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Abstract

The Bieberbach conjecture, undoubtedly the most famous coefficient problem in univalent function

theory, played a significant role in the development of the field. Various subclasses of the class of

normalized analytic univalent functions, denoted by S , were introduced, and determining the sharp

estimate of nth Taylor coefficients for functions in these subclasses of S is still a challenging and in-

triguing problem. For the classes S ∗(ϕ) and C (ϕ) introduced by Ma and Minda in ‘A unified treatment

of some special classes of univalent functions. Proceedings of the Conference on Complex Analysis,

Tianjin, Conf Proc Lecture Notes Anal., I Int Press, Cambridge, MA. 157-169 (1992)’, the estimate of

|an| for n = 2,3,4 were known. In Chapter 2, we obtain the sharp estimate of |a5| for these classes.

The derived estimates coincide with some already known bounds for other subclasses of starlike and

convex functions, while also providing new cases. In continuation of coefficient problems, Chapter 3

gives the sharp bounds of second and third-order Hermitian-Toeplitz determinants for the same class-

es along with the class of close-to-convex functions. The established bounds directly extend to various

subclasses as well, which show the applicability and significance of the results. This thesis also dealt

in the radius problems along with the coefficient problems for a class of semigroup generator denoted

by Aβ in Chapter 4. Using the sharp estimate of nth coefficient for functions in the class Aβ , we estab-

lish the sharp Bohr radius, Bohr-Rogosinski radius and radius of starlikeness of order α . Additionally,

Hankel determinants, Toeplitz and Hermitian Toeplitz determinants, Zalcman functional and bounds

of successive coefficient difference also investigated for the same class. In the subsequent chapter,

we introduce and study the notion of Toeplitz determinants in the case of higher dimensions. The

sharp bounds of second and third-order Toeplitz determinants constructed over the Taylor coefficients

of biholomorphic mappings are established. Chapters 5 and 6 give the sharp estimates of Toeplitz de-

terminants for the subclasses of starlike mappings and quasi-convex mappings, respectively, defined

on the unit ball in a complex Banach space and on the unit poly disk in Cn. These derived bounds

extend the already known bounds for univalent functions to higher dimensions.
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Chapter 1

Introduction

This chapter serves as a foundational framework, presenting definitions and results that pro-

vide background for the carried out work. The contents of this chapter are required throughout

the thesis. Further, at the end of this chapter, we have included the synopsis of the thesis, a

brief of each chapter.

Univalent function theory, a fascinating branch of complex analysis, studies functions that possess a

one-to-one mapping from one region of the complex plane to another without overlapping or crossing

themselves, revealing profound geometric properties. Classified under geometric function theory, it

uncovers insights into the behavior of these functions through geometric intuition, exemplified by the

Riemann mapping theorem. The theory of univalent functions traces back to major contributions from

the early 20th century, including Koebe’s 1907 paper [82], Gronwall’s [63] 1914 proof of the area theo-

rem, and Bieberbach’s 1916 estimate for the second coefficient of a normalized univalent function [18].

This theory has accumulated a significant body of literature. Goodman’s [59] comprehensive book

serves as a fundamental resource, covering essential concepts and results. Edited volumes like Cur-

rent Topics in Analytic Function Theory by Srivastava and Owa [174] and works by Brannan and

Clunie [26] offer collections of research and survey articles on univalent functions. Bernardi’s bibli-

ography [17] provides extensive topic coverage. Various textbooks authored by Duren [41], Goluzin

[54], Hayman [69], Pommerenke [144], Hummel [71], Jenkins [75], Milin [120], and Hallenbeck & Mac-

Gregor [64] offer detailed insights into different subclasses of univalent functions, while Graham and

Kohr’s book [61] extensively covers univalent functions in both one and higher dimensions. Additionally,

the recent book by Thomas et al. [182] presents up-to-date summaries of key properties and results

for significant subclasses of univalent functions, collectively providing a comprehensive foundation for

studying this theory and its applications.

1
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In the realm of complex-valued functions, akin to their real counterparts, several differential inequal-

ities provide crucial characterizations of these functions. For instance, the Noshiro-Warschawski the-

orem states that If f (z) is analytic in the open unit disk U with Re f ′(z) > 0 for z ∈ U, then f is

univalent in U. In 1981, Miller and Mocanu [122] introduced the true complex analogue of such real

differential inequalities, termed differential subordination, which replaces and extends this approach.

Their monograph, Differential Subordination: Theory and Applications, containing over 400 papers,

offers an extensive discussion of this theory and its numerous applications [121]. The technique of

differential subordination is widely employed to establish various results in univalent function theory.

Bulbocă’s book [28] similarly addresses differential subordination as well as superordination, enrich-

ing understanding in this domain. Notable contributions to this field include works by Ali et al. [9, 10],

Ravichandran et al. [150, 152, 155], Obradović et al. [135], Ponnusamy [145, 146, 147], and Kumar et

al. [91, 94].

A single valued function f which is analytic except for at most one simple pole is said to be univalent

(Schlicht) in a domain D ⊂ C if never takes the same value twice, that is f (z1) 6= f (z2) for all distinct

points z1 and z2. The function f is said to be locally univalent at a point z0 ∈ D if it is univalent in

some neighbourhood of z0. If a function f is analytic and univalent in a domain D , then f ′(z) 6= 0, but

the converse is not necessarily true. For instance, the function f (z) = e2πz is not univalent in |z| < 1.

However, the condition f ′(z0) 6= 0 ensures the local univalence of f at z = z0. We restrict the domain

of study to U := {z ∈ C : |z|< 1} instead of considering a general simply connected domain in C due

to the celebrated Riemann mapping theorem, which states that Any proper simply connected domain

in C is conformally equivalent to the unit disk U.

Let g be an analytic function in the unit disk U. Since the expression f (z) = (g(z)−g(0))/g′(0),

g′(0) 6= 0, represents the translations and stretches (or shrinks ) of the domain g(U) with a rotation,

so properties of the function g can be identified from the corresponding function f . Consequently, we

opt for the normalization f (0) = 0 and f ′(0) = 1 for facilitate analysis. Let A be the class of all such

normalized analytic functions. The class of all normalized functions that are analytic and univalent in

U, is denoted by S . Thus, a function f in the class S has the following series expansion of the form

f (z) = z+
∞

∑
n=2

anzn. (1.0.1)

The leading example of the class S is the Koebe function k(z) = z/(1− z)2, which maps the unit disk

onto the entire complex plane except the slit from −1/4 to −∞. In 1916, Bieberbach [18] gave the

estimate for the second coefficient of functions belonging to the class S . He proved that If f (z) =
z+∑

∞
n=2 anzn ∈ S , then |a2| ≤ 2, with equality if and only if f is a rotation of the Koebe function.

Using the fact that |a2| ≤ 2 for any f in the class S , numerous other geometric properties including

the covering theorem, distortion, and growth theorem, were established. The growth and distortion

theorems claim that If f ∈S and z = reiθ ∈ U, then

r
(1+ r)2 ≤ | f (z)| ≤

r
(1− r)2 and

1− r
(1+ r)3 ≤ | f

′(z)| ≤ 1+ r
(1− r)3 ,
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respectively. Equality occurs in both the bounds if and only if f is a rotation of the Koebe function. As

early as 1907, Koebe [82] discovered that the ranges of all functions in S contain a common disk |w|<
ρ , where ρ is an absolute constant. The Koebe function shows that |ρ| ≤ 1/4, and Bieberbach [19]

later established that The range of every function of class S contains the disk {w∈C : |w|< 1/4}. The

estimate of second coefficient was also the main basis for the famous Bieberbach conjecture: If f (z) =

z+∑
∞
n=2 anzn ∈S , then |an| ≤ n for any integer n ≥ 2. Equality holds if and only if f is rotation of

the Koebe function. This conjecture became one of the most celebrated mathematical problems of the

twentieth century. Many methods were developed to tackle this problem. In 1923, Löwner [114] proved

the conjecture for n = 3 by introducing the Löwner differential equation. Garabedian and Schiffer [50]

applied the variational method to establish |a4| ≤ 4 in 1955. Pederson [140] and Ozawa [137, 138]

used the Grunsky inequality to prove |a6| ≤ 6 in 1968 and 1969 respectively. Finally, In 1984, L. de

Branges [25] gave a remarkable proof using the operator theory and special functions for all values of

n. Many partial results were obtained in the intevening years, including results for special subclasses

of S and for particular coefficients, as well as asymptotic estimates and estimates for general n. For

more proofs and history of Bieberbach conjecture, one can refer to the books [12, 41, 54, 56, 69, 144].

1.1 Starlike and Convex Functions

It took around 65 years to prove Bieberbach’s conjecture. During this period, several subclasses of

S were introduced and the conjecture was verified for them. Apart from their intrinsic properties, the

subclasses serve as test cases for the much more difficult class S . In some cases, there are more

restrictive coefficient estimates, growth, covering and distortion theorems for the full class S .

A domain D ⊂ C is said to be convex if the line segment joining any two points w1 and w2 in D

entirely lies in D . A function f ∈A is called convex if f (U) is a convex domain. The class of all such

functions is denoted by C . A domain D ⊂C is said to be starlike with respect to a point w0 ∈D if every

line segment connecting w0 to any w ∈D remains entirely in D . A function f ∈A is called starlike if

f (U) is a starlike domain with respect to the origin. The class of all such functions is denoted by S ∗.

Analytically, a function f ∈ C if and only if

Re
(

1+
z f ′′(z)
f ′(z)

)
> 0 (z ∈ U). (1.1.1)

Similarly, a function f ∈S ∗ if and only if

Re
(

z f ′(z)
f (z)

)
> 0 (z ∈ U). (1.1.2)

The condition (1.1.1) for convexity was first stated by Study [176] in 1913. The condition (1.1.2) is due

to R. Nevanlinna [127] in 1921. The inequalities (1.1.1) and (1.1.2) reveal a surprisingly close analytic

connection between convex and starlike functions. This was first observed by Alexander [5] stating

that Let f ∈A . Then f ∈ C if and only if z f ′ ∈S ∗. Although the search for the sharp bound of |an|
when f is in the parent class S continued, this problem was solved for the subclasses S ∗ and C .
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The sharp estimates |an| ≤ n for f ∈S ∗ and |an| ≤ 1 for f ∈ C were proved by Nevanlinna [126] and

Löwner [113], respectively.

The analytic characterizations mentioned in (1.1.1) and (1.1.2) when appropriately modified, yields

various other classes of S . For instance, Robertson [158] introduced and studied the concepts of

functions starlike and convex of order α in 1936. A function f ∈A is said to be starlike of order α in U
if Re(z f ′(z)/ f (z))> α for 0≤ α < 1. The class of all such functions is denoted by S ∗(α). A function

f ∈A is said to be convex of order α in U if Re(1+ z f ′′(z)/ f ′(z))> α for 0≤ α < 1. The class of all

such functions is denoted by C (α). If f ∈ C (α) and |z|= r < 1, then

1
(1+ r)2(1−α)

≤ | f ′(z)| ≤ 1
(1− r)2(1−α)

.

If α 6= 1/2, then
(1+ r)2α−1−1

2α−1
≤ | f (z)| ≤ 1− (1− r)2α−1

2α−1

and if α = 1/2, then

log(1+ r)≤ | f (z)| ≤ − log(1− r).

These estimates are sharp. Equality holds in each of the above relations for

fα(z) =


1− (1− z)2α−1

2α−1
, α 6= 1

2
,

− log(1− z), α =
1
2
.

(1.1.3)

Similar results holds when f ∈S ∗(α), for example

r
(1+ r)2(1−α)

≤ | f (z)| ≤ r
(1− r)2(1−α)

.

These inequalities are sharp for the function z f ′α(z).

Another natural extension of the definitions of S ∗ and C are the classes of strongly starlike and

strongly convex functions, respectively. A function f ∈A is said to be strongly starlike of order γ if and

only if ∣∣∣∣arg
z f ′(z)
f (z)

∣∣∣∣< πγ

2
, γ ∈ (0,1].

The class of strongly starlike functions of order γ is denoted by S S ∗(γ). Similarly, a function f ∈A

is called strongly convex function of order γ if and only if∣∣∣∣arg
(

1+
z f ′′(z)
f ′(z)

)∣∣∣∣< πγ

2
, γ ∈ (0,1].

The class of strongly convex functions of order γ is represented by C C (γ).
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1.2 Subordination and Carathéodory Functions

For any two analytic functions f and g, it is said that f is subordinate to g, denoted by f ≺ g, if

there exists a Schwarz function ω(z) such that f (z) = g(ω(z)). Let us denote the family of all Schwarz

functions ω(z) by B0 satisfying ω(0) = 0, |ω(z)| ≤ 1 for z ∈ U, and having the series expansion

ω(z) =
∞

∑
n=1

cnzn. (1.2.1)

If g is univalent, then f ≺ g if and only if f (0) = g(0) and f (U)⊂ g(U). Moreover, If f ≺ g in U, then

for each r ∈ (0,1), f (Ur)⊂ g(Ur), where Ur = {z ∈C : |z| ≤ r}. Further, if f (reiθ ) is on the boundary

of g(Ur) for one point z0 = reiθ0 , with 0 < r < 1, then there is a real α such that f (z) ≡ g(eiαz),

and f (reiθ ) is on the boundary of g(Ur) for every point z in U . This concept is called The Lindelöf

Principle.

Another important family is the class of Carathéodory functions, denoted by P , which consists of

analytic functions in U having the series expansion of the form

p(z) = 1+
∞

∑
n=1

pnzn (1.2.2)

and satisfy Re p(z)> 0 in U. Clearly, the function

L(z) =
1+ z
1− z

, z ∈ U (1.2.3)

is a member of P as it maps the unit disk onto the right half-plane. The analytic characterization of

various subclasses of S can now be expressed involving Carathéodry class or in terms of subordina-

tion. For instance, f ∈S ∗ if and only if z f ′(z)/ f (z) ∈P or z f ′(z)/ f (z)≺ (1+ z)/(1− z) and f ∈ C

if and only if 1+ z f ′′(z)/ f ′(z) ∈P or 1+ z f ′′(z)/ f ′(z) ≺ (1+ z)/(1− z). Carathéodory [29] proved

that for each p ∈P of the form (1.2.2), the sharp inequality |pn| ≤ 2 holds. Ma and Minda [117] found

the sharp estimate of |p2− ν p2
1| for p ∈P and ν ∈ R, which is called the Fekete-Szegö functional.

The bounds on the coefficients of Carathéodory functions are crucial in coefficient problems. Kwon et

al. [101] provided the formula for the fourth coefficient p4, which led to the derivation of sharp estimates

for the third-order Hankel determinant for various subclasses of S . For further details regarding the

estimates on coefficients of p ∈P , we suggest referring to the survey article [35].

1.3 Other Subclasses of Univalent Functions

In 1971, Janowski [72] introduced the following classes that give further generalizations of starlike

and convex functions:

S ∗[A,B] =
{

f ∈A :
z f ′(z)
f (z)

≺ 1+Az
1+Bz

}
and C [A,B] =

{
f ∈A : 1+

z f ′′(z)
f ′(z)

≺ 1+Az
1+Bz

}
,
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where −1 ≤ B < A ≤ 1. It can be easily seen that (1+Az)/(1+Bz) maps the unit disk univalently

onto a convex domain in the right half plane having the diameter endpoints (1−A)/(1−B) and (1+

A)/(1+B) for the range −1 ≤ B < A ≤ 1. Choosing A = 1 and B = −1, the classes S ∗[A,B] and

C [A,B] represent the classes of starlike and convex functions, respectively. For A = (1− 2α) and

B = −1, we get the classes S ∗(α) and C (α), respectively. Among other subclasses of starlike and

convex functions, the Janowski classes are one of the most studied and the work is still ongoing.

Other interesting classes are the classes of uniformly starlike and uniformly convex functions intro-

duced by Goodman [57, 58] in 1991. A function f ∈S ∗ is said to be uniformly starlike, if it maps each

circular arc γ contained in U, with centre ζ also in U, onto an arc f (γ) which is starlike with respect

to f (ζ ). The class of all such functions is denoted by UST. Similarly, a function f ∈ C is said to be

uniformly convex, if it maps each circular arc γ contained in U, with centre ζ also in U, onto a convex

arc f (γ). This class of all these functions is denoted by UCV.

In 1992, Ma and Minda [117] unified various subclasses of starlike and convex functions by introduc-

ing the following classes:

S ∗(ϕ) =
{

f ∈A :
z f ′(z)
f (z)

≺ ϕ(z)
}

and C (ϕ) =

{
f ∈A : 1+

z f ′′(z)
f ′(z)

≺ ϕ(z)
}
, (1.3.1)

where ϕ(z) is an analytic univalent function in U that satisfies ϕ ′(0) > 0 and maps the unit disk onto

a domain in the right half plane, which is symmetric about the real axis and starlike with respect to

ϕ(0) = 1. Suppose ϕ has the following series expansion

ϕ(z) = 1+B1z+B2z2 +B3z3 + · · · , B1 > 0. (1.3.2)

Since ϕ(U) is symmetric with respect to the real axis and ϕ(0) = 1, we have ϕ(z̄) = ϕ(z), which

yields that all Bi’s are real. For the family S ∗(ϕ) and C (ϕ) sharp growth, distortion theorems and

estimates for the Fekete-Szegö functional |a3− νa2
2| are known, where ν ∈ R [117]. Consider, the

analytic functions kϕ,n : U→ C defined by

kϕ,n = zexp
∫ z

0

ϕ(tn−1)−1
t

dt, n = 2,3, · · · . (1.3.3)

Clearly kϕ,n ∈S ∗(ϕ) and it plays the role of Koebe function for the class S ∗(ϕ). We simply denote

kϕ,2 by kϕ . Similarly in case of the family C (ϕ), the analytic function hϕ,n : U→ C satisfying

1+
zh′′ϕ,n(z)
h′ϕ,n(z)

= ϕ(zn−1), n = 2,3, · · · , (1.3.4)

is a member of C (ϕ) and plays the role of extremal function. We simply take hϕ,2 =: hϕ .

It is obvious that S ∗((1+ z)/(1− z)) = S ∗ and C ((1+ z)/(1− z)) = C are the classes of starlike

and convex functions, respectively. If 0 ≤ α < 1, then S ∗((1+(1− 2α)z)/(1− z)) = S ∗(α) and

C ((1+(1−2α)z)/(1− z)) = C (α) become the classes of starlike and convex functions of order α ,



7

respectively. Suppose

φ(z) := 1+
2

π2

(
log

1+
√

z
1−√z

)2

, (1.3.5)

then φ(U) = {w : Rew > |w− 1|} and is clearly a Ma-Minda function. It is proved in [116] and [130]

that C (φ) reduces to the class UCV. Rønning [129, 130] studied the corresponding class of parabolic

starlike functions, denoted by Sp = S ∗(φ). If we define ϕ(z) =
√

1+ z, the class S ∗(ϕ) coincides

with the class S ∗
L introduced by Sokół and Stankiewicz [173]. Geometrically, a function f ∈S ∗

L if and

only if z f ′(z)/ f (z) lies in the region bounded by the right lemniscate of Bernoulli given by {w ∈ C :

|w2−1|< 1}. Therefore S ∗
L = { f ∈A : |(z f ′(z)/ f (z))2−1|< 1}. Mendiratta et al. [118] considered

the class S ∗
RL of functions f such that the quantity z f ′(z)/ f (z) lies in the interior of the left half of the

shifted lemniscate of Bernoulli given by ΩRL = {w ∈ C : Rew > 0, |(w−
√

2)2−1|< 1. Note that, the

function

ϕ(z) =
√

2− (
√

2−1)

√
1− z

1+2(
√

2−1)z

maps the unit disk onto ΩRL. Thus

S ∗
RL =

{
f ∈A :

z f ′(z)
f (z)

≺
√

2− (
√

2−1)

√
1− z

1+2(
√

2−1)z

}
.

Using this approach, various interesting subclasses of starlike functions by confining the values of

z f ′(z)/ f (z) to a defined region within the right half-plane were introduced and studied. Some of them

are listed in Table 1.1 along with their respective class notations.

Class ϕ(z) Reference
S ∗

sin 1+ sinz Cho et al. [34]
S ∗

SG 2/(1+ e−z) Goel and Kumar [52]
S ∗

℘ 1+ zez Kumar and Gangania [92]
∆∗ z+

√
1+ z2 Raina and Sokół [149]

S ∗
e ez Mendiratta et al. [119]

S ∗
qb

√
1+bz, b ∈ (0,1] Sokół [172]

S ∗
Ne 1+ z− z3/3 Wani and Swaminathan [184]

S ∗
B eez −1 Kumar et al. [100]

Table 1.1: Subclasses of starlike functions

Starlike and Convex Functions with Respect to Symmetric Points

A regular function f in U is said to be starlike with respect to symmetrical points if for every r less than

and sufficiently close to 1 and every z0 on |z|= r, the angular velocity of f (z) about the point f (−z0) is

positive at z = z0 as z traverses the circle |z|= r in the positive direction. Sakaguchi [165] showed that

a function f ∈A is starlike with respect to symmetrical points if and only if

Re
z f ′(z)

f (z)− f (−z)
> 0 (z ∈ U).



8

The class of all such functions is denoted by S ∗
s . It is noted that the class of functions univalent and

starlike with respect to symmetrical points includes the classes of convex functions and odd functions

starlike with respect to the origin [165]. Afterwards, Das and Singh [40] introduced the class Cs of

f ∈A , known as the class of convex functions with respect to symmetrical points, which satisfy

Re
(2z f ′(z))′

( f (z)− f (−z))′
> 0 (z ∈ U).

The functions in the class Cs are convex, and Das and Singh proved that the nth coefficient of functions

in Cs is bounded by 1/n for n≥ 2.

Incorporating the notion of subordination, Ravichandran [151] generalized these classes as

S ∗
s (ϕ) =

{
f ∈A :

2z f ′(z)
f (z)− f (−z)

≺ ϕ(z)
}

(1.3.6)

and

Cs(ϕ) =

{
f ∈A :

(2z f ′(z))′

( f (z)− f (−z))′
≺ ϕ(z)

}
, (1.3.7)

where ϕ(z) is given by (1.3.2) and satisfies all the constraints as considered by Ma and Minda [117].

Clearly, for ϕ(z) = (1+ z)/(1− z), the classes S ∗
s (ϕ) and Cs(ϕ) reduce to the classes S ∗

s and

Cs, respectively. For 0 ≤ α < 1, if ϕ(z) = (1+(1−2α)z)/(1− z), then we get the classes of starlike

and convex functions with respect to symmetric points of order α , denoted by S ∗
s (α) and Cs(α),

respectively. For more information about these classes, we refer [31, 53, 181].

Close-to-Convex Functions

Another well known subclass of univalent functions in the unit disk is the class of close-to-convex

functions introduced by Kaplan [76] in 1952. A function f ∈ A is said to be close-to-convex if there

exists a convex function h ∈ C such that

Re
(

f ′(z)
h′(z)

)
> 0.

The class of all such functions is denoted by K . By Alexander’s theorem, if h(z) is convex, then

g(z) = zh′(z) is starlike. Hence, an equivalent form of Kaplan’s definition is that there exists a function

g ∈S ∗ such that

Re
(

z f ′(z)
g(z)

)
> 0 (z ∈ U). (1.3.8)

Various choices of function g in (1.3.8) yield some well known subclasses of K . For instance,

F1 =
{

f ∈S : Re(1− z) f ′(z)> 0
}
, F2 =

{
f ∈S : Re(1− z2) f ′(z)> 0

}
,

F3 =
{

f ∈S : Re(1− z)2 f ′(z)> 0
}
, F4 =

{
f ∈S : Re(1− z+ z2) f ′(z)> 0

}
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and

R =
{

f ∈S : Re f ′(z)> 0
}
.

Ozaki [136] proved that the condition (1.3.8) is sufficient for a function f to be univalent. Functions in

the classes F2 and F4 exhibit nice geometric properties. Functions in the class F2 map U univalently

onto a domain convex in the direction of the imaginary axis whereas functions in the class F4 map

U univalently onto a domain convex in the direction of the real axis. By g(z) = f (z), it is evident that

S ∗ ⊂K and hence C ⊂S ∗ ⊂K . As in the case of convex and starlike functions, close-to-convex

functions also exhibit nice geometric characterization. Let f (z) be analytic function in U and f (Cr) is

the image of circle |z|= r, where 0 < r < 1. Function f is said to be close-to-convex if and only if the

image curve f (Cr) has no ‘large hairpin turns’; that is there are no sections of the curve f (Cr) in which

the tangent vector turns backward through an angle greater than or equal to π. Analytically, Kaplan [76]

showed that If f is analytic and locally univalent in U, then f is close-to-convex if and only if

∫
θ2

θ1

Re
(

1+
z f ′′(z)
f ′(z)

)
dθ >−π, z = reiθ

for each r ∈ (0,1) and for each pair of real numbers θ1 and θ2 with 0 ≤ θ2 − θ1 ≤ 2π. In 1955,

Reade [156] proved that the coefficients of close-to-convex functions satisfy the Bieberbach conjecture

i.e. If f (z) = z+∑
∞
n=2 anzn ∈K , then |an| ≤ n for n = 2,3,4, · · · . Since the Koebe function is in K ,

the result is sharp for each n.

1.4 Geometric Function Theory in Higher Dimensions

There are numerous results in univalent function theory in one complex variable that cannot be

extended to higher dimensions, at least without restrictions. One of the most basic results in the theory

of univalent functions in one variable is the Riemann mapping theorem. Its failure in several variables,

discovered by Poincaré [142], is one of the key difference between geometric function theory in one

variable and in higher dimensions. Cartan [30] stated that the most celebrated problem, the Bieberbach

conjecture, does not hold in the case of several complex variables. Counterexamples show that many

results in the geometric function theory of one complex variable are not applicable for several complex

variables [55, 61].

Let Cn denote the space of n−complex variables z = (z1,z2, · · · ,zn), where z j ∈ C, 1 ≤ j ≤ n and

Ω ⊂ Cn be a domain. There are several definitions of holomorphic functions on a domain Ω ⊂ Cn .

The book by Graham and Kohr [61] provides a systematic treatment of classical results in univalent

function theory and their generalization to higher dimensions.

Holomorphic Mappings in Complex Banach Spaces

Let X and Y be two complex Banach spaces with norms ‖ · ‖1 and ‖ · ‖2, respectively. For simplicity,

we denote both the norms by ‖ · ‖, when there is no possibility of confusion. Let L(X ,Y ) denote the
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Banach space of all continuous linear operators from X into Y with the standard operator norm

‖A‖= sup{‖A(z)‖ : ‖z‖= 1}, A ∈ L(X ,Y ).

Let I denote the identity in L(X ,X). A mapping f : Ω ⊆ X → Y is called holomorphic if for any z ∈ Ω,

there is a mapping D f (z) ∈ L(X ,Y ), called the Fréchet derivative of f at z, such that

lim
h→0

‖ f (z+h)− f (z)−D f (z)h‖
‖h‖ = 0,

i.e.

f (z+h) = f (z)+D f (z)(h)+o(‖h‖).

Let H (Ω,Ω′) represent the set of mappings from Ω ⊆ X into a domain Ω′ ⊆ Y and H (Ω,X) =:

H (Ω). If f ∈H (Ω,Y ) and z ∈ Ω, then for each k = 1,2, · · · , there is a bounded symmetric linear

mapping

Dk f (z) :
k

∏
j=1

X → X ,

called the kth-order Fréchet derivative of f at z, such that

f (w) =
∞

∑
k=0

1
k!

Dk f (z)((w− z)k)

for all w in some neighborhood of z. It is understood that D0 f (z)((w− z)0) = f (z) and for k ≥ 1,

Dk f (z)((w− z)k) = Dk f (z)(w− z,w− z, · · · ,w− z)︸ ︷︷ ︸
k -times

.

Moreover, if f ∈H (Ω,Y ) and the closed segment [a,a+h] is contained in Ω, then the Taylor formula

with remainder

f (a+h) = f (a)+D f (a)(h)+ · · ·+ 1
k!

Dk f (a)(hk)+
∫ 1

0

(1− t)k

k!
Dk+1 f (a+ th)(hk+1)dt

holds for all k ∈ N.

On a bounded circular domain Ω ⊂ Cn, the first and the mth Fréchet derivative of a holomorphic

mapping f : Ω→X are written by D f (z) and Dm f (z)(am−1, ·), respectively. The matrix representations

are

D f (z) =
(

∂ f j

∂ zk

)
1≤ j,k≤n

,

Dm f (z)(am−1, ·) =
( n

∑
p1,p2,··· ,pm−1=1

∂ m f j(z)
∂ zk∂ zp1 · · ·∂ zpm−1

ap1 · · ·apm−1

)
1≤ j,k≤n

,

where f (z) = ( f1(z), f2(z), · · · fn(z))′, a = (a1,a2, · · ·an)
′ ∈ Cn.

If 0 ∈ Ω, mapping f ∈H (Ω) is said to be normalized if f (0) = 0 and D( f (0)) = I. A mapping
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f ∈H (Ω,Y ) is said to be biholomorphic on the domain Ω if f (Ω,Y ) is a domain in Y , and the inverse

f−1 exists and is holomorphic on f (Ω). Let B = {z ∈ X : ‖z‖ < 1} be the unit ball in X . By Un, we

denote the unit polydisk (n−copies of unit disk) in Cn. Further, let ∂Un denote the boundary and ∂0Un

be the distinguished boundary of Un. Keeping the notation used in one variable, let S (B) represent

the set of all normalized biholomorphic mappings from B into X i.e.

S (B) = { f ∈H (B) : f is biholomorphic on B, f (0) = 0, D f (0) = I}.

The study of the class S (B) was comparatively slow to develop, although it was suggested by Car-

tan [30] in 1933.

Starlike and Convex Mappings

It can be seen that the class S (B) is not normal when the dimension is greater than one, hence

there can be no growth or covering theorems or coefficient bounds for the full class. Fitzgerald’s [48]

counterexample shows that the modulus of any combination of the coefficients in the Taylor expansion

of a biholomorphic mapping in any domain in Cn is unbounded. This counterexample as well as failure

of Bieberbach conjecture in higher dimensions strongly suggested that to extend certain results of

geometric function theory from one complex variable to several complex variables and expect to obtain

some positive results, it is worth adding some other conditions, such as convexity or starlikeness, on

the biholomorphic mappings.

Let X and Y be two complex Banach spaces and Ω be a domain in X . A mapping f ∈H (Ω,Y ) is

said to be starlike with respect to z0 ∈Ω if it is biholomorphic on Ω and f (Ω) is a starlike domain with

respect to f (z0) i.e. t f (z)+ (1− t) f (z0) ∈ f (Ω) for all z ∈ Ω and t ∈ [0,1]. We use the term starlike

to refer starlike with respect to the origin. If B is the unit ball in X , let S ∗(B) denote the subclass of

S (B) consisting of normalized starlike mappings from B into X .

For each z ∈ X \{0}, consider the set

Tz = {lz ∈ L(X ,C) : lz(z) = ‖z‖,‖lz‖= 1},

This set is non-empty according to the Hahn-Banach theorem. In 1973, Suffridge [178] derived the

following necessary and sufficient condition:

Theorem 1.4.1. [178] Let f : B→ X be a locally biholomorphic mapping such that f (0) = 0. Then f
is starlike if and only if

Re(lz([D f (z)]−1 f (z)))> 0, z ∈ B\{0}, lz ∈ Tz.

In case of unit polydisc i.e B= Un and X = Cn, the above condition reduces to

Re
qk(z)

zk
> 0, ∀ z ∈ Un \{0},
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where q(z) = (q1(z),q2(z), · · · ,qn(z))′ = (D( f (z)))−1 f (z) is a column vector in Cn and k satisfies

|zk|= ‖z‖= max1≤ j≤n{|z j|}.
Hamada et al. [68] defined the following:

Definition 1.4.2. [68] Let f : B→ X be a normalized locally biholomorphic mapping and α ∈ (0,1).
Then f is starlike of order α if∣∣∣∣ 1

‖z‖ lz([D f (z)]−1 f (z))− 1
2α

∣∣∣∣< 1
2α

, ∀ z ∈ B\{0}, lz ∈ T (z).

In case of X = Cn and B= Un, the above condition is equivalent to∣∣∣∣qk(z)
zk
− 1

2α

∣∣∣∣< 1
2α

, ∀ z ∈ Un \{0},

where q(z) = (q1(z),q2(z), · · · ,qn(z))′ = (D( f (z)))−1 f (z) is a column vector in Cn and k satisfies
|zk|= ‖z‖= max1≤ j≤n{|z j|}. For B= U and X = C, the relation is equivalent to

Re
z f ′(z)
f (z)

> α, z ∈ U.

Let S ∗
α (B) denote the class of starlike mappings of order α on B.

Definition 1.4.3. [84] Let f : B→ X be a normalized locally biholomorphic mapping and γ ∈ (0,1].
Then f is strongly starlike mapping of order γ if

∣∣arg lz([D f (z)]−1 f (z))
∣∣< π

2
γ, ∀ z ∈ B\{0}, lz ∈ T (z).

In case of B= Un and X = Cn, the above condition is equivalent to∣∣∣∣arg
qk(z)

zk

∣∣∣∣< π

2
γ, z ∈ Un \{0}.

where q(z) = (q1(z),q2(z), · · · ,qn(z))′ = (D( f (z)))−1 f (z) is a column vector in Cn and k satisfies
|zk|= ‖z‖= max1≤ j≤n{|z j|}. In case of B= U and X = C, the relation is equivalent to∣∣∣∣arg

z f ′(z)
f (z)

∣∣∣∣< π

2
γ, z ∈ U.

Let S S ∗
γ(B) denote the class of starlike mappings of order γ on B.

Similarly, a biholomorphic mapping f : Ω ⊆ X → Y is said to be convex on Ω if f (Ω) is a convex

domain in Y . Let C (B) denote the subclass of S (B) consisting of normalized convex mappings

from the unit ball B into the complex Banach space X . Numerous necessary and sufficient criteria

for convexity on the different domains were established, for instance, see [81, 179, 178]. In case of

holomorphic function defined on U, Sheil-Small [167] and Suffridge [177] proved that If f ∈ A , then

f ∈ C if and only if

Re
(

2z f ′(z)
f (z)− f (ζ )

− z+ζ

z−ζ

)
≥ 0, z,ζ ∈ U. (1.4.1)
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Trying to extend this idea in several variables, Roper and Suffridge [161] introduced the classes of

quasi-convex mappings. Liu and Liu [112] further generalized these classes by defining the following:

Definition 1.4.4. [112] Suppose α ∈ [0,1) and f : B→ X is a normalized locally biholomorphic map-
ping. If

Re
{

lz([D f (z)]−1(D2 f (z)(z2)+D f (z)(z)))
}
≥ α‖z‖, lz ∈ Tz, z ∈ B\{0},

then f is called a quasi convex mapping of type B and order α on B.

If B= Un and X = Cn, then the above condition reduces to∣∣∣∣qk(z)
zk
− 1

2α

∣∣∣∣< 1
2α

, ∀ z ∈ Un \{0},

where q(z) = (q1(z),q2(z), · · · ,qn(z))′ = (D f (z))−1(D2 f (z)(z2)+D f (z)(z)) is a column vector in Cn

and k satisfies |zk|= ‖z‖= max1≤ j≤n{|z j|}. For B= U and X = C, the relation is equivalent to

Re
(

1+
z f ′′(z)
f ′(z)

)
> α, z ∈ U.

Let Qα(B) denote the class of quasi-convex mappings of type B and order α. When α = 0, Definition
1.4.4 becomes the definition of quasi-convex mapping of type B, denoted by Q(B), introduced by Roper
and Suffridge [161].

1.5 Coefficient and Radius Problems

Finding the estimate of Taylor coefficients for functions belonging to some particular class falls under

the category of coefficient problems. It also includes finding bounds for Fekete-Szegö functional (|a3−
µa2

2|, µ ∈ C), Zalcman functionals (|anam− an+m−1|, m,n ∈ N), Hankel determinants, Toeplitz and

Hermitian-Toeplitz determinants formed over the coefficients of functions. Many authors have worked

in this direction for various subclasses of S [13, 107, 154, 166]. In 2018, Ali et al. [6] introduced the

symmetric Toeplitz determinant Tm,n( f ) for f (z) = z+∑
∞
n=2 anzn ∈A , defined as

Tm,n( f ) =

∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+m−1

an+1 an · · · an+m−2
...

...
...

...

an+m−1 an+m−2 · · · an

∣∣∣∣∣∣∣∣∣∣∣
(m ∈ N). (1.5.1)

They derived the sharp estimates for the determinants T2,n( f ), T3,1( f ), T3,2( f ) and T2,3( f ) when f

belongs to the classes S , S ∗, C , K and other subclasses of A . The study of best upper and lower

estimates of Toeplitz and Hermitian-Toeplitz determinants for initial values of m and n is now in trend in

GFT, which was initiated with the papers [39, 87, 86, 104].

Apart from the growth and distortion theorems established for the class S using the second co-

efficient estimates, the importance of coefficient bounds can be seen in the concept of Bohr’s radius

problems, see [20, 49, 123]. In radius problems, we try to find the disk of maximal radius 0 < r < 1 so
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that every function in a class satisfies a certain property P. For instance, every function in the class

S ∗ is convex in the disk of radius r = 2−
√

3. For more on the coefficient and radius results, one can

refer [59, 182].

1.6 Synopsis of the Thesis

Univalent functions exhibit deep geometric properties, that is why their study is an integral part of

geometric function theory. Within this field, coefficient and radius problems are fundamental topics,

with significant applications extending recently to areas such as digital image processing and fluid

dynamics. This thesis primarily addresses coefficient and radius problems for certain subclasses of

S . It begins with coefficient-related problems associated with the Ma-Minda and Sakaguchi classes.

Subsequently, it examines geometric properties, including growth estimates and the Bohr and Bohr-

Rogosinski phenomena, for subclasses of analytic functions involving semigroup generators. Finally,

the thesis explores the extension of the Toeplitz determinants for starlike mappings and quasi-convex

mappings of type B in higher dimensions. The thesis is organized into six chapters. The first is an

introduction chapter, which contains the essential definitions, terminologies, and foundational results

necessary for the subsequent chapters.

Chapter two deals with the coefficient problems for the classes S ∗(ϕ), C (ϕ), S ∗
s (ϕ) and Cs(ϕ).

For functions belonging to these classes the sharp estimates of second, third and fourth coefficients

are already known. The sharp bound of the fifth coefficients were derived only for their particular

subclasses, for instance when ϕ(z) = 1+ zez, ϕ(z) = ez and ϕ(z) =
√

1+ z. This chapter is devoted to

establishing the sharp bound of |a5| for these generalized classes when the initial Taylor coefficients of

the function ϕ(z) satisfy certain conditions. The established bounds provide new results and include

some already proven bounds as special cases for the subclasses of S ∗, C , S ∗
s and Cs depending on

the function ϕ(z). We now furnish below a result of this chapter, obtained for the class S ∗(ϕ):

1. Let f ∈S ∗(ϕ) and ϕ(z) = 1+B1z+B2z2 + · · · . If

C1 : |B2
1 +2B2|< 4B2

1,

C2 : |B3
1−B2

1B2 +18B2
2−18B1B3|< 3|(B2

1 +2B1 +2B2)(2B2
1−3B1 +3B2)|,

C3 : |30B7
1−9B8

1−B6
1(66B2−5)−648B3

2 +324B4
2 +B5

1(170B2−126)−648B2B2
3 +B3

1(−180B2

+220B2
2 +108B3−360B2B3)+B1(1296B2B3−720B2

2B3)+648B2
2B4 +B4

1(108+10B2−175B2
2

+90B3 +162B4)+B2
1(−144B2

2 +4B3
2 +180B2B3−324B2

3−648B4 +648B2B4)|< 8|9B6
1 +9B7

1

+B4
1(−27+32B2)+B5

1(−52+63B2)+162B2
2B3 +B3

1(81−189B2 +164B2
2 +9B3)+B2

1(18B2
2

−9B2B3)+B1(−162B2
2 +198B3

2−81B2
3)|,

C4 : 0 < (4B2
1 +6(B2−B1)/((3B2

1 +6(B2−B1))< 1.

hold, then

|a5| ≤
B1

4
.
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The inequality is sharp.

The conditions C1, C2, C3 and C4 hold true for various choices of the function ϕ(z) including

1 + sinz,
√

1+ z and 2/(1 + e−z). Consequently, the bounds for the corresponding subclasses of

starlike functions can be directly derived from our results, as given below:

1. If f ∈S ∗
sin, then |a5| ≤ 1

4 . The bound is sharp.

2. If f ∈S ∗
L , then |a5| ≤ 1/8. The bound is sharp.

3. If f ∈S ∗
SG, then |a5| ≤ 1/8. The bound is sharp.

In the third chapter, we study certain Hermitian-Toeplitz determinants for classes S ∗(ϕ), C (ϕ),

S ∗
s (ϕ), Cs(ϕ). Additionally, we consider the subclasses of K depending on the function g ∈ S ∗,

denoted by K (g). The sharp upper and lower bounds of second and third order Hermitian-Toeplitz

determinants constructed over the coefficients of functions belonging to these classes are obtained.

Since these classes generalize various subclasses of S ∗, C , S ∗
s , Cs and K , the bounds for these

subclasses also follow directly. We list below a few results of this chapter related to class S ∗(ϕ):

1. Let f ∈S ∗(ϕ) and ϕ(z) = 1+B1z+B2z2 +B3z3 + · · · . Then the following sharp bounds hold:

(a) 1−B2
1 ≤ T2(1)( f )≤ 1.

(b) If 3B4
1−8B2

1 +2B2
1B2−B2

2 < 0 and B1 ≤ |B2 +B2
1|, then

T3(1)( f )≤ 1.

(c) If 3B4
1−8B2

1 +2B2
1B2−B2

2 ≥ 0 and B1 ≤ |B2 +B2
1|, then

T3(1)( f )≤ B2
1(B

2
1 +B2)−

1
4
(
B2

1 +B2
)2−2B2

1 +1.

2. Let f ∈S ∗(ϕ) and B2
1 ≥ B2.

(a) If ν /∈ [0,4], then

T3(1)( f )≥min
{

1− B2
1

4
,1−2B2

1 +
3B4

1
4

+
B2

1B2

2
− B2

2
4

}
.

(b) If ν = 4, then

T3(1)( f )≥ 1−2B2
1 +

3B4
1

4
+

B2
1B2

2
− B2

2
4
.

(c) If ν ∈ (0,4), then

T3(1)( f )≥ 1− B2
1

4
− B2

1(B
2
1 +3B1−B2)

2

4
(
B1(2B2

1−B1−2B2)+(3B2
1−B2)(B2

1 +B2)
) ,
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where

ν =
4B1(B2

1 +3B1−B2)

(3B2
1−B2)(B2

1 +B2)+B1(2B2
1−2B2−B1)

.

The first two inequalities are sharp.

The sharp bounds for various other subclasses of S ∗ follow directly from these results. Some of them

are as listed here:

1. If f ∈S ∗
sin, then 0≤ T2(1)( f )≤ 1 and T3(1)( f )≤ 1.

2. If f ∈S ∗
℘, then 0≤ T2(1)( f )≤ 1 and T3(1)( f )≤ 1.

3. If f ∈Sp, then 1− (64/π4)≤ T2(1)( f )≤ 1 and T3(1)( f )≤ 1.

4. If f ∈S ∗
SG, then 3/4≤ T2(1)( f )≤ 1 and T3(1)( f )≤ 1.

5. If f ∈S ∗
B , then 0≤ T2(1)( f )≤ 1 and T3(1)( f )≤ 1.

6. If f ∈S ∗
℘, then T3(1)( f )≥ 0.

7. If f ∈S ∗
sin, then T3(1)( f )≥−1/4.

8. If f ∈Sp, then T3(1)( f )≥ 1−64
(
19π4−24π2−432

)
/(9π8).

9. If f ∈S ∗
RL, then T3(1)( f )≥−9(4130

√
2−5861)/256.

In the fourth chapter, we consider the class

Aβ =

{
f ∈A : Re

(
β

f (z)
z

+(1−β ) f ′(z)
)
> 0, β ∈ [0,1]

}
.

The class Aβ were recently studied in the framework of so called filtration theory of semigroup genera-

tors [23]. Elin et al. [47] studied certain subclasses of S ∗ and their embedding in the class Aβ . More-

over, they found the radius of starlikeness for f ∈Aβ . Generalizing their work, we obtained the radius

of starlike of order α for the class Aβ . Additionally, we study some coefficient problems for f ∈Aβ . We

determine the sharp bounds of coefficient functional such as second order Hankel determinant, certain

Zalcman functionals, third order Toeplitz and Hermitian-Toeplitz determinants. Furthermore, the sharp

estimates of the nth coefficients and the bounds for difference of successive coefficients are estab-

lished along with growth and distortion theorems, which further apply to determine the Bohr and the

Bohr-Rogosinski radii for the mentioned class. We say that the class Aβ satisfies the Bohr-Rogosinski

phenomenon if there exist rN such that

| f (zm)|+
∞

∑
n=N
|an||z|n ≤ d( f (0),∂ f (Ω)), m,N ∈ N

holds in |z|= r ≤ rN .

Some of the results obtained in this chapter are as under:

1. If f ∈Aβ , then for |z| ≤ r, the following hold:
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(i) − f̃ (−r)
r
≤ Re

(
f (z)

z

)
≤ f̃ (r)

r
,

(ii) − f̃ (−r)≤ | f (z)| ≤ f̃ (r),

where

f̃ (z) = z
(
−1+2

(
2F1

[
1,

1
1−β

,
2−β

1−β
,z
]))

.

All these estimations are sharp.

2. If f ∈Aβ is of the form (1.0.1), then

| f (zm)|+
∞

∑
k=N
|akzk| ≤ d(0,∂ f (U))

hold for |z|= r ≤ rN , where rN is the root of the equation

f̃ (rm)+ f̃ (r)− f̂ (r)+ f̃ (−1) = 0,

with

f̂ (r) =


0 N = 1,

r N = 2,

r+∑
N−1
n=2

2
(n−(n−1)β )r

n N ≥ 3.

The radius is sharp.

The fifth chapter is devoted to introduce the Toeplitz determinants in case of functions of several

variables that extends the notion of Toeplitz determinants from one dimension to higher dimensions.

We begin with finding the sharp bounds of Toeplitz determinants for a class of functions defined on U
and then extend these bounds to a class of holomorphic mappings defined on the unit ball in a complex

Banach space and on the unit polydisc in Cn. The results obtained in higher dimensions yield Toeplitz

determinant bounds for a class of starlike mappings defined on the unit ball in a complex Banach

space, among other subclasses of normalised univalent mappings. The derived sharp estimates for

the classes S ∗(B) and S S ∗
γ(B) are as follows:

1. Let f ∈H (B,C) with f (0) = 1 and F(z) = z f (z) ∈S ∗(B). Then the following holds:

∣∣∣( lz(D2F(0)(z2))

2!||z||2
)2
−
( lz(D3F(0)(z3))

3!||z||3
)2∣∣∣≤ 13, z ∈ B\{0}, lz ∈ Tz.

If B= Un and X = Cn, then

∥∥∥ 1
3!

D3F(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2F(0)

(
z,

D2F(0)(z2)

2!

)∥∥∥≤ 9‖z‖5 +4‖z‖3, z ∈ Un.

All the estimates are sharp.

2. Let f ∈H (B,C) with f (0) = 1 and F(z) = z f (z)∈S S ∗
γ(B). Then for γ ∈ [1/3,1], the following
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holds: ∣∣∣( lz(D2F(0)(z2))

2!||z||2
)2
−
( lz(D3F(0)(z3))

3!||z||3
)2∣∣∣≤ 9γ

4 +4γ
2, z ∈ B\{0}, lz ∈ Tz.

If B= Un and X = Cn, then

∥∥∥ 1
3!

D3F(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2F(0)

(
z,

D2F(0)(z2)

2!

)∥∥∥≤ 9‖z‖5
γ

4 +4‖z‖3
γ

2, z ∈ Un.

All the estimates are sharp.

The sixth chapter is devoted to derive the sharp bounds of certain Toeplitz determinants for a

class of holomorphic mappings defined on the unit ball of a complex Banach space. The derived

bounds provide certain new results for the subclasses of normalized univalent mappings, including

the class of quasi-convex mappings of type B. Additionally, we determine the sharp bounds of Toeplitz

determinants for the class of convex function C such that f ∈C has a zero of order k+1 at z= 0, k∈N.

These results are extended to higher dimensions by determining the bounds of Toeplitz determinants

for the subclass of quasi-convex mappings of type B. We list below some results belonging to this

chapter:

1. Let f ∈H (B,C) and F(z) = z f (z) ∈ Qα(B). Then the following inequality holds:∣∣∣∣( lz(D2F(0)(z2))

2!||z||2
)2

−
(

lz(D3F(0)(z3))

3!||z||3
)2∣∣∣∣≤ 2(1−α)2(2α2−6α +9)

9
, lz ∈ Tz, z ∈ B\{0}.

If B= Un and X = Cn, then∥∥∥∥ 1
3!

D3F(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2F(0)

(
z,

D2F(0)(z2)

2!

)∥∥∥∥≤ (1−α)2‖z‖3 +
(2α2−5α +3)2‖z‖5

9
.

All these bounds are sharp.

2. Let f : B→ C and f (z) 6= 0 for z ∈ B. If F(z) = z f (z) ∈ Q(B) and z = 0 is a zero of order k+1

(k ∈ N) of F(z)− z, then∣∣∣∣( lz(D2k+1F(0)(z2k+1))

(2k+1)!‖z‖2k+1

)2

−
(

lz(Dk+1F(0)(zk+1))

(k+1)!‖z‖k+1

)2∣∣∣∣≤ (k+2)2

k4(2k+1)2 +
4

k2(k+1)2

for z ∈ B\{0}. The bound is sharp.



Chapter 2

Coefficient Estimates of Ma-Minda and

Sakaguchi Classes

In this chapter, we estimate the sharp bound of the fifth coefficient of functions belonging to the Ma-

Minda classes: S ∗(ϕ) and C (ϕ), as well as the Sakaguchi classes: S ∗
s (ϕ) and Cs(ϕ), whenever,

the coefficients of ϕ(z) satisfy certain conditions. The results obtained yield several new special cases

including some already known bounds.

2.1 Introduction

Obtaining sharp estimates for each Taylor coefficients of a function remains a formidable challenge in

geometric function theory. These estimates not only reveal valuable information about other geometric

properties of functions but also find applications in diverse fields such as image processing and Borel

distribution [1, 128, 139]. While the sharp estimate of |an|, where n ∈ N, is established for functions

in the classes S ∗ and C , determining the bound for functions in their subclasses proves to be a

challenging endeavor. For instance, for functions in the classes S ∗(ϕ), C (ϕ), S ∗
s (ϕ), and Cs(ϕ),

only the sharp bounds for |an|, where n = 2,3,4, are currently known. For n≥ 5, finding the bound of

|an| for functions belonging to these classes is still an open problem.

The sharp estimates for the second and third coefficients of functions in S ∗(ϕ) and C (ϕ) were

obtained from the Fekete-Szegö functional estimate for the class C (ϕ), established in [117], while

the sharp bound of the fourth coefficient was derived by Ali et al. [7]. For different subclasses of S ∗

depending on the different choices of ϕ(z) in S ∗(ϕ), the bound for |a5| is known, which immediately

provide the bound for the corresponding subclass of C . Goel and Kumar [52] determined the sharp

bound of |a5| for functions in the class S ∗
SG, whereas Kumar and Gangania [92] addressed the same

19
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issue for the class S ∗
℘. For functions belonging to the classes S ∗

L and S ∗
RL, Sokół [171] and Mendiratta

et al. [118] proposed the following conjectures, respectively,

|an| ≤
1

2(n−1)
and |an| ≤

5−3
√

2
2(n−1)

for n≥ 5.

Ravichandran and Verma [153] settled these both conjectures for n = 5 by establishing the sharp

estimate of the fifth coefficient for functions belonging to the classes S ∗
L and S ∗

RL. For more work in

this direction, we refer [14, 36, 95] and the references cited therein.

This chapter is devoted to finding the sharp estimate of |a5| for a general choice of ϕ(z), provided

that the coefficients of ϕ satisfy certain stipulated conditions, covering many of the previously known

bounds and presents some new examples as well. We require the following lemmas to prove our

results.

Lemma 2.1.1. [125, Lemma I] If the functions 1+∑
∞
n=1 bnzn and 1+∑

∞
n=1 cnzn are in P , then the

same holds for the function

1+
1
2

∞

∑
n=1

bncnzn.

Lemma 2.1.2. [125, Lemma II] Let h(z) = 1+u1z+u2z2 + · · · and 1+G(z) = 1+d1z+d2z2 + · · · be
functions in P , and set

γn =
1
2n

[
1+

1
2

n

∑
k=1

(
n
k

)
uk

]
, γ0 = 1.

If An is defined by
∞

∑
n=1

(−1)n+1
γn−1Gn(z) =

∞

∑
n=1

Anzn,

then |An| ≤ 2.

It is worth recalling the Möbius function Ψζ , which maps the unit disk onto the unit disk and is given

by

Ψζ (z) =
z−ζ

1−ζ z
, ζ ∈ U. (2.1.1)

Lemma 2.1.3. [32, Lemma 2.4] If p(z) = 1+∑
∞
n=1 pnzn ∈P , then for some ζi ∈ U, i ∈ {1,2,3},

p1 = 2ζ1, (2.1.2)

p2 = 2ζ
2
1 +2(1−|ζ1|2)ζ2, (2.1.3)

p3 = 2ζ
3
1 +4(1−|ζ1|2)ζ1ζ2−2(1−|ζ1|2)ζ1ζ

2
2 +2(1−|ζ1|2)(1−|ζ2|2)ζ3. (2.1.4)

For ζ1,ζ2 ∈ U and ζ3 ∈ ∂U := {z ∈ C : |z|= 1}, there is a unique function p = L◦ω ∈P with p1,

p2 and p3 as in (2.1.2)-(2.1.4), where

ω(z) = zΨ−ζ1
(zΨ−ζ2

(ζ3z)), (2.1.5)
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and the function L is given by (1.2). That is

p(z) =
1+(ζ2ζ3 +ζ1ζ2 +ζ1)z+(ζ1ζ3 +ζ1ζ2ζ3 +ζ2)z2 +ζ3z3

1+(ζ2ζ3 +ζ1ζ2−ζ1)z+(ζ1ζ3−ζ1ζ2ζ3−ζ2)z2−ζ3z3
, z ∈ U.

Conversely, if ζ1,ζ2 ∈U and ζ3 ∈U := {z ∈C : |z| ≤ 1} are given, then we can construct a (unique)

function p ∈P of the form (1.2.2) such that pi satisfy the identities in (2.1.2)-(2.1.4). For this, we

define

ω(z) = ωζ1,ζ2,ζ3
(z) = zΨ−ζ1

(zΨ−ζ2
(ζ3z)), z ∈ U, (2.1.6)

where Ψζ is the function given as in (2.1.1). Then ω ∈ B0. Moreover, if we define p(z) = (1 +

ω(z))/(1−ω(z)), z ∈U, then p is represented by (1.2.2), where p1, p2 and p3 satisfy the identities in

(2.1.2)-(2.1.4) (see the proof of [32, Lemma 2.4]).

2.2 Ma-Minda Classes

Recall the Ma-Minda class S ∗(ϕ) and C (ϕ) given in (1.3.1). We begin with the following lemma:

Lemma 2.2.1. If −1 < σ < 1, then F(z) = (1+2σz+ z2)/(1− z2) belongs to P .

Proof. Let us consider

ω(z) =
F(z)−1
F(z)+1

=
z(z+σ)

1+σz
.

From (2.1.1), we have
ω(z) = zΨ−σ (z), z ∈ U.

Since Ψ−σ (z) is a conformal automorphism of U, which gives |ω(z)|< 1 and ω(0) = 0. Therefore ω

is a Schwarz function and F ∈P .

Theorem 2.2.1. Let f (z) = z+∑
∞
n=2 anzn ∈S ∗(ϕ) and ϕ(z) be as given in (1.3.2). If the following

conditions hold:

C1 : |B2
1 +2B2|< 4B2

1,

C2 : |B3
1−B2

1B2 +18B2
2−18B1B3|< 3|(B2

1 +2B1 +2B2)(2B2
1−3B1 +3B2)|,

C3 : |30B7
1−9B8

1−B6
1(66B2−5)−648B3

2 +324B4
2 +B5

1(170B2−126)−648B2B2
3 +B3

1(−180B2

+220B2
2 +108B3−360B2B3)+B1(1296B2B3−720B2

2B3)+648B2
2B4 +B4

1(108+10B2−175B2
2

+90B3 +162B4)+B2
1(−144B2

2 +4B3
2 +180B2B3−324B2

3−648B4 +648B2B4)|< 8|9B6
1 +9B7

1

+B4
1(−27+32B2)+B5

1(−52+63B2)+162B2
2B3 +B3

1(81−189B2 +164B2
2 +9B3)+B2

1(18B2
2

−9B2B3)+B1(−162B2
2 +198B3

2−81B2
3)|,

C4 : 0 < (4B2
1 +6(B2−B1))/(3B2

1 +6(B2−B1))< 1,

then
|a5| ≤

B1

4
.

The bound is sharp.
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Proof. Suppose f ∈S ∗(ϕ), then
z f ′(z)
f (z)

= ϕ(ω(z)),

where ω is a Schwarz function. Corresponding to this ω , let there exists a function p(z) = 1 +

∑
∞
n=1 pnzn ∈P such that ω(z) = (p(z)− 1)/(p(z)+ 1). Then by comparing the coefficients of the

same powers of z obtained by the series expansion of f (z) together with p(z) and ϕ(z), we obtain

a2 =
B1 p1

2
, a3 =

1
8

(
B2

1 p2
1−B1 p2

1 +2B1 p2 +B2 p2
1

)
,

a4 =
1

48

(
p1 p2(6B2

1−8B1 +8B2)+ p3
1(B

3
1−3B2

1 +3B1B2 +2B1−4B2 +2B3)+8B1 p3

)
and

a5 =
B1

8
I, (2.2.1)

where
I = p4 + I1 p4

1 + I2 p2
1 p2 + I3 p1 p3 + I4 p2

2 (2.2.2)

with

I1 =
B4

1−6B3
1 +11B2

1 +6B2
1B2−6B1 +3B2

2−22B1B2 +18B2−18B3 +8B1B3 +6B4

48B1
,

I2 =
3B3

1−11B2
1 +9B1−18B2 +11B1B2 +9B3

12B1
, I3 =

2B2
1−3B1 +3B2

3B1

 (2.2.3)

and

I4 =
B2

1−2B1 +2B2

4B1
. (2.2.4)

Let q(z) = 1+b1z+b2z2 + · · · be in P , then by Lemma 2.1.1, we have

1+
1
2
(p(z)−1)∗ (q(z)−1) = 1+

1
2

∞

∑
n=1

bn pnzn ∈P.

If we assume h(z) = 1+∑
∞
n=1 unzn ∈P and take 1+G(z) := 1+ 1

2 ∑
∞
n=1 bn pnzn, then Lemma 2.1.2

gives
|A4| ≤ 2,

where
A4 =

1
2

γ0b4 p4−
1
4

γ1b2
2 p2

2−
1
2

γ1b1b3 p1 p3 +
3
8

γ2b2
1b2 p2

1 p2−
1

16
γ3b4

1 p4
1 (2.2.5)

with

γ0 = 1, γ1 =
1
2

(
1+

1
2

u1

)
, γ2 =

1
4

(
1+u1 +

1
2

u2

)
and γ3 =

1
8

(
1+

3
2

u1 +
3
2

u2 +
1
2

u3

)
. (2.2.6)

So, from (2.2.2) and (2.2.5), we can observe that if there exist q, h ∈P such that

b4 = 2, I1 =−
1

128

(
1+

3
2

u1 +
3
2

u2 +
1
2

u3

)
b4

1, I2 =
3
32

(
1+u1 +

u2

2

)
b2

1b2,
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I3 =−
1
4
(1+

u1

2
)b1b3 and I4 =−

1
8

(
1+

u1

2

)
b2

2,

then we have
I = A4. (2.2.7)

The bound for |A4| can be obtained from Lemma 2.1.2. Consequently, we can estimate the bound for
|I| and thus we arrive at the desired bound by using (2.2.1). To prove the theorem, we construct the
functions q and h in such a way that we obtain (2.2.7).

From Lemma 2.1.3, suppose that the functions q and h are constructed by taking ζ1,ζ2 ∈ U, ζ3 ∈ U
and ξ1,ξ2 ∈ U, ξ3 ∈ U, respectively, as follows:

q = L◦ω1 and h = L◦ω2, (2.2.8)

where
ω1(z) = zΨ−ζ1

(zΨ−ζ2
(ζ3z)), ω2(z) = zΨ−ξ1

(zΨ−ξ2
(ξ3z)) (2.2.9)

and L(z) is given by (1.2.3). So, again from Lemma 2.1.3, the bi’s and ui’s, i ∈ {1,2,3} are given by

b1 = 2ζ1, b2 = 2ζ
2
1 +2(1−|ζ1|2)ζ2,

b3 = 2ζ
3
1 +4(1−|ζ1|2)ζ1ζ2−2(1−|ζ1|2)ζ1ζ

2
2 +2(1−|ζ1|2)(1−|ζ2|2)ζ3

and

u1 = 2ξ1, u2 = 2ξ
2
1 +2(1−|ξ1|2)ξ2,

u3 = 2ξ
3
1 +4(1−|ξ1|2)ξ1ξ2−2(1−|ξ1|2)ξ1ξ

2
2 +2(1−|ξ1|2)(1−|ξ2|2)ξ3.

There may be many solutions for the above set of equations. For our purpose, we impose some restric-
tions on the parameters. We take all ξi ∈ R, then

u1 = 2ξ1, u2 = 2ξ
2
1 +2(1−ξ

2
1 )ξ2,

u3 = 2ξ
3
1 +4(1−ξ

2
1 )ξ1ξ2−2(1−ξ

2
1 )ξ1ξ

2
2 +2(1−ξ

2
1 )(1−ξ

2
2 )ξ3.

(2.2.10)

Further, if we define

ξ1 =−
B2

1 +2B2

2B1
, ξ2 =

B3
1−B2

1B2 +18B2
2−18B1B3

3(B2
1 +2B1 +2B2)(2B2

1−3B1 +3B2)
,

and

ξ3 =

(
−9B8

1 +30B7
1−B6

1 (66B2−5)+2B5
1 (85B2−63)+4B3

1(5B2(11B2−18B3−9)+27B3)

+4B2
1
(
B3

2−36B2
2−81B2

3 +45B2B3 +162(B2−1)B4
)
−144B1 (5B2−9)B2B3 +324B2(−2B2

3

+B2 ((B2−2)B2 +2B4))+18B4
1 (9B4 +5B3 +6)−5B4

1B2(35B2−2)
)/(

8(3B4
1 +2B3

1 +18B2
2

+B2
1(10B2−9)−9B1B3)(B1(3B2

1 +B1 +11B2−9)+9B3)

)
,
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then the conditions C1, C2 and C3 on the coefficients B1,B2,B3 and B4, respectively, yield

|ξ1|< 1, |ξ2|< 1 and |ξ3|< 1.

Using these ξi’s in (2.2.10), we can obtain ui’s, which in turn by using (2.2.6) gives

γ1 =
1
4

(
2−B1−

2B2

B1

)
,

γ2 =

(
B2

1 +2B2−2B1
)(

3B3
1−11B2

1 +B1 (11B2 +9)+9(B3−2B2)
)

24B1
(
2B2

1 +3B2−3B1
) ,

γ3 =−
1

64B1
(
2B2

1 +3B2−3B1
)2

(
3
(
B2

1 +2B2−2B1
)2
(B4

1−6B3
1 +B2

1(6B2 +11)

+B1 (8B3−22B2−6)+3
(
B2

2 +6B2−6B3 +2B4
)
)

)
.


(2.2.11)

Let us consider

q(z) =
1+2σz+ z2

1− z2 ,

with σ =
√
(4B2

1 +6(B2−B1)/((3B2
1 +6(B2−B1)), then

b1 = b3 = 2σ and b2 = b4 = 2. (2.2.12)

If we choose B1 and B2 such that 0<σ < 1, which is equivalent to condition C4. Then by Lemma 2.2.1,
we have q ∈P . On putting the values of b′is and γ ′i s obtained from (2.2.11) and (2.2.12), respectively,
in (2.2.5), we get (2.2.7), which together with (2.2.1) gives the desired bound for |a5|.

The sharpness of the bound follows from the function kϕ,5(z) = z+∑
∞
n=2 anzn ∈S ∗(ϕ) defined by

(1.3.3), as for this function, a2 = a3 = a4 = 0 and a5 = B1/4.

It can be easily seen that for ϕ(z) = 1+ sinz, all conditions C1, C2, C3 and C4 are valid. Hence,

Theorem 2.2.1 provide the following result for the class S ∗
sin immediately.

Corollary 2.2.2. If f ∈S ∗
sin, then |a5| ≤ 1

4 . The bound is sharp.

For ϕ(z) = (1+Az)/(1+Bz), where −1 ≤ B < A ≤ 1, Theorem 2.2.1 gives the following result

directly for the class S ∗[A,B]:

Corollary 2.2.3. If f ∈S ∗[A,B] such that A and B satisfy the following conditions

i : |A2−4BA+3B2|< 4(A−B)2,

ii : |(A−B)3(B+1)|< 3|(A2 +(2−4B)A+B(3B−2))(2A2− (7B+3)A+B(5B+3))|,
iii : |(A−B)4(9A4−6(17B+5)A3 +(427B2 +260B−5)A2 +(−778B3−740B2 +20B+126)A

+3(172B4 +230B3 +7B2−102B−36))|< 8|(A−B)3(9A4 +(9−99B)A3 +(407B2−59B

−52)A2 +(−742B3 +118B2 +293B−27)A+506B4−68B3−403B2 +27B+81)|,
iv : 0 < (10B−4A+6)/(9B−3A+6)< 1,
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then
|a5| ≤

A−B
4

.

The bound is sharp.

Example 2.2.4. If we take A = 0 and B =−1/2, all the conditions in Corollary 2.2.3 hold true. There-
fore, if f (z) = z+∑

∞
n=2 anzn ∈S ∗[0,−1/2], then |a5| ≤ 1/8.

In case of the classes S ∗
SG, S ∗

L , S ∗
qb

and S ∗
RL, the coefficients of the corresponding function ϕ

satisfy the conditions C1, C2, C3 and C4. Consequently, the bounds of |a5| for these classes can be

derived from Theorem 2.2.1 as special cases.

Remark 2.2.1. 1. If f ∈S ∗
SG, then |a5| ≤ 1/8 [52, Theorem 4.1].

2. If f ∈S ∗
L , then |a5| ≤ 1/8 [153, Theorem 3.1(a)].

3. If f ∈S ∗
qb

, then |a5| ≤ b/8, where b ∈ (0,1] [36, Theorem 3.1].

4. If f ∈S ∗
RL, then |a5| ≤

(
5−3

√
2
)
/8 [153, Theorem 3.1(b)].

5. If ϕ(z) = ((1+ z)/(1− z))γ (0 < γ ≤ 1), then the conditions of Theorem 2.2.1 are satisfied only
for 0 < γ ≤ γ0 ≈ 0.350162. Therefore, |a5| ≤ γ/2 for f ∈S S ∗(γ) whenever 0 < γ ≤ γ0 [8].

Theorem 2.2.5. Let ϕ(z) be as defined in (1.3.2), whose coefficients satisfy the conditions C1, C2, C3
and C4. If f (z) = z+∑

∞
n=2 anzn ∈ C (ϕ), then

|a5| ≤
B1

20
.

The inequality is sharp.

Proof. Since f ∈ C (ϕ), we have

1+
z f ′′(z)
f ′(z)

= ϕ

(
p(z)−1
p(z)+1

)
, (2.2.13)

where p ∈P is given by (1.2.2). By comparison of the coefficients of z, z2, z3 and z4 in (2.2.13) with
the series expansion of f , ϕ and p, we get

a2 =
B1 p1

4
, a3 =

1
24

(
B2

1 p2
1−B1 p2

1 +2B1 p2 +B2 p2
1

)
,

a4 =
1

192

(
p1 p2(6B2

1−8B1 +8B2)+ p3
1(B

3
1−3B2

1 +3B1B2 +2B1−4B2 +2B3)+8B1 p3

)
and

a5 =
B1

40
I, (2.2.14)

where
I = p4 + I1 p4

1 + I2 p2
1 p2 + I3 p1 p3 + I4 p2

2

with I1, I2, I3 and I4 given as in (2.2.3) and (2.2.4). Using the same method as in Theorem 2.2.1, we
obtain

|I| ≤ 2,
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when B1, B2, B3 and B4 satisfy all the conditions C1, C2, C3 and C4. Thus bound of |a5| follows from
(2.2.14).

It is evident that for the function hϕ,5(z)∈C (ϕ) defined by (1.3.4), a2 = a3 = a4 = 0 and a5 =B1/20,
showing the sharpness of the bound.

2.3 Sakaguchi Classes

Recall the Sakaguchi classes S ∗
s (ϕ) and Cs(ϕ) given by (1.3.6) and (1.3.7), respectively. Ravichan-

dran [151] derived some sufficient conditions in terms of convolution and provided growth and distortion

estimates for functions belonging to the classes S ∗
s (ϕ) and Cs(ϕ). Later, Shanmugam et al. [166]

determined the sharp bound of Fekete-Szegö functional for the classes S ∗
s (ϕ) and Cs(ϕ), which eas-

ily provides the bounds for the initial coefficients |a2| and |a3|. Further, the sharp bound of |a4| for

functions belonging to these classes was established by Khatter et al. [80] and for certain significant

choices of ϕ such as

S ∗
s,e := S ∗

s (e
z), S ∗

s,L := S ∗
s (
√

1+ z) and

S ∗
s,RL := S ∗

s
(√

2− (
√

2−1)
√
(1− z)/(1+2(

√
2−1)z)

)
,

 (2.3.1)

they obtained the sharp estimate of |a5|. This section is devoted to determining the sharp estimates

of |a5| for functions belonging to the classes S ∗
s (ϕ) and Cs(ϕ). The extremal functions in various

problems for S ∗
s (ϕ) and Cs(ϕ) are ks,ϕ,n and hs,ϕ,n, respectively, defined by

2zk′s,ϕ,n(z)
ks,ϕ,n(z)− ks,ϕ,n(−z)

= ϕ(zn−1) and
(2zh′s,ϕ,n(z))

′

(hs,ϕ,n(z)−hs,ϕ,n(−z))′
= ϕ(zn−1). (2.3.2)

We denote ks,ϕ,1 and hs,ϕ,1 simply as ks,ϕ and hs,ϕ , respectively.

Theorem 2.3.1. Let f (z) = z+∑
∞
n=2 anzn ∈S ∗

s (ϕ) and ϕ(z) be as given by (1.3.2). If the following
conditions hold:

P1 : |B3
1−2B1B2 +2B2

2|< |2B2
1−B3

1−2B1B2|,
P2 : |B3

1−B2
1B2 +3B2

2−3B1B3|< 3|B3
1−B2

1 +B2
2|,

P3 : |B7
1−B6

1(8B2 +3)−6B4
1(B2(3B2 +2B3 +2)−6B3 +9B4)+B5

1(7B2(B2 +4)−24B3 +18B4)

+6B3
1(B

3
2−2B2

2 +8B2B3−3B2
3 +6(B2 +1)B4)−6B1B2(3B3

2−6B2
3 +B2

2(4B3−6)+6B2(B4

−2B3))+18B2
2(−2B2

3 +B2((B2−2)B2 +2B4))+B2
1B2(B2(B2(5B2 +6)−24B3 +18B4)−36(B4

+2B3))|< 2|((B1−2)B1 +2B2)(B1(2B1 +B2−3)+3B3)(4B3
1 +6B2

2−B2
1(B2 +3)−3B1B3)|,

P4 : 0 < (2B1−B2
1−2B2)/(2(B1−B2))< 1,

then
|a5| ≤

B1

4
.

The bound is sharp.
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Proof. Let f (z) = z+∑
∞
n=2 anzn ∈S ∗

s (ϕ), then there exist a Schwarz function ω(z) such that

2z f ′(z)
f (z)− f (−z)

= ϕ(ω(z)).

By the one-to-one correspondence between the class of Schwarz functions and the class P , we obtain

2z f ′(z)
f (z)− f (−z)

= ϕ

(
p(z)−1
p(z)+1

)
(2.3.3)

for some p(z) = 1+∑
∞
n=1 pnzn ∈P . On the comparison of the same powers of z with the series

expansions of functions f (z), ϕ(z) and p(z), the above equation yields

a2 =
B1 p1

4
, a3 =

1
8

(
B2 p2

1−B1 p2
1 +2B1 p2

)
,

a4 =
1

64

(
p3

1(−B2
1 +B1B2 +2B1−4B2 +2B3)+ p1 p2(2B2

1−8B1 +8B2)+8B1 p3

)
and

a5 =
B1

8
(ϒ1 p4

1 +ϒ2 p2
1 p2 +ϒ3 p1 p3 +ϒ4 p2

2 + p4), (2.3.4)

where

ϒ1 =
B2

1−2B1 +6B2−2B1B2 +B2
2−6B3 +2B4

16B1
,

ϒ2 =
3B1−B2

1−6B2 +B1B2 +3B3

4B1
, ϒ3 =

B2−B1

B1
,

ϒ4 =
B2

1−2B1 +2B2

4B1
.


(2.3.5)

Let us consider that q(z) = 1+∑
∞
n=1 κnzn and h(z) = 1+∑

∞
n=1 νnzn are the members of P , then by

Lemma 2.1.1 for p ∈P , we have

1+H(z) := 1+
∞

∑
n=1

pnκn

2
zn ∈P. (2.3.6)

For h ∈P and the function 1+H(z) given in (2.3.6), Lemma 2.1.2 gives

A4 =
1
2

γ0κ4 p4−
1
4

γ1κ
2
2 p2

2−
1
2

γ1κ1κ3 p1 p3 +
3
8

γ2κ
2
1 κ2 p2

1 p2−
1

16
γ3κ

4
1 p4

1, (2.3.7)

where γ0 = 1,

γ1 =
1
2

(
1+

1
2

ν1

)
, γ2 =

1
4

(
1+ν1 +

1
2

ν2

)
, γ3 =

1
8

(
1+

3
2

ν1 +
3
2

ν2 +
1
2

ν3

)
(2.3.8)

and
|A4| ≤ 2. (2.3.9)

Now, in order to establish the required bound, we construct the functions h(z) and q(z) such that

A4 = ϒ1 p4
1 +ϒ2 p2

1 p2 +ϒ3 p1 p3 +ϒ4 p2
2 + p4, (2.3.10)
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where ϒ’s and A4 are given in (2.3.5) and (2.3.7), respectively. For 0 < τ < 1, define

q(z) =
1+2τz+2τ2z2 +2τz3 + z4

1− z4 ,

which yields
κ1 = κ3 = 2τ, κ2 = 2τ

2 and κ4 = 2. (2.3.11)

From [15, Theorem 1], we have q ∈P . To construct function h(z), using Lemma 2.1.3, let

h(z) =
1+ω1(z)
1−ω1(z)

such that
ω1(z) = zΨ−ε1(zΨ−ε2(ε3z)), (2.3.12)

where ε1,ε2 ∈ U and ε3 ∈ U. Thus, we have

ν1 = 2ε1, ν2 = 2ε
2
1 +2(1−|ε1|2)ε2

and
ν3 = 2ε

3
1 +4(1−|ε1|2)ε1ε2−2(1−|ε1|2)ε1ε

2
2 +2(1−|ε1|2)(1−|ε2|2)ε3.

The above set of equations may be satisfied by many ε’s. For our purpose, we impose some restriction
on ε’s and take all ε’s as real numbers. Therefore,

ν1 = 2ε1, ν2 = 2ε
2
1 +2(1− ε

2
1 )ε2,

ν3 = 2ε
3
1 +4(1− ε

2
1 )ε1ε2−2(1− ε

2
1 )ε1ε

2
2 +2(1− ε

2
1 )(1− ε

2
2 )ε3.

}
(2.3.13)

In addition, if we define

ε1 =
B3

1−2B1B2 +2B2
2

2B2
1−B3

1−2B1B2
, ε2 =

B3
1−B2

1B2 +3B2
2−3B1B3

3(−B2
1 +B3

1 +B2
2)

,

ε3 =

(
B7

1−B6
1(8B2 +3)−6B4

1(B2(3B2 +2B3 +2)−6B3 +9B4)+B5
1(7B2(B2

+4)−24B3 +18B4)+6B3
1(B

3
2−2B2

2 +8B2B3−3B2
3 +6(B2 +1)B4)

−6B1B2(3B3
2−6B2

3 +B2
2(4B3−6)−6B2(2B3−B4))+18B2

2(−2B2
3

+B2((B2−2)B2 +2B4))+B2
1B2(−36(2B3 +B4)+B2(B2(6+5B2)−24B3

+18B4))

)/(
2((B1−2)B1 +2B2)(B1(2B1 +B2−3)+3B3)(4B3

1 +6B2
2

−B2
1(3+B2)−3B1B3)

)
and

τ =

√
2B1−B2

1−2B2

2(B1−B2)
,

then by the hypothesis P1, P2, P3 and P4, we have |ε1| < 1, |ε2| < 1, |ε3| < 1 and 0 < τ < 1, respec-
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tively. Putting these defined ε’s in (2.3.13), we obtain νi’s, which in turn together with (2.3.8) yields

γ1 =−
(B1−B2)

2

B1(B2
1−2B1 +2B2)

,

γ2 =−
(B1−B2)

2(B2
1 +6B2−B1(3+B2)−3B3)

3B1(B2
1−2B1 +2B2)2 ,

γ3 =−
(B1−B2)

2(B2
1 +6B2 +B2

2−2B1(1+B2)−6B3 +2B4)

4B1(B2
1−2B1 +2B2)2 .


(2.3.14)

On putting the values of κ ′i s and γ ′i s from (2.3.11) and (2.3.14), respectively, in (2.3.7), we get (2.3.10).
Using the bound |A4| ≤ 2 in (2.3.10), we get

|ϒ1 p4
1 +ϒ2 p2

1 p2 +ϒ3 p1 p3 +ϒ4 p2
2 + p4| ≤ 2,

which together with (2.3.4) gives the desired bound of |a5|.
The function ks,ϕ,5 = z+∑

∞
n=2 anzn ∈S ∗

s (ϕ), given by (2.3.2), serves as the extremal function since,
for this function, a2 = a3 = a4 = 0 and a5 = B1/4.

For −1 ≤ B < A ≤ 1, consider the classes S ∗
s [A,B] := S ∗

s ((1 + Az)/(1 + Bz)) and S ∗
s,SG :=

S ∗
s (2/(1+ e−z)). These classes are analogues to the corresponding classes of starlike functions

introduced and studied in [52, 73]. Theorem 2.3.1 directly gives the following result for these classes.

Corollary 2.3.2. If f (z) = z+∑
∞
n=2 anzn ∈S ∗

s [A,B] such that A and B satisfy the following conditions:

i : |(A−B)2(A+B+2B2)|< |(A−3B−2)(A−B)2|,
ii : |(A−B)3(B+1)|< 3|(A−B)2(A−1+(B−1)B)|,

iii : |(A−B)5(B+1)(A2(7B+1)+B(B(38+(12−17B)B)+15)+A(B(B(5B−31)−27)

−3))|< 2|(A−B)4(A−3B−2)(A(B−2)−4B2 +2B+3)(A(B+4)+2B(B−2)−3)|,
iv : 0 < (3B−A+2)/(2B+2)< 1,

then
|a5| ≤

A−B
4

.

The bound is sharp.

Example 2.3.3. For A = 0 and B = −1/2, all conditions in Corollary 2.3.2 are satisfied. Thus, if
f (z) = z+∑

∞
n=2 anzn ∈S ∗

s [0,−1/2], then |a5| ≤ 1/8.

Corollary 2.3.4. If f (z) = z+∑
∞
n=2 anzn ∈S ∗

s,SG, then |a5| ≤ 1/8 and the bound is sharp.

For the classes S ∗
s,L and S ∗

s,RL, the coefficients of the corresponding function ϕ satisfy the conditions

P1, P2, P3 and P4. Consequently, Theorem 2.3.1 yields the following result for these classes:

Remark 2.3.1. If f (z) = z+∑
∞
n=2 anzn ∈S ∗

s,L, then |a5| ≤ 1/8 [80, Theorem 5(a)].

Remark 2.3.2. If f (z) = z+∑
∞
n=2 anzn ∈S ∗

s,RL, then |a5| ≤ (5−3
√

2)/8 [80, Theorem 5(b)].
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Theorem 2.3.5. If f (z) = z+a2z2 +a3z3 + · · · ∈ Cs(ϕ) and coefficients of ϕ(z) satisfy the conditions
P1, P2, P3 and P4, then

|a5| ≤
B1

20
.

The bound is sharp.

Proof. Let f (z) = z+∑
∞
n=2 anzn ∈ Cs(ϕ), then there exists a Schwarz function ω(z) such that

(2z f ′(z))′

( f (z)− f (−z))′
= ϕ(ω(z)).

Corresponding to the Schwarz function ω(z), let there is a function p(z) = 1+∑
∞
n=1 pnzn ∈P satisfy-

ing p(z) = (1+ω(z))/(1−ω(z)). Thus, we obtain

(2z f ′(z))′

( f (z)− f (−z))′
= ϕ

(
p(z)−1
p(z)+1

)
. (2.3.15)

Comparing the coefficients of the same powers of z after applying the series expansion of f (z), ϕ(z)
and p(z) leads to

a2 =
B1 p1

8
, a3 =

1
24

(
B2 p2

1−B1 p2
1 +2B1 p2

)
,

a4 =
1

256

(
p3

1(−B2
1 +B1B2 +2B1−4B2 +2B3)+ p1 p2(2B2

1−8B1 +8B2)+8B1 p3

)
and

a5 =
B1

20
(
ϒ1 p4

1 +ϒ2 p2
1 p2 +ϒ3 p1 p3 +ϒ4 p2

2 + p4
)
,

where ϒi’s are given in (2.3.5). Since, ϒi’s are the same as in the case of S ∗
s (ϕ), therefore following

the same methodology as in Theorem 2.3.1, we get the bound of |a5|. The equality case holds for the
function hs,ϕ,4 = z+∑

∞
n=2 anzn ∈ Cs(ϕ) given by (2.3.2).

We can define the classes Cs[A,B], Cs,e, Cs,SG, Cs,L and Cs,RL in a similar manner as S ∗
s [A,B],

S ∗
s,e, S ∗

s,SG, S ∗
s,L and S ∗

s,RL, respectively. For these classes, Theorem 2.3.5 yields the following sharp

bounds directly:

Corollary 2.3.6. If f (z) = z+∑
∞
n=2 anzn ∈ Cs[A,B] such that A and B satisfy the conditions given in

Corollary 2.3.2, then

|a5| ≤
A−B

20
.

Corollary 2.3.7. If f (z) = z+∑
∞
n=2 anzn ∈ Cs,RL, then

|a5| ≤
5−3

√
2

40
.

Corollary 2.3.8. If f (z) = z+∑
∞
n=2 anzn ∈ Cs,e, then |a5| ≤ 1/20.

Corollary 2.3.9. If f (z) = z+∑
∞
n=2 anzn ∈ Cs,L, then |a5| ≤ 1/40.

Corollary 2.3.10. If f (z) = z+∑
∞
n=2 anzn ∈ Cs,SG, then |a5| ≤ 1/40.
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By focusing on the coefficients of functions, we delve into establishing the sharp bounds of specific

Hermitian-Toeplitz determinants in the following chapter. These determinants are constructed over the

coefficients of functions belonging to the classes discussed in this chapter, allowing us to explore their

properties in more detail.

Highlights of the chapter

Determining sharp coefficient bounds for functions belonging to well-known classes is a significant

problem in geometric function theory. Consequently, there is an extensive body of literature address-

ing the sharp bounds of initial coefficients up to the fourth for functions in the classes S ∗(ϕ), C (ϕ),

S ∗
s (ϕ), and Cs(ϕ). However, the bounds for the fifth and higher coefficients remain unknown. This

chapter addresses this gap by successfully finding the sharp fifth coefficient bound for functions in

the aforementioned classes, given certain constraints on the coefficients of ϕ(z). These constraints

are commonly satisfied by well-known Ma-Minda functions such as 2/(1+ e−z),
√

1+ z, 1+ sinz and√
2− (
√

2−1)
√
(1− z)/(1+2(

√
2−1)z). Our findings include special cases for other subclasses as

well.

The work of this chapter is covered in the following research papers:

S. Giri, S. S. Kumar, Sharp bounds of fifth coefficient and Hermitian-Toeplitz determinants for Sak-
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S. Giri, and S. Sivaprasad Kumar, Fifth Coefficient Estimate for Certain Starlike Functions, arXiv

preprint arXiv:2201.05803 (Communicated).

https://doi.org/10.4134/BKMS.b230018
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Chapter 3

Hermitian-Toeplitz Determinants for

Certain Univalent Functions

Sharp upper and lower bounds for the second and third order Hermitian-Toeplitz determinants are

obtained for certain subclasses of normalized univalent functions defined on the unit disk. Applications

of these results are also discussed for several widely known classes.

3.1 Introduction

Toeplitz matrices and determinants have many applications in pure and in applied mathematics.

Toeplitz determinants are closely related to Hankel determinants. Hankel matrices have constant en-

tries along the reverse diagonal, whereas Toeplitz matrices have constant entries along the diagonal.

Ye and Lim [194] showed that any n× n matrix over C generically can be written as the product of

some Toeplitz matrices or Hankel matrices. For a summary of applications of Toeplitz matrices to a

wide range of mathematics, we refer to [194].

Extending the notion of Toeplitz determinants defined in (1.5.1), Cudna et al. [39] introduced and

studied the Hermitian-Toeplitz determinants Tm(n)( f ) for f (z) = z+∑
∞
n=2 anzn ∈A , defined as

Tm(n)( f ) =

∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+m−1

ān+1 an · · · an+m−2
...

...
...

...

ān+m−1 ān+m−2 · · · an

∣∣∣∣∣∣∣∣∣∣∣
(m ∈ N), (3.1.1)

33
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where āk = ak. It is also noted that the determinant Tm(1)( f ) is rotationally invariant that is determinants

Tm(1)( f ) and Tm(1)( fθ ) are same, where fθ (z) = e−iθ f (eiθ z) and θ ∈ R. Since Tm(1)( f ) for f ∈A

is a determinant of the Hermitian matrix, it is a real number. For f ∈ A , we have a1 = 1, thus the

second order Hermitian-Toeplitz determinant is

T2(1)( f ) =

∣∣∣∣∣ 1 a2

ā2 1

∣∣∣∣∣= 1−|a2|2

and the third order Hermitian-Toeplitz determinant is given by

T3(1)( f ) =

∣∣∣∣∣∣∣∣
1 a2 a3

ā2 1 a2

ā3 ā2 1

∣∣∣∣∣∣∣∣= 2Re
(
a2

2ā3
)
−2|a2|2−|a3|2 +1. (3.1.2)

Firstly, Cudna et al. [39] established the sharp bounds of T2(1)( f ) and T3(1)( f ) for the classes S ∗(α)

and C (α). Generalizing these results, Kumar et al. [99] established the bounds of certain Hermitian-

Toeplitz determinants for the classes S ∗[A,B] and C [A,B]. The bounds of T2(1)( f ) and T3(1)( f )

for functions belonging to the class S and some of its subclasses were obtained by Obradović and

Tuneski [134].

Recently, Kumar [96] obtained the sharp lower and upper bounds of T2(1)( f ) and T3(1)( f ) for the

classes F1, F2, F3 and F4. Kowalczyk et al. [87] also attained the sharp bounds for the classes F2

and F3. For more work in this direction, one can see [4, 6, 33, 104, 105].

For particular choices of ϕ in S ∗(ϕ), C (ϕ), S ∗
s (ϕ) and Cs(ϕ), many authors obtained upper as well

as lower bounds of Hermitian-Toeplitz determinants. Here, we consider this problem for these general

classes and establish sharp estimates of the second and third-order Hermitian-Toeplitz determinants.

Furthermore, we find the bounds of the same for the class K with a fixed starlike function g. Since the

bounds depend on the coefficients of g, we write K (g) to denote such subclasses of K . Clearly,

K =
⋃

g∈S ∗
K (g).

We use the following lemma in deriving our results.

Lemma 3.1.1. [107][143, p. 166] If p(z) = 1+∑
∞
n=1 pnzn ∈P , then

2p2 = p2
1 +
(
4− p2

1
)

ζ ,

for some ζ ∈ U= {z ∈ C : |z| ≤ 1}.

3.2 Hermitian-Toeplitz determinants for S ∗(ϕ) and C (ϕ)

In the forthcoming results, we obtain the sharp bounds of T2(1)( f ) and T3(1)( f ) for the classes

S ∗(ϕ) and C (ϕ).
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Theorem 3.2.1. Let f ∈S ∗(ϕ) and ϕ(z) = 1+B1z+B2z2 +B3z3 + · · · . Then the following holds:

(i) 1−B2
1 ≤ T2(1)( f )≤ 1.

(ii) If 3B4
1−8B2

1 +2B2
1B2−B2

2 < 0 and B1 ≤ |B2 +B2
1|, then

T3(1)( f )≤ 1. (3.2.1)

(iii) If 3B4
1−8B2

1 +2B2
1B2−B2

2 ≥ 0 and B1 ≤ |B2 +B2
1|, then

T3(1)( f )≤ B2
1(B

2
1 +B2)−

1
4
(
B2

1 +B2
)2−2B2

1 +1. (3.2.2)

All these inequalities are sharp.

Proof. Let f (z) = z+∑
∞
n=2 anzn ∈S ∗(ϕ), then |a2| ≤ B1 and whenever B1 ≤ |B2 +B2

1|, we have

|a3| ≤
1
2
|B2

1 +B2|

(see [4]). It is clear that the lower and the upper estimates of T2(1)( f ) will be deduced directly from
the bound of |a2|, which are sharp for the functions kϕ and kϕ,3, respectively, given by.

kϕ(z) = zexp
∫ z

0

ϕ(t)−1
t

dt and kϕ,3(z) = zexp
∫ z

0

ϕ(t2)−1
t

dt. (3.2.3)

Now we proceed to estimate T3(1)( f ). Using the inequality Re(a2
2ā3)≤ |a2|2|a3| in (3.1.2), we have

T3(1)( f )≤ 2|a2|2|a3|−2|a2|2−|a3|2 +1 =: u(|a3|),

where u(x) = 2|a2|2x− 2|a2|2− x2 + 1. Clearly, maximum of u(x) is the upper bound for T3(1)( f ).
Since B1 ∈ [0,2] and B2 ∈ [−2,2] (see [143, Corollary 2.3]), we have x = |a3| ∈ [0,3]. Since,

u′(x) = 2
(
|a2|2− x

)
and u′′(x) =−2,

u(x) attains its maximum value at x0 = |a2|2. Now, there arise two cases:
Case 1: When |a2|2 lies in the range of x that is |a2|2 < |a3|, then

maxu(x) = u(|a2|2) =
(
|a2|2−1

)2

≤
{

1 |a2|2 ≤ 2,(1
2

(
B2

1 +B2
)
−1
)2

2≤ |a2|2 ≤ 1
2 |B2

1 +B2|.

=

{
1 |B2

1 +B2| ≤ 4,(1
2

(
B2

1 +B2
)
−1
)2

4≤ |B2
1 +B2|.
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Case 2: If |a3| ≤ |a2|2, then

maxu(x) = u(|a3|)

= u
(

1
2
|B2

1 +B2|
)
≤ B2

1(B
2
1 +B2)−

1
4
(
B2

1 +B2
)2−2B2

1 +1.

It can be easily seen that for |B2
1 +B2| ≥ 4,

max
{(

1
2
(
B2

1 +B2
)
−1
)2

, B2
1(B

2
1 +B2)−

1
4
(
B2

1 +B2
)2−2B2

1 +1
}

= B2
1(B

2
1 +B2)−

1
4
(
B2

1 +B2
)2−2B2

1 +1.

Also,

B2
1(B

2
1 +B2)−

1
4
(
B2

1 +B2
)2−2B2

1 +1≥ 1

whenever
3B4

1−8B2
1 +2B2

1B2−B2
2 ≥ 0.

Combining all these facts, we obtain the upper bound of T3(1)( f ).

Sharpness: When 3B4
1−8B2

1+2B2
1B2−B2

2 < 0, the inequality (3.2.1) is sharp for f (z) = z and when
3B4

1−8B2
1+2B2

1B2−B2
2 ≥ 0, the equality sign in (3.2.2) holds for the function kϕ given by (3.2.3).

Note that, when ϕ(z) is 1+ sinz and 1+ zez, the class S ∗(ϕ) reduces to the classes S ∗
sin and S ∗

℘

introduced in [34] and [92], respectively. From Theorem 3.2.1, we easily obtain the following results.

Corollary 3.2.2. (i) If f ∈S ∗
sin, then 0≤ T2(1)( f )≤ 1 and T3(1)( f )≤ 1.

(ii) If f ∈S ∗
℘, then 0≤ T2(1)( f )≤ 1 and T3(1)( f )≤ 1.

(iii) If f ∈Sp, then 1− (64/π4)≤ T2(1)( f )≤ 1 and T3(1)( f )≤ 1.

Remark 3.2.1. Theorem 3.2.1 yields some already known results for different subclasses of S ∗, ob-
tained by an appropriate choice of ϕ.

(i) If f ∈S ∗
SG, then 3/4≤ T2(1)( f )≤ 1 and T3(1)( f )≤ 1 [33, Theorem 2.1].

(ii) If f ∈S ∗
B , then 0≤ T2(1)( f )≤ 1 and T3(1)( f )≤ 1 [33, Theorem 2.2].

(iii) If f ∈ ∆∗, then 0≤ T2(1)( f )≤ 1 and T3(1)( f )≤ 1 [98, Theorem 2].

(iv) If f ∈S ∗, then T3(1)( f )≤ 8 [39, Corollary 3], [87, Corollary 2].

(v) If f ∈S ∗(1/2), then T3(1)( f )≤ 1 [39, Corollary 4].

(vi) If f ∈S ∗
Ne, then T3(1)( f )≤ 1 [90, Theorem 4.2].

(vii) If we take ϕ(z) = (1+(1−2α)z)/(1−z),α ∈ (0,1], then we obtain the upper bound of T3(1)( f )
for f ∈S ∗(α) [39, Theorem 3].

(viii) For ϕ(z) = ((1+z)/(1−z))β ,β ∈ [1/3,1], we get the bound of T3(1)( f ) for function f belonging
to the class of strongly starlike function S S ∗(β ) [98, Theorem 1], [87, Theorem 3].
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(ix) For ϕ(z) = (1+Az)/(1+Bz), where−1≤ B < A≤ 1 with A−B≤ |A2−3AB+2B2|, we get the
bound of T3(1)( f ) for the class S ∗[A,B] [99, Theorem 2].

In a similar fashion, the bounds of T2(1)( f ) can also be found for all the above mentioned classes.

Theorem 3.2.3. Let f ∈ C (ϕ) and ϕ(z) = 1+B1z+B2z2 +B3z3 + · · · . Then

(i) 1− (B2
1)/4≤ T2(1)( f )≤ 1.

(ii) T3(1)( f )≤ 1, provided B1 ≤ |B2 +B2
1|.

All these estimates are sharp.

Proof. Let f (z) = z+∑
∞
n=2 anzn ∈ C (ϕ), then |a2| ≤ B1/2 and whenever B1 ≤ |B2+B2

1| hold, we have

|a3| ≤
1
6
|B2

1 +B2|

(see [4]). The bounds of T2(1)( f ) can be obtained using the bound of |a2|. Further, the functions hϕ

and hϕ,3 satisfying

1+
zh′′ϕ(z)
h′ϕ(z)

= ϕ(z) and 1+
zh′′

ϕ,3(z)

h′
ϕ,3(z)

= ϕ(z2), (3.2.4)

respectively, act as extremal functions for lower and upper estimates of T2(1)( f ). Now using the
technique of Theorem 3.2.1, in context of the class C (ϕ), we get

T3(1)( f )≤ u(x) = 2|a2|2x−2|a2|2− x2 +1,

where x = |a3|. Clearly, u(x) attain its maximum value at x = |a2|2. Therefore,

maxu(x) = u(|a2|2) =
(
|a2|2−1

)2 ≤ 1.

Thus, we get T3(1)( f )≤ 1. The bound is sharp for the identity function f (z) = z.

For different choices of ϕ , we obtain several known results as listed below, for different subclasses

of C as a special case of Theorem 3.2.3.

Remark 3.2.2. (i) If ϕ(z) = (1+ z)/(1− z), then f ∈ C and T3(1)( f )≤ 1 [104, Theorem 1].

(ii) If ϕ(z) = (1+(1−2α)z)/(1− z), then f ∈ C (α) and T3(1)( f )≤ 1 [39, Theorem 5].

(iii) If ϕ(z) = ((1+ z)/(1− z))β , β ∈ [1/3,1], then f ∈ C C (β ) and T3(1)( f )≤ 1 [87, Theorem 5].

(iv) If f ∈ C [A,B], where −1 ≤ B < A ≤ 1 and A−B ≤ |A2− 3AB+ 2B2|, then T3(1)( f ) ≤ 1 [99,
Theorem 4].

Theorem 3.2.4. Let f ∈S ∗(ϕ) and B2
1 ≥ B2.

(i) If ν /∈ [0,4], then

T3(1)( f )≥min
{

1− B2
1

4
,1−2B2

1 +
3B4

1
4

+
B2

1B2

2
− B2

2
4

}
. (3.2.5)
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(ii) If ν = 4, then

T3(1)( f )≥ 1−2B2
1 +

3B4
1

4
+

B2
1B2

2
− B2

2
4
. (3.2.6)

(iii) If ν ∈ (0,4), then

T3(1)( f )≥ 1− B2
1

4
− B2

1(B
2
1 +3B1−B2)

2

4
(
B1(2B2

1−B1−2B2)+(3B2
1−B2)(B2

1 +B2)
) , (3.2.7)

where

ν =
4B1(B2

1 +3B1−B2)

(3B2
1−B2)(B2

1 +B2)+B1(2B2
1−2B2−B1)

.

The first two inequalities are sharp.

Proof. Since f (z) = z+∑
∞
n=2 anzn ∈S ∗(ϕ), therefore

z f ′(z)
f (z)

= ϕ(ω(z)), z ∈ U, (3.2.8)

where ω is a Schwarz function satisfying |ω(z)| ≤ |z| and ω(0) = 0. Corresponding to the function
ω , there is some Carathéodory function p(z) = 1+∑

∞
n=1 pnzn ∈P , which satisfy ω(z) = (p(z)−

1)/(p(z)+ 1). On comparing the coefficients of z and z2 in (3.2.8) with the series expansion of f , ω

and ϕ , we obtain

a2 =
B1 p1

2
and a3 =

1
8
(
(B2

1−B1 +B2)p2
1 +2B1 p2

)
. (3.2.9)

Since the class S ∗(ϕ) and the class of Carathéodory functions P are invariant under rotation and
|p1| ≤ 2, without lose of generality, we can take p1 ∈ [0,2]. Using the values of a2 and a3 from (3.2.9)
together with Lemma 3.1.1, we get

2Re
(
a2

2ā3
)
=

B2
1 p2

1
16

(
(B2

1−B1 +B2)p2
1 +B1

(
p2

1 +(4− p2
1)Re ζ̄

))
and

−|a3|2 =−
1
64

(
(B2

1−B1 +B2)
2 p4

1 +B2
1
(

p4
1 +(4− p2

1)
2|ζ |2 +2p2

1(4− p2
1)Re ζ̄

)
+2B1(B2

1−B1 +B2)p2
1
(

p2
1 +(4− p2

1)Re ζ̄
))

.

Now, by (3.1.2)

T3(1)( f ) =− 1
64

(
(B2

1−B1 +B2)
2 p4

1 +B2
1
(

p4
1 +(4− p2

1)
2|ζ |2 +2p2

1(4− p2
1)Re ζ̄

)
+2B1(B2

1−B1 +B2)p2
1
(

p2
1 +(4− p2

1)Re ζ̄
))
− B2

1 p2
1

2
+1

+
B2

1 p2
1

16

(
(B2

1−B1 +B2)p2
1 +B1

(
p2

1 +(4− p2
1)Re ζ̄

))
.
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We can rewrite the above equation as

T3(1)( f ) =
(

3B4
1 +2B2

1B2−B2
2

64

)
p4

1−
B2

1
2

p2
1−

B2
1

64
(4− p2

1)
2|ζ |2

+

(
B3

1−B1B2

32

)
p2

1(4− p2
1)Re ζ̄ +1 =: F(p2

1, |ζ |,Re ζ̄ ).

Note that F(p2
1, |ζ |,Re ζ̄ )≥ F(p2

1, |ζ |,−|ζ |), therefore

T3(1)( f )≥
(

3B4
1 +2B2

1B2−B2
2

64

)
p4

1−
B2

1
2

p2
1−

B2
1

64
(
4− p2

1
)2 |ζ |2−

(
B3

1−B1B2

32

)
p2

1(4− p2
1)|ζ |+1.

Let x = p2
1 ∈ [0,4] and y = |ζ | ∈ [0,1], then T3(1)( f )≥ F(x,y), where

F(x,y) =
(

3B4
1 +2B2

1B2−B2
2

64

)
x2− B2

1
2

x− B1(B2
1−B2)

32
x(4− x)y− B2

1
64

(4− x)2 y2 +1.

If B2
1 ≥ B2, then for any fixed x and y ∈ [0,1], we have

∂F
∂y

=−B1(B2
1−B2)

32
x(4− x)− B2

1
32

(4− x)2y≤ 0,

which means that F(x,y) is decreasing function of y and

F(x,y)≥ F(x,1) = G(x)

with

G(x) =
1

64

(
(3B2

1−B2)(B2
1 +B2)+B1(2B2

1−2B2−B1)

)
x2− B2

1
4
− 1

8
B1(B2

1 +3B1−B2)x+1.

A computation shows that G′(x) = 0 at

x0 =
4B1(B2

1 +3B1−B2)

(3B2
1−B2)(B2

1 +B2)+B1(2B2
1−2B2−B1)

and
G′′(x0) =

1
32
(
(3B2

1−B2)(B2
1 +B2)+B1(2B2

1−2B2−B1)
)
.

Since B1 > 0 and B2
1 ≥ B2, numerator of x0 is always positive. Note that, denominator of x0 is same as

32G′′(x0), which gives x0 < 0 (or x0 > 0) iff G′′(x0)< 0 (or G′′(x0)> 0). Now, there arise two cases:
Case 1: If x0 < 0 or x0 > 4, which means G(x) does not have any critical point and

T3(1)( f )≥min{G(0),G(4)}

= min
{

1− B2
1

4
,1−2B2

1 +
3B4

1
4

+
B2

1B2

2
− B2

2
4

}
,

which yields (3.2.5). Both G(0) and G(4) are sharp for the extremal functions kϕ,3 and kϕ , respectively,
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given by (3.2.3). The case x0 < 0 also exhaust the possibility of G′′(x0)< 0.
Case 2: If x0 ∈ (0,4], then G′′(x0) > 0 and the function G attains its minimum value at x0. Here, we
discuss two possibilities for x0, which are x0 = 4 and x0 ∈ (0,4). For x0 = 4, we have

T3(1)( f )≥ G(4)

= 1−2B2
1 +

3B4
1

4
+

B2
1B2

2
− B2

2
4
,

(3.2.10)

which establishes (3.2.6). If x0 ∈ (0,4), then

T3(1)( f )≥ G(x0),

which proves (3.2.7).

We get lower bound of T3(1)( f ) for different classes with corresponding alternatives of ϕ .

Corollary 3.2.5. Let f ∈S ∗[A,B], where −1≤ B < A≤ 1.

(i) If ν /∈ [0,4], then

T3(1)( f )≥min
{

1− (A−B)2

4
,1+

(A−B)2(3A2−8AB+4B2−8)
4

}
.

(ii) If ν = 4, then

T3(1)( f )≥ 1+
(A−B)2(3A2−8AB+4B2−8)

4
.

(iii) If ν ∈ (0,4), then

T3(1)( f )≥ 1− (A−B)2(A2−2AB+B2 +2A+2)
(3A2−8AB+4B2 +2A−1)

,

where ν = 4(3+A)/(3A2 +4B2−8AB+2A−1). The first two inequalities are sharp.

In the following corollary, bounds are given for certain classes when coefficients B1 and B2 of ϕ(z)

satisfy the condition (3.2.5) or (3.2.6).

Corollary 3.2.6. (i) If f ∈S ∗
℘, then T3(1)( f )≥ 0.

(ii) If f ∈S ∗
sin, then T3(1)( f )≥−1/4.

(iii) If f ∈Sp, then T3(1)( f )≥ 1−64
(
19π4−24π2−432

)
/(9π8).

(iv) If f ∈S ∗
RL, then T3(1)( f )≥−9(4130

√
2−5861)/256.

Remark 3.2.3. Some of the already known results are established as special cases of Theorem 3.2.4,
which are given below.

(i) If f ∈S ∗
SG, then T3(1)( f )≥ 35/64 [33, Theorem 2.1].

(ii) If f ∈S ∗
B , then T3(1)( f )≥ 0 [33, Theorem 2.2].
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(iii) If f ∈S ∗
Ne, then T3(1)( f )≥−1/4 [90, Theorem 4.2].

(iv) If f ∈S ∗
L , then T3(1)( f )≥ 135/256 [98, Theorem 3].

(v) If f ∈S ∗(1/2), then T3(1)( f )≥ 0 [39, Corollary 4].

Remark 3.2.4. Special cases of Theorem 3.2.4 for the classes S ∗ and ∆∗, which are reducing to the
known results, are listed below particularly when the choices of ϕ satisfy the condition (3.2.7).

(i) If f ∈S ∗, then T3(1)( f )≥−1 [39, Corollary 3],[87, Corollary 2].

(ii) If f ∈ ∆∗, then T3(1)( f )≥−1/15 [98, Theorem 2].

Theorem 3.2.7. If f ∈ C (ϕ) such that B2
1 ≥ 2B2, then

T3(1)( f )≥



min
{

1− B2
1

36
,1− B2

1
2

+
B4

1
18

+
B2

1B2

36
− B2

2
36

}
, σ /∈ [0,4],

1− B2
1

2
+

B4
1

18
+

B2
1B2

36
− B2

2
36

, σ = 4,

1− B3
1(B

3
1 +4B2

1 +28B1−8B2)

16(2B4
1 +B3

1−B2
1−2B1B2 +B2

1B2−B2
2)
, σ ∈ (0,4),

where

σ =
2B1(B2

1 +16B1−2B2)

2B4
1 +B3

1−B2
1−2B1B2 +B2

1B2−B2
2
.

The first two inequalities are sharp.

Proof. Let f (z) = z+∑
∞
n=2 anzn ∈ C (ϕ), then we have

1+
z f ′′(z)
f ′(z)

= ϕ(ω(z)), z ∈ U,

where ω is a Schwarz function. Corresponding to the function ω , there is p(z) = 1+∑
∞
n=2 pnzn ∈P

such that ω(z) = (p(z)− 1)/(p(z)+ 1). Comparison of the same powers of z in the above equation
with the series expansions of functions f , ϕ and p gives

a2 =
B1 p1

4
and a3 =

(B2
1−B1 +B2)p2

1 +2B1 p2

24
.

Following the same procedure as in Theorem 3.2.4 with Lemma 3.1.1, we obtain T3(1)( f ) ≥ F(x,y),
where

F(x,y) = 1− B2
1x
8

+
1

576

(
(2B4

1 +B2
1B2−B2

2)x
2− (B3

1−2B1B2)x(4− x)y−B2
1(4− x)2y2

)
for x = p2

1 ∈ [0,4] and y = |ζ | ∈ [0,1]. Partial derivative with respect to y shows that

∂F
∂y

=−(B3
1−2B1B2)(4− x)x

576
− B2

1(4− x)2y
288

≤ 0
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whenever B2
1 ≥ 2B2. Therefore F is a decreasing function of y and F(x,y)≥ F(x,1) =: G(x), where

G(x) = 1− B2
1

36
− B1(B2

1 +16B1−2B2)x
144

+
(2B4

1 +B3
1−B2

1−2B1B2 +B2
1B2−B2

2)x
2

576
.

A simple computation reveals that G′(x) = 0 at

x0 =
2B1(B2

1 +16B1−2B2)

2B4
1 +B3

1−B2
1−2B1B2 +B2

1B2−B2
2

and

G′′(x) =
2B4

1 +B3
1−B2

1−2B1B2 +B2
1B2−B2

2
288

.

Since B2
1≥B2 and B1 > 0, therefore numerator of x0 is always positive. Also note that, the denominator

of x0 and numerator of G′′(x) are same. Thus
Case I: When 0 < x0 < 4, G′′(x0)> 0 and hence minimum will attain at x0. In this case

T3(1)( f )≥minG(x) = G(x0)

= 1− B3
1(B

3
1 +4B2

1 +28B1−8B2)

16(2B4
1 +B3

1−B2
1−2B1B2 +B2

1B2−B2
2)
.

Case II: If x0 < 0 or x0 > 4, which indicates that the critical point does not lie in the domain, then

T3(1)( f )≥min{G(0),G(4)}

= min
{

1− B2
1

36
,1− B2

1
2

+
B4

1
18

+
B2

1B2

36
− B2

2
36

}
.

Further, for x0 = 4, T3(1)( f )≥ G(4).

For the functions hϕ and hϕ,3 given in (3.2.4), we have

T3(1)(hϕ) = 1− B2
1

2
+

B4
1

18
+

B2
1B2

36
− B2

2
36

and T3(1)(hϕ,3) = 1− B2
1

36
,

which shows the sharpness of the bounds.

If we take ϕ(z) as (1+Az)/(1+Bz) and (1+ z)/(1− z) in Theorem 3.2.7, we obtain the following

corollaries, respectively.

Corollary 3.2.8. Let f ∈ C [A,B] such that −1≤ B < A≤ 1 and (A−B)2 ≥ 2(B2−AB). Then

T3(1)( f )≥



min
{

1− (A−B)2

36
,1+

(A−B)2(2A2 +2B2−5AB−18)
36

}
, σ /∈ [0,4]

1+
(A−B)2(2A2 +2B2−5AB−18)

36
, σ = 4

1− (A−B)2(A2 +B2 +4A+4B−2AB+28)
16(2A2 +2B2 +A+B−5AB−1)

, σ ∈ (0,4)
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where σ = 2(A+B+16)/(2A2 +2B2 +A+B−5AB−1). The first two inequalities are sharp.

Corollary 3.2.9. If f ∈ C , then T3(1)( f )≥ 0. The bound is sharp.

3.3 Hermitian-Toeplitz for Close-to-Convex functions

Recently, the lower and upper bounds of T2(1)( f ) and T3(1)( f ) for functions in the classes F1, F2,

F3 and F4 were obtained [87, 96, 105]. Generalizing these works, we obtain the bounds of T2(1)( f )

and T3(1)( f ) when f ∈K (g) for certain g ∈S ∗.

Theorem 3.3.1. Let g ∈S ∗ be of the form g(z) = z+b2z2 +b3z3 + · · · , such that

6|b2|3−4|b2|(|b3|−1)−4(|b3|−1)2 + |b2|2(3|b3|+5)≥ 0 (3.3.1)

and let f ∈K (g). Then

(i) 1− (1+ |b2|/2)2 ≤ T2(1)( f )≤ 1.

(ii) If 6|b2|3 + |b2|2(3|b3|+13)+4|b2|(|b3|−1)−2(1−|b3|)2−18≤ 0, then

T3(1)( f )≤ 1. (3.3.2)

(iii) If 6|b2|3 + |b2|2(3|b3|+13)+4|b2|(|b3|−1)−2(1−|b3|)2−18 > 0, then

T3(1)( f )≤ 1
18

(
6|b2|3 + |b2|2(3|b3|+13)+4|b2|(|b3|−1)−2(1−|b3|)2

)
. (3.3.3)

All these bounds are sharp.

Proof. Let f (z) = z+∑
∞
n=2 anzn ∈K (g), then we have

z f ′(z) = g(z)p(z),

where p(z) = 1+∑
∞
n=1 pnzn ∈P . By comparing the coefficients of like powers on either side, we have

a2 =
b2 + p1

2
and a3 =

1
3
(b3 +b2 p1 + p2) .

Using |pn| ≤ 2, we obtain

|a2| ≤
2+ |b2|

2
and |a3| ≤

1
3
(|b3|+2|b2|+2) . (3.3.4)

The bounds in (3.3.4) are sharp for the function fg, given by

fg(z) =
∫ z

0

(1+ t)g(t)
t(1− t)

dt. (3.3.5)

From (3.3.4), we can easily obtain the lower and upper estimates of T2(1)( f ). The lower bound of
T2(1)( f ) is sharp for the function fg given by (3.3.5) whereas the equality in the upper bound is attained
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for

f1(z) =
∫ z

0

(1+ t3)

(1− t3)

1
(1− t2)

dt = z+
z3

3
+ · · · .

Using the inequality Re(a2
2ā3)≤ |a2|2|a3| in (3.1.2), we get

T3(1)( f )≤maxu(x),

where u(x) = 2|a2|2x− 2|a2|2 − x2 + 1 and x = |a3|. Note that u(x) attains its maximum value at
x = |a2|2. When |a2|2 lies in the range of x = |a3|, that is |a2|2 ≤ 1

3 (|b3|+2|b2|+2), then

maxu(x) = u(|a2|2)
= (|a2|2−1)2

≤


1, |a2|2 ≤ 2,

(1
3 (|b3|+2|b2|+2)−1

)2
, 2≤ |a2|2 ≤ 1

3 (2+2|b2|+ |b3|)

=


1, 1

3 (|b3|+2|b2|+2)≤ 2,

(1
3 (|b3|+2|b2|+2)−1

)2
, 2≤ 1

3 (2+2|b2|+ |b3|) .

For x = |a3| ≤ |a2|2,

maxu(x) = u(
1
3
(|b3|+2|b2|+2))

≤ 1
18
(
6|b2|3 + |b2|2(3|b3|+13)+4|b2|(|b3|−1)−2(1−|b3|)2) . (3.3.6)

Using (3.3.1), we observe that the maximum value of u(x) at x = |a3|, given in (3.3.6), is greater than
the value at x = |a2|2, that is

(1
3 (|b3|+2|b2|+2)−1

)2
. Moreover,

1
18
(
6|b2|3 + |b2|2(3|b3|+13)+4|b2|(|b3|−1)−2(1−|b3|)2)> 1,

whenever
6|b2|3 + |b2|2(3|b3|+13)+4|b2|(|b3|−1)−2(1−|b3|)2−18 > 0. (3.3.7)

Upper bound of T3(1)( f ) can be obtained from (3.3.6) and (3.3.7).

Bound in (3.3.3) is sharp for the function fg given by (3.3.5) and for f (z) = z equality holds in
(3.3.2).

Remark 3.3.1. Note that, when g(z) = z/(1− z), the class K (g) reduces to the class F1. The series
expansion of z/(1− z) shows that b2 = b3 = 1, which clearly satisfy the condition (3.3.1) and since

6|b2|3 + |b2|2(3|b3|+13)+4|b2|(|b3|−1)−2(1−|b3|)2−18 = 4,

the condition (3.3.3) is also true. Similarly, when g(z) = z/(1− z)2, it can be easily verified that the
conditions (3.3.1) and (3.3.3) hold and the class K (g) becomes the class F3. Consequently, we obtain
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the following known sharp bounds for the classes F1 and F3 as a special case of Theorem 3.3.1.

(i) If f ∈F1, then −5/4≤ T2(1)( f )≤ 1 [96, Theorem 2.1], [105, Theorem 4].

(ii) If f ∈F1, then T3(1)( f )≤ 11/9 [96, Theorem 2.2], [105, Theorem 5].

(iii) If f ∈F3, then −3≤ T2(1)( f )≤ 1 [96, Theorem 2.5],[87, Theorem 5].

(iv) If f ∈F3, then T3(1)( f )≤ 8 [96, Theorem 2.6],[87, Theorem 6].

Remark 3.3.2. Taking g(z) = z/(1− z2) in K (g), we obtain the class F2. The series expansion of
z/(1− z)2 reveals that b2 = 0 and b3 = 1, which satisfy (3.3.1) and since

6|b2|3 + |b2|2(3|b3|+13)+4|b2|(|b3|−1)−2(1−|b3|)2−18 =−18,

the condition (3.3.2) also hold. Similarly, in case of g(z) = z/(1− z+ z2), the conditions (3.3.1) and
(3.3.2) are true, and the class K (g) reduces to the class F4. Thus, Theorem 3.3.1 directly gives the
following sharp bounds for the classes F2 and F4.

(i) If f ∈F2, then 0≤ T2(1)( f )≤ 1 [96, Theorem 2.3],[87, Theorem 2].

(ii) If f ∈F2, then T3(1)( f )≤ 1 [96, Theorem 2.4], [87, Theorem 3].

(iii) If f ∈F4, then −5/4≤ T2(1)( f )≤ 1 [96, Theorem 2.7], [105, Theorem 2].

(iv) If f ∈F4, then T3(1)( f )≤ 1 [96, Theorem 2.8], [105, Theorem 3].

Theorem 3.3.2. Let f ∈K (g) such that g(z) = z+∑
∞
n=2 bnzn ∈S ∗. If g̃(z) = z+∑

∞
n=2 in−1bnzn ∈S ∗,

then
|T2(2)( f )| ≤ 1

4
(2+ |b2|)2 +

1
9
(|b3|+2|b2|+2)2 .

The bound is sharp.

Proof. From (3.1.1), we have

|T2(2)( f )|= |a2
2−|a3|2| ≤ |a3|2 + |a2|2.

Using the estimate of |a2| and |a3| for f ∈K (g), given in (3.3.4), we obtain the required bound of
|T2(2)( f )|.

The bound is sharp for the function f given by

z f ′(z)
g̃(z)

=
1+ iz
1− iz

as f has the power series representation f (z) = z+ i(2+b2)z2/2− (2+b3 +2b2)z3/3+ · · · .

By changing the function g in Theorem 3.3.2, we can obtain results for other classes.

Corollary 3.3.3. (i) If f ∈F1, then |T2(2)( f )| ≤ 181/36 and the bound is sharp for

f (z) =
∫ z

0

(
1+ it
1− it

)
g̃(t)

t
dt,
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where g̃(z) = z/(1− iz) ∈S ∗.

(ii) If f ∈F2, then |T2(2)( f )| ≤ 2 and the bound is sharp for

f (z) =
∫ z

0

(
1+ it
1− it

)
g̃(t)

t
dt,

where g̃(z) = z/(1+ z2) ∈S ∗.

(iii) If f ∈F3, then |T2(2)( f )| ≤ 13 and the bound is sharp for

f (z) =
∫ z

0

(
1+ it
1− it

)
g̃(t)

t
dt,

where g̃(z) = z/(1− iz)2 ∈S ∗.

(iv) If f ∈F4, then |T2(2)( f )| ≤ 145/36 and the bound is sharp for

f (z) =
∫ z

0

(
1+ it
1− it

)
g̃(t)

t
dt,

where g̃(z) = z/(1− iz+ z2) ∈S ∗.

(v) If f ∈R, then |T2(2)( f )| ≤ 13/9 and the bound is sharp for

f (z) =
∫ z

0

(
1+ it
1− it

)
dt.

3.4 Hermitian-Toeplitz for Sakaguchi Classes

In the past, various subclasses of S ∗
s and Cs were considered and studied such as S ∗

s,e, S ∗
s,L

and S ∗
s,RL defined in (2.3.1). Bounds of initial coefficients for functions belonging to these classes

were established in [80]. Kumar and Kumar [89] studied second and third order Hermitian-Toeplitz

determinants for functions belonging to the classes S ∗
s , Cs and the classes defined in (2.3.1). Sun

and Wang [180] considered the same problem for the classes S ∗
s (α) and Cs(α) and established the

sharp bound of T3(1)( f ).

We need the following lemmas to prove our results. Shanmugam et al. [166] obtained the following

bounds of |a3−µa2
2| for f (z) = z+∑

∞
n=2 anzn belonging to the classes S ∗

s (ϕ) and Cs(ϕ).

Lemma 3.4.1. [166, Theorem 2.1] If f (z) = z+∑
∞
n=2 anzn ∈S ∗

s (ϕ), then

|a3−µa2
2| ≤



1
2

(
B2−

µ

2
B2

1

)
if µ ≤ ν1,

B1

2
if ν1 ≤ µ ≤ ν2,

−1
2

(
B2−

µ

2
B2

1

)
if µ ≥ ν2,
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where ν1 = (2(B2−B1))/B2
1 and ν2 = (2(B2 +B1))/B2

1. The bound is sharp.

Lemma 3.4.2. [166, Corollary 2.4] If f (z) = z+∑
∞
n=2 anzn ∈ Cs(ϕ), then

|a3−µa2
2| ≤



1
6

(
B2−

3
8

µB2
1

)
if µ ≤ ν1,

B1

6
if ν1 ≤ µ ≤ ν2,

−1
6

(
B2−

3
8

µB2
1

)
if µ ≥ ν2,

where ν1 = (8(B2−B1))/(3B2
1) and ν2 = (8(B2 +B1))/(3B2

1). The bound is sharp.

For µ = 0, the following bounds for |a3| directly follow from Lemma 3.4.1 and Lemma 3.4.2, respec-

tively, helping us to prove the results:

Lemma A. If f (z) = z+a2z2 +a3z3 + · · · ∈S ∗
s (ϕ) and B1 ≤ |B2|, then

|a3| ≤
|B2|

2
.

Lemma B. If f (z) = z+a2z2 +a3z3 + · · · ∈ Cs(ϕ) and B1 ≤ |B2|, then

|a3| ≤
|B2|

6
.

We begin with the following result for the class S ∗(ϕ).

Theorem 3.4.1. If f ∈S ∗
s (ϕ) and B1 ≤ |B2|, then

T3(1)( f )≤ 1.

The bound is sharp.

Proof. Let f (z) = z+∑
∞
n=2 anzn ∈S ∗

s (ϕ), then

T3(1)( f ) = 1−2|a2|2−|a3|2 +2Re(a2
2ā3). (3.4.1)

Applying the inequality 2Re(a2
2ā3)≤ 2|a2

2||a3| in the last equation, we obtain

T3,1( f )≤ 1−2|a2|2−|a3|2 +2|a2
2||a3|=: g(x),

where g(x) = 1− 2|a2|2− x2 + 2|a2
2|x with x = |a3|. For f ∈S ∗

s (ϕ), we have |a2| ≤ B1/2 and from
Lemma A, |a3| ≤ |B2|/2. Thus |a2| ∈ [0,1] and x = |a3| ∈ [0,1]. As g′(x) = 0 at x = |a2|2 and g′′(x)< 0
for all x ∈ [0,1]. Consequently, we have

T3(1)( f )≤maxg(x)

= g(|a2|2) = (|a2|2−1)2 ≤ 1.
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Since the identity function f (z) = z is a member of the class S ∗
s (ϕ) and for this function, we have

a2 = 0, a3 = 0 and T3,1( f ) = 1, which shows that the bound is sharp.

Theorem 3.4.2. If f ∈ Cs(ϕ) and B1 ≤ |B2|, then

T3(1)( f )≤ 1.

The result is sharp.

Proof. Let f (z) = z+∑
∞
n=2 anzn ∈ Cs(ϕ), then using the inequality Re(a2

2ā3)≤ |a2|2|a3| in (3.1.2) for
f ∈ Cs(ϕ), we obtain

T3(1)( f )≤ 1−2|a2|2−|a3|2 +2|a2|2|a3|=: g(x),

where g(x) = 1−2|a2|2− x2 +2|a2|2x. Since |a2| ≤ B1/4 and from Lemma B, we have |a3| ≤ |B2|/6,
therefore |a2| ∈ [0,1/2] and |a3| ∈ [0,1/3]. Also, note that g(x) attains its maximum value at x = |a2|2.
Hence

T3(1)( f )≤maxg(x)

= g(|a2|2) = (|a2|2−1)2 ≤ 1.

The equality case holds for f (z) = z.

Theorem 3.4.3. If f ∈S ∗
s (ϕ) such that B2

1 > 2B2, then the following estimates hold:

T3(1)( f )≥



min
{

1− B2
1

4
,1− B2

1
2

+
B2

1B2

4
− B2

2
4

}
, σ1 /∈ [0,4],

1− B2
1

2
+

B2
1B2

4
− B2

2
4
, σ1 = 4,

1− B3
1(B

3
1 +4B2

1−4B1−8B2)

16(B3
1 +B2

1(B2−1)−2B1B2−B2
2)
, σ1 ∈ (0,4),

where

σ1 =
2B1(B2

1−2B2)

(B2
1−B1−B2)(B1 +B2)

.

The first two inequalities are sharp.

Proof. Let f (z) = z+∑
∞
n=2 anzn ∈S ∗

s (ϕ), then there exist a Schwarz function ω(z) such that

2z f ′(z)
f (z)− f (−z)

= ϕ(ω(z)).

By the one-to-one correspondence between the class of Schwarz functions and the class P , we obtain

2z f ′(z)
f (z)− f (−z)

= ϕ

(
p(z)−1
p(z)+1

)
(3.4.2)
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for some p(z) = 1+∑
∞
n=1 pnzn ∈P . On the comparison of the same powers of z with the series

expansions of functions f (z), ϕ(z) and p(z), the above equation yields

a2 =
B1 p1

4
and a3 =

1
8
(−B1 p2

1 +B2 p2
1 +2B1 p2). (3.4.3)

Using Lemma 3.1.1 in (3.4.3), we get

−|a3|2 =−
1

64

(
B2

2 p4
1 +B2

1(4− p2
1)

2|ζ |2 +2B1B2 p2
1(4− p2

1)Re ζ̄

)
and

2Re(a2
2ā3) =

1
64

B2
1 p2

1

(
(B2−B1)p2

1 +B1(p2
1 +(4− p2

1)Re ζ̄ )

)
.

Taking these into account in (3.1.2), we get

T3(1)( f ) =
1

64

(
(B2

1−B2)B2 p4
1−B2

1(4− p2
1)

2|ζ |2 +B1(B2
1−2B2)p2

1(4− p2
1)Re ζ̄

)
− B2

1 p2
1

8
+1 =: F(p1, |ζ |,Re ζ̄ ).

It can be seen that F(p1, |ζ |,Re ζ̄ ) ≥ F(p1, |ζ |,−|ζ |) =: G(x,y) by considering p2
1 = x and |ζ | = y,

where

G(x,y) =
1

64

(
(B2

1−B2)B2x2−B2
1(4− x)2y2−B1(B2

1−2B2)x(4− x)y
)
− B2

1x
8

+1.

Whenever B2
1 > 2B2, we have

∂G
∂y

=
1
64

(−2B2
1(4− x)2y−B1(B2

1−2B2)x(4− x))≤ 0

for x ∈ [0,4] and y ∈ [0,1], which means that G(x,y) is a decreasing function of y and G(x,y) ≥
G(x,1) =: I(x) with

I(x) =
1

64
(B3

1 +B2
1(B2−1)−2B1B2−B2

2)x
2 +

B1

16
(2B2−B2

1)x−
B2

1
4

+1.

An easy computation yields that I′(x) = 0 at

x0 =
2B1(B2

1−2B2)

(B2
1−B1−B2)(B1 +B2)

and
I′′(x0) =

1
32

(B2
1−B1−B2)(B1 +B2).

Since B2
1 > 2B2, therefore numerator of x0 is always positive. Moreover, denominator of x0 and numer-

ator of I′′(x0) are same, therefore x0 < 0 (or x0 > 0) iff I′′(x0)< 0 (or I′′(x0)> 0). Here we discuss the
following cases:
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Case I: Whenever x0 ∈ (0,4), then I′′(x0)> 0. Thus I(x) attains its minimum value at x0, which gives

T3(1)( f )≥ I(x0)

= 1− B3
1(B

3
1 +4B2

1−4B1−8B2)

16(B3
1 +B2

1(B2−1)−2B1B2−B2
2)
.

Case II: When x0 < 0 or x0 > 4, which indicates that I(x) does not have any critical point, therefore

T3(1)( f )≥min{I(0), I(4)}

= min
{

1− B2
1

4
,1− B2

1
2

+
B2

1B2

4
− B2

2
4

}
.

For x0 = 4, T3,1( f )≥ I(4).

Function ks,ϕ ∈S ∗
s (ϕ) and ks,ϕ,3 ∈S ∗

s (ϕ) given by (2.3.2) shows that these bounds are sharp as

T3(1)(ks,ϕ) = 1− B2
1

2
+

B2
1B2

4
− B2

2
4

and T3(1)(ks,ϕ,3) = 1− B2
1

4
,

which completes the proof.

Theorem 3.4.4. If f ∈ Cs(ϕ) and 3B2
1 ≥ 8B2, then the following estimates hold:

T3(1)( f )≥



min
{

1− B2
1

36
,1− B2

1
8

+
B2

1B2

48
− B2

2
36

}
, σ2 /∈ [0,4],

1− B2
1

8
+

B2
1B2

48
− B2

2
36

, σ2 = 4,

1− B3
1(B

3
1 +12B2

1 +4B1−32B2)

64(3B3
1 +B2

1(3B2−4)−8B1B2−4B2
2)
, σ2 ∈ (0,4),

where

σ2 =
2B1(3B2

1 +10B1−8B2)

3B3
1 +3B2

1B2−4B2
1−8B1B2−4B2

2
.

First two inequalities are sharp.

Proof. Let f (z) = z+∑
∞
n=2 anzn ∈ Cs(ϕ), then there exists a Schwarz function ω(z) such that

(2z f ′(z))′

( f (z)− f (−z))′
= ϕ(ω(z)).

Corresponding to the Schwarz function ω(z), let there is a function p(z) = 1+∑
∞
n=1 pnzn ∈P satisfy-

ing p(z) = (1+ω(z))/(1−ω(z)). Thus, we obtain

(2z f ′(z))′

( f (z)− f (−z))′
= ϕ

(
p(z)−1
p(z)+1

)
. (3.4.4)

Comparing the coefficients of the same powers of z after applying the series expansion of f (z), ϕ(z)
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and p(z) leads to

a2 =
B1 p1

8
, a3 =

1
24

((B2−B1)p2
1 +2B1 p2). (3.4.5)

The rotationally invariant property of the classes Cs(ϕ) and P allows to take p1 ∈ [0,2]. Using Lem-
ma 3.1.1 in (3.4.5), we get

−|a3|2 =−
1

576
(B2

2 p4
1 +B2

1(4− p2
1)

2|ζ |2 +2B1B2 p2
1(4− p2

1)Re ζ̄ )

and

2Re(a2
2ā3) =

B2
1 p2

1
768

(−B1 p2
1 +B2 p2

1 +B1(p2
1 +(4− p2

1)Re ζ̄ )).

These above values together with (3.1.2) leads to

T3(1)( f ) =
(

B2
1B2

768
− B2

2
576

)
p4

1−
1

576
B2

1(4− p2
1)

2|ζ |2 +
(

3B3
1−8B1B2

2304

)
p2

1(4− p2
1)Re ζ̄

− B2
1 p2

1
32

+1 =: F(p1, |ζ |,Re ζ̄ ).

As Re ζ̄ ≥−|ζ |, hence F(p1, |ζ |,Re ζ̄ )≥ F(p1, |ζ |,−|ζ |) := G(x,y), where

G(x,y) =
(

B2
1B2

768
− B2

2
576

)
x2− 1

576
B2

1(4− x)2y2−
(

3B3
1−8B1B2

2304

)
x(4− x)y− B2

1
32

x+1

for x = p2
1 ∈ [0.4] and y = |ζ | ∈ [0,1]. Whenever 3B2

1 ≥ 8B1B2, we have

∂G(x,y)
∂y

=− 1
288

B2
1(4− x)2y−

(
3B3

1−8B1B2

2304

)
x(4− x)≤ 0.

Therefore, G(x,y) is decreasing function of y and G(x,y)≥ G(x,1) =: I(x), where

I(x) = 1− B1(3B2
1 +10B1−8B2)

576
x− B2

1
36

+
x2(3B3

1 +3B2
1B2−4B2

1−8B1B2−4B2
2)

2304
.

An elementary calculation reveals that I′(x) = 0 at

x0 =
2B1(3B2

1 +10B1−8B2)

3B3
1 +3B2

1B2−4B2
1−8B1B2−4B2

2

and

I′′(x) =
3B3

1 +3B2
1B2−4B2

1−8B1B2−4B2
2

1152
.

Since 3B2
1 ≥ 8B2 and B1 > 0, therefore numerator of x0 is always positive. Also, note that, the denom-

inator of x0 and numerator of I′′(x) are the same, therefore the sign of x0 and I′′(x) changes simultane-
ously. Here, two cases arise:
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Case I: When 0 < x0 < 4. In this case I′′(x)> 0, so the minimum of I(x) attains at x0, which gives

T3(1)( f )≥ I(x0)

= 1− B3
1(B

3
1 +12B2

1 +4B1−32B2)

64(3B3
1 +B2

1(3B2−4)−8B1B2−4B2
2)
.

Case II: When x0 < 0 or x0 > 4, that means I(x) has no critical point. Thus

T3(1)( f )≥min{I(0), I(4)}

= min
{

1− B2
1

36
,1− B2

1
8

+
B2

1B2

48
− B2

2
36

}
.

For the case x0 = 4, we have T3(1)( f )≥ I(4).

The sharpness of these bounds follows from the functions hs,ϕ(z) and hs,ϕ,3(z) defined by (2.3.2).
Since

T3(1)(hs,ϕ) = 1− B2
1

8
+

B2
1B2

48
− B2

2
36

and T3(1)(hs,ϕ,3) = 1− B2
1

36
,

which completes the proof.

We now discuss some special cases of Theorem 3.4.1 and 3.4.2. If ϕ(z) = (1+Az)/(1+Bz), the

class S ∗
s (ϕ) and Cs(ϕ) reduces to the classes S ∗

s [A,B] and Cs[A,B], respectively. Theorem 3.4.1

and 3.4.2 immediately give the following sharp bound for the class S ∗
s [A,B] and Cs[A,B].

Corollary 3.4.5. (i) If f ∈S ∗
s [A,B] and A−B≤ |B2−AB|, then T3(1)( f )≤ 1.

(ii) If f ∈ Cs[A,B] and A−B≤ |B2−AB|, then T3(1)( f )≤ 1.

Theorem 3.4.3 and 3.4.4 yield the following lower bound of T3(1)( f ) for these classes:

Corollary 3.4.6. If f ∈S ∗
s [A,B] such that A2−B2 > 0, then the following estimates hold:

T3(1)( f )≥



min
{

1− 1
4
(A−B)2,1− 1

4
(A−B)2(AB+2)

}
, σ1 /∈ [0,4],

1− 1
4
(A−B)2(AB+2), σ1 = 4,

1+
(A2−2A(B−2)+B2 +4B−4)(A−B)2

16(1−A)(1−B)
, σ1 ∈ (0,4),

where
σ1 =−

2(A+B)
(1−A)(1−B)

.

The first two inequalities are sharp.
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Corollary 3.4.7. If f ∈ Cs[A,B] and 3A2 +2AB−5B2 ≥ 0, then the following estimates hold:

T3(1)( f )≥



min
{

1− (A−B)2

36
,1− (A−B)2(B2 +3AB+18)

144

}
, σ2 /∈ [0,4],

1− (A−B)2(B2 +3AB+18)
144

, σ2 = 4,

1− (A2−2A(B−6)+B2 +20B+4)(A−B)2

64(1−B)(3A+B−4)
, σ2 ∈ (0,4),

where
σ2 =

2(3A+5(B+2))
(1−B)(3A+B−4)

.

The first two inequalities are sharp.

For ϕ(z) = (1+(1−2α)z)/(1− z) and (1+ z)/(1− z) in S ∗
s (ϕ), we obtain the classes S ∗

s (α) and

S ∗
s , respectively, where α ∈ [0,1).

Theorem 3.4.1 and 3.4.3 yield the following sharp lower and upper bounds of T3,1( f ) for these

classes, proved by Kumar and Kumar [89].

Remark 3.4.1. (i) If f ∈S ∗
s (α), then (3−2α)α2 ≤ T3(1)( f )≤ 1 [89, Theorem 2.2].

(ii) If f ∈S ∗
s , then 0≤ T3(1)( f )≤ 1 [89, Corollary 2.3].

For ϕ(z) = 2/(1+e−z), we get the classes S ∗
s,SG and Cs,SG, which are analogues to the correspond-

ing classes studied in [52]. Theorem 3.4.3 provides the following bound for the class S ∗
s,SG.

Corollary 3.4.8. If f ∈S ∗
s,SG, then T3,1( f )≥ 2009/2304.

For other subclasses of S ∗
s , the following already known sharp bounds follow from Theorem 3.4.3.

Remark 3.4.2. (i) If f ∈S ∗
s,L, then T3,1( f )≥ 221/256 [89, Theorem 3.1].

(ii) If f ∈S ∗
s,RL, then T3,1( f )≥ (863−444

√
2)/256 [89, Theorem 3.3].

Theorem 3.4.2 and 3.4.4 give the following corollaries for different subclasses of Cs.

Corollary 3.4.9. (i) If f ∈ Cs[A,B] and A−B≤ |B2−AB|, then T3,1( f )≤ 1.

(ii) If f ∈ Cs(α), then T3(1)( f )≤ 1.

(iii) If f ∈ Cs, then T3(1)( f )≤ 1.
All these bounds are sharp.

Corollary 3.4.10. (i) If f ∈ Cs,SG, then T3(1)( f )≥ 31/32.

(ii) If f ∈ Cs,L, then T3(1)( f )≥ 4459/4608.

(iii) If f ∈ Cs,RL, then T3(1)( f )≥ (−3731+5835
√

2)/4608.

All these bounds are sharp.
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Up to this point, our focus has been on investigating coefficient problems within diverse Ma-Minda

and Sakaguchi classes. However, in the forthcoming chapter, we broaden our scope to encompass

not only coefficient problems but also radius problems within a class of functions linked to semigroup

generators.

Highlights of the chapter

We determined the sharp bounds for the second and third order Hermitian-Toeplitz determinants for

the classes S ∗(ϕ), C (ϕ), K (g), S ∗
s (ϕ), and Cs(ϕ). These results hold significant weight as these

classes serve as generalizations for various other subclasses of S . Consequently, our established

bounds seamlessly extend to cover these broader classes, showcasing the applicability and impor-

tance of our findings.

The work carried out in this chapter are published in the following journals:

S. Giri, and S. S. Kumar, Hermitian-Toeplitz determinants for certain univalent functions, Analysis and

Mathematical Physics 13, no. 2 (2023): 37. https: // doi. org/ 10. 1007/ s13324-023-00800-2

S. Giri, S. S. Kumar, Sharp bounds of fifth coefficient and Hermitian-Toeplitz determinants for Sak-

aguchi classes. Bull. Korean Math. Soc. 2024; 61:317-333. https: // doi. org/ 10. 4134/ BKMS.

b230018

 https://doi.org/10.1007/s13324-023-00800-2
https://doi.org/10.4134/BKMS.b230018
https://doi.org/10.4134/BKMS.b230018


Chapter 4

A Class of Analytic Functions Involving

Semigroup Generators

This chapter explores coefficient problems within the class of semigroup generators, establishing sharp

bounds for Hankel, Toeplitz, and Hermitian-Toeplitz determinants. It also provides sharp growth esti-

mates and membership criteria for this class. Finally, some radius results are also established for the

class.

4.1 Introduction

Since the early 20th century, complex analysis and geometric function theory are foundational in

mathematics, paving the way for various applications. Elin et al. [47] discovered new connections be-

tween complex dynamics and geometric function theory. Particularly, they studied certain subclasses

of starlike functions and their embedding in the classes of semigroup generators. Complex dynamics

refers to the study of dynamical systems defined on complex numbers or complex spaces. Dynamic

systems, often expressed as equations of motion, are extensively researched, particularly focusing on

monotone or nonlinear operators. Concurrently, the theory of one-parameter semigroups of holomor-

phic functions evolved, finding applications in diverse fields such as complex analysis [16, 38], manifold

theory [2, 3], and optimization [70].

A family {u(t,z)}t≥0 ⊂B is called a one parameter continuous semigroup if (i) limt→0 u(t,z) = z,

(ii)u(t + s,z) = u(t,z)◦u(s,z), and (iii) limt→s u(t,z) = u(s,z) for each z ∈ U hold, where B denote the

set of holomorphic self mappings of the unit disk U. Berkson and Porta [16] showed that each one

55
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parameter semigroup is locally differentiable in parameter t ≥ 0 and moreover, if

lim
t→0

z−u(t,z)
t

= f (z),

which is a holomorphic function, then u(t,z) is the solution of the Cauchy problem

∂u(t,z)
∂ t

+ f (u(t,(z)) = 0, u(0,z) = z.

The function f is called the holomorphic generator of semigroup {u(t,z)}t≥0 ⊂B. The class of all

holomorphic generators is denoted by G . Also, note that each element of {u(t,z)} generated by f ∈ G

is a univalent function while f is not necessarily univalent [44]. Various properties of generators and

semigroup generated by them are discussed in [16, 21, 43, 44, 45, 169]. Berkson and Porta [16] proved:

Theorem 4.1.1. [16] The following assertions are equivalent:

(a) f ∈ G ;

(b) f (z) = (z−σ)(1− zσ̄)p(z) with some σ ∈ U and p ∈H , Re(p(z))≥ 0,

where H represents the class of analytic functions in U.

The point σ ∈ U := {z ∈ C : |z| ≤ 1} is called the Denjoy–Wolff point of the semigroup generated

by f . According to the Denjoy-Wolff theorem [44, 157, 169] for continuous semigroup, if for at least

one t ∈ [0,∞), any element of the semigroup generated by f is neither the identity and nor an elliptic

automorphism of U, then there is a unique point σ ∈U such that limt→∞ u(t,z) = σ uniformly for each

z ∈ U. Let the class of all semigroup generators with Denjoy-Wolff point σ be denoted by G [σ ]. The

class of primary interest is G [0]⊂ G , which can be represented as

G [0] = { f ∈ G : f (z) = zp(z), Re p(z)> 0}.

Note that, the semigroup {u(t, ·)}t≥0 generated by f ∈ G [0] is real analytic with respect to its pa-

rameter, it does not always allow for an analytic extension to a domain in C. In addition, the rate of

convergence of the semigroup {u(t, ·)}t≥0 generated by f ∈ G [0] to zero can be estimated as follows

(see [44])

|u(t,z)| ≤ |z|e−t Re f ′(0) 1−|z|
1+|z| , z ∈ U.

This estimate is not uniform on U and indeed not all semigroups converge uniformly. Elin et al. [46]

proved the following:

Proposition 4.1.2. (i) The semigroup generated by f ∈ G [0] can be analytically extended to the sector
{t : |arg t|< πα/2} if and only if |arg( f (z)/z)|< π(1−α)/2, for all z ∈ U (see [46]).
(ii) The semigroup {u(t, ·)}t≥0 generated by f (z) = zp(z) has a uniform exponential rate of conver-
gence: |u(t,z)| ≤ |z|e−tδ if and only if Re p(z)≥ δ > 0 for all z ∈ U (see [23]).

Bracci et al. [23] considered the class

G0 := G [0]∩A
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and studied the asymptotic behaviour of the semigroup generated by f ∈ G0. In the study of non-

autonomous problems such as Loewner theory, the class G0 plays a significant role [22, 41]. Criteria

for membership to the class G0 were investigated by many authors [16, 23, 44]. Bracci et al. [23] showed

that a sufficient condition for f ∈ A to be a semigroup generator is that Re f ′(z) > 0 for z ∈ U. The

class of all such functions is called the class of bounded turning functions and is denoted by

R = { f ∈A : Re f ′(z)> 0}.

According to the Noshiro-Warschawski condition, every f ∈ R is univalent but not every semigroup

generator needs to be univalent. Therefore, the condition Re f ′(z) > 0 is far from being a necessary

condition for a function to be a semigroup generator.

Various subclasses of G0 with certain parameters, such that R is the smallest one, were recently

studied, which is also called filtration (see [23, 42, 45, 168]). In particular, for β ∈ [0,1], the class

Aβ =

{
f ∈A : Re

(
β

f (z)
z

+(1−β ) f ′(z)
)
> 0
}

(4.1.1)

is a subclass of G0. Clearly, when β = 0, the class Aβ reduces to the class R and for β = 1, A1 = G0.

In [23], the authors proved that

Lemma 4.1.1. [23] If f ∈Aβ , then the following hold:

(i) Aβ1 ( Aβ2 ( G0 for 0≤ β1 < β2 < 1, and

(ii) Re( f (z)/z)≥ δ (β )> 0 for z ∈ U, where

δ (β ) =
∫ 1

0

1− s1−β

1+ s1−β
ds.

Note that, δ (β ) is a decreasing function of β satisfying δ (0) = 2log2− 1 and δ (1) = 0. It follows

from Proposition 4.1.2 that the bound in Lemma 4.1.1 is equivalent to the following uniform exponential

rate of convergence to the origin of the semigroup generated by f ∈Aβ ,

|u(t,z)| ≤ e−tδ (β )|z|.

A counterexample was given by Elin et al. [47], which shows that the condition in assertion (ii) of

Lemma 4.1.1 does not imply the inclusion f ∈Aβ for any β ∈ [0,1). They also observe the embedding

of various subclasses of S in the class G0.

Recently, Kumar and Gangania [93] introduced and studied the class

F (Ψ) =

{
f ∈A :

(
z f ′(z)
f (z)

−1
)
≺Ψ(z), z ∈ U

}
,

where Ψ is an analytic univalent function in U, Ψ(0) = 0 and Ψ(U) is a starlike domain with respect

to 0. It should be noted that this class also contains non-univalent functions. For Ψ(z) = z/(1−αz2),
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α ∈ [0,1), the class F (Ψ) reduces to the class

BS (α) =

{
f ∈A :

(
z f ′(z)
f (z)

−1
)
≺ z

1−αz2 , z ∈ U
}
,

introduced by Karger et al. [77]. The geometric properties of f ∈BS (α) including radii problems for

starlike functions of order α were studied by Karger et al. [78]. Another interesting class is

U (λ ) =

{
f ∈A :

∣∣∣∣ f ′(z)( z
f (z)

)2

−1
∣∣∣∣< λ , λ ∈ (0,1]

}
, (4.1.2)

introduced by Obradović and Ponnusamy [131]. It is well known that U (λ ) ⊂ S for λ ∈ (0,1]. For

more works on this class, one can refer to [132, 133] and the references cited therein.

The functions f (z) = z/(1− z+ z2) and g(z) = z(1+ z)/(1− z) reveals that neither S ∗ ⊂ G0 nor

G0 ⊂S ∗. Here, the radius problem arises. Elin et al. [47] solved this problem for the class Aβ , which

immediately provides the radius of starlikeness for the class G0, when β = 1. They proved that the

radius of starlikeness is r = 2−
√

2 for the class G0.

Generalizing this work, we obtained the radius of starlikeness of order α for the class Aβ . Further,

we see the inclusion of the classes S ∗(ϕ), F (Ψ) and U (λ ) in the class of semigroup generators

and find the uniform exponential rate of convergence of semigroup generated by the members of these

classes. Additionally, we prove that the convolution of f ∈Aβ with g ∈ C is again in Aβ and the class

Aβ is preserved under some integral operators, where the Hadamard product or convolution of two

functions f (z) = ∑
∞
n=0 anzn and g(z) = ∑

∞
n=0 bnzn is defined as ( f ∗g)(z) = ∑

∞
n=0 anbnzn.

In 1914, Bohr [20] proved that, if ω(z) = ∑
∞
n=0 cnzn ∈ B0, then ∑

∞
n=0|cn|rn ≤ 1 for all z ∈ U with

|z| = r ≤ 1/3. The constant 1/3 is known as the Bohr radius and it can not be improved. Different

generalizations of the Bohr inequality are taken into consideration [112, 185]. We say that, the class

Aβ satisfies the Bohr phenomenon if there exists rb such that

|z|+
∞

∑
n=2
|an||z|n ≤ d( f (0),∂ f (U))

holds in |z|= r≤ rb, where ∂ f (U) is the boundary of image domain of U under f ∈Aβ and d denotes

the Euclidean distance between f (0) and ∂ f (U).

Muhanna [123] showed that the Bohr phenomenon holds for the class of univalent functions and the

class of convex functions when |z| = r ≤ 3− 2
√

2 and |z| = r ≤ 1/3, respectively. We refer to the

survey article [124] for further details on this topic. There is also the concept of the Rogosinski radius

along with the Bohr radius, although a little is known about Rogosinski radius in comparison to the Bohr

radius [102, 160]. It says that, if ω(z) = ∑
∞
n=0 cnzn ∈B0, then

N−1

∑
n=0
|cn||z|n ≤ 1, (N ∈ N)

in the disk |z|= r≤ 1/2. The radius 1/2 is called the Rogosinski radius. Kayumov et al. [79] considered
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the following expression, called Bohr-Rogosinski sum,

R f
N(z) := | f (z)|+

∞

∑
n=N
|an||z|n

and found the radius rN such that R f
N(z) ≤ 1 in |z| = r ≤ rN for the Cesáro operators on the space of

bounded analytic functions. The largest such rN is called the Bohr-Rogosinski radius. Here, we say

that:

Definition 4.1.3. Let f ∈Aβ . We say that the class Aβ satisfies the Bohr-Rogosinski phenomenon if
there exist rN such that

| f (zm)|+
∞

∑
n=N
|an||z|n ≤ d( f (0),∂ f (Ω)), m,N ∈ N

holds in |z|= r ≤ rN .

Elin et al. [47] established the embedding of various subclasses of starlike functions in the class of

semigroup generators and also found the radius of starlikeness for the same class. However, problems

related to coefficients, growth estimates, and others were still open. Focusing on these problems, in

this chapter, we derive the sharp bounds of coefficient functionals for the class of semigroup generators

such as second-order Hankel determinants, Zalcman functional, differences of successive coefficients,

and third-order Toeplitz and Hermitian-Toeplitz determinants. Additionally, we determine sharp growth

estimates, which are used to prove the Bohr and Bohr-Rogosinski phenomena for this class. The

chapter also establishes membership criteria, utilizing the Hadamard product, for normalized analytic

functions to belong to the class of semigroup generators. Furthermore, we examine the embedding of

various subclasses of S in this class and address radius problems specific to semigroup generators,

thereby generalizing existing results.

4.2 Hankel Determinant and Zalcman Functional

In this section, we obtain the sharp bounds of nth Taylor’s coefficients, Hankel determinants and

Zalcman functional for functions in the class Aβ . For m ≥ 1, the mth Hankel determinant of f (z) =

z+∑
∞
n=2 anzn ∈A is defined by

Hm,n( f ) =

∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+m−1

an+1 an+2 · · · an+m
...

...
. . .

...

an+m−1 an+m · · · an+2m−2

∣∣∣∣∣∣∣∣∣∣∣
. (4.2.1)

In particular, H2,2( f ) = a2a4− a2
3 and H2,n( f ) = anan+2− a2

n+1. Finding sharp estimates for Hankel

determinants is a longstanding challenge within the realm of coefficient problems, with a notable recent

surge in literature dedicated to addressing it. Janteng et al. [74] established the sharp estimates of

|H2,2( f )| for the classes S ∗ and C . Krishna and Ramreddy [88] solved the same problem for the
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classes S ∗(α) and C (α). A summary of results based on the estimates of Hankel determinants for

certain subclasses of S is provided in [182].

In 1999, Ma [115] proposed a conjecture for f (z) = z+∑
∞
n=2 anzn ∈S that

|Jm,n( f )| := |anam−an+m−1| ≤ (m−1)(n−1).

He proved this conjecture for the class of starlike functions and univalent functions with real coefficients.

It is also called generalized Zalcman conjecture as it generalizes the Zalcman conjecture |a2
n−a2n−1| ≤

(2n−1)2 for f ∈S . Recently, bounds of |J2,3( f )| are obtained for various subclasses of A [11, 37].

We now begin to obtain the sharp bounds of |H2,n( f )| and |J2,3( f )| for f ∈Aβ .

Theorem 4.2.1. If f ∈Aβ is of the form (1.0.1), then

|an| ≤
2

n−β (n−1)
. (4.2.2)

Further, this inequality is sharp for each n.

Proof. Let f ∈Aβ is given by (1.0.1), then we have

β
f (z)

z
+(1−β )z f ′(z) = p(z) (z ∈ U),

where p(z)= 1+∑
∞
n=1 pnzn is a member of the Carathéodory class P . Upon comparing the coefficients

of the same powers on either side with the series expansion of f and p yields

(n− (n−1)β )an = pn−1 (4.2.3)

for n = 2,3,4, · · · , which gives the needed bound of |an| using the Carathéodory coefficient bounds
|pn| ≤ 2 (see [41]). The function f̃ : U→ C defined by

f̃ (z) = z
(
−1+2

(
2F1

[
1,

1
1−β

,
2−β

1−β
,z
]))

= z+
∞

∑
n=2

2
n− (n−1)β

zn (4.2.4)

satisfies the condition Re
(
β f̃ (z)/z+(1−β ) f̃ ′(z)

)
> 0, hence f̃ is a member of Aβ , where 2F1 denotes

the Gauss hypergeometric function. Equality in (4.2.2) occurs for f̃ , which proves the sharpness of the
bound.

Corollary 4.2.2. If f ∈Aβ , then

|anan+2−µa2
n+1| ≤

4
(n− (n−1)β )(n+2− (n+1)β )

+
4µ

(n+1−nβ )2 , µ ≥ 0.

The bound is sharp.

Proof. Since |anan+2− µa2
n+1| ≤ |an||an+2|+ µ|an+1|2. The bound simply follows from (4.2.2). To
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see the sharpness, consider

f̃1(z) = z
(
−1+2

(
2F1

[
1,

1
1−β

,
2−β

1−β
, iz
]))

= z+
∞

∑
n=2

2in−1

(n− (n−1)β )
zn. (4.2.5)

It can be easily seen that f̃1(z) satisfy (4.1.1), thus f̃1 ∈Aβ .

For µ = 1, Corollary 4.2.2 gives the following sharp bound:

Corollary 4.2.3. If f ∈Aβ is of the form (1.0.1), then

|H2(n)( f )| ≤ 4
(
(2n2−1)β 2− (4n2 +4n−2)β +2n2 +4n+1

)
(n− (n−1)β )(n+2− (n+1)β )(n+1−nβ )2 .

For n = 2 and 3, the following sharp bounds of second order Hankel determinant follows:

Corollary 4.2.4. If f ∈Aβ is of the form (1.0.1), then

|H2(2)( f )| ≤ 4(7β 2−22β +17)
(4−3β )(3−2β )2(2−β )

, |H2(3)( f )| ≤ 4(17β 2−46β +31)
(5−4β )(4−3β )2(3−2β )

.

Theorem 4.2.5. If f ∈Aβ is of the form (1.0.1), then

|J2,3( f )| ≤ 2
4−3β

.

The bound is sharp.

Proof. Let f ∈Aβ is given by (1.0.1), then from (4.2.3), we have

|J2,3( f )|= |a2a3−a4|=
∣∣∣∣ p1 p2

(3−2β )(2−β )
− p3

4−3β

∣∣∣∣ . (4.2.6)

For p(z) = 1+∑
∞
n=1 pnzn ∈P , Libera et al. [108] proved that

2p2 = p2
1 +ζ1(4− p2

1),

4p3 = p3
1 +2ζ1 p1(4− p2

1)−ζ 2
1 p1(4− p2

1)+2ζ2(1−|ζ1|2)(4− p2
1),

}
(4.2.7)

where |ζ1| ≤ 1 and |ζ2| ≤ 1. Substituting these values of p2 and p3 in (4.2.6), we obtain

|J2,3( f )|=
∣∣∣∣ p3

1
4

(
2

2β 2−7β +6
+

1
3β −4

)
− p1(4− p2

1)(1−β )2ζ1

(2−β )(3−2β )(4−3β )

+
p1(4− p2

1)ζ
2
1

4(4−3β )
− (4− p2)(1−|ζ1|2)ζ2

2(4−3β )

∣∣∣∣.
Since the class P is rotationally invariant and it is an easy exercise to check that the class Aβ is also
rotationally invariant, therefore, without losing generality, we can take p1 = p ∈ [0,2]. Now, applying
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the triangle inequality with |ζ1|= x, we obtain

|J2,3( f )| ≤ p3

4

(
2

2β 2−7β +6
+

1
3β −4

)
+

p(4− p2)(1−β )2x
(2−β )(3−2β )(4−3β )

+
4− p2

2(4−3β )

+ x2
(

p(4− p2)

4(4−3β )
− (4− p2)

2(4−3β )

)
=: F(p,x).

To determine the maximum value of F(p,x), first we find out the stationary points, given by the roots
of ∂F/∂ p = 0 and ∂F/∂x = 0, where

∂F(p,x)
∂ p

=
3p2(x2(2β 2−7β +6)+4x(1−β )2 +2β 2−β −2)

4(−2+β )(−3+2β )(−4+3β )
+ p
(

x2

4−3β
− 1

4−3β

)
+

x2

4−3β
+

4x(1−β )2

(4−3β )(3−2β )(2−β )
,

∂F(p,x)
∂x

= 2x
(

p(4− p2)

4(4−3β )
− 4− p2

2(4−3β )

)
+

p(4− p2)(1−β )2

(4−3β )(3−2β )(2−β )
.

A simple calculation shows that for p ∈ [0,2] and x ∈ [0,1], the stationary point is (0,0) and(
∂ 2F
∂ p2

∂ 2F
∂x2 −

∂ 2F
∂x∂ p

)
(p,x)=(0,0)

=
4(8−11β +4β 2)

(3−2β )2(2−β )2(4−3β ))
> 0 for all β ∈ [0,1].

Thus F(p,x) attains either maximum or minimum at (p,x) = (0,0). Since, we have(
∂ 2F
∂ p2

)
(0,0)

=
−1

4−3β
< 0,

(
∂ 2F
∂x2

)
(0,0)

=
−4

4−3β
< 0 for all β ∈ [0,1].

Therefore, F(p,x) attains its maximum value at (p,x) = (0,0), which is 2/(4−3β ).

Now, to prove the sharpness of the bound, consider the function f̃2 : U→ C given by

β
f̃2(z)

z
+(1−β ) f̃ ′2(z) =

1+ z3

1− z3 . (4.2.8)

If f̃2(z) = z+∑
∞
n=2 anzn, then a2 = a3 = 0 and a4 = 2/(4−3β ), thus |J2,3( f )|= 2/(4−3β ).

4.3 Toeplitz and Hermitian-Toeplitz Determinant

This section provides the sharp bounds of certain Toeplitz and Hermitian-Toeplitz determinants

formed over the coefficients of functions in the class Aβ .

Theorem 4.3.1. If f ∈Aβ is of the form (1.0.1), then

(i) |T2,n( f )| ≤ 4
(

1
(n−β (n−1))2 +

1
(n+1−nβ )2

)
,

(ii) |T3,1( f )| ≤ 4β 4−28β 3 +101β 2−196β +140
(3−2β )2(β −2)2 .

The bounds are sharp.
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Proof. From (1.5.1), it follows that

|T2,n( f )|= |a2
n−a2

n+1| ≤ |an|2 + |an+1|2.

Using the bound of |an| from (4.2.2), required bound of |T2,n( f )| follows directly and equality case
holds for the function f̃1 given by (4.2.5).

Now we proceed for |T3,1( f )|. Again from (1.5.1), we have

|T3,1( f )|= |1−2a2
2 +2a2

2a3−a2
3| ≤ 1+2|a2|2 + |a3||a3−2a2

2|. (4.3.1)

By (4.2.3),

|a3−2a2
2|=

1
3−2β

∣∣∣∣p2−
2(3−2β )

(2−β )2 p2
1

∣∣∣∣ .
Applying the well known result |p2−ν p2

1| ≤ 4ν−2 for ν > 1 (see [117]), we obtain

|a3−2a2
2| ≤

8
(2−β )2 −

2
3−2β

.

Using this bound of |a3− 2a2
2| and the bounds of |a2|, |a3| from (4.2.2) in (4.3.1), required bound of

|T3,1( f )| follows. Sharpness of the bound of |T3,1( f )| follows from the function f̃1.

Remark 4.3.1. The bounds of |T2,n( f )| and |T3,1( f )| for the class R follow from Theorem 4.3.1, when
β = 0 [6, Theorem 2.12].

Theorem 4.3.2. If f ∈Aβ is of the form (1.0.1), then

T3(1)( f )≤


4β 4−28β 3 +37β 2−4β −4

(3−2β )2(2−β )2 ; 10−
√

10
9 ≤ β ≤ 1,

1; 0≤ β ≤ 10−
√

10
9 .

(4.3.2)

The bounds are sharp.

Proof. For f (z) = z+∑
∞
n=2 anzn ∈Aβ , Theorem 4.2.1 yields

|a2| ≤
2

2−β
and |a3| ≤

2
3−2β

.

Hence |a2| ∈ [0,2] and |a3| ∈ [0,2] for β ∈ [0,1]. From (3.1.1), we have

T3(1)( f ) = 1+2Re(a2
2ā3)−2|a2|2−|a3|2

≤ 1+2|a2|2|a3|−2|a2|2−|a3|2 =: G(|a3|),

where G(x) = 1 + 2|a2|2x− 2|a2|2 − x2 with x = |a3| ∈ [0,2]. Since G′(x) = 0 at x0 := |a2|2 and
G′′(x0) < 0, therefore G(x) attains its maximum value at x = x0, whenever |a2|2 belongs to the range
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of x, that means |a2|2 ≤ 2. Thus

T3(1)( f )≤ G(|a2|2) = (|a2|2−1)2

≤ 1 when |a2|2 ≤ 2,

= 1 when 0≤ β ≤ 2−
√

2.

Now, the other case, when |a2|2 does not lie in the range of x, that is |a2|2 > 2 or 2−
√

2≤ β ≤ 1, then

T3(1)( f )≤maxG(x) = G
(

2
3−2β

)
= 1−2a2

2−
4

(3−2β )2 +
4a2

2
3−2β

≤ 4β 4−28β 3 +37β 2−4β −4
(3−2β )2(2−β )2 .

Using all these above arguments, we obtain

T3(1)( f )≤

 1, 0≤ β ≤ β0;
4β 4−28β 3 +37β 2−4β −4

(3−2β )2(2−β )2 , β0 ≤ β ≤ 1,

where β0 = (10−
√

10)/9 is the root of the equation 9β 2−20β +10 = 0.

The sharpness of the bound follows from f (z) = z when 0 ≤ β ≤ (10−
√

10)/9. However, for
(10−

√
10)/9≤ β ≤ 1, equality in (4.3.2) holds for the function f̃ given in (4.2.4).

Remark 4.3.2. For β = 0 in Theorem 4.3.2, we obtain T3(1)( f )≤ 1 for f ∈R [97, Example 2.4].

Theorem 4.3.3. If f ∈Aβ is of the form (1.0.1), then

T3(1)( f )≥ 1− 4β −9
β 4−4β 3 +2β 2 +8β −8

.

The bound is sharp.

Proof. Let f ∈Aβ , then from (4.2.3), we have

a2 =
p1

2−β
and a3 =

p2

3−2β
.

Now, by replacing p2 in terms of p1 using (4.2.7), we get

2Re(a2
2ā3) =

p4
1 + p2

1(4− p2
1)Re(ζ1)

(3−2β )(2−β )2 , −|a2|2 =
|p1|2

(2−β )2

and

−|a3|2 =−
p4

1 +(4− p2
1)

2|ζ1|2 +2p2
1(4− p2

1)Re(ζ1)

4(3−2β )2 .
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A simple computation yields that

T3(1)( f ) = 1+
1

4(3−2β )2(2−β )2

(
p4

1(8−4β −β
2)−8p2

1(3−2β )2− (4− p2
1)

2(2−β )2|ζ1|2

+2p2
1(4− p2

1)(2−β
2)Re(ζ1)

)
=: g(p1,ζ1,Re(ζ1)).

Since the classes Aβ and P are rotationally invariant, we can take p = p1 ∈ [0,2]. Using Re(ζ1) ≥
−|ζ1| with notation |ζ1|= x, we have g(p1, |ζ1|,Re(ζ1))≥ g1(p,x), where

g1(p,x) = 1+
1

4(3−2β )2(2−β )2

(
p4(8−4β −β

2)−8p2(3−2β )2

− (4− p2)2(2−β )2x2−2p2(4− p2)(2−β
2)x
)
.

Also, note that

∂g1(p,x)
∂x

=−2(4− p2)2x(2−β )2 +2p2(4− p2)(2−β 2)

4(3−2β )2(2−β )2 < 0

for all p ∈ [0,2] and β ∈ [0,1]. Hence g1(p,x) is a decreasing function of x with g1(p,x)≥ g1(p,1) =:
g2(p). Minimum of g2(p) is the lower bound of T3(1)( f ). The equation g′2(p) = 0 gives the following
critical points

p(1) = 0, p(2) =±
√

(2β 2−8β +7)
(2−β 2)

.

Using the basic calculus rule, it can be easily observed that the function g2(p) attains its minimum
value at p(2) as g′′(p(2))> 0 for all β ∈ [0,1]. Thus

T3(1)( f )≥ g2(p(2)) = 1− (4β −9)
(β 4−4β 3 +2β 2 +8β −8)

.

To show the sharpness consider the function f̃3 ∈A given by

β
f̃3(z)

z
+(1−β ) f̃ ′3(z) =

1− z2

1− z
√

(2β 2−8β +7)/(2−β 2)+ z2
.

For f̃3(z) = z+∑
∞
n=2 anzn, we have

a2 =
1

2−β

√
2β 2−8β +7

2−β 2 , a3 =
1−2β

2−β 2

and T3(1)( f̃3) = 1− (4β −9)/(β 4−4β 3 +2β 2 +8β −8).

Remark 4.3.3. For β = 0 in Theorem 4.3.2, we obtain T3(1)( f )≥−1/8 for f ∈R [97, Example 2.4].
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4.4 Successive Coefficient Difference

Robertson [159] proved that 3|an+1− an| ≤ (2n+ 1)|a2− 1| for the class of convex functions. Re-

cently, Li and Sugawa [106] obtained the bound of |an+1− an| for particular choices of n for the class

of convex functions with fixed second coefficient. In this section, we find the the bound of |aN
n+1−aN

n |
(N ∈ N) for f ∈Aβ with fixed second coefficient. In fact, it is more convenient to express our result in

terms of p := p1, applying the correspondence

(2−β )a2 = p1 = p.

We define the class Aβ (p) for p ∈ [−2,2] as follows

Aβ (p) = { f ∈Aβ : f ′′(0) = p}.

Clearly, ⋃
−2≤p≤2

Aβ (p)⊂Aβ and
⋃

−2≤p≤2

Aβ (p) 6= Aβ .

The following lemmas are used to establish our main results.

Lemma 4.4.1. [27] If p(z) = 1+∑
∞
n=1 pnzn ∈P , then the following estimate holds:

|pN
n+1− pN

n | ≤ 2N
√

2−21−N Re(pN
1 ) (N ∈ N).

Equality holds for the function (1+ eiαz)/(1− eiαz), where α = cos−1(b/2) and Re p1 = 2b.

Lemma 4.4.2. [103] Fix ξ ∈ U. If p(z) = 1+∑
∞
n=1 pnzn ∈P , then

|ξ pn+1− pn| ≤
2(1−|ξ |n)

(
1+ |ξ |2−Re(ξ p1)

)
1−|ξ | + |2−ξ p1||ξ |n for |ξ |< 1.

The bounds are sharp for p(z) = (1+ z)/(1− z).

According to Komatu [85], if p(z) = 1+∑
∞
n=1 pnzn and q(z) = 1+∑

∞
n=1 qnzn both are the members

of P , then the weighted Hadamard product, f ∗g, also belongs to P , where

f ∗g = 1+
∞

∑
n=1

pnqn

2
zn.

Let us define Fj(z) = Fj−1 ∗ p(z) for j ∈ N with F0(z) = p(z), then using the above result, we have

Fj ∈P . Particulary, for N ∈ N, the function

FN−1(z) = 1+
∞

∑
n=1

pN
n

2N−1 zn ∈P.

Replacing p(z) in Lemma 4.4.2 by FN−1, the result is as follows:
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Lemma 4.4.3. Fix ξ ∈ U and N ∈ N. If p(z) = 1+∑
∞
n=1 pnzn, then

|ξ pN
n+1− pN

n | ≤
2(1−|ξ |n)

(
2N−1 +2N−1|ξ |2−Re(ξ pN

1 )
)

1−|ξ | + |2N−ξ pN
1 | · |ξ |n for |ξ |< 1.

Equality holds for the function (1+ z)/(1− z).

Theorem 4.4.1. If f ∈Aβ (p), then the following inequalities hold:

|aN
n+1−aN

n | ≤


2(σn−µn)(2N−1σ2 +2N−1µ2−σ µ pN)

(σ −µ)σ µn+1 +
σn|2N µ−σ pN |

σ µn+1 ; β ∈ [0,1),

2N
√

2−21−N pN

σ
; β = 1,

(4.4.1)

where σ = (n− (n−1)β )N and µ = (n+1−nβ )N . Bounds for β ∈ [0,1) is sharp for p = 2 whereas
for β = 1, bound is sharp for odd N and p =−2.

Proof. For f ∈Aβ (p), from (4.2.3), we have

(n− (n−1)β )N |aN
n+1−aN

n |=
∣∣∣∣(n− (n−1)β

(n+1)−nβ

)N

pN
n − pN

n−1

∣∣∣∣.

From Lemma 4.4.3 with ((n− (n−1)β )/((n+1)−nβ ))N = ξ , bound in (4.4.1) for β ∈ [0,1) follows
as ξ ∈ (0,1) whenever β ∈ (0,1). For β = 1, we have ξ = 1. Bounds for β = 1 are obtained using
Lemma 4.4.1.

To show the sharpness for β ∈ [0,1), consider the function f̃ (z) given in (4.2.4). As for f̃ , we have

|an+1−an|=
2N

(n− (n−1)β )N

∣∣∣∣(n− (n−1)β )N

(n+1−nβ )N −1
∣∣∣∣ ,

which is same as in (4.4.1) for p = 2. In case of β = 1, for the function f̃ (−z), we have

|an+1−an|=
2N+1

(n− (n−1)β )N ,

which coincides with the bounds in (4.4.1) for odd N and p =−2.

For N = 1, Theorem 4.4.1 yields the following bounds:

Corollary 4.4.2. If f ∈Aβ (p) is of the form (1.0.1), then

|an+1−an| ≤


2(σn−µn)(σ2 +µ2−σ µ p)

(σ −µ)σ µn+1 +
σn|2µ−σ p|

σ µn+1 ; β ∈ [0,1),

2
√

2− p
σ

; β = 1,
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The class Aβ reduces to the class R for β = 0. Let us take the corresponding class R(p) = { f ∈
R : f ′′(0) = p}. Theorem 4.4.1 gives the following result for the class R(p) when β = 0.

Corollary 4.4.3. If f ∈R(p) is of the form (1.0.1), then the following sharp bounds hold:

|aN
n+1−aN

n | ≤
2(σn−µn)(2N−1σ2 +2N−1µ2−σ µ pN)

(σ −µ)σ µn+1 +
σn|2N µ−σ pN |

σ µn+1 .

4.5 Growth Theorem and Bohr Phenomenon

In this section, the sharp Bohr and Bohr-Rogosinski radii are established for the class Aβ .

Theorem 4.5.1. If f ∈Aβ , then for |z| ≤ r, the following hold:

(i) − f̃ (−r)
r
≤ Re

(
f (z)

z

)
≤ f̃ (r)

r
,

(ii) − f̃ (−r)≤ | f (z)| ≤ f̃ (r),

where f̃ (z) is given by (4.2.4). All these estimations are sharp.

Proof. (i) Let f ∈Aβ . Consider p(z) = f (z)/z, then we have

Re(p(z)+(1−β )zp′(z))> 0.

It can be viewed as p(z)+ (1− β )zp′(z) ≺ (1+ z)/(1− z). Further, by Hallenbeck and Rusheweye-
h [121, Theorem 3.1b], it follows that

p(z)≺ q(z)≺ 1+ z
1− z

,

where q(z) is convex and best dominant, given by

q(z) =
1

(1−β )z(
1

1−β
)

∫ z

0

(
1+ t
1− t

)
t(

1
1−β
−1)dt

=
f̃ (z)

z
,

where f̃ (z) is defined in (4.2.4). Since q(z) is convex and all coefficients are real for β ∈ [0,1], therefore
image domain of U under the function q(z) is symmetric with respect to real axis and

q(−r)≤ Re(q(z))≤ q(r), |z|= r < 1.

As p(z) = f (z)/z≺ q(z), so required bound of Re( f (z)/z) follows. This completes the first part. The
sharpness of the bounds follows as q(z) is the best dominant.
(ii) From [23, Lemma 4.10], f ∈Aβ if and only if

f (z) = z
∫ 1

0
p(t1−β z)dt, (4.5.1)
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where p ∈P . Using the well known bound for Carathéodory functions, |p(z)| ≤ (1+ r)/(1− r) for
|z|= r < 1 , we have

| f (z)| ≤ r
∫ 1

0

1+ rt1−β

1− rt1−β
dt = f̃ (r).

Now, we proceed for the lower bound of | f (z)|. After solving the integration in (4.5.1) for p(z) =
(1+ z)/(1− z), we get

f (z) = z(−1+2H(z)),

where

H(z) = 2F1

[
1,

1
1−β

,
2−β

1−β
,z
]
.

Thus for z = reiθ ,
| f (z)|= |z(−1+2H(z))| ≥ min

θ∈[0,2π]
g(θ), (4.5.2)

where
g(θ) =

√
Re(reiθ (−1+2H(reiθ )))2 + Im(reiθ (−1+2H(reiθ )))2.

Since for different choices of β in [0,1), H(z) reduces to different functions. For instance, when
β = 0, it becomes −2log(1− z)/z and for β = 1/2, it reduces to −4(z+ log(1− z))/z2. By a simple
calculation, we find that the function g(θ) is decreasing from [0,π] and increasing from [π,2π] for
r ∈ (0,1) and β ∈ [0,1). Hence g(θ) attains its minimum value at θ = π . Thus from (4.5.2), we get

| f (z)| ≥ |−r(−1+2H(−r))|
= r(−1+2H(−r)) =−r f̃ (−r),

which completes the proof. The bounds are sharp for the function f̃ (z).

Theorem 4.5.2. If f ∈Aβ is of the form (1.0.1), then

|ω(zm)|+
∞

∑
n=2
|anzn| ≤ d(0,∂ f (U)), m ∈ N,

in |z| ≤ r∗, where r∗ is the smallest positive root of

rm + f̃ (r)− r+ f̃ (−1) = 0. (4.5.3)

The radius r∗ is sharp.

Proof. Let f ∈Aβ , then by Theorem 4.5.1, the Euclidean distance between f (0) = 0 and the boundary
of f (U) satisfies

d(0,∂ f (U))≥ lim
r→1
| f (z)|=− f̃ (−1).
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Let |z| ≤ r. Now using (4.2.2) with the above inequality, we have

|ω(zm)|+
∞

∑
n=2
|anzn| ≤ rm +

∞

∑
n=2

(
2

n−β (n−1)

)
rn,

= rm + f̃ (r)− r

≤− f̃ (−1)≤ d(0,∂ f (U)),

which is true in |z| = r ≤ r∗, where r∗ is the root of H1(r) = r(rm−1− 1)+ f̃ (r)+ f̃ (−1). Note that,
H1(0) = f̃ (−1) < 0 and H1(1) = f̃ (1)+ f̃ (−1) > 0 for all β ∈ [0,1], therefore by the Intermediate
value property for continuous functions there must exist a r∗ ∈ (0,1) such that H1(r∗) = 0.

Sharpness holds for the functions f̃ (z) and ω(z) = z. Since at z = r∗,

|ω(zm)|+
∞

∑
n=2
|anzn|= (r∗)m +

∞

∑
n=2

2
n− (n−1)β

(r∗)n

= (r∗)m + f̃ (r∗)− r∗ =− f̃ (−1).

Hence the radius is sharp.

For ω(z) = z and m = 1, Theorem 4.5.2 gives the following Bohr-radius for the class Aβ .

Corollary 4.5.3. If f ∈Aβ , then |z|+∑
∞
n=2|anzn| ≤ d(0,∂ f (U)) in |z| ≤ rb, where rb is root of f̃ (r)+

f̃ (−1) = 0. The radius rb is sharp.

For various values of β ∈ [0,1], the corresponding roots rb are shown in Figure 4.1 and Table 4.1.

β = 0.1

β = 0.3

β = 0.5

β = 0.7

β = 0.9

0.2 0.4 0.6 0.8 1.0

2

4

6

8

Figure 4.1: Root rb for different values of β

β 0.1 0.2 0.3 0.5 0.7 0.8 0.9
rb 0.267139 0.24766 0.22655 0.178366 0.119726 0.085113 0.0457777

Table 4.1: Radius rb for various choices of β

Theorem 4.5.4. If f ∈Aβ is of the form (1.0.1), then

| f (zm)|+
∞

∑
k=N
|akzk| ≤ d(0,∂ f (U)) (4.5.4)
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hold for |z|= r ≤ rN , where rN is the root of the equation

f̃ (rm)+ f̃ (r)− f̂ (r)+ f̃ (−1) = 0,

with

f̂ (r) =


0 N = 1,
r N = 2,
r+∑

N−1
n=2

2
(n−(n−1)β )r

n N ≥ 3.

The radius is sharp.

Proof. Suppose f ∈Aβ , then from (4.2.2) and Theorem 4.5.1, we have

| f (zm)|+
∞

∑
k=N
|akzk| ≤ f̃ (rm)+

∞

∑
n=N

2
n− (n−1)β

rn

= f̃ (rm)− f̂ (r)+ f̃ (r)

≤− f̃ (−1)

≤ d(0,∂ f (U))

holds in |z|= rN , where rN is the root of

H2(r) := f̃ (rm)− f̂ (r)+ f̃ (r)+ f̃ (−1) = 0.

Since H2(0) = f̃ (−1) < 0 and H2(1) = ( f̃ (1)− f̂ (1))+ ( f̃ (1)+ f̃ (−1)) > 0, therefore there exist a
rN ∈ (0,1) such that (4.5.4) holds. Note that, for the function f̃ (z) at |z|= rN ,

| f (zm)|+
∞

∑
k=N
|akzk|= f̃ ((rN)

m)+
∞

∑
n=N

2
n− (n−1)β

(rN)
n

=− f̃ (−1),

which proves the sharpness of the radius.

4.6 Convolution Properties

The following lemmas help us in proving our results.

Lemma 4.6.1. [170] If g(z) is analytic in U, g(0) = 1 and Reg(z) > 1/2, then for any function f ,
analytic in U, the function g∗ f takes values in the convex hull of the image of U under f .

Lemma 4.6.2. [164] If g ∈ C and h ∈S ∗, then for each function F , analytic in U, the image of U
under (g∗Fh)/(g∗h) is a subset of the convex hull of F(U).

Theorem 4.6.1. Let f ∈A . Then f ∈Aβ if and only if

f (z)∗ z
(

1− zβ

(1− z)2 −
1+ζ

1−ζ

)
6= 0, |ζ |= 1.



72

Proof. From (4.1.1), f (z) = z+∑
∞
n=2 anzn ∈Aβ if and only if

β
f (z)

z
+(1−β ) f ′(z)≺ 1+ z

1− z
,

which ensures the existence of a Schwarz function ω such that

β
f (z)

z
+(1−β ) f ′(z) =

1+ω(z)
1−ω(z)

, z ∈ U.

By the property of subordination, we have

β
f (z)

z
+(1−β ) f ′(z) 6= 1+ζ

1−ζ
, (4.6.1)

where |ζ |= 1. Using the following basic convolution properties

z = f (z)∗ z, f (z) = f (z)∗ z
(1− z)

and z f ′(z) = f (z)∗ z
(1− z)2

in (4.6.1), we obtain

f (z)∗
(

β z
1− z

+
(1−β )z
(1− z)2 −

z(1+ζ )

1−ζ

)
6= 0,

which completes the result.

Theorem 4.6.2. Let f (z) = z+∑
∞
n=2 anzn ∈A . If ∑

∞
n=2(β +n(1−β ))|an|< 1, then f ∈Aβ .

Proof. To prove f ∈Aβ , it is sufficient to show that∣∣∣∣β f (z)/z+(1−β ) f ′(z)−1
β f (z)/z+(1−β ) f ′(z)+1

∣∣∣∣< 1, z ∈ U.

We have ∣∣∣∣β f (z)/z+(1−β ) f ′(z)−1
β f (z)/z+(1−β ) f ′(z)+1

∣∣∣∣= ∣∣∣∣ ∑
∞
n=2(β +n(1−β ))anzn

2+∑
∞
n=2(β +n(1−β ))anzn

∣∣∣∣
≤ ∑

∞
n=2(β +n(1−β ))|an||z|n

2−∑
∞
n=2(β +n(1−β ))|an||z|n

≤ ∑
∞
n=2(β +n(1−β ))|an|

2−∑
∞
n=2(β +n(1−β ))|an|

.

The last expression is bounded above by 1 if

∞

∑
n=2

(β +n(1−β ))|an|< 2−
∞

∑
n=2

(β +n(1−β ))|an|,

which is equivalent to
∞

∑
n=2

(β +n(1−β ))|an|< 1. (4.6.2)
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But (4.6.2) is true by hypothesis. Therefore∣∣∣∣β f (z)/z+(1−β ) f ′(z)−1
β f (z)/z+(1−β ) f ′(z)+1

∣∣∣∣< 1, z ∈ U

and the proof is complete.

If we put β = 1 in Theorem 4.6.2, we obtain a sufficient condition for G0.

Corollary 4.6.3. Let f (z) = z+∑
∞
n=2 anzn ∈A . If ∑

∞
n=2 |an|< 1, then f ∈ G0.

Example 4.6.4. Polynomial f (z) = z+anzn ∈ G0, (n≥ 2) whenever |an|< 1.

Theorem 4.6.5. If f ∈Aβ and g ∈A such that Reg(z)> 1/2, then f ∗g ∈Aβ .

Proof. For F(z) = ( f ∗g)(z), we have

zF ′(z) = z f ′(z)∗g(z).

Thus,

Re
(

βF(z)+(1−β )zF ′(z)
z

)
= Re

(
β ( f (z)∗g(z))+(1−β )z f ′(z)∗g(z)

z

)
= Re

((
β f (z)+(1−β )z f ′(z)

z

)
∗g(z)

)
.

Since Re((β f (z)+(1−β )z f ′(z))/z) > 0 and by the hypothesis Reg(z) > 1/2, therefore by Lemma
4.6.1,

Re
(

βF(z)+(1−β )zF ′(z)
z

)
> 0.

Consequently, F(z) = f ∗g ∈Aβ , which completes the proof.

Theorem 4.6.6. If f ∈Aβ and g ∈ C , then f ∗g ∈Aβ .

Proof. Let f ∈Aβ , then we have ReF(z)> 0, where

F(z) :=
β f (z)+(1−β )z f ′(z)

z
.

For g ∈ C , we have
g∗ zF
g∗ z

=

(
β (g∗ f )+(1−β )z(g∗ f )′

z

)
,

which together with Lemma 4.6.2 yields that Re((β (g∗ f )+(1−β )z(g∗ f )′/z)) > 0, hence f ∗ g ∈
Aβ .

If we take

g(z) =
∞

∑
n=1

(
1+ γ

n+ γ

)
zn, Reγ ≥−1

2
,

which is a convex function in U (see [162]), in Theorem 4.6.6, the following result follows:
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Corollary 4.6.7. If f ∈Aβ , then so is

1+ γ

zγ

∫ z

0
tγ−1 f (t)dt, Reγ ≥−1

2
.

For γ = 0 and γ = 1, the function g reduces to − log(1− z) and −2(z+ log(1− z))/z, respectively,

and from Theorem 4.6.6, we obtain the following:

Corollary 4.6.8. (i) If f ∈Aβ , then

∫ z

0

f (t)− f (0)
t

dt =
∫ z

0

f (t)
t

dt ∈Aβ .

(ii) If f ∈Aβ , then
2
z

∫ z

0
f (t)dt ∈Aβ .

Consider the function

g(z) =
1

1− x
log
(

1− xz
1− z

)
, |x| ≤ 1, x 6= 1.

Since g(z) is a convex function, for f ∈Aβ , Theorem 4.6.6 yields:

Corollary 4.6.9. If f ∈Aβ , then ∫ z

0

f (t)− f (xt)
t− xt

dt ∈Aβ .

4.7 Inclusion and Radius Problems

In this section, we see the inclusion of various subclasses of A in the class of semigroup generators.

Theorem 4.7.1. If Ψ is convex, then F (Ψ)⊂ G0 whenever

Re
(

exp
∫ z

0

Ψ(t)
t

)
≥ η > 0. (4.7.1)

Moreover, the semigroup {u(t, ·)}t≥0 generated by f ∈F (Ψ) satisfies |u(t, ·)| ≤ e−tη |z| for all z ∈ U.

Proof. Let f ∈F (Ψ), then
z f ′(z)
f (z)

−1≺Ψ(z). (4.7.2)

It can be easily seen that

log
(

1
1− z

)
= z+

z2

2
+

z3

3
+ · · ·

is a convex univalent function. Using the result [163], which states that: for any convex univalent
functions F and G in U, if f ≺ F and g≺ G, then f ∗g≺ F ∗G, in (4.7.2), we get(

z f ′(z)
f (z)

−1
)
∗ log

(
1

1− z

)
≺Ψ(z)∗ log

(
1

1− z

)
. (4.7.3)
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Now, applying the following convolution properties(
z f ′(z)
f (z)

−1
)
∗ log

(
1

1− z

)
=
∫ z

0

1
t

(
t f ′(t)
f (t)

−1
)

dt,

Ψ(z)∗ log
(

1
1− z

)
=
∫ z

0

Ψ(t)
t

dt,

in (4.7.3), we obtain ∫ z

0

1
t

(
t f ′(t)
f (t)

−1
)

dt ≺
∫ z

0

Ψ(t)
t

dt.

Consequently,
f (z)

z
= exp

∫ z

0

1
t

(
t f ′(t)
f (t)

−1
)

dt ≺ exp
∫ z

0

Ψ(t)
t

dt.

By subordination principle for |z| ≤ r < 1 (see [59]), we have

Re
(

f (z)
z

)
≥ Re

(
exp

∫ z

0

Ψ(t)
t

dt
)
.

Thus, whenever (4.7.1) holds, we have F (Ψ) ⊂ G0 and the result follows at once from Proposition
4.1.2.

Example 4.7.2. Let us take Ψ(z) = −2z/(1− z2), then it can be easily seen that Ψ(z) is analytic,
univalent and starlike function with respect to 0 in U and Ψ(z) is convex in the disk of radius |z| ≤ r0 ≈
0.414214, where r0 is the root of the equation

r4−6r2 +1 = 0.

For this Ψ, we can consider

F1(Ψ) =

{
f ∈A :

z f ′(z)
f (z)

−1≺ −2z
1− z2

}
and a simple calculation yields that

Re
(

exp
∫ z

0

Ψ(t)
t

)
= Re

(
1− z
1+ z

)
> 0.

Therefore, by Theorem 4.7.1, F1(Ψ)⊂ G0 in |z| ≤ r0.

For Ψ(z) = z/(1−αz2), the class F (Ψ) reduces to the class BS (α). By Theorem 4.7.1, we

obtain the following:

Corollary 4.7.3. Let 0 < α ≤ 3−2
√

2. Then BS (α)⊂ G0 and the semigroup {u(t, ·)}t≥0 generated
by f ∈BS (α) satisfies

|u(t,z)| ≤ e−t
(

1−√α

1+
√

α

) 1
2
√

α

|z|, z ∈ U.
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Proof. Since Ψ(z) = z/(1−αz2) is convex for 0 < α ≤ 3−2
√

2 [141, Lemma 3.1] and

Re
(

exp
∫ z

0

Ψ(t)
t

)
= Re

(
1+
√

αz
1−√αz

) 1
2
√

α

=: Reg(z),

where g(z) = ((1+
√

αz)/(1−√αz))1/(2
√

α). By [78, Theorem 2.4], function g is convex univalent in
U and g(z) is real for real z, therefore it maps the unit disk onto a convex set symmetric with respect
to the real axis lying between g(−1) to g(1). Thus Reg(z) ≥ ((1−√α)/(1+

√
α))1/(2

√
α) > 0 for

0 < α ≤ 3−2
√

2, which together with Theorem 4.7.1 and Proposition 4.1.2 establish the result.

Theorem 4.7.4. The inclusion S ∗(ϕ)⊂ G0 holds, whenever

Re
{

exp
∫ z

0

ϕ(t)−1
t

dt
}
≥ η > 0. (4.7.4)

Moreover, f ∈S ∗(ϕ) generates the semigroup {u(t, ·)}t≥0, which satisfies

|u(t,z)| ≤ e−tη |z|, z ∈ U.

Proof. Let f ∈S ∗(ϕ), then from [117, Theorem 1], we have

f (z)
z
≺ kϕ(z)

z
,

where kφ = kφ ,2 is defined in (1.3.3). By subordination principle for |z| ≤ r < 1,

Re
(

f (z)
z

)
≥ Re

(
kϕ(z)

z

)
= Re

(
exp
(∫ z

0

ϕ(t)−1
t

dt
))

> γ. (4.7.5)

Hence, S ∗(ϕ)⊂ G0 and the result follows at once with Proposition 4.1.2.

Remark 4.7.1. For ϕ(z) = 1/(1− z), the class S ∗(ϕ) reduces to the class S ∗(1/2), which means
Re(z f ′(z)/ f (z))> 1/2. From (4.7.5), we have Re( f (z)/z)> 1/2 for f ∈S ∗(1/2), which was proved
by Marx-Strohäcker [175] using a different technique.

Corollary 4.7.5. If −1≤ B < A≤ 0, then S ∗[A,B]⊂ G0 and the semigroup {u(t, ·)}t≥0 generated by
f ∈S ∗[A,B] satisfies

|u(t,z)| ≤ e−t(1−B)
A−B

B |z|, z ∈ U.

Proof. For f ∈S ∗[A,B],

Re
{

exp
∫ z

0

ϕ(t)−1
t

dt
}
= Re

{
(1+Bz)

A−B
B

}
.

Now, by taking z = eiθ for θ ∈ (0,2π), we have

Re
{
(1+Beiθ )

A−B
B

}
=
(
(1+Bcosθ)2 +B2 sin2

θ
)A−B

2B cosΘ, (4.7.6)
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where

Θ :=
A−B

B
tan−1

(
sinθ

1+Bcosθ

)
.

For −1≤ B < A≤ 0 and θ ∈ (0,2π),

A−B
B
∈ [−1,0) and − π

2
< tan−1

(
sinθ

1+Bcosθ

)
<

π

2
.

It is evident from the above that Θ ∈ (−π/2,π/2). Therefore, cosΘ > 0. Consequently, we conclude
from (4.7.6) that condition (4.7.4) holds for the class S ∗[A,B] whenever −1 ≤ B < A ≤ 0 and hence
S ∗[A,B]⊂ G0.

From (4.7.6), for −1≤ B < A≤ 0 and θ ∈ (0,2π), we have

Re
{
(1+Beiθ )

A−B
B

}
≥ inf

θ∈(0,2π)
Re(1+Beiθ )

A−B
B

= (1−B)
A−B

B .

The result now follows at once from Proposition 4.1.2.

Remark 4.7.2. Taking A = 1− 2α and B = −1, we see that the class S ∗[A,B] reduces to the class
S ∗(α), α ∈ [0,1]. From Corollary 4.7.5, we obtain S ∗(α) ⊂ G0, whenever α ≥ 1/2 and |u(t,z)| ≤
2−(2−2α), proved by Elin et al. [47, Thereom 5].

For A = 0 and B =−1, Corollary 4.7.5 yields the following result:

Corollary 4.7.6. S ∗(1/2) ⊂ G0 and the semigroup {u(t, ·)}t≥0 generated by f ∈ S ∗(1/2) satisfies
|u(t,z)| ≤ e−t/2|z| for all z ∈ U.

Theorem 4.7.7. If λ ∈ [0,1/3], then U (λ )⊂G0 and the semigroup {u(t, ·)}t≥0 generated by f ∈U (λ )

satisfies

|u(t,z)| ≤ e
(

t(3λ−1)
2λ2−4λ+2

)
|z|, z ∈ U.

The range of λ is best possible.

Proof. For f ∈U (λ ),
f (z)

z
≺ 1

(1+ z)(1+λ z)
, z ∈ U (4.7.7)

and

Re
1

(1+ z)(1+λ z)
≥ min

θ∈(0,2π)
Re

1
(1+ eiθ )(1+λeiθ )

= min
θ∈(0,2π)

1−λ +2λ cosθ

2λ 2 +4λ cosθ +2

= min
x∈(−1,1)

2λx−λ +1
2λ 2 +4λx+2

=: g(x),

where x = cosθ . Clearly, g′(x) = λ 2(λ +1)/(λ 2 +2xλ +1)2 > 0 for all x ∈ (−1,1) and λ ∈ [0,1].
Thus, g(x) is increasing function and the infimum of its range set is attained at x =−1, which together
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with (4.7.7) yields

Re
f (z)

z
>

1−3λ

2λ 2−4λ +2

and the required inclusion follows for λ ∈ [0,1/3]. By (4.1.2) and (4.7.7), we note that

f (z) =
z

(1+ z)(1+λ z)
∈U (λ ),

and Re( f (z)/z) may be negative when λ > 1/3, showing that the range of λ is best possible. Now,
the exponential rate of convergence of {u(t,z)}t≥0 generated by f ∈ U (λ ) follows by Proposition
4.1.2.

The following lemma is obtained by Tuan and Anh [183] as a particular case of Theorem 3 of [73] for

the class of Carathéodory functions P .

Lemma 4.7.1. Let p ∈P . Then for 0≤ α < 1,

Re
(

(1−α)zp′(z)
α +(1−α)p(z)

)
≥


− 2(1−α)r
(1+(2α−1)r)(1+ r)

for R1 ≤ R2,

− α

(1−α)
+

1
(1−α)

(2R1−a) for R2 ≤ R1,

where

R1 =

(
α−α(2α−1)r2

1− r2

)1/2

and R2 =
1+(2α−1)r

1+ r
.

The results are sharp and the extremal functions are given by

(i) for R1 ≤ R2, p(z) = (1− z)/(1+ z);

(ii) for R2 ≤ R1,

p(z) =
1
2

(
1+ ze−iθ

1− ze−iθ +
1+ zeiθ

1− zeiθ

)
,

where cosθ satisfies the equation

(2α−1)r4−2cos t((2R1−b−α)(3α−1)+(1−α)2)r3 +(2α(2R1−b−α)(1+2cos2
θ)

+4(1−α)2)r2−2cosθ((2R1−b−α)(1+α)+(1−α)2)r+(2R1−b−α) = 0
(4.7.8)

with b = (1− (2α−1)r2)/(1− r2).

For a given r ∈ (0,1), the transition from the first case to second case takes place when α = α0 ∈
(0,1), where α0 is determined from the equation R1 = R2.

Tuan and Anh [183] found the radius of starlikeness for the subclass of S , which satisfies the condi-

tion Re( f (z)/z)> a, 0≤ a < 1. In the following, we extend their result by considering the class S ∗(α)

in place of S ∗.

Theorem 4.7.8. Let f ∈ A and Re( f (z)/z) > a, 0 ≤ a < 1. Then f ∈ S ∗(α) in |z| ≤ rα ∈ (0,1),
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where rα is given by

rα =



2a−aα−1+
√

(a−1)(a(α−2)2− (α−2)α−2)
(1−2a)(1−α)

for a ∈ [0,a0]\{a1}

√
α2(1−a)−α(2−6a)−4a+4

√
(α−1)(a−1)a

α2(1−a)−α(4−8a)−8a+4
for a ∈ (a0,1)\{a1}

√
α−1
α−2

for a = a1

(4.7.9)

with

a0 =
2α3−6α2 +9α−6+2

√
(α−1)4(α(α−2)+4)

4α3−21α2 +36α−20
and a1 =

α2−4α +4
α2−8α +8

.

The radius is sharp.

Proof. Since Re( f (z)/z)> a, we can write

f (z)
z

= a+(1−a)p(z),

where p ∈P . A computation shows that

Re
(

z f ′(z)
f (z)

)
= Re

(
1+

(1−a)zp′(z)
a+(1−a)p(z)

)
. (4.7.10)

By Lemma 4.7.1, for R1 ≤ R2, we have

Re
(

z f ′(z)
f (z)

)
≥ 1− 2(1−a)r

(1+(2a−1)r)(1+ r)

=: ξ1(a,r).

Clearly, f ∈S ∗(α) provided ξ1(a,r)> α or

ξ1(a,α,r) := r2(2a−α(−1+2a)−1)+ r(4a−α(2a−1)−α−2)+(1−α)> 0.

For the case R1 ≤ R2, rα1 is the smallest positive root of ξ1(a,α,r) = 0 and it is given by

rα1 =
2a−aα−1+

√
(a−1)(a(α−2)2− (α−2)α−2)
(1−2a)(1−α)

.

Now, rα1 < 1 provided
(6−4α)a−2
(α−1)(2a−1)

< 0,

which holds when a< 1/(3−2α). Evidently, ξ1(a,α,0) = 1−α ≥ 0 for all α ∈ [0,1] and ξ1(a,α,1) =
−2+(6−4α)a < 0 for a < 1/(3−2α), which ensures the existence of root rα1 ∈ (0,1).
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For the case R2 ≤ R1, rα2 is the smallest positive root of ξ2(a,α,r) = 0, where

ξ2(a,α,r) = 1− a
(1−a)

+
1

(1−a)

(
2
(

a−a(2a−1)r2

1− r2

)1/2

− 1− (2a−1)r2

(1− r2)

)
−α (4.7.11)

and the root is

rα2 =

√
α2(1−a)−α(2−6a)−4a+4

√
(α−1)(a−1)a

α2(1−a)−α(4−8a)−8a+4
,

where a 6= (4−4α +α2)/(8−8α +α2). For a = (4−4α +α2)/(8−8α +α2), ξ2(a,α,r) = 0 yields
the root

rα3 =

√
α−1
α−2

.

For fixed α ∈ [0,1], rα2 ∈ (0,1) whenever a > α2/(α−2)2. Clearly

rα1 = rα2

when

a0 =
2α3−6α2 +9α−6+2

√
(α−1)4(α(α−2)+4)

4α3−21α2 +36α−20
.

For α ∈ [0,1], a0 lies in [1/10,1].

Sharpness: For a ∈ [0,a0]\{a1}, sharpness follows for

f (z) = z
(

1+(2a−1)z
1+ z

)
as z f ′(z)/ f (z) = α when z = rα1 . For the second inequality, extremal function is given by

f (z) = az+
(1−a)

2
z
(

1+ ze−iθ

1− ze−iθ +
1+ zeiθ

1− zeiθ

)
,

where cosθ satisfy (4.7.8) with r = rα2 .

In view of Theorem 4.7.8 and Lemma 4.1.1, we get the radius of starlikeness of order α for the class

Aβ .

Theorem 4.7.9. If f ∈Aβ , 0≤ β ≤ 1, then f ∈S ∗(α) in Urα
= {z ∈ C : |z| ≤ rα}, where

rα =



√
κ(β )(α2−6α +4)−α2 +2α−4

√
κ(β )(1−κ(β ))(1−α)

k(α2−8α +8)− (α−2)2 for β ∈ (0,β ∗]

2κ(β )(2−α)−2−
√
(κ(β )(α−2)2 +α(α−2)+2)(1−κ(β ))

2(1−2κ(β ))(1−α)
for β ∈ [β ∗,1]
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and β ∗ is the root of

∫ 1

0

1− t1−β ∗

1+ t1−β ∗ dt =
1

6−9α +6α2−2α3−2
√
(α−1)4(α2−2α +4)

.

Remark 4.7.3. For α = 0, Theorem 4.7.9 gives the radii of starlikeness for f ∈Aβ [47, Theorem 8].

So far, we were dealing with coefficient and radius problems associated with different subclasses of

A . Nevertheless, as we progress into the upcoming chapters, we are embarking on a fresh trajectory,

venturing into uncharted territory by examining functions in higher dimensions. This shift marks an

exciting expansion of our research scope, promising to unveil new insights and complexities in the

realm of analytic functions.

Highlights of the chapter

We tackled unresolved challenges within the subclass of semigroup generators. By focusing on co-

efficient problems and growth estimates, we established bounds for the nth Taylor series coefficients

and explored specific coefficient functionals. Additionally, we explored the Bohr and Bohr-Rogosinski

phenomena, alongside growth estimates, and derived the radius of starlikeness of order α . Our find-

ings also reveal the embedding of well-known subclasses of S . This propels our comprehension of

semigroup generator theory to greater depths.

The contents of this chapter are drawn from the following articles:

S. Giri, S. S. Kumar, Coefficient Functional and Bohr-Rogosinski Phenomenon for Analytic functions

involving Semigroup Generators, Rocky mountain journal of mathematics (Accepted).

S. Giri, and S. S. Kumar, Radius and Convolution problems of analytic functions involving Semigroup

Generators, arXiv preprint arXiv:2205.10777. (Communicated).





Chapter 5

Toeplitz Determinants for Starlike

Mappings in Higher Dimensions

In this chapter, we derive the sharp bounds of certain Toeplitz determinants whose entries

are the coefficients of holomorphic functions belonging to a known class defined on the unit

disk U. Further, these results are extended to a class of holomorphic functions on the unit ball

in a complex Banach space and on the unit polydisc in Cn. The obtained results provide the

bounds of Toeplitz determinants in higher dimensions for various subclasses of normalized

univalent functions.

5.1 Introduction

The failure of Bieberbach conjecture in several variables, even in its simplest form, is a widely recog-

nized fact. Furthermore, it is noteworthy that the constraint on the modulus of the second coefficients,

as observed in Taylor expansions of normalized univalent functions on the unit disc U, does not hold

true in the realm of several complex variables. Kohr [83] established the estimations of the second coef-

ficients of Taylor expansions for various classes including the classes of starlike and convex mappings

on the Euclidean unit ball of Cn. Gong [56] derived the bounds for the second and third coefficients

of starlike mappings on unit polydisc in Cn. Closely related to the Bieberbach conjecture, Xu and Liu

[193] obtained the bound of Fekete-Szegö type functional for a subclass of normalized starlike map-

pings on the unit ball of a complex Banach space. Xu et al. [191] solved the same for a subclass of

normalized quasi-convex mappings of type B on the unit ball of complex Banach space. Generaliz-

ing this work, Hamada et al. [67] also determined the bound of Fekete-Szegö inequality. Contrary to

Fekete-Szegö inequality for various subclasses of S (B), very few results are known for the inequalities

83
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of homogeneous expansions for subclasses of biholomorphic mappings in several complex variables

[60, 65, 66, 190]. Numerous best-possible results concerning the coefficient estimates for subclasses

of holomorphic mappings in higher dimensions are obtained in [24, 62, 112, 187, 192].

For a biholomorphic function Φ : U→ C, which satisfies Φ(0) = 1 and ReΦ(z) > 0, Kohr [83] in-

troduced the class MΦ containing the functions h ∈H (B) such that D(h(0)) = I and ‖z‖/lz(h(z)) ∈
Φ(U). Here, we additionally take Φ′(0)> 0, Φ′′(0) ∈ R and define the following:

Definition 5.1.1. Let Φ :U→C be a biholomorphic function such that Φ(0) = 1, ReΦ(z)> 0, Φ′(0)>
0 and Φ′′(0) ∈ R. We define MΦ to be the class of mappings given by

MΦ =

{
h ∈H (B) : h(0) = 0,D(h(0)) = I,

‖z‖
lz(h(z))

∈Φ(U),z ∈ B\{0}, lz ∈ T (z)
}
.

For B= Un and X = Cn, the above relation is equivalent to

MΦ =

{
h ∈H (Un) : h(0) = 0,D(h(0)) = I,

zk

hk(z)
∈Φ(U),z ∈ Un \{0}

}
,

where h(z)= (h1(z),h2(z), · · · ,hn(z))′ is a column vector in Cn and k satisfies |zk|= ‖z‖=max1≤ j≤n{|z j|}.
For B= U and X = C, the relation is equivalent to

MΦ =

{
h ∈H (U) : h(0) = 0,h′(0) = 1,

z
h(z)
∈Φ(U),z ∈ U

}
.

Also, note that, if f ∈H (B) and (D f (z))−1 f (z)∈MΦ, then suitable choices of Φ in Definition 5.1.1

provide different subclasses of holomorphic mappings. For instance, when Φ(z) = (1+ z)/(1− z),

Φ(z) = (1+ (1− 2α)z)/(1− z) and Φ(z) = ((1+ z)/(1− z))γ , we easily obtain that f ∈ S ∗(B) ,

f ∈S ∗
α (B) and f ∈S S ∗

γ(B), respectively.

In 2018, Ali et al. [6] determined the bound of |T2,2( f )| and |T3,1( f )|, when entries of Tm,n( f ) are the

coefficients of starlike functions. Recently, Ahuja et al. [4] obtained the bounds for various subclasses

of starlike functions.

Theorem A. [6] If f ∈S ∗, then the following sharp bounds hold:

|T2,2( f )| ≤ 13 and |T3,1( f )| ≤ 24.

Theorem B. [4] If f ∈S ∗(α), then

|T2,2( f )| ≤ (1−α)2(4α
2−12α +13).

For α ∈ [0,2/3], the following inequality holds:

|T3,1( f )| ≤ 12α
4−52α

3 +91α
2−74α +24.

All these estimations are sharp.

Theorem C. [4] Let f ∈S ∗[A,B], −1≤ B < A≤ 1. Then the following sharp estimations hold:
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(i) If |A−2B| ≥ 1, then

|T2,2( f )| ≤ (A−B)2(A2 +4B2−4AB+4)
4

.

(ii) If B≤min{(A−1)/2,(3A−1)/2}, then

|T3,1( f )| ≤ 1+2(A−B)2 +
(3A2−5AB+2B2)(A2−3AB+2B2)

4
.

In the subsequent section, we obtain the sharp bounds of certain Toeplitz determinants for the class

of holomorphic functions satisfying f (z)/ f ′(z)∈MΦ, which contain the above results as special cases.

Further, these results are generalized in higher dimensions.

5.2 Toeplitz Determinants for Certain Holomorphic Functions

We begin with the following results:

Theorem 5.2.1. Let f (z) = z+b2z2 +b3z3 + · · · ∈Φ(U), where Φ is same as given in Definition 5.1.1
and satisfy

|Φ′′(0)+2(Φ′(0))2| ≥ 2Φ
′(0)> 0.

If f (z)/ f ′(z) ∈MΦ, then

|T2,2( f )| ≤ (Φ′(0))2

4

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2

+(Φ′(0))2.

The bound is sharp.

Proof. Since f (z)/ f ′(z) ∈MΦ, therefore we have

F(z) :=
z f ′(z)
f (z)

∈Φ(U),

which yields F ≺Φ. For f (z) = z+b2z2 +b3z3 + · · · , the Taylor series expansion of F(z) is given by

F(z) = 1+b2z+(2b3−b2
2)z

2 + · · · .

Xu et al. [188] proved that

|b3−λb2
2| ≤

|Φ′(0)|
2

max
{

1,
∣∣∣∣12 Φ′′(0)

Φ′(0)
+(1−2λ )Φ′(0)

∣∣∣∣} , λ ∈ C. (5.2.1)

Thus, whenever |Φ′′(0)+2(Φ′(0))2| ≥ 2Φ′(0), the equation (5.2.1) yields

|b3| ≤
Φ′(0)

2

∣∣∣∣12 Φ′′(0)
Φ′(0)

+Φ
′(0)
∣∣∣∣ . (5.2.2)



86

Further, using the bound |F ′(0)| ≤Φ′(0), we obtain

|b2| ≤Φ
′(0). (5.2.3)

From (1.5.1), we have

|T2,2( f )|= |b2
3−b2

2| ≤ |b3|2 + |b2|2.

Clearly, the required bound follows directly from the above relation together with the bounds of |b3|
and |b2| given in (5.2.2) and (5.2.3), respectively.

To see the sharpness of the bound, consider the function fΦ : U→ C given by

fΦ(z) = zexp
∫ z

0

(Φ(it)−1)
t

dt = 1+ iΦ′(0)z− 1
2

(
(Φ′(0))2 +

Φ′′(0)
2

)
z2 + · · · . (5.2.4)

It can be easily seen that fΦ(z)/ f ′
Φ
(z) ∈MΦ and

|T2,2( fΦ)|=
1
4

(
(Φ′(0))2 +

Φ′′(0)
2

)2

+(Φ′(0))2,

which shows that the bound is sharp and completes the proof.

Theorem 5.2.2. Let f (z) = z+b2z2 +b3z3 + · · · ∈Φ(U), where Φ is same as given in Definition 5.1.1
and satisfy

2Φ
′(0)−2(Φ′(0))2 ≤Φ

′′(0)≤ 6(Φ′(0))2−2Φ
′(0).

If f (z)/ f ′(z) ∈MΦ, then

|T3,1( f )| ≤ 1+2(Φ′(0))2 +
(Φ′(0))2

4

(
3Φ
′(0)− Φ′′(0)

2Φ′(0)

)(
Φ′′(0)
2Φ′(0)

+Φ
′(0)
)
.

The bound is sharp.

Proof. Since Φ′′(0)+2(Φ′(0))2 ≥ 2Φ′(0), by (5.2.2), we obtain

|b3| ≤
Φ′(0)

2

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)
. (5.2.5)

Also, 6(Φ′(0))2−Φ′′(0)≥ 2Φ′(0) holds, hence (5.2.1) gives

|b3−2b2
2| ≤

Φ′(0)
2

(
3Φ
′(0)− 1

2
Φ′′(0)
Φ′(0)

)
. (5.2.6)

From (1.5.1), we have

|T3,1( f )|= |2b2
2b3−2b2

2−b2
3 +1|

≤ 1+2|b2|2 + |b3||b3−2b2
2|.

Using the estimates for the second and third coefficients given in (5.2.5) and (5.2.2) together with the
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bound of |b3−2b2
2| given in (5.2.6), required bound follows.

The estimate is sharp for the function fΦ(z) = z+∑
∞
n=2 bnzn given by (5.2.4). For this function, we

have

1−2b2
2−b3(b3−2b2

2) = 1+2(Φ′(0))2 +
(Φ′(0))2

4

(
3Φ
′(0)− Φ′′(0)

2Φ′(0)

)(
Φ′′(0)
2Φ′(0)

+Φ
′(0)
)
,

which proves the sharpness of the bound.

Remark 5.2.1. By taking Φ(z) = (1+ z)/(1− z), Φ(z) = (1+ (1− 2α)z)/(1− z) and Φ(z) = (1+
Az)/(1+Bz), Theorem 5.2.1 and 5.2.2 can be deduced to Theorem A, Theorem B and Theorem C,
respectively.

The bounds for other classes can also be obtained by changing the corresponding function Φ. For

Φ(z) = ((1+ z)/(1− z))γ , the following result follows for the class S S ∗(γ).

Corollary 5.2.3. If f ∈S S ∗(γ), then for γ ∈ [1/3,1], the followings sharp inequalities hold:

|T2,2( f )| ≤ 9γ
4 +4γ

2 and |T3,1( f )| ≤ 15γ
4 +8γ

2 +1.

5.3 Bounds in Higher Dimensions

Now, we extend the above results on the unit ball B in a complex Banach space and on the unit

polydisc Un.

Theorem 5.3.1. Let f ∈H (B,C) with f (0) = 1 and suppose that F(z) = z f (z). If (DF(z))−1F(z) ∈
MΦ such that Φ satisfy

|Φ′′(0)+2(Φ′(0))2| ≥ 2Φ
′(0),

then ∣∣∣∣( lz(D2F(0)(z2))

2!||z||2
)2

−
(

lz(D3F(0)(z3))

3!||z||3
)2∣∣∣∣≤ (Φ′(0))2

4

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2

+(Φ′(0))2.

The bound is sharp.

Proof. Xu et al. [188, Theorem 3.2] proved that∣∣∣∣ lz(D3F(0)(z3))

3!||z||3 −λ

(
lz(D2F(0)(z2))

2!||z||2
)2∣∣∣∣

≤ |Φ
′(0)|
2

max
{

1,
∣∣∣∣1

2
Φ′′(0)
Φ′(0)

+(1−2λ )Φ′(0)
∣∣∣∣} , λ ∈ C, z ∈ B\{0}.

 (5.3.1)

Since |Φ′′(0)+2(Φ′(0))2| ≥ 2Φ′(0), the above inequality gives∣∣∣∣ lz(D3F(0)(z3))

3!||z||3
∣∣∣∣≤ Φ′(0)

2

∣∣∣∣12 Φ′′(0)
Φ′(0)

+Φ
′(0)
∣∣∣∣ . (5.3.2)

On the other hand, applying a similar method as in [61, Theorem 7.1.14] (also see [188, Theorem 3.2]),
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we obtain

(DF(z))−1 =
1

f (z)

(
I−

zD f (z)
f (z)

1+ D f (z)z
f (z)

)
.

Therefore

(DF(z))−1F(z) = z
(

z f (z)
f (z)+D f (z)z

)
,

which directly gives
‖z‖

lz((DF(z))−1F(z))
= 1+

D f (z)z
f (z)

. (5.3.3)

For fix z ∈ X \{0} and z0 =
z
‖z‖ , define the function g : U→ C such that

g(ζ ) =


ζ

lz((DF(ζ z0))−1F(ζ z0))
, ζ 6= 0,

1, ζ = 0.

Then g ∈H (U) and g(0) = 1 = Φ(0). Further, since (DF(z))−1F(z) ∈MΦ, we find that

g(ζ ) =
ζ

lz((DF(ζ z0))−1F(ζ z0))
=

ζ

lz0((DF(ζ z0))−1F(ζ z0))

=
‖ζ z0‖

lζ z0
((DF(ζ z0))−1F(ζ z0))

∈Φ(U), ζ ∈ U.

Taking (5.3.3) into consideration, we obtain

g(ζ ) =
‖ζ z0‖

lζ z0
((D f (ζ z0))−1 f (ζ z0))

= 1+
D f (ζ z0)ζ z0

f (ζ z0)
. (5.3.4)

In view of the Taylor series expansions of g(ζ ) and f (ζ z0), the above equation gives(
1+g′(0)ζ +

g′′(0)
2

ζ
2 + · · ·

)(
1+D f (0)(z0)ζ +

D2 f (0)(z2
0)

2
ζ

2 + · · ·
)

=

(
1+D f (0)(z0)ζ +

D2 f (0)(z2
0)

2
ζ

2 + · · ·
)(

D f (0)(z0)ζ +D2 f (0)(z2
0)ζ

2 + · · ·
)
.

Comparison of homogeneous expansions yield that g′(0) = D f (0)(z0). That is

g′(0)‖z‖= D f (0)(z). (5.3.5)

Since F(z) = z f (z), therefore, we have

D2F(0)(z2)

2!
= D f (0)(z)z. (5.3.6)
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Moreover, from (5.3.6), we conclude that

lz(D2F(0)(z2))

2!
= D f (0)(z)‖z‖. (5.3.7)

Thus, equation (5.3.7) together with (5.3.5) gives∣∣∣∣ lz(D2F(0)(z2))

2!

∣∣∣∣= |D f (0)(z)‖z‖|= |g′(0)‖z‖2|.

Since g≺Φ, therefore |g′(0)| ≤Φ′(0). Consequently, we obtain∣∣∣∣ lz(D2F(0)(z2))

2!‖z‖2

∣∣∣∣≤Φ
′(0). (5.3.8)

Using the bounds given in (5.3.8) and (5.3.2) together with∣∣∣∣( lz(D2F(0)(z2))

2!‖z‖2

)2

−
(

lz(D3F(0)(z3))

3!||z||3
)2∣∣∣∣≤ ∣∣∣∣ lz(D3F(0)(z3))

3!||z||3
∣∣∣∣2 + ∣∣∣∣ lz(D2F(0)(z2))

2!‖z‖2

∣∣∣∣2,
the required bound follows.

To see the sharpness, consider the mapping F given by

F(z) = zexp
∫ lu(z)

0

(Φ(it)−1)
t

dt, z ∈ B, ‖u‖= 1. (5.3.9)

It is a simple exercise to see that (DF(z))−1F(z) ∈MΦ and a quick calculation reveals that

D2F(0)(z2)

2!
= iΦ′(0)lu(z)z and

D3F(0)(z3)

3!
=−1

2

(
Φ′′(0)

2
+(Φ′(0))2

)
(lu(z))2z.

In view of the above equations, we have

lz(D2F(0)(z2))

2!
= iΦ′(0)lu(z)‖z‖

and
lz(D3F(0)(z3))‖z‖

3!
=−1

2

(
Φ′′(0)

2
+(Φ′(0))2

)
(lu(z))2‖z‖2.

Setting z = ru (0 < r < 1), we get

lz(D2F(0)(z2))

2!‖z‖2 = iΦ′(0) and
lz(D3F(0)(z3))

3!‖z‖3 =−1
2

(
Φ′′(0)

2
+(Φ′(0))2

)
. (5.3.10)

Thus for the mapping F , we have∣∣∣∣( lz(D2F(0)(z2))

2!||z||2
)2

−
(

lz(D3F(0)(z3))

3!||z||3
)2∣∣∣∣= (Φ′(0))2

4

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2

+ |Φ′(0)|2,

which proves the sharpness of the bound.
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Theorem 5.3.2. Let f ∈H (B,C) with f (0) = 1 and suppose that F(z) = z f (z). If (DF(z))−1F(z) ∈
MΦ such that Φ satisfy

2Φ
′(0)−2(Φ′(0))2 ≤Φ

′′(0)≤ 6(Φ′(0))2−2Φ
′(0),

then

|2b2
2b3−b2

3−2b2
2 +1| ≤ 1+2(Φ′(0))2 +

(Φ′(0))2

4

(
3Φ
′(0)− Φ′′(0)

2Φ′(0)

)(
Φ′′(0)
2Φ′(0)

+Φ
′(0)
)
,

where

b3 =
lz(D3F(0)(z3))

3!||z||3 and b2 =
lz(D2F(0)(z2))

2!||z||2 .

The bound is sharp.

Proof. Since 2Φ′(0)< Φ′′(0)+2(Φ′(0))2, therefore from (5.3.1), we have∣∣∣∣ lz(D3F(0)(z3))

3!||z||3
∣∣∣∣≤ Φ′(0)

2

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)
. (5.3.11)

Again, since 2Φ′(0)+Φ′′(0)≤ 6(Φ′(0))2, the inequality (5.3.1) directly gives∣∣∣∣ lz(D3F(0)(z3))

3!||z||3 −2
(

lz(D2F(0)(z2))

2!||z||2
)2∣∣∣∣≤ Φ′(0)

2

(
3Φ
′(0)− 1

2
Φ′′(0)
Φ′(0)

)
. (5.3.12)

Also, we have
|2b2

2b3−b2
3−2b2

2 +1| ≤ 1+2|b2|2 + |b3||b3−2b2
2|. (5.3.13)

The required bound is derived by using the estimates given in (5.3.8) and (5.3.11), and the bound given
by (5.3.12) in the above inequality.

The equality case holds for the mapping F(z) defined by (5.3.9). It follows from (5.3.10) that for this
mapping, we have b2 = iΦ′(0), b3 =−(Φ′′(0)+2(Φ′(0))2)/4 and hence

1−b3(b3−2b2
2)−2b2

2 = 1+2(Φ′(0))2 +
(Φ′(0))2

4

(
3Φ
′(0)− Φ′′(0)

2Φ′(0)

)(
Φ′′(0)
2Φ′(0)

+Φ
′(0)
)
,

which shows the sharpness of the bound.

Theorem 5.3.3. Let f ∈H (Un,C) with f (0) = 1 and suppose that F(z) = z f (z). If (DF(z))−1F(z) ∈
MΦ such that Φ satisfies

|Φ′′(0)+2(Φ′(0))2| ≥ 2Φ
′(0),

then ∥∥∥∥ 1
3!

D3F(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2F(0)

(
z,

D2F(0)(z2)

2!

)∥∥∥∥
≤ (Φ′(0))2‖z‖5

4

(
1
2

Φ′′(0)
Φ′(0)

+Φ′(0)
)2

+(Φ′(0))2 ‖z‖3, z ∈ Un.

 (5.3.14)
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The bound is sharp.

Proof. For z ∈ Un \{0}, let z0 =
z
‖z‖ . Define gk : U→ C such that

gk(ζ ) =


ζ zk

pk(ζ z0)‖z0‖
, ζ 6= 0,

1, ζ = 0,
(5.3.15)

where p(z) = (DF(z))−1F(z) and k satisfies |zk| = ‖z‖ = max1≤ j≤n{|z j|}. Since (D(F(z)))−1F(z) ∈
MΦ, we have gk(ζ ) ∈Φ(U). Further, using (5.3.4), we have

gk(ζ ) = 1+
D f (ζ z0)ζ z0

f (ζ z0)

or equivalently,
gk(ζ ) f (ζ z0) = f (ζ z0)+D f (ζ z0)ζ z0.

A comparison of homogeneous expansions obtained by the Taylor series expansions of f and gk about
ζ gives

g′k(0) = D f (0)(z0),
g′′k (0)

2
= D2 f (0)(z2

0)− (D f (0)(z0))
2. (5.3.16)

Also, using F(z0) = z0 f (z0), we have

D3Fk(0)(z3
0)

3!
=

D2 f (0)(z2
0)

2!
zk

‖z‖ and
D2Fk(0)(z2

0)

2!
= D f (0)(z0)

zk

‖z‖ . (5.3.17)

In view of (5.3.16) and (5.3.17), we get

∣∣∣ 1
2!

D2Fk(0)
(

z0,
D2F(0)(z2

0)

2!

)‖z‖
zk

∣∣∣ =
∣∣∣ 1
2!

D2Fk(0)(z0,D f (0)(z0)z0)
‖z‖
zk

∣∣∣
=
∣∣∣D f (0)(z0)

1
2!

D2Fk(0)(z0,z0)
‖z‖
zk

∣∣∣
=
∣∣∣D f (0)(z0)

1
2!

D2Fk(0)(z2
0)
‖z‖
zk

∣∣∣
= |(D f (0)(z0))

2|.


(5.3.18)

Since D f (0)(z0) = g′k(0) and |g′k(0)| ≤Φ′(0), therefore∣∣∣∣ 1
2!

D2Fk(0)
(

z0,
D2F(0)(z2

0)

2!

)‖z‖
zk

∣∣∣∣= |D f (0)(z0)|2 ≤ (Φ′(0))2. (5.3.19)

If z0 ∈ ∂0Un, then ∣∣∣∣ 1
2!

D2Fk(0)
(

z0,
D2F(0)(z2

0)

2!

)∣∣∣∣≤ (Φ′(0))2.

Further, since
1
2!

D2Fk(0)
(

z0,
D2F(0)(z2

0)

2!

)
, k = 1,2, · · · ,n

are holomorphic functions on Un
, by virtue of the maximum modulus theorem of holomorphic func-
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tions on the unit polydisc, we obtain∣∣∣∣ 1
2!

D2Fk(0)
(

z,
D2F(0)(z2)

2!

)∣∣∣∣≤ (Φ′(0))2‖z‖3, k = 1,2, · · · . (5.3.20)

Using the same arguments as in (5.3.18), we get∣∣∣∣ 1
3!

D3Fk(0)
(

z2
0,

D3F(0)(z3
0)

3!

)‖z‖
zk

∣∣∣∣= ∣∣∣∣(D2 f (0)(z2
0)

2!

)∣∣∣∣2. (5.3.21)

According to the result established by Xu et al. [188, Theorem 3.3], we have∣∣∣∣D3Fk(0)(z3
0)

3!
‖z‖
zk
−λ

1
2

D2Fk(0)
(

z0,
D2F(0)(z2

0)

2!
‖z‖
zk

)∣∣∣∣
≤ |Φ

′(0)|
2

max
{

1,
∣∣∣∣12 Φ′′(0)

Φ′(0)
+(1−2λ )Φ′(0)

∣∣∣∣}, λ ∈ C, z ∈ Un.

 (5.3.22)

Since |Φ′′(0)+2(Φ′(0))2| ≥ 2Φ′(0), therefore from (5.3.17) and (5.3.22), it follows that∣∣∣∣D3Fk(0)(z3
0)

3!
‖z‖
zk

∣∣∣∣= ∣∣∣∣D2 f (0)(z2
0)

2!

∣∣∣∣≤ |Φ′(0)|2

∣∣∣∣12 Φ′′(0)
Φ′(0)

+Φ
′(0)
∣∣∣∣. (5.3.23)

Thus, from (5.3.21) and (5.3.23), we obtain∣∣∣∣ 1
3!

D3Fk(0)
(

z2
0,

D3F(0)(z3
0)

3!

)‖z‖
zk

∣∣∣∣≤ (Φ′(0))2

4

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2

.

For z0 ∈ ∂0Un, we get∣∣∣∣ 1
3!

D3Fk(0)
(

z2
0,

D3F(0)(z3
0)

3!

)∣∣∣∣≤ (Φ′(0))2

4

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2

.

Again, since
1
3!

D3Fk(0)
(

z2
0,

D3F(0)(z3
0)

3!

)
, k = 1,2, · · · ,n

are holomorphic functions on Un
, therefore the maximum modulus principle on the unit polydisc yields∣∣∣∣ 1

3!
D3Fk(0)

(
z2,

D3F(0)(z3)

3!

)∣∣∣∣≤ (Φ′(0))2‖z‖5

4

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2

. (5.3.24)

Now, using the bounds given in (5.3.20) and (5.3.24), we obtain∣∣∣∣ 1
3!

D3Fk(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2Fk(0)

(
z,

D2F(0)(z2)

2!

)∣∣∣∣
≤ (Φ′(0))2‖z‖3 +

(Φ′(0))2‖z‖5

4

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2
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for k = 1,2, · · ·n. Therefore,∥∥∥∥ 1
3!

D3Fk(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2Fk(0)

(
z,

D2F(0)(z2)

2!

)∥∥∥∥
≤ (Φ′(0))2‖z‖3 +

(Φ′(0))2‖z‖5

4

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2

.

which is the required bound.

To prove the sharpness, consider the mapping

F(z) = zexp
∫ z1

0

Φ(it)−1
t

dt, z ∈ Un. (5.3.25)

It is a simple exercise to check that D(F(z))−1F(z) ∈MΦ. From the above relation, we deduce that

D2F(0)(z2)

2!
= iΦ′(0)z1z,

D3F(0)(z3)

3!
=−1

2

(
Φ′′(0)

2
+(Φ′(0))2

)
(z1)

2z.

By taking z = (r,0, · · · ,0), the equality in (5.3.14) holds.

Remark 5.3.1. (i) When B = U and X = C, Theorem 5.3.1 and Theorem 5.3.3 are equivalent to
Theorem 5.2.1.

(ii) In case of B= U and X = C, Theorem 5.3.2 is equivalent to Theorem 5.2.2.

5.4 Special Cases

If we take Φ(z) = (1+ z)/(1− z), Φ(z) = (1+(1− 2α)z)/(1− z) and Φ(z) = ((1+ z)/(1− z))γ ,

Theorem 5.3.1 - 5.3.3 give the following bounds (the branch of the power function is taken such that

((1+ z)/(1− z))γ =1 at z = 0).

Corollary 5.4.1. Let f ∈H (B,C) with f (0) = 1 and F(z) = z f (z) ∈ S ∗(B). Then the following
holds: ∣∣∣( lz(D2F(0)(z2))

2!||z||2
)2
−
( lz(D3F(0)(z3))

3!||z||3
)2∣∣∣≤ 13, z ∈ B\{0}, lz ∈ Tz.

If B= Un and X = Cn, then

∥∥∥ 1
3!

D3F(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2F(0)

(
z,

D2F(0)(z2)

2!

)∥∥∥≤ 9‖z‖5 +4‖z‖3, z ∈ Un.

All these estimates are sharp.

Corollary 5.4.2. Let f ∈H (B,C) with f (0) = 1 and F(z) = z f (z) ∈ S ∗
α (B). Then the following

holds: ∣∣∣( lz(D2F(0)(z2))

2!||z||2
)2
−
( lz(D3F(0)(z3))

3!||z||3
)2∣∣∣≤ (1−α)2(4α

2−12α +13), z ∈ B\{0}.



94

If B= Un and X = Cn, then

∥∥∥ 1
3!

D3F(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2F(0)

(
z,

D2F(0)(z2)

2!

)∥∥∥≤ (1−α)2((3−2α)2‖z‖5 +4‖z‖3), z ∈ Un.

All these estimates are sharp.

Corollary 5.4.3. Let f ∈H (B,C) with f (0) = 1 and F(z) = z f (z)∈S S ∗
γ(B). Then for γ ∈ [1/3,1],

the following holds:

∣∣∣( lz(D2F(0)(z2))

2!||z||2
)2
−
( lz(D3F(0)(z3))

3!||z||3
)2∣∣∣≤ 9γ

4 +4γ
2, z ∈ B\{0}, lz ∈ Tz.

If B= Un and X = Cn, then

∥∥∥ 1
3!

D3F(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2F(0)

(
z,

D2F(0)(z2)

2!

)∥∥∥≤ 9‖z‖5
γ

4 +4‖z‖3
γ

2, z ∈ Un.

All these estimates are sharp.

Corollary 5.4.4. Let f ∈H (B,C) with f (0) = 1 and F(z) = z f (z) ∈ S ∗(B). Then the following
holds:

|2b2
2b3−b2

3−2b2
2 +1| ≤ 24,

where

b3 =
lz(D3F(0)(z3))

3!||z||3 , b2 =
lz(D2F(0)(z2))

2!||z||2 , lz ∈ Tz.

The estimate is sharp.

Corollary 5.4.5. Let f ∈H (B,C) with f (0) = 1 and F(z) = z f (z) ∈S ∗
α (B). Then for α ∈ [0,2/3],

the following holds:

|2b2
2b3−b2

3−2b2
2 +1| ≤ 12α

4−52α
3 +91α

2−74α +24,

where

b3 =
lz(D3F(0)(z3))

3!||z||3 and b2 =
lz(D2F(0)(z2))

2!||z||2 , lz ∈ Tz.

The estimate is sharp.

Corollary 5.4.6. Let f ∈H (B,C) with f (0) = 1 and F(z) = z f (z)∈S S ∗
γ(B). Then for γ ∈ [1/3,1],

the following holds:
|2b2

2b3−b2
3−2b2

2 +1| ≤ 15γ
4 +8γ

2 +1,

where

b3 =
lz(D3F(0)(z3))

3!||z||3 and b2 =
lz(D2F(0)(z2))

2!||z||2 , lz ∈ Tz.

The estimate is sharp.
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In the next chapter, we extend our investigation to the class of quasi-convex mappings in higher

dimensions. We will address similar problems of this chapter, adapting our methods and techniques to

accommodate the increased complexity of higher-dimensional spaces. This progression allows us to

build on the foundational concepts established in this chapter and explore the broader implications and

applications of our results in more complex scenarios.

Highlights of the chapter

We established the sharp bounds of |T2,2( f )| and |T3,1( f )| for a specific class of holomorphic func-

tions in the unit disk. Notably, these findings contain Theorems A, B, and C as special cases. Fur-

thermore, we have extended these results to higher dimensions by deriving sharp bounds for certain

Toeplitz determinants. These determinants formed over the corresponding terms of a homogeneous

expansion of a class of holomorphic mappings defined on the unit ball of complex Banach space or on

the unit polydisk in Cn.

The contents of this chapter are derived from the following research paper:

S. Giri and S. S. Kumar, Toeplitz determinants in one and higher dimensions, Acta Math. Sci. Ser. B

(Engl. Ed.) 44 (2024), no. 5, 1931–1944. https: // doi. org/ 10. 1007/ s10473-024-0517-0 .

https://doi.org/10.1007/s10473-024-0517-0




Chapter 6

Toeplitz Determinants for Quasi Convex

Mappings

In this chapter, we establish the sharp bounds of certain Toeplitz determinants formed over the co-

efficients of holomorphic mappings from a class defined on the unit ball of a complex Banach space

and on the unit polydisc in Cn. The derived bounds, provide certain new results for the subclasses of

normalized univalent functions and extend some known results in higher dimensions. Additionally, we

establish the sharp bounds of certain Toeplitz determinants for the class C such that z = 0 is a zero

of order k+ 1 of g(z)− z (k ∈ N). Furthermore, these results are extended to higher dimensions by

determining the bounds of Toeplitz determinants for a subclass of quasi convex mappings of type B.

It is important to explore new types of univalent mappings in several variables that are not just similar

to known subclasses of S but also due to their importance. Convex mappings of the unit ball in Cn

exhibit a very rigid structure under certain norms. However, even with the Euclidean norm, it can be

difficult to determine if a given mapping is convex. Building on the idea presented in (1.4.1), Roper

and Suffridge [161] introduced the class of quasi-convex mappings. This new class generalizes the

concept, allowing for a broader exploration of univalent mappings beyond the constraints of traditional

convexity.

Numerous articles have recently focused on finding sharp estimates for the Toeplitz and Hermitian-

Toeplitz determinants for various classes, but in one dimensional complex plane. Ahuja et al. [4]

established the sharp bounds of |detT2,2( f )| and |detT3,1( f )| for the class C and its subclasses. The

problem of estimating determinants of Hermitian Toeplitz matrices was initiated with the papers [39,

86, 87, 104]. For the class C and C (α), the following bounds are proved in [4].

Theorem A. [4] If f ∈ C , then |detT2,2( f )| ≤ 2. The bound is sharp.

97
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Theorem B. [4] If f ∈ C , then |detT3,1( f )| ≤ 4. The bound is sharp.

Theorem C. [4] If f ∈ C (α), then the following sharp inequality hold:

|detT2,2( f )| ≤ 2(1−α)2(2α2−6α +9)
9

.

Theorem D. [4] If f ∈ C (α) and α ∈ [0,1/2], then the following sharp inequality hold:

|detT3,1( f )| ≤ 8α4−34α3 +71α2−72α +36
9

.

In this chapter, we generalize the above results in higher dimensions for a class of holomorphic

mappings defined on the unit ball in a complex Banach space and on the unit polydisc in Cn. In 1999,

Roper and Suffridge [161] gave a sufficient condition for a normalized biholomorphic convex mapping

on the Euclidean unit ball in Cn. Later, Zhu [195] provided a brief proof of this theorem. Xu et al. [189]

obtained the sharp bounds of Fekete-Szegö inequality for the class of quasi-convex mappings of type

B and order α defined on the unit ball B and on the unit polydisc in Cn. Liu and Liu [110] derived

the sharp estimates of all homogenous expansions for a subclass of holomorphic mappings of quasi-

convex mappings of type B and order α in higher dimensions. Various results regarding coefficient

estimates for subclasses of holomorphic mappings in higher dimensions were obtained in [60, 62, 65,

67, 83, 191].

In case of one complex variable, many coefficient problems are studied for the class C such as The-

orems A-D. A natural question arises that how to retain these results in higher dimensions. Providing

an answer to this question is the aim of this chapter.

6.1 Certain Holomorphic Mappings

Let us recall the class MΦ given in the Definition 5.1.1. We begin with the following results.

Theorem 6.1.1. Let f ∈H (B,C) with f (0) = 1, f (z) 6= 0, z ∈ B and suppose that F(z) = z f (z). If
(DF(z))−1(D2F(z)(z2)+DF(z)(z)) ∈MΦ such that Φ satisfies

|Φ′′(0)+2(Φ′(0))2| ≥ 2Φ
′(0)> 0,

then ∣∣∣∣( lz(D2F(0)(z2))

2!||z||2
)2

−
(

lz(D3F(0)(z3))

3!||z||3
)2∣∣∣∣≤ (Φ′(0))2

4
+

(Φ′(0))2

36

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2

.

The bound is sharp.

Proof. Fix z ∈ X \{0} and let g : U→ C be defined by

g(ζ ) =


lz((DF(ζ z0))

−1(D2F(ζ z0)((ζ z0)
2)+DF(ζ z0)ζ z0))

ζ
, ζ 6= 0,

1, ζ = 0,



99

where z0 =
z
‖z‖ . Then g ∈H (U) and g(0) = Φ(0) = 1. Since (DF(z))−1(D2F(z)(z2)+DF(z)(z)) ∈

MΦ, therefore, we have

g(ζ ) =
lz((DF(ζ z0))

−1(D2F(ζ z0)((ζ z0)
2)+DF(ζ z0)ζ z0))

ζ

=
lz0((DF(ζ z0))

−1(D2F(ζ z0)((ζ z0)
2)+DF(ζ z0)ζ z0))

ζ

=
lζ z0

((DF(ζ z0))
−1(D2F(ζ z0)((ζ z0)

2)+DF(ζ z0)ζ z0))

‖ζ z0‖
∈Φ(U), ζ ∈ U.

Applying a similar method used in [61, Theorem 7.1.14], we get

(DF(z))−1 =
1

f (z)

(
I−

zD f (z)
f (z)

1+ D f (z)z
f (z)

)
. (6.1.1)

A simple computation using the fact F(z) = z f (z) yields

D2F(z)(z2)+DF(z)(z) = (D2 f (z)(z2)+3D f (z)(z)+ f (z))z. (6.1.2)

By using (6.1.1) and (6.1.2), it follows

(DF(z))−1(D2F(z)(z2)+DF(z)(z)) =
D2 f (z)(z2)+3D f (z)(z)+ f (z)

f (z)+D f (z)(z)
z. (6.1.3)

Consequently

lz((DF(z))−1(D2F(z)(z2)+DF(z)(z))) =
D2 f (z)(z2)+3D f (z)(z)+ f (z)

f (z)+D f (z)(z)
‖z‖. (6.1.4)

Using (6.1.4), we obtain

g(ζ ) =
lζ z0

((DF(ζ z0))
−1(D2F(ζ z0)((ζ z0)

2)+DF(ζ z0)ζ z0))

‖ζ z0‖

=
D2 f (ζ z0)((ζ z0)

2)+3D f (ζ z0)(ζ z0)+ f (ζ z0)

f (ζ z0)+D f (ζ z0)(ζ z0)
.

Equivalently, we can write

g(ζ )( f (ζ z0)+D f (ζ z0)(ζ z0)) = D2 f (ζ z0)((ζ z0)
2)+3D f (ζ z0)(ζ z0)+ f (ζ z0).

The series expansion in terms of ζ gives(
1+g′(0)ζ +

g′′(0)
2

ζ
2 + · · ·

)(
1+2D f (0)(z0)ζ +

3D f (0)(z2
0)

2
ζ

2 + · · ·
)

= 1+4D f (0)(z0)ζ +
9D f (0)(z2

0)

2
ζ

2 + · · · .

Comparison of the homogenous expansions of either sides of the above equality provide g′(0) =
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2D f (0)(z0). That is
g′(0)‖z‖= 2D f (0)(z). (6.1.5)

Also, we have
D2F(0)(z2)

2!
= D f (0)(z)z,

which gives
lz(D2F(0)(z2))

2!
= D f (0)(z)‖z‖.

Now, using |g′(0)| ≤Φ′(0) with (6.1.5), we obtain∣∣∣∣ lz(D2F(0)(z2))

2!‖z‖2

∣∣∣∣≤ Φ′(0)
2

. (6.1.6)

Moreover, for λ ∈ C, Xu et al. [189, Theorem 3.1] proved that∣∣∣∣ lz(D3F(0)(z3))

3!||z||3 −λ

(
lz(D2F(0)(z2))

2!||z||2
)2∣∣∣∣

≤ |Φ
′(0)|
6

max
{

1,
∣∣∣∣12 Φ′′(0)

Φ′(0)
+

(
1− 3

2
λ

)
Φ′(0)

∣∣∣∣} , z ∈ B\{0}.

 (6.1.7)

Since |Φ′′(0)+2(Φ′(0))2| ≥ 2Φ′(0), therefore the above inequality gives∣∣∣∣ lz(D3F(0)(z3))

3!||z||3
∣∣∣∣≤ Φ′(0)

6

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)
. (6.1.8)

Also, note that∣∣∣∣( lz(D3F(0)(z3))

3!||z||3
)2

−
(

lz(D2F(0)(z2))

2!‖z‖2

)2∣∣∣∣≤ ∣∣∣∣ lz(D3F(0)(z3))

3!||z||3
∣∣∣∣2 + ∣∣∣∣ lz(D2F(0)(z2))

2!‖z‖2

∣∣∣∣2.
The required bound follows from the above inequality together with the bounds given in (6.1.6) and
(6.1.8).

The result is sharp for the mapping F given by

DF(z) = I exp
∫ Tu(z)

0

Φ(it)−1
t

dt, z ∈ B, ‖u‖= 1. (6.1.9)

Clearly, (DF(z))−1(D2F(z)(z2)+DF(z)(z)) ∈MΦ and

D3F(0)(z3)

3!
=−1

6

(
Φ′′(0)

2
+(Φ′(0))2

)
(lu(z))2z and

D2F(0)(z2)

2!
=

iΦ′(0)
2

lu(z)z,

which immediately gives

lz(D2F(0)(z2))

2!
=

iΦ′(0)
2

lu(z)‖z‖
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and
lz(D3F(0)(z3))‖z‖

3!
=−1

6

(
Φ′′(0)

2
+(Φ′(0))2

)
(lu(z))2‖z‖2.

Taking z = ru (0 < r < 1), we get

lz(D3F(0)(z3))

3!‖z‖3 =−1
6

(
Φ′′(0)

2
+(Φ′(0))2

)
and

lz(D2F(0)(z2))

2!‖z‖2 =
iΦ′(0)

2
. (6.1.10)

According to the above equations, we have∣∣∣∣( lz(D3F(0)(z3))

3!‖z‖3

)2

−
(

lz(D2F(0)(z2))

2!‖z‖2

)2∣∣∣∣= (Φ′(0))2

4
+

1
36

(
Φ′′(0)

2
+(Φ′(0))2

)2

,

which establishes the sharpness of the bound and completes the proof.

Theorem 6.1.2. Let f ∈H (B,C) with f (0) = 1, f (z) 6= 0, z ∈ B and suppose that F(z) = z f (z). If
(DF(z))−1(D2F(z)(z2)+DF(z)(z)) ∈MΦ such that Φ satisfy

2Φ
′(0)−2(Φ′(0))2 ≤Φ

′′(0)≤ 4(Φ′(0))2−2Φ
′(0),

then

|2b2
2b3−b2

3−2b2
2 +1| ≤ 1+2(Φ′(0))2 +

(Φ′(0))2

4

(
Φ′′(0)
2Φ′(0)

−3Φ
′(0)
)(

Φ′′(0)
2Φ′(0)

+Φ
′(0)
)
,

where

b3 =
lz(D3F(0)(z3))

3!||z||3 and b2 =
lz(D2F(0)(z2))

2!||z||2 .

The bound is sharp.

Proof. Since 2Φ′(0)≤ 4(Φ′(0))2−Φ′′(0), inequality (6.1.7) gives∣∣∣∣ lz(D3F(0)(z3))

3!||z||3 −2
(

lz(D2F(0)(z2))

2!||z||2
)2∣∣∣∣≤ Φ′(0)

6

(
2Φ
′(0)− 1

2
Φ′′(0)
Φ′(0)

)
(6.1.11)

for z ∈ B\{0}. Also, since Φ satisfy Φ′′(0)+2(Φ′(0))2 ≥ 2Φ′(0), therefore by (6.1.7), we have∣∣∣∣ lz(D3F(0)(z3))

3!||z||3
∣∣∣∣≤ Φ′(0)

6

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)
, z ∈ B\{0}. (6.1.12)

Also, we have

|2b2
2b3−2b2

2−b2
3 +1| ≤ 1+2|b2|2 + |b3||b3−2b2

2|.

The required bound follows directly from the above inequality along with the bounds given in (6.1.6)
and (6.1.12), and the bound of |b3−2b2

2| given by (6.1.11).

Equality case holds for the mapping F(z) defined in (6.1.9) as for this mapping, we have b2 =
iΦ′(0)

2 ,
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b3 =−1
6

(
Φ′′(0)

2 +(Φ′(0))2
)

and hence

2b2
2b3−2b2

2−b2
3 +1 = 2(Φ′(0))2 +

(Φ′(0))2

12

(
Φ′′(0)
2Φ′(0)

−3Φ
′(0)
)(

Φ′′(0)
2Φ′(0)

+Φ
′(0)
)
+1,

which establish the sharpness of the result.

Theorem 6.1.3. Let f ∈H (Un,C) with f (0) = 1, f (z) 6= 0, z ∈ Un and suppose that F(z) = z f (z). If
(DF(z))−1(D2F(z)(z2)+DF(z)(z)) ∈MΦ such that Φ satisfies

|Φ′′(0)+2(Φ′(0))2| ≥ 2Φ
′(0),

then ∥∥∥∥ 1
3!

D3F(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2F(0)

(
z,

D2F(0)(z2)

2!

)∥∥∥∥
≤ (Φ′(0))2‖z‖5

36

(
1
2

Φ′′(0)
Φ′(0)

+Φ′(0)
)2

+
(Φ′(0))2 ‖z‖3

4
, z ∈ Un.

 (6.1.13)

The bound is sharp.

Proof. For z ∈ Un \{0} and z0 =
z
‖z‖ , define gk : U→ C such that

gk(ζ ) =


ζ zk

pk(ζ z0)‖z0‖
, ζ 6= 0,

1, ζ = 0,
(6.1.14)

where p(z) = (DF(z))−1(D2F(z)(z2)+DF(z)(z)) and k satisfies |zk|= ‖z‖= max1≤ j≤n{z j}. Since by
the hypothesis (DF(z))−1(D2F(z)(z2)+DF(z)(z)) ∈MΦ, therefore gk(ζ ) ∈ Φ(U). Also, by (6.1.3),
we have

gk(ζ ) =
D2 f (ζ z0)((ζ z0)

2)+3D f (ζ z0)(ζ z0)+ f (ζ z0)

f (ζ z0)+D f (ζ z0)(ζ z0)
,

or, equivalently

gk(ζ )( f (ζ z0)+D f (ζ z0)(ζ z0)) = D2 f (ζ z0)((ζ z0)
2)+3D f (ζ z0)(ζ z0)+ f (ζ z0).

Comparison of same homogeneous expansions in the Taylor series expansions in terms of ζ yield

g′k(0) = 2D f (0)(z0) and
g′′k (0)

2
= 3D2 f (0)(z2

0)−4(D f (0)(z0))
2. (6.1.15)

Furthermore, from F(z0) = z0 f (z0), we have

D2Fk(0)(z2
0)

2!
= D f (0)(z0)

zk

‖z‖ and
D3Fk(0)(z3

0)

3!
=

D2 f (0)(z2
0)

2!
zk

‖z‖ . (6.1.16)
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Using the same argument as in (5.3.18), we get

∣∣∣ 1
2!

D2Fk(0)
(

z0,
D2F(0)(z2

0)

2!

)‖z‖
zk

∣∣∣= |(D f (0)(z0))
2| (6.1.17)

and ∣∣∣∣ 1
3!

D3Fk(0)
(

z2
0,

D3F(0)(z3
0)

3!

)‖z‖
zk

∣∣∣∣= ∣∣∣∣(D2 f (0)(z2
0)

2!

)∣∣∣∣2. (6.1.18)

Combining (6.1.15) and (6.1.17) with the fact |g′k(0)| ≤Φ′(0) gives

∣∣∣ 1
2!

D2Fk(0)
(

z0,
D2F(0)(z2

0)

2!

)‖z‖
zk

∣∣∣≤ (Φ′(0))2

4
.

If z0 ∈ ∂0Un, then we get

∣∣∣ 1
2!

D2Fk(0)
(

z0,
D2F(0)(z2

0)

2!

)∣∣∣≤ (Φ′(0))2

4
.

Since
1
2!

D2Fk(0)
(

z0,
D2F(0)(z2

0)

2!

)
, k = 1,2, · · · ,n

are holomorphic functions on Un
, therefore by the maximum modulus theorem of holomorphic func-

tions on the unit polydisc, we have∣∣∣∣ 1
2!

D2Fk(0)
(

z,
D2F(0)(z2)

2!

)∣∣∣∣≤ (Φ′(0))2‖z‖3

4
. (6.1.19)

For λ ∈ C, Xu et al. [189, Theorem 3.2] established that∣∣∣∣D3Fk(0)(z3
0)

3!
‖z‖
zk

−λ
1
2

D2Fk(0)
(

z0,
D2F(0)(z2

0)

2!
‖z‖
zk

)∣∣∣∣
≤ |Φ

′(0)|
6

max
{

1,
∣∣∣∣12 Φ′′(0)

Φ′(0)
+

(
1− 3

2
λ

)
Φ′(0)

∣∣∣∣}.
 (6.1.20)

Since |Φ′′(0)+2(Φ′(0))2| ≥ 2Φ′(0), therefore, from (6.1.20) and (6.1.16), we get∣∣∣∣D3Fk(0)(z3
0)

3!
‖z‖
zk

∣∣∣∣= ∣∣∣∣D2 f (0)(z2
0)

2!

∣∣∣∣≤ Φ′(0)
6

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)
. (6.1.21)

Thus from (6.1.18) and (6.1.21), we deduce that∣∣∣∣ 1
3!

D3Fk(0)
(

z2
0,

D3F(0)(z3
0)

3!

)‖z‖
zk

∣∣∣∣≤ (Φ′(0))2

36

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2

.

Further, if z0 ∈ ∂Un, then∣∣∣∣ 1
3!

D3Fk(0)
(

z2
0,

D3F(0)(z3
0)

3!

)∣∣∣∣≤ (Φ′(0))2

36

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2

.
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Again, since
1
3!

D3Fk(0)
(

z2
0,

D3F(0)(z3
0)

3!

)
, k = 1,2, · · · ,n

are holomorphic functions on Un
, therefore by the maximum modulus theorem of holomorphic func-

tions on the unit polydisc, we have∣∣∣∣ 1
3!

D3Fk(0)
(

z2
0,

D3F(0)(z3
0)

3!

)∣∣∣∣≤ (Φ′(0))2‖z‖5

36

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2

. (6.1.22)

Now, using the bounds from (6.1.19) and (6.1.22), we have∣∣∣∣ 1
3!

D3Fk(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2Fk(0)

(
z,

D2F(0)(z2)

2!

)∣∣∣∣
≤ (Φ′(0))2‖z‖5

36

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2

+
(Φ′(0))2 ‖z‖3

4

for z ∈ Un and k = 1,2, · · ·n. Therefore,∥∥∥∥ 1
3!

D3F(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2F(0)

(
z,

D2F(0)(z2)

2!

)∥∥∥∥
≤ (Φ′(0))2‖z‖5

36

(
1
2

Φ′′(0)
Φ′(0)

+Φ
′(0)
)2

+
(Φ′(0))2 ‖z‖3

4
,

which is the required bound.

To prove the sharpness of the bound, consider the mapping F given by

DF(z) = I exp
∫ z1

0

Φ(it)−1
t

dt. (6.1.23)

It can be showed that (DF(z))−1(D2F(z)(z2)+DF(z)(z)) ∈MΦ and for z = (r,0, · · · ,0)′ in (6.1.23),
the equality case holds in (6.1.13).

6.2 Special Cases

Note that if f ∈H (B) and (D f (z))−1(D2 f (z)(z2)+D f (z)(z))∈MΦ, then various choices of Φ give

different subclasses of holomorphic mappings. For instance, when Φ(z) = (1+(1−2α)z)/(1−z) and

Φ(z) = (1+ z)/(1− z), we easily obtain f ∈ Qα(B) and f ∈ Q(B), respectively. For these classes,

Theorem 6.1.1 to Theorem 6.1.3 yield the following results.

Corollary 6.2.1. Let f ∈H (B,C) and F(z) = z f (z) ∈ Qα(B). Then the following inequality holds:∣∣∣∣( lz(D2F(0)(z2))

2!||z||2
)2

−
(

lz(D3F(0)(z3))

3!||z||3
)2∣∣∣∣≤ 2(1−α)2(2α2−6α +9)

9
, lz ∈ Tz, z ∈ B\{0}.
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If B= Un and X = Cn, then∥∥∥∥ 1
3!

D3F(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2F(0)

(
z,

D2F(0)(z2)

2!

)∥∥∥∥
≤ (1−α)2‖z‖3 +

(2α2−5α +3)2‖z‖5

9
, z ∈ Un.

 (6.2.1)

All these bounds are sharp.

Remark 6.2.1. In case of n = 1, eq. (6.2.1) reduces to the following:∣∣∣∣(F(3)(0)
3!

)2

−
(

F ′′(0)
2!

)2∣∣∣∣≤ 2(1−α)2(2α2−6α +9)
9

,

which is equivalent to Theorem C.

Corollary 6.2.2. Let f ∈H (B,C) and F(z) = z f (z) ∈ Qα(B). Then for α ∈ [0,1/2], the following
sharp bound holds:

|2b2
2b3−b2

3−2b2
2 +1| ≤ 8α4−34α3 +71α2−72α +36

9
, z ∈ B\{0},

where

b3 =
lz(D3F(0)(z3))

3!||z||3 and b2 =
lz(D2F(0)(z2))

2!||z||2 .

In particular, for α = 0, we obtain the following results for the class Q(B) in higher dimensions.

Corollary 6.2.3. Let f ∈H (B,C) and F(z) = z f (z) ∈ Q(B). Then the following holds:∣∣∣∣( lz(D2F(0)(z2))

2!||z||2
)2

−
(

lz(D3F(0)(z3))

3!||z||3
)2∣∣∣∣≤ 2, lz ∈ Tz, z ∈ B\{0}.

If B= Un and X = Cn, then∥∥∥∥ 1
3!

D3F(0)
(

z2,
D3F(0)(z3)

3!

)
− 1

2!
D2F(0)

(
z,

D2F(0)(z2)

2!

)∥∥∥∥≤ ‖z‖3 +‖z‖5, z ∈ Un. (6.2.2)

All these bounds are sharp.

Remark 6.2.2. For n = 1, (6.2.2) is equivalent to Theorem A.

Corollary 6.2.4. Let f ∈H (B,C) and F(z) = z f (z) ∈ Q(B). Then the following sharp bound holds:

|2a2
2a3−a2

3−2a2
2 +1| ≤ 4, z ∈ B\{0},

where

a3 =
lz(D3F(0)(z3))

3!||z||3 and a2 =
lz(D2F(0)(z2))

2!||z||2 .
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6.3 Generalized Toeplitz Determinants

In this section, we generalize Theorem A for f ∈ C such that f (z)− z has a zero of order k+ 1 at

z = 0 (k ∈ N). Further, we obtain the bound of second order Toeplitz determinant for a subclass of

quasi-convex mappings defined on the unit ball in a complex Banach space, which extend Theorem A

to higher dimensions.

Definition 6.3.1. [109] Suppose that Ω is a domain in X which contains 0 and f : Ω→ X is a holo-
morphic mapping. We say that z = 0 is the zero of order k of f (z) if f (0) = 0, · · · ,Dk−1 f (0) = 0, but
Dk f (0) 6= 0, where k ∈ N.

The following Lemma is due to Liu and Liu [111].

Lemma 6.3.1. [111] Suppose that f ∈S . Then F defined by F(z) = f (lu(z))
lu(z)

z, where z ∈ B, u ∈ ∂B,
belongs to QB(B) if and only if f ∈ C .

We begin with deriving the bound of second order Toeplitz determinant for f ∈ C and then extend

this bound to higher dimensions.

Theorem 6.3.2. If f (z) = z+∑
∞
n=k+1 bnzn ∈ C , then the following sharp bounds hold:

|b2
2k+1−b2

k+1| ≤
(k+2)2

k4(2k+1)2 +
4

k2(k+1)2 , k ∈ N. (6.3.1)

Proof. Since f ∈ C , therefore

1+
z f ′′(z)
f ′(z)

≺ 1+ z
1− z

, z ∈ U.

By the definition of subordination, there exist a Schwarz function ω satisfying

1+
z f ′′(z)
f ′(z)

=
1+ω(z)
1−ω(z)

.

Corresponding to the function ω , define p : U→ C such that

p(z) =
1+ω(z)
1−ω(z)

= 1+ p1z+ p2z2 + · · · . (6.3.2)

The Taylor series expansion of (1+ z f ′′(z)/ f ′(z)) is given by

1+
z f ′′(z)
f ′(z)

= 1+ k(k+1)bk+1zk + · · ·+(2k(2k+1)b2k+1− k(k+1)2b2
k+1)z

2k + · · · . (6.3.3)

By (6.3.2) and (6.3.3), the coefficients bk+1 can be expressed as follows

bk+1 =
pk

k(k+1)
.

Using |pk| ≤ 2 [61, Theorem 2.1.5], we obtain

|bk+1| ≤
2

k(k+1)
. (6.3.4)
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Further, Xu and Lai [186] established that

|b2k+1−λb2
k+1| ≤

1
k(2k+1)

max
{

1,
|(k+2)(k+1)2−4(2k+1)λ

k(k+1)2

}
, k ∈ N, λ ∈ C,

which immediately provides the following bound

|b2k+1| ≤
(k+2)

k2(2k+1)
, (k ∈ N). (6.3.5)

Applying the bounds from (6.3.4) and (6.3.5) in the following inequality

|b2
2k+1−b2

k+1| ≤ |b2k+1|2 + |bk+1|2,

the required estimate follows. For sharpness of the bound consider the function

f (z) =
∫ z

0

1
(1− itk)2/k dt = z+

2i
k(k+1)

zk+1− k+2
k2(2k+1)

z2k+1 + · · · .

Clearly, for this function, we have

|b2
2k+1−b2

k+1|=
(k+2)2

k4(2k+1)2 +
4

k2(k+1)2

proving the sharpness.

Remark 6.3.1. If we take k = 1, then Theorem 6.3.2 reduces to Theorem A.

Theorem 6.3.3. Let f : B→ C and f (z) 6= 0 for z ∈ B. If F(z) = z f (z) ∈ Q(B) and z = 0 is a zero of
order k+1 (k ∈ N) of F(z)− z, then∣∣∣∣( lz(D2k+1F(0)(z2k+1))

(2k+1)!‖z‖2k+1

)2

−
(

lz(Dk+1F(0)(zk+1))

(k+1)!‖z‖k+1

)2∣∣∣∣≤ (k+2)2

k4(2k+1)2 +
4

k2(k+1)2

for z ∈ B\{0}. The bound is sharp.

Proof. For fix z ∈ X \{0}, define h : U→ C such that

h(ζ ) =


lz((DF(ζ z0))

−1(D2F(ζ z0)(ζ z0)
2 +DF(ζ z0)(ζ z0)))

ζ
, ζ 6= 0,

1, ζ = 0,

where z0 =
z
‖z‖ . Then h ∈H (U), h(0) = 1 and

h(ζ ) =
lz((DF(ζ z0))

−1(D2F(ζ z0)(ζ z0)
2 +DF(ζ z0)(ζ z0)))

ζ

=
lz0((DF(ζ z0))

−1(D2F(ζ z0)(ζ z0)
2 +DF(ζ z0)(ζ z0)))

ζ

=
lζ z0

((DF(ζ z0))
−1(D2F(ζ z0)(ζ z0)

2 +DF(ζ z0)(ζ z0)))

‖ζ z0‖
.
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Since F ∈ QB(B), therefore Reh(ζ ) > 0 for ζ ∈ U. Applying a similar method used in [61, Theorem
7.1.14], we get

(DF(z))−1 =
1

f (z)

(
I−

zD f (z)
f (z)

1+ D f (z)z
f (z)

)
. (6.3.6)

Also, note that F(z)− z has zero of order k+1 at z = 0, therefore, we have

f (z) = 1+
Dk f (0)(zk)

k!
+ · · ·+ D2k f (0)(z2k)

(2k)!
+ · · · , (6.3.7)

which gives

D f (z)z = k
Dk f (0)(zk)

k!
+ · · ·+2k

D2k f (0)(z2k)

(2k)!
+ · · · . (6.3.8)

By (6.3.7) and (6.3.8), we get

f (z)+D f (z)z = 1+(k+1)
Dk f (0)(zk)

k!
+ · · ·+(2k+1)

D2k f (0)(z2k)

(2k)!
+ · · · , (6.3.9)

D2 f (z)(z2)+D f (z)(z) = k2 Dk f (0)(zk)

k!
+ · · ·+(2k)2 D2k f (0)(z2k)

(2k)!
+ · · · ,

and

D2 f (z)(z2)+3D f (z)z+ f (z) = 1+(k+1)2 Dk f (0)(zk)

k!
+ · · ·+(2k+1)2 D2k f (0)(z2k)

(2k)!
+ · · · . (6.3.10)

Using the facts from (6.3.6), (6.3.9) and (6.3.10), we deduce that

(DF(z))−1(D2F(z)(z2)+DF(z)(z)) =
D2 f (z)(z2)+3D f (z)(z)+ f (z)

f (z)+D f (z)(z)
z, (6.3.11)

which gives

lz((DF(z))−1(D2F(z)(z2)+DF(z)(z))) =
D2 f (z)(z2)+3D f (z)(z)+ f (z)

f (z)+D f (z)(z)
‖z‖. (6.3.12)

Consequently, we obtain

h(ζ ) =
lζ z0

((DF(ζ z0))
−1(D2F(ζ z0)((ζ z0)

2)+DF(ζ z0)ζ z0))

‖ζ z0‖

=
D2 f (ζ z0)((ζ z0)

2)+3D f (ζ z0)(ζ z0)+ f (ζ z0)

f (ζ z0)+D f (ζ z0)(ζ z0)
,

which can be rewritten as

D2 f (ζ z0)((ζ z0)
2)+3D f (ζ z0)(ζ z0)+ f (ζ z0) = h(ζ )( f (ζ z0)+D f (ζ z0)(ζ z0)).



109

The Taylor series expansion in terms of ζ gives

1+(k+1)2 Dk f (0)(zk
0)

k!
ζ

k + · · ·+(2k+1)2 D2k f (0)(z2k
0 )

(2k)!
ζ

2k + · · ·=
(

1+h′(0)ζ

+
h′′(0)

2
ζ

2 + · · ·
)(

1+(k+1)
Dk f (0)(zk

0)

k!
ζ

k + · · ·+(2k+1)
D2k f (0)(z2k

0 )

(2k)!
ζ

2k + · · ·
)
.

A comparison of homogenous expansions in the above equation leads to

h′(0) = h′′(0) = · · ·= h(k−1)(0) = 0

and
h(k)(0)

k!
= k(k+1)

Dk f (0)(zk
0)

k!
,

which is equivalent to
Dk f (0)(zk)

k!
=

1
k(k+1)

h(k)(0)‖z‖k

k!
. (6.3.13)

Since F(z) = z f (z), therefore, we have

Dk+1F(0)(zk+1)

(k+1)!
=

Dk f (0)(zk)

k!
z. (6.3.14)

From (6.3.14), we obtain
lz(Dk+1F(0)(zk+1))

(k+1)!
=

Dk f (0)(zk)

k!
‖z‖. (6.3.15)

The above equation together with (6.3.13) gives∣∣∣∣ lz(Dk+1F(0)(zk+1))

(k+1)!‖z‖k+1

∣∣∣∣= ∣∣∣∣ h(k)(0)
k!k(k+1)

∣∣∣∣.
Also, |h(k)(0)| ≤ 2(k!) [59] holds. Using this fact, we obtain∣∣∣∣ lz(Dk+1F(0)(zk+1))

(k+1)!‖z‖k+1

∣∣∣∣≤ 2
k(k+1)

. (6.3.16)

On the other hand, for λ ∈ C, Xu and Lai [186, Theorem 3.3] proved that∣∣∣∣ lz(D2k+1F(0)(z2k+1))

(2k+1)!||z||2k+1 −λ

(
lz(Dk+1F(0)(zk+1))

(k+1)!||z||k+1

)2∣∣∣∣
≤ 1

k(2k+1)
max

{
1,
|(k+2)(k+1)2−4λ (2k+1)|

k(k+1)2

}
 (6.3.17)

for z ∈ B\{0}. The equation (6.3.17) directly yields∣∣∣∣ lz(D2k+1F(0)(z2k+1))

(2k+1)!||z||2k+1

∣∣∣∣≤ k+2
k2(2k+1)

. (6.3.18)
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Using the estimates in (6.3.16) and (6.3.18), we obtain∣∣∣∣( lz(D2k+1F(0)(z2k+1))

(2k+1)!||z||2k+1

)2

−
(

lz(Dk+1F(0)(zk+1))

(k+1)!||z||k+1

)2∣∣∣∣
≤
∣∣∣∣ lz(D2k+1F(0)(z2k+1))

(2k+1)!||z||2k+1

∣∣∣∣2 + ∣∣∣∣ lz(Dk+1F(0)(zk+1))

(k+1)!||z||k+1

∣∣∣∣2
≤
(

k+2
k2(2k+1)

)2

+

(
2

k(k+1)

)2

.

Sharpness of the bound follows from the mapping

F(z) =

∫ lu(z)
0

1
(1−itk)2/k dt

lu(z)
z, z ∈ B, ‖u‖= 1. (6.3.19)

From Lemma 6.3.1, the mapping F defined in (6.3.19), is in the Q(B) and F(z)− z has a zero of order
k+1 at z = 0. A simple computation reveals that

D2k+1F(0)(z2k+1)

(2k+1)!
=
−(k+2)
(2k+1)k2 (lu(z))

2kz

and
Dk+1F(0)(zk+1)

(k+1)!
=

2i
k(k+1)

(lu(z))kz.

In view of the above equations, we have

lz(D2k+1F(0)(z2k+1))

(2k+1)!
=− (k+2)

(2k+1)k2 (lu(z))
2k‖z‖

and
lz(Dk+1F(0)(zk+1))

(k+1)!
=

2i
k(k+1)

(lu(z))k‖z‖.

Setting z = ru (0 < r < 1), we obtain

lz(D2k+1F(0)(z2k+1))

(2k+1)!‖z‖2k+1 =− (k+2)
(2k+1)k2

and
lz(Dk+1F(0)(zk+1))

(k+1)!‖z‖k+1 =
2i

k(k+1)
.

Thus, for the mapping F , we have∣∣∣∣( lz(D2k+1F(0)(z2k+1))

(2k+1)!‖z‖2k+1

)2

−
(

lz(Dk+1F(0)(zk+1))

(k+1)!‖z‖k+1

)2∣∣∣∣= (k+2)2

k4(2k+1)2 +
4

k2(k+1)2 ,

which shows that the bound is sharp.

Remark 6.3.2. Theorem 6.3.3 is equivalent to Theorem A when X = C, B= U and k = 1.

Remark 6.3.3. For k = 1, Theorem 6.3.3 reduces to [51, Corollary 2.8].
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Highlights of the chapter

In this concluding chapter, we have established the sharp bounds of Toeplitz determinants for the

class of quasi-convex mappings of Type B and order α defined on the unit ball in a complex Banach

space or on the unit polydisk in Cn. Furthermore, we proceeded to establish the sharp bounds of

second-order Toeplitz determinants formed over the coefficients of functions f ∈ C such that f (z)− z

has a zero of order k+1 at z = 0. Later, these bounds are extended in the case of higher dimensions

for the class of quasi-convex mappings defined on the unit ball of a complex Banach space.

The contents of this chapter are published in the following journals:

S. Giri, S. S. Kumar, Toeplitz Determinants for a Class of Holomorphic Mappings in Higher Dimen-

sions, Complex Analysis and Operator Theory 17, no. 6 (2023): 86. https: // doi. org/ 10. 1007/

s11785-023-01394-0

S. Giri and S. S. Kumar, Toeplitz determinants for a subclass of quasi convex mappings in higher dimen-

sions, The Journal of Analysis (2023): 1-14. https: // doi. org/ 10. 1007/ s41478-023-00625-z

https://doi.org/10.1007/s11785-023-01394-0
https://doi.org/10.1007/s11785-023-01394-0
https://doi.org/10.1007/s41478-023-00625-z




Conclusion, Future Scope & Social Impact

In geometric function theory, the primary focus often revolves around coefficient and radius problems.

These problems are crucial because they provide insights into the behavior and properties of analytic

and univalent functions. In this work, we explore these problems for various subclasses of S . Specif-

ically, Chapters 2, 3, and 4 deal with coefficient and radius problems for the classes S ∗(ϕ), C (ϕ),

S ∗
s (ϕ), Cs(ϕ), K (g), and Aβ . In the final two chapters, we extend our investigation to geomet-

ric function theory in higher dimensions, examining coefficient problems for starlike and quasi-convex

mappings on the unit ball in a complex Banach space and on the unit polydisk in Cn.

We have derived the sharp bound for the fifth coefficient for functions in the classes S ∗(ϕ), C (ϕ),

S ∗
s (ϕ), and Cs(ϕ). However, determining the sharp bound of |an| for n ≥ 6 remains an open prob-

lem. Additionally, we have obtained the sharp bounds for T2(1)( f ) and T3(1)( f ) for these classes.

The sharp bound of T4(1)( f ) is known only for specific cases, such as when ϕ(z) = (1+ z)/(1− z).

Extending the bound of T4(1)( f ) to more generalized classes is a future scope for further study.

We have also examined certain coefficient and radius problems for the class Aβ . For this class, we

determined the radius of starlikeness of order α . One can try for radii of other subclasses of starlike

functions for the class Aβ . Another open problem is finding the sharp estimate of the third-order Hankel

determinant for Aβ . In the final chapters, we delve into Toeplitz determinants in higher dimensions,

motivated by the Fekete-Szegö problem. Other coefficient functionals, such as the Zalcman functional

and Hankel determinants, can also be studied within this framework.

In the theory of univalent functions, studying coefficient and radius problems provides not only pro-

found insights into the geometric properties of analytic functions but also valuable applications across

diverse fields. Recently, the estimation of Taylor series coefficients for analytic functions has gained

significant attention in digital image processing (DIP). A key technique in DIP for enhancing both the

visual appeal and diagnostic utility of images is power law transformation. In recent years, there has

been a notable increase in the use of power law transformation and Taylor series coefficient estimates,

particularly for functions belonging to the Sakaguchi classes [128, 148]. Integrating power law trans-

formations with coefficient estimates has proven effective for addressing complex image processing

tasks such as contrast enhancement, spatial filtering, and image segmentation. These techniques are

applicable to a wide range of image sources, including digital cameras, scanners, and medical imaging

equipment.
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Abstract
Sharp upper and lower bounds for the second and third order Hermitian–Toeplitz
determinants are obtained for somegeneral subclasses of starlike and convex functions.
Applications of these results are also discussed for several widely known classes.

Keywords Univalent functions · Starlike functions · Close-to-convex functions ·
Hermitian–Toeplitz determinant
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1 Introduction

Let A be the class of functions of the form f (z) = z + a2z2 + a3z3 + · · · , (a2 �= 0),
which are analytic in the open unit disk D = {z ∈ C : |z| < 1} and S be the sub-
class of A, consisting of univalent functions. The subclasses of S of starlike and
convex functions are denoted by S∗ and C respectively. A function f ∈ S∗ if and
only if Re

(
z f ′(z)/ f (z)

)
> 0, z ∈ D. Also, a function f ∈ C if and only if

Re
(
1 + z f ′′(z)/ f ′(z)

)
> 0, z ∈ D. A function f ∈ A is said to be close-to-convex

[11] if there is a function g ∈ S∗ such that

Re

(
z f ′(z)
g(z)

)
> 0, z ∈ D. (1)
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Abstract
In this paper, we establish the sharp bounds of certain Toeplitz determinants formed
over the coefficients of holomorphic mappings from a class defined on the unit ball
of a complex Banach space and on the unit polydisc in Cn . Derived bounds provide
certain new results for the subclasses of normalized univalent functions and extend
some known results in higher dimensions.

Keywords Quasi-convex mappings · Toeplitz determinants · Coefficient inequalities
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1 Introduction

LetS be the class of analytic univalent functions in the unit diskU = {z ∈ C : |z| < 1}
having the form g(z) = z + ∑∞

n=2 bnz
n and K(α) ⊂ S denote the class of convex

functions of order α, 0 ≤ α < 1. A function g ∈ K(α) if and only if

Re

(

1 + zg′′(z)
g′(z)

)

> α, z ∈ U.
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Abstract
In this paper, we establish the sharp bounds of certain Toeplitz determinants formed
over the coefficients of a normalized convex function g(z) defined on the unit disk U

such that z ¼ 0 is a zero of order k þ 1 of gðzÞ � z. Furthermore, these results are
extended to higher dimensions by determining the bounds of Toeplitz determinants
for a subclass of quasi convex mappings of type B.

Keywords Holomorphic mapping · Toeplitz determinant · Coefficient
inequality

Mathematics Subject Classification 32H02 · 30C45

1 Introduction

Let S be the class of analytic univalent functions g defined on the unit disk U :¼
fz 2 C : jzj\1g with Taylor series

gðzÞ ¼ zþ
X1
n¼2

bnz
n: ð1Þ

The classes of starlike and convex functions, denoted by S� and K respectively, are
the well known subclasses of S.
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SHARP BOUNDS OF FIFTH COEFFICIENT AND

HERMITIAN-TOEPLITZ DETERMINANTS FOR

SAKAGUCHI CLASSES

Surya Giri and S. Sivaprasad Kumar

Abstract. For the classes of analytic functions f defined on the unit
disk satisfying

2zf ′(z)

f(z) − f(−z)
≺ φ(z) and

(2zf ′(z))′

(f(z) − f(−z))′
≺ φ(z),

denoted by S∗
s (φ) and Cs(φ), respectively, the sharp bound of the nth

Taylor coefficients are known for n = 2, 3 and 4. In this paper, we obtain

the sharp bound of the fifth coefficient. Additionally, the sharp lower and

upper estimates of the third order Hermitian Toeplitz determinant for the
functions belonging to these classes are determined. The applications of

our results lead to the establishment of certain new and previously known

results.

1. Introduction

Let H be the class of holomorphic functions in the unit disk D and A ⊂ H
represent the class of functions f satisfying f(0) = f ′(0) − 1 = 0. Let S ⊂ A
be the class of univalent functions. A function f ∈ H is said to be starlike with
respect to symmetric point if for r less than and sufficiently close to 1 and every
z0 on |z| = r, the angular velocity of f(z) about the point f(−z0) is positive
at z = z0 as z traverses the circle |z| = r in the positive direction. Sakaguchi
[20] showed that a function f ∈ A is starlike with respect to symmetrical point
if and only if

Re
zf ′(z)

f(z)− f(−z)
> 0.

The class of all such functions is denoted by S∗
s . It is noted that the class of

functions univalent and starlike with respect to symmetric points includes the
classes of convex functions and odd functions starlike with respect to the origin
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