
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mortality rates. The five-year survival rate for glioblastoma, a common type of brain cancer, is 

only about 5% [63], [64], [65]. 

1.7.1 Emotional and Economic Impact of Cancer 

Breast cancer significantly affects patients' emotional and psychological well-being. 

Many survivors experience anxiety, depression, and body image issues, with studies indicating 

that the psychological burden of a breast cancer diagnosis can impact quality of life for years’ 

post-treatment. The economic implications of breast cancer treatment are substantial, 

encompassing both direct medical costs and indirect costs, such as lost productivity, 

contributing to the overall burden on healthcare systems [66], [67], [68], [69]. 

Brain cancer can lead to severe cognitive and physical impairments that affect daily functioning 

and quality of life. Patients may struggle with memory, attention, and motor skills, which can 

be debilitating. The care burden for patients with brain cancer often falls on family members, 

resulting in increased emotional and financial strain. The necessity for specialized care can also 

result in significant lifestyle changes for both patients and caregivers [70], [71], [72], [73], [74]  

1.7.2 Challenges in Diagnosis and Treatment 

Challenges in diagnosis and treatment are prevalent in both cancer types. Although 

screening methods like mammography have improved early detection rates for breast cancer, 

disparities in access to these services exist, particularly among underserved populations, 

leading to late-stage diagnoses that complicate treatment [75], [76], [77], [78]. Additionally, 

some breast cancers can develop resistance to treatments, necessitating ongoing research into 

more effective therapies. 

In brain cancer, tumours often present vague symptoms that can delay diagnosis. 

Advanced imaging techniques are required for accurate identification, complicating early 

detection. Current treatment options for brain tumours are limited and typically involve a 

combination of surgery, radiation therapy, and chemotherapy, which may not always be 
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effective. There is an urgent need for innovative therapies and personalized medicine 

approaches to improve patient outcomes [79], [80], [81]. 

1.7.3 Screening Techniques for diagnosing breast and brain tumours 

This section discusses various screening techniques employed for diagnosing breast 

cancer, highlighting the physical, electrical, and mechanical methods used to identify tumours 

at different stages. Figure 1.4 illustrates these techniques. 

 

Figure 1.4 Screening Techniques 

A. Physical Screening Techniques 

 Mammography 

Mammography is one of the most commonly utilized and effective methods for 

detecting breast cancer. This technique employs low-dose X-rays to generate images of breast 

tissue. Recent advancements have replaced traditional film-based X-rays with solid-state 

detectors, which convert X-rays into electrical signals. These signals are then processed to 

create digital images displayed on computer screens for further analysis. Initially, computer-

aided detection (CAD) systems were introduced to support radiologists in identifying 

suspicious areas on mammograms. CAD systems highlight regions that warrant further 
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investigation, enhancing the efficiency and accuracy of breast cancer screenings, particularly 

in detecting subtle abnormalities that may be overlooked during manual evaluations [82]. 

 Ultrasound 

Ultrasound is another widely used and effective screening technique for breast cancer, 

especially beneficial for women with dense breast tissue, where mammography may have 

reduced sensitivity. This method utilizes sound waves to produce images of the breast, 

offering a non-invasive and safe alternative or complement to mammography. Ultrasound 

is particularly adept at distinguishing between solid masses (potential tumours) and fluid-

filled cysts. In populations with generally smaller breast sizes, such as among Chinese 

women, ultrasound has demonstrated superior screening efficiency compared to 

mammography. This technique is especially valuable for targeted examinations of areas 

flagged during physical exams or mammograms. 

 Magnetic Resonance Imaging (MRI) 

MRI is a vital tool in breast cancer detection, particularly for high-risk individuals or 

when more detailed imaging is necessary. This technique employs strong magnetic fields and 

radio waves to produce highly detailed images of the breast's internal structures. Unlike 

mammography or ultrasound, MRI can provide cross-sectional views, allowing for clear 

visualization of deep tissues. Moreover, MRI is widely utilized for monitoring treatment 

progress and detecting potential recurrences. Its precision makes it a recommended 

supplemental screening tool for women with a heightened genetic predisposition to breast 

cancer [83]. 

B. Electrical Screening Techniques 

 Electrical Impedance Spectroscopy 

Electrical impedance spectroscopy (EIS) is an emerging technique that has shown 

promise in enhancing breast cancer detection accuracy. EIS measures the electrical properties 
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of breast tissue, revealing distinct impedance patterns between cancerous and healthy tissues, 

thus facilitating the detection of abnormalities. These tools have proven effective in identifying 

variations in tissue composition, making EIS sensitive enough to detect early formations of 

cancer cells [84]. 

 Thermography 

Thermography is a non-invasive, radiation-free technique that assesses temperature 

variations on the skin's surface. Specialized infrared cameras capture heat patterns emitted from 

the breast tissue. Since cancerous cells exhibit higher metabolic activity, they tend to emit more 

heat than surrounding healthy tissue. By employing image processing techniques and feature 

extraction algorithms, thermography can identify unusual heat signatures indicative of breast 

cancer. Although still in development, this method shows potential as a supplementary tool in 

breast cancer screening [85]. 

 Microwave Imaging 

Microwave imaging is a promising new approach designed to address the limitations 

of conventional screening methods in early-stage breast cancer detection. This technique 

utilizes microwave frequencies to create images of breast tissue. Because cancerous tissues 

possess different dielectric properties than healthy tissues, microwave imaging may enable 

earlier tumour detection when other methods might fail. Although still in experimental stages, 

it holds considerable promise for early diagnosis. 

 Tomography 

Tomography refers to imaging techniques that produce cross-sectional images of 

specific planes within tissues, creating detailed slices of breast tissue that facilitate clearer and 

more precise identification of abnormalities [64]. Tomographic imaging serves as a valuable 

tool in both diagnosing and planning treatment for breast cancer patients. 
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C. Mechanical Screening Techniques 

 Magnetic Resonance Electrography (MRE) 

Magnetic resonance electrography is a mechanical screening technique that integrates 

MRI imaging with mechanical vibrations to assess tissue stiffness. In this method, 

electromechanical devices vibrate the breast tissue, generating acoustic waves. These waves 

are then captured by the MRI scanner, and a specialized algorithm produces quantitative 

images based on tissue elasticity. Since cancerous tissues are generally stiffer than normal 

tissues, MRE provides critical information for differentiating between benign and malignant 

growths. This technique is gaining attention as a potential enhancement to traditional imaging 

methods, offering an additional layer of diagnostic precision [85]. 

1.8 Motivation of study 

Research in image processing and machine learning spans various fields, driven by the 

transformative potential of these technologies to enhance decision-making and improve overall 

outcomes. As society rapidly evolves, addressing critical challenges in diverse applications 

ranging from diagnostics and treatment planning to process optimization has become 

increasingly urgent. By harnessing advanced image processing techniques alongside 

sophisticated machine learning algorithms, significant strides can be made in enhancing 

outcomes across multiple domains. Image processing is foundational in industries such as 

healthcare, surveillance, manufacturing, and autonomous vehicles. High-resolution image 

generation allows professionals to make informed decisions based on detailed visual 

information. However, as imaging technologies advance, the complexity of generated data 

increases, highlighting the need for robust methodologies capable of effectively interpreting 

intricate datasets. This complexity necessitates innovative approaches that can adapt to varying 

data conditions and application requirements. 
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Integrating Artificial Intelligence into image analysis offers opportunities to significantly 

enhance accuracy and efficiency. Artificial Intelligence models, particularly deep learning 

techniques like Convolutional Neural Networks (CNNs), enable the extraction of patterns and 

features from complex datasets. This facilitates the automated identification and classification 

of objects in images, streamlining analysis and reducing human workload, ultimately leading 

to faster and more accurate results. Despite these advancements, challenges such as class 

imbalance and generalization remain significant hurdles. Class imbalance arises when certain 

categories are underrepresented in training datasets, leading to biased models. Generalization 

refers to a model’s ability to perform well on unseen data, which is crucial for ensuring that the 

model remains effective across diverse scenarios. Addressing these challenges is essential for 

developing reliable machine learning models that maintain high accuracy across all classes and 

datasets. 

This research aims to leverage machine learning and image processing techniques to 

enhance outcomes across various applications, fostering innovations that lead to better 

decision-making and improved processes in a rapidly evolving landscape. By focusing on these 

advancements, impactful solutions can be created to address real-world problems, ultimately 

improving efficiency, effectiveness, and overall quality of life across multiple sectors. 

1.9 Research Objectives 

The main objective of this thesis is to develop a model that addresses class imbalance, 

generalisation issues by optimizing processing speed without compromising classification 

accuracy. To achieve this, the proposed research work is aimed at: 

1: To study and analyse the comprehensive review of existing techniques for the 

classification of imbalanced data.  

2:   To propose an approach for classification of imbalance datasets.  
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3:  To develop a CNN, Vision transformer based hybrid framework for classification of 

imbalance dataset.  

4:   To develop a novel DL based model for generalization. 

The detailed description of the identified research objectives is as follows: 

1. In the first objective, different methods at both data-level, algorithmic level approaches are 

tested and compared. From results it can be analysed that rather than using data-level and 

algorithmic-level approaches individually, combining them into a hybrid approach works 

better for addressing class imbalance. 

2.  To address the second objective, a novel hybrid approach that employs Generative 

Adversarial Networks alongside data augmentation techniques is proposed, enhancing the 

quality of training dataset. Furthermore, a Vision Transformer combined with Auxiliary neural 

network, is employed for effective and precise tumor classification. Further, in other research 

a Shrinking Linear Time Vision Transformer based model is proposed which further aided for 

the effective tumor classification. 

3.  To address the third objective, an efficient Deep Learning framework that deals with data 

imbalance is proposed by combining Inception ResNet V2 and Vision Transformed, the model 

achieves high accuracy and computational efficiency across medical imaging datasets. This 

hybrid design improved feature extraction, delivering precise diagnosis and robust 

performance, even with imbalanced datasets. 

4.  In the fourth objective, model is proposed for improved generalization and ability for 

addressing image occlusions.  Gaussian filters are applied for noise reduction, along with 

Patterned Grid Mask for storing critical information at each stage of the model aiding for 

improved generalisation of model on various imbalanced datasets. 
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1.10 Thesis Outline 

The thesis is organised in eight chapters; salient features of each chapter are discussed in the 

following: 

 FIRST CHAPTER introduces the concepts of Machine Learning, Artificial 

Intelligence, Class Imbalance, and Generalization in image processing. 

 

SECOND CHAPTER reviews the literature in the field of image processing with 

special reference to handling class imbalance, generalisation, optimization issues. An in detail 

review is conducted on understanding class imbalances, approaches to address it. Various data-

level modifications, algorithmic level modifications and hybrid approaches proposed in 

literature to mitigate class imbalance are understood. Similarly, review is conducted on how 

various model proposed in literature addressed generalisation issue. It further emphasizes the 

need to carry out research study in this area for addressing class imbalance and generalisation 

issues and their significance in image processing. Finally, the inferences from the available 

literature have been drawn in order to identify and categorize the requirements for the proposed 

work. 

 

THIRD CHAPTER offers a comprehensive understanding of how class imbalance 

was addressed in image processing, based on an analysis of both data-level and algorithmic-

level methods found in existing literature. The framework organizes these techniques 

hierarchically, clarifying the foundational principles and effectiveness of each approach. By 

categorizing solutions, this research facilitates structured analysis and comparison, enabling 

the selection of optimal strategies for mitigating imbalance. Additionally, experiments were 

conducted to evaluate the performance of hybrid models compared to standalone methods, 

demonstrating a more effective approach for addressing class imbalance in image classification 

tasks. 
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FOURTH CHAPTER as it was understood that hybrid techniques are efficient in 

addressing class imbalance, in this chapter a hybrid technique is proposed combining data-level 

modifications using Generative Adversarial Networks (GANs) with algorithm-level 

enhancements through feature extraction via Vision Transformers (ViT) and an auxiliary 

artificial neural network (ANN) for classification. This chapter explains how the additional 

images generated by GANs contribute to improving the model's efficiency and accuracy. By 

leveraging both data augmentation and advanced feature extraction techniques, our approach 

aims to significantly enhance classification performance. The effectiveness of this hybrid 

model is evaluated across various datasets, highlighting its advantages in effectively tackling 

class imbalance. 

FIFTH CHAPTER presents a robust computational efficient approach for enhancing 

automated classification. The proposed method integrates Generative Adversarial Networks 

(GANs) with data augmentation strategies and a structural similarity loss function to effectively 

generate annotated images. It breaks new ground by introducing a novel deep learning model 

inspired by the Vision Transformer, known as the Shrinking Linear Time Vision Transformer 

(SL(t)-ViT), specifically designed for disease classification. This model thoroughly evaluates 

multiple datasets to assess its performance in accurately identifying tumours. Key evaluation 

metrics highlight its superior efficacy compared to existing techniques, underscoring the 

potential of SL(t)-ViT and GANs in improving diagnostic accuracy and efficiency in medical 

imaging. 

SIXTH CHAPTER introduces a computationally efficient deep learning framework 

to address dataset imbalance through a hybrid model, ensuring accuracy and speed in image 

classification. The novel design excels in generalization, by integrating features from Inception 

ResNet V2 and Vision Transformers (ViT) to enhance classification performance. A key 

innovation is the Efficient Attention Mechanism, which optimizes focus on critical features for 
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improved accuracy and efficiency. Additionally, a Resource-Efficient Optimization model 

through feature selection streamlines computational usage without sacrificing accuracy. By 

addressing heterogeneity within classifiers, our framework integrates high-dimensional 

features, resulting in more accurate class predictions and advancing precision in classification. 

SEVENTH CHAPTER proposes an enhanced deep learning algorithm for improved 

generalisation. In this chapter, Gaussian filters are utilized for noise reduction, and Patterned-

Grid Mask, an advanced variant of the standard Grid Mask technique, was introduced ensuring 

that critical information is preserved. Furthermore, modifications to the Multi-Axis Vision 

Transformer architecture and integration of GRN-based MLPs, improved the computational 

efficiency and generalization capacity. The proposed model demonstrated outstanding 

performance across various tasks, achieving significant accuracy and robustness in both binary 

and multi-class classifications. This study highlights the enhanced DL model's potential to 

improve accuracy, efficiency, and generalization in brain tumour diagnosis, making it a viable 

solution for real-world applications. 

EIGHTH CHAPTER explains the major results obtained from the foregoing chapters 

and further explore the possibilities of future research work that can be carried out to extend 

the present work. The references have been provided at the end of the thesis. 
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Chapter Two: LITERATURE REVIEW 

This chapter provides the overview of research area, review progression and literature 

survey of various techniques proposed in literature for addressing class imbalance and 

generalization issue.  

2.1 Overview 

The classification of images from class-imbalanced datasets is a pivotal focus in image 

processing research, leading to new methods that improve the accuracy of automated systems. 

Machine learning algorithms now efficiently detect objects and patterns in imbalanced datasets, 

which is crucial as class imbalance can lead to misclassification of rare features. Modern 

classification systems leverage data from diverse sources, such as satellite images and sensory 

inputs, to create robust detection models. Traditional methods struggle with skewed datasets, 

often favouring majority classes over minority ones. New approaches, like data augmentation, 

transfer learning, and synthetic data generation, address this by enhancing models' ability to 

learn from limited examples and handle rare classes more accurately.  

Advanced machine learning models now incorporate ensemble techniques and cost-

sensitive learning, adjusting for class imbalances to boost detection accuracy. These 

advancements support diverse applications, including surveillance, environmental monitoring, 

and quality control. Continued research into algorithm development is key to improving 

classification models and standardizing approaches for handling imbalanced datasets in 

practical applications. This progress drives future innovations and broadens the impact of 

automated systems across multiple fields. 

2.2 Review progression 

A systematic approach as shown in Figure 2.1 was used to identify machine learning 

techniques for classifying images from class-imbalanced datasets. Initially, 1,768 relevant 
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research articles were retrieved from scientific digital libraries and reviewed thoroughly. This 

study focuses on machine learning methods for improving classification in cases with 

underrepresented classes, specifically in medical imaging from 2010 to 2023. Using keywords 

like “image processing,” “classification,” “class imbalance,” “machine learning,” and 

“diagnosis,” along with Boolean operators, we refined our search in databases such as: 

IEEE Explore,  

PubMed,  

Web of Science, and  

ACM Digital Library. 

The articles whose abstracts or titles indicated a focus on machine learning in medical 

image classification or addressed class imbalance were selected; otherwise, they were 

excluded. Ultimately, 219 papers were reviewed, with 74 specifically addressing class 

imbalance in medical imaging. These studies were meticulously analysed for strengths, 

weaknesses, and future implications. 

 

Figure 2.1 Search Methodology for the Selection of Relevant Articles 
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2.3 Literature Review: Machine Learning Methods used to mitigate class imbalance. 

Recent advancements in machine learning (ML) have outpaced human performance in 

tasks like object recognition [86], [87], [88], [89], with Convolutional Neural Networks 

(CNNs) playing a key role. Unlike traditional methods reliant on handcrafted features, CNNs 

automatically learn complex data patterns, greatly advancing medical image analysis and 

reaching expert-level accuracy in several imaging tasks [90], [91], [92]. However, challenges 

remain, particularly in lesion detection, which requires precise localization within images 

which is a labour-intensive task for clinicians. A primary challenge in lesion detection is class 

imbalance, as lesions occupy minimal image space, creating a disparity between lesion and 

background pixels. This imbalance significantly affects CNN performance, especially for very 

small lesions like micro aneurysms in retinal images or micro calcifications in mammograms, 

where ratios can reach 1: 10,000 [93]. 

Approaches to manage class imbalance in deep learning include (i) data-level methods, 

(ii) algorithmic-level methods, and (iii) hybrid approaches. Data-level methods involve 

balancing the training set using feature selection, extraction, and data augmentation, though 

alone they often fall short for severe imbalances [94], [95], [96], [97], [98], [99]. Algorithmic-

level methods adjust training processes, such as under sampling, oversampling, cost-sensitive 

learning, and novelty detection, to counter imbalance effects [100], [101], [102], [103]. Hybrid 

approaches combine these methods for improved performance. In medical imaging, class 

imbalance solutions are limited. Simple augmentation (e.g., flipping, rotation) is commonly 

used, while more advanced techniques like GAN-based augmentation and custom loss 

functions, including Dice loss, show promise for minor class emphasis [104], [105], [106], 

[107]. Fully Convolutional Networks (FCNs) are effective for pixel-wise classification but face 

limitations with datasets lacking precise pixel-level annotations, as seen in cases like the IN 

breast dataset [108]. 
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This research further explores various techniques addressing class imbalance in detail in 

subsequent sections. 

2.3.1 Data-level Approaches to Address Class Imbalance 

In the literature survey for handling class imbalance in medical image datasets, data-

level approaches play a pivotal role in modifying the dataset before feeding it into the machine 

learning model. These approaches align with pre-processing techniques, which aim to mitigate 

the imbalance ratio between the majority and minority classes. The key data-level techniques 

employed to achieve this are feature selection, feature extraction, and various sampling 

methods. Below is a detailed explanation of these techniques under the data-level approaches 

category: 

A. Feature Selection 

Feature selection plays a pivotal role in enhancing the performance of machine learning 

models, particularly in medical imaging tasks such as cancer diagnosis, where datasets are often 

highly imbalanced. By identifying the most relevant features such as tumor size, shape, texture, 

or edges models can focus on critical aspects that improve classification accuracy, especially 

for underrepresented samples, like tumors or lesions. This is crucial in applications where 

prioritizing specific image features helps distinguish between malignant and non-malignant 

cases. 

(i) Principal Component Analysis (PCA): This technique reduces high-dimensional data into 

a smaller set of principal components, capturing the most significant variance. This approach 

helps machine learning models by retaining essential information while simplifying datasets, 

making it especially valuable for large and complex datasets. 

PCA has been widely applied to address class imbalance in classification. Zhang et al. [109] 

introduced a one-class kernel subspace ensemble model that uses PCA in a kernel framework 

to emphasize features of minority classes, enhancing performance in imbalanced datasets. 
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Huang et al. [110] combined PCA with DenseNet in a hybrid neural network to improve 

classification accuracy by retaining critical information from minority classes in a reduced-

dimension format. 

In general applications, Kumar and Vijayakumar et al. [111] demonstrated that 

combining PCA with an RBF kernel-based SVM boosts classification accuracy and efficiency. 

Nandi et al. (2015) [112] applied PCA for feature extraction, showing that it effectively reduces 

noise, enhancing classification outcomes. Additionally, Kumar, Dabas, and Godara et al.  [113] 

used a hybrid method combining PCA, SVM, and Discrete Wavelet Transform, improving 

classifier performance. Mohan and Subashini et al. [114] employed PCA in a multiclass 

classification setting, demonstrating notable accuracy improvements. 

 (ii) Genetic Algorithms (GAs): It is inspired by natural selection, optimize solutions through 

selection, crossover, and mutation. In feature selection, GAs help identify optimal subsets that 

enhance model accuracy, with each individual in the population representing a potential subset 

evaluated for fitness. 

Several studies employ GAs for classification and optimization. Haque et al. [115] 

combined GAs with ensemble learning to improve accuracy for imbalanced datasets by 

optimizing classifier combinations to better handle minority classes. Jiang et al. [116] 

introduced GASMOTE, a hybrid GA-SMOTE method creating synthetic data to balance 

training datasets. Azad et al. [117] proposed combining GAs with decision trees to address 

class imbalance and missing data, achieving notable performance gains. 

Beyond medical applications, GAs have been used for feature selection and hyper 

parameter tuning, such as in CNNs for skin cancer detection, enhancing melanoma 

classification accuracy Azad et al.,  [117]. Devarriya et al. [118] developed GA-based fitness 

functions for minority class detection. 
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(iii) Recursive Feature Elimination (RFE): This method systematically improves model 

performance by iteratively removing the least important features. It starts with a full feature 

set, trains a model (often SVM or Random Forest), ranks feature importance, and removes the 

least significant feature, repeating until the optimal subset is achieved. Numerous studies apply 

Random Forest (RF) and ensemble methods to address class imbalance. Xu et al. [119] 

combined M-SMOTE, ENN, and RF to generate synthetic minority data, filter noise, and 

classify imbalanced datasets, achieving improved performance. Desir et al. [120] used RF for 

one-class classification, enhancing minority class learning without overfitting. Bader-El-Den 

et al. [121] introduced Biased Random Forest (BRAF), which increases focus on minority 

classes, leading to better outcomes in imbalanced datasets. 

RFE’s effectiveness extends beyond medical imaging. For example, it was applied with 

TabNet and XGBoost in breast cancer diagnostics [109] and with Conv-LSTM for brain tumor 

classification in 3D MRI [110]. RFE has also optimized MRI features for prostate cancer 

recurrence prediction and ultrasound features for lymph node status in ovarian cancer [111], 

[112]. In osteosarcoma analysis, RFE combined with ensemble classifiers helped predict tumor 

viability [113]. Additionally, Müller et al. [122] developed a classification pipeline using CNNs 

and RF, demonstrating how RF-based ensemble learning enhances CNN performance on 

imbalanced datasets. 

B. Feature Extraction 

Feature extraction is essential for improving the performance of diagnostic models 

across various fields. By simplifying complex images into meaningful attributes, professionals 

can gain deeper insights into underlying conditions, enhancing accuracy and enabling timely 

responses. This process transforms raw data into attributes that represent intricate patterns and 

structures. In image processing, feature extraction helps identify significant characteristics in 

complex visuals, which are crucial for analysis and decision-making. By isolating key features, 



38 

 

experts can assess conditions more effectively and make informed choices. Overall, feature 

extraction is a foundational element in interpreting and analysing images, leading to improved 

outcomes in various applications. 

(i) The Histogram of Oriented Gradients (HOG): This technique is a popular feature 

extraction technique in computer vision, especially for object detection and classification. HOG 

captures the distribution of gradient orientations within localized regions of an image by 

dividing it into small cells (typically 8x8 or 16x16 pixels) and calculating the gradient 

magnitude and direction for each pixel. These gradients are aggregated into histograms 

representing edge orientations within each cell, with normalization across overlapping blocks 

to enhance robustness against changes in illumination and contrast. HOG is effective for 

detecting shapes and edges, making it valuable in applications requiring precise edge detection. 

It emphasizes contours, improving accuracy in object localization. HOG features can be 

combined with machine learning classifiers, such as support vector machines (SVM) or random 

forests, to classify images based on extracted edge and shape information. 

Several studies highlight HOG's versatility. One study combined HOG with Local 

Ternary Patterns (LTP) to extract features from imbalanced datasets, enhancing image retrieval 

by focusing on edge and texture information, thereby reducing the impact of class imbalance 

Shamna & Musthafa et al. [123]. Another approach integrated HOG descriptors into a multi-

scale CNN framework, demonstrating its ability to balance performance across minority and 

majority classes Liu et al., [124]. A comparative study also showcased HOG's effectiveness in 

detecting small objects by preserving key edge features critical for identification, especially 

when paired with deep learning models Bria et al., [103]. HOG has been applied in various 

contexts beyond object detection. One study utilized HOG features for identifying objects in 

images, emphasizing edge detection and gradient information [109]. Another combined local 

binary patterns with convolutional neural networks (CNNs), using HOG for pre-processing to 
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improve feature extraction and object detection from high-resolution images [110]. HOG has 

also been pivotal in developing computer-aided diagnosis systems, providing robust feature 

extraction for accurate image classification [111]. Additionally, it has been used in image 

analysis tasks, such as detecting abnormalities in medical imaging and studying movement 

patterns [113]. These applications underscore HOG’s wide applicability and potential to 

enhance classification accuracy across diverse image analysis tasks. 

(ii) The Scale-Invariant Feature Transform (SIFT):  This technique is a powerful feature 

extraction technique for detecting and describing local features in images, maintaining 

invariance to changes in scale, rotation, and affine transformations. It identifies key points 

using a difference-of-Gaussian approach, enabling detection at multiple scales, and computes 

descriptors from local gradient information around each key point, capturing robust patterns. 

SIFT's invariance to scale and rotation makes it valuable for consistent feature matching across 

various images, particularly in image classification and object detection tasks, even under 

differing conditions or angles. SIFT has been applied to address class imbalance in image 

classification tasks. One study utilized SIFT descriptors to capture key points and integrate 

them into a machine learning pipeline, which improved classification accuracy for varying 

scales and orientations, reducing the impact of class imbalance Liu et al., [125]. Another study 

leveraged SIFT features in a classification framework, where SIFT's robustness ensured that 

minority class features were well represented, enhancing performance on imbalanced datasets 

Tang & Hu et al. [126]. 

In a further study, SIFT was used for local feature extraction in deep learning models, 

demonstrating its effectiveness in detecting minority class instances in skewed datasets. The 

combination of SIFT with deep learning helped balance class representation and improve 

classification outcomes Yadav & Jadhav et al. [127]. SIFT has also been widely applied in 

object classification and pattern recognition. One study combined SIFT with a hybrid deep 
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learning model based on Efficient Net, showcasing its ability to extract features that enhance 

predictions by identifying critical local features [109]. Another study used SIFT alongside Fed-

VGG16 and Fed-CNN models, highlighting its effectiveness in improving model performance 

through significant feature extraction [110]. These studies underscore SIFT’s versatility and 

effectiveness in various image classification applications, particularly in challenging 

conditions and imbalanced datasets. 

(iii) Local Binary Patterns (LBP): This method is a powerful texture descriptor for analysing 

local texture information in images. It generates a binary code by thresholding pixel values in 

a local neighbourhood around each pixel, indicating whether neighbouring pixel intensities 

exceed the centre pixel's intensity. This code is converted into a decimal value, creating a 

unique LBP representation for each pixel, which captures local patterns for classification tasks. 

LBP is robust to changes in illumination, making it useful when image brightness varies. The 

extracted features can be aggregated into histograms for machine learning classifiers, 

enhancing the accuracy of classification models. 

LBP has been widely applied to address class imbalance in classification tasks, 

particularly in texture analysis. One study utilized adaptive LBP to ensure underrepresented 

classes were well represented, improving classification accuracy by focusing on critical texture 

details Liu et al., [125]. Another study integrated LBP with other feature extraction methods, 

using multi-scale techniques to balance class representation, leading to more accurate 

classification results Murugappan & Sabeenian [128].  

(iv) Gabor filters: These linear filters are widely used for texture and edge feature extraction 

at various scales and orientations. Based on the mathematical properties of wavelets, these 

filters effectively capture the spatial frequency content of images. Each Gabor filter responds 

to specific frequencies and orientations, allowing for the extraction of a rich set of texture 

features that emphasize different aspects of an image. Gabor filters are particularly effective in 
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addressing class imbalance by capturing multi-scale and multi-orientation features. One study 

demonstrated their ability to extract distinct texture features, ensuring better representation of 

minority classes in the classification process, which enhanced classifier robustness Poloni et 

al., [129]. Another approach integrated Gabor filters into a data augmentation technique, 

generating additional samples for underrepresented classes and improving classification 

performance in cases of severe class imbalance Barshooi & Amirkhani [130]. 

These filters have been extensively applied in texture and pattern recognition. Singh et 

al. [131] utilized a Gabor filter bank in a texture-based classification system, proposing a 

computer-aided diagnostic network that improved classification accuracy compared to 

traditional methods. Bourkache et al. [132] demonstrated the adaptability of Gabor filters in 

large-scale data contexts, enhancing classification tasks with extensive datasets. Li et al. [133] 

explored Gabor filters for feature enhancement in deep learning models, highlighting their 

integration in segmentation and classification tasks to improve performance in complex image 

analysis. These studies emphasize the versatility and effectiveness of Gabor filters in extracting 

meaningful texture and edge information across diverse applications. 

(v) The Grey Level Co-occurrence Matrix (GLCM): This statistical technique is used to 

analyse the spatial relationships between pixels in an image. It measures the frequency of pixel 

pairs with specific grey-level values at defined distances and directions. From the GLCM, 

several texture features can be derived, including contrast, correlation, energy, and 

homogeneity, providing a quantitative analysis of an image's texture and its structural 

properties. GLCM is widely applied in texture analysis and classification, distinguishing 

textures and improving classification model performance. It has also been used to address class 

imbalance in classification tasks.  

GLCM has been utilized across various fields; for example, Azawi et al. [134] 

combined GLCM with a genetic algorithm and a probabilistic neural network to improve 
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classification accuracy through optimal feature selection. Hao et al. [135] enhanced 

classification performance by combining deep semantic features with GLCM-derived texture 

features, revealing insights into image heterogeneity. Additionally, Biswas et al. [136] 

demonstrated GLCM's effectiveness in capturing spatial relationships, leading to improved 

diagnostic outcomes based on texture patterns. 

(vi) Wavelet Transform: This is a powerful technique for decomposing images into different 

frequency components, allowing simultaneous analysis of spatial and frequency information. 

Unlike the traditional Fourier Transform, which offers a global frequency representation, the 

wavelet transform provides localized frequency analysis, making it particularly effective for 

images with non-stationary characteristics. This method generates a multi-resolution 

representation, capturing details at various scales and orientations, which helps identify 

localized features such as edges and textures while preserving overall image structure. 

Widely adopted in various fields, wavelet transform enhances feature extraction for 

texture and localized features, improving classification performance. It effectively addresses 

class imbalance by capturing both spatial and frequency information. For instance, Krishna et 

al. [137] applied it in a classification system combined with a PSO-based LLRBFNN algorithm 

to enhance classification accuracy by extracting texture and spatial frequency information. 

Sarhan et al., [138]  introduced a wavelet-based approach with deep learning, using wavelets 

to extract energy features and improve accuracy by leveraging their multi-resolution properties. 

These studies demonstrate the versatility and effectiveness of wavelet transform in image 

analysis and classification tasks, particularly for multi-scale texture analysis and handling 

imbalanced datasets. 

C. Sampling Techniques 

Sampling techniques are commonly used to address class imbalance in machine 

learning by adjusting class distribution before model training. These methods are classified into 
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three main types: over-sampling, under-sampling, and hybrid techniques. Over-sampling 

increases the representation of the minority class, while under-sampling reduces the majority 

class samples. Hybrid techniques combine both approaches to create a more balanced dataset. 

The primary goal is to improve model performance by mitigating the negative effects 

of imbalanced class distributions, enhancing generalization and accuracy in classification tasks. 

When applied correctly, these techniques can significantly improve classification rates, 

especially for critical conditions or rare events. However, each method presents challenges; for 

example, over-sampling may cause overfitting, while under-sampling can result in the loss of 

valuable information. Therefore, careful consideration of the dataset’s characteristics and 

problem context is essential to balance class parity and data integrity. 

(i) Random Oversampling (ROS): It is a simple yet effective technique for balancing class 

distribution by duplicating samples from the minority class. This method increases the 

representation of the minority class, enabling models to learn from a more representative 

dataset, especially when instances are scarce. However, ROS has notable drawbacks, primarily 

the risk of overfitting, as repeated samples can lead to redundant patterns that may not 

generalize well to new data. This issue is pronounced in high-dimensional datasets, prompting 

practitioners to combine ROS with advanced techniques like SMOTE to mitigate redundancy. 

Random oversampling has been widely applied across various fields. Khushi et al. 

[139] analysed resampling methods, finding that ROS significantly improved classification 

performance on imbalanced datasets but warned about overfitting risks. Ganganwar et al. [140] 

used ROS to artificially increase minority class instances, noting that while it enhanced model 

performance, the model might memorize duplicated instances rather than generalize. To 

counter this, the authors recommended combining oversampling with data augmentation 

techniques. Douzas et al. [141] found that while ROS improves performance, its effectiveness 

can be limited by the nature of duplicated data. They suggested combining oversampling with 
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heuristic methods, like k-means clustering, for better distribution of synthetic samples. Jeyaraj 

and Nadar et al. [142] applied ROS in their deep learning study on early oral cancer diagnosis, 

which improved classification accuracy. However, they also highlighted the potential for bias 

due to overfitting to replicated samples, affecting generalization to new data. 

(ii) Random Under sampling (RUS): This technique addresses class imbalance by randomly 

eliminating samples from the majority class. This simplifies the dataset and enables models to 

focus on the minority class, making it effective when the majority class is significantly larger. 

However, RUS can lead to the loss of critical information, negatively impacting model 

generalization. To mitigate this, researchers often combine RUS with techniques like ensemble 

learning. 

RUS has been widely applied in various studies. Mohammed et al. [143] noted that 

while RUS simplified their dataset, it risked losing important majority class information, 

potentially harming performance. Lin et al. [144] introduced a clustering-based approach to 

preserve representative majority class samples, resulting in improved classification. 

(iii) Synthetic Minority Over-Sampling Technique (SMOTE): This technique generates 

synthetic samples for the minority class through interpolation, enhancing dataset diversity 

without duplicating existing samples, unlike random oversampling. This method helps improve 

classification performance, especially when minority class instances are limited, and reduces 

the risk of overfitting by facilitating better generalization to unseen data.  

SMOTE has been widely utilized in various studies. Joloudari et al. [145] found that 

combining SMOTE with convolutional neural networks (CNNs) significantly enhanced 

classification accuracy on imbalanced datasets. Blagus and Lusa et al. [146] explored SMOTE 

in high-dimensional datasets, developing a variation to preserve class relationships and 

improve performance. Gao et al. [147] demonstrated a deep learning approach using SMOTE 

for better classification, while Wang et al. [148] applied SMOTE in breast cancer classification, 
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achieving improved accuracy and F1-scores. Both studies noted the risk of noise from synthetic 

samples that may not accurately represent real-world data. 

(iv) Adaptive Synthetic Sampling (ADASYN): The following technique builds upon the 

SMOTE technique by selectively generating synthetic samples in regions where the minority 

class is difficult to classify. This method dynamically adjusts the number of synthetic samples 

based on classification complexity, thereby enhancing the model's ability to distinguish 

between classes in highly imbalanced datasets. 

ADASYN focuses on generating synthetic samples near the decision boundary. For 

instance, Douzas et al. [141] demonstrated that this targeted approach improved classification 

performance by addressing challenging cases and reducing bias toward the majority class. 

Additionally, a comparative study by Elreedy and Atiya et al. [149] found that ADASYN 

outperformed traditional methods such as random oversampling and SMOTE by adapting to 

the density of the minority class within the feature space. The primary advantage of ADASYN 

lies in its ability to effectively learn from difficult instances without overwhelming the model 

with unnecessary data. However, it requires careful tuning to ensure that the synthetic samples 

accurately represent the minority class. Guan and Liu et al. [150] showed that ADASYN 

enhanced model accuracy by generating realistic synthetic samples in challenging regions. 

Nonetheless, they also cautioned about potential computational complexity and the risk of 

overfitting due to noisy synthetic samples. 

D. Data Augmentation 

Data augmentation is a widely used technique in image processing for addressing class 

imbalance in datasets. It involves artificially expanding the minority class by applying 

transformations such as rotation, scaling, flipping, and contrast adjustment to existing images. 

These transformations create new examples, enriching the dataset and enabling models to learn 

from a broader range of representations. The primary advantage of data augmentation lies in 
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its ability to increase the diversity of the training data, significantly reducing the risk of 

overfitting which is a common issue when models are trained on limited examples. By 

providing a more comprehensive dataset, data augmentation enhances a model's capacity to 

generalize to new, unseen cases. However, it's crucial to apply transformations carefully to 

ensure that the augmented data remains representative of the actual conditions being modelled, 

preserving the integrity of the data. 

(i) Generative Adversarial Networks (GANs): These represent a sophisticated method for 

generating synthetic samples, particularly effective in addressing class imbalance. Comprising 

a generator and a discriminator, GANs create synthetic images resembling the minority class 

while evaluating their authenticity. This adversarial process produces highly realistic synthetic 

data, enhancing training datasets and improving model performance on imbalanced data. 

GANs have shown significant potential in various domains. For example, they have 

been used to generate synthetic text samples for minority classes in text classification tasks, 

boosting performance in sentiment analysis and spam detection Wang et al., [151]. In fraud 

detection, GANs improved detection rates by generating synthetic fraudulent transactions, 

which typically make up a small fraction of datasets Luo et al., [152] . Additionally, in 

autonomous driving, GANs have created synthetic examples of rare events like accidents, 

helping models generalize to various driving scenarios Goodfellow et al., [153]. In industrial 

defect detection, GANs generated synthetic images of defects, enhancing quality control by 

improving the identification of subtle issues Li et al., [154]. 

In medical applications, GANs have effectively addressed class imbalance. Frid-Adar et al. 

[155] applied GAN-based image augmentation to improve convolutional neural networks 

(CNNs) in liver lesion classification, achieving higher accuracy, sensitivity, and specificity. 

Mahmood et al. [156] implemented adversarial training for brain tumour segmentation, 
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generating synthetic tumour images that mimicked the statistical properties of real data, 

significantly enhancing segmentation performance. 

2.3.2 Drawbacks and Open Issues in Data-Level Approaches 

Data-level approaches, such as oversampling, under sampling, and synthetic data 

generation, are commonly used to address class imbalance in datasets. However, these methods 

have significant drawbacks that limit their effectiveness, prompting researchers to explore 

alternative algorithmic strategies. A major issue with oversampling is the increased risk of 

overfitting. By duplicating or generating additional minority class instances, oversampling may 

lead the model to memorize these samples instead of learning generalized patterns, resulting in 

poor performance on unseen data. This is particularly problematic when there are few minority 

class samples, as the model may rely too heavily on these limited examples. 

Under sampling reduces the number of majority class instances but can lead to the loss 

of valuable information, causing the model to miss important patterns. This may result in under 

fitting, where the model fails to learn the overall data structure, thereby reducing accuracy and 

predictive power. While synthetic data generation techniques aim to mitigate overfitting and 

under fitting, they often struggle to maintain sample diversity. Generated data may not capture 

the complexity of the minority class, introducing noise or unrealistic points that misrepresent 

true characteristics. Additionally, data-level approaches are static, simply adjusting the 

dataset's distribution without considering variations in class imbalance across different feature 

space regions. This limitation highlights the need for more adaptive solutions, leading to a shift 

towards algorithmic approaches that modify the training process itself for dynamic handling of 

imbalanced data. 
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2.3.3 Algorithm-Level Approaches to Address Class Imbalance 

To address the limitations of data-level approaches, researchers have increasingly 

focused on algorithmic modifications to manage class imbalance in datasets. These strategies 

involve adapting existing algorithms to better tackle the challenges of imbalanced data. 

Common techniques include adjusting loss functions to give greater weight to the minority 

class and implementing cost-sensitive learning that penalizes misclassification of minority 

instances more heavily. Additionally, ensemble methods like boosting and bagging enhance 

classification performance by improving the recognition of underrepresented classes. 

These algorithmic refinements aim to increase model robustness and performance, 

particularly in critical applications such as fraud detection and autonomous driving. By 

modifying algorithms, researchers can mitigate the negative impacts of class imbalance, 

ensuring equitable representation of all classes and improving predictive accuracy and 

reliability. This is especially vital in domains like industrial defect detection and text 

classification, where identifying rare events is crucial for achieving high-quality results. 

A. Cost-Sensitive Learning 

Cost-sensitive learning is a powerful technique for addressing class imbalance by 

assigning different penalties for misclassifications based on class importance. Typically, higher 

misclassification costs are assigned to minority class instances, encouraging the algorithm to 

prioritize these underrepresented samples during training. A cost matrix is used to integrate 

these penalties directly into the learning process by adjusting the loss function. This approach 

improves sensitivity and recall for the minority class, which is crucial in applications such as 

fraud detection and autonomous driving, where identifying rare but important instances is vital 

for system reliability. 
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(i) Focal loss: It is a novel loss function designed to tackle class imbalance, particularly when 

the minority class is underrepresented. Unlike traditional loss functions that treat all 

misclassifications equally, focal loss introduces a modulation factor that down-weights easy-

to-classify examples while emphasizing hard-to-classify minority instances. This adjustment 

enhances the model's sensitivity to challenging samples, reducing bias toward the majority 

class and improving performance on imbalanced datasets. 

Initially developed for extreme class imbalance in object detection, focal loss 

significantly improved detection rates for minority classes by focusing on hard examples, such 

as identifying pedestrians in autonomous driving scenarios Lin et al., [157]. In wildlife 

monitoring, focal loss prioritized learning for rare species, enhancing the classification of 

endangered animals in camera-trap images and reducing false positives [158]. 

Lamrani et al. [159] applied focal loss in a deep residual network for tumor 

classification in MRI images, which reduced misclassification rates for minority tumor types 

but struggled with extremely rare cases due to limited data. Liu et al., [160] used focal loss in 

3D tumor image segmentation, enhancing detection of small regions while noting a risk of 

overfitting in small datasets. Luong et al. [161] developed SovaSeg-Net for ovarian tumor 

segmentation, with focal loss outperforming other functions, though hyper parameter tuning 

remains a challenge. Agrawal et al.  [162] introduced a lightweight skin cancer detection 

system using adaptive class-balanced focal loss, improving classification of rare skin cancer 

types, but highlighted the need for automation in parameter selection. 

(ii) Modified cross-entropy: This loss function is an adaptation of the standard cross-entropy 

function aimed at enhancing model performance on imbalanced datasets. Unlike traditional 

cross-entropy, which treats all classes uniformly, the modified version assigns higher penalties 

for misclassifying minority class instances, ensuring that the model pays adequate attention to 
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these underrepresented examples while minimizing overfitting to the majority class. Studies, 

such as those by Ismail et al.  [163], have demonstrated its effectiveness in improving class 

balance without significantly increasing computational complexity. Despite its limitations, 

cross-entropy loss remains a common baseline in classification tasks. Luong et al. [161] applied 

it to scene recognition, revealing that the model struggled with rare environments like natural 

forests.  

Rai et al. [164] utilized binary cross-entropy in a two-headed U-NetEfficientNet 

architecture for brain tumor segmentation, noting challenges with smaller tumours due to class 

imbalance. Yang et al. [165] applied cross-entropy in a data-efficient image transformer for 

multiclass brain tumour classification but highlighted the need for further modifications to 

address tumour heterogeneity. Modified cross-entropy variants have been proposed to tackle 

these issues. For example, Cui et al. [166] used weighted cross-entropy in a vehicle detection 

dataset, improving detection accuracy for underrepresented vehicle types. Prayogo et al. [167] 

employed modified cross-entropy in a transfer learning model for brain tumour detection, but 

challenges in generalizing across different tumour types and imaging conditions persisted. 

(iii) Class-balanced loss: It is an advanced loss function that addresses class imbalance by 

assigning different weights to classes based on their representation in the dataset. This method 

enhances the contribution of minority classes to the loss calculation while reducing the 

influence of majority classes, allowing the model to learn more comprehensive features from 

underrepresented categories. 

Class imbalance is a common challenge in classification tasks, leading to biased 

models. Researchers have increasingly turned to class-balanced loss as an effective solution. 

Numerous studies from 2015 to 2022 demonstrate its utility across various fields. For instance, 

Cui et al. [166] applied class-balanced loss to an imbalanced vehicle detection dataset, 
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improving recognition of rare vehicle types like motorcycles and achieving more balanced 

detection accuracy. 

B. Ensemble Learning with Class Rebalancing 

Ensemble learning with class rebalancing leverages multiple classifiers to improve 

performance on imbalanced datasets. Techniques like boosting, bagging, and stacking are 

adapted to prioritize minority classes during training. Boosting methods, such as AdaBoost, 

increase the weights of misclassified minority samples, helping the model focus on these 

challenging cases and reducing bias towards the majority class. This approach can significantly 

enhance performance in various domains, such as fraud detection or autonomous driving, 

where identifying rare events is crucial for system reliability. A notable example is the EUS-

Boost algorithm, which combines boosting with under sampling to address class imbalance. 

This method outperformed standard sampling techniques in tasks like rare event detection, 

making it a valuable strategy in applications where accurately identifying minority classes is 

essential for success. 

(i) Boosting techniques: AdaBoost and Gradient Boosting, have been widely employed to 

address imbalanced datasets in classification tasks. These methods sequentially train weak 

classifiers, focusing on the errors of previous classifiers. Research indicates that AdaBoost 

enhances accuracy in detecting underrepresented classes, improving the identification of rare 

cases. 

Boosting algorithms have been extensively studied for managing class imbalance by 

adjusting the model’s focus on difficult instances. For example, Sun et al. [168] applied 

AdaBoost to fraud detection in financial datasets with highly underrepresented fraudulent 

cases, enhancing recall without sacrificing overall accuracy. Chawla et al. [169] introduced 

SMOTE+ Boost, combining boosting with synthetic data generation, significantly improving 
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the detection of rare manufacturing defects in quality control. By assigning higher weights to 

images showing early signs of retinopathy, GBMs effectively handled class imbalance, 

improving diagnostic performance and reducing misclassification risks. 

(ii) Bagging: A widely used bagging technique, Random Forest, constructs an ensemble of 

decision trees, each trained on a random sample. This approach reduces variance and improves 

classification stability, effectively addressing class imbalance and enhancing minority class 

performance while maintaining high accuracy for the majority class. 

Bagging has proven effective across various tasks. For example, Iqbal et al. [170] 

demonstrated that Random Forest outperformed traditional classifiers in brain tumor detection, 

showing greater accuracy and robustness, particularly with noisy or incomplete data. Lessmann 

et al. [171] applied bagging to classify liver lesions, allowing the model to generalize better by 

mitigating the effects of outliers. Modifications of bagging also target class imbalance. Galar 

et al. [172] employed under-bagging in cybersecurity anomaly detection, where the majority 

class was under sampled, improving detection of rare anomalies. Chen et al. [173] utilized 

over-bagging for customer churn prediction, enhancing sensitivity to rare churn cases.  

(iii) Stacking is an ensemble technique that enhances classifier performance by training a meta-

classifier to make predictions based on outputs from various base classifiers. Models like CNN, 

SVM, and KNN can serve as base learners, each capturing different data aspects. This method 

effectively integrates diverse learning strategies, making it suitable for addressing class 

imbalance across various domains. 

Stacking has been applied to class imbalance in several fields. For instance, Zhou et al. 

[174] used stacking in e-commerce fraud detection by combining decision trees, logistic 

regression, and SVMs, which improved the detection of rare fraudulent transactions. In credit 

scoring, Lessmann et al. [171] demonstrated that stacking different classifiers on imbalanced 
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data improved the identification of high-risk borrowers while maintaining a low false-positive 

rate. Galar et al. [172] applied stacking in industrial fault detection, achieving better accuracy 

in detecting faults compared to individual models. 

(iv)Transfer learning: By utilizing pre-trained models, typically trained on large datasets, this 

method allows for the transfer of learned features to new, imbalanced tasks, reducing the time 

and computational resources needed for model development. During fine-tuning, techniques 

like cost-sensitive learning or focal loss can enhance performance on minority classes. For 

instance, the Inception V3 model has been adapted for cancer detection by integrating dynamic 

sampling and cost-sensitive methods to improve accuracy for rare conditions. 

The authors used ViT as a pretraining model to extract general characteristics from 

massive amounts of heterogeneous data, followed by two-stage transfer learning to learn 

underlying target dataset information for COVID-19 picture identification. He et al. [175] 

discussed the use of transformers in medical picture processing and surveyed available transfer 

learning designs for clinical image processing, highlighting their shortcomings. 

(v) Attention mechanism are powerful tools for addressing challenges in imbalanced datasets 

by selectively focusing on relevant areas of an image. They enhance feature representation, 

improving detection of minority classes. For instance, in breast cancer classification, attention 

mechanisms direct focus toward denser tissues, increasing accuracy for rare instances like 

malignant tumours. In remote sensing, attention mechanisms have proven valuable. 

Chen et al. [176] proposed a new technique for segmenting brain tumours called 

LETCP, which uses unlabelled data for pre-training and a self-attention transformer for model 

construction. The authors tested the approach on three different public datasets and showed 

improved effectiveness over existing techniques. Lee et al. [177] introduced a strategy for 
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image classification that uses the extracted features of all patches processed by a sequence of 

self-attention layers rather than the class token employed by conventional vision transformers. 

Luque et al. [178] proposed a novel approach to labelled image efficiency enhancement, 

nicknamed LETCP, for segmenting brain tumours. In particular, it offers a different pre-

training approach to labelled data to prepare models for later use. In this method, the 

segmentation model is built using a self-attention transformer. Mehta et al. [179] present the 

Holistic Attention Transformer Network or HATNet. HATNet simplifies the histopathological 

image categorization pipeline and demonstrates how it learns representations from giga-pixel 

size images end-to-end, which contrasts with cutting-edge histopathological image 

classification systems, which use a two-pronged approach. 

2.3.4 Drawbacks and Open Issues in Algorithmic-Level Approaches 

Cost-sensitive learning and class weight adjustments, often fail to fully address 

imbalanced data distribution. While these methods penalize misclassification of minority class 

instances, they may not establish meaningful decision boundaries, particularly when the 

minority class is small and sparsely distributed. Additionally, models using these approaches 

can become overly complex or unstable, risking overfitting on the minority class or under 

fitting on the majority class. 

Class imbalance also complicates performance evaluation, making common metrics 

like accuracy misleading. More appropriate metrics, such as F1-score, recall, and precision, are 

necessary but challenging to optimize through algorithmic means alone. 

2.3.5 Hybrid techniques 

Hybrid techniques effectively address class imbalance by combining data-level and 

algorithmic approaches. Data-level methods modify the training dataset, while algorithmic 

methods adjust the learning process to enhance minority class recognition. 
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In literature, hybrid methods involve merging base models to create a single optimal predictive 

model [180]. The combined ensemble algorithms have shown effective results with reasonable 

accuracy in handling multi-label imbalance problems. S. Dendamrongyit et al. [181] introduced 

two algorithms, easy ensemble and balance cascade, which train multiple classifiers by 

combining subsets of both the majority and minority classes. The hybrid sampling method was 

proposed by Cao et al. [182] where SMOTE is utilized to increase the quantity of minority 

class instances, followed by the application of the one side selection (OSS) algorithm to 

eliminate instances that do not provide useful information. Tang et al. [183] proposed an 

ensemble model with SVM and SMOTE. The SMOTE algorithm increases training data while 

SVM classifies the images. For learning more discriminative deep representations from 

unbalanced picture data, LMLE approach was introduced by Haung et al. [184] The authors 

proposed a novel loss function and sampling method to generate more discriminative features 

from the data. Recall value of this model was recorded at 70.13. The proposed LMLE method 

showed promising results on CelebA dataset.  In order to address the high-class imbalance in 

the large-scale classification images, Dong et al. [185] proposed an end-to-end deep learning 

strategy. The drawback of this method is that, it cannot be applied to small-scale problems. 

Proposed architecture combined hard samples mining from the minority groups with a 

regulated loss function called class rectification loss (CRL). Table 2.1 shows the literature 

survey of various techniques. 
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Table 2.1 Literature Survey of various techniques. 

Year Reference Approach Model Dataset used Performance 

Measures(%) 

2013 [186] Hybrid 

Approach 

5 ML Algo’s SDP data 

from public 

repository 

AUC – 64 

Gmean – 76 

Recall – 82 

2013 [187] Algorithmic 

Approach 

SVM-RFM 4 datasets Accuracy – 

97.6 

Sensitivity – 

23 

2014 [188] Algorithmic 

Approach 

MWMOTE 20 datasets Gmean – 23.2 

ROC – 98 

2014 [189] Algorithmic 

Approach 

16 Sorting 

Algo’s 

- Accuracy:86 

AUC: 98.6 

2015 [190] Data-level 

Approach 

Ensemble 

method 

Songho tans 

Hotel 

Reviews 

dataset 

F-Measure 69 

G-Mean -76 

Weighted Acc 

- 82 

2015 [191] Data-level 

Approach 

Hybrid 

resampling + 

SVM 

VCI Dataset AUC ROC - 

79 

2015 [192] Algorithmic 

Approach 

NN with ABC 

Algo 

NASA MDP 

dataset 

Accuracy: 68.4 

AUC – 79 

2015 [193] Algorithmic 

Approach 

Ensemble of 

DT, Random 

Forest, 

SVM,NB,K-

NN 

VCI Data & 

MiRNA 

Sensitivity – 

86,83,93 

Specificity – 

93,92,88. 

2016 [194] Algorithmic 

Approach 

Ensemble of 

algorithms 

16 Datasets AUC-ROC -

805 

Gmean  -76.6 

2016 [195] Hybrid 

Approach 

ML Algo & 

ensemble 

Chemical 

vapor 

decompositio

n process 

data 

AUC – 91 

Gmean – 92 

F-Score – 69 

2016 [96] 

 

Data-level 

Approach 

CNN Mnist, Cipar, 

DLSVRC. 

AUC ROC –

99.41 

Over sampling 

:99.35. 

Under 

sampling : 

96.85. 

2016 [196] Data-level 

Approach 

Transfer 

learning + 

CNN 

WHOI-plan 

database. 

103 classes 

- 
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2016 [197] Hybrid 

Approach 

LMLE-KNN CelebA 

dataset 

 

Accuracy – 84. 

2017 [198] Algorithmic 

Approach 

ANN Highly 

Imbalance 

Gmean - 98.41 

Sensitivity - 

96.56 

Specificity : 

97.59 

2017 [199] Algorithmic 

Approach 

BRKNN,HOM

ER,MCKNN 

Uniprot KB Apvalue – 

85.891 

2017 [200] Algorithmic 

Approach 

Proposed 

(ResNet- 34) 

CNN 

Emotion Net 

2017 

challenge 

Track 1 

Dataset 

Accuracy – 

82.2. 

F1 – 64.1. 

2018 [201] Hybrid 

Approach 

Data 

Augmentation 

+ CNN 

transfer 

learning Model 

+ Dynamic 

Sampling 

Model 

Own Dataset: 

10000 

images. 

299*299 

pixel. 

Accuracy: 80.2 

F1-score – 59 

2018 [202] Algorithmic 

Approach 

MLP,CSDNN Barnes 

Jewish 

hospital EMR 

databases. 

Accuracy – 89, 

Specificity: 89, 

sensitivity: 26, 

F1-score- 48 

 

2018 [185] Hybrid 

Approach 

CifarNet 

+CRL, 

ResNet +CRL, 

DenseNet 

+CRL, 

3 imbalanced 

datasets were 

used celebA, 

X-domain, 

Deep fashion, 

1 balanced 

dataset 

CIFAR-100. 

Mean 

Accuracy 

CRL – 80.42 

2019 [203] Algorithmic 

Approach 

CNN CNN(multi 

class SVM) 

Accuracy : 

90.43 

2019 [204] Algorithmic 

Approach 

ResNet50,VG

G16 

CBIS-DDSM Sensitivity:86.

7 

Specificity:96.

1 

AUC-ROC – 

98 

2020 [205] Hybrid 

Approach 

3DCNN(UNet 

+DDS pool) 

Own Dataset 

ultrasound 

images 

Sensitivity – 

95 
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ABVS 

images 

2020 [206] Algorithmic 

Approach 

CNN(DenseNe

t169+max 

pooling) 

IN breast 

data & CBIS 

dataset 

Accuracy: 93.4 

on IN 

Accuracy: 83.8 

on CBIS 

2020 [207] Algorithmic 

Approach 

CNN(SVM) Own dataset. 

Total1952 

cases. 

437 

malignant & 

1222 benign 

FFT: 66-77 

DCT: 64-83 

SSIM: 63-71 

 

 

2021 [208] Hybrid 

Approach 

AlexNet, 

Ensemble 

architecture of 

multiple 

CNN’s 

- Ppv: 98.57 

Sensitivity: 

98.58 

Accuracy: 

98.57 

Specificity: 

98.57 

2022 [209] Data-level 

Approach 

Cross 

validation 

using random 

forest method+ 

SMOTE+ ML 

algorithms(De

cision trees, 

KNN, Random 

Forest, SVM) 

Mammograp

hy images, 

Highly 

imbalance 

AUC:99 

2023 [210] Data-level 

Approach 

AoADL-

HBCC+Sweez

eNet 

BreakHis 

Highly 

imbalances 

Accuracy-

96.77 

2023 [211] Algorithmic 

Approach 

CNN-LSTM BreakHis 

Highly 

imbalance 

Accuracy: 92.5 

for binary class 

and 99 for 

multi class. 

2023 [212] Algorithmic 

Approach 

GARL-Net BreakHis 

Highly 

imbalanced 

Precision:99 

2024 [159] Algorithmic 

Approach 

Residual Unet BRATS 2020 Accuracy: 99 , 

Dice Score: 88 

2024 [162] Hybrid 

Approach 

CACBL-Net HAM-10000 Sensitivity: 

90.60. 
 

2.4 Generalisation 

Generalization in deep learning refers to a model's ability to perform well on new, unseen 

data, beyond the examples it was trained on. In other words, a model generalizes effectively if 
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it can make accurate predictions for data it has never encountered before. This is crucial 

because, in real-world applications, models are expected to handle a wide range of inputs, and 

training on every possible scenario is impractical. Achieving strong generalization is 

challenging due to the complexity and over parameterization of deep learning models, which 

can sometimes lead to overfitting meaning the phenomenon where a model performs well on 

training data but poorly on new data. Thus, improving the generalization ability of deep 

learning models is a key focus of research, aiming to develop models that are both accurate and 

robust in diverse environments. 

2.4.1 Literature survey of Generalisation techniques 

In the field of machine learning, generalization refers to a model's ability to perform 

well on unseen data. In recent years, deep learning has achieved remarkable success in a variety 

of complex tasks, yet understanding and improving its generalization ability remains a core 

challenge. This thesis explores key research efforts that have contributed to enhancing the 

generalization performance of deep learning models, focusing on both theoretical and practical 

perspectives. The following sections provide a detailed overview of selected works that address 

various aspects of this challenge. 

Generalization is strongly influenced by the learning efficiency of neural networks 

(DNNs). Lyle et al. [213] investigate how different phases of learning contribute to model 

generalization, particularly in supervised and reinforcement learning contexts. The study 

provides insights into how the parameters of deep networks evolve during training and how 

this evolution leads to generalization in new, unseen scenarios. By understanding the 

interaction between training data, model architecture, and learning algorithms, Lyle et al. [213] 

emphasize the importance of dynamic learning processes in enhancing generalization. This 

approach is critical in real-world applications where it is impossible to enumerate all possible 

inputs, thus necessitating models that can generalize beyond the training data. 
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Complementing this, Kawaguchi et al. [214] offer theoretical insights into why deep 

learning models are able to generalize so well, despite being highly over parameterized and 

complex. Their work focuses on providing non-vacuous generalization guarantees, which help 

explain why these models, which often fit training data perfectly, perform exceptionally well 

on unseen data. The authors argue that the architecture and training algorithms used in deep 

learning play a crucial role in achieving such generalization, even when traditional theoretical 

bounds for generalization are not satisfied. This study contributes to understanding why, in 

practice, deep learning models often outperform expectations derived from classical machine 

learning theory. 

A more empirical approach to understanding generalization is taken by Aleksandar et 

al. [215], who explore complexity measures for deep learning models. Their research proposes 

new methods for predicting generalization based on local measures of distortion derived from 

approximation theory and information theory. These complexity measures, which are applied 

layer by layer within deep networks, offer an inexpensive way to predict how well a model will 

generalize to new data. The study finds that these measures correlate strongly with model 

performance, providing a practical tool for evaluating generalization without requiring access 

to extensive validation datasets. This research advances the ability to predict generalization, 

particularly in scenarios where training data is limited. 

In the domain of medical imaging, generalization poses a unique set of challenges, as 

demonstrated by Yagis et al. [216]. The authors explore how convolutional neural networks 

(CNNs) perform in classifying neurodegenerative diseases, a task that often involves dealing 

with highly imbalanced and noisy data. The study highlights the impact of different data 

division strategies on the generalization capabilities of CNNs, showing that careful partitioning 

of data can significantly improve model accuracy and robustness. The paper underscores the 
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importance of considering data structure and variability in training, especially when working 

with medical data where generalization is critical for accurate diagnosis. 

A novel approach to understanding generalization in deep learning is provided by 

Zhang et al. [217], who apply optimal transport theory to the problem. Their research shifts 

focus from traditional worst-case analysis to average-case scenarios, offering a new framework 

for evaluating how deep networks generalize. By framing generalization as a transport 

problem, they present a mathematical framework that explains the success of deep learning 

models in practical applications. This perspective provides a more refined understanding of 

how deep networks behave when confronted with unseen data, especially in scenarios where 

the training data is diverse and complex. 

In the context of recommender systems, generalization is addressed through hybrid 

modelling techniques. Cheng et al. [218] introduce the concept of Wide & Deep Learning, 

which combines the memorization capabilities of wide linear models with the generalization 

strengths of deep networks. This approach is particularly useful in recommendation tasks where 

sparse data and user-item interactions present significant challenges. By leveraging both 

feature engineering and low-dimensional embedding’s, the model enhances performance by 

capturing both high-level patterns and specific instances. The integration of wide and deep 

models represents a significant step forward in improving generalization for recommender 

systems and similar applications that deal with sparse datasets. 

Another important contribution to the generalization discourse comes from Wilson and 

Izmailov et al. [219], who explore Bayesian deep learning as a way to improve model 

generalization. Bayesian methods, which involve marginalizing over model weights, provide a 

probabilistic framework for understanding generalization. This allows for more accurate 

predictions and better-calibrated uncertainty estimates, which are particularly important in 

applications where the consequences of errors are severe. Their work also addresses the 
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problem of overfitting by introducing Bayesian model averaging, which mitigates the effects 

of double descent, a phenomenon where increasing model capacity can initially worsen, but 

then improve, generalization. 

Generalization in deep learning can also be enhanced through human-aided methods, 

as demonstrated by Boyd et al. [220]. The authors propose a novel approach in which human 

judgment about salient regions in images is incorporated into the training process. By 

leveraging human-generated saliency maps, the model is able to achieve higher accuracy and 

better generalization, particularly in cases where training data is limited. This method reduces 

error rates by guiding the model’s attention to the most relevant parts of the input, which is 

especially useful in tasks where domain knowledge is crucial. 

In the area of deep fake detection, Coccomini et al. [221] investigate how different deep 

learning architectures generalize when faced with the task of detecting manipulated videos. 

Their study compares convolutional neural networks (CNNs) and vision transformers (ViTs), 

revealing that while CNNs perform well with limited datasets, ViTs exhibit superior 

generalization capabilities when applied to more diverse data. The authors also highlight the 

promise of attention-based architectures like the Swin Transformer, which show strong 

generalization across various datasets, making them ideal for applications where dataset 

diversity is a challenge. 

Finally, Mungoli et al. [222] proposes an Adaptive Feature Fusion (AFF) framework 

designed to improve generalization in deep learning models. By dynamically adapting how 

feature representations are fused across layers, the AFF framework leads to better performance 

across a variety of tasks. This approach outperforms traditional feature fusion techniques, 

offering a flexible method for enhancing generalization. Extensive experiments demonstrate 

that AFF is particularly effective in tasks requiring robust feature extraction and generalization, 

making it a valuable addition to the deep learning toolkit. 
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The generalization of deep learning models has been a topic of significant research, with 

contributions spanning theoretical, empirical, and practical domains. From understanding the 

dynamics of learning to applying novel frameworks like optimal transport and Bayesian 

inference, researchers continue to push the boundaries of how deep networks can generalize 

beyond their training data. These works highlight the importance of model architecture, 

training strategies, and data partitioning in achieving strong generalization performance, 

ensuring that deep learning models are robust and reliable in real-world applications. 

2.5 Publically Available Datasets 

The following Table 2.2 shows the statistical analysis on the publically available datasets 

along with their degree of imbalance. 

Table 2.2 Statistical analysis on the publically available datasets. 

Dataset Name Description Number of 

images 

Type of 

classification 

Imbalance ratio 

DDSM DDSM is a 

database 

containing 

scanned 

mammography 

images. 

 

10239 Multi-class Partially 

Figshare It is publically 

dataset containing 

raw images 

obtained from 

patients. 

 

3064 Multi-class Highly 

Br35h Br35h dataset is 

designed for 

Binary 

classification 

 

3000 Binary-class Highly 

BrainTumor MRI This dataset is 

obtained from 

Kaggle which is a 

combination of 

three datasets 

namely Figshare, 

SARTAJ and 

Br35h. 

 

7021 Multi-class Partially 
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Brain MRI The dataset 

consists of brain 

MRI images 

 

256 Binary-class Highly 

BT-small 2c Contains Brain 

tumor images 

 

253 Binary-class Highly 

BT-large 2c Contains Brain 

tumor images 

 

3000 Binary-class Highly 

BT-large 4c Contains Brain 

tumor images 

 

3064 Binary and multi 

-class 

Highly 

BreakHis Contains 

histopathological 

images of breast 

cancer obtained 

from 82 patients at 

different 

magnifications. 

 

9109 Binary-class Highly 

BACH It is composed of 

histopathological 

images related to 

breast cancer, 

sourced from 

Breast cancer 

2019 grand 

challenge 

 

400 Binary-class Partially 

 

 

 

 

 

 

 

2.6 Performance Evaluation Metrics 

Table 2.3 presents the performance evaluation metrics utilized in this study to assess the 

robustness of the proposed models. 

Table 2.3 Performance Evaluation Metrics. 

Metrics Definition Formula Range 

Accuracy Measure how well 

the model predicts 

the correct labels. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

0-1 
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Precision Measure of how 

many of the predicted 

positive labels are 

actually positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

0-1 

Recall Measure of how 

many of the actual 

positive labels are 

correctly predicted. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

0-1 

F1-Score The harmonic mean 

of Recall and 

Precision. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

0-1 

MCC Used to compare the 

anticipated labels 

with actual labels in 

order to assess how 

well a classification 

model is performing. 

𝑀𝐶𝐶

=  
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

0-1 

 

2.7 Research Gaps  

The literature survey from Table 2.1 reveals several noteworthy challenges and limitations. 

These include:  

 Computational Resource Requirements 

Hybrid models for image processing, especially deep learning-based systems like 

CNNs and ViTs, are computationally intensive. Training these models requires substantial 

processing power, memory, and time, which makes them difficult to deploy in environments 

with limited infrastructure. For instance, real-time image processing in applications like 

surveillance or medical diagnostics in rural areas may not have access to high-performance 
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GPUs or cloud resources. Research into lightweight, efficient models that maintain high 

accuracy but operate on constrained hardware is still lacking. 

 Scalability and Generalization 

Many hybrid models perform well on specific image datasets, but struggle to generalize 

across various image types, modalities, or applications. For instance, a model trained on 

satellite images may not perform as well on medical or industrial images without significant 

retraining. The challenge of scalability is further compounded when attempting to deploy 

models across different contexts, such as different imaging technologies, environments, or 

populations. The lack of generalization and scalability across diverse datasets and tasks 

presents a critical gap that needs to be addressed for broader real-world adoption. 

 Synthetic Data Quality 

Techniques like SMOTE and Generative Adversarial Networks (GANs) are often used 

to generate synthetic image data to balance class distributions in image processing. However, 

the quality of synthetic images is often insufficient to capture the true complexity and 

variability of real-world data. Poorly generated synthetic images can lead to overfitting or 

misclassification, especially in high-dimensional data like satellite imagery or medical scans, 

where minute details are crucial. Ensuring that synthetic data mimics real data effectively is a 

challenge that requires further research. 

 Handling of Noisy and Artifact-Laden Data 

In many real-world image processing applications, data is often noisy or contains 

artifacts that can obscure important features. For instance, images captured in low-light 

environments or medical scans affected by movement artifacts present significant challenges. 

Many current hybrid models lack robust methods for handling such imperfections, which limits 

their utility in practical settings. Developing more noise-resilient and artifact-tolerant models 
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is essential for improving performance in dynamic environments such as real-time surveillance 

or remote sensing. 

 Computational Complexity 

The use of hybrid models often introduces additional computational complexity due to 

adaptive weighting, rebalancing, and combining multiple models or techniques like 

resampling. For image processing tasks that require real-time or large-scale processing, such 

complexity can become prohibitive. In applications such as traffic monitoring or large-scale 

industrial inspections, the additional computational overhead can slow down processing times, 

making these models unsuitable for time-sensitive tasks. Reducing computational complexity 

without sacrificing accuracy remains a significant research gap. 

 

To address these gaps, it is crucial to explore innovative approaches capable of 

overcoming issues such as computational resource constraints, scalability, and generalization 

across diverse datasets. Our research endeavors to develop hybrid deep learning techniques 

that effectively balance computational efficiency with performance, enabling accurate and 

reliable processing of diverse types of image data. By integrating advanced methodologies, we 

aim to enhance the robustness and adaptability of hybrid models, thus addressing the evolving 

demands of real-world image processing applications. 
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Chapter Three: A COMPREHENSIVE EXPLORATION OF 

HYBRIDIZED ARCHITECTURES TO MITIGATE CLASS 

IMBALANCE 

This chapter provides the overview of comprehensive exploration of how effectively 

models are handling class imbalance condition when various data-level and algorithmic level 

modifications are done. Results obtained highlight the importance of hybrid models in 

addressing class imbalance. 

3.1 Introduction 

In the era of Industrial Revolution 4.0, deep learning (DL) and machine learning (ML) 

have gained significant attention for their broad applications across sectors like energy 

management, social network analysis, medical informatics, and computer vision [46]. ML and 

DL models are broadly categorized into supervised and unsupervised algorithms, with 

supervised models further split into classification and segmentation tasks. Despite extensive 

training, researchers have noted performance declines in real-world applications, attributed to 

various factors including insufficient data quality, highlighting the need for robust models that 

can generalize effectively [223]. 

One of the main challenges in ML/DL models is the issue of class imbalance, where the 

unequal distribution of classes negatively impacts model performance. This problem is 

particularly evident in tasks like classification, object detection, and image segmentation. Class 

imbalance is seen in numerous applications such as fraud detection, medical decision-making, 

and text classification, and new techniques like data re-sampling and hybrid models have 

emerged to mitigate this issue. However, handling multi-label classification presents even more 

complexity, as multiple labels within a class exacerbate the imbalance, requiring approaches 

like problem transformation and algorithmic adaptations to improve results [224]. 
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In the medical field, the challenge of class imbalance is critical, particularly in breast 

cancer detection, where early diagnosis can save lives. Breast cancer, one of the most prevalent 

and deadly cancers globally, is characterized by imbalanced datasets that hinder accurate model 

predictions. In this context, the study performed a comprehensive analysis of class imbalance 

and proposed a hybrid model using the BreakHis dataset, which addresses this imbalance in 

breast cancer classification. This study highlights the limitations of existing state-of-the-art DL 

models and introduces a solution aimed at improving performance in high-imbalance medical 

datasets [51]. 

3.2 Materials and methodology 

This section highlights the various performance evaluation metrics employed to assess 

model effectiveness, accompanied by a detailed description of the datasets used and the 

experimental setup established for consistency. It also outlines the data-level and algorithmic-

level approaches, including hybrid methods that combine these modifications to address class 

imbalance. Furthermore, we examine the diverse deep learning techniques utilized in our 

comparative analysis, emphasizing their strengths and suitability for the tasks at hand. This 

comprehensive overview establishes a solid foundation for understanding the effectiveness of 

the strategies applied in this research. 

3.2.1 Various Data-level and Algorithmic Level Modification 

The researchers working on classification methods has shown a fascinating interest in 

resolving issues that arise while working on imbalanced datasets. The lack of labelled data 

causes the classification or segmentation algorithms to generate biased results or the skewness 

problem. Skewness in the dataset prevents the efficient performance of classification problems. 

Further, various data level and algorithmic approaches are implemented and their performance 

is recorded. 
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3.2.1.1 Data Augmentation and Pre-processing 

Data augmentation and pre-processing are employed in machine learning, especially 

when there’s a small dataset that could lead to overfitting and imbalanced labels. Data 

augmentation helps by creating more training examples from existing data, making the model 

better at generalizing. Pre-processing, on the other hand, cleans and improves the quality of 

images by removing noise, which helps the model analyse them more accurately. By using 

both these techniques, we can create a variety of data samples and prepare the images to handle 

issues like label imbalance, making the model stronger and more reliable. 

Random Cropping: This technique involves cropping multiple unique sections from an image 

by randomly selecting valid corner points. As a result, the cropped images maintain distinct 

characteristics, promoting diversity in the training set. 

Rotation: Images are rotated by a predefined angle to ensure that they remain clear and 

recognizable, thus allowing the model to learn from different orientations. 

Colour Shifting: In this method, numerical adjustments are made to the red, green, and blue 

(RGB) channels of an image. This creates various color distortions, helping the model learn to 

recognize objects under different lighting conditions and color variations. 

Flipping: Images are flipped either horizontally or vertically, which aids the model in 

generalizing across different angles and orientations. 

Intensity Variation: This technique modifies the brightness of images by adjusting their 

intensity levels, making them either brighter or darker, thus exposing the model to a range of 

lighting conditions. 

Translation: Image pixels are shifted within a specified range, normalizing the images and 

ensuring that key features remain consistent across variations. 

Resizing: This technique adjusts the dimensions of input images, either reducing or enlarging 

their sizes. Resizing ensures that images are tailored to meet the specific requirements of 
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machine learning (ML) or deep learning (DL) models, facilitating efficient processing and 

analysis. 

Rebalancing the Classes: Previous research has demonstrated that imbalanced datasets, where 

one class significantly outnumbers others, can introduce bias and yield inaccurate predictions. 

To mitigate this issue, rebalancing techniques are applied, which involve removing redundant 

instances from overrepresented classes to create a more equitable distribution of classes. 

Normalization: Normalization involves scaling pixel values to a range between 0 and 1, thereby 

reducing the variance in colour distribution and intensity. Techniques such as strain 

normalization with colour contrast and strain normalization without colour contrast are 

employed to ensure consistent representation across images. 

Image Contrast Enhancement: This technique improves the overall brightness of an image by 

adjusting the mapping of pixel values from the lowest to the highest grayscale levels. By 

enhancing the contrast, this technique makes important features in the images more 

distinguishable, thereby aiding in subsequent analysis. 

3.2.1.2 Loss function 

Employing loss functions as algorithmic-level approaches is essential for optimizing 

model performance, particularly in addressing class imbalance. Traditional loss functions may 

not effectively handle imbalanced datasets, leading to biased predictions favouring majority 

classes. Custom loss functions, such as focal loss or class rectification loss, assign different 

weights to classes, enabling the model to focus on minority classes and improve overall 

classification accuracy. Additionally, specialized loss functions can enhance model 

generalization by penalizing overfitting and accommodating noisy labels in real-world 

datasets. The following equations (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7) are employed for 

performing algorithmic level modifications: 
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Cross entropy [243]: 

 LBCE ( y, ŷ ) = −  ( ylog(ŷ) +  (1 − y)log (1 − ŷ))                       (3.1)  

 

Here, ŷ is the predicted value by the prediction model. 

Focal loss [132]: 

 CE = {
− log(p),                 if y = 1

− log(1 − p) ,      otherwise
                                     (3.2) 

    pt = {
p,                      if y = 1

1 − p,             otherwise
                  (3.3) 

     CE( p, y ) = CE(pt) = −log(pt)                (3.4) 

By applying a modifying factor, focal loss suggests minimising simple instances and 

concentrate training on difficult negatives, ((1 − p)t)γ   as shown below:  

      FL(pt) = −αt(1 − pt)γlog (pt)                        (3.5) 

Here, γ > 0  and when γ = 1  Focal loss works like Cross-Entropy loss function. 

Dice loss: 

DL( y, p ̂) = 1 −
2yp̂+1

y+p̂+1
             (3.6) 

              When   y = p̂ = 0 

Class Rectification loss: 

 𝐿𝑏𝑙𝑛 = 𝛼𝐿𝑐𝑟𝑙 + (1 − 𝛼)𝐿𝑐𝑒 ,    𝛼 = 𝜂𝛺𝑖𝑚𝑏                       (3.7) 

In this case, the parameter 𝛼 is intended to have a linear correlation with the training 

class imbalance metric 𝛺𝑖𝑚𝑏. Considering varying sizes of individual class data samples, 𝛺𝑖𝑚𝑏 

is determined as the minimum percentage count of data samples that must be present across all 

classes to achieve an overall uniform or balanced class distribution in the training data.  

Additionally, the model hyper-parameter η can be estimated through cross-validation, 

regardless of the imbalance between individual labels, as it is not affected by it. 
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3.2.1.3 Dataset 

The BreakHis dataset, a widely used and publicly available resource, has been 

employed for this study to address the binary classification of breast tumor tissue into benign 

and malignant categories. The dataset comprises a total of 9,109 high-resolution microscopic 

images, each with a resolution of 700 × 460 pixels. These images are captured under four 

different magnification levels: 40X, 100X, 200X, and 400X, providing a diverse range of visual 

details for analysis. 

The dataset is organized into two primary classes: benign tumors and malignant tumors. 

The benign class represents non-cancerous tissue samples, while the malignant class includes 

cancerous tissue samples. A notable challenge in this dataset is the inherent class imbalance, 

as the malignant class contains 5,429 images, whereas the benign class is represented by only 

2,480 images. This uneven distribution between the two categories introduces challenges in 

training machine learning models, as it can lead to biased predictions favouring the majority 

class if not properly addressed. 

For experimental purposes, the dataset has been divided into three subsets to facilitate 

systematic development and evaluation of classification models. The training set is used to 

learn patterns and features distinguishing benign from malignant samples. The validation set is 

employed for hyper-parameter tuning and monitoring model performance during training to 

prevent overfitting. Finally, the testing set is reserved for assessing the model's performance 

on unseen data, ensuring a fair evaluation of its generalization capabilities. 

3.2.1.4 Experimental setup and Data Augmentation 

The fastai v2.7.10 library with Python 3.10 was utilised on a personal machine equipped 

with an Nvidia RTX 3080 GPU to carry out the experiments. Due to the limited VRAM in our 

GPU, we used a batch size of 16 for our experimental setup. The dataset’s images were divided 
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into three distinct groups: 60% were allocated for training purposes, 20% were reserved for 

validation and remaining 20% were set aside for testing. The dataset was partitioned into sets, 

with each set including the same proportion of images from each of the dataset's 32 classes. 

Because we are employing pre-trained models that require images of size 224x224 pixel, all 

images were shrunk to 224x224 pixel. During the training process, various data augmentation 

transforms were applied to the mini-batches, which helped to increase the amount of data by 

including slightly modified copies of already existing data, resulting in less over fitting. These 

augmentations included random flips with a probability of 0.5, random affine transforms with 

a probability of 0.75, and random changes in brightness and contrast with a probability of 0.75. 

The affine transforms included random rotation of 10 degrees, random zoom, and perspective 

warping. The models were fine-tuned on the training set for 61 epochs each. Only the last layer 

is trained during the first epoch, and the rest of the model's pre-trained weights are frozen. All 

of the model's weights were unfrozen for the next 60 epochs, and the entire model was trained. 

The model weights which gave the best accuracy on the validation set after each epoch were 

selected as the final model weights. 

3.2.2 Techniques Employed 

3.2.2.1 ResNet-50 

ResNet-50 is a convolutional neural network (CNN) architecture as shown in Figure 

3.1 is designed to tackle the vanishing gradient problem through the innovative use of residual 

connections. These connections facilitate more effective gradient propagation by allowing 

gradients to bypass certain layers during backpropagation. This shortcut mechanism enhances 

the flow of gradients directly from the output to the input of each residual block, thereby 

preserving the gradient and enabling more efficient training of deeper networks. The 

architecture's design significantly improves training efficiency, allowing for effective learning 

in complex tasks. 
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The formula to calculate the residual block in ResNet is given in equation in (3.8): 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥              (3.8) 

Where x is the input to a residual block,  

F(x) is the output of a set of convolutional layers and non-linear activation function applied to 

x and H(x) is the output of the residual block. 

The residual connections in the formula allows the gradient to flow directly from the 

output to the input through the residual block, bypassing the convolutional layers and activation 

functions. This helps to preserve the gradient and prevent it from vanishing, allowing for deeper 

networks to be trained more effectively. 

 

 

Figure 3.1 Network Architecture diagram of ResNet-50 

3.2.2.2 Efficient Net 

Efficient Net model as shown in Figure 3.2 is a family of CNN architectures that 

balances performance with computational efficiency in image classification tasks. It employs 

a unique scaling methodology that uniformly adjusts the network’s depth, width, and resolution 

using a compound coefficient. Instead of relying on arbitrary scaling, Efficient Net uses a 

systematic approach to determine scaling coefficients through grid search optimization. This 

methodology ensures that the network maintains superior performance while adhering to 
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computational constraints. By carefully scaling these parameters, Efficient Net constructs 

highly efficient architectures capable of delivering excellent classification results across 

various applications. 

The equations (3.9), (3.10), (3.11) are employed to calculate the scaling coefficients of n 

different dimensions is given by: 

𝐷𝑒𝑝𝑡ℎ = 𝛼 ∗ 𝜋                                              (3.9) 

𝑤𝑖𝑑𝑡ℎ = 𝛽 ∗ 𝜋                    (3.10) 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = 𝛿 ∗ 𝜋                     (3.11) 

 

Where:  

𝜋 is a user-defined coefficient that controls the overall network size. 

𝛼 , 𝛽 and 𝛿 are scaling coefficients that control the network depth, width and resolution, 

respectively. These coefficients are determined through a grid search optimization process, 

where their values are chosen to maximize the networks performance subject to a constraint on 

computational cost. 

Once the scaling coefficients are determined, the network depth, width and resolution 

can be calculated using the formulas above. The Efficient Net architecture is then constructed 

by stacking convolutional layers and other operations in a specific order. 

 

Figure 3.2Network architecture diagram of Efficient Net. 
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3.2.2.3 LeViT 

LeViT is a hybrid architecture that combines the strengths of convolutional neural 

networks and Vision Transformers. It utilizes a hierarchical structure as shown in Figure 3.3 to 

enhance performance and efficiency when processing input images for classification tasks. The 

architecture features a feature extractor composed of convolutional and pooling layers, which 

generates a rich representation of the input image. The output undergoes processing through 

multiple layers, including layer normalization and multi-layer perceptron (MLP) modules, 

before generating class probabilities. This design allows LeViT to effectively capture complex 

patterns in data, resulting in improved classification accuracy and efficiency. 

The equation (3.12) used to calculate the output of a LeViT block is: 

Where: 

      𝐿𝑒𝑉𝑖𝑇(𝑋) =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊4 ∗ 𝑀𝐿𝑃2(𝐿𝑁2(𝑀𝐿𝑃1(𝐹𝐸(𝑋))) ∗ 𝑊3) ∗ 𝑊2) ∗ 𝑊1)   (3.16) 

Where X is the input image, FE is a feature extractor that applies a set of convolutional and 

pooling layers to the input image to generate a feature map. 

LN1 and LN2 are layer normalization functions W1, W2 and W3 are learnable weight 

matrices, and softmax is the activation function used to generate class probabilities. The LeViT 

architecture uses a set of liner projections to transform the feature map generated by the FE 

function into a sequence of tokens, which are then processed by a set of Transformer layers. 

The output of the Transformer layers is then processed by an MLP module (MLP1), followed 

by a layer normalization (LN2), another MLP module (MLP2), and finally a set of fully 

connection layers with softmax activation to generate class probabilities. 
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Figure 3.3 LeViT architecture. 

3.2.2.4 ConvNeXT 

ConvNeXT leverages a combination of grouped convolutions and cardinality to 

enhance the representational capacity of the network while maintaining memory efficiency. 

Grouped convolutions divide input channels into distinct groups, enabling the network to 

capture various features in parallel. The architecture as shown in Figure 3.4 incorporates 

residual connections that facilitate improved gradient flow and training dynamics. 

Additionally, ConvNeXT includes a feature recalibration module, which adapts the feature 

maps based on their channel-wise statistics. This adaptive mechanism further enhances the 

network's ability to learn intricate representations, allowing it to effectively balance 

performance and resource utilization. 

The formula used in the ConvNeXT architecture is given by: 

y = F(x, {w_i }) + x                       (3.17) 

where: 



79 

 

x is the input to the residual block, F is a sequence of convolutional and activation layers’ hat 

transform the input x into a new representation, Wi are the weights of the layers in F. + denotes 

the element wise addition operations. 

Overall, the ConvNeXT architecture is a powerful and memory efficient variant that uses 

grouped convolutions and cardinality to increase the representational power of the network. 

 

Figure 3.4 Network architecture diagram of ConvNeXT model. 

3.2.2.5 Inception-ResNet V2 

Inception-ResNet V2, introduced by Google in 2016, is a complex deep convolutional 

neural network architecture characterized by multiple interconnected components as shown in 

Figure 3.5. It begins by processing a 299x299 RGB image through a stem, which consists of 

convolutional layers, pooling layers, and normalization layers. This initial stage reduces the 

spatial dimensions of the image while increasing the number of channels. The architecture's 

core consists of Inception-ResNet blocks, which combine the Inception module with residual 

connections. These blocks allow the network to bypass specific layers, enhancing its learning 

capabilities. Additionally, reduction blocks are interspersed among the Inception-ResNet 

blocks to further reduce spatial dimensions while amplifying channel numbers. The 
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classification head processes the output of the final Inception-ResNet block through a global 

pooling layer, which averages each feature map's values and generates a vector sent to a fully 

connected layer for the final classification output. This design exemplifies a powerful approach 

to deep learning in complex image classification tasks. 

The formula for describing the Inception ResNet V2 architecture can be structured as follows: 

Branch_i (x) = f_i (x)           (3.18) 

Where, fi (x) represents the operations such as convolution with different filter sizes applied in 

each Branchi. 

 

Figure 3.5 Network architecture diagram of Inception ResNet V2 model. 

3.3 Results and Discussion  

The primary objective of this research is to analyse class imbalance issues and propose 

effective solutions to address them. To achieve this, a comprehensive study on class imbalance 

and management techniques was conducted. A hybrid approach was developed using the 

BreakHis dataset, accompanied by a comparative analysis involving multiple experiments 

based on two foundational architectures: Convolutional Neural Networks (CNNs) and Vision 

Transformers (ViTs). 

The CNN variants utilized in this study include ResNet-50, Inception-ResNet V2, and 

EfficientNet, while LeViT and ConvNeXT were employed as the Vision Transformer models. 

To highlight the effectiveness of the hybrid models in mitigating class imbalance, two key 
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experiments were performed, and the results were rigorously compared. In the first experiment, 

the base models were trained using data-level modifications. Various data augmentation and 

pre-processing techniques were applied to the dataset, which was then fed into the models using 

pre-trained weights from ImageNet. The results obtained from different deep learning models 

after applying these data-level modifications are summarized in Table 3.1. 

The findings in Table 3.1 highlight notable differences in model performance on the 

testing set. ResNet50 and Inception ResNet V2 exhibited poor outcomes, which can be 

attributed to their large parameter counts and computational complexity. These models are 

prone to overfitting and require extensive hyper-parameter tuning, making their optimization 

process time-intensive. Additionally, their deep architectures often face challenges such as 

gradient vanishing or exploding, hindering convergence, particularly on smaller datasets like 

BreakHis. 

EfficientNet demonstrated superior performance by leveraging uniform scaling of 

width, depth, and resolution, achieving an excellent balance between accuracy and 

computational efficiency. Vision transformers, including LeViT and ConvNeXT, have further 

advanced image classification by integrating convolutional and transformer layers. 

ConvNeXT, for example, enhances ResNet by introducing a patchify layer and depth-wise 

convolutions, enabling the model to learn from each channel independently and significantly 

improving its performance on imbalanced datasets. 

The success of EfficientNet, LeViT, and ConvNeXT underscores the effectiveness of 

hybrid architectures that combine CNN methods with transformer-based innovations. These 

models excel in addressing challenges associated with testing on imbalanced datasets, 

highlighting their potential for broader applications. 
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Table 3.1 The training and testing scores of various DL models with data-level 

modifications. 

Training score 

Models Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score(%) 

AUC-ROC 

 

ConvNeXT 98.99 99.54 99.45 99.26 99.95 

EfficientNet 98.93 99.26 99.17 99.22 99.83 

LeViT 98.48 98.99 98.80 98.89 99.69 

ResNet 34 97.66 98.34 98.80 98.30 99.63 

Inception 

ResNet V2 

97.41 98.07 98.53 98.11 98.89 

ResNet 50 95.51 96.09 97.61 96.75 98.41 
 

Testing score 

Models Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC-ROC 

 

ConvNeXT 98.30 99.0 98.64 98.76 98.89 

EfficientNet 98.26 98.90 98.67 98.54 98.87 

LeViT 98.32 98.12 98.34 98.19 99.09 

ResNet 34 97.02 98.64 99.02 98.12 99.08 

Inception 

ResNet V2 

97.02 97.78 97.92 97.24 97.98 

ResNet 50 95.20 95.68 96.68 96.79 99.00 
 

 

Figures 3.6, 3.7, 3.8, 3.9, and 3.10 illustrate the performance of various deep learning 

(DL) models, modified at the data level, based on metrics such as accuracy, precision, recall, 

F1-score, and AUC-ROC. The results reveal that ConvNeXT achieved the highest training 

accuracy at 98.99%, followed closely by EfficientNet at 98.93%, LeViT at 98.48%, ResNet-

34 at 97.66%, Inception ResNet V2 at 97.41%, and ResNet-50 at 95.51%. While ConvNeXT 

outperformed the other DL models, its performance still fell short when compared to existing 

state-of-the-art models, prompting further investigation into the underlying reasons for this 
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decline. A thorough analysis indicated that the decreased performance was primarily due to 

class imbalance, which contributed to overfitting issues within the model. 

 

Figure 3.6 Test accuracy of DL models 

 

Figure 3.7 Test precision of DL models 
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Figure 3.8 Test Recall of DL models 

 

Figure 3.9 Test F1-Score of DL models 
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Figure 3.10 Test ROC-AUC of DL models 

Table 3.2 summarizes the performance of the proposed model with respect to the 

different loss functions. The hybrid model developed in this study achieved impressive scores 

of 99% accuracy and 99.2% precision, significantly outperforming other models. A model is 

generally considered effective when its validation accuracy exceeds its testing accuracy. As 

shown in Table 3.2, models such as ConvNeXT, EfficientNet, and LeViT exhibited a 

reasonable difference between validation and testing accuracy when utilizing the Class 

Rectification Loss (CRL) function, suggesting that they effectively addressed underfitting or 

overfitting and yielded reliable classification results. 

This section also evaluates how adjustments to the loss function can address multi-class 

imbalance issues. The selection of an appropriate loss function plays a crucial role in 

influencing model performance. The analysis highlights that the CRL function outperforms 

others in this context. While cross-entropy loss is commonly used to quantify differences 

between probability distributions, it tends to favour majority classes, making it less effective 
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for imbalanced datasets. Dice loss, which measures similarity, treats all samples equally and 

leads to a bias towards more frequent classes. 

As illustrated in Table 3.2, CRL recalibrates predicted probabilities based on their 

similarity to true classes, adjusting them to enhance classification accuracy. By reducing the 

predicted class probabilities for dissimilar classes and increasing those for similar ones, CRL 

fosters a more balanced distribution. The application of CRL has led to significant 

improvements in model performance, particularly in predicting minority classes. These 

findings underscore the importance of selecting appropriate model architectures and loss 

functions to enhance deep learning performance, especially in critical areas like medical image 

classification. 

Table 3.2. Comparison of result obtained from different models with respective to 

different loss functions. 
 

Model Loss Function Accuracy (%) Precision (%) 

ConVneXT CRL 99.0 99.2 

ConVneXT Dice 99.04 99.5 

ConVneXT CEL 99.17 99.6 

ConVneXT Focal 99.55 99.9 

Efficient NET CRL 98.92 99.2 

Efficient NET Dice 97.26 97.2 

Efficient NET CEL 98.47 98.9 

Efficient NET Focal 98.41 98.7 

Inception ResNet V2 CRL 97.77 98.1 

Inception ResNet V2 Dice 96.62 96.4 

Inception ResNet V2 CEL 97.26 96.38 
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Inception ResNet V2 Focal 96.94 97.9 

ResNet CRL 96.9 96.9 

ResNet Dice 93.7 93.9 

ResNet CEL 97.1 97.0 

ResNet Focal 96.3 96.7 

LeviT CRL 98.03 98.3 

LeviT Dice 97.20 97.09 

LeviT CEL 98.47 99.07 

LeviT Focal 97.90 97.90 

, 

3.3.1 Comparison with state of art  

This section represents comparison of different state of art models proposed in literature 

with our proposed model. The above mentioned can be analysed from Table 3.3 listed below. 

In this section, a comparison between the proposed hybrid model and existing state-of-

the-art models for classifying breast cancer using the BreakHis dataset is analysed and is 

presented in Table 3.3. The proposed hybrid model demonstrates superior accuracy and 

precision for multi-class imbalanced classification, outperforming other models. Among the 

various deep learning hybrid models, ConvNexT exhibited the best performance. The use of 

the CRL loss function further improved the performance of the ConvNexT model. In the 

ConvNexT model, depth-wise convolutions were employed, where the convolutional layers 

were grouped, allowing the model to learn from each group. The inclusion of a down sampling 

layer between the stages enabled the extraction of spatial information from every group, 

without losing useful information. The CRL loss function addressed the imbalance issue by 

scaling the probabilities of the classes based on their similarity to the positive classes. This 

allowed for the identification of classes that are more similar to positive classes. The proposed 
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hybrid model utilizes the ConvNexT model to extract spatial information and the CRL loss 

function to reduce overfitting and accurately predict values on the BreakHis dataset.  

Table 3.3 comparison of proposed model with different state of art models using 

BreakHis dataset. 

Year Dataset Model Accuracy(%) 

2018 BreakHis MVP-Net 92.2 

2018 BreakHis AlexNet 91.05 

2019 BreakHis SE-ResNet 99.06 

2019 BreakHis Inception-V3 98 

2022 BreakHis ResNet 97.81 

2022 BreakHis  AlexNet-BC 98.48 

2023 BreakHis Self-stacked Random Forest+AdaBoost 99.0 

2023 BreakHis Hybrid CNN  94.49 

Our 

Approach 

BreakHis Proposed ConvNexT-CRL 99.2 

 

 

3.4 Chapter Summary 

This chapter provides a detailed look at the class imbalance problem, explaining its 

impact on model performance and exploring methods to address it. Through a survey, we 

identified two main approaches to tackle class imbalance: data-level methods (which focus on 

modifying the dataset itself) and algorithmic-level methods (which adjust how the model 

learns). While each approach has its strengths, our analysis suggested that a hybrid approach, 

combining both data-level and algorithmic-level techniques, might offer better results. To test 

this, we conducted three experiments. In the first experiment, we applied only data-level 

modifications, like resampling and data augmentation. However, the results showed that these 

changes alone didn’t fully solve the imbalance problem. In the second experiment, we used 

only algorithmic-level adjustments, such as adjusting the cost of misclassification for different 

classes. Although these changes improved results slightly, they still weren’t enough on their 
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own. Finally, in the third experiment, we combined both data-level and algorithmic-level 

techniques. This hybrid approach produced significantly better results, showing that it handled 

class imbalance more effectively than using either method alone. The findings from this study 

suggest that a hybrid technique is a more powerful solution for managing class imbalance, 

offering more reliable and robust model performance when working with imbalanced data. 
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Chapter Four: DATA AUGMENTATION AND AUXILIARY 

NEURAL NETWORKS FOR ADDRESSING CLASS 

IMBALANCE 

This study highlights the potential of GANs in generating additional data and using 

auxiliary network in improving the accuracy and efficiency of the model while working on 

imbalanced datasets. 

4.1 Introduction 

The aberrant proliferation of cells in and around the brain is what distinguishes a brain 

tumor (BT) from a normal brain. The cells can be formed inside the brain tissue or near the 

tissue. Brain tumor is a life threatening condition and cause several medical issues. Sensation 

loss, hearing loss, visual impairment, migraines, nausea, and seizures are only some of the 

medical issues brought on by BT. Not all tumor formations in the brain are critical. They can 

be noncancerous or benign. Meningioma, the most common benign brain tumor, develops from 

the membrane that covers the brain. Malignant brain tumors are relatively uncommon, but the 

most common types are gliomas, which originate in glial cells and the brain stem, along with 

glioblastomas, which originate in the brain itself [225]. 

Brain Tumors are commonly diagnosed using Magnetic Resonance imaging (MRI). MRI 

images show the tumors with different pixel intensity which contrasts from nearby normal 

tissues. MRI images are then used by neurosurgeons to correctly diagnose the condition. 

Detecting tumors from MRI images provides an opportunity for automation of diagnosis using 

artificial intelligence methods. Image classification and detection algorithms in artificial 

intelligence technologies have surpassed the human ability to process and analyze images. 

Several studies have attempted automated diagnosis of brain tumors using MRI scans, often 

starting with traditional machine learning classifiers like support vector machines (SVMs), k-
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nearest neighbors (KNNs), and random forests (RFs) trained on manually-crafted properties of 

MRI slices [226]. 

Traditional machine learning classifiers have several limitations when it comes to image 

classification and detection. They can only utilize limited features that are manually extracted 

for preforming classification. This greatly constricts their power for advanced analysis and 

prediction. Neural Network architectures especially convolutional neural networks (CNN) 

overcome the problems faced by traditional machine learning models. They have more 

representational power and can automatically extract complex features with minimal 

preprocessing. Recent advance in CNN architectures is the development of Vision 

Transformers (ViT). The ViT, an image-specific adaptation of the transformer, was presented 

in and has shown to outperform convolutional neural network (CNN) models in the enormous 

data domain by improving on the JFT dataset's 300 million image training set. ViTs are a type 

of neural network that can learn long-range dependencies in images, which is important for 

tasks like brain tumor classification. The suggested ViT models may acquire more suitable 

inductive biases that are requirement-specific, and their reduced inductive biases are a result of 

their global patch-based learning.  In medical imaging diagnostics, the adoption of ViT models 

is still in its infancy because of the newness of ViTs and the intensive training needed to utilize 

massive amounts of data and advanced computer resources. Within the computational 

framework of the ViT architecture, model training, hyper parameter tuning, and testing may all 

take place. The procedures for building the ViT models and gauging their efficacy are also 

provided in [179]. This work utilizes the power of ViT model for classification of brain tumors. 

The proposed work mainly focuses on two issues faced in developing automatic brain 

tumor classification. First issue for creating accurate brain tumor models is lack of training 

data. Second issue is creating a model that utilizes all the available features to accurately predict 

tumors without false positives. To overcome the issue of lack of data this work proposes use 
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of data augmentation along with a more advanced methodology, Generative Adversarial 

Networks (GAN). By incorporating GAN-based data augmentation procedures and a structural 

similarity loss function, the proposed approach addresses issues such as visual blurriness and 

model collapse, resulting in improved efficiency. The issue of incorporating more features is 

overcome by proposing an auxiliary neural network attached (ViT) model through which 

additional extracted features are presented into the network for classification. Furthermore, the 

study compares the effectiveness of the ViT network model with other methodologies, 

including data augmentation (DA). The results demonstrate that the proposed GAN-based 

approach produces superior results compared to DA. Overall, this work contributes to 

advancing the field of image synthesis by introducing an innovative method that improves upon 

existing techniques [227]. 

4.2 Dataset Employed 

For performing experiments and comparison, a publically available dataset is considered. 

The dataset was taken from Figshare repository and it contains 3064 MRI image slices. These 

slices were taken from around 233 people. These slices were labelled among classes no-tumor, 

meningioma, glioma, or pituitary tumor. Samples from the dataset is given in Figure 4.1. The 

MRI scans were captured from different positions for each patient. The MRI slices were 

processed in to grayscale images across three channels and the total number of images are given 

in Table 4.1. As the amount of images in the dataset are limited. They are not sufficient to train 

a model that generalizes well on unseen data. To overcome this, additional images across each 

class are generated using multiple image generation techniques and the resulted dataset images 

are shown in Table 4.2. These techniques are detailed in the following sections. Some clinical 

information regarding the class labels specifying different cancers is given below [228]. 
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Figure 4.1 Sample Brain MRI image 

 Meningioma: this is a type of non-cancerous brain tumor that originates from the 

arachnoid cap cells. It predominantly affects women and individuals aged 60 and above. 

Brain tumors account for approximately 13 to 26 percent of all tumors found within the 

skull. 

 Glioma: the most frequently observed primary brain tumors are malignant gliomas, 

which constitute the majority of malignant brain tumors, accounting for approximately 

81% of all instances. 

 Pituitary Tumor: pituitary tumors, which arise within the pituitary gland, are typically 

benign and pose minimal threat. However, due to the gland’s crucial role in regulating 

numerous hormones, tumors in this area can have wide-ranging impacts. They account 

for approximately 10% to 15% of all cases of brain cancer. 
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Table 4.1: Brain tumour, MRI, pictures. 

BT Type Total image Training Validation Testing 

Meningioma 708 502 75 131 

Glioma 1426 988 148 290 

Pituitary 

Tumour 

930 647 91 192 

Total(N) 3064 2137 314 613 

 

Table 4.2: Additional images generated using data augmentation and GAN. 

BT Type Original Data Augmentation GAN Total 

Meningioma 502 1500 200 2202 

Glioma 988 2600 250 3838 

Pituitary 

Tumour 

647 1900 230 2777 

 

 

4.3 Techniques used 

These are the following techniques employed in our existing work: 

4.3.1 GAN 

Generative Adversarial Networks (GANs), also referred to as GANs [259], are a type 

of data generation toll designed to produce new data samples. GANs possess a robust 

methodology for data generation, which, when applied appropriately, can lead to resilient 

models. By utilizing random noise extracted from a latent space, GANs generate unique images 

that accurately capture the feature distribution of the training dataset. Notably, a GAN consists 

of two separate networks rather than just one namely discriminator network and the generator 

network. 

In GAN, the “Discriminator” plays the role of distinguishing between genuine and 

counterfeit samples, accurately labeling them as “real” or “fake”. It receives actual sample 
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batches from the source dataset, while the Generator supplies the counterfeit samples. On the 

other hand, the “Generator” lakes random noise from a latent space as input and generates 

fabricated data, which the discriminator assesses as “fake”. The primary objective of the 

Generator is to generate visuals that deceive the discriminator into perceiving them as 

authentic. Through the utilization of backpropagation, the Generator progressively acquires the 

ability to produce samples that closely mimic the physical and mathematical distribution of the 

original dataset. This is achieved by iteratively adjusting the weights and biases of these 

models. 

The GAN algorithm is formulated as a minimax game between the generator G and the 

discriminator D. The minimax game can be mathematically formulated in equation (4.1) as 

follows: 

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) =  𝐸𝑥~𝑃𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧~𝑝(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]                          (4.1) 

Where input noise z is drawn from a previous distribution p(z), and G(z) is the sample of data 

created by the generator network. D(x) is the discriminator network's estimate of x's data 

sample probability. Training data empirical distribution is data(x). The logarithmic loss 

function estimates the discriminator's output error for a real data sample x. The logarithmic 

loss function estimates the discriminator's output error using a generated data sample G(z). 

 GAN loss function 

The standard GAN loss function could be calculated using the equation (4.2) is given below: 

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) =  𝐸𝑥[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧 [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]                            (4.2) 

The default loss function in a GAN is known as the min-max loss. In this setup, the 

discriminator aims to maximize the value of this loss function, while the Generator strives to 

minimize it to the greatest extent possible. From a min-max perspective, this loss formulation 

proves advantageous. However, there is a limit for the Generator when it fails to keep up with 
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the discriminator, resulting in frequent training cessation. The standard GAN’s loss function 

can be divided into two parts: Generator loss and Discriminator loss. 

 Discriminator loss 

During the training process, the discriminator is responsible for classifying both actual 

and fake data produced by the Generator. It optimizes a function that penalizes itself when it 

incorrectly labels a fake instance as real and a real instance as fake is done by maximizing the 

function given as follows in equation (4.3). 

∇𝜃𝑑

1

𝑚
 ∑ [𝑙𝑜𝑔𝐷(𝑥(𝑖)) + log (1 − 𝐷 (𝐺(𝑧(𝑖))))]𝑚

𝑖=1             (4.3) 

log(D(x)) = probability generator classifies real image, increasing log(1-D(G(z))) leads to the 

labeling of the fake image correctly. 

 Generator loss 

During the training process, the Generator takes input from an unexpected source and 

creates an output based on that source. Once the output reaches the discriminator, it is sorted 

into "Real" or "Fake" categories based on the discriminator's accuracy. Next, the 

discriminator's categorization determines the loss; the Generator receives a reward if it can 

trick the discriminator but a penalty otherwise.  

This equation (4.4) is minimized to train the Generator is given as follows: 

∇𝜃𝑑

1

𝑚
 ∑ log (1 − 𝐷 (𝐺(𝑧(𝑖))))𝑚

𝑖=1              (4.4) 

4.3.2 Gabor filter 

Gabor filters are widely utilized linear filters in image processing that are specifically 

designed for edge detection. These filters have shown effectiveness in texture analysis and 

discrimination due to their frequencies and orientation representations, which closely resemble 

those employed by the human visual system. Two-dimensional Gabor filters possess a 

Gaussian kernel function that undergoes sinusoidal modulation within the spatial domain. 
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These filters can be created from a single mother wavelet through stretching and rotation, 

exhibiting a self-similar nature. The impulse response of a linear Gabor filter is determined by 

amplifying a harmonic function with a Gaussian function. When performing the Fourier 

transform of the impulses response, the harmonic function and Gaussian function are 

convolved together.  

When applying the Gabor feature extraction method to process an image, the 

corresponding Gabor Features are obtained. By employing customized Gabor filters based on 

statistical data related to character structures, features can be directly extracted from grayscale 

character images. To enhance performance when dealing with low-quality images, the outputs 

of Gabor filters are adaptively subjected to sigmoid transformation. Histogram features are then 

constructed by independently utilizing the positive and negative real sections of the Gabor filter 

outputs. This approach aims to improve the discriminative capacity of the extracted features. 

Here is the mathematical equation (4.5) for a Gabor filter: 

𝑔(𝑥, 𝑦) = 𝑒𝑥𝑝 (− 
𝑥′2+𝛾2𝑦′2

2𝜎2 ) 𝑐𝑜𝑠 (2𝜋
𝑥′

𝜆
+ 𝜓)                  (4.5) 

Where,𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 , 𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃 

x and y are the filter's spatial coordinates; 𝛾 is the filter's aspect ratio; 𝜎 is the Gaussian 

envelope's standard deviation. The wavelength of the sinusoid component is denoted by 𝜆. The 

sinusoidal component's phase shift is denoted by 𝜓. 

4.3.3 Vision Transformers Networks 

Although Transformers have been used in vision tasks before, their popularity in 

computer vision can be traced back to when the authors. effectively adapted the encoder of 

[220] for the visual classification problem. The underlying processes are compressed into 

network layers and returned to them later to understand this adaptation. Figure 4.2 shows the 
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basic layout of the "Vision Transformers" (ViT). The ViT model implemented mainly global 

attention, but instead of focusing on the full picture, it split the image into 16x16 pixel patches. 

 

Figure 4.2 Structural representation of Vision Transformers 

ViTs are network models that have achieved better results than the CNN models. ViTs 

are based on Google’s transformers networks, which were used in state of the art language 

models. The ViTs architecture as follows. The first step in a vision transformer network is to 

spilt the input image into patches. The ViT network cannot process full input image as a whole. 

Generally, image is divided into 16x16 patches. Mathematical equations employed are given 

in equation (4.6), (4.7) and (4.8) 

Original Image: 𝑥 ∈ 𝑅𝐻×𝑊×𝐶              (4.6) 

H, W-resolutions of the original image; C- number of channels. 

2D Converted Patches: 𝑥𝑝 ∈ 𝑅𝑁×(𝑝2.𝐶)             (4.7) 

(p, c) is the resolution of each image patch. 

𝑁 = 𝐻𝑊
𝑃2⁄                (4.8) 

N-serves as the effective input sequence for the transformer. 
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After the input is divided into patches, linear projection is performed in those patches. 

Since the patches are in array format, linear projection converts those arrays into vector 

representation. To these vector representations, learnable embedding’s are added by producing 

linear embedding’s and positional embedding’s. equation employed are given in (4.9) and 

(4.10). 

𝑍0 = [𝑋𝑐𝑙𝑎𝑠𝑠; 𝑋𝑝1𝐸; 𝑋𝑃2𝐸; … 𝑋𝑝𝑁𝐸] + 𝐸𝑝𝑜𝑠            (4.9) 

𝐸 ∈ 𝑅(𝑃2.𝐶)×𝐷, 𝐸𝑝𝑜𝑠 ∈ 𝑅(𝑁+1)×𝐷          (4.10) 

This embedding’s specify the extra class embedding’s. The vectors with added embedding’s 

are given as input to the standard encoder of a transformer. This encoder contains three 

elements: Layer norm, Multi-Head Attention Network (MSP) and Multi-Layer Perceptron 

(MLP). 

The Layer normalization element helps the transformer model adapt to the subtle differences 

and variations in the input images by employing the following equations (4.11) and (4.12).  

𝑍𝑙′ = 𝑀𝑆𝐴(𝐿𝑁(𝑍𝑙−1)) + 𝑍𝑙−1,      𝑙 = 1 … 𝐿          (4.11) 

𝑍𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝑍𝑙′)) + 𝑍𝑙′ ,       𝑙 = 1 … 𝐿          (4.12) 

The MSP module generates self-attention maps for the patches. Attention maps are crucial 

component of a transformer and they help the network to focus on the most important features 

of the input required for classification. MLP is the final module in the transformer. It produces 

the required output. It is a two-layer network that contains GELU (Gaussian Error Linear Unit) 

at the end of the network. 

4.4 Proposed methodology 

This section outlines the proposed methodology. The MRI images are pre-processed to 

make them suitable for further processing. Pre-processing includes converting the pixel values 

of images to grayscale range of 0 to 255 and resizing the images to constant height and width. 
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First images are processed using different data augmentation techniques such as random rotate, 

random flip, padding and color augmentation. This is done to generate more images from 

original images. The augmentation generated images along with original non-augmented 

images are used to train Generative Adversarial Network (GAN). For each of the image class 

GAN model is trained separately to ensure it is able to generate images within that class. On 

total, GAN network is trained 4 times each with images belonging to classes no tumor, glioma, 

meningioma and pituitary tumor. Trained GAN is used to generate additional images of each 

class. Since each class has separate GAN network, it is easy to generate images with known 

labels. 

In the other path, all the images including the original images, images generated using 

data augmentation and images generated using GAN are passed through different image 

processing techniques to extract different features that aid in classification. The images are 

passed through Gaussian filter and Canny edge detection algorithm. First processing technique 

applied on the images is the Gabor filter. Gabor filter bank is applied on the images to obtain 

set of filtered images. On each filtered image, magnitude and phase of the complex response is 

computed. From the magnitude and phase, mean and standard deviation over the edge map 

created from Canny edge detector. These mean and standard deviation are stored as spatial 

features. 

Second processing technique is to compute the area, centroid of the edge maps from 

canny edge detector. Computed values are stored as geometric features. Finally, third 

processing technique includes computing the mean and standard deviation of the intensities of 

the pixels of the edge map along with histogram of oriented gradients (HOG). These features 

are stored as appearance features. All three types of extracted features are stored as feature 

vector. 
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Images generated through data augmentation and images generated through GAN along 

with original pre-processed images are given as input to the (ViT) model. The ViT model has 

an auxiliary Artificial Neural Network (ANN) that takes the above extracted feature vector of 

each image as input. The features extracted by ViT are concatenated with the features extracted 

by auxiliary network as follows in equation (4.13). 

Here the features extracted by ViT are in the size of 1xp and features extracted by auxiliary 

neural network are of size 1xq. 

So, the resulting concatenated features will be of size: 

1 ∗ (𝑝 + 𝑞)             (4.13) 

Finally, the concatenated features are passed through artificial neural network layers 

for final classification. The performance of the network is evaluated using different evaluation 

metrics such as precision, recall and f1-score. Figure 4.3 illustrates the flowchart of the 

proposed methodology. Algorithm 1 shows the steps involved in the proposed methodology. 

 

Figure 4.3 Proposed methodology 



102 

 

Algorithm 1: Working of Proposed Model 

Input: an image I 

Output: Class label 

Start 

For each image I 

 Convert the image I into grayscale range 

 Resize the image I 

End for 

For each image I 

 Randomly apply data augmentation techniques such as random rotate, random flip, padding and color 

augmentation 

End for 

For images in each class ci do 

Define the GAN architecture and training parameters 

Define the generator network G and the discriminator network D 

Define the loss function for training the GAN (e.g. binary cross-entropy) 

Define the optimization algorithm (e.g. Adam) 

Set the number of epochs for training the GAN 

Set the batch size for training the GAN 

Train the GAN on the original dataset D along with augmentation generated images 

 Train the GAN for the specified number of epochs using batches of images 

Save the trained generator G 

Augment the dataset D by generating new images using the trained generators Gi 

For each image I in dataset D 

 Apply a Gaussian filter to smooth the image 

 Apply an edge detector (e.g. Canny) to obtain a binary edge map E 

Apply Gabor Filter bank to the image to obtain a set of filtered images {G1, G2, ..., G_n} 

for each filtered image G_i do 

Compute the magnitude M and phase P of the complex response 

Compute the mean and standard deviation of M and P over the edge map E 

Store the mean and standard deviation as spatial features 

End for 

Compute Geometric Features: 

Compute the area and centroid of the binary edge map E 

Compute the orientation and aspect ratio of the bounding box of E 

Store these features 

 Compute Appearance Features: 

Compute the mean and standard deviation of the intensities of the pixels inside E 

Compute the histogram of oriented gradients (HOG) of the image inside the E 



103 

 

Store these features 

End for 

Concatenate all the computed features into a feature vector F 

Disease Classification using ViT model with auxiliary network from Step X → X. 

Input: 

A dataset D of images to classify and Feature Vectors F 

A set of labels L indicating the type of disease for each image in D 

A pre-trained ViT model M for image classification 

An artificial neural network N 

A batch size B for processing images in batches 

Several epochs E for training 

Output: A trained model MN' for disease classification 

Define hyper parameters 

Define the learning rate alpha (e.g. 0.001) 

Define the loss function (e.g. cross-entropy) 

Define the optimizer (e.g. Adam) 

Split data into training and validation sets 

Split D, F and L into training and validation sets with a specified ratio (e.g. 80:20) 

Prepare data for training 

Create a data loader for the training set with batch size B 

Create a data loader for the validation set with batch size B 

Train the ViT model along with ANN model 

for each epoch in E do 

a. Set the models to training mode 

b. For each batch in the training data loader: 

→ Forward pass the batch through the models 

→ Concatenate the features of both models 

→ Pass the concatenated features through Dense layers 

→ Compute the loss between the predicted labels and the true labels 

→ Compute the gradients of the loss concerning the model parameters 

→ Update the model parameters using the optimizer and gradients 

c. Set the models to evaluation mode 

d. For each batch in the validation data loader: 

→ Forward pass the batch through the models 

→ Compute the loss between the predicted labels and the true labels 

e. Compute the validation accuracy using the predicted and true labels 

f. Print the epoch number and validation accuracy 

Output the trained model 

End 
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4.5 Experimental Setup and Results Analysis 

The following section provides a detailed explanation of the experimental setup and an in-

depth analysis of the results. 

4.5.1 Experimental Setup 

Every experimental test is conducted concurrently on two NVIDIA GPUs, specifically 

A5000s with 24 GB of RAM each. RAM for the system is 128 GB. Numerous data analysis 

frameworks, such as Pandas, Numpy, Seaborn, 496 Matplotlib, and Scikit-learn, were 

employed in the study. The entire framework is executed for ten epochs. 20% of the data were 

used for testing, while the remaining 80% were used for training. The proposed model was 

trained on the training data. The suggested model was fine-tuned utilizing a variety of 

parameters, including hyper parameters, to improve classification accuracy and prevent 

overfitting. Different learning rates were applied, and it was found that the default learning rate 

of 0.001 gave better results. 

The proposed approach utilizes both the features extracted by the ViT model and the 

features extracted through different image processing techniques to predict the tumor type. One 

of the major issues with creating tumor prediction algorithms is lack of data. This is certainly 

true for the original dataset considered. The dataset does not have enough samples for the model 

to learn and generalize well for unseen data. To overcome this limitation, two image generation 

techniques are employed. One is randomly applying data augmentation to the images to create 

more images and second is to train a GAN model with the images so that the model can generate 

images from noise with same distribution. The GAN model is trained separately for images 

that belong to same class label. This is done to distinguish the generated images per class. The 

GAN network had optimize well for each class. The generator and discriminator had good 

balance between them and both the losses were optimized efficiently. The loss per epochs for 

no tumor class image training is given in Figure 4.4. 
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Figure 4.4 GAN loss per epochs for no tumour class 

4.5.2 Result Analysis 

Generating images through augmentation and GAN has certainly helped the proposed 

network in generalizing well on unseen data. Proposed model trained with generated images 

has achieved higher validation accuracy and test accuracy when compared to same model 

trained without the generated images. Model trained without the generated images was 

overfitting after initial epochs. To make sure that the model does not over fit, dropout was 

added to some of the final layers and training was stopped early before the model started 

overfitting. This issue was not faced when the proposed model was trained with the generate 

images. Training, validation and test accuracy of the proposed model when trained with and 

without the generated data is given in Figure 4.5. From Figure 4.5, it is evident that the data 

generation techniques helped the network avoid overfitting and perform effectively on the 

unseen data. The proposed data generation techniques can be used in applications where data 

available is limited especially in biomedical applications.  
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Figure 4.5 Accuracy of proposed model when trained with and with generated data 

 

The proposed model has an auxiliary network attach to the main ViT network. Most of 

the DL model have an issue called vanishing gradient problem. Due to the complexity of the 

model some of the signal may not pass throughout the network. This causes some of the 

features to vanish and fail to propagate to the network. Another issue is that the model may fail 

to recognize some of the features important for classification. The proposed auxiliary network 

helps overcome these problems. Features extracted through different image processing 

techniques are given to the auxiliary network and the image that these features are extracted 

from is given to the ViT model. Both the network features are concatenated to produce the 

class label. The auxiliary network helps introduce some of the vanished features back to the 

network, which are useful for correct classification. It can also help force the network to focus 

on features that are important in producing correct results. Experiments performed on the 

model when compared to normal ViT model and other state-of-the-art models have shown the 

effectiveness of the proposed ViT model with auxiliary network. 
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Figure 4.6 Accuracy of proposed model when compared to other state-of-art models 

The accuracy of the proposed model, in comparison to state-of-the-art techniques, is 

illustrated in Figure 4.6. When compared with other state-of-the-art methods, the proposed 

network has achieved overall good results. The auxiliary network has helped balance the 

distinction between the classes which is evident from higher precision and recall. It can be seen 

from Table 4.3 that proposed model had consistent results with less false positive and false 

negatives across all classes. The proposed model has achieved the highest F1-Score across all 

classes, demonstrating a strong balance between precision and recall.  The proposed model was 

able to correctly predict across the classes where other model has performed well in some 

classes and struggled in other classes. 

Table 4.3. Evaluation Metrics of proposed vs State-of-art models 

Metric Class Proposed ViT EfficientNet InceptionResnet-

v2 

Precision(%) No Tumour 98.3 98.4 99.1 98.5 

Pituitary 98.4 98.6 97.6 98.4 

Meningioma 100 96.8 98.5 95.1 

Glioma 99.6 100 96.7 98.1 

Recall(%) No Tumour 99.1 98.2 99.6 96.4 

Pituitary 100 95.8 96.8 97.2 

Meningioma 98.4 98.7 97.4 99.1 

Glioma 98.6 97.5 97.3 97.3 

F1-Score(%) No Tumour 98.7 97.4 99.7 96.9 

Pituitary 99.2 97.1 97.3 97.4 
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Meningioma 99.2 97.2 97.9 96.95 

Glioma 99.1 98.7 98.32 97.4 

 

Confusion matrix for the predictions on test data of the proposed model is given in Figure 

4.7. It shows that the model had only 8 false classifications. Out of those false classifications, 

glioma class had the highest with 4 false classifications. The results obtained from the proposed 

model demonstrate its effectiveness in achieving the highest accuracy of 99.5% among all the 

compared models on unseen test data. This indicates that the proposed model has generalized 

well to new data and successfully distinguished between different classes by incorporating 

additional features into the network. In applications such as brain tumor detection, where 

minimizing false positives is critical, the proposed model excels by achieving zero false 

positives. 

 

Figure 4.7 Confusion matrix on test data for the proposed model 

4.6 Chapter summary 

This chapter focuses on developing a hybrid approach for accurately classifying brain 

cancers from imbalanced data. The proposed hybrid method integrates data processing, 

augmentation techniques, and an enhanced network model to improve classification 

performance. When training data is limited, the proposed approach can generate additional data 
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samples that maintain the original data distribution, supporting more effective model training. 

The improved network model incorporates custom auxiliary features alongside those extracted 

by Vision Transformers (ViTs), enabling the classification network to leverage a wider range 

of relevant features necessary for accurate predictions. Experimental results have highlighted 

the efficacy of this hybrid approach, demonstrating that it outperforms state-of-the-art 

classification models. The proposed model, with its custom auxiliary network, achieved 

significantly lower false positives and false negatives. Overall, the model’s performance 

metrics consistently surpassed those of other compared models, underscoring its potential for 

reliable and precise brain cancer classification in medical applications. 
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Chapter Five: A LINEAR TIME SHRINKING SL(t)-ViT 

APPROACH FOR HANDLING CLASS IMBALANCE 

This chapter provides the experimental analysis of leveraging a Structural Similarity 

Loss function, GANs generate high-quality annotated images, enriching the training dataset 

and improving model robustness. 

5.1 Introduction 

The current limitation faced by DL algorithms stems from an inadequate availability of 

magnetic resonance (MRI) imaging datasets, impeding their ability to achieve superior 

performance. This predicament arises due to the intrinsic resemblance between the distribution 

of segmented images generated by classical data augmentation techniques and the original 

images. Consequently, the model's capacity to generalize is hampered. Another issue is that 

recent DL advancements require large computational resources to complete the given task 

[229].  

To surmount the challenge of inadequate availability of MRI images, a novel approach 

is proposed, which involves employing Generative Adversarial Networks (GANs) for data 

augmentation. The primary objective of this approach is to mitigate problems associated with 

inadequate data, poor quality of data, picture blurriness, and model collapse. Moreover, to 

enhance the efficiency of the suggested model, in addition structural similarity loss function is 

integrated, which is used to calculate the similarity score of the new images vs the original 

image [230]. Furthermore, the study incorporated the utilization of the SL(t)-ViT model to 

classify diseases within the data. The key concept of SL(t)-ViT is to improve the computation 

efficiency of the model by utilizing linear time attention layers, which capture multi-scale 

features including channel-wise, spatial, local, and global features [228]. The attention 

mechanisms within each Transformer layer enable the model to capture both global and local 

dependencies between patches, allowing it to attend to different parts of the input sequence. 
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The proposed linear attention mechanisms within each transformer layer enable the model to 

selectively focus on relevant patches while aggregating information from nearby and distant 

patches, thus enhancing its overall performance. The attention mechanism achieves these 

computations in a linear time thus enhancing the overall efficiency of the model. The literature 

shows that the SL(t)-ViT model showed improved usage of computational efficiency compared 

to traditional ViT and CNN models. In addition to the linear attention layers in the model, to 

further improve the model efficiency in terms of performance metrics and computational 

efficiency, a shrinking nature is added to the model, making it more computationally efficient. 

The resulting model is thoroughly evaluated, assessing its effectiveness in identifying and 

categorizing brain tumors [226]. 

5.1.1 Key contributions 

Following are the key contributions of this chapter: 

(i) Development of Novel SL(t)-ViT architecture: In this work a novel concept of the 

Shrinking Linear Time Vision Transformer (SL(t)-ViT) is proposed, marking the first 

occurrence of a transformer backbone designed exclusively for a range of pixel-level dense 

classification tasks, aimed at enhancing computational efficiency.  

(ii) Architectural Versatility: The suggested SL(t)-ViT structure achieved notable adaptability, 

generalization, and efficient performance in various scenarios, including both, multi-

classification and binary classification. 

(iii) Resource-Efficient Innovation: We developed advanced reduction methods and 

incorporated multi-scale Nystrom attention mechanisms into the SL(t)-ViT model, strategically 

mitigating resource usage. This improvement empowers the model to accurately capture multi-

scale and high-resolution features while utilizing fewer resources within a linear timeframe.  

(iv) Superior Performance: A thorough comparative examination with DL models 

documented in the current literature is performed. The proposed SL(t)-ViT model exhibited 
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superior accuracy in both multi-classification and binary classification scenarios. Particularly 

noteworthy were the exceptional accuracy rates of 0.993 for multi-classification and 0.997 for 

binary classification, surpassing established benchmarks. 

5.2 Dataset  

This section describes the techniques used and the proposed methodology. Techniques 

employed are GAN, Gabor filters, SL(t)-ViT. The GAN is used for data augmentation, while 

the Gabor filter selects the salient edge features and SL(t)-ViT for image classification. 

The following datasets were used for experimentation: 

(i) Figshare [231]: There are 233 people with meningioma’s, gliomas, or pituitary 

tumors included in a publicly available dataset on Figshare, including 3064 T1w CE MRI 

slices. Additionally, some brief clinical information about the aforementioned triad of 

malignancies is also provided below.  

(ii) Br35h [131]: The BR35H dataset is designed for binary classification and 

comprises 3,000 MRI images of the brain. Among these, 1,500 images depict brain tumors, 

while the remaining 1,500 represent normal brain MRI scans. Each image is available in JPEG 

format and includes both T1 weighted and T2-weighted contrasted MRI scans, offering a 

comprehensive dataset for analysis. The images vary in grayscale sizes, providing a diverse set 

for training and evaluation purposes.  

(iii) Brain tumor MRI KAGGLE [232]: This dataset was obtained by combining three 

datasets: Figshare, SARTAJ, and Br35H. There are four classes in total in the dataset: brain 

MRI images from individuals with glioma, meningioma, pituitary tumors, and healthy 

individuals. There are 1,623 images for glioma, 1,627 images for meningioma, 1,769 images 

for pituitary tumors, and 2,002 images for healthy individuals. A total of 7,021 MRI images 

were used. The dataset is open-sourced on the Kaggle platform. Each file is a 512 × 512 JPEG 
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with a label indicating the type of brain tumor. This dataset was used as input data for each 

model.  

(iv) Brain MRI Images [233]: The dataset used in this study consists of brain MRI 

scans, comprising approximately 256 raw images with various dimensions measured in pixels. 

These images were sourced from a Kaggle dataset and are stored in Joint Photographic Experts 

Group (JPEG) format. The dataset is divided into two categories: "Yes," indicating the presence 

of a tumor, and "No," indicating the absence of a tumor. Among these, there are about 158 

images depicting benign tumors and 98 images depicting malignant tumors.  

BT-small 2C, BT- large 2C, BT-large 4c[234]: BT-small-2c consists of 253 brain MRI 

images, with 155 images depicting tumors and the remaining 98 images depicting healthy 

brains. The BT-large-2c dataset encompasses a larger collection of 3,000 images, with 1,500 

images showcasing brain tumors and the remaining 1,500 images depicting healthy brain scans 

without any tumors. The BT-large-4c dataset comprises 3,064 T1-weighted images, each 

depicting one of three distinct types of brain tumors: gliomas, meningioma’s, and pituitary 

tumors. 

5.3 Proposed methodology 

This section proposes an approach for processing medical images using GAN. The 

model’s input is an image dataset, which is further pre-processed for feature extraction. The 

flowchart of the proposed model is shown in Figure 5.2. 

5.3.1 Input Image 

The first step involves loading the dataset into memory or accessing it from storage. In 

dataset D, containing Z examples, the goal is to create a learning algorithm that generates a 

classifier output denoted as 'T.' This classifier, represented by a hypothesis function f(Xi) = Yi, 

aims to predict new values of Yi for any input Xi provided. 

 



114 

 

 

Figure 5.1 The flowchart of the proposed method. 

5.3.2 Data Pre-processing and Pre-processing 

Once the dataset is loaded, it undergoes pre-processing to ensure it is in a suitable 

format for the model. This involves converting images to grayscale, parsing the data to extract 

relevant features, handling missing values, scaling or normalizing the features, and encoding 

categorical variables if necessary. Among various pre-processing techniques available salient 

edge features extraction using Gabor filters, Spatial features, Geometric feature extraction 

technique and Appearance feature extraction technique are the techniques employed. 

Grayscale conversion simplifies the images by reducing them to a single channel 

representing the intensity of light, as opposed to the three channels (red, green, blue) in color 

images. This simplification reduces computational complexity while retaining essential 

information relevant to tumor detection. Next, in this process, a 3x3 Gaussian filter is first 

applied to images for noise reduction and feature enhancement. This is followed by Canny 
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Edge Detection with a threshold of 100 and a 3:1 ratio, ensuring that only strong edges are 

detected. Gabor filters, known for capturing edges and textures, are then utilized for feature 

extraction, employing a 5x5 kernel size and 8 orientations to analyse complex spatial patterns 

in brain scans. Additionally, Histogram of Oriented Gradients (HOG) is used to extract features 

by computing histograms of gradient orientations within 8x8 pixel cells and normalizing them 

over 2x2 cell blocks. This combined approach of Gabor filters and HOG enhances the detection 

of tumour-related features by capturing detailed edge orientations, textures, and spatial 

arrangements in the images. 

5.3.3 Data Augmentation 

The main objective of a GAN is to generate realistic synthetic data through the 

collaboration of its generator and discriminator components. Although GANs are commonly 

used for data generation, their performance can be hindered by limited generalizability. To 

overcome this issue, the proposed model leverages GANs for image augmentation, as shown 

in Figure 5.2, which includes geometric transformations, colour distortions, image resizing, 

and information deletion. The GAN is trained to produce images with specific geometric 

properties for geometric transformations. For colour distortions, it generates images with varied 

colour tones and contrasts. Image resizing and information deletion involve training the GAN 

on smaller images, resulting in images with certain regions masked or pixels deleted. To ensure 

label accuracy, separate GAN models are trained for each class. The discriminator then assesses 

the generator's output, calculating the loss for both real and synthetic images, and assigns a 

probability score to indicate the likelihood that the images belong to the real data distribution. 

5.3.4 SSIM calculation 

From Figure 5.2, the subsequent step following image augmentation involves 

computing the structural similarity index (SSIM) score for the generated data. The SSIM metric 

is an evaluation measure for assessing the quality of the newly generated images. In the SSIM 
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phase, a comparison is made between the structural information, luminance, contrast, and 

structure of an original and generated images using the following equation (5.1).    

𝑆𝑆𝐼𝑀(𝐼, 𝑅) =  
(2µ𝐼µ𝑅+𝐾1) (2𝜎𝐼𝑅+𝐾2)

(µ𝐼
2+µ𝑅

2 +𝐾1)(𝜎𝐼
2+𝜎𝑅

2+𝐾2)
             (5.1) 

SSIM values range from -1 to 1, with values closer to 1 indicating a higher similarity 

score. Until the SSIM score reaches near to 1 the above process repeats. Once the SSIM module 

output score near to 1 then next phase starts execution. To compute the SSIM for each image 

(I) in the dataset (D), and the reference image (R) with a specified window size, and window 

size employed is 11*11, SSIM constants K1 and K2 are used to stabilize the division K1 and 

K2 values are 0.01and 0.03 respectively. Likewise, L is the dynamic range of pixel values in 

the image and SSIM constant L value employed is 255 because as image is in the form of 8-bit 

grayscale, each pixel is represented by 8 bits, which allows for 256 different intensity levels. 

5.3.5 Data optimization based on SSIM score 

Following the SSIM score calculation, the next phase involves optimizing the data 

based on the obtained SSIM score. For optimizing the dataset is validated by applying it to a 

model and evaluating the model's performance. From the achieved score adjust the SSIM 

threshold value T generate additional examples through transformations such as rotation, 

scaling, cropping, or noise addition. Diversifying the dataset helps the model learn robustness 

to different image content and distortion types, potentially improving SSIM scores on unseen 

data by avoiding overfitting. 
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5.3.6 Dataset recorded 

Once the dataset has been optimized and validated, it is recorded for use in training 

models. 

5.3.7 Classification using SL(t)-ViT model and performance evaluation 

Once the data is optimized, the final dataset is recorded and provided to the SL(t)-ViT 

model for further classification.   

Although Transformers have been used in image processing tasks before, their 

popularity in computer vision can be traced back to when encoder was effectively adapted [39] 

for the visual classification problem. Instead of opting for the conventional ViT, a Shrinking 

Linear Time Vision Transformer(SL(t)-ViT) was designed due to its capability to generate 

multi-scale feature maps suitable for dense classification tasks by effectively using the 

resources. The schematic overview of our proposed SL(t)-ViT model is depicted in Figure 5.1 

 

Figure 5.2 Structural representation of SL(t)-ViT. 

The model architecture comprises three stages, each responsible for producing feature 

maps of distinct scales. A uniform architecture, encompassing a patch embedding layer and an 

encoder layer, is shared among all stages. Diverging from traditional CNN networks, which 

utilize different convolutional strides for obtaining multi-scale feature maps, SL(t)-ViT adopts 



118 

 

a progressive shrinking strategy.  This strategy adjusts the scale of feature maps through the 

patch embedding layer. 

For the first stage, if input images of size H*W*3 are provided to the model, they are 

divided into 
𝐻∗𝑊

4
 patches, each measuring 4*4*3. After obtaining these patches, they are 

flattened before being fed into the input layer. The patch size of the i-th stage, denoted as 𝑃𝑖, is 

introduced, allowing flexibility in adjusting the scale of feature maps at each stage. At the 

commencement of stage I, the input feature maps 𝐹𝑖−1 with dimensions 𝐻𝑖−1 ∗ 𝑊𝑖−1 ∗ 𝐶𝑖−1 

where, 𝐶𝑖−1 describes the channel features extracted at 𝑖 − 1 stage, 𝐻𝑖−1 describes the height 

wise features extracted at 𝑖 − 1 stage, 𝑊𝑖−1 describes the features extracted across the width at 

𝑖 − 1 stage are evenly divided into patches. 

     
𝐻𝑖−1∗𝑊𝑖−1

𝑃𝑖
2                           (5.2) 

Each patch obtained from equation (5.2) is then flattened and projected to a 𝐶𝑖 

dimensional embedding through a linear projection. After this linear projection, the shape of 

the embedded patches can be perceived as 
𝐻𝑖−1

𝑃𝑖
∗

𝑊𝑖−1

𝑃𝑖
∗

𝐶𝑖−1

𝑃𝑖
. After that, the whole positional 

embedding is sent via the transformer encoder. In the transformer encoder block, these 

embedded patches are first sent through the attention and feed forward layers. Instead of 

utilizing the default self-attention mechanism the multi scale Nystrom attention mechanism is 

employed.  

Initially a subset of landmarks is selected to approximate the full attention matrix from 

equation (5.3). Select m landmark points from Ei to approximate the attention matrix. Assume 

these are the first m patches for simplicity. 

Em = Ei[: m]                (5.3) 
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The attention matrices are calculated for both local and global features. By applying the 

Nystrom attention mechanism, as described in equation (5.4), to individual patches, fine details 

indicating local features are derived.  

𝐿𝑜𝑐𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑁𝑦𝑠𝑡𝑟𝑜𝑚𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐸𝑠𝑚𝑎𝑙𝑙)             (5.4) 

Aggregate the attention outputs from the small-scale patches to form the local feature 

representations.  

Then, by employing equation (5.5) Nystrom attention mechanism is applied to individual 

patches to capture the overall structure and context defining global features.  

𝐺𝑙𝑜𝑏𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑁𝑦𝑠𝑡𝑟𝑜𝑚𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐸𝑙𝑎𝑟𝑔𝑒)            (5.5) 

Aggregate the attention outputs from the large-scale patches to form the global feature 

representations.  

By employing equations (5.6), (5.7) and (5.8) fuse the local and global features obtained from 

different scales. This is done through concatenation followed by a linear layer and another 

attention mechanism to combine the features effectively. 

𝐹𝑙𝑜𝑐𝑎𝑙 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐿𝑜𝑐𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠)            (5.6) 

𝐹𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐺𝑙𝑜𝑏𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠)            (5.7) 

𝐹 = 𝑊𝑓[𝐹𝑙𝑜𝑐𝑎𝑙; 𝐹𝑔𝑙𝑜𝑏𝑎𝑙] + 𝑏𝑓                                      (5.8) 

where [Flocal; Fglobal] denotes concatenation of local and global features, and Wf∈RD×2D and bf

∈RD are the weights and biases of the fusion layer. 

The final output is a combination of local and global features, which can be fed into subsequent 

layers for classification.  

The multi scale Nystrom attention mechanism is applied at multiple scales to capture 

different levels of details. The self-attention mechanism is not computationally efficient when 

compared with the proposed attention mechanism. This is because self-attention takes large 
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computational resources while working on large sequences resulting in quadratic time, whereas 

the proposed attention module allows for efficient parallelization by operating on a smaller set 

of reference points in linear time, making it more suitable for parallel processing architecture.  

   Further, the output from the attention layer is passed to the feed-forward layer. In 

subsequent stages, the obtained feature map 𝐹1 serves as input. Each successive stage follows 

a similar process, generating feature maps 𝐹2 and 𝐹3 with strides of 8 and 16 pixels, 

respectively, concerning the input image. Employing multiple stages with increasing strides 

forms a feature pyramid {𝐹1, 𝐹2, 𝐹3} capturing linear architectural representations of the input 

at different scales. This pyramidal structure proved beneficial for tasks requiring understanding 

fine-grained details and global context. In the last part of this analysis, the medical image 

dataset is considered the source material for vision converters. The SL(t)-ViT model is utilized 

to classify diseases such as glioma, meningioma, and pituitary tumours from the recorded data.  

After training the model on the training set, the model is evaluated in terms of accuracy, 

and complexity of the model using the test set using performance evaluation metrics for 

assessing the   'model's performance on new unseen data. Batch size chosen is 32, the model is 

run for 50 epochs, learning rate employed is 0.01. The workflow of the proposed model for 

tumor type detection is explained in detail in algorithm 1. 

Algorithm 1:  Work flow for Tumor Type Detection 

Start 

Phase I: Dataset Description. 

 Step 1: The Dataset used is "brain_tumor" obtained from 233 patients. 

 Step 2: Input: an image I 

 Step 3:Output: a feature vector F 

Phase II: Preprocessing. 

 Step 4:Convert the image to grayscale 

 Step 5:Apply a Gaussian filter to smooth the image 

 Step 6:Apply an edge detector (e.g. Canny) to obtain a binary edge map E 

Phase III: Feature Extraction. 
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 Step 7:Apply Gabor Filter bank to the image to obtain a set of filtered images {G1, G2, ..., Gn} 

 Step 8:Concatenate all the computed features into a feature vector F 

Phase III: Image Augmentation using GAN. 

 Step 9:Input: a dataset of images D, Output: an augmented dataset D_aug 

 Step 10:Define the GAN architecture and training parameters 

a. Set the batch size for training the GAN 

 Step 11. Train the GAN on the original dataset D to generate new images 

a. Preprocess the images in D (e.g., normalize pixel values to [-1, 1]) 

b. Train the GAN for the specified number of epochs using batches of images from the D 

c. Save the trained generator G 

 Step 12: Augment the dataset D by generating new images using the trained generator G 

 Step 13: for each image, I in D do 

a. Apply random geometric transformations (e.g. rotate, translate, scale) to  

b. Apply random colour distortions (e.g. brightness, contrast, hue) to I 

c. Resize I to a random size 

d. Randomly delete information from I (e.g. pixels, regions) 

e. Use the trained generator G to generate a new image I_aug based on the I 

f. Add I_aug to the augmented Dataset D_aug 

 Step 14:Output the augmented Dataset D_aug 

Phase IV: Compute Structural Similarity Index Measure for Data Generation. 

 Step 15:Compute SSIM 

 Compute the SSIM numerator:  

The numerator is computed by multiplying two terms:  

The first term, (2µ𝐼µ𝑅 + 𝐾1), represents the product of the means of the two images µI and µR along with the 

stabilization constant k_1. 

The second term, (2𝐶𝑜𝑣𝐼𝑅 + 𝐾2) represents the product of the product of the covariance of the two images 

covIR along with the stabilization constant k_2. 

num ←(2µ𝐼µ𝑅 + 𝐾1) (2𝐶𝑜𝑣𝐼𝑅 + 𝐾2) 

 Compute the SSIM denominator: 

The first term, (µ𝐼
2 + µ𝑅

2 + 𝐾1), represents the sum of squares of the means of the images along with the 

stabilization constant k_1. 

The second term, (𝑉𝑎𝑟𝐼
2 + 𝑉𝑎𝑟𝑅

2 + 𝐾2), represents the sum of variances of the images along with another 

stabilization constant k_2. 

den←((µ𝐼
2 + µ𝑅

2 + 𝐾1) (𝑉𝑎𝑟𝐼
2 + 𝑉𝑎𝑟𝑅

2 + 𝐾2) 

 Compute the SSIM value: 

ssim =  num/(den ) 

 step 16: Return the SSIM value. 

 Step 17: Output: An optimized dataset D_opt. 
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 Step 18: Define parameters. 

a. Define the window size w (e.g. 11) 

b.  Define the constants (k1, k2) and dynamic range of pixel values (L) for SSIM calculation (e.g. k1 = 

0.01, k2 = 0.03, L = 255) 

 Step 19: Iterate through images in D and optimize them. 

 Step 20: for each image I in D do 

a. Compute the SSIM between original image I and reference image R using the window size w and 

constants k1,k2,L 

b. If the SSIM is greater than or equal to the threshold T,  

skip to the next image 

c. Otherwise, optimize I using a specified optimization algorithm (e.g., gradient descent, genetic) to 

maximize the SSIM with R. 

d. Add the optimized image I_opt to the optimized Dataset D_opt 

 Step 21: Output the optimized Dataset D_opt. 

 Step 22:  odel.save('data_structural_tumor.h5') 

Phase V: Disease Classification using ViT model. 

 Step 23: Define hyper parameters. 

a. Define the learning rate alpha (e.g., 0.001) 

b. Define the loss function (e.g., min-max) 

c. Define the optimizer (e.g., Adam) 

 Step 24: Split data into training and validation sets. 

 Split D and L into training and validation sets with a specified ratio (e.g., 80:20) 

 Step 25: Prepare data for training. 

 Create a data loader for the training set with batch size B 

 Create a data loader for the validation set with batch size B 

 Step 26: Train the SL(t)-ViT model. 

 Step 27: for each epoch in E do 

 Set the model to evaluation mode 

 Compute the validation accuracy using the predicted and true labels 

 Print the epoch number and validation accuracy. 

 Step 28: Output the trained SL(t)-ViT model. 

    End 
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5.4 Experimental Setup and Results Analysis 

The experimental setup and detailed results analysis are presented in the following section: 

5.4.1 Experimental Setup 

Every experimental test is conducted concurrently on two NVIDIA GPUs, specifically 

A5000s with 24 GB of RAM each. RAM for the system is 128 GB. Numerous data analysis 

frameworks, such as Pandas, Numpy, Seaborn, 496 Matplotlib, and Scikit-learn, were 

employed in the study. The entire framework is executed for ten epochs. 20% of the data were 

used for testing, while the remaining 80% were used for training. The proposed model was 

trained on the training data. The suggested model was fine-tuned utilizing a variety of 

parameters, including hyper parameters, to improve classification accuracy and prevent 

overfitting. Different learning rates were applied, and it was found that the default learning rate 

of 0.001 gave better results. 

5.4.2 Quantitative Analysis: 

Every experimental test is conducted concurrently on two NVIDIA GPUs, specifically 

A5000s with 24 GB of RAM each. RAM for the system is 128 GB. Numerous data analysis 

frameworks, such as Pandas, Numpy, Seaborn, 496 Matplotlib, and Scikit-learn, were 

employed in the study. The entire framework is executed for ten epochs. 20% of the data were 

used for testing, while the remaining 80% were used for training. The proposed model was 

trained on the training data. The suggested model was fine-tuned utilising a variety of 

parameters, including hyper parameters, to improve classification accuracy and prevent 

overfitting. Different learning rates were applied, and it was found that the default learning rate 

of 0.001 gave better results. 

The proposed algorithm not only detects Brain tumors but also detects which type of 

tumor exists. The proposed algorithm explicitly performs Binary Classification, and if "Yes,"; 

the Multiclass Classification is performed based on the 'Yes' value. 
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The proposed algorithm first detects "the existence of tumours". Then Gabor filters are 

used to evaluate visual texture using the mathematical function described in the methodology 

section. Gabor filters are Gaussian envelope-modulated sinusoidal waves. Sinusoidal wave 

frequency and Gaussian envelope standard deviation define the filter to recover brain texture 

from MRI data. These traits are used to identify tissue types or brain tumours. The picture 

texture strength is measured by evaluating its energy density across various frequencies and 

orientations, and based on this, the magnitude of the filtered pictures is calculated. We can 

understand response intensity at each picture point by measuring the magnitude using Gabor 

filter. Also, by analysing Gabor filter magnitudes picture areas with interesting texture 

properties are revealed. Later, PCA is used to reduce data complexity by finding patterns and 

relationships. PCA can detect Gabor filter-extracted texture patterns in brain tumour MRI 

images. 

In the next step, using MRI tumor data, a GAN produces synthetic tumor pictures that 

look like actual ones. GANs have generators and discriminators with respective loss functions. 

As the Generator tries to fool the discriminator with realistic images, its loss function is 

optimizing the images based on feedback from the discriminator. It optimizes the loss between 

the generated images and a vector of ones. The discriminator's loss function optimizes the 

ability to distinguish between real tumor images, a vector of ones, and generated images, a 

vector of zeros. The generator and discriminator are combined and use a loss function class 

min-max loss function. The discriminator minimizes this loss function to differentiate actual 

from produced tumor pictures. The generator is trying to generate realistic tumor images by 

minimizing the loss based on the discriminator's classification of that image. The discriminator 

tries to distinguish between real and generated tumor images by minimizing them with zeros 

and ones.  
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It depicts that the loss degrades as the number of epochs increases, as depicted in Figure 

5.3 It can be seen from Figure 5.3 that the generator and discriminator try to outperform each 

other. Their models get optimized based on each 'other's output. The discriminator and 

generator should have a balanced loss optimization per epoch. In a discriminator or generator, 

if one model loss decreases and the other one decreases. That means the GAN model is not 

optimizing well. The trained model is not able to generate good images in that scenario. From 

Figure 5.3 We can observe that both generator and discriminator loss is decreased, ensuring 

good performance of the GAN.  

 

Figure 5.3 Generator and Discriminator loss optimization per epoch. 

The sequential model produced good results when trying to classify images with tumors 

and without for binary classification. Based on the valuation, the proposed sequential model 

comes with a loss of 0.4 and an accuracy of 99.7. It shows that training loss is extremely low; 

that's why accuracy is exceptionally high because loss and accuracy are inversely 

proportionate, as depicted in Table 5.1.  
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Table 5.1 Summary of binary Classification 

Class Type Class 

Category 

Accuracy(%) Loss Model Layer 

Validation Train Test 

Binary 

Classification 

Yes, No 99.78 99.89 99.7 0.4 Sequential 

Model 

Conv2D, 

MaxPooling, 

Flatten, 

Dense, 

Dropout 
 

To predict the existence of a tumor, the proposed model is used where the test accuracy 

is 99.7. Figure 5.4 visualizes the comparison of accuracy on the Y-axis between the proposed 

model and the state-of-the-art technique, plotted on the X-axis. From Figure 5.4 it can be 

depicted that when compared between the proposed sequential model with EfficientNet gives 

a higher accuracy of 99.7 compared to the EfficientNet model, 97.8. 

 

Figure 5.4 Results comparison between SL(t)-ViT and EfficientNet for Binary 

Classification 

The novelty of the proposed algorithm lies in its hierarchical classification approach, 

which not only detects the tumor but also categorizes it into types such as Glioma, Meningioma, 

and Pituitary tumors. The shrinking Linear Time Vision Transformer (SL(t)-ViT) model is 

used to segment the image into a 14 * 14 matrix to detect the multiclass tumor at the initial 

phase. Using SL(t)-ViT models the given input image is divided into several non-overlapping 

sections called patches. These patches are then used as input to the encoder to the transformer. 
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All these patches give a global representation, and these global representations are used for 

Classification.  

 

Figure 5.5 Comparison of results between SL(t)-ViT and EfficientNet for multi class 

classification 

Figure 5.5 depicted via visualization comparison between the proposed SL(t)-ViT model with 

Efficient Net(EN) for the following performance metrics Precision, Recall and F1-Score for 

each class, namely No-tumor, Pituitary, Meningioma, Glioma, and it can be inferred from the 

graph the proposed model showed good result compared to EN on Figshare dataset. The 

effectiveness of a classification model on data where the true values are already known can be 

summarized in a table called a confusion matrix. It's useful for seeing how well an algorithm 

performs and gauging how well a model does. In the case of imaging classification for brain 

tumors, a confusion matrix can be used to describe the model's performance in identifying the 

different types of tumors, such as glioma, meningioma, and pituitary tumors. In a task involving 

many classes to be classified, the confusion matrix has the form of a table with rows and 

columns that the actual and anticipated class labels. 
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Figure 5.6 Confusion matrix 

 

The confusion matrix for a multiclass classification problem can be represented in 

Figure 5.6 Performance metrics like recall, precision, accuracy, and F1-score can be computed 

from the confusion matrix and used to assess the model's effectiveness concerning each class 

and as a whole. 

 

Table 5.2 Accuracy of Proposed vs SOTA on Binary classification 

Dataset Type of classification Accuracy achieved by 

SOTA architecture 

(Deep CNN) (%) 

Accuracy of 

Proposed 

model(%) 

Br35H Binary classification 99 99.5 

Kaggle Binary classification 88.26 99.6 

BT-small 2C Binary classification 92 99.54 

BT- large 2C Binary classification 98 99.8 

 

This section evaluates the performance of the proposed model in classifying brain 

tumors compared to the latest state-of-the-art (Deep CNN) techniques. Table 5.2 provides a 

comparison of the proposed model with several recent SOTA brain tumor classification 

methods across various publicly available binary classification datasets. With superior 

accuracy scores, the proposed model surpasses the most advanced techniques. 
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Figure 5.7 Classification report comparison SL(t)-ViT vs SOTA on various publically 

available binary classification datasets 

Figure 5.7, depict the graphical representation of SOTA techniques Deep CNN 

performance versus the proposed model's performance on different datasets. These 

visualizations demonstrate the effectiveness of the proposed hybrid model over recent SOTA 

techniques when applied in the current environment.  From graph it can be understood that by 

employing the hybrid model the performance of the model increased between 8% to 1% on 

various datasets proving the superiority of the proposed model. 

Table 5.3 Accuracy of Proposed vs SOTA on Multi classification. 

Dataset Type of classification Accuracy achieved by 

SOTA architecture (DL-

MaiVot) (%) 

Accuracy 

of 

Proposed 

model(%) 

Brain tumor MRI 

KAGGLE 

Multi class classification 96.50 98.6 

Multi class dataset Multi class classification 94.70 98.2 

BT-large 4c Multi class classification 90 98.5 
 

 

In this section, we assess the proposed model's performance in classifying brain tumors 

relative to the latest state-of-the-art (SOTA) techniques. Table 5.3 offers a comparison between 
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the proposed model and various recent SOTA brain tumor classification methods across diverse 

publicly available multi-class classification datasets. With higher accuracy scores, the proposed 

model outperforms the most advanced techniques. 

 

Figure 5.8 Classification report comparison SL(t)-ViT vs SOTA on various publically 

available multi-class classification datasets 

Figure 5.8, illustrate the graphical representation of various SOTA technique, (DL-

MaiVot) performance compared to the proposed model's performance across different datasets. 

These visualizations highlight the efficacy of the proposed hybrid model over recent SOTA 

techniques when implemented in the current environment.  From the same graph it can be 

inferred that by employing the proposed model the effectiveness in classifying tumour 

increased from   40% to 20% on minimum making it the most effective technique. 

5.4.3 Complexity analysis 

Our framework is designed to enhance both the effectiveness and computational 

efficiency of the proposed model. When existing techniques were implemented on the same 

platform, they required 5.62, 4.98, 5.01, 5.25, and 5.12 seconds per image, highlighting their 

relatively higher computational inefficiency. Figure 5.9 graphically presents this comparison, 

with the x-axis representing the time taken per image and the y-axis indicating the classifiers 
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or techniques used. As shown in Figure 5.9, the proposed model consistently outperforms state-

of-the-art models by requiring significantly less processing time under the same conditions. 

These results underscore the proposed model's effectiveness and superior computational 

efficiency, making it an excellent choice for practical applications. 

 

Figure 5.9 Comparison of time taken per image in seconds for SOTA vs proposed 

5.5 Chapter Summary 

This chapter presents SL(t)ViT, an innovative model for brain tumor classification, 

designed to overcome key limitations in deep learning due to the scarcity of diverse MRI 

datasets. Traditional data augmentation (DA) methods often fall short, as the artificially 

generated images tend to share the same distribution as the original dataset, limiting their ability 

to enhance model generalization. To address these challenges, this study leverages Generative 

Adversarial Networks (GANs) to improve data diversity and quality, resolving issues such as 

image blurriness and model collapse. The SL(t)ViT model employs a GAN-based data 

augmentation strategy, further reinforced by a structural similarity loss function, which ensures 

the generation of more realistic and varied training data. A key innovation of SL(t)ViT is its 

shrinking mechanism, which significantly enhances both binary and multiclass classification 
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tasks by reducing computational complexity without sacrificing accuracy. Departing from the 

conventional self-attention mechanism used in Vision Transformers (ViT), SL(t)ViT 

incorporates a multi-scale Nystrom attention mechanism. This novel approach allows the 

model to efficiently capture multi-scale features while operating in linear time, providing both 

computational speed and scalability. SL(t)ViT, redefines the approach to brain tumor 

classification, offering a ground breaking combination of GAN-augmented data generation, 

efficient attention mechanisms, and a resource-conserving architecture that sets a new 

benchmark in accuracy, speed, and model efficiency in the field of medical imaging. 
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Chapter Six: A FRAMEWORK FOR IMAGE 

CLASSIFICATION USING HETEROGENEOUS ATTENTION 

MECHANISIM AND OPTIMIZED FEATURE SELECTION 

In this chapter a novel Deep Learning (DL) framework that addresses optimization 

problem in imbalance dataset, a common challenge affecting model performance is addressed. 

The proposed novel Attention Mechanism, for improved focus on critical features, alongside a 

Resource-Efficient Optimization model that streamlines computational demands was 

developed and results were evaluated. 

6.1 Introduction 

Cancer is a leading global cause of death, surpassing many other diseases. In 2020, it was 

reported that over 600,000 individuals died out of nearly 1.9 million diagnosed cases, with 

predictions suggesting that this number may exceed 28 million by 2030 [123]. Among various 

forms, certain types contribute significantly to mortality rates. The development of abnormal 

cell growth leads to various tumor classifications, which differ in aggressiveness and treatment 

strategies. Factors such as hormonal changes, lifestyle choices, and environmental influences 

are known to increase the risk of developing these conditions. Tumors can be categorized into 

benign and malignant based on their invasive capabilities, with malignant tumors posing 

significant challenges to surrounding tissues. Early diagnosis is crucial for successful treatment 

and has been linked to improved survival rates. 

Diagnostic techniques play a vital role in identifying these growths at early stages, 

enabling more effective interventions [89]. However, these methods can face challenges, such 

as variations in tissue composition and the difficulty of distinguishing between different types 

of lesions. This complexity often results in variability in diagnostic accuracy, highlighting the 

need for advancements in technology to support professionals. To enhance accuracy, 

integrating computer-aided detection (CAD) systems and machine learning (ML) technologies 
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has shown promise. While traditional ML approaches have limitations, advancements in deep 

learning (DL) demonstrate substantial potential across various recognition tasks. For instance, 

Vision Transformers (ViTs) have been developed to address challenges associated with 

conventional models by utilizing self-attention for improved performance. However, their 

complexity can lead to inefficiencies. To overcome these challenges, a novel attention 

mechanism has been introduced, optimizing focus on critical features and enabling real-time 

applications. The proposed multi-model fusion framework in this chapter enhances accuracy 

and resource efficiency, ensuring greater generalizability across diverse datasets while 

addressing limitations in existing methodologies. 

6.2 Key contributions 

The key contributions of the proposed work are outlined as follows: 

(i) Innovative DL framework for Breast Cancer Image classification: We introduced a 

pioneering and highly efficient DL framework tailored for image classification. This 

framework stands out for its novel design, providing a powerful tool for accurate and 

generalized classification in medical imaging datasets. 

(ii) Hybrid Approach for Improved Generalization Across Varying Dataset Sizes: 

Addressing the challenge of generalization across varying dataset sizes, we presented a hybrid 

approach that merges the features extracted from two classifiers. This synergistic combination 

enhances the model’s ability to adapt to diverse dataset scales, ensuring robust performance 

across a spectrum of data complexities. 

(iii) Efficient Attention mechanism for improved performance and computation 

efficiency: A novel attention mechanism is proposed in one of the classifier employed in the 

framework, contributing to both enhanced accuracy and computational efficiency. This 

mechanism optimizes the model’s focus on critical features, leading to improved classification 
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outcomes while maintaining computational efficiency. This approach represents a significant 

advancement in attention mechanism within DL classifiers. 

(iv) Resource-Efficient Optimization through feature selection: To address the critical 

issue of computation resource efficiency, a sophisticated feature selection algorithm is 

proposed for optimal hybridization the classifiers. This algorithm ensures that only the most 

pertinent high-dimensional features that contribute to the classification process are selected, 

streamlining computational usage without compromising accuracy. Proposed approach stands 

as a pioneering effort in achieving a judicious balance between computational efficiency and 

model performance. 

(v) Consideration of Heterogeneity for Accurate Tumor class prediction: In contrast to 

conventional approaches, proposed framework takes into account the inherent heterogeneity 

within each classifier. By fully integrating high-dimensional features from both classifiers we 

achieve a more comprehensive understanding of the intricate variations present in the data. 

This consideration of heterogeneity is essential in enhancing the accuracy of tumor class 

predictions, marking a substantial leap forward in the precision of breast cancer diagnosis. 

(vi) Extensive Analysis for High Accuracy, Efficiency Resource usage and scalability: 

Our study presents a comprehensive quantitative analysis using BreakHis and BACH datasets, 

evaluating the performance of our proposed model. The results indicate our framework's 

potential for enhancing breast cancer prediction in clinical and research domains. 

Methodological innovations encompassing framework and hybrid model design, sophisticated 

feature selection, and addressing classifier heterogeneity, collectively propel breast cancer 

classification to the forefront, optimizing accuracy and methodology. 
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6.3 Dataset Description and Pre-processing 

The dataset utilized and the preprocessing techniques applied are discussed in detail below: 

6.3.1 Dataset 

BreakHis Dataset: BreakHis dataset contains Histopathological images of 9,109 

microscope images of breast tumour tissue collected from 82 patients using different 

magnifying factors (40X, 100X, 200X, 400X). BreakHis dataset is divided into two main 

groups: benign tumors and malignant tumours. It has 5,429 malignant and 2,480 benign 

700*460 pixel PNG samples within 3-RGB channels with depth of 8-bit 8-bit in each channel 

in PNG format.  Figure 6.1 shows the distribution of images among two classes malignant and 

benign. It is evident from Figure 6.1 that the dataset is imbalanced. Figure 6.1, 6.2 and 6.3 

shows the sample malignant and benign images utilized. 

BACH Dataset:  The BACH 2013 dataset, is composed of histological images related 

to breast cancer, sourced from the Breast cancer 2019 grand challenge. These images originate 

from biopsy slides of breast tissue, stained with hematoxylin and eosin. Uniformly acquired 

using a Leica DM 20000 LED microscope and a Leica ICC50 high-definition camera. Each 

image measures 2048*1536 pixels with a pixel scale of 0.42µm*0.42µm. The dataset 

comprises 400 images obtained from diverse patients in Covilh and Porto which were labelled 

by two medical experts. Figure 6.4 shows the sample malignant and benign images of the 

BACH dataset. 
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Figure 6.1 Distribution of images among the classes 

 

Figure 6.2 Sample benign images from the BreakHis dataset 

 

Figure 6.3 Sample malignant images from the BreakHis dataset 

 

Figure 6.4 Sample images from the dataset BACH 



138 

 

6.3.2 Data Preparation 

To improve the efficiency of deep learning (DL) models, enhancing their generalization 

capacity is essential. Generalizability refers to the difference in performance when a model is 

evaluated on familiar versus unseen data. Poor generalization often results from overfitting, 

where models adapt too closely to the training data. Effective DL models should show a 

consistent decrease in validation error alongside training error, with data augmentation being a 

key technique to achieve this. Models trained on augmented datasets generally outperform 

those trained on the original dataset, with cropping, rotation, and flipping proving to be 

particularly effective. For this study, images from the BreakHis dataset are divided into 

training, validation, and testing sets. Data augmentation techniques employed include 

horizontal and vertical flipping, generating new images by rotating the original at 90-degree 

intervals, and cropping, which extracts and resizes portions of images while maintaining spatial 

dimensions. Rotating images by 90 degrees avoids introducing background noise, allowing the 

network to focus on relevant features. 

 

Figure 6.5 Flowchart of the proposed methodology 
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6.4 Proposed Methodology 

The flowchart of the proposed methodology is visualized in Figure 6.5. Initially, the 

dataset (BreakHis/BACH) is provided as input to the model. In the subsequent phase, pre-

processing is performed on the input data because both the datasets are imbalanced and 

irregular, which can lead to overfitting or under fitting. To address this issue, the dataset is pre-

processed using various techniques such as flipping, rotating, and cropping. This enhances the 

model’s efficiency and its ability to generalize to unseen data.  

In the next step, the pre-processed data, which includes both original and newly 

generated images, is fed into the framework. Following this, the dataset is input into classifier-

1, and the accuracy obtained by classifier-1 is calculated. The accuracy is then compared with 

a threshold value. If the achieved accuracy is greater than the threshold, the model outputs the 

performance efficiency and the classification process ends. If the obtained accuracy is less than 

the threshold, the features extracted by classifier-1 are stored in a vector, and the initial input 

images are then provided to classifier-2. 

The procedure of comparing the accuracy obtained by classifier-2 with the threshold is 

repeated. If the achieved accuracy exceeds the threshold, breast cancer classification is 

performed. If the accuracy is still below the threshold, the features obtained by classifier-2 are 

also stored in the vector. If both classifiers fail to achieve accuracy greater than the threshold, 

the features obtained by classifier-1 and classifier-2 are fused using the proposed feature fusion 

technique and stored in a vector. These fused features are then given as input to the hybrid 

model for the final classification of breast cancer. 

Due to the imbalance condition of the dataset models often show bias towards any of the 

class labels.  This occurs due to the model's disability to learn important features from the 

database by concentrating only on one class. In such conditions to improve the classification 

efficiency building a hybrid model by taking the benefit of features obtained from both the 
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classifiers is always appereciatable.  At the same time, hybrid models often are time, space-

consuming making them computationally inefficient and are often problem-specific leading to 

a lack of generalizability. To overcome this problem in the following work a framework is 

proposed that is computationally more efficient by improving the performance and 

generalization.  Figure 6.6 visualizes the diagrammatic representation of the framework 

proposed. 

Q1 is classifier 1 and Q2 is classifier 2 employed in this framework. The model's ability 

to determine the weight factor is crucial for obtaining superior performance with increased 

computational efficiency. The main advantage of this framework is that it initially performs on 

each classifier individually and when individual classifiers do not perform well then it takes 

advantage of the hybrid model. So to evaluate whether a classifier is performing well or not we 

need to analyse their performance. For this in our model, we integrated a threshold value where 

the accuracy acquired from the classifiers is compared with the threshold value. The threshold 

value is obtained by calculating the average accuracy values obtained by hybrid models 

reviewed in the literature. Let the threshold value be δ and the predicted accuracy be Q.  If the 

acquired accuracy value of Q1 is Q> δ it means the classifier 1 is trained well on the dataset 

and does not require the activation of the second classifier. If the calculated value of Q1 is Q< 

δ then this implies that the classifier is not trained well on the dataset and the second classifier 

is activated. Likewise, for the second classifier also the value of Q2 is evaluated comparing it 

to the threshold value. 
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Figure 6.6 Framework proposed 

Algorithm 1: Work flow for proposed framework 

Input: Dataset({𝑥𝑖 , 𝑦𝑖,3}
𝑖=1

𝑛
 

Initialisation: Trainable parameters P 

Size of Batches B 

No. of Batches 𝐵𝑡𝑜𝑡𝑎𝑙  

No. of epochs E 

Initial Learning Rate 

Output: 

Trained Framework 

Step 1: 

Classifier 1  

                 Initialize (p, β) 

                 for epochs 1,2,3,…… E do 

                 for B= 1,2,3,……  𝐵𝑡𝑜𝑡𝑎𝑙  do  

                 𝑥𝑙+1 = 𝑥𝑙 + 𝐹(𝑥𝑙) 

                 𝑥𝑙+1 < − − Q1 

                 Q1> β 

 End for 

 Else if 

                Q1< β 

                Store Q1 in vector model1 

Step 2: 

Classifier 2 

                          Initialize (p, β) 

                 for epochs 1,2, 3,…… E do 

                 for B= 1,2, 3,…  𝐵𝑡𝑜𝑡𝑎𝑙 do  
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                𝑌𝑐,𝑖 = Ʃ𝑖  𝑁𝑜𝑟𝑚(𝐴𝑐,𝑖,𝑖𝑗𝑥𝑔,𝑗,𝑐,𝑖) 

                𝑃𝐸𝑝𝑜𝑠,2𝑖 = 𝑆𝑖𝑛(𝑝𝑜𝑠|100002𝑖|𝑑𝑚𝑜𝑑𝑒)                                                                                                                                

                 𝑃𝐸𝑝𝑜𝑠,2𝑖+1 = 𝐶𝑜𝑠(𝑝𝑜𝑠|100002𝑖|𝑑𝑚𝑜𝑑𝑒)     

               Q2> β 

  End for 

  Else if 

               Q2< β 

              Store Q2 in vector model2 

Step 3: 

             Fuse the feature  
             Ffused = α. Model1+ µ. Model2 

            α+µ=1 

            End for 

 

In the proposed work, InceptionResNetV2 is taken as an initial classifier. InceptionResNetV2 

model takes input images with a shape of (75,75,3) where the size of the image is 75*75 with 

3 RGB colour channels. The model is trained using pre-trained weights obtained from 

ImageNet. By initializing the model with weights obtained from ImageNet our model benefits 

from pre-learned weights that can be fine-tuned for a specific task. After initializing the 

weights, the input image is then passed through the InceptionResNetV2, which is a hybrid 

architecture that combines the Inception module along with residual connections. The 

Inception modules are composed of parallel branches of different convolutions between which 

residual skip connections are used for allowing the gradient flow more directly mitigate the 

vanishing gradient problem. From here we got an output tensor with shape (1,1,1536) where 

image features have been reduced spatially to a 1*1 size while increasing the number of 

channels to 1536. Equations (6.1), (6.2), (6.3), (6.4), (6.5), (6.6) are formulated to explain the 

working of InceptionResNetV2. Figure 6.7 shows the visual representation of the proposed 

classifier 1. 
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Figure 6.7 InceptionResNetV2 architecture 

The achieved output tensor is then passed through an average pooling 2D layer. Here, 

the spatial dimensions are further reduced by calculating average values for a window of 

values. These values help in capturing global information from the features. The output 

obtained from the average pooling 2D layer is flattened, using the flattened layer. In 

convolutional layers, the input data is typically represented as a 3D or 4D tensor, where each 

dimension corresponds to the spatial dimension and the number of channels. However, a fully 

connected layer only can work on the input of a 1D vector. For this reason, flattened layers are 

used to convert multidimensional input data into a 1D vector when input is transiting from 

convolutional layers to fully connected layers. These layers flatten the input tensor, preserving 

the total number of elements while removing the spatial dimensions. By using this layer our 

model learned relationships between different features regardless of their spatial arrangement. 

As the dataset is imbalanced to create a balance Dropout layer is added. A Dropout layer is 

applied with a rate of 0.5, which means that each element of the flattened vector has a 

probability of 0.5 of being zeroed out which means on average, half of the connections are set 

to zero. 

The dropout layer disabled their contribution to the subsequent computations by 

making them not affect the forward pass or backward pass during training. This made the 
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proposed model more regularized and generalised. Now the remaining active connections from 

the flattened output are passed through a fully connected Dense layer. Here the fully connected 

Dense layers map these high-dimension features to the desired output enabling the network to 

learn complex patterns and the relationships in the data. The obtained output (i.e.) features 

extracted are passed on to the convolutional layers which classify the given images based on 

which class it belongs to. Once the accuracy in classifying an image is calculated the obtained 

accuracy calculated is compared with the threshold value. If the obtained accuracy is lesser 

than the threshold value, then the features obtained by the first classifier 1 are stored in the 

form of a vector and classifier 2 is activated for execution. 

Equation (6.1) is the basic linear transformation step often found in convolutional 

neural networks.  The equation describes the process of applying a convolutional operation to 

the input xl using filters W, and adding a bias term α to produce an output feature map P(xl). 

𝑃(𝑥𝑙) = 𝑊 ∗ 𝑥𝑙 + 𝛼              (6.1) 

Where xl represents input to the convolutional layer at layer l. This typically is a multi-

dimensional tensor representing the feature map of an image. W are the convolutional filters 

or kernels to detect various features such as edges, textures, and patterns in the input image. α 

represents the offset or bias added to each element of the output feature map. It helps in shifting 

the activation function and is learned during the training process. P(xl) is the output feature 

map after applying the convolution operation and adding the bias. 

Inception-ResNet employs residual connections within the Inception modules. The 

residual connections help with the flow of information through direct addition of the input to 

the output modules. Equation (6.2) provides the formula for a residual connection. 

𝑥𝑙+1 = 𝑥𝑙 + 𝐹(𝑥𝑙)              (6.2) 

xl is the input to the residual block, F(xl) is the transformation function applied to the residual 

block involving a series of operations such as convolutions, batch normalization and activation 
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functions and xl+1 is the output of the residual block. It is the sum of the input xl and the 

transformer input F (xl). 

Further, equation (6.3) is utilized to combine the information from two sources into T1 to form 

the final output of the Inception-ResNet module. 

𝑇𝑙 = 𝑆(𝑃) + ℎ(𝑥𝑙)              (6.3) 

Tl gives the sum of two branches, S(P) is the information captured through the convolutional 

operation when the activation function is applied and h(xl) is used for simple input 

transformation that provides an alternative path for information flow.  

Equation (6.4) gives the final output of the residual module obtained by applying the activation 

function to the combined tensor Tl. 

    𝑥𝑙+1 = 𝑆(𝑇𝑙)              (6.4) 

𝑥𝑙+1 𝑔𝑖𝑣𝑒𝑠 𝑡ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚𝑜𝑑𝑢𝑙𝑒 𝑎𝑡 𝑙𝑎𝑦𝑒𝑟 𝑙 + 1,  

𝑇𝑙 is the tensor obtained from the previous equation (8),  

S is the activation function used and applied element-wise to 𝑇𝑙.  

Equation (6.5) is the activation function used in the proposed architecture. 

Equation (6.5) defines the ReLU activation function, which is widely used in the neural 

networks.  

        𝑅𝑒𝐿𝑢 − 𝑅(𝑥) = 𝑚𝑎𝑥 (0, 𝑥)                 (6.5) 

x is the input value, max(0,x) is the output. The output is x if it is positive, otherwise, it is zero.  

Equation (6.6) is used to represent a relationship between the input and outputs of different 

residual units, taking into account the residual function and scaling factor α. This equation 

illustrates how the outputs of different residual units are related to each other through scaling 

and the residual function. 

  
𝛼𝑋𝑛

𝛼𝑋𝑖
=

𝛼𝑋𝑖+𝑃(𝑋𝑖,𝑊𝑖,𝛼𝑖)

𝛼𝑋𝑖
=

1+𝛼𝑃(𝑋𝑛,𝑊𝑛,𝛼𝑛)

𝛼𝑋(𝑛)
                  (6.6) 
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Xi  represents the iput of the i − th residual usint, Xn  is the input of the n −

th unit and P is the residual function eapplied to Xi with weights and bias and α  

is the scaling factor 

In the proposed methodology ViT is taken as classifier 2. Pre-processed images are given as 

input to the ViT model. Unlike models containing convolutional layers as their base ViT model 

solely relies on attention layers and feed-forward neural networks within the transformer 

encoder block to process the input image. ViT divides the input images into patches and 

processes them using the Attention mechanism. Instead of using the default self-attention 

mechanism of the transformer, we employed the Multi-Scale linear time Nystrom attention 

mechanism which aids in better computational efficiency comparatively. This attention 

mechanism can produce linear computations efficiency while still extracting the required 

global dependencies. Here the taken image size is (1,1536). Image size is a tuple of (height, 

and width). Figure 6.8 Visualizes the steps involved in the proposed classifier 2.  

 

Figure 6.8 Vision Transformer architecture. 

Further, the input images are divided into smaller patches of equal size where each 

patch belongs to a spatially localized region of the input. (1,16) is the patch size taken where 

patch size is a tuple of (height, width). After specifying the patch size, we initialized the 
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num_classes parameter that represented the number of output classes which is 2. Then the 

dimensionality of the transformers model is specified which represents the hidden size or the 

number of features in the model. Here the dimensionality of the ViT model is 256. Then the 

depth of the ViT model is specified which is used to calculate the capacity or complexity of 

the model. Here, the depth of our model is 9. The ViT model's attention heads are initialised, 

enabling the model to concentrate on various input segments simultaneously. The aim of our 

research work is to reduce the complexity of the model which was done by employing multi-

time linear time Nystrom attention mechanism that regularized model depth. Several attention 

heads employed in our ViT is 8.  

Initialized the MLP dimension (mlp_dim) parameter tospecifies the dimensionality of 

the feed-forward neural network used in the transformer model. The MLP layer is a component 

of the transformer model. Here, the layer has a hidden size of 256. Next, we initialized a 

dropout layer this layer is a regularization layer that randomly nullifies a random set of fractions 

of input units at each training step. Here, the dropout rate is set to 0.3 which implies that 30% 

of the patch embeddings are nullified. Then number of input channels used in ViT is specified. 

In this there is only one input channel indicating that the input image is in grayscale, positional 

encoding is added to the ViT model to incorporate the spatial information of the patches. Now 

the transformer encoder block processes the attention patches. This mechanism allows the 

model to perform with linear complexity by allowing the model to attend to relevant patches 

when encoding the information. Now, the classification heads are fed with output achieved 

from the transformer encoder block where the representation to the desired number of out 

classes is 2 enabling image classification. Equations (6.7), (6.8), (6.9), (6.10), (6.11), (6.12), 

(6.13), (6.14), (6.15) are formulated to explain the working of ViT. 
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Equation (6.7) represents the orientation of the original image. This representation 

indicates that the image is a 3-dimensional tensor with height H, width W, and C colour 

channels.  

Original Image : 𝑥 ∈ 𝑅𝐻×𝑊×𝐶                (6.7) 

x is the input image taken, R denotes that x is a tensor in real-valued space, H is the height of 

the image, W is the width of the image taken and C is the number of channels in the image, 

which is typically 3 for RGB images. 

Equation (6.8) explains the converted patches and equation (14) gives the final number of 

patches images are divided into. 

      2D Converted Patches : 𝑥𝑝 ∈ 𝑅𝑁×(𝑝2.𝐶)             (6.8) 

xp is the tensor representing the patches of the space, N is the total no. of patches, p is the 

resolution of each patch. 

Equation (6.9) is used to calculate number of patches.  H, W  are the resolutions of the image 

taken,𝐶 is the no.of channels,𝑃 is the resolution of each image patch.   

𝑁 indicated the final number of patches images are divided into. 𝑁 is then given as the input 

sequence for the transformer. 

       𝑁 = 𝐻𝑊
𝑃2⁄                 (6.9) 

Equation (6.10) is the equation that describes the initial input sequence for the transformer 

𝑍0 = [𝑋𝑐𝑙𝑎𝑠𝑠; 𝑋𝑝1𝐸; 𝑋𝑃2𝐸; … 𝑋𝑝𝑁𝐸] + 𝐸𝑝𝑜𝑠                         (6.10) 

Z0 is the initial sequence of embedding’s. Xclass is a learnable classification token, XP2E The 

embedded patches, where E is the embedding matrix applied to each patch, and Epos is the 

positional encoding added to each patch to retain positional information. 

The equation (6.11) specifies the dimensions of the embedding: 

      𝐸 ∈ 𝑅(𝑃2.𝐶)×𝐷, 𝐸𝑝𝑜𝑠 ∈ 𝑅(𝑁+1)×𝐷             (6.11) 
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E is the embedding matrix, 𝑃2. 𝐶  is the dimensionality of each patch, D is the dimensionality 

of the embedding space, 𝐸𝑝𝑜𝑠 are the positional encoding matrices, 𝑁 + 1 is the number of 

positional encodings, including the classification token, and D is the dimensionality of the 

positional encoding. 

Equations (6.12) and (6.13) show the series of multi-head linear time Nystrom attention and 

multi-head perceptron blocks present in the transformer encoder block. 

𝑍𝑙′ = 𝑀𝑆𝐴(𝐿𝑁(𝑍𝑙−1)) + 𝑍𝑙−1,      𝑙 = 1 … 𝐿            (6.12) 

𝑍𝑙′  𝑖𝑠 𝑡he output of the self-attention layer, MSA is the Multi-head self-attention mechanism 

employed, LN is the Layer normalization applied to the input sequence, 𝑍𝑙−1 𝑎𝑟𝑒 𝑡ℎ𝑒  input to 

the current layer, which is the output from the previous layer, and l is the layer index. 

𝑍𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝑍𝑙′)) + 𝑍𝑙′ ,       𝑙 = 1 … 𝐿            (6.13) 

In equation (6.13) 𝑍𝑙  𝑖𝑠 𝑡he output of the MLP block, MLP is the Multi-layer perceptron, LN 

is the Layer normalization applied to the input sequence, 𝑍𝑙′is the output from the previous 

self-attention layer, and L is the layer index employed. 

Equations (6.14) and (6.15) display the positional encodings containing the absolute and 

relative positions of the tokens that are added to the input sequence embedded at the bottom of 

the encoder and decoder stacks. 

𝑃𝐸𝑝𝑜𝑠,2𝑖 = 𝑆𝑖𝑛(𝑝𝑜𝑠|100002𝑖|𝑑𝑚𝑜𝑑𝑒)           (6.14) 

𝑃𝐸𝑝𝑜𝑠,2𝑖+1 = 𝐶𝑜𝑠(𝑝𝑜𝑠|100002𝑖|𝑑𝑚𝑜𝑑𝑒)           (6.15) 

𝑃𝐸𝑝𝑜𝑠,2𝑖 𝑖𝑠 𝑡ℎ𝑒 the positional encoding employed for even indices, PEpos,2i+1 are the 

positional encodings employed for odd indices, pos is the position index, and d is the 

dimensionality of the model. 

 Now the obtained accuracy from the ViT model is compared with the threshold value, 

if the obtained classifier 2 accuracy is greater than that of the threshold value then the execution 
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terminates at that point and the probability of the image belonging to a particular class is 

returned if not then the features extracted are stored in a vector for future use. 

ViT usually has an inbuilt self-attention mechanism which helps in identifying the 

region of interest while training the model. However, the self-attention mechanism present in 

the transformer often utilizes more computational resources, which results in the quadratic 

computational efficiency of the model. To overcome this problem, we modified the self-

attention module in the transformer module and replaced it with multi-scale linear time 

Nystrom attention mechanism that takes linear or sublinear time to complete the task.  

Our proposed technique employing the Multi-Scale linear time Nystrom approximation 

method can help address the memory and computational limitations associated with self- 

attention in transformer models. It aims to provide an efficient approximation of the attention 

mechanism, particularly for large-scale input sequences. It leverages a subset of randomly 

sampled tokens or patches from the input sequence to construct a low-rank approximation of 

the full attention matrix. This reduces the computational complexity and memory requirements 

from quadratic to linear or sublinear, making it more scalable for large inputs. But by 

employing this technique there is a chance that the model may miss out on some valuable 

features. So to overcome this situation a multi-scale weight adaptive nature is added to 

Nystrom's attention. It means an individual subset of landmarks namely local, global, spatial 

and channel-wise features are selected to attend to rather than attending all tokens in the 

sequence.  

Here’s a high-level overview of how the proposed attention mechanism works: 

(A) Selecting local landmarks Channel-wise and spatially: In this step using 

equation (6.16) local landmarks are selected channel-wise and spatially using the Nystrom 

attention technique. For each channel c and spatial position i, sample local landmarks are given 

by: 
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Xl,c,i=x1,l,c,i,xl,2,c,i,………..xl,k,c,i
                (6.16) 

Where k is the number of local landmarks, and Xl,k,c,i represents the K-th local landmark in 

channel c and spatial position i. 

(B) Selecting global landmarks channel-wise and spatially: In this step by 

employing equation (6.17) global landmarks are selected channel-wise and spatially. For each 

channel c and spatial position, I use a deterministic strategy to select global tokens as: 

Xg,c,i = xg,1,c,i, xg,2,c,i, … … xg,m,c,i             (6.17) 

where m is the number of global tokens, and xg,m,c,i represents the m-th global token in channel 

c and spatial position i. 

(C) Compute Affinity Matrix channel-wise and spatially: Computing the Affinity 

matrix is a very crucial and novel step in the proposed architecture because after extracting the 

local and features both channel-wise and spatially these extracted points should be analysed to 

find the pairwise relationships or similarities between elements in the input sequence, 

determining the attention weights assigned to each element when computing the weighted sum 

in the attention mechanism. For each channel c and spatial position i, the affinity matrix Ac,i is 

computed between local and global landmarks using the equation (6.18): 

     Ac,j,ij = sim(xl,i,c,i, xg,j,c,i)            (6.18) 

In equation (23) i is the index for local landmarks and j is the index for global landmarks. 

(D) Normalize Affinity matrix: normalizing the affinity matrix ensures that the 

attention weights assigned to each element are interpretable and comparable. It transforms the 

raw similarities into a distribution, where each element’s attention weight is proportional to its 

relative importance in the context of the entire sequence. For each channel c and spatial position 

I, β is the parameter used to control the sharpness by effectively scaling the affinities before 
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normalizing the affinity matrix Ac,i to make it a valid attention distribution by using the 

equation (6.19): 

      Norm(Ac,i) = softmax(β Ac,i)           (6.19)     

 

The attention scores Yc,i are calculated channel-wise and spatially by employing equation (6.20) 

for each channel c and spatial position I, combine the local and global features using the 

normalized affinity matrix: 

Yc,i = Ʃi Norm(Ac,i,ijxg,j,c,i)           (6.20) 

In the next step, all the obtained features channel-wise- local, global and spatial- local, 

global all are concatenated together and are given as input to the next layer.   The main 

characteristic of the proposed multi-scale adaptive Nystrom attention mechanism is to 

automatically adjust the parameters namely the number of local landmarks (k), the number of 

global tokens (m), and the scaling factor (β) by adapting to the specific task and dataset 

characteristics by following the above formulas. 

 Now when both classifier 1 and classifier 2 showed declined performance, then the 

feature vectors extracted from classifier 1 and classifier 2 are taken and are given as input to 

the neural network. Before giving them as input to the neural network the features extracted 

from both the classifiers should be concatenated. In our framework, a multi-fusion model is 

utilized for concatenating the features extracted from classifier 1 and classifier 2. This multi-

fusion model's primary objective is to combine the features of multiple models in order to 

identify the unique inherent features, preventing the hybrid model from overfitting due to 

unbalanced data. The features extracted by classifier 1 are represented as model1 and the 

features extracted by classifier 2 are represented as model2.  Figure 6.9 visualizes the step-by-

step procedure followed while creating a hybrid model. 
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Figure 6.9 visualizes the steps involved in multi-model fusion architecture 

To concatenate the features obtained from both models we used the following technique 

specified in Equations (6.21) and (6.22): 

Result= α. classifier1 + µ. classifier2            (6.21) 

α+µ=1             (6.22) 

In equation (6.21) and (6.22) α represents the weights of classifier 1 and µ represents the 

weights of classifier 2. 

In the next step, the best combination of alpha and beta values is found on the validation 

set. In simpler words from the extracted features, only those features whose alpha and beta 

values result in less minimum loss when calculated using cross-entropy loss are taken. This 

step is almost as crucial as extracting valuable features from the dataset. The mathematical 

formulation of this step is shown in equation (6.23), (6.24). To find out the valuable features 

from the concatenated features the following distance-based optimal search algorithm is 

utilized: 

Min (Loss (Result, Label))              (6.23) 

α+µ=1             (6.24) 
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The reason for using a distance based optimal search algorithm is because of its ability 

to solve combinational optimization problems. As the main aim of our research is to optimize 

the model's performance the distance-based optimal search algorithms worked well in 

achieving this. Many distance metrics can be employed for calculating the optimal features 

among which the Euclidean distance vector is most famously employed. But Euclidean 

distance works in a specific space and it cannot handle random real values properly. As our 

problem is associated with working on features extracted from the real world instead of 

frequently used Euclidean distance we employed chebyshev distance-based optimal search 

approach.  

The efficacy of the proposed CDBA method relies on the definition of the optimal value 

of the objective function that identifies the ideal values of the features involved. These optimal 

values related to the respective feature set are defined over a vector BST (v1, v2, v3, …, vn). 

The BST vector is the set of ideal values of attributes present within the range of the provided 

dataset. This vector set BST acts as a point of reference that is used to evaluate the effectiveness 

of the proposed alternative to obtain optimal objective function. This reduces the problem 

statement to identify an alternate solution as close as the defined ideal BST vector. This can be 

given by the objective function as formulated in equation (6.25): 

MIN δ {DIF(x), BST}            (6.25)                                   

Here, DIF describes an alternative value in n-dimensional space and δ describes the 

distance from the optimal point. After the final features are selected from the concatenated 

features the selected features are given as input to the model network and the network is trained 

and then tested for its performance parameters using its testing dataset. In specific our proposed 

framework optimized the time taken at each step and provided better results in terms of both 

accuracy and optimization. 
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6.5 Experimental setup and Results Analysis   

The experimental setup and detailed results analysis are presented in the following section: 

6.5.1 Experimental setup 

Every experimental test is conducted concurrently on two NVIDIA GPUs, specifically 

A5000s with 24 GB of RAM each. 128 GB RAM system is deployed. Numerous data analysis 

frameworks, such as Pandas, Numpy, Seaborn, 496 Matplotlib, and Scikit-learn, were 

employed in the study. The entire framework is executed for ten epochs. 20% of the data were 

used for testing, while the remaining 80% were used for training. The proposed model was 

trained on the training data. The suggested model was fine-tuned utilising a variety of 

parameters, including hyper parameters, to improve classification accuracy and prevent 

overfitting. Different learning rates were applied, and it was found 506 that the default learning 

rate of 0.001 gave better results. 

6.5.2 Result analysis 

In detail results analysis is given in the following section: 

6.5.2.1 Quantitate Analysis 

DL algorithms have come a long way in the last several years, and some of their 

versions have been effectively used to address breast cancer classification issues. In this section 

performance of the models used in the proposed framework is evaluated and analysed. We take 

into account a broad range of research instances with different measurement indicators, such 

as F1 score, area under the ROC curve (AUC), accuracy, precision, recall, and receiver 

operating characteristics (ROC). Firstly, we evaluated the performance of the classifier 1 model 

using the quantitative evaluation metrics. Table 6.1 shows the quantitative summary of the 

classifier 1 model on two publically available datasets namely, BreakHis and BACH. The 

proposed classifier 1 achieved a testing accuracy and precision of 95 and 94, whereas, the 

recall, F1 score and MCC value are 91, 92 and 88 respectively on BreakHis dataset. The 
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proposed classifier 1 obtained accuracy, precision, recall, F1-score, and MCC values of 93, 

94.87, 92.5, 93.66, and 87.55 on the BACH the data set respectively, according to the same 

table. Since the achieved accuracy value is low relative to the threshold value of 0.96, we 

examined the causes of the declining performance. After specific analysis on declined 

performance of classifier 1 it is understood that due to its very deep nature and dataset’s limited 

size model failed to explore various patterns or characteristic’s in the images this reason 

consistently leads to misclassification resulting in overfitting that lead to poor generalization. 

Further second classifier is activated and analysis is performed by evaluating the 

performance of the classifier 2 model using the quantitative evaluation metrics. Table 6.2 

shows the quantitate summary of the classifier 2 models on two publically available datasets 

namely BreakHis and BACH. The proposed models achieved a testing accuracy and precision 

of 96 and 96, whereas, recall, F1 score and MCC value of 93, 94 and 92 respectively on the 

BreakHis dataset. The BACH dataset findings are also summarised from the same table, with 

the following scores: 96.7, 95.8, 95, 95, and 93 for accuracy, precision, recall, F1 score, and 

MCC 

Table 6.1 Performance analysis of classifier 1 on two publically available breast cancer 

datasets namely BreakHis and BACH. 

Datasets Accuracy(%) Precision(%) Recall(%) F1-Score(%) MCC(%) 

BreakHis 95 94 91 92 88 

BACH 93 94.87 92.5 93.66 87.55 

 

From Tables 6.1 and 6.2, it is evident that compared to the performance of classifier 1 

and classifier 2 ViT showed the best result. In comparison to the standard attention mechanism 

in ViT, we chose to use the multi-scale linear time Nystrom Attention mechanism since it 

performs well with limited computational resources. This mechanism approximates the full 

attention matrix with a low-rank approximation, which leads to more efficient computations 
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and faster training. After specific analysis on declined performance of classifier 2 it is 

understood that due to limited dataset size model suffered from overfitting which lead to poor 

generalization on unseen data. From the same tables it can be inferred that MCC scores are 

relatively less providing insights that model suffered overfitting due to ineffective handling of 

imbalance in the dataset. 

Table 6.2 Performance analysis of classifier 2 on two publically available breast cancer 

datasets namely BreakHis and BACH. 

Datasets Accuracy(%) Precision(%) Recall(%) F1-Score(%) MCC(%) 

BreakHis 96 96 93 94 92 

BACH 96.7 95.8 95 95 93 

 

 

As the achieved accuracy values of both classifier 1 and classifier 2 are less than the 

threshold value, features extracted from both the classifiers are fused using the novel feature 

fusion algorithm “CDBA” resulting in a hybrid model. A hybrid model is then trained on 

selected features obtained from concatenating selected features from classifier 1 and classifier 

2 models. Later the test set images are given to the hybrid model, and model is evaluated. From 

Table 6.3 it can be inferred that the accuracy of the model is improved when compared to the 

threshold value indicating the superior performance of the hybrid model effectively captured 

all the local and global features irrespective of the imbalance issue in the dataset. Furthermore, 

Table 6.3 illustrates that when additional evaluation metrics are examined, it can be observed 

that there is an increase in the hybrid model's evaluation metric scores when compared to the 

results obtained by classifiers 1 and 2.   
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Table 6.3 Performance analysis of hybrid model on two publically available breast 

cancer datasets namely BreakHis and BACH. 

Datasets Accuracy(%) Precision(%) Recall(%) F1-Score(%) MCC(%) 

BreakHis 99.36 99.19 98.79 98.98 98.52 

BACH 99.4 98.7 99.89 99.3 98.8 

 

From Table 6.3, it is evident that the accuracy and precision of the proposed hybrid 

model are 99.36, 99.19 for BreakHis and 99.4, 98.7 on the BACH dataset respectively which 

indicates that the model has a high level of precision for both classes. This means that when 

the model predicts instances as a specific type of tumour, it is highly likely to be correct. This 

indicates that the model can make accurate predictions for each tumour class. As can be seen 

the proposed hybrid model performed exceptionally well in categorising various tumour 

subtypes when compared to classifiers 1 and 2. It demonstrated exceptional recall, precision, 

and F1 scores in both tumour classes, striking a notable balance between precision and the 

capacity to recognise pertinent cases. Further insights into the model's performance were made 

accessible by evaluating the model performance using other metrics which further assisted with 

optimisation efforts. 

Similarly, from Table 6.3 it can be observed that model achieved, recall values of 98.79 

and 100% on BreakHis and BACH respectively, which imply that the model exhibits a 

substantial level of recall across all tumour classes. This indicates the model's proficiency in 

accurately identifying and capturing a significant majority of instances belonging to each 

specific tumour class. Hence, it can be inferred that the model demonstrates a remarkable 

ability to effectively detect instances of binary tumour classes. Furthermore, from the same 

table, it can be inferred that on both the datasets F1 score approaching 100% denotes that the 

model attained a commendable equilibrium between precision and recall for both tumor 
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classes. This shows that the model achieves a heightened level of accuracy while adeptly 

capturing instances from each tumour class. This implies that the model effectively strikes a 

balance between precision, represents the correctness of predictions and recall, denoting the 

ability to identify relevant instances of attacks. Further, MCC score is calculated to compare 

how effectively models handles class imbalance situation. Compared to classifier 1 and 

classifier 2 MCC score’s, hybrid model MCC score is reported as 98.52 and 98.8 on BreakHis 

and BACH dataset’s respectively providing a strong evidence about how well the hybrid model 

handled class imbalance situation. 

 

Figure 6.10 Graphical representation of SOTA techniques performance VS proposed 

model performance on BACH datasets 

In this section, the suggested hybrid model's performance for classifying breast cancer 

is evaluated against the most recent state-of-the-arts. Figure 6.10 and 6.11 Visualizes the 

graphical representation of SOTA techniques performance VS proposed model performance 

on BreakHis and BACH datasets.  

 Figure 6.10 visualizes a comparison of the proposed hybrid model against several 

recent state-of-the-arts breast cancer classifications on the BACH dataset. With the best 
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accuracy scores, the proposed hybrid model outperforms the most advanced techniques. Figure 

6.11 visualizes and compares the performance of the proposed hybrid model with the state-of-

the-art methods using the BreakHis dataset. From Figure 6.11 the superiority of the proposed 

hybrid model on the BreakHis dataset can be inferred. It performs far better than any of the 

most recent SOTA approaches to classifying breast cancer.  

 

 

Figure 6.11 Graphical representation of SOTA techniques performance VS proposed 

model performance on BreakHis datasets 

 

Figure 6.12 Proposed hybrid model accuracy VS state-of-the-art methods in the current 

environment 

Figure 6.12 visualizes the accuracies achieved by state-of-art hybrid techniques 

employed in the simulation environment same as the environment used for the proposed 
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framework. From the graph, it is evident that the proposed hybrid model bragged better 

performance compared to that achieved by the state-of-the-art techniques. The proposed hybrid 

model achieved an accuracy of 99.36 on BreakHis dataset. 

6.6 Complexity Analysis 

Overall, the time and space complexity of the model can be quite high, especially for 

large input data and a large number of trainable parameters. However, these problems can be 

minimised with the aid of effective algorithms and hardware accelerators like GPUs. 

Furthermore, methods like early stopping and weight regularisation can assist in reducing the 

amount of trainable parameters as well as decreasing overfitting, both of these can lower the 

model's time and space complexity.  

6.6.1 Time Complexity 

The primary objective of our framework is not only to integrate the efficiency of the 

proposed model but also to enhance the computational efficiency of the model. The 

computational efficiency in terms of time complexity of state-of-the-art methods is compared 

with the proposed framework in Figure 6.13 on BreakHis dataset. On the x-axis, we have the 

time taken in seconds and on the y-axis we have the classifiers on the techniques used. The 

figure provides insights into the efficiency of our proposed hybrid model, which took 3.19 

seconds of time per image time, making it the most computationally efficient option when 

compared with state-of-the-art hybrid techniques. Meanwhile, the state-of-the-art techniques 

took 4.82,4.23 and 5.96 seconds per image making them computationally inefficient.  



162 

 

 

Figure 6.13 Time taken per image in seconds for the hybrid model. 

Similarly, Figure 6.14 provides insights into the efficiency of our proposed hybrid 

model, which required 2.95 seconds per image time, making it the most computationally 

efficient option when compared with state-of-the-art hybrid techniques on BACH dataset. On 

the x-axis we have the classifiers or the techniques used and the time taken per image in seconds 

on y-axis. Whereas, the state-of-the-art techniques took 4.012, 3.68 and 3.26 seconds per image 

making them computationally inefficient.  

 

Figure 6.14 Time taken per image in seconds for the hybrid model. 
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6.6.2 Space Complexity 

The space complexity of the proposed model is proportional to the quantity of trainable 

parameters within the proposed model. This is because each trainable parameter requires a 

certain amount of memory to store its value, and the total memory required to store all the 

trainable parameters is proportional to their number. In addition to the trainable parameters, the 

model also requires memory to store the input data, intermediate activations, and gradients 

during training. The memory required for these operations is proportional to the size of the 

input data, the number of units in the model, and the number of training steps required to train 

the model. Any DL model takes millions of trainable parameters due to which space complexity 

is increased for large-scale models and datasets. The main objective of the proposed model is 

to improve the computational efficiency of the model which is achieved by employing two 

techniques in the model that are: 

Usage of Multi scale Nystrom attention mechanism in the Transformer.: By employing 

the multi-scale Nystrom attention mechanism instead of the default self-attention module the 

overall computational efficiency of the model is improved.  

Employment of CDBA for multi-model fusion: Instead of taking all the features 

extracted by both the classifiers and fusing them, the novel CDBA technique fuses only those 

features that are contributing to the model efficiency.    

6.6.3 Scalability Performance 

Finally, we have observed enhanced scalability characteristics in our proposed model. 

Remarkably, as we increased the epoch number from 10 to 50 and it is represented on x-axis 

in the range 1-5, the accuracy of our proposed model remained nearly unchanged, indicating 

its scalability. Figure 6.15 visualizes the scalability performance of our suggested model. 

Figure 6.15 it can be observed that even by changing the epochs also 0.99 is the constant 

accuracy of the model showing its efficiency. 
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Figure 6.15 Scalability analysis of our proposed model 

6.7 Ablation study 

This section includes an ablation investigation to validate the efficiency of the proposed 

framework. Specifically, the framework is trained on the BreakHis and BACH datasets. The 

following cases are evaluated:  

• Case A: The model is trained exclusively on the InceptioResNetV2 baseline architecture. 

• Case B: The model is trained only on the baseline architecture of ViT.  

• Case C: The model is trained with the proposed architectures of InceptioResNetV2.  

• Case D:  The model is trained only proposed architecture of ViT.  

• Case E: The model is trained without framework by training it on the hybrid model.  

• Case F: The model is trained with the framework without utilizing the CDBA technique for 

fusing the features.  

• Case G: (proposed model): The model is trained with a proposed framework by integrating 

proposed architectures of classifier, classifier 2, multi-head linear time attention layer, and 

CDBA for feature fusion to the framework. 
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Figure 6.16 Comparison of accuracies of Ablation study cases on BreakHis dataset. 

 

Figure 6.17 Comparison of accuracies of Ablation study cases on BACH dataset. 

 

Figures 6.16, and 6.17 visualize the performance analysis of different Ablation study 

cases on BreakHis and BACH datasets from the figures it can be observed that the performance 

of the models improved with the novelty added to the framework. Table 6.4 Shows the time 

taken by classifier 1, classifier 2 and hybrid classifier (Case C, D, G). It is apparent from the 

table that classifier 1 completed its task in 1.65 seconds, while classifier 2 took 1.52 seconds. 

In contrast to the default attention mechanism, the modified attention mechanism in the 
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proposed classifier 2 required 1.35 seconds per image, showcasing its improved computational 

efficiency. 

Table 6.4 Presents the computational efficiency of techniques employed in the 

framework. 

Classifiers Time taken per image in 

seconds 

Classifier 1 - Case C 1.65 

Classifier 2 - Case D 1.52 

Hybrid - Case G 1.35 

6.8 Chapter Summary 

This chapter introduces a deep learning framework designed for effective image 

classification across complex real world datasets. The proposed hybrid approach combines 

feature from multiple classifiers to improve adaptability and performance. Key innovations 

include an efficient attention mechanism that prioritizes critical features, along with selective 

optimization to balance computational efficiency with high accuracy. Tested on datasets such 

as BreakHis and BACH, this framework demonstrates strong scalability, accuracy, and 

adaptability, establishing itself as a valuable tool for research use. In addition to achieving high 

classification accuracy, this framework contributes significantly to the field by integrating 

resource-efficient optimization methods. 
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Chapter Seven: Hybrid Deep Learning Approach for Generalized 

Image Classification: A Focus on Robustness and Efficiency. 

In this chapter a novel Hybrid Deep Learning (DL) model that addresses 

Generalisation problem in imbalance dataset, a common challenge affecting model 

performance is proposed and results were evaluated. 

7.1 Introduction 

Chapter 7 discusses the critical need for generalized models in automated classification, 

especially in scenarios where complex datasets and high-stakes decision-making are involved. 

Despite advances in technology, various applications still face challenges in efficient and 

accurate data analysis due to the diversity and intricacy of data structures and underlying 

patterns. Effective classification in these scenarios relies not only on precise algorithms but 

also on robust frameworks that can adapt to diverse datasets and minimize the risk of overfitting 

or bias. This chapter highlights the development of adaptable, high-performance models that 

can generalize effectively across varying dataset complexities. By introducing advanced deep 

learning techniques, the framework leverages automated feature extraction and classification, 

achieving enhanced accuracy and computational efficiency. Such models, which can optimize 

feature selection and integrate heterogeneity in data, contribute to stronger predictive 

performance. These advancements underscore the importance of generalized classification 

models that can handle broad data variations, providing a valuable foundation for further 

innovation across multiple application domains. 

7.1.1 Key contributions 

The experimental setup and detailed results analysis are presented in the following section: 

(i) Development of a Novel Hybrid DL Model: In this work, a hybrid DL model is 

proposed, specifically designed for both binary and multi-class brain tumor classification using 
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MRI. The model introduces advanced techniques to address class imbalance, overfitting, and 

image occlusion, significantly enhancing the robustness and generalization of the model. 

(ii) Advanced Noise Reduction and Occlusion Handling: The proposed model 

employs Gaussian filters for noise reduction and incorporates a new Patterned-GridMask 

technique, an enhanced variant of the standard GridMask. This innovation improves the 

model's ability to handle occluded images, contributing to its superior performance across a 

range Brain tumor dataset (Binary and Multi class datasets.). 

(iii) Architectural Enhancements: In this work, a novel approach is introduced to 

enhance the Multi-Axis Vision Transformer (MaxViT), focusing on improving computational 

efficiency and generalization. These modifications are designed to optimize the model's 

performance, allowing for more accurate and faster classifications in both binary and multi-

class tasks. 

(iv) Superior Model Performance: A comprehensive comparative evaluation against 

existing deep learning models demonstrates the superior performance of the proposed hybrid 

DL model in both binary and multi-class classification tasks. These results highlight the 

model's robustness, adaptability, and potential for clinical applications in brain tumor 

diagnosis.  

Methodological innovations encompassing hybrid model design, sophisticated feature 

selection, and addressing classifier heterogeneity, collectively propel brain tumor classification 

to the forefront, optimizing accuracy and generalization. 

7.2 Preliminaries 

In section 7.2, the Hybrid model designed to address critical data imbalance and 

Generalization challenges in Medical image datasets is explained. The section is divided into 

subsection, each focusing on a specific aspect of the proposed methodology. It begins with a 
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detailed explanation on Datasets employed, followed by outlining of the techniques employed 

followed by in detail explanation of the proposed model. 

7.2.1 MaxViT Architecture 

The MaxViT architecture represents an advanced hybrid model that integrates the 

strengths of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) to 

effectively capture both local and global dependencies in image data. Its architecture features 

hierarchical blocks that utilize both convolutional layers and transformer-based attention 

mechanisms. This unique setup allows MaxViT to excel in various vision tasks, including 

image classification, object detection, and segmentation, achieving a notable balance between 

accuracy and computational efficiency. 

(i) MBConv Layer: Efficient Local Feature Extraction 

MaxViT’s efficiency is improved by its MBConv layer, influenced by the Mobile 

Inverted Bottleneck Convolution. This layer employs depth wise separable convolutions to 

effectively extract local spatial information while minimizing computational costs. In depth 

wise convolution, the operation is conducted independently on each input channel employing 

equation (7.1): 

   𝑌(𝑐)(𝑖, 𝑗) = ∑ 𝑋(𝑐)
𝑚,𝑛 (𝑖 + 𝑚, 𝑗 + 𝑛) ∙ 𝐾(𝑐)(𝑚, 𝑛)            (7.1) 

Here, 𝑋 is the input tensor and 𝐾 is the convolution kernel for channel 𝑐. This approach 

efficiently extracts local features without mixing information across channels. Subsequently, a 

pointwise convolution is applied through a 1×1 convolution to project features across channels 

using equation (7.2): 

𝑍(𝑖, 𝑗) = ∑ i,j                 (7.2) 

This combination enables the model to capture local features effectively while maintaining 

operational efficiency. 
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(ii) Multi-Head Self-Attention (MHSA): Capturing Global Dependencies to capture global 

dependencies, MaxViT incorporates Multi-Head Self-Attention (MHSA). In this mechanism, 

the input sequence 𝑋𝑠𝑒𝑞is transformed into query (Q), key (K), and value (V) vectors employing 

equation (7.3): 

      𝑄 = 𝑋               (7.3) 

The attention mechanism computes relationships between image patches using the following 

equation (7.4): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑
)𝑉            (7.4) 

This allows the model to focus on the most relevant image regions, facilitating the learning of 

long-range dependencies. 

(iii) Max Pooling Attention: Enhancing Global Attention 

To enhance global attention while reducing computational costs, MaxViT introduces 

Max Pooling Attention (MPA), which decreases spatial dimensions before applying self-

attention. This approach significantly mitigates computational requirements while preserving 

critical information: 

The output is subsequently up sampled to match the original resolution, allowing MaxViT to 

efficiently capture global context. 

(iv) Axial Attention: Reducing Complexity in Spatial Dimensions 

MaxViT also employs axial attention, which applies attention separately along each 

spatial axis, reducing the complexity associated with full attention across all dimensions. For 

height attention, the representation in mathematical terms is given in equation (7.5):  

    𝑋ℎ𝑒𝑖𝑔ℎ𝑡∈𝑅𝐻×(𝑊∙𝐶)                         (7.5) 

This is similarly executed for width attention, leading to lower computational complexity while 

maintaining essential spatial relationships. 



171 

 

(v) Local-Global Attention: Combining Short and Long-Range Dependencies 

MaxViT’s hybrid attention scheme incorporates both local and global attention 

mechanisms. Local attention focuses on short-range interactions within patches. By integrating 

both methods, MaxViT effectively captures multi-scale dependencies, making it highly 

effective for complex vision tasks that require both detailed analysis and global context. 

(vi) Feed-Forward Network (FFN): Non-Linear Transformations 

Following the attention mechanisms, a Feed-Forward Network (FFN) as formulated in 

equation (7.6) is employed to apply non-linear transformations, enhancing the model's 

expressive capability: 

𝐹𝐹𝑁(𝑋) = 𝐺𝐸𝐿𝑈(𝑋𝑊1 + 𝑏1)𝑊2 + 𝑏2            (7.6) 

This non-linearity adds complexity, allowing MaxViT to perform more sophisticated 

transformations on the learned features. 

7.2.2 Patterned GridMask 

Patterned-GRIDMASK is a data augmentation technique that enhances model 

generalization by applying structured masking patterns to input images. Originating from the 

GRIDMASK concept, which involves randomly masking parts of an image in grid-like 

manner, Patterned-GRIDMASK employs a more organized approach. This strategic masking 

allows the model to concentrate on learning generalized features rather than memorizing 

specific details. By utilizing predefined or dynamically generated patterns for masking, this 

technique can be employed across various neural network architectures, including CNNs and 

Vision Transformers, to mitigate overfitting and improve performance on unseen data. 

The core idea behind Patterned-GridMask involves applying a structured grid mask to 

input data. The basic grid mask is created by dividing the image into a grid and selectively 

removing sections according to a predefined strategy. For an input image represented as I ∈ 

R^(H×W×C), where H, W, and C signify the height, width, and channels of the image 
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respectively, the binary mask M∈R^(H×C) is generated, with regions set to 0 (masked) and 

others set to 1 (preserved). The application of the mask can be formulated in equation (7.7) as: 

𝐼′ = 𝐼 ∘ 𝑀              (7.7) 

Here, ∘ denotes element-wise multiplication, resulting in a masked image I'∈R^(H×W×C) 

where specified portions of the image are removed. 

The grid mask M is generated by dividing the image into blocks with a chosen block 

size d. The percentage of the image that is occluded is denoted as p. The mask generation 

formula can be described in equation (7.8) as follows: 

     𝑀(𝑥, 𝑦) = {0, 𝑖𝑓 (𝑥 𝑚𝑜𝑑  𝑑 <  𝑑 ×  𝑝), 𝑜𝑟, ( 𝑦 𝑚𝑜𝑑   𝑑 <  𝑑 ×  𝑝) 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         (7.8) 

While traditional GRIDMASK utilizes a uniform grid, Patterned-GRIDMASK 

introduces additional complexity by employing various patterns to determine the masked 

sections. These patterns can be predefined geometric shapes or dynamically generated based 

on training rules, thus enriching the training experience for the model. For instance, a diagonal 

masking pattern can be mathematically represented by employing equation (7.9): 

    𝑀(𝑥, 𝑦) = {0, 𝑖𝑓 𝑥 −  𝑦 = 𝑘, (𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           (7.9) 

The augmentation process comprises several layers. Initially, the input image tensor I 

∈ R^(H×W×C) is loaded into the system. The mask generation layer follows, which creates the 

binary mask based on selected patterns. Following this, the mask is applied to the input image 

via element-wise multiplication employing equation (7.10): 

   𝐼′(𝑥, 𝑦, 𝑐) =  𝐼(𝑥, 𝑦, 𝑐) = 𝑀(𝑥, 𝑦)            (7.10) 

In the subsequent augmentation layer, the masked image serves as augmented input for 

model training, allowing the model to generalize better by concentrating on global features 

rather than specific details. Finally, the augmented image is processed through the main 
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network architecture, which may be a CNN or a Vision Transformer, effectively leading to 

more robust feature representations. 

7.3 Proposed Methodology 

Accurate and early detection of tumors is crucial for enhancing the effectiveness of 

treatments. Deep learning (DL) algorithms, particularly those designed for the identification 

and classification of malignant tumors, have shown significant potential in improving 

diagnostic accuracy. Researchers frequently experiment with various architectures to find the 

optimal model that fits their specific datasets and challenges. Customization is often required 

to tailor these models to specific datasets, but developing a new architecture for each tumor 

type does not always guarantee consistent performance across diverse datasets. To address this, 

we propose a novel transformer-based architecture designed for tumor classification across 

multiple datasets, specifically targeting brain tumors. Figure 7.1 shows the work flow of 

proposed model and Figure 7.2 visualizes the GRN_MLP module. 

 

Fig 7.1 Proposed Methodology 
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Figure 7.2 GRN_MLP 

The proposed model, tailored for tumor detection, incorporates several efficient blocks 

to enhance feature extraction from imbalanced datasets. Key novelty of the proposed model is 

the integration of the Patterned Grid Mask at various blocks, aiding the network focus on 

important regions of the image by deleting irrelevant information. Below is a detailed 

explanation of the proposed model, and its components. The proposed model contains 5 blocks 

Stage 1: The pre-processing block 

Initially, various pre-processing techniques are applied to standardize and to enhance the 

input data. These pre-processing steps help in effective feature extraction. Various pre-

processing techniques employed are Cropping, Rotation, Scaling, Normalization and Gaussian 

filters. 

 Cropping: This technique helps in removing irrelevant information of the images like 

background noise by focussing on the region of interest. 

 Rotation: Images are rotated in random orientations to ensure that model identifies 

important features regardless of the orientation of the captured image. 

 Scaling: By scaling the input images, all the images are brought to a uniform size 

ensuring that all images are processed at the same resolution. 

 Normalization: This technique adjusts the pixel values by scaling them in the range 0-

1 to ensure that models performance is not affected by varying brightness of the image. 
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Stage 2: Stem Block  

In stem block down-sampling technique is applied on the pre-processed images to 

reduce the spatial resolutions of the images. Down-sampling the image resolution helps in 

reducing the image complexity, increasing the efficiency of the further layers of the model 

while learning useful features. Two convolutional layers are used where, the first layers reduce 

the spatial dimensions by half and the second layer helps in maintaining these dimensions while 

refining the feature map. The above are formulated employing equations (7.11), (7.12) and 

(7.13). 

First convolution layer: Kernel size- 3*3, stride-2. 

 𝑌1 =  𝐶𝑜𝑛𝑣(𝑋𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 , 𝑊1)  +  𝑏1           (7.11) 

Second convolution- Kernel size-3*3, stride-1. 

𝑌2 =  𝐶𝑜𝑛𝑣(𝑌1, 𝑊2)  +  𝑏2           (7.12) 

After the second convolution, the patterned Grid Mask is applied.  

𝑌3 =  𝑌2 ⊙ 𝑀             (7.13) 

Here the Patterned Grid Mask ensures that the stem block focuses on most important 

regions of the image, while ignoring less important regions. This helps in efficient feature 

extraction and efficient usage of computational resources. The obtained masked feature map 

from the stem block is given as input to the LeViT Block.  

Stage 3: LeViT Block  

After obtaining the masked feature map from the Stem Block, the LeViT Block applies 

convolution operation to capture local patterns from the input. As LeviT model is a 

combination of CNN and ViT both local and global features are extracted effectively. 

Initially a 3*3 convolution layer is applied to capture local patterns using the following 

equation (7.14): 
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𝑌𝑐𝑜𝑛𝑣_𝑙𝑒𝑣𝑖𝑡 =  𝐶𝑜𝑛𝑣(𝑋𝑙𝑒𝑣𝑖𝑡, 𝑊𝑙𝑒𝑣𝑖𝑡)  +  𝑏𝑙𝑒𝑣𝑖𝑡          (7.14) 

After performing the convolution Patterned Grid Mask is applied to guide model’s 

attention towards the important features for enhanced feature extraction. By doing so, the 

model reduces the noise in the data and ensures that the transformer focuses on important 

spatial relationships comparatively. 

       𝑌𝐿𝑒𝑉𝑖𝑇_𝑚𝑎𝑠𝑘𝑒𝑑 =  𝑌𝑐𝑜𝑛𝑣_𝑙𝑒𝑣𝑖𝑡 ⊙ 𝑀           (7.15) 

Stage 4: Global Response Normalization: 

After applying the patterned grid mask has been applied, the GRN is incorporated to 

normalize the activations of each feature map across the channels. GRN establishes an effective 

balance among activations ensuring that no single channel dominates the feature 

representation. GRN works by normalizing the activations in each channel by computing the 

sum of the squared activations across all channels and by adding a small constant є to prevent 

division by zero. The normalization of the activation ensures that all channels contribute 

equally to the next stage of the model, improving generalization and reducing the risk of 

overfitting.  The formula for normalization is given in equation number (7.16).  

𝐺𝑅𝑁(𝑥𝑖) =  
𝑥𝑖

√∑ 𝑥𝑗
2𝑁

𝑗=1 +𝜖
            (7.16) 

Stage 5: Attention Mechanism 

The feature map obtained from the LeViT block is a feature map which contains both 

local and global spatial features. This feature map is pass as input to the Max Self Attention 

block. This data transition is important because it makes sure that the Max SA module receives 

input that has already undergone a hybrid local, global feature extraction. The above is 

formulated employing equation (7.17) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉          (7.17) 
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The employed attention mechanism computes the relationship between various parts of the 

input using the formula: 

Max-SA operates by splitting into two parts a shown in equations (7.18) and (7.19): 

Block Attention block: Focuses on local features. 

    𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐵(𝑄𝐵, 𝐾𝐵, 𝑉𝐵) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐵𝐾𝐵

𝑇

√𝑑𝑘
)𝑉𝐵 ⊙ 𝑀            (7.18)  

 

Grid Attention block: Focuses on global features. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑔𝑟𝑖𝑑(𝑄𝑔𝑟𝑖𝑑, 𝐾𝑔𝑟𝑖𝑑, 𝑉𝑔𝑟𝑖𝑑) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝑔𝑟𝑖𝑑𝐾𝑔𝑟𝑖𝑑

𝑇

√𝑑𝑘
)𝑉𝑔𝑟𝑖𝑑 ⊙ 𝑀          (7.19) 

Before applying block attention and grid attention, the patterned grid mask is applied 

to make sure that the attention mechanism focuses on relevant parts of the image. 

Block Attention: By employing block attention mechanism the made is made to focus on fine-

grained details of the image. By applying this features and patters from small regions of the 

image containing critical information can be understood by the model. 

Grid Attention:  By employing Grid attention mechanism the made is made to focus on 

capturing global dependencies of the image. By applying this features and patterns from whole 

image containing critical information can be understood by the model. 

After applying Max-SA and GRN, model has identified both local and global features and 

patterns, refined through various attention mechanisms and normalized channels. The obtained 

features contain both low-level details and high-level structures, making them discriminative 

for tumor detection. So, in the final layer classification of the tumor is done from the most 

focused and refined set of features as shown in equation (7.20).  

           𝑌𝐺𝑅𝑁_𝑀𝐿𝑃 =  𝐿𝑖𝑛𝑒𝑎𝑟(𝐺𝑅𝑁(𝑋𝑀𝐿𝑃))           (7.20) 
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7.4 Experimental Setup and Result Analysis 

The experimental setup and detailed results analysis are presented in the following section: 

7.4.1 Experimental setup 

Every experimental test is conducted concurrently on two NVIDIA GPUs, specifically 

A5000s with 24 GB of RAM each. 128 GB RAM system is deployed. Numerous data analysis 

frameworks, such as Pandas, Numpy, Seaborn, 496 Matplotlib, and Scikit-learn, were 

employed in the study. The entire framework is executed for ten epochs. 20% of the data were 

used for testing, while the remaining 80% were used for training. The proposed model was 

trained on the training data. The suggested model was fine-tuned utilising a variety of 

parameters, including hyper parameters, to improve classification accuracy and prevent 

overfitting. Different learning rates were applied, and it was found 506 that the default learning 

rate of 0.001 gave better results. 

7.4.2 Results Analysis 

In this study, the proposed model’s ability to generalise on various datasets is analysed. 

The proposed model is deployed for both binary classification and multi classification. Main 

aim of this research is to perform experiments and prove from the results achieved that the 

proposed model owing to its efficient performance, and good generalisation capacity it can be 

commonly used as a baseline deep learning model for brain tumor classification. Additionally,  

In this research, Gaussian filters were applied to remove noise from brain tumor MRI scans to 

enhance the performance. These filters differed in strength based on the kernel size and 

standard deviation. We applied various combinations of parameters to the brain tumor MRI 

scans to evaluate their impact on performance. Later, patterned GridMask was applied to 

enhance the generalization performance of the deep learning model and improve its 

adaptability across various images. 
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7.4.2.1 Quantitative Analysis 

Figure 7.3 provides a virtual representation of proposed model effectiveness across 

various binary datasets. From the Figure 7.3, it is clear that the model demonstrated exceptional 

results, showcasing its robustness and consistency.  The proposed model achieved the 

following results, on the Br35h dataset, the model achieved accuracy, precision, recall, F1-

Score, and MCC values of 99.63, 99.82, 99.68, 99.68, and 99.01, respectively. On the Kaggle 

binary dataset, the model reached accuracy, precision, recall, F1-score, and MCC values of 

99.85, 99.62, 99.89, 99.58, and 98.00, respectively. For the BT-small 2c dataset, the model 

obtained values of 99.65, 99.25, 99.28, 99.56, and 98.93 for accuracy, precision, recall, F1-

score, and MCC. Finally, on the BT-large 2c dataset, the proposed model achieved accuracy, 

precision, recall, F1-score, and MCC values of 99.68, 99.68, 99.51, 99.86, and 98.43, 

respectively. These results indicate strong and consistent performance across multiple binary 

datasets. 

 

Figure 7.3 Binary classification 

Notably, the model's effective handling of class imbalance played a critical role in 

achieving high accuracy and generalization across diverse datasets. This strong performance 

across all binary classification tasks highlights the model's ability to generalize well, even in 
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the presence of imbalanced data, further establishing its reliability for similar tasks. The visual 

data offers a comprehensive view of the model's capabilities, illustrating its successful handling 

of class imbalance and its potential for broader applications. The results not only emphasize 

the model's efficiency but also its adaptability and strength in producing reliable outcomes 

across multiple datasets proving its generalizability in binary class classification. 

 

 

 

Figure 7.4 Multi class classification 

Figure 7.4 visualizes the proposed model performance across different datasets, 

exhibiting its robustness and effectiveness in multi-class classification. On the Brain Tumor 

MRI dataset, the proposed model demonstrated exceptional accuracy, achieving 99.85 for the 

normal tumor class, 99.65 for the Glioma class, 99.84 for the Meningioma class, and 99.63 for 

the Pituitary class. Similarly, on the Kaggle multi-class dataset, the model achieved accuracies 

of 99.65, 99.45, 99.36, and 99.14 for the normal tumor, Glioma, Meningioma, and Pituitary 

classes, respectively. 

The proposed model persistently demonstrated efficiency across multiple tumor 

classes, including No tumor, Glioma, Meningioma and pituitary as assessed on datasets such 

as the Brain Tumor MRI, Kaggle multi-class, BT-large 4c and Figshare datasets. Notably, the 
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proposed model achieved outstanding stability while classifying classes with significant 

imbalance, performing particularly well on the Brain Tumor MRI dataset, nearly followed by 

the Kaggle, Figshare and BT-large datasets. This stable performance, despite varying 

imbalance degrees, underscores the model’s exceptional generalization capabilities. The 

visualized results indicate that the model handles complex imbalanced data reliably and 

achieved outstanding performance in distinguishing between the multi classes. Such consistent, 

high-level performance across datasets validates the proposed model’s adaptability and 

reinforces its potential as a versatile tool in medical image classification for multi-class 

scenarios.  

From the overall comparison of results obtained by the proposed model in both binary 

and multi class classification, it can be observed and understood that the proposed model not 

only achieved exceptional accuracy but also achieved exception results for other performance 

metrics employed also proving its efficacy and generalization capability on imbalanced 

datasets irrespective of their imbalance ratios. 

The proposed model achieved exceptional performance on the Brain Tumor MRI 

dataset, accurately classifying normal tissue, Glioma, Meningioma, and Pituitary tumor 

classes. Similarly, in the Kaggle multi-class dataset, the model maintained high precision, 

demonstrating its effectiveness in distinguishing between these classes, despite the presence of 

imbalanced data. The BT-large 4c dataset, with its more complex tumor classes and larger 

image dimensions, further challenged the model, yet the hybrid approach ensured that it 

consistently delivered high performance, showcasing its scalability for large datasets. 

Additionally, the Figshare dataset provided further evidence of the model’s reliability, as it 

handled various tumor types and class imbalances with ease, reinforcing its adaptability to 

diverse imaging conditions. The combination of visual and tabular data provides a 

comprehensive view of the model's capabilities, illustrating its ability to generalize effectively 
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across datasets. The results clearly highlight the model’s precision and recall, which are 

significantly enhanced by the patterned Grid Mask improving tumor localization, ensuring 

detailed and accurate classification. Gaussian filtering contributes to the model’s ability to 

handle noisy or low-quality images, which is particularly valuable in medical imaging 

scenarios where dataset quality can vary significantly. 

Furthermore, the model’s exceptional performance in handling class imbalance proves 

crucial in achieving reliable results across various tumor types, especially those that are 

underrepresented in training data. The successful application of this hybrid approach in multi-

class classification tasks demonstrates its potential for broader applications beyond brain tumor 

classification, making it suitable for other complex medical imaging problems. Ultimately, the 

results not only emphasize the model’s high accuracy but also its adaptability and scalability, 

proving it to be a strong candidate for real-world clinical use. The model’s ability to generalize 

across different datasets, tumor types, and imaging conditions ensures its utility in various 

medical imaging tasks, where multi-class classification is essential. Its successful 

implementation of Patterned Grid Mask and Gaussian filtering techniques further solidifies its 

position as a cutting-edge solution for classifying complex tumor types, addressing class 

imbalance, and delivering reliable, consistent results. 

Figure 7.5 below compares the performance analysis of the proposed model while 

classifying brain tumors in binary datasets, directly with the latest state-of-the-art techniques 

in the current environment. The table presents a comparison of the proposed model against 

recent SOTA methods across several publically available binary classification datasets, where 

the proposed model consistently achieves higher accuracy scores. The figure also visually 

highlights the model’s performance over SOTA techniques, showing that the hybrid model 

yields improvements ranging from 1% to 8% across various binary class datasets. These 
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visualizations make it clear that the proposed model stands out in the current environment, 

constantly outperforming recent advance models also. 

 

Figure 7.5 Performance of Proposed vs SOTA for Binary Class Classification 

The comprehensive evaluation of the proposed model’s effectiveness in multi-class 

classification again the latest SOTA techniques is shown in Figure 7.6 It highlights a detailed 

comparison across various publicly available datasets, where the proposed model constantly 

outperformed recent SOTA methods, achieving notable accuracy across all datasets. The visual 

comparison in Figure 7.6 further analyse the performance gains, explaining the clear advantage 

of the hybrid model in complex multi-class classification tasks. Notable, the hybrid model’s 

ability to address data complexities infer the performance improvements of the model ranging 

from 1% to 5% across various datasets, visualizing its adaptability and robust classification 

capacity. This displayed that the proposed model underscores its potential as a leading solution 

for brain tumor classification, setting a new benchmark in comparison to current SOTA 

techniques. 
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Figure 7.6 Performance of Proposed vs SOTA for Multi Class Classification 

7.4.2.2 Complexity Analysis 

Overall, the time and space complexity of the model can be quite high, especially for 

large input data and a large number of trainable parameters. However, these problems can be 

minimised with the aid of effective algorithms and hardware accelerators like GPUs. 

Furthermore, methods like early stopping and weight regularisation can assist in reducing the 

amount of trainable parameters as well as decreasing overfitting, both of these can lower the 

model's time and space complexity. For fair complexity and generalisation analysis, datasets 

belonging binary classification and multi- classification were considered. 

(i) Time Complexity 

Our proposed model also aims not only at improving the accuracy but also to boost the 

computational efficiency. Figure 7.7 provides a graphical view, with time per image on the x-

axis and different classifiers on the y-axis, clearly showing that our model consistently 

processes images faster than other models in the current environment. 
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Figure 7.7 Performance of Proposed Model vs SOTA for Binary Class Classification 

From Figure 7.8, it can be observed that the proposed model not only performed well 

on binary datasets but also proved computationally efficient in multi class datasets also. Results 

show that our proposed model processed each image in just 4.87 seconds per minute on brain 

tumor MRI dataset, 4.62 seconds per image on kaggle multi-class dataset, 4.08 seconds on the 

BT-large 4c dataset and 4.21 seconds per image on the Figshare dataset, making it the most 

efficient among the models tested. Figure 7.8 provides a visual comparison, with time per 

image on the –axis and various classifiers on the y axis, showing that our model consistently 

processes images faster than other SOTA techniques in the current environment. 
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Figure 7.8Performance of Proposed model vs SOTA vs Proposed Model for Multi Class 

Classification. 

(ii) Space Complexity: 

The space complexity of the proposed model depends on the number of trainable 

parameters it has. Each parameter needs memory to store its value, so the more parameters 

there are, the more memory is needed. Besides the parameters, memory is also required for 

storing input data, activations, and gradients during training. This memory use is influenced by 

the size of the input data, the number of units in the model, and how many training steps are 

needed. Since deep learning models usually have millions of parameters, the memory demand 

becomes quite large for big models and datasets. 

The main goal of the proposed model is to improve how efficiently it uses computing 

resources. This is done through two main techniques: 

 Selective Attention and Feature Focus: Techniques like MaxViT and Patterned Grid 

Mask work by focusing on the most important regions or features of the input data, 
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mechanism to process only key parts of the image, while the Patterned Grid Mask 

selectively processes relevant areas, minimizing unnecessary calculations and 

improving efficiency. 

 Simplified and Lightweight Operations: Gaussian filters and GRN_MLP contribute 

by simplifying operations. Gaussian filters provide efficient noise reduction with 

minimal computational cost, improving input quality for faster processing. GRN_MLP 

reduces parameter complexity and computational waste by learning to ignore irrelevant 

features, leading to quicker convergence and lower resource consumption. 

In conclusion, our results show that the proposed model achieves both high accuracy and 

computational efficiency, making it an excellent choice for real-world applications. Whether 

used for binary or multi-class classification, the model consistently outperforms state-of-the-

art methods by processing each image faster and with greater accuracy. This combination of 

strong performance and low computational demand makes it an ideal solution for a range of 

practical uses, delivering meaningful improvements over current hybrid techniques. Its 

versatility and efficiency emphasize its potential for broad applications across diverse 

classification tasks. 

The following figures visually represent the performance metrics achieved by the proposed 

hybrid model, which utilizes patterned Grid Masking and Gaussian filtering techniques on 

datasets like the Brain Tumor MRI, Kaggle multi-class, BT-large 4c, and Figshare datasets for 

multi-class classification, as well as various binary datasets. These figures underscore the 

model’s strong performance, demonstrating its robustness, consistency, and adaptability across 

multiple datasets. 

The proposed model effectively addresses class imbalance and the lack of generalized 

models in medical imaging using the Patterned Grid Masking technique, which improves 

feature extraction and tumor segmentation. Gaussian filters further enhance noise reduction, 
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ensuring accurate classification of even rare tumor types. This approach significantly boosts 

the model’s accuracy and generalization across all tumor types. 

7.4.2.3 Ablation study 

This section provides deeper analysis of proposed model on various study cases. 

• Case A: MaXViT base model is applied for both binary and multi-class classification. 

• Case B: Introducing LeViT to the architecture. 

• Case C: Integrating GRN based MLP module to the architecture. 

• Case D: Integrating Gaussian Filters to the architecture. 

• Case E: Integrating Patterned Grid Mask to the architecture. 

• Case F: Proposed Model 

The case study reveals a clear improvement in accuracy as advanced techniques are 

integrated into to model. The Bar graph from Figure 7.9 illustrates the impact of various model 

modifications on binary classification datasets. In Case A which applies MAXViT alone, the 

accuracy is modest, just below 80%. By introducing LeViT in Case B yields a slight 

improvement, but it remains insufficient. The integration of GRN-based model in case C 

further improved the accuracy, indicating that this module is beneficial for enhancing the 

model’s ability to classify accurately. Likewise, the integration of Case D, suggest that these 

filters added a meaningful contribution to the model accuracy. In case E, the accuracy reached 

a notably higher level, with values recorded at 95%, explaining the effect of this integration. 

Finally, the proposed model in Case F achieves near-perfect accuracy, approaching 100% 

across all datasets, suggesting it is well generalised technique. Overall, this study highlights 

that integration of these techniques incrementally improves model performance, with the 

proposed model demonstrating the highest effectiveness and generalisation for binary 

classification. 



189 

 

 

Figure 7.9 Ablation Study on Binary Classification 

Figure 7.10 shows how different versions of a model perform on a multi-class 

classification task. Starting with Case A, where only MAXViT is used, the accuracy is fairly 

low. Each following case adds a new feature to the model, which generally improves accuracy. 

For instance, adding a GRN-based MLP module in Case C and Gaussian Filters in Case D 

make the model better, but it’s only when the Patterned Grid Mask is added in Case E that we 

see a big boost in accuracy, getting close to 95%. The final model in Case F, which combines 

all these techniques, achieves the highest accuracy, almost reaching perfect performance. This 

shows that each addition helps, but the combined model is the most effective. 

 

Figure 7.10 Ablation Study on Multi-Class Classification 
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7.4.2.4 Generalisation Analysis 

The following Figure 7.11 provide an analysis of the model's generalization ability 

across multiple datasets. In binary classification, the model achieved exceptional performance 

on the Br35h dataset, showing superior results compared to other datasets. This performance 

highlights its effectiveness in identifying the specific features required for accurate 

classification within the Br35h dataset. To further evaluate generalization, we conducted an 

analysis where the model was trained exclusively on the Br35h dataset and then tested on 

images from three other datasets that were not part of the training phase. This approach enabled 

us to assess how well the model could adapt to unseen data from entirely different sources. The 

results, illustrated in the figure, reveal that the proposed model maintained strong accuracy 

when applied to these previously unseen datasets. This suggests that the model can effectively 

generalize, even when trained on a single dataset and exposed to data from different sources 

during testing. 

Such robust generalization is essential for binary classification in medical imaging, as 

it indicates that the model can perform reliably across diverse datasets. The ability to generalize 

in this way supports the model's practical utility, especially in real-world applications where 

unseen data often differ from the original training dataset. This cross-dataset performance 

highlights the model’s adaptability and its potential to be a reliable tool in various clinical 

settings, as it is not strictly bound to the specific characteristics of one dataset but can extend 

its learned representations across other binary classification tasks. 
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Figure 7.11 Generalisation Analysis on Binary Classification 

The following Figure 7.12 provides an analysis of the model's generalization ability 

across multiple datasets. In multi-class classification, the model achieved exceptional 

performance on the Brain Tumor MRI dataset, showing superior results compared to other 

datasets. This performance demonstrates its effectiveness in identifying specific features 

required for accurate classification across multiple classes within the Br35h dataset. 

To further evaluate generalization, we conducted an analysis where the model was 

trained exclusively on the Brain Tumor MRI dataset and then tested on images from three other 

datasets that were not included in the training phase. This approach allowed us to assess how 

well the model could adapt to unseen data across multiple classes from entirely different 

sources. The results, illustrated in the figure, reveal that the proposed model maintained strong 

accuracy when applied to these previously unseen datasets, even in a multi-class classification. 

This suggests that the model can effectively generalize to a range of classes, even when trained 

on a single dataset and exposed to data from other sources during testing. 

Such robust generalization is essential for multi-class classification in medical imaging, 

as it indicates that the model can reliably distinguish between multiple classes across diverse 
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datasets. This ability to generalize supports the model's practical utility, especially in real-world 

applications where unseen data often vary significantly from the original training dataset. The 

cross-dataset performance highlights the model’s adaptability and its potential to serve as a 

reliable tool in various clinical settings, as it is not strictly limited to the specific characteristics 

of one dataset but can extend its learned representations to multi-class classification tasks 

across other datasets. 

 

Figure 7.12 Generalisation Analysis on Multi class Classification 

7.5 Chapter Summary 

This chapter presents a comprehensive exploration of a novel hybrid deep learning (DL) 

model designed to improve classification accuracy and robustness in binary and multi-class 

scenarios. A primary focus is placed on addressing class imbalance, reducing overfitting, and 

handling image occlusions. To achieve these goals, the model incorporates several innovative 

techniques, including the use of Gaussian filters for noise reduction and a Patterned-GridMask, 

which enhances the standard GridMask for more effective occlusion handling. These 

improvements allow the model to generalize effectively across diverse datasets, even under 

challenging conditions. Further architectural advancements are introduced, specifically 

enhancing the Multi-Axis Vision Transformer (MaxViT) for optimized computational 
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efficiency and scalability. These modifications improve the model's performance, enabling 

faster and more accurate classifications. A rigorous comparative evaluation demonstrates the 

model's superior performance relative to existing DL models, confirming its robustness and 

adaptability across multiple datasets. The chapter concludes with insights into the model's 

potential applications, underlining its capacity to meet complex classification requirements 

with enhanced accuracy, resilience, and efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



194 

 

Chapter Eight: CONCLUSION AND FUTURE SCOPE 

 

This chapter presents a comprehensive summary of the research work done. It includes 

the research summary of the work done in Section 8.1. The chapter also presents the future 

aspects of the research work performed in Section 8.2 and how the study can help the future 

researchers in the said domain. 

8.1 Research Summary 

This research significantly advances the field of image processing and classification by 

addressing critical challenges such as dataset imbalance, generalization, and computational 

efficiency in machine learning (ML) and deep learning (DL) models. Through the development 

and application of innovative hybrid approaches, it demonstrates the effectiveness of 

combining data-level and algorithmic-level modifications to enhance model performance. 

The study begins with an in-depth exploration of class imbalance, its characteristics, 

and metrics for measurement. A thorough review of existing approaches for addressing class 

imbalance in deep learning revealed that standalone data-level or algorithmic-level solutions 

often fall short in delivering optimal outcomes. From extensive experiments, it was established 

that hybrid strategies combining both levels are more effective in mitigating imbalance and 

improving model performance. This led to the development of ConvNexT-CRL, a hybrid 

model incorporating advanced data augmentation techniques alongside the CRL loss function. 

Applied to the BreakHis dataset, this model achieved a remarkable accuracy of 99.2%, 

outperforming existing methods by 18%, thus validating the superiority of hybrid approaches. 

Further research extended these principles to tumor detection and classification tasks. 

At the data level, generative adversarial networks (GANs) were employed to generate diverse 

synthetic images, addressing data scarcity and increasing dataset variety. Traditional 
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augmentation techniques, including rotation, flipping, scaling, and contrast adjustments, were 

also applied to enhance robustness and generalization. On the algorithmic front, Vision 

Transformers (ViT) were integrated with auxiliary artificial neural networks (ANNs), enabling 

the capture of complex spatial and geometric features. This multi-output architecture 

effectively improved the model’s decision-making capabilities. The combined approach 

delivered enhanced performance, achieving testing accuracies of 99.8% for binary 

classification and 99.3% for multi-class tasks, showcasing its potential in real-world 

applications. 

In this research, to optimize resource utilization and reduce computational overhead, a 

novel SL(t)-ViT model was introduced, leveraging a multi-scale attention mechanism as a more 

efficient alternative to traditional self-attention. This mechanism effectively captured multi-

scale features while significantly minimizing computational costs. By integrating this approach 

with GANs for diverse and high-quality data augmentation, the model addressed challenges 

such as image blurriness and model collapse, leading to substantial gains in accuracy. 

For binary classification, it achieved testing accuracies of 99.8, 99.7, 99.6, 99.54, and 

99.5, while for multi-class classification, it delivered 99.3, 98.6, 98.5, and 98.2. These results 

represent significant improvements, with gains of 1% to 2% for binary classification and 9% 

to 10% for multi-class classification compared to state-of-the-art techniques. The model’s 

efficiency and accuracy, driven by its innovative multi-scale attention mechanism and diverse 

data augmentation strategies, position it as a leading solution for brain tumor identification, 

excelling in both performance and resource optimization. 

Further to address the optimization problem by improving computational efficiency, a 

computationally efficient DL framework was proposed, addressing dataset imbalance through 

a hybrid model design, ensuring both accuracy and speed in breast cancer image classification. 
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Proposed novel framework excels in accuracy and generalization across medical imaging 

datasets, providing a robust tool for precise diagnostics.  

The proposed model integrated features from two classifiers, Inception ResNet V2 and 

Vision Transformers (ViT), to enhance the classification of breast cancer. This synergistic 

blend enhances adaptability, ensuring consistent performance across diverse dataset scales. A 

key contribution is the introduction of an Efficient Attention Mechanism within one of the 

classifiers, optimizing focus on critical features for improved accuracy and computational 

efficiency. Further, a Resource-Efficient Optimization model through feature selection is 

proposed, streamlining computational usage without compromising accuracy. Addressing the 

inherent heterogeneity within classifiers, our framework integrates high dimensional features 

comprehensively, leading to more accurate tumor class predictions. This consideration of 

heterogeneity marks a significant leap forward in precision for breast cancer diagnosis. 

 An extensive analysis on datasets, BreakHis and BACH, that are imbalanced in nature 

is conducted by evaluating complexity, performance, and resource usage. Comprehensive 

evaluation using the datasets and standard performance metrics accuracy, precision, Recall, 

F1-score, MCC reveals the model's high efficacy, achieving a testing accuracy of 99.36 and 

99.4, with precision, recall, F1-score and MCC scores of 99.19, 98.7, 98.98, 98.52 and 98.9, 

99.86, 99.3, 98.8 on the BreakHis and BACH datasets, respectively. Our proposed model 

outperforms state-of-the-art techniques, demonstrating superior accuracy across different 

datasets, with improvements ranging from 0.25% to 15% on the BACH dataset and from 0.36% 

to 15.02% on the BreakHis dataset. The collective contributions, from framework and hybrid 

model design to feature selection and classifier heterogeneity consideration, establish a holistic 

and state-of-the-art approach, significantly improving accuracy and establishing optimization 

in breast cancer classification from MRI images. 
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Additionally, this research introduced innovative techniques to tackle generalization 

challenges in brain tumor classification. Gaussian noise reduction was employed to enhance 

image clarity, while a Patterned-Grid Mask selectively emphasized critical regions, preserving 

essential tumor details. Modifications to the Multi-Axis Vision Transformer (MaxViT) 

architecture, such as replacing MBConv blocks with LeViT blocks and incorporating GRN-

based MLPs, significantly improved computational efficiency. These enhancements resulted 

in superior classification accuracy, robustness, and speed, outperforming state-of-the-art 

models across multiple datasets. 

Throughout the research, the importance of multi-faceted approaches became evident. 

Hybrid methods consistently demonstrated superior performance, achieving up to 10% better 

results than existing techniques. Models incorporating Grid Attention, Block Attention, and 

Patterned-Grid Masks generalized well across underrepresented classes and untrained datasets. 

Furthermore, the integration of efficient attention mechanisms, such as the Nystrom Attention 

Mechanism, substantially reduced computational overhead while maintaining high accuracy, 

making these methods highly scalable and resource-efficient. The proposed model 

demonstrated outstanding performance in both binary and multi-class classification, achieving 

high accuracy, speed, and robustness across various tasks. Extensive evaluations across 

multiple datasets yielded testing accuracies of 99.63, 99.85, 99.65, and 99.65 for binary 

classification, and 99.47, 99.4, 98.96, and 99.11 for multi-class classification. These results 

reveal the model's superior performance, with a significant improvement of 1% to 2% in binary 

classification and 9% to 10% in multi-class classification over state-of-the-art methods. 

In conclusion, this thesis highlights the efficacy of hybrid frameworks in overcoming 

critical challenges of class imbalance, generalization, and computational efficiency. By 

combining advanced data augmentation techniques, innovative attention mechanisms, and 
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hybrid architectures, this research not only achieves exceptional results but also sets a 

foundation for future advancements in AI-driven imaging solutions. These contributions pave 

the way for more reliable, efficient, and accessible tools, with broad implications for both 

research and real-world applications. 

8.2 Future Aspects 

Following are the future aspects of the research work performed: 

 Results for AutoML implementation can be improved by using more advanced models 

for the ensemble with hyper-parameter optimization. 

 More complex evolutionary strategies can be considered for finding the best models. 

Apart from working on model generation, research on AutoML can also be done in data 

preparation, feature engineering, and model evaluation. Thus, creating a complete 

platform to make addressing class imbalance very trivial to implement for the user by 

encapsulating all the complexities within an AutoML framework. 

 Also, for addressing class imbalance, future work in this domain includes exploring 

non-hierarchical structures for the ensembles and different ways to optimize them. It is 

also essential to see how this framework performs across domains. 

 The proposed model for improving generalization, can be extended to enhances image 

generalization, making it adaptable across various applications. With advanced 

techniques, researchers can develop a comprehensive generalized system that processes 

data directly, avoiding pre-conversion steps and preserving effectiveness. This 

adaptable framework allows for improved accuracy across diverse use cases, 

supporting generalization in new contexts. 
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8.3 Potential Industrial Applications 

(i) Addressing Class Imbalance in Healthcare The methodologies developed in this 

research for addressing class imbalance hold transformative potential for healthcare 

applications, ensuring more reliable and accurate diagnostic and decision-making systems. Key 

applications include: 

(ii) Improved Disease Detection and Diagnosis By mitigating the impact of class 

imbalance in medical datasets, the proposed frameworks enable the development of diagnostic 

tools that accurately identify rare conditions such as specific cancer subtypes or uncommon 

genetic disorders. This ensures that underrepresented cases are detected with higher precision, 

reducing the risk of misdiagnosis. 

(iii) Enhanced Performance in Medical Imaging The hybrid models effectively 

balance datasets in medical imaging, ensuring consistent classification of tumors, lesions, and 

other abnormalities. This is particularly impactful in imaging modalities like MRI and 

histopathology, where class imbalance often skews the performance of traditional machine 

learning models. 

(iv) Equitable Diagnostic Systems Addressing class imbalance helps create diagnostic 

systems that perform equitably across diverse patient populations, reducing healthcare 

disparities. This is critical for ensuring that minority or underrepresented groups receive 

accurate and reliable diagnoses. 

(v) Robust AI for Rare Diseases By generating synthetic data and applying advanced 

augmentation techniques, the proposed methods improve the robustness of AI models in 

detecting and diagnosing rare diseases, where data scarcity often leads to poor model 

performance. 
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(vi) Precision in Multi-Class Healthcare Tasks The ability to handle imbalance in 

multi-class settings ensures that all disease categories, including those with fewer samples, are 

classified accurately. This has direct applications in areas such as multi-class tumor grading or 

identifying different stages of a disease. 

(vii) Optimized Clinical Trial Analysis Balancing class representation in clinical trial 

datasets enhances the reliability of AI-driven analysis, ensuring that treatment effects are 

accurately measured across all patient subgroups. 

These advancements in addressing class imbalance pave the way for fairer, more 

accurate, and inclusive healthcare solutions, ultimately improving patient care and outcomes. 
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