
DEVELOPMENT AND VALIDATION OF FEATURE
SELECTION TECHNIQUES FOR SOFTWARE DEFECT

PREDICTION

A Thesis Submitted
in Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY
by

KISHWAR KHAN
Roll No.2K19/PHDCO/02

Under the Supervision of
PROF. RUCHIKA MALHOTRA
Professor and Head of Department,

Department of Software Engineering

Department of Software Engineering

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi 110042

December, 2024

Copyright ©December, 2024
Delhi Technological University, Shahbad Daulatpur,
Main Bawana Road, Delhi 110042
All rights reserved

CANDIDATE’S DECLARATION

I, Kishwar Khan (2K19/PHDCO/02), hereby declare that the work which is being

presented in the thesis entitled “Development and Validation of Feature Selec-

tion Technique for Software Defect Prediction” in the partial fulfillment of the

requirements for the award of the Degree of Doctor of Philosophy, submitted in the

Department of Software Engineering, Delhi Technological University, is an authen-

tic record of my own work carried out during the period from 2019 to 2024 under the

supervision of Prof. Ruchika Malhotra.

The matter presented in the thesis has not been submitted by me for the award of any

other degree of this or any other Institute.

Date :

Place : New Delhi

Kishwar Khan

kishwarkhan037@gmail.com

Roll No.: 2K19/PHDCO/02

Department Of Software Engineering,

Delhi Technological University (DTU),

New Delhi -110042

CERTIFICATE BY THE SUPERVISOR

Certified that Kishwar Khan (2K19/PHDCO/02) has carried out her research work

presented in this thesis entitled “Development and Validation of Feature Selection

Technique for Software Defect Prediction” for the award of Doctor of Philosophy

from the Department of Software Engineering, Delhi Technological University, Delhi,

under my supervision. The thesis embodies results of original work, and studies are

carried out by the student himself, and the contents of the thesis do not form the basis

of the award of any other degree to the candidate or to anybody else from this or any

other institution.

Supervisor

Prof. RUCHIKA MALHOTRA

Professor and Head of Department

Department of Software Engineering

Delhi Technological University, Delhi 110042

Date:

”This thesis is lovingly dedicated to my

grandparents Mrs. Alimun Nisa and Mr.

Shamsul Haq Khan, whose unwavering support,

wisdom, and encouragement have been a

constant source of inspiration throughout my

journey.”

Acknowledgment

First and foremost, I would like to express my deepest gratitude to the Almighty for

His endless blessings and guidance throughout my journey. Without His grace, this

work would not have been possible. I would like to express my deepest gratitude to

my supervisor, Prof. Ruchika Malhotra, for her invaluable guidance, support, and

encouragement throughout this research work. Her vast knowledge and expertise have

been instrumental in shaping the direction and success of this research work. Through-

out my journey, she provided insightful feedback and thoughtful advice, helping me

overcome numerous challenges. I am deeply thankful for her mentorship, which has

greatly contributed to my academic and personal growth. This research would not

have been possible without her continuous support and belief in my potential.

I extend my heartfelt thanks to my husband, Dr. Md. Tipu Khan, for his patience,

understanding, and continuous motivation. His belief in me kept me going, even during

the toughest moments. A special note of appreciation goes to my father Mr. Ubaidur

Rahman Khan and my mother Mrs. Zareena Khan, whose love, encouragement,

and sacrifices have been the foundation of my success. I am forever grateful for their

unconditional support. I would like to express my sincere gratitude and profound

respect for my grandparents, whose unwavering love, wisdom, and encouragement

have had an immeasurable impact on my life. Their guidance and support have been a

constant source of inspiration throughout my academic journey. Their belief in the

importance of education has been a driving force behind my accomplishments.

I also owe a debt of gratitude to my entire family for their constant encouragement

and support. They have all played a vital role in helping me achieve this milestone.

Last but not least, I would like to thank my dear friends for their companionship,

positivity, and assistance throughout this journey. Their support has been invaluable.

Thank you all for being a part of this journey.

Kishwar Khan

Abstract

Software defect prediction is a vital research area focused on improving the reliability

and maintainability of software systems. As these systems become increasingly com-

plex, the demand for accurate predictive models to identify defect-prone components

grows more critical. Despite significant advancements in the field, challenges such

as imbalanced datasets, feature selection, and the fine-tuning of machine learning

algorithms for optimal performance persist. This research tackles these challenges

by developing and validating enhanced Machine Learning (ML) techniques specif-

ically designed for software quality prediction. The primary goal is to elevate the

performance of prediction models by addressing essential issues like feature selection,

hyperparameter tuning, and data imbalance, thereby enhancing the accuracy and

robustness of these models. The research is validated through systematic reviews,

empirical studies, and the creation of frameworks and tools applicable in real-world

software development settings.

The thesis is systematically organized into several phases, each concentrating on

different aspects of software defect prediction. The initial phase involves conducting

a comprehensive systematic literature review to identify the most effective feature

selection and machine learning algorithms currently employed in software defect

prediction. This review establishes a foundation for understanding the current state of

the field and highlights gaps that this thesis seeks to address. Key research questions

examined include determining the most valuable feature selection and hyperparameter

tuning technique for predicting defect-prone modules and assessing the effectiveness

of various machine learning algorithms. In the subsequent phases, the research

focuses on developing and validating software defect prediction models using a range

of feature selection and extraction techniques such as Principal Component Analysis

(PCA), Linear Discriminant Analysis (LDA), Kernel-based Principal Component

Analysis (K-PCA) and Autoencoders with Support Vector Machine (SVM) as base

machine learning classifier.

One of the significant contributions of this thesis is the development of a model

for cross-project defect prediction using ten feature reduction techniques and Ma-

chine learning classifiers. The research explores the use of cross-project validation

techniques, which are essential for ensuring that predictive models can generalize

across different software projects. This is particularly important in scenarios where

project-specific characteristics may vary, such as differences in coding practices or

project domains. We analysed the impact of five filter based Feature Subset Selection

techniques namely best first, exhaustive search, genetic search, greedy step wise search

and random search along with five Feature Reduction techniques namely gain ratio,

symmetrical uncertainty, oneR, information gain and reliefF and a no feature selection

configuration by utilising the predictive ability of five frequently used classification

approaches. Each method undergoes thorough testing and comparison across diverse

datasets to confirm its validity and real-world applicability.

The need for evolutionary feature selection techniques arises from the complexity

and high dimensionality of data in many machines learning tasks, including software

defect prediction. Traditional feature selection methods may struggle to efficiently

explore the vast search space of possible feature combinations, often leading to

suboptimal performance. Evolutionary techniques, inspired by natural selection, offer

a robust solution by iteratively optimizing feature subsets to enhance model accuracy

and reduce overfitting. To address this, the thesis explores and implements a novel

Software defect prediction model based on a variant of Grey Wolf Optimisation

paired with Synthetic Minority Oversampling Technique. This model is particularly

valuable when dealing with large datasets, complex feature interactions, and the need

for balancing multiple objectives, such as maximizing predictive accuracy while

minimizing computational cost.

This thesis also addresses the issue of imbalanced data, a prevalent challenge

in software defect prediction. Imbalanced datasets often cause traditional machine

learning models to produce biased predictions. To mitigate this, the study explores

and implements techniques like the Synthetic Minority Over-sampling Technique

(SMOTE). These methods are assessed based on their effectiveness in enhancing

the prediction of defect-prone modules while reducing false positives. Additionally,

hyperparameter tuning is a key focus of this research. Achieving optimal model perfor-

mance often requires careful adjustment of parameters, and this study employs various

tuning methods, including evolutionary and Bayesian optimization, to determine the

best parameters for each predictive model. The research systematically evaluates the

impact of hyperparameter tuning, demonstrating that well-tuned models significantly

outperform those using default settings.

In conclusion, this thesis contributes substantially to the field of software defect

prediction by tackling critical challenges in predictive modelling. By developing and

validating advanced machine learning techniques, this work improves the accuracy,

robustness, and practical relevance of predictive models in software development.

The models and insights generated through this research hold the potential to make a

significant impact in both academic and industrial contexts, offering researchers and

practitioners new approaches for enhancing software quality. Moreover, by reducing

software defects, this study contributes to the development of more reliable and secure

software systems, ultimately benefiting society by fostering safer and more efficient

technological environments.

Contents

List of Tables vii

List of Figures xi

List of Publications xiii

Abbreviations xv

1 Introduction 1

1.1 Introduction . 1

1.1.1 Software Defect . 2

1.1.2 Software Defect Prediction 4

1.2 What is Predictive Modelling? . 6

1.2.1 Steps in Predictive Modelling 7

1.2.2 Predictive Modelling for Software Defect Prediction 9

1.2.3 Factors Affecting the Performance of Predictive Modelling

for Software Quality . 10

1.3 Literature Survey . 12

1.3.1 Software Metrics . 12

1.3.2 Software Defect Prediction 17

1.3.3 Class Imbalance Problem 18

1.3.4 Hyperparameter Tuning 20

i

1.3.5 Feature Selection . 20

1.4 Objectives of the Thesis . 22

1.4.1 Vision . 22

1.4.2 Focus . 22

1.4.3 Goals . 23

1.5 Organization of the Thesis . 26

2 Research Methodology 29

2.1 Introduction . 29

2.2 Research Process . 30

2.3 Identify the Research Problem . 31

2.4 Literature Review . 32

2.5 Defining Study Variables . 33

2.5.1 Independent Variables . 33

2.5.2 Dependent Variables . 34

2.6 Data Analysis Methods . 34

2.6.1 Support Vector Machine 36

2.6.2 K-Nearest Neighbors (KNN) 38

2.6.3 Naive Bayes . 39

2.6.4 Multi Layer Perceptron . 41

2.6.5 Random Forest (RF) . 44

2.6.6 Bootstrap Aggregating (Bagging) 46

2.6.7 Gradient Boosting (GB) 46

2.6.8 Adaptive Boosting (AdaBoost) 48

2.6.9 XGBoost (Extreme Gradient Boosting) 50

2.6.10 CNN (Convolutional Neural Networks) 51

2.6.11 Long Short-Term Memory (LSTM) 54

2.6.12 Gated Recurrent Unit . 55

ii

2.7 Empirical Data Collection . 57

2.7.1 Dataset Details . 58

2.8 Data Preprocessing . 62

2.8.1 Data Normalisation . 63

2.9 Feature Reduction . 64

2.9.1 Feature Extraction . 65

2.9.2 Feature selection . 69

2.10 Data Balancing . 81

2.11 Prediction Model Development and Validation 83

2.12 Performance Measures . 84

2.13 Statistical Analysis Techniques . 87

2.13.1 Friedman Test . 88

2.13.2 Wilcoxon Signed Rank Test 89

3 A Systematic Review of Feature Reduction Techniques for Software Qual-

ity Predictive Modelling using Object-Oriented Metrics 91

3.1 Introduction . 91

3.2 Review Procedure . 94

3.3 Review Protocol . 95

3.3.1 Search Strategy . 95

3.3.2 Inclusion and Exclusion Criteria 96

3.3.3 Quality Criteria . 97

3.4 Results Analysis . 97

3.4.1 Result Analysis based on RQ1 99

3.4.2 Result Analysis based on RQ2 101

3.4.3 Result Analysis based on RQ3 102

3.4.4 Result Analysis based on RQ4 104

3.4.5 Result Analysis based on RQ5 106

iii

3.5 Discussion . 107

4 Software Defect Prediction using Feature Extraction Techniques 111

4.1 Introduction . 111

4.2 Research Background and Methodology 112

4.2.1 Dataset Collection . 113

4.2.2 Data Normalisation . 113

4.2.3 Feature Extraction Techniques 113

4.2.4 classification Technique 114

4.2.5 Model validation Technique 114

4.2.6 Performance Measures . 114

4.2.7 Statistical Test . 115

4.3 Experimental Design . 115

4.3.1 Variable Selection . 115

4.3.2 Hypothesis Formulation 116

4.4 Results Analysis . 116

4.4.1 Result Analysis based on RQ1 116

4.4.2 Results Analysis based on RQ2 118

4.4.3 Result Analysis based on RQ3 121

4.5 Discussion . 121

5 Effect of Feature Selection on Cross-Project Defect Prediction 125

5.1 Introduction . 125

5.2 Research Methodology . 128

5.2.1 Data Collection . 128

5.2.2 Dependent and Independent Variables 128

5.2.3 Feature Selection Techniques 129

5.2.4 Data Balancing . 129

5.2.5 Machine Learning Classifiers 130

iv

5.2.6 Performance Indicator . 131

5.2.7 Statistical Test . 131

5.3 Result Analysis . 131

5.3.1 Result Analysis based on RQ1 132

5.3.2 Result Analysis based on RQ2 134

5.3.3 Result Analysis based on RQ3 139

5.4 Discussion . 140

6 A Novel Software Defect Prediction Model using two-phase Grey Wolf

Optimisation for Feature Selection 143

6.1 Introduction . 143

6.2 Proposed Methodology . 146

6.2.1 Dataset Details . 147

6.2.2 Feature selection using 2M-GWO 148

6.2.3 Classifiers . 156

6.2.4 Evaluation Method . 156

6.2.5 Parameter Setting . 156

6.2.6 Statistical Test . 157

6.3 Results Analysis . 157

6.3.1 Result Analysis based on RQ1 157

6.3.2 Result Analysis based on RQ2 164

6.3.3 Result Analysis based on RQ3 165

6.3.4 Result Analysis based on RQ3 167

6.4 Discussion . 169

7 Impact of Hyperparameter tuning on Software Defect Prediction Model173

7.1 Introduction . 173

7.2 Research Methodology . 175

7.2.1 Research Methodology of Study 1 175

v

7.2.2 Research Methodology of Study 2 177

7.3 Experimental Framework . 178

7.3.1 Dataset Collection . 178

7.3.2 Data Preprocessing . 179

7.3.3 Hyperparameter Tuning Setup 180

7.3.4 Model Training and Testing Framework 182

7.3.5 Evaluation Metrics . 183

7.3.6 Statistical tools . 185

7.4 Results Analysis . 185

7.4.1 Results analysis of Study 1 186

7.4.2 Results analysis of Study 2 200

7.5 Discussion . 204

8 Conclusion 207

8.1 Summary of the Research Work 207

8.2 Application of the Work . 213

8.3 Future Work . 214

Bibliography 217

Supervisor’s Biography 244

Author’s Biography 246

vi

List of Tables

1.1 Halstead basic measurement [1]. 13

1.2 Halstead Metrics . 14

1.3 List of class-level object-oriented metrics [2]. 16

1.4 CK metrics [3] . 16

2.1 Data Analysis Techniques . 36

2.2 Summary of Publicly Available Software Defect Datasets 59

2.3 Summary of NASA Datasets . 60

2.4 Summary of PROMISE Repository Datasets Investigated by Jureczko

and Madeyski . 61

2.5 Summary of Additional Software Datasets 61

2.6 Summary of Software Datasets . 62

3.1 Research Questions and Motivations 93

3.2 List of Quality Assessment Questions 98

3.3 List of Publication Sources . 109

3.4 List of Selected Primary Studies 110

4.1 Accuracy Calculated for Each Project 117

4.2 ROC-AUC Value for Each Project 120

5.1 Details of selected features using the various FSS techniques. 132

5.2 Details of selected features using the various FR techniques. 133

vii

5.3 ROC-AUC Values for Ant . 135

5.4 ROC-AUC Values for Camel . 136

5.5 ROC-AUC Values for Ivy . 137

5.6 ROC-AUC Values for Tomcat . 138

5.7 Average AUC-ROC Values of FSS and FR Techniques 138

5.8 Mean Rank of the Classifiers Calculated by Friedman Test for FSS

and FR Techniques . 139

5.9 Results of Wilcoxon Signed-Rank Test for Pairwise Comparison of

Classifiers . 139

6.1 Parameter settings for Optimization techniques 157

6.2 ROC-AUC Scores by SVM . 158

6.3 ROC AUC Scores by RF . 159

6.4 ROC-AUC Scores by GB . 160

6.5 ROC-AUC Scores by GB . 161

6.6 ROC-AUC Scores by KNN . 162

6.7 Number of Features Calculated by GWO, 2M-GWO, and WFS Across

Various Projects . 163

6.8 Mean Rank Obtained on the Basis of ROC-AUC for Feature Selection

Techniques . 163

6.9 Mean Rank Obtained on the Basis of ROC-AUC for ML Techniques 164

6.10 ROC AUC Values for 2M-GWO-RF and Other Metaheuristic Tech-

niques . 168

7.1 Parameter descriptions for techniques used in study 1. 183

7.2 Parameter descriptions for techniques used in study 2. 184

7.3 Performance metrics of the KNN algorithm across various datasets. 188

7.4 Performance metrics of MLP algorithm across various datasets . . . 189

7.5 Performance metrics of RF algorithm across various datasets 190

viii

7.6 Performance metrics of SVM algorithm across various datasets. . . 190

7.7 Performance metrics of XGB algorithm across various datasets. . . 192

7.8 ROC-AUC Scores for CNN, LSTM, GRU, and ENSEMBLE Models

With and Without HPT . 201

7.9 Mean rank of various techniques with HPT 203

ix

List of Figures

1.1 An overview of the typical defect prediction modelling and its related

experimental components. 5

1.2 Steps in Predictive Modelling . 8

2.1 Research Process . 31

2.2 Types of Feature Reduction Technique 65

2.3 Types of Feature Reduction Technique 66

2.4 Types of Feature Reduction Technique 70

2.5 Working of Filter Technique . 71

2.6 Working of Wrapper Technique . 76

2.7 Working of Embedded Technique 81

2.8 Structure of Confusion Matrix . 86

3.1 Commonly Used Feature Reduction Techniques 100

3.2 Object-Oriented Metrics Used in SQPM Studies 102

3.3 Types of Datasets Used in Primary Studies 104

3.4 Machine Learning Techniques Used in Primary Studies 105

3.5 Performance Measures Used in Primary Studies 106

4.1 Accuracy of each FE technique. 118

4.2 ROC-AUC of each FE technique. 120

5.1 Framework for Feature Selection in Cross-Project Defect Prediction. 130

xi

6.1 Mechanism of the suggested 2M-GWO algorithm. 147

6.2 Solution representation of 2M-GWO. 151

6.3 Pseudocode of the proposed 2M-GWO. 154

6.4 Pseudocode of the Two-Phase Mutation step 155

6.5 Comparison of GWO, 2M-GWO, and WFS techniques on the basis

of the number of features selected 162

6.6 Occurrence of metrics for RELINK Dataset 166

6.7 Occurrence of metrics for PROMISE Dataset 166

6.8 Occurrence of metrics for AEEEM Dataset 166

6.9 Occurrence of metrics for NASA Dataset 167

7.1 A detailed framework for the OpTunedSMOTE approach 176

7.2 A detailed framework for the Stacked Ensemble approach 177

7.3 Architectural design of the Optuna framework. 182

7.4 Average performance of different classification techniques with vari-

ous data balancing techniques (a) on the basis of ROC-AUC values

and (b) on the basis of MCC values. 193

7.5 Friedman test results for classification techniques based on ROC-AUC

values (a) for SMOTE techniques (b) for SMOTETUNED technique

(c) for OpTunedSMOTE technique (d) for BOTH techniques 195

7.6 Friedman test results for classification techniques based on MCC

values (a) for SMOTE techniques (b) for SMOTETUNED technique

(c) for OpTunedSMOTE technique (d) for BOTH technique 197

7.7 Comparison of execution time and memory usage for different classi-

fication techniques with various SMOTE variations. 198

7.8 Percentage improvement in ROC-AUC for each technique. 202

xii

List of Publications

Papers Accepted/Published in International Journals

1. Ruchika Malhotra and Kishwar Khan, “A novel software defect prediction

model using two-phase grey wolf for feature selection.”, Cluster Computing,

2024.

2. Ruchika Malhotra and Kishwar Khan, “OpTunedSMOTE: A Novel Model for

Automated Hyperparameter Tuning of SMOTE in Software Defect Prediction”,

Intelligent Data Analysis, 2024.

Papers Accepted/Published in International Conferences

3. Ruchika Malhotra and Kishwar Khan, “A Study on Software Defect Prediction

using Feature Extraction Techniques”, 2020 8th International Conference on Re-

liability, Infocom Technologies and Optimization (Trends and Future Directions)

(ICRITO), Noida, India, 2020.

4. Ruchika Malhotra and Kishwar Khan, “Hyperparameter Optimization in Deep

Learning for Improved Software Defect Prediction: A Stacked Ensemble Ap-

proach”, 5th Congress on Intelligent Systems (CIS 2024), Bengaluru, India,

2024.

xiii

Papers Communicated in International Journals

5. Ruchika Malhotra and Kishwar Khan, “A Systematic Review of Feature Re-

duction Techniques for Software Quality Predictive Modelling using Object-

Oriented Metrics.” Arabian Journal for Science and Engineering.

6. Ruchika Malhotra and Kishwar Khan, “Investigating the Effect of Feature

Selection on Cross Project Defect Prediction”, International Journal of System

Assurance Engineering and Management.

Abbreviations

ML Machine Learning

PCA Principal Component Analysis

K-PCA Kernel-based Principal Component Analysis

SMOTE Synthetic Minority Oversampling Technique

KNN K-Nearest Neighbors

RF Random Forest

GB Gradient Boosting

AdaBoost Adaptive Boosting

XGB Extreme Gradient Boosting

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

SVM Support Vector Machine

ROC-AUC Receiver Operating Characteristic - Area Under the Curve

MCC Matthews Correlation Coefficient

RBF Radial Basis Function

CFS Correlation-based Feature Selection

xv

Abbreviations

AMMIC Ancestor class MethodâMethod Import Coupling

DMMEC Descendant class MethodâMethod Export Coupling

OMMEC Other class MethodâMethod Export Coupling

OMMIC Other class MethodâMethod Import Coupling

FSS Feature Subset Selection

FR Feature Ranking

FS Feature Selection

2M-GWO Two-phase Grey Wolf Optimizer

GAN Generative Adversarial Network

CTGAN Conditional GAN

WGANGP Wasserstein GAN with Gradient Penalty

SGD Stochastic Gradient Descent

AUC Area Under the Curve

DL Deep Learning

BO Bayesian Optimization

RQ Research Question

HPT Hyperparameter Tuning

LOC Lines of Code

NOA Number of Attributes

NOM Number of Methods

NOC Number of Children

DIT Depth of Inheritance Tree

CBO Coupling Between Object Classes

RFC Response for a Class

xvi

LCOM Lack of Cohesion of Methods

OO Object-Oriented

SQA Software Quality Assurance

SDP Software Defect Prediction

Chapter 1

Introduction

1.1 Introduction

Software Quality Assurance (SQA) teams hold a vital position in the software de-

velopment lifecycle, focusing on eliminating software defects. Consequently, many

modern software organizations maintain a specialized SQA department [4]. Software

engineers are responsible for carrying out numerous SQA tasks. Primarily, they

create, implement, and perform tests to ensure that software systems fulfill their

functional and non-functional requirements, align with user expectations, and achieve

the necessary quality standards before being released to end-users[5, 6]. Additionally,

they examine designs, assess code quality and associated risks, and refactor code to

enhance its testability. Previous studies highlight concerns that SQA activities can

be both costly and time-intensive. For instance, Alberts et al. highlight that SQA

activities consume nearly 50% of the resources allocated for software development.

Consequently, with constrained SQA resources, such as limited team size and time, it

becomes impractical to thoroughly test and review an extensive software product[7].

A case study on the Mozilla project conducted by Mantyla et al. [8] demonstrates

1

Introduction

that adopting rapid release software development considerably escalates the workload

of software testers. As a result, insufficient testing may lead to software defects,

potentially incurring financial losses worth billions of dollars. In this context, defect

prediction models are essential for effectively prioritizing SQA efforts. Software

defect prediction models utilize historical data to detect software modules prone to

defects. From an SQA standpoint, these models fulfill two primary objectives. Firstly,

they can forecast which modules are likely to exhibit defects in the future[9–17].

SQA teams can leverage defect prediction models in a predictive context to

allocate their limited resources efficiently, focusing on modules with the highest

likelihood of being defective. Secondly, these models can help analyze the influence

of different software metrics on a module’s susceptibility to defects [13, 18–20]. The

insights gained from defect prediction models enable software teams to avoid repeating

mistakes associated with previously defective modules. Over the past decade, there

has been a significant increase in the practical adoption of these models. Recent

adopters of defect prediction models include, but are not limited to, the following

examples: Bell Labs [13] , AT&T [21], Turkish Telecommunication [22], Microsoft

Research [23–27] , Google [28], Blackberry [29], Cisco [30], IBM [31] , and Sony

Mobile [32]. These organizations frequently share their success stories and insights

gained from implementing defect prediction models.

1.1.1 Software Defect

A software defect, often called a bug, is defined as a flaw or deficiency in a software

product that leads to unexpected behavior or performance[33]. The IEEE Standard

1044, Classification for Software Anomalies, offers a standardized vocabulary for

terms relevant in this context. According to the standard:

• Defect: An imperfection or deficiency in a work product where that work

2

Introduction

product does not meet its requirements or specifications and needs to be either

repaired or replaced.

• Error: A human action that produces an incorrect result.

• Failure: Termination of the ability of a product to perform a required function or

its inability to perform within previously specified limits. Or an event in which

a system or system component does not perform a required function within

specified limits.

• Fault: A manifestation of an error in software.

Since software defects can cause the entire embedded system to malfunction,

potentially endangering health or even lives in safety-critical systems, most software

development organizations strive to release software without known defects. All de-

fects identified during verification and validation processes are meticulously recorded

in a defect database. These databases, which can be specific to a team, project, product,

or organizational division, follow a predefined format to ensure consistency. Their

primary purpose is to facilitate the resolution of reported defects. The database typ-

ically serves as a platform where various stakeholders, both within and outside the

organization, can:

• Access the information about defect(s) of their interest,

• Add, edit, or update the information related to a given defect,

• Comment, provide expertise or guidance to help resolve the defect, and

• Track the progress of reported defect(s) and monitor defect statistics.

To streamline the documentation and sharing of information, multiple attributes

are recorded for each reported defect. Some attributes are mandatory, offering es-

sential details about the defect, while others are optional, providing supplementary

3

Introduction

information. The primary objective is to facilitate communication between the actor

(typically the tester) who identified the defect and the actor(s) (usually developers)

responsible for resolving or assisting in its resolution.

1.1.2 Software Defect Prediction

A software defect is a noticeable anomaly that may cause a software system to fail in

performing its intended function. Often referred to as a defect, it is typically identified

by a tester and is commonly labeled as a bug, defect, or error [34]. According to the

definition provided by ISO/IEC/IEEE 24765, a software defect can be described as an

apparent indication of an error within a software system. Software defect prediction

(SDP) is a systematic procedure that effectively identifies the software module or class

that has a higher probability of containing defects [35, 36].

Developers are required to manage continuous changes, adhere to strict time

constraints, and ensure flawless functionality in their deliverables [2]. Nevertheless,

the constraints of limited human resources and time pose significant challenges to the

testing of software systems. Therefore, it is imperative to allocate available resources

in an efficient manner, giving priority to the source code that potentially contains

more defective modules, thereby requiring a greater allocation of testing resources.

As an illustration, consider the cost of a Java-based project [37] with a size of 100

function points and 10 KLOC. The allocation of effort for the five distinct phases is as

follows: 10% is allocated for requirement engineering, analysis, and design; 20% is

allocated for coding; 30% is allocated for testing; and 5% is allocated for installation

and training. Accurate prediction involves focusing attention towards modules that are

prone to defects that require more extensive testing. This approach helps in effectively

prioritizing and allocating limited testing resources, thereby reducing the overall

testing effort.

4

Introduction

Figure 1.1: An overview of the typical defect prediction modelling and its related
experimental components.

The extensive adoption of software systems across various industries underscores

the potentially severe consequences of software defects, which can pose significant

risks to human well-being and incur substantial financial burdens. For instance, in

the UK, as many as 200 fatalities each year are attributed to avoidable defects in

patient care systems [38]. The SDP method generally involves a supervised approach,

wherein a set of independent variables (also known as predictors) are utilized to

make predictions about the dependent variable (specifically, the defect-prone module).

A model is trained using a combination of machine learning techniques [39], deep

learning techniques [40], and statistical learning techniques [41].

Figure 1.1 depicts the fundamental architecture of the SDP technique. To extract

software defects, the initial step involves organizing a metrics dataset comprising

software modules, encompassing attributes like module size and module complexity.

These metrics are typically obtained from a version control system. Furthermore, it is

essential to assign appropriate labels to defective modules in the event that they have

been influenced by changes in the code aimed at resolving a reported issue that falls

under the category of a defect. Furthermore, defect models are trained using a machine

learning technique. Moreover, it is necessary to appropriately configure the parameter

settings of machine learning techniques in order to regulate their characteristics.

After completion of training, the model that completed training is capable of making

predictions regarding the classification of various modules (whether they are faulty

5

What is Predictive Modelling?

or non-faulty). These predictions are applicable to both new projects and target

projects. The training of a prediction model can be classified into two distinct types,

i.e., Homogeneous software defect prediction and Heterogeneous defect prediction.

Homogeneous software defect prediction is further categorized into two distinct types.

First, the Within-Project Defect Prediction (WPDP) model in which a predictive

model is developed by utilizing labelled instances from Project A. This model is then

employed to classify unlabelled instances within the same project as either defective

or clean. Second, The Cross-Project Defect Prediction (CPDP) involves the training of

a prediction model using labelled instances from Project A (referred to as the source)

in order to predict defects in Project B (referred to as the target). In CPDP, the source

and target projects generated by a prediction combination indicate similar metric

sets. The Heterogeneous defect prediction (HDP) is similar to CPDP, except the

prediction combination involves source and target projects that possess distinct sets

of metrics. Next, performance measures are chosen to evaluate the effectiveness of

defect prediction models. At last, the models are validated to assess their performance

when applied to novel software modules.

1.2 What is Predictive Modelling?

Predictive modelling is a statistical technique used to create a model that can forecast

future outcomes based on historical data. It involves identifying relationships between

variables in a dataset to predict unknown or future values of a target variable. This

approach is widely used in various fields such as finance, marketing, healthcare, and

software engineering. The core idea is to learn from past occurrences by training

a model that can generalize and make accurate predictions on new data. Common

techniques used in predictive modelling include regression analysis, decision trees,

neural networks, and machine learning algorithms.

6

What is Predictive Modelling?

In software engineering, predictive modelling plays a crucial role in quality as-

surance processes, such as software defect prediction. By analyzing historical data

related to software modules, such as their size, complexity, and previous defect records,

predictive models can estimate which components are likely to be prone to defects.

This helps allocate testing resources more efficiently and prioritize modules that

require more attention, ultimately reducing the cost and effort involved in software

maintenance.

A key challenge in predictive modelling is ensuring the accuracy and generaliz-

ability of the model. Techniques like cross-validation, feature selection, and hyperpa-

rameter tuning are often applied to optimize the model’s performance. Additionally,

managing issues such as imbalanced datasets and overfitting is critical to developing

reliable models. When applied effectively, predictive modelling can provide valuable

insights and enable organizations to make data-driven decisions, leading to better

outcomes and reduced risks.

1.2.1 Steps in Predictive Modelling

The following are the steps that are used in Predicting modelling and are shown in

Figure 1.2 .

1. Objective of problem under analysis: The first step is to define the objectives

of the application that needs to be analysed. For instance, a company wants to

predict the sales of a particular product so every parameter is stated in this step.

2. Defining analytical goals: The goals are finalised after completing the feasibil-

ity study of the problem domain.

3. Data preparation: In this step, analysis team understand the data and prepare

data for analysis. The predictive model would be efficient if the underlying

7

What is Predictive Modelling?

Figure 1.2: Steps in Predictive Modelling

data is good enough for the analysis. The cleaning of data is done in this step

where data is converted from imbalance to balance data. The data is formatted

according to the tool selected by the analysis team and null/missing values are

dealt properly.

4. Analyse and transform the variables: Here, the null and missing values are

dealt properly and dimension are reduced using various techniques like principle

component analysis,factor analysis, etc.

5. Random sampling: The data is divided into training and testing set depending

on the ratio selected.

6. Model selection: Depending on the goals of the application, models are selected

either supervised or unsupervised.

7. Training the model: Models are trained by feeding them with the data prepared

at step 3.

8

What is Predictive Modelling?

8. Validation: In the final step, results are validated using cross validation so that

accuracy can be improved.

As more and more data are being produced, it is important to generate a model

that will be able to understand that data thoroughly. Predictive modelling steps

forward and helps the organisation in making decision based on data.

1.2.2 Predictive Modelling for Software Defect Prediction

Predictive modelling plays a crucial role in software defect prediction, helping soft-

ware engineers and managers anticipate the defect-prone areas of a software system

before they occur in production. In the broader context, predictive models are used

across various domains to forecast outcomes based on historical data, and in the

software engineering fi eld, they are used to predict software quality attributes like

defect-proneness. Over the years, numerous models have been developed to support

the prediction of defects, enabling software teams to take preventive measures before

releasing software. These models are essential for early detection of defects, which

can drastically reduce the cost of fixing bugs compared to addressing them later in the

software development lifecycle.

Predictive models for software defect prediction are built using historical defect

data and software metrics such as complexity, size, coupling, cohesion, and other

internal attributes of the code. By understanding the correlation between these metrics

and the likelihood of defects, the models can predict which parts of the software

are more likely to contain bugs. This helps managers and developers focus their

testing and quality assurance efforts on high-risk areas, leading to more efficient use of

limited resources like time, budget, and human effort. Implementing predictive models

early in the software development process allows for better planning, prioritizing, and

resource allocation for testing. It also aids in risk management by focusing attention

9

What is Predictive Modelling?

on areas of the software that are most likely to fail. Techniques for developing these

models range from statistical methods to more advanced approaches such as machine

learning, search-based techniques, and hybrid methods. These models continuously

learn from new data, refining their predictions for future versions of the software

product.

By incorporating predictive modelling into defect prediction, software teams can

enhance the overall quality of their products, reduce time-to-market, and improve

customer satisfaction by delivering more reliable software.

1.2.3 Factors Affecting the Performance of Predictive Modelling

for Software Quality

The performance of predictive models in software quality prediction is influenced by

several factors, each of which can have a significant impact on the accuracy, relia-

bility, and generalizability of the models. Understanding these factors is critical for

developing effective predictive models and improving their performance in practice.

• Feature Selection: Feature selection is the process of identifying the most rele-

vant features that contribute to the predictive power of the model. In the context

of software quality prediction, feature selection is critical for improving model

accuracy, reducing computational complexity, and enhancing interpretability.

Irrelevant or redundant features can lead to overfitting, reduced accuracy, and

increased computational cost. Several techniques can be used for feature se-

lection, including filter methods, wrapper methods, and embedded methods.

The choice of feature selection technique depends on the nature of the data, the

predictive task, and the specific requirements of the model.

• Parameter Tuning: Parameter tuning involves optimizing the hyperparameters

10

What is Predictive Modelling?

of the predictive model to achieve the best possible performance. Hyperparam-

eters are the parameters that are not learned from the data but are set before

the training process, such as the learning rate, regularization strength, and the

number of hidden layers in a neural network. In the context of software quality

prediction, parameter tuning is critical for achieving optimal model performance.

Poorly chosen hyperparameters can lead to underfitting, overfitting, or slow

convergence, resulting in suboptimal predictive accuracy. Several techniques

can be used for parameter tuning, including grid search, random search, and

Bayesian optimization.

• Imbalanced Data: Imbalanced data is a common challenge in predictive mod-

elling for software quality, particularly in tasks such as defect prediction and

defect categorization. Imbalanced data occurs when the distribution of the target

variable is skewed, with one class being significantly more prevalent than the

other(s). For example, in defect prediction, the majority of components may

be defect-free, while only a small proportion may contain defects. Imbalanced

data can lead to biased models that are overly focused on the majority class,

resulting in poor performance on the minority class. This is particularly prob-

lematic in software quality prediction, where the minority class (e.g., defective

components) is often the most critical to identify. Several techniques have

been developed to address imbalanced data, including resampling methods (e.g.,

oversampling, undersampling), cost-sensitive learning, and ensemble methods.

11

Literature Survey

1.3 Literature Survey

Software defect prediction plays a critical role in ensuring the delivery of high-

quality software, as it allows for early identification of potential defects that can

compromise functionality and user satisfaction. Over the years, researchers have

focused extensively on enhancing techniques and methodologies to improve software

defect prediction accuracy and efficiency. Conducting a thorough review of existing

literature in this domain is vital to identifying gaps in current research, discovering

areas for innovation, and driving further advancements in the field.

This section explores various software metrics commonly utilized in the literature

for predicting software defects. It also reviews a wide range of models proposed by

researchers to predict software defects, with a focus on the methodologies employed.

These models have been developed using diverse machine learning techniques, each

contributing unique insights into improving the precision of software defect predic-

tions.

1.3.1 Software Metrics

Software metrics can be considered as a quantitative measurement that assigns symbols

or numbers to features of predicted instances [42]. In fact, they are features, or

attributes, that describe many properties such as reliability, effort, complexity, and

quality of software products. These metrics play a key role in building an effective

software defect predictor. They can be divided into two main categories: code metrics

and process metrics [43].

12

Literature Survey

1.3.1.1 Code Metrics

Code metrics, also called product metrics, are directly collected from existing source

code. These metrics measure the complexity of source code based on the assumption

that complex software components are more likely to contain bugs. Throughout the

history of software engineering, various code metrics have been used for software

defect prediction.

Size: The first metric is the size metric introduced by Akiyama (1971)[9]. In order

to predict the number of bugs, the author uses the number of lines of code as the

only metric. Numerous software defect prediction studies have applied this metric for

building predictors [20, 34, 36, 44, 45]However, using only this metric is too simple

to measure the complexity of software products.

Halstead and McCabe: For this reason, other useful, widely used, and easy-

to-use metrics have been applied for creating defect predictors [34, 36, 46]. These

metrics are called static code attributes introduced by McCabe (1976) and Halstead

(1977) [47]. Halstead attributes are selected based on the reading complexity of source

code. They are defined using several basic metrics collected from a software instance,

including:

Table 1.1: Halstead basic measurement [1].

Symbol Description
µ1 Number of distinct operators
µ2 Number of distinct operands
N1 Total number of operators
N2 Total number of operands
µ∗
1 Minimum possible number of operators

µ∗
2 Minimum possible number of operands

The first four metrics are self-explanatory, whereas µ∗
1 and µ∗

2 are potential operator

and operand counts in a software instance. For example, µ∗
1 = 2 is the minimum num-

13

Literature Survey

ber of operators for a default function with the function’s name and a grouping symbol,

while µ∗
2 is the number of parameters passed to the function, with no repetition.

The Halstead metrics defined using the above metrics include:

Table 1.2: Halstead Metrics

Name Description
Length: N = N1 +N2 The program length
Vocabulary: µ = µ1 + µ2 The vocabulary size
Volume: V = N × log2 µ The information content of a program
Potential volume: V ∗ = (2 + µ∗

2)× log2(2 + µ∗
2) The volume of the minimal size implementation of a program

Level: L = V ∗/V The program level
Difficulty: D = 1/L The difficulty level of a program
Error estimate: Î = 2

µ1
× µ2

N2
Error estimate for a program

Content: I = Î × V The intelligence content of a program
Effort: E = V

L
= µ1N2N log2 µ

2µ2
The effort required to generate a program

Programming time: T = E
18

(seconds) The programming time required for a program

1.3.1.2 McCabe Attributes

McCabe attributes are cyclomatic metrics representing the complexity of a software

product. These attributes are based on the assumption that âthe complexity of pathways

between module symbols is more insightful than just a count of the symbolsâ [36].

Differing from Halstead attributes, McCabe attributes measure the complexity of

source code structure. They are obtained by computing the number of connected

components, arcs, and nodes in control flow charts of source code.Each node of the

flow chart represents a program statement while an arc is the flow of control from

a statement to another. The following are three complexity attributes introduced by

McCabe (1976) [48].

• Cyclomatic complexity: Denoted by ν(G), represents the number of linearly

independent paths through the flow chart. ν(G) = e− n+ 2 in which G is the

flow chart, e represents the number of arcs, and n is the number of nodes [1].

14

Literature Survey

• Essential complexity: Denoted by eν(G), measures the degree to which a flow

chart is able to reduce by decomposing all the sub flow charts that are proper

one-entry, one-exit, or D-structured primes [42]. eν(G) = ν(G)−m, in which

m is the number of sub flow charts of G.

• Design complexity: Denoted by iν(G), represents the cyclomatic complexity

of a reduced flow chart of a class or module. The reduction is done to remove

complexities that do not affect the interrelationship between design classes or

modules [47].

1.3.1.3 Object-Oriented Metrics

In fact, such inter-class metrics have been produced by Henry and Kafura (1981)[49]

with fan-in metrics that represent the number of software components invoking a given

component, and fan-out metrics that represent the number of software components

invoked by a given component. Besides fan-in and fan-out, other metrics measuring

quantity and volume of source code have also been introduced (D’Ambros, Lanza &

Robbes, 2012)[44].

As listed in Table 3, several of these metrics are quite simple to compute by

counting the number of public and private attributes and methods. In practice, these

metrics are designed based on characteristics of object-oriented models including in-

heritance, reusability, cohesion, encapsulation and coupling. Therefore, the collection

of these metrics, also known as object-oriented (OO) metrics, is suitable for evaluating

object-oriented systems. With the popularity of object-oriented programming, OO

metrics are becoming increasingly widely used for building software defect prediction

models. Many of such models have been proposed by DâAmbros et al. (2012); Kim,

Zhang, Wu and Gong (2011); Lee, Nam, Han, Kim and Hoh (2011); Pai and Dugan

(2007); Wu, Zhang, Kim and Cheung (2011); Zimmermann and Nagappan (2008);

15

Literature Survey

Pan and Yang (2010)[17, 44, 45, 50–52].

Table 1.3: List of class-level object-oriented metrics [2].

Name Description
Fan-in The number of other classes that reference the measured class
Fan-out The number of classes referenced by the measured class
NOA The number of attributes
NOPA The number of public attributes
NOPRA The number of private attributes
NOAI The number of attributes inherited
LOC The number of lines of code in a class
NOM The number of methods
NOPM The number of public methods
NOPRM The number of private methods
NOMI The number of methods inherited

Apart from these OO metrics, several other metrics have been empirically proven

to be effective for predicting defects in object-oriented programs. In 1994, Chidamber

and Kemerer introduced a set of CK metrics, which have been widely used in numerous

studies to create software defect predictors [44, 50, 51, 53, 54].

Table 1.4: CK metrics [3]

Name Description
WMC Weighted methods per class
DIT Depth of inheritance tree
NOC Number of children
CBO Coupling between object classes
RFC Response for a class
LCOM Lack of cohesion of methods

The metrics listed in Table 4 can be described as follows:

• Weighted methods per class (WMC): This metric measures the complexity of

an individual class. It is a weighted sum of all methods in a class.

16

Literature Survey

• Depth of inheritance tree (DIT): This metric measures the length of the longest

path of inheritance ending at a class. If the inheritance tree for the measured

class is deeper, it is more difficult to estimate the behaviour of the class.

• Number of children (NOC): This metric counts the number of immediate child

classes that inherit from the current class.

• Coupling between object classes (CBO): This metric measures the dependency

of a class on others by counting the number of other classes coupled to the

measured class. A class is coupled to others if it invokes variables or functions

of the other classes.

• Response for a class (RFC): This metric counts the number of methods poten-

tially executed in response to a message received by an object of a class.

• Lack of cohesion of methods (LCOM): This metric is the subtraction of the

number of method pairs sharing no member variable from the number of method

pairs sharing at least one member variable.

1.3.2 Software Defect Prediction

Software defect prediction is a critical process in software engineering that aims to

identify modules likely to contain defects before they are released. This proactive

approach allows project managers to allocate testing resources more effectively, ulti-

mately enhancing software quality and reducing costs. SDP utilizes various metrics

derived from software code, such as method-level and class-level metrics, to assess

the likelihood of defects in software modules or not [55].

The process of SDP faces several significant challenges that hinder the develop-

ment of effective predictive models. Key issues include data quality and availability,

17

Literature Survey

as historical data often suffers from incompleteness, noise, and bias, leading to un-

reliable predictions [56, 57]. Class imbalance, where non-defective instances vastly

outnumber defective ones, results in biased models with poor defect detection rates

[58]. Identifying relevant features from high-dimensional datasets is crucial yet dif-

ficult, as improper selection can lead to overfitting. Additionally, complex machine

learning models often lack interpretability, making it hard for stakeholders to trust and

utilize predictions [59]. Generalizing models across different projects is challenging

due to variations in codebases and practices, and evolving software environments

require continuous model updating to remain effective. Furthermore, integrating

defect prediction models into existing development processes poses logistical and

technical hurdles. HPT is another critical issue, as selecting optimal parameters is

essential for maximizing model performance but can be computationally intensive

and complex. Addressing these challenges through improved data quality, class im-

balance techniques, enhanced model interpretability, better generalization methods,

and effective HPT is essential for advancing SDP’s applicability and effectiveness in

real-world scenarios.

1.3.3 Class Imbalance Problem

The class imbalance problem is a significant challenge in SDP models. It occurs when

there is a disproportionately large number of non-defective instances compared to

defective instances in the training data. This imbalance can lead to poor performance

of traditional machine learning algorithms, as they tend to get biased towards the

majority non-defective class.

Researchers have attempted to address this issue using sampling methods, ensem-

ble methods, and cost-sensitive methods. Sampling methods include oversampling

techniques like SMOTE and ROS and undersampling techniques like RUS. Stud-

18

Literature Survey

ies have shown that while these methods improve the performance of linear and

logistic models, neural networks and classification tree models may underperform.

Ensemble methods, such as bagging, boosting, and stacking, create and combine

several weak learners to form a strong classifier, with variations like SMOTEBagging

and RUSBoost demonstrating effectiveness in SDP [60]. Cost-sensitive learning,

which uses a cost matrix to define different misclassification costs, has also been

applied with methods such as cost-sensitive KNN and neural networks, showing

improved prediction performance. Generative Adversarial Networks (GAN) meth-

ods, particularly Vanilla GAN, Conditional GAN (CTGAN), and Wasserstein GAN

with Gradient Penalty (WGANGP), have shown superior performance in SDP on

imbalanced datasets compared to traditional techniques like SMOTE and ROS. These

methods generate synthetic instances that closely resemble real instances, improving

data quality and diversity. The study highlights the effectiveness of using generative

models such as GANs, variational autoencoders, and adversarial autoencoders for

cross-project defect prediction (CPDP), with the GAN model combined with the

Stochastic Gradient Descent (SGD) classifier yielding the best results. Modifications

to the GAN architecture to suit numerical data further enhanced performance, resulting

in marginal improvements in accuracy, precision, recall, and F1-score. Despite limited

improvements from hyperparameter optimization and undersampling combinations,

the GAN-based methods consistently outperformed other oversampling techniques in

various metrics, including the Area Under the Curve (AUC) for Decision Tree and

Random Forest classifiers across multiple datasets[61–63].

One of the most popular techniques to address the class imbalance problem is

SMOTE. It generates new synthetic instances of the minority (defective) class by

interpolating between existing minority class instances that lie together. This helps to

increase the representation of the minority class and reduce the imbalance ratio[64, 65].

In this study, we focused on the SMOTE technique to balance the dataset.

19

Literature Survey

1.3.4 Hyperparameter Tuning

Hyperparameter tuning plays a crucial role in enhancing the performance of SDP

models. Properly configured hyperparameters can significantly improve the accuracy

and efficiency of these models, which are essential for identifying potential defects in

software systems.

Hyperparameters must be set prior to training and can include parameters such

as the number of trees in a random forest, the learning rate in gradient boosting, or

the number of neighbours in k-nearest neighbours. The choice of hyperparameters

can dramatically affect the model’s performance, making tuning essential for optimal

results. Research indicates that HPT can lead to significant improvements in the

performance of various machine learning algorithms used in SDP[66].

Nowadays, researchers are focusing on the HPT of preprocessing techniques as

well[67]. HPT of preprocessing techniques involves selecting the optimal configura-

tion for the parameters that control the preprocessing steps applied to data before it

is fed into a machine learning model. This process is crucial for improving model

performance, as the choice and configuration of preprocessing steps can significantly

impact the quality and predictive power of the data. Tuning ensures that the data is

represented in the most informative way, which can enhance the learning process of

the model.

1.3.5 Feature Selection

Catal and Diri [67] investigated the influence of dataset size, metrics collectors,

and FS approaches on SDP. To make the predictive models repeatable, refutable,

and verifiable, they employed publicly available NASA data from the open-source

PROMISE repository. According to this analysis, random forests have the best

20

Literature Survey

prediction results for large datasets. For datasets of limited size, Naive Bayes is the

most predictive approach in terms of the ROC-AUC assessment metric. When method-

level metrics are being used, the parallel version of the Artificial Immune Recognition

Systems method seems to be the strongest paradigm-based algorithm. By integrating

feature selection and the approach of data sampling, Gao and Khoshgoftaar [68]

suggested a methodology for dealing with high dimensionality and class imbalance.

The data sets used in this study were retrieved from the PROMISE repository. The

findings indicate that the model built with sampled data and a reduced feature set

performed better than the model built on FS on original data. Wang et al. [69] provided

an empirical analysis of six frequently used filter-based software metric rankers, as

well as our suggested ensemble methodology based on attribute rank ordering (mean

or median), which was applied to three major software projects using five widely used

learners. The ROC-AUC evaluation metric was used to assess classification accuracy.

The results show that the ensemble approach outperformed any single ranker in terms

of average performance and robustness. Variations among rankers, learners, and

software projects had a major impact on classification outcomes, according to the

empirical analysis, and the ensemble method will smooth out results.

In order to predict software defects, Tumar et al. suggested an enhanced and

binary version of Moth Flame Optimisation (MFO). The suggested approach improves

the results from the literature and demonstrates the significance of transfer functions

for FS methods [70]. Turabieh et al. [71]in their study discusses software Defect

prediction (SDP) and proposes a novel approach to amplify the effectiveness of a

layered recurrent neural network (L-RNN) employed as a binary classifier in SDP. The

approach involves using binary versions of Genetic Algorithm based optimiser, Particle

Swarm based Optimisation and Ant colony-based optimisation for FS algorithms to

remove unnecessary attributes and enhance the effectiveness of the L-RNN. This paper

compares the suggested methodology with other modern methods using 19 real-life

21

Objectives of the Thesis

software projects from the open-source repository. The findings demonstrate that the

suggested strategy works comparatively better than other current approaches.

1.4 Objectives of the Thesis

1.4.1 Vision

Improving the performance of software defect prediction models using Machine

Learning (ML) techniques.

1.4.2 Focus

The focus of the thesis is centred on several key research objectives, each addressing a

specific aspect of software defect prediction modelling. These objectives are designed

to systematically explore, analyse, and improve the factors that influence the perfor-

mance of software defect prediction models, with a particular emphasis on feature

selection and parameter tuning. The research is also focused on developing novel

and improved classification models that are effective in identifying defect-proneness,

thereby enhancing the predictive accuracy and reliability of software defect prediction

models. To ensure the reliability and generalizability of the predictive models, the

research employs rigorous validation techniques, including ten-fold cross-validation,

to minimize bias in the results. Thus, this study explicitly addresses the following

objectives:

The proposed work has the following main objectives:

• To perform a systematic literature review in order to gain insights into the effect

of feature selection techniques on software quality prediction models.

• To investigate the effect of feature selection on cross-project defect prediction.

22

Objectives of the Thesis

• To explore evolutionary feature selection algorithms and evaluate their effec-

tiveness for developing models for software defect prediction.

• To develop novel software defect prediction models using feature selection and

machine learning techniques.

• To analyse the effect of parameter tuning techniques for software defect predic-

tion models.

1.4.3 Goals

Each of the research objectives outlined above is accompanied by specific goals that

detail the steps and milestones necessary to achieve the desired outcomes. These goals

are designed to guide the research process, ensuring that each objective is addressed

systematically and comprehensively.

1. Systematic review of feature selection techniques employed for software

quality prediction models

• Study of existing research publications that would help to understand the

process and procedure of developing feature selection-based models for

predicting software defects.

• An extensive study of existing literature to understand the significance of

feature selection for software defect prediction.

• Study of various machine learning and statistical methods used in the

literature for developing software defect prediction models with their

strengths and weaknesses.

• A review of the literature would also help to gain insights into both the

quantitative and qualitative perspectives of predictive modelling and help

23

Objectives of the Thesis

to identify the problem areas and gaps in the existing literature.

2. To investigate the effect of feature selection on the cross-project defect

prediction

• To assess the significance of feature selection-based models on cross-

project defect prediction.

• To evaluate the competency of an ensemble of classifiers for cross-project

defect prediction and compare them with prevailing machine learning and

statistical techniques.

• To compare and statistically validate the results using some statistical

tools.

3. To explore evolutionary feature selection techniques and evaluate their

effectiveness for developing models for software defect prediction

• To assess the applicability of evolutionary-based feature selection algo-

rithms for software defect prediction models.

• To compare the performance of proposed evolutionary-based feature se-

lection techniques with other feature selection techniques to discover the

most suited algorithm for developing software defect prediction models.

• To analyse the evolutionary feature selection techniques using various

validation techniques in order to produce unbiased and generalised results.

4. To develop a novel software defect prediction model using feature selection

and machine learning techniques

• To propose a novel feature selection-based model for efficiently predicting

defects in software.

24

Objectives of the Thesis

• To utilise different machine learning techniques along with the feature

selection and compare their performances.

• To explore which metrics (features) are mostly selected by feature selection

techniques and how these metrics are related to software defects.

5. To analyse the effect of parameter tuning techniques on software defect

prediction models

• To evaluate and compare different Machine Learning and Deep Learning-

based software defect prediction models by optimizing their parameters.

• To investigate the impact of fine-tuning parameters in both preprocessing

stages and classifiers on the performance of software defect prediction

models.

• To assess the sensitivity of various classifiers to parameter tuning and its

influence on defect prediction accuracy.

• To examine the trade-off between parameter tuning and computational

efficiency, identifying techniques that offer the best balance between

performance and resource utilization.

25

Organization of the Thesis

1.5 Organization of the Thesis

This section presents the organization of the thesis. The thesis is structured into eight

chapters, each focusing on a specific aspect of the research undertaken to develop and

validate improved machine learning techniques for software defect prediction. The

organization of the thesis is as follows: Chapter 1 sets the stage for the entire research

work by presenting the basic concepts of the work and the motivation behind the thesis.

Chapter 2 details the research methodology adopted to achieve the research objec-

tives. Chapter 3 presents a comprehensive systematic literature review conducted

according to established guidelines to identify research gaps. Chapter 4 discusses the

construction of software defect prediction models focusing on feature selection and

extraction. Chapter 5 examines the impact of feature selection techniques on software

defect prediction. Chapter 6 proposes a novel software defect prediction model based

on an evolutionary algorithm for feature selection. Chapter 7 introduces two software

defect prediction models that integrate hyperparameter tuning with feature selection.

Finally, Chapter 8 presents the conclusions of the thesis. A brief description of each

chapter is provided below.

Chapter 1: This chapter sets the stage for the entire research work by discussing

the significance of software defect prediction in the context of software engineering. It

outlines the challenges associated with predictive modelling in software quality, such

as the need for efficient feature selection, parameter tuning, and handling imbalanced

data. The chapter also presents the research objectives, the scope of the study, and the

contributions of the research. Additionally, it describes the detailed steps involved in

developing software defect prediction models.

Chapter 2: This chapter details the research methodology adopted to achieve

the research objectives. It begins with a discussion on the study’s design, including

26

Organization of the Thesis

the selection of datasets, the choice of algorithms, and the evaluation metrics used to

assess model performance. The chapter also covers the experimental setup, data pre-

processing techniques, and the steps involved in developing and validating predictive

models. Finally, it discusses the systematic approach taken to address the challenges

identified in the research.

Chapter 3: The third chapter presents a comprehensive systematic literature

review conducted according to established guidelines. This review provides a detailed

understanding of the existing research in software quality prediction, with a focus

on the effects of feature selection in defect prediction, change impact analysis, and

maintainability estimation. The review highlights the strengths and limitations of

current approaches, identifies research gaps, and sets the foundation for the subsequent

chapters. Key findings from the review are used to justify the need for improved

techniques in software quality prediction.

Chapter 4: This chapter focuses on constructing software defect prediction

models, specifically examining feature selection and extraction techniques. It provides

an in-depth comparison of these techniques, assessing their effectiveness across

multiple datasets. The chapter offers valuable insights into selecting suitable feature

extraction methods and lays the groundwork for future exploration in the field.

Chapter 5: This chapter delves into the impact of feature selection techniques on

software defect prediction models, particularly in scenarios with limited historical data.

It explores cross-project defect prediction (CPDP) techniques, employing multiple

machine learning classifiers and feature selection algorithms. The findings highlight

the importance of combining feature selection with advanced algorithms to enhance

prediction accuracy, with statistical analyses confirming the significance of the results.

Chapter 6: This chapter introduces a novel model for software defect prediction,

focusing on challenges like redundant and irrelevant features in datasets. The proposed

model utilizes a variant of the Grey Wolf Optimizer for feature selection, combined

27

Organization of the Thesis

with the Synthetic Minority Oversampling Technique (SMOTE) to balance the dataset.

The chapter presents experimental results demonstrating the model’s superior perfor-

mance in improving prediction accuracy, validated by statistical techniques.

Chapter 7: This chapter presents two significant studies advancing software defect

prediction. The first study proposes an optimized approach to handling imbalanced

data and hyperparameter tuning using the Tree-structured Parzen Estimator algorithm

within the Optuna framework. The second study develops a stacked-ensemble model

utilizing deep learning techniques, such as convolutional neural networks and long

short-term memory networks. Both studies underscore the critical role of optimization

in enhancing the reliability and effectiveness of software defect prediction models.

Chapter 8: The final chapter summarizes the key findings and contributions

of the thesis. It discusses the implications of the research for both academia and

industry, highlighting the advancements made in software quality prediction. The

chapter also identifies potential areas for future research, offering suggestions for

further exploration and development in this field.

28

Chapter 2

Research Methodology

2.1 Introduction

Achieving the objectives of this research and ensuring reliable empirical results re-

quires a carefully structured approach. The research methodology serves as a blueprint

that provides a systematic sequence of steps, guiding the design, execution, and analy-

sis phases of empirical experiments. By adhering to a structured methodology, the

research gains consistency, reduces bias, and enhances the reproducibility and validity

of findings. This chapter presents the research methodology employed in this thesis,

offering a clear framework to address the research questions and validate the proposed

methods. It delineates each stage of the process, from defining the research problem

and reviewing relevant literature to selecting variables, analysing data, and developing

the experimental design. Each step is designed to build upon the previous one, ensur-

ing that the overall research process is cohesive, logical, and aligned with the research

objectives.

The chapter is structured as follows: Section 2.2 outlines the research process

employed for empirical experiments, followed by Section 2.3, which defines the re-

29

Research Process

search problem. Section 2.4 provides a comprehensive literature review, summarizing

relevant studies. Section 2.5 specifies the independent and dependent variables used in

this research, while Section 2.6 describes the data analysis techniques applied. Section

2.7 explains the data collection process, and Section 2.8 elaborates on the data prepro-

cessing techniques. Section 2.9 focuses on feature reduction methods, and Section

2.10 addresses data balancing strategies. Section 2.11 discusses the development and

validation of the prediction model, Section 2.12 reviews performance measures, and

Section 2.13 concludes with statistical analysis techniques.

2.2 Research Process

The research process is a systematically planned sequence of steps designed to thor-

oughly explore and address the research problem. This structured approach ensures a

logical flow, guiding each stage of the investigation from initial problem identification

through to experimental evaluation and conclusion. Figure 2.1 visually represents

the research process, illustrating the steps integrated throughout the chapters of this

thesis to maintain consistency and clarity. Each stage within this process is crucial,

contributing to a comprehensive and methodical investigation. The following sections

delve into each step, providing a detailed explanation of the activities undertaken at

each phase, how they relate to one another, and how they support the overall research

objectives. Through this structured process, the research not only achieves coherence

and direction but also fosters rigor and validity, ultimately enhancing the reliability of

the empirical findings.

30

Identify the Research Problem

Figure 2.1: Research Process

2.3 Identify the Research Problem

The initial step in the research process involves formulating the research problem.

During this phase, the core issue under investigation is clearly articulated and defined

in the form of specific research questions (RQs). These RQs serve as a guide, providing

focus and direction to the research efforts. By defining precise RQs, the study

establishes a framework for conducting experiments that aim to systematically explore

31

Literature Review

and answer these questions.

In this thesis, the following research questions are addressed, each designed to

contribute to a deeper understanding of the research problem and to achieve the study’s

objectives. These RQs shape the methodology, guiding the selection of data, analysis

techniques, and experimental design to produce meaningful and reliable insights:

1. What is the current state of literature in the domain of Software Defect Prediction

(SDP), and what research gaps exist related to feature selection?

2. How does the performance of SDP models based on feature selection vary when

developed from imbalanced datasets?

3. What evolutionary-based feature selection techniques can researchers utilize to

develop efficient SDP models?

4. How does parameter tuning perform in developing SDP models with feature

selection?

2.4 Literature Review

To understand the research problem, a comprehensive literature survey of existing

studies on software defect prediction (SDP) is essential. Through this review, we

gain insight into the extent to which the SDP problem has been explored in the litera-

ture. Over the years, researchers have developed various models aimed at predicting

software defects []. These models establish relationships between internal character-

istics of software and defect proneness. Software metrics are used to capture these

internal characteristics, and models have been developed using both commercial and

open-source project datasets. Such models assist software practitioners in predict-

ing defect-prone components early in the development stages. Identifying software

32

Defining Study Variables

defects early allows project managers to allocate resources efficiently, focusing on

components with high defect potential. Consequently, the literature emphasizes that

developing effective SDP models is crucial for enhancing software quality.

2.5 Defining Study Variables

In empirical investigations, there are two types of variables involved: independent

(predictor) variables and dependent (response) variables. The dependent variable is the

primary focus of the research. In this study, the dependent variable is software defects.

This variable is influenced by the independent or predictor variables. Through these

independent variables, the dependent variable can be predicted. Independent variables

must remain unaffected by other variables in the analysis[55]. This thesis aims to

develop SDP models that use independent variables to predict software defects, the

dependent variable. Here, the independent variables are software metrics that represent

various characteristics of software classes. We examine independent variables from

widely recognized software metric suites to explore their relationship with software

defects.

2.5.1 Independent Variables

The independent variables employed in software defect prediction models primarily

consist of a wide range of software metrics. These metrics serve as the foundational

features for analyzing and predicting the presence of defects within software systems.

A comprehensive explanation of these metrics, including their definitions, classifica-

tions, and roles in defect prediction, is provided in section 1.3.1 of this thesis. This

section delves into the specifics of each metric, offering detailed insights into their

derivation and measurement.

33

Data Analysis Methods

2.5.2 Dependent Variables

In software defect prediction, the dependent variable also referred to as the target

variable or response variableâis a crucial component of the modelling process, as

it determines the outcome that the model aims to predict. This variable typically

indicates the presence or absence of defects within a software module, file, or code

unit, serving as the basis for evaluating the effectiveness of the predictive model [72].

One common approach is to use a binary classification for the defect status. In

this case, the dependent variable categorizes components into two groups: defective

(represented as 1) and non-defective (represented as 0). This binary framework is

prevalent in traditional defect prediction studies, where the objective is to determine

whether a particular component is likely to contain defects based on historical data and

various software metrics. The simplicity of this approach makes it easy to interpret

and implement, especially in contexts where the goal is to identify high-risk areas

within the code base.

2.6 Data Analysis Methods

In this thesis, we have employed a variety of machine learning (ML), ensemble, and

deep learning (DL) techniques to construct prediction models with enhanced accuracy

and reliability. ML techniques encompass traditional algorithms that capture and

model the underlying relationships between predictor variables and the target variable,

often relying on mathematical equations. These algorithms, such as support vector

machines (SVM) and k-nearest neighbours (KNN), learn from historical data by

identifying patterns within the dataset, allowing them to represent and generalize the

relationships between independent and dependent variables to predict outcomes in

new data instances.

34

Data Analysis Methods

Ensemble techniques, on the other hand, leverage the power of combining multiple

models to address challenges in prediction accuracy and optimization. Techniques

such as Random Forest (RF), Gradient Boosting (GB), and Adaptive Boosting (AB) are

used to build a collection of models and aggregate their outputs, yielding predictions

that are more accurate and resilient to overfitting than individual models. These

methods are particularly effective in optimizing prediction results, as they combine

the strengths of diverse models, thus enhancing the overall performance and stability

of the predictive system.

Deep learning (DL) techniques, including architectures like Convolutional Neural

Networks (CNN), Long Short-Term Memory networks (LSTM), and Gated Recurrent

Units (GRU), are used to capture intricate patterns within the data by leveraging multi-

layer neural networks. Unlike traditional ML techniques, DL models have a greater

capacity to represent complex, high-dimensional relationships, making them well-

suited for tasks requiring high-level feature extraction and temporal pattern recognition.

These models learn through deep architectures, enabling them to generalize effectively

to unseen data and provide powerful predictions for complex datasets. Overall, the

combination of ML, ensemble, and DL approaches in this thesis enables a robust and

comprehensive approach to predictive modelling.

Table 2.1 presents an overview of the data analysis techniques utilized in this

thesis, categorized into three primary groups: Machine Learning (ML), Ensemble

Techniques, and Deep Learning (DL). The Machine Learning category includes

traditional algorithms such as Support Vector Machine (SVM), K-Nearest Neighbors

(KNN), Naive Bayes, and Multi-Layer Perceptron (MLP), which are widely used for

their ability to model relationships between independent and dependent variables.

The Ensemble Techniques category highlights methods like Random Forest (RF),

Bagging, Gradient Boosting (GB), Adaptive Boosting (AB), and Extreme Gradient

Boosting (XGB). These techniques combine multiple models to enhance prediction

35

Data Analysis Methods

accuracy and reduce overfitting.

The Deep Learning category showcases advanced neural network architectures

such as Convolutional Neural Networks (CNN), Long Short-Term Memory networks

(LSTM), Gated Recurrent Units (GRU), and Multi-Layer Perceptrons (MLP). These

models are particularly adept at capturing complex patterns in high-dimensional and

sequential data.

This categorization reflects the comprehensive approach taken to leverage various

techniques for improved predictive performance and reliability

Table 2.1: Data Analysis Techniques

Category Techniques
Machine Learning (ML) SVM (Support Vector Machine), KNN (K-Nearest Neigh-

bors), Naive Bayes, MLP (Multi-Layer Perceptron)
Ensemble Techniques RF (Random Forest), Bagging, GB (Gradient Boosting), AB

(Adaptive Boosting), XGB (Extreme Gradient Boosting)
Deep Learning (DL) CNN (Convolutional Neural Network), LSTM (Long Short-

Term Memory), GRU (Gated Recurrent Unit), MLP (Multi-
Layer Perceptron)

2.6.1 Support Vector Machine

Support Vector Machine (SVM) is a robust supervised learning algorithm commonly

applied to classification, although it can also be adapted for regression. SVM aims to

find an optimal decision boundary, called a hyperplane, that effectively separates data

points into distinct classes with the maximum possible margin[73, 74]. In SVM, the

margin is defined as the distance between the hyperplane and the closest data points

from each class. These closest points are known as support vectors, and they play a

crucial role in defining the boundary[75]. By maximizing the margin, SVM enhances

generalization, making it a powerful classifier, especially in high-dimensional spaces

[76].

36

Data Analysis Methods

The algorithm performs best when data is linearly separable, but real-world

datasets are often more complex and may not be linearly separable. In such cases,

SVM uses kernel functions to map the original feature space into a higher-dimensional

space, where a linear separation may become possible[77]. This transformation en-

ables SVM to handle non-linear relationships without explicitly increasing the dimen-

sionality of the input data, making it both powerful and computationally efficient[78].

SVM supports various kernel functions:

• Linear Kernel: Applies a linear transformation, useful when the data is already

linearly separable.

• Polynomial Kernel: Maps input features into a polynomial space, allowing

SVM to capture polynomial relationships between features.

• Radial Basis Function (RBF) Kernel: The most commonly used kernel in SVM;

it maps the data into an infinite-dimensional space, which enables it to model

complex decision boundaries.

• Sigmoid Kernel: This kernel functions similarly to a neural network activation

function and is typically used in specialized cases.

Through these kernels, SVM can handle complex and non-linear relationships, making

it highly adaptable to various types of data.

Key Parameters:

1. Kernel: The choice of kernel function is a critical decision in SVM. Each kernel

function (linear, polynomial, RBF, sigmoid) transforms the data in different

ways. For instance, the linear kernel is computationally efficient and effective

for linearly separable data, while RBF is suited for non-linear data. Selecting

the right kernel often requires experimentation and tuning based on the dataset

characteristics.

37

Data Analysis Methods

2. C (Regularization Parameter): The regularization parameter, C, controls the

trade-off between maximizing the margin and minimizing classification errors.

When C is high, the model prioritizes classifying all points correctly, even if

it leads to a smaller margin (more complex model). Conversely, a smaller C

value allows more misclassifications but promotes a wider margin, leading to

a simpler model that may generalize better. Thus, C is essential for balancing

model complexity with predictive accuracy.

3. Gamma (in RBF Kernel): Gamma controls the influence of a single training

example on the decision boundary. A high gamma value creates a more localized

impact, resulting in tighter, more complex decision boundaries around each

support vector, which can capture more intricate patterns but may lead to

overfitting. A low gamma extends the influence of each point, leading to a

smoother decision boundary and enhancing the model’s ability to generalize.

Gamma is especially important when using the RBF kernel, as it directly impacts

the decision surface complexity.

2.6.2 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is an instance-based, non-parametric algorithm often

used for classification, although it can also be adapted for regression [79]. Unlike most

algorithms, KNN does not build an explicit model during training instead, it memorizes

the training data points and performs predictions based on their proximity to a test

point. This is why KNN is considered a lazy learning algorithmâit doesn’t involve

training in the traditional sense but makes predictions in real-time by examining the

relationships between points in the dataset.[80, 81]

In KNN classification, the algorithm finds the K closest training examples (neigh-

bors) to a new input point and assigns a class label based on the majority class among

38

Data Analysis Methods

those neighbors. The distance metric used to calculate proximity significantly impacts

the model’s performance. Euclidean distance is the most commonly used metric,

defined mathematically as:

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2 (2.1)

where x and y represent two data points, and n is the number of features. This distance

metric helps determine which points are closest to the query point.

Key Parameters:

1. K (Number of Neighbors): K represents the number of nearest neighbors

considered when making predictions. Choosing an optimal K value is essential;

a small K may result in a noisy model that overfits, while a large K could lead

to underfitting, as it smooths out local distinctions. Typically, K is determined

through cross-validation or using domain knowledge. The optimal K can be

found using parameter tuning over a range of values to minimize prediction

error.

2. Distance Metric: The distance metric in KNN determines how the ”closeness”

of points is calculated. Common metrics include Euclidean Distance, Manhattan

Distance, and Minkowski Distance.

2.6.3 Naive Bayes

Naive Bayes is a probabilistic classifier grounded in Bayes’ theorem, which pro-

vides a mathematical framework for predicting class membership based on prior

knowledge[82, 83]. The fundamental principle behind Naive Bayes is to estimate

the probability of a class C given a set of features X = {x1, x2, . . . , xn}. This is

expressed using Bayes’ theorem as:

39

Data Analysis Methods

P (C | X) =
P (X | C)P (C)

P (X)
(2.2)

where:

• P (C | X) is the posterior probability of class C given the features X.

• P (X | C) is the likelihood, or the probability of observing features X given

class C.

• P (C) is the prior probability of class C.

• P (X) is the probability of observing the features X across all classes (this

serves as a normalizing factor).

In practice, Naive Bayes simplifies the computation of P (X | C) by making the

naive assumption that the features are conditionally independent given the class label.

This means that the presence of one feature does not affect the presence of another

feature, which drastically simplifies the likelihood computation:

P (X | C) =
n∏

i=1

P (xi | C) (2.3)

As a result, the posterior probability can be rewritten as:

P (C | X) ∝ P (C)
n∏

i=1

P (xi | C) (2.4)

This formulation allows Naive Bayes to efficiently compute class probabilities for

large datasets by leveraging the independence assumption, even if it is a simplification

of reality.

To classify a new observation, Naive Bayes computes the posterior probabilities

for each class and selects the class C∗ that maximizes this probability:

40

Data Analysis Methods

C∗ = argmax
C

P (C | X) (2.5)

Common Types of Naive Bayes:

• Gaussian Naive Bayes: Used when features are continuous and assumed to

follow a Gaussian (normal) distribution.

• Multinomial Naive Bayes: Suitable for discrete count data, such as word counts

in text classification. It models the likelihood using the multinomial distribution.

• Bernoulli Naive Bayes: Used for binary/boolean features.

2.6.4 Multi Layer Perceptron

A Multi-Layer Perceptron (MLP) is a class of feed-forward artificial neural network

that consists of multiple layers of nodes, including an input layer, one or more hidden

layers, and an output layer. Each node in the MLP is a neuron that receives input,

processes it, and passes the output to the next layer. MLPs are widely used for both

classification and regression tasks due to their ability to model complex, non-linear

relationships in data.[84–86]

Architecture:

• Input Layer: This layer receives the input features of the dataset. Each node in

this layer corresponds to one feature.

• Hidden Layers: These layers consist of multiple neurons (nodes) that perform

transformations on the input data. The depth (number of hidden layers) and

width (number of neurons in each layer) of the MLP significantly influence its

capacity to learn from data.

41

Data Analysis Methods

• Output Layer: The final layer produces the output, which can be a single value

(for regression) or a probability distribution across classes (for classification).

Forward Propagation:

In MLP, forward propagation involves the following steps:

• Each input feature is multiplied by its corresponding weight.

• The weighted inputs are summed and passed through an activation function,

producing the output for each neuron.

Mathematically, for a neuron j in a layer l, the output y(l)j can be expressed as:

y
(l)
j = f

(
n∑

i=1

w
(l)
ij y

(l−1)
i + b

(l)
j

)
(2.6)

where:

• w
(l)
ij is the weight connecting neuron i from the previous layer (l− 1) to neuron

j in the current layer l.

• y
(l−1)
i is the output of neuron i from the previous layer.

• b
(l)
j is the bias term for neuron j in layer l.

• f is the activation function applied to the weighted sum.

Backpropagation:

The backpropagation algorithm is used to minimize the error between the predicted

output and the actual target value. It updates the weights of the network based on the

gradient of the loss function with respect to each weight. The loss function can be

defined using various metrics, such as Mean Squared Error (MSE) for regression tasks

or Cross-Entropy Loss for classification tasks. For instance, the MSE is given by:

42

Data Analysis Methods

L =
1

N

N∑
k=1

(yk − ŷk)
2 (2.7)

where:

• L is the loss,

• N is the number of samples,

• yk is the true value, and

• ŷk is the predicted value.

During backpropagation, the gradients of the loss with respect to the weights are

calculated using the chain rule. The weight update rule can be expressed as:

w
(l)
ij ← w

(l)
ij − η

∂L

∂w
(l)
ij

(2.8)

where:

• η is the learning rate, controlling the size of the weight updates.

Key Parameters:

• Hidden Layers and Units:Determines the network’s capacity to model complex

relationships.

• Activation Function: Defines the non-linear transformation applied to the

weighted input.

• Learning Rate: Controls the size of updates during training.

• Batch Size: The number of samples processed before updating weights.

• Epochs: The number of passes through the entire training dataset.

43

Data Analysis Methods

2.6.5 Random Forest (RF)

Random Forest (RF) is an ensemble learning method that constructs a multitude of

decision trees during training and outputs the class that is the mode (for classification)

or the average (for regression) of the classes (or values) predicted by individual

trees[87–90]. The primary motivation behind using an ensemble of trees is to improve

predictive accuracy and control overfitting, which is a common issue in decision trees

due to their high variance.

The process of creating a Random Forest can be broken down into several key

steps:

1. Bootstrapping: For each tree, a random sample of the data (with replacement) is

drawn. This is known as a bootstrapped sample. As a result, some observations

will be repeated, while others may not be included in the sample at all. This

randomness in the training set helps in reducing overfitting.

2. Building Decision Trees: Each decision tree is constructed using the boot-

strapped sample. When building a tree, at each node, a random subset of

features is selected (rather than considering all features). This randomness leads

to trees that are decorrelated, meaning they make different errors on the training

data.

Mathematically, the prediction of a Random Forest can be represented as:

ŷ =
1

N

N∑
i=1

Ti(x) (2.9)

where:

• ŷ is the predicted value,

44

Data Analysis Methods

• N is the number of trees in the forest,

• Ti(x) is the prediction made by the i-th decision tree for input x.

Aggregation of Predictions:

• For classification tasks, the final prediction is based on majority voting, where

each tree votes for its predicted class, and the class with the most votes is

selected as the final output.

• For regression tasks, the average of all tree predictions is calculated.

The mode for classification can be expressed as:

ŷ = mode{T1(x), T2(x), . . . , TN(x)} (2.10)

Key Parameters:

• Number of Trees: Controls the size of the ensemble. A larger number of trees

generally improves stability but increases computational cost.

• Max Depth: Specifies the maximum depth of each tree. Deeper trees capture

more complex patterns but may overfit the training data.

• Max Features: Limits the number of features considered for splitting at each

node, introducing randomness and reducing overfitting.

• Min Samples Split: Determines the minimum number of samples required to

split an internal node. Higher values can reduce overfitting by limiting tree

depth.

45

Data Analysis Methods

2.6.6 Bootstrap Aggregating (Bagging)

Bagging, short for Bootstrap Aggregating, is an ensemble learning technique designed

to improve the stability and accuracy of machine learning algorithms. The primary

goal of Bagging is to reduce the variance of a predictive model by training multiple

instances of the same algorithm on different subsets of the training dataset, allowing

for the averaging of predictions [81, 91, 92]

The process begins by creating several bootstrapped samples from the original

dataset. A bootstrapped sample is formed by randomly selecting data points with

replacement, meaning the same data point can appear multiple times in the same

sample. The size of each bootstrapped sample is usually the same as the original

dataset.For each bootstrapped sample, a separate model (base estimator) is trained.

By combining the predictions of multiple models, Bagging reduces the likelihood of

overfitting and enhances the generalization capability of the ensemble.

2.6.7 Gradient Boosting (GB)

Gradient Boosting is an ensemble learning technique that constructs a predictive model

in a sequential manner, focusing on minimizing a specified loss function through

iterative updates. The primary goal of Gradient Boosting is to build a strong predictive

model by combining multiple weak learners, typically decision trees, into a single,

robust ensemble model.[93, 94]

The process begins with an initial prediction, often the mean of the target values

for regression tasks. Each subsequent tree is trained to predict the residuals (errors) of

the predictions made by the previous trees. This method allows the model to learn

from mistakes, effectively correcting the errors of its predecessors.[95]

Mathematically, if F (x) represents the current prediction for an instance x, and y

46

Data Analysis Methods

is the true target value, the residual error can be defined as:

ri = yi − F (xi) (2.11)

where ri is the residual for the i-th instance.

The next tree hm(x) is fit to the residuals, and the model is updated as follows:

Fm(x) = Fm−1(x) + η · hm(x) (2.12)

where:

• Fm−1(x) is the prediction from the previous iteration,

• η is the learning rate that controls how much of the new tree’s prediction

contributes to the overall model,

• hm(x) is the new tree being added.

The learning rate is a crucial parameter as it determines how quickly the model

adapts to the training data. A smaller learning rate typically requires more boosting

iterations to achieve optimal performance, while a larger learning rate can lead to

overfitting.

Gradient Boosting uses gradient descent to minimize the loss function, which

could be mean squared error (MSE) for regression tasks or log loss for classification

tasks. The update process can be visualized through the following objective function

that needs to be minimized:

L(F) =
N∑
i=1

l(yi, F (xi)) + Ω(F) (2.13)

where:

47

Data Analysis Methods

• L(F) is the total loss,

• l(yi, F (xi)) is the loss function (e.g., squared error for regression),

• Ω(F) is a regularization term to prevent overfitting.

By iteratively reducing the residual errors and minimizing the loss function, Gradi-

ent Boosting builds a powerful and robust predictive model capable of handling both

regression and classification tasks.

2.6.8 Adaptive Boosting (AdaBoost)

Adaptive Boosting, commonly referred to as AdaBoost, is a powerful ensemble

learning technique that enhances the performance of weak classifiers by combining

their outputs into a single strong learner. The fundamental idea behind AdaBoost

is to iteratively train multiple weak learners, typically decision stumps (single-level

decision trees), where each learner is trained to correct the errors made by the previous

ones.[96, 97]

The process begins with assigning equal weights to all training samples. In

each iteration t, the algorithm focuses on the samples that were misclassified by the

previous weak learner. Misclassified samples are assigned higher weights, forcing

the subsequent weak learner to pay more attention to them. The steps involved in the

AdaBoost algorithm can be summarized as follows:

1. Initialization: Set the initial weights of all training samples:

wi =
1

N
, for i = 1, 2, . . . , N (2.14)

where N is the number of training samples.

48

Data Analysis Methods

2. For each iteration t = 1, 2, . . . , T :

(a) Train a weak classifier ht(x) using the weighted training data.

(b) Calculate the error ϵt of the weak classifier:

ϵt =

∑N
i=1wi · I(yi ̸= ht(xi))∑N

i=1wi

(2.15)

where I is the indicator function that equals 1 if the sample is misclassified

and 0 otherwise.

(c) Compute the classifier’s weight αt based on its performance:

αt =
1

2
ln

(
1− ϵt
ϵt

)
(2.16)

(d) Update the weights of the training samples:

wi ← wi · exp (−αt · yi · ht(xi)) (2.17)

where yi is the true label of the i-th sample. This adjustment increases the

weights for misclassified samples and decreases the weights for correctly

classified ones.

(e) Normalize the weights:

wi ←
wi∑N
i=1wi

(2.18)

3. Final Model: The final strong classifier H(x) is a weighted sum of the individual

weak classifiers:

H(x) =
T∑
t=1

αt · ht(x) (2.19)

49

Data Analysis Methods

The prediction is made by applying a sign function to H(x):

Prediction(x) = sign(H(x)) (2.20)

Through this iterative correction process, AdaBoost effectively converts weak

learners into a robust composite model, significantly improving predictive accuracy.

2.6.9 XGBoost (Extreme Gradient Boosting)

XGBoost (Extreme Gradient Boosting) is an advanced implementation of the gradient

boosting framework, designed for efficiency, flexibility, and portability. It improves

upon traditional gradient boosting by integrating optimization techniques and regular-

ization to enhance model performance and prevent overfitting.[98]

In XGBoost, trees are constructed sequentially, meaning each new tree aims

to correct the errors made by the previously built trees. This approach focuses on

minimizing a custom loss function, typically based on the residuals of the predictions,

allowing the model to learn from its mistakes.[22]

The key concept behind XGBoost is the use of gradient descent to minimize the

loss function. For a given dataset with n samples and m features, XGBoost can be

represented mathematically as follows:

ŷ
(t)
i = ŷ

(t−1)
i + αt · ht(xi) (2.21)

where:

• ŷ
(t)
i is the prediction for the i-th instance after t iterations,

• ŷ
(t−1)
i is the prediction for the i-th instance from the previous iteration,

• αt is the learning rate (shrinkage),

50

Data Analysis Methods

• ht(xi) is the output of the new tree added at iteration t.

The loss function L in XGBoost can be expressed as:

L =
n∑

i=1

ℓ(yi, ŷi) +
K∑
k=1

Ω(fk) (2.22)

where:

• ℓ(yi, ŷi) is the loss function measuring the difference between the actual and

predicted values for sample i,

• Ω(fk) is a regularization term for the k-th tree.

The use of regularization (both L1 and L2) helps to control model complexity and

avoid overfitting, making XGBoost particularly powerful for real-world applications

where datasets can be noisy or sparse.

2.6.10 CNN (Convolutional Neural Networks)

Convolutional Neural Networks (CNNs) are a class of deep learning models specifi-

cally designed to process and analyze spatial data, particularly images. CNNs excel

at automatically detecting patterns and features in images by mimicking the human

visual system. The architecture of CNNs typically consists of several layers, including

convolutional layers, pooling layers, and fully connected layers, which work together

to transform raw pixel data into meaningful representations for tasks such as image

classification, object detection, and segmentation.[99, 100]

1. Convolutional Layers: The core component of a CNN is the convolutional layer,

which applies a set of learnable filters (also known as kernels) to the input

image. Each filter detects specific features, such as edges or textures, by sliding

across the image and performing a dot product operation between the filter and

51

Data Analysis Methods

the input data. Mathematically, the output O of a convolutional layer can be

represented as:

O(i, j) =
k∑

m=−k

k∑
n=−k

I(i+m, j + n) ·K(m,n) (2.23)

where:

• I is the input image,

• K is the filter or kernel,

• (i, j) are the spatial dimensions of the output feature map,

• k is half the size of the filter dimensions.

This operation highlights the features present in the image, enabling the net-

work to learn hierarchical representations as the data passes through multiple

convolutional layers.

2. Activation Function: After convolution, an activation function, usually ReLU

(Rectified Linear Unit), is applied to introduce non-linearity into the model. The

ReLU function is defined as:

ReLU(x) = max(0, x) (2.24)

This step allows the network to learn complex patterns.

3. Pooling Layers: Following convolutional layers, pooling layers reduce the spa-

tial dimensions of the feature maps while retaining the most critical information.

This helps decrease the number of parameters and computation in the network,

mitigating the risk of overfitting. The most common pooling method is max

52

Data Analysis Methods

pooling, defined as:

O(i, j) = max
m,n
{I(s · i+m, s · j + n)} (2.25)

where:

• s is the stride, indicating how far the pooling window moves,

• m and n span the dimensions of the pooling window.

Pooling reduces the dimensionality while preserving the features extracted by

the convolutional layers.

4. Fully Connected Layers: After several convolutional and pooling layers, the

final feature maps are flattened and fed into one or more fully connected layers.

Each neuron in these layers is connected to every neuron in the previous layer,

enabling the network to make final predictions based on the learned features.

The output can be computed as:

O = σ(W ·X + b) (2.26)

where:

• W is the weight matrix,

• X is the input from the previous layer,

• b is the bias term,

• σ is the activation function, commonly softmax for multi-class classifica-

tion.

53

Data Analysis Methods

2.6.11 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a specialized type of recurrent neural

network (RNN) explicitly designed to capture long-range dependencies and avoid the

vanishing gradient problem that traditional RNNs often face. LSTMs achieve this by

utilizing memory cells and gates that regulate the flow of information.[101–103]

An LSTM cell consists of three primary gates:

1. Input Gate: Controls the extent to which new information flows into the cell.

2. Forget Gate: Decides what information to discard from the cell state.

3. Output Gate: Determines what information to output from the cell.

The key equations governing these operations are as follows:

1. Forget Gate:

ft = σ(Wf · [ht−1, xt] + bf) (2.27)

where:

• ft is the forget gate vector,

• σ is the sigmoid activation function,

• Wf is the weight matrix for the forget gate,

• ht−1 is the hidden state from the previous time step,

• xt is the current input,

• bf is the bias.

2. Input Gate:

it = σ(Wi · [ht−1, xt] + bi), C̃t = tanh(WC · [ht−1, xt] + bC) (2.28)

54

Data Analysis Methods

where:

• it is the input gate vector,

• C̃t is the candidate cell state vector,

• Wi and WC are the weight matrices for the input gate and candidate state,

• bi and bC are the biases.

3. Cell State Update:

Ct = ft · Ct−1 + it · C̃t (2.29)

where:

• Ct is the updated cell state,

• Ct−1 is the previous cell state.

4. Output Gate:

ot = σ(Wo · [ht−1, xt] + bo), ht = ot · tanh(Ct) (2.30)

where:

• ot is the output gate vector,

• ht is the hidden state,

• Wo is the weight matrix for the output gate,

• bo is the bias.

2.6.12 Gated Recurrent Unit

Gated Recurrent Units (GRUs) are a simplified variant of LSTMs, designed to retain

the capability of capturing long-term dependencies while being more computationally

55

Data Analysis Methods

efficient. GRUs combine the forget and input gates into a single update gate and have

a reset gate that controls the influence of the previous hidden state.[100, 104]

The equations for a GRU are as follows:

1. Update Gate:

zt = σ(Wz · [ht−1, xt] + bz) (2.31)

where:

• zt is the update gate vector,

• σ is the sigmoid activation function,

• Wz is the weight matrix for the update gate,

• ht−1 is the previous hidden state,

• xt is the current input,

• bz is the bias term.

2. Reset Gate:

rt = σ(Wr · [ht−1, xt] + br) (2.32)

where:

• rt is the reset gate vector,

• Wr is the weight matrix for the reset gate,

• br is the bias term.

3. Candidate Activation:

h̃t = tanh(Wh · [rt · ht−1, xt] + bh) (2.33)

where:

56

Empirical Data Collection

• h̃t is the candidate activation,

• Wh is the weight matrix for the candidate activation,

• bh is the bias term.

4. Final Hidden State:

ht = zt · ht−1 + (1− zt) · h̃t (2.34)

where:

• ht is the final hidden state,

• zt is the update gate vector,

• h̃t is the candidate activation.

The final hidden state ht is a linear interpolation between the previous hidden state

ht−1 and the candidate activation h̃t, controlled by the update gate zt.

2.7 Empirical Data Collection

Empirical validation data, which is essential for assessing and improving software

prediction models, can be drawn from various sources, including industrial software

systems, open-source projects, and academic or research-driven software systems.

Each source type offers distinct advantages and limitations in terms of accessibility,

cost, and relevance. Recently, however, open-source datasets have emerged as the

predominant choice for empirical validation, largely due to their inherent benefits and

the support of a collaborative community that continues to enhance their utility.

One of the primary reasons for the increasing popularity of open-source datasets

in empirical validation is ease of accessibility. Open-source projects are typically

available to the public, allowing researchers to access a wide array of data without

57

Empirical Data Collection

the limitations posed by proprietary or restricted systems. Additionally, open-source

datasets are cost-effective as they often eliminate licensing fees or usage restrictions,

making them accessible for researchers or institutions with limited resources.

In light of these advantages, this thesis primarily utilizes various open-source

datasets to empirically validate the proposed models. These datasets, chosen for

their rich characteristics and broad applicability, allow for in-depth analysis and

benchmarking of software defect prediction methods. To establish a systematic

approach, the thesis begins by outlining the data collection process, detailing how

these datasets were acquired, pre-processed, and prepared for analysis. Following this,

each dataset is described in detail, with an emphasis on key attributes such as defect

rates, project size, and code complexity that are crucial for understanding their role in

empirical validation within the study.

This thesis utilizes a range of open-source software datasets from diverse domains.

The main goal of selecting datasets across different domains was to achieve more

generalized results. Additionally, the open-source nature of these datasets enhances

the replicability of the findings.

2.7.1 Dataset Details

In the early stages, some academic researchers and companies employed non-public

datasets, such as proprietary projects, to develop defect prediction models [105].

However, it is not possible to compare the results of such methods to each other,

as these datasets cannot be obtained. Since machine learning researchers faced

similar problems in the 1990s, they created a repository called the University of

California Irvine (UCI) Machine Learning Repository. Inspired by the success of the

UCI repository, researchers created the PROMISE repository of empirical software

engineering data, which has collected several publicly available datasets since 2005.

58

Empirical Data Collection

In addition, some researchers spontaneously publish their extracted datasets for further

empirical study on software defect prediction.

In this section, we briefly introduce existing publicly available and commonly

used benchmark datasets.

Table 2.2: Summary of Publicly Available Software Defect Datasets

Dataset Number
of
Projects

Metric Used Number of
Metrics

Granularity Description

AEEEM 5 CMs, process
metrics

61 Class Open-source projects for eval-
uating defect prediction mod-
els.
http://bug.inf.usi.ch

NASA 13 CMs 20 to 40 Function NASA Metrics Data Program.
http://openscience.us/repo/

PROMISE 38 CMs 20 Class Open-source, proprietary, and
academic projects.
http://openscience.us/repo/

ReLink 3 CMs 26 File Recovering links between
bugs and changes.
www.cse.ust.hk/scc/ReLink.htm]

NASA Dataset

NASA benchmark dataset consists of 13 software projects [36]. The number of

instances ranges from 127 to 17,001, while the number of metrics ranges from 20

to 40. Each project in the NASA dataset represents a NASA software system or

sub-system, containing the corresponding defect-marking data and various static code

metrics (CMs). The repository records the number of defects for each instance using

a bug tracking system. The static CMs in the NASA datasets include size, readability,

complexity attributes, and other factors closely related to software quality. Each

project in NASA dataset represents a NASA software system or sub-system (from

various domains such as spacecraft instruments, real time predictive ground system,

zero-gravity experiment related to combustion and flight software for earth orbitting

satellites).

The Table 2.3 summarizes key details of the NASA datasets, including the pro-

59

Empirical Data Collection

Table 2.3: Summary of NASA Datasets

Dataset Language #Modules #Defective Modules #Features
CM1 C 498 49 37
JM1 C 7782 1672 21
MW1 C 403 61 37
PC1 C 1107 76 37
PC3 C 1077 134 37
PC4 C 1458 178 37
PC5 C++ 1711 471 38

gramming languages used, the number of modules, the count of defective modules,

and the number of features for each dataset. These datasets have been extensively

used for software defect prediction studies, demonstrating their relevance in empirical

validation.

PROMISE Dataset

Jureczko and Madeyski [106] collected some open source, proprietary and aca-

demic software projects, which are part of the PROMISE repository as shown in Table

2.4 . The collected data consists of 92 versions of 38 different software development

projects, including 48 versions of 15 open-source projects, 27 versions of six propri-

etary projects and 17 academic projects. Each project has 20 metrics in total which

contains McCabe’s cyclomatic metrics, CK metrics and other OO metrics.

RELINK Dataset

Three datasets in ReLink were collected by Wu et al. [52] to improve the defect

prediction performance by increasing the quality of the defect data. The defect

information in ReLink has been manually verified and corrected. Similarly on the

basis of link between bugs and changes, Kim et al. used the two projects in Eclipse 3.4.

They collected the defect data by mining the Eclipse Bugzilla and CVS repositories

and found that both projects have a high percentage of linked bugs (bugs whose

changes logs and bug reports are linked)[50]. For SWT, 92.27% bugs reported in

Bugzilla are linked to changes. For Debug, 95.92% bugs are linked. The detailed

information is prenet in Table 2.5

60

Empirical Data Collection

Table 2.4: Summary of PROMISE Repository Datasets Investigated by Jureczko and
Madeyski

Description and
Source

Dataset Language #Modules #Defective Modules #Features

Different releases of
open-source projects

Ant-1.7 Java 745 166 20
Camel-1.2 Java 608 216 20
Camel-1.4 Java 872 145 20
Camel-1.6 Java 965 188 20
Derby-10.2.1.6 Java 1963 648 20
Derby-10.3.1.4 Java 2206 661 20
Ivy-2.0 Java 352 40 20
Jedit-3.2.1 Java 272 90 20
Jedit-4.1 Java 312 79 20
Jedit-4.2 Java 367 48 20
Jedit-4.3 Java 492 11 20
Log4j-1.0 Java 135 34 20
Log4j-1.1 Java 109 37 20
Log4j-1.2 Java 205 189 20
Lucene-2 Java 195 91 20
Lucene-2.2 Java 247 144 20
Poi-3.0 Java 442 281 20
Tomcat-6.0 Java 858 77 20
Xalan-2.4 Java 723 110 20
Xalan-2.5 Java 803 387 20
Xalan-2.6 Java 885 411 20
Xalan-2.7 Java 909 898 20
Xerces-1.4 Java 588 437 20

Academic software Arc Java 234 27 20

Proprietary software
projects investigated
by Jureczko et al.

Prop-1 Java 18471 2738 20
Prop-2 Java 23014 2431 20
Prop-3 Java 10274 1180 20
Prop-4 Java 8718 840 20
Prop-5 Java 8516 1299 20
Prop-6 Java 660 66 20

Table 2.5: Summary of Additional Software Datasets

Dataset Language #Modules #Defective Modules #Features
Apache Java 194 98 26
Safe (OpenIntents) Java 56 22 26
Zxing Java 399 118 26
Debug Java 1065 263 17
SWT Java 1485 653 17

AEEEM dataset

AEEEM was used to benchmark different defect prediction models and collected

by D’Ambros et al. [2] Each AEEEM dataset consists of 61 metrics: 17 source CMs,

five previous-defect metrics, five entropy-of-change metrics, 17 entropy-of-source

CMs, and 17 churn-of-source CMs [16].

61

Data Preprocessing

Table 2.6: Summary of Software Datasets

Dataset Language #Modules #Defective Modules #Features
EQ Java 324 129 61
JDT Java 997 206 61
LC Java 691 64 61
ML Java 1862 245 61
PDE Java 1497 209 61

2.8 Data Preprocessing

Data preprocessing is essential in software defect prediction to improve data quality

and model accuracy. First, datasets are carefully examined for redundant data, such as

duplicate rows or columns, as these can skew model predictions. Missing values are

handled through imputation techniques (e.g., filling with mean or median values) or

by removing entries with excessive gaps, thereby reducing biases. Next, normaliza-

tion scales feature consistently, using either Min-Max normalizationâscaling values

between 0 and 1 while preserving relationshipsâor standard scaling, which centres

data with a mean of zero and unit variance, ensuring no feature dominates due to

scale. Feature selection is then performed to retain only the most relevant attributes,

enhancing model efficiency and interpretability by reducing dimensionality and re-

moving irrelevant or noisy features. Additionally, data balancing techniques, such

as oversampling minority classes, are employed to ensure that defect and non-defect

classes are represented fairly, preventing the model from favouring one class over the

other. Together, these preprocessing steps refine the dataset, enabling more accurate,

reliable, and generalizable defect predictions essential for robust software engineering

predictive modelling.

62

Data Preprocessing

2.8.1 Data Normalisation

Data normalization is a crucial preprocessing step in software defect prediction, as

it enhances model performance and accuracy by standardizing feature scales.[107]

The primary goals of normalization in this context are to bring features to a common

scale, thereby preventing features with larger magnitudes from dominating the model,

improving the convergence rate of algorithms, and reducing the impact of outliers.[55,

108] Common techniques include Min-Max scaling, and Z-score normalization, which

centres data with a mean of 0 and a standard deviation of 1, and log transformation,

which compresses wide-ranging values. Normalization yields several benefits, such

as improved model accuracy, faster convergence for iterative algorithms, and more

meaningful comparisons between software metrics. To maximize these benefits,

practitioners must select normalization techniques based on data distribution and

ensure consistent application across training and testing datasets. Properly normalized

data enhances defect prediction, enabling accurate identification of potential software

defects and optimizing testing resource allocation.

Min-Max Scaling

Min-Max scaling transforms the data to a fixed range, typically between 0 and 1

[100]. The formula for Min-Max scaling is as follows:

xscaled =
x− xmin

xmax − xmin
(2.35)

Where:

• x is the original value,

• xmin is the minimum value of the feature,

• xmax is the maximum value of the feature.

63

Feature Reduction

This technique is useful when you want to preserve zero values in sparse data and

when the distribution of the data is not Gaussian or unknown.

Z-score Normalization (Standard Scaling)

Z-score normalization transforms the data to have a mean of 0 and a standard

deviation of 1 [80]. The formula for Z-score normalization is as follows:

xscaled =
x− µ

σ
(2.36)

Where:

• x is the original value,

• µ is the mean of the feature,

• σ is the standard deviation of the feature.

This technique is particularly useful when the data follows a Gaussian distribution

and when dealing with outliers.

2.9 Feature Reduction

According to ”curse of dimensionality” as the number of dimensions (features) in-

creases, the volume of the space increases exponentially, making the available data

sparse. This sparsity can make it difficult to obtain reliable and accurate models.

Feature reduction techniques can be categorized into feature selection and feature

extraction. Feature selection is further subdivided into filter, wrapper, and embedded

models. The hierarchical figure 2.2 emphasizes the systematic approach to reducing

high-dimensional data for efficient analysis, enhancing computational performance,

and improving model accuracy in various machine learning applications. Feature

Selection which involves selecting a subset of the most relevant features from the

64

Feature Reduction

original dataset without transforming them. The goal is to improve model perfor-

mance by reducing overfitting and enhancing interpretability. .[Z. M. Hira and D.

F. Gillies, âA Review of Feature Selection and Feature Extraction Methods Applied

on Microarray Dataâ, Advances in Bioinformatics, vol.4, 2015.]. Feature Extraction

involves transforming the original features into a new set of features that capture

the most important information. This typically results in a lower-dimensional space,

where the new features may be combinations of the original features. [Z. A. Rana,

M. M. Awais and S. Shamail, âImpact of Using Information Gain in Software Defect

Prediction Modelsâ, Intelligent Computing Theory 2014, pp. 637â648, 2014.]

Figure 2.2: Types of Feature Reduction Technique

2.9.1 Feature Extraction

Feature extraction is an essential technique in machine learning and data analysis

that focuses on identifying and extracting relevant features from raw data to create

a more informative dataset as shown in 2.3. Its primary purposes are to reduce

data complexity (dimensionality) while retaining important information, enhance

the performance and efficiency of machine learning algorithms, and simplify the

65

Feature Reduction

analysis process. Common feature extraction techniques include Principal Component

Analysis (PCA), which reduces dimensionality while preserving maximum variance

and uncovering patterns between variables; Linear Discriminant Analysis (LDA),

which, like PCA, reduces dimensions but also considers class labels to maximize

class separability; and autoencoders, a neural network-based approach that learns

compressed representations of data by training the network to recreate its input,

thereby discovering underlying data structures. The benefits of feature extraction

include improved model accuracy and efficiency, reduced redundancy, faster learning

speeds, and enhanced interpretability of models.

Figure 2.3: Types of Feature Reduction Technique

Types of Feature Extraction Techniques

In this thesis, various feature extraction techniques were employed to enhance the

model’s ability to predict software defects effectively. The techniques used include

66

Feature Reduction

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel-

based Principal Component Analysis (K-PCA), and Autoencoders. Each of these

methods serves a unique purpose in transforming the original dataset into a more

manageable form, which retains the most significant information for analysis.

1. Principal Component Analysis (PCA)

PCA is a widely used technique that identifies principal components, which

are linear combinations of the original features that are orthogonal to each

other. The goal of PCA is to capture the maximum variance in the data with the

least number of principal components. Typically, this means that only a small

number of principal components are necessary to explain a significant portion of

the data’s variability.[109] To find these principal components, the covariance

matrix of the original data is computed, and the eigenvalues of this matrix are

determined. The principal components are then represented by the eigenvectors

associated with the largest eigenvalues.This dimensionality reduction technique

helps simplify the dataset while preserving its essential characteristics, making

it easier for predictive models to learn from the data.

2. Kernel-PCA (K-PCA)

K-PCA extends the traditional PCA into high-dimensional spaces through the

use of kernel functions. This approach is particularly useful for handling non-

linear relationships within the data.The kernel trick allows K-PCA to operate in

a transformed feature space without explicitly computing the coordinates of the

data in that space. Instead of using the covariance matrix, K-PCA calculates the

principal eigenvectors from the kernel matrix.This method has gained popularity

due to its effectiveness in various applications, including those involving support

vector machines, as it can reveal structure in the data that linear methods might

miss [110, 111].

67

Feature Reduction

3. Linear Discriminant Analysis (LDA)

LDA focuses on maximizing the separability between different classes within

the dataset. The main objective of LDA is to find a set of vectors that provide

the maximum separation between classes while minimizing the variance within

each class. This is achieved by analyzing the scatter matrices that represent

the variability within and between classes. By emphasizing the differences

between classes, LDA enhances the model’s ability to classify new data points

effectively. This technique is particularly valuable in scenarios where the goal

is to discriminate among multiple classes, making it relevant for software defect

prediction [112].

4. Autoencoders

Autoencoders are a type of neural network used for feature extraction and

dimensionality reduction. This technique allows for the learning of a non-

linear mapping between high-dimensional input data and a lower-dimensional

representation. A key advantage of autoencoders is their ability to stack multiple

hidden layers, which enables the generation of various levels of abstract features.

Typically, sigmoid activation functions are employed to facilitate the non-linear

transformations within the network.Autoencoders learn to compress the input

data into a compact representation and then reconstruct it, effectively capturing

the essential patterns within the data. This makes them a powerful tool for

feature extraction, particularly in complex datasets where traditional linear

methods may fall short [113].

68

Feature Reduction

2.9.2 Feature selection

Feature selection is a key preprocessing step in software defect prediction, aimed

at identifying the most relevant features to improve model outcomes. Its primary

purposes are to reduce data dimensionality, eliminate irrelevant or redundant features,

enhance model accuracy, reduce overfitting, and make models more interpretable.

Feature selection is a process of selecting a subset of relevant features from the original

set of features as shown in Figure 2.4. Feature selection benefits defect prediction

by boosting model accuracy, reducing computational demands, and identifying key

factors contributing to software defects. Challenges include computational costs of

finding optimal feature subsets, variability across selection methods, and balancing

noise removal with information retention. Recent research suggests that hybrid

approaches, such as combining filter and wrapper methods, as well as multi-objective

techniques, can optimize feature selection for both accuracy and efficiency.[114]

Effective feature selection addresses high-dimensionality issues in software metrics,

significantly enhancing prediction performance when tailored to dataset and model

requirements and validated for generalization.

69

Feature Reduction

Figure 2.4: Types of Feature Reduction Technique

Types of Feature Selection Techniques

Common feature reduction techniques include filter methods, which use statistical

measures to select features independently of the model (e.g., correlation, chi-squared,

information gain); wrapper methods, which evaluate feature subsets using predictive

models (e.g., recursive feature elimination); and embedded methods, which perform

feature selection during model training (e.g., LASSO and decision tree importance).

In this thesis following techniques are utilized to perform feature selection.

1. Filter Methods

Filter methods are a feature selection technique that evaluates features based on

statistical criteria before model training, making them computationally efficient

70

Feature Reduction

and highly scalable for high-dimensional data. Independent of any specific

learning algorithm, filter methods use statistical measures to score each feature,

rank them accordingly, and then select the top K features or those above a

defined threshold as shown in Figure 2.5. This flexibility allows them to be

used with various machine learning models, and they are often applied as an

initial step to swiftly remove irrelevant or redundant features, especially in large

datasets, streamlining the data for more effective model training.

Types of filter techniques

In this thesis, various feature selection techniques were employed to enhance

the performance and accuracy of software defect prediction models. Methods

such as Gain Ratio, Symmetric Uncertainty, ReliefF, Information Gain, and

OneR were utilized to evaluate and rank features based on their relevance and

ability to distinguish between defect-prone and non-defect-prone instances.

Figure 2.5: Working of Filter Technique

71

Feature Reduction

(a) Gain Ratio (GR): Gain Ratio is a modified type of information gain that

penalizes multivalued attributes to minimize bias. It is defined as the ratio

of Information Gain to the intrinsic information of the attribute:

GR(T, a) =
Information Gain(T, a)
Intrinsic Information(a)

(2.37)

Where T is the target variable and a is the attribute being evaluated [115,

116]

(b) Symmetrical Uncertainty (SU): It identifies the dependency between

two features. SU is used to measure the relevance of a feature to the target

class. Symmetric Uncertainty is defined as:

SU(X, Y) = 2 · I(X;Y)

H(X) +H(Y)
(2.38)

Where I(X;Y) is the mutual information, and H(X), H(Y) are the

entropies of X and Y , respectively [117].

(c) OneR (One Rule): This method generates one rule for each predictor in

the dataset, then selects the rule with the smallest total error as its ”one

rule.” OneR is a simple and interpretable feature selection method that

evaluates each feature in a dataset individually to determine its predictive

power for a target variable. The process begins by creating a frequency

table for each feature against the target variable, where each unique value

of the feature is paired with the most frequent class label. This establishes

a ”rule” for predicting the target variable based on that feature alone.

The error rate of this rule is then calculated by measuring how often it

incorrectly classifies instances. This process is repeated for all features,

and the feature with the lowest error rate is selected as the most important,

72

Feature Reduction

as it provides the most accurate prediction of the target variable. OneR’s

simplicity and transparency make it useful for initial feature selection,

though it may not capture complex relationships among features.[118]

(d) Information Gain (IG): Information Gain is a popular feature selection

technique that measures how much information a feature provides about

the target variable. The IG approach is based on entropy. After examining

the attributes, IG calculates the decrease in uncertainty about the class

tag.[119] IG’s bias is that it prefers to pick features of higher values.

(e) ReliefF: The value of a feature is determined by sampling an object

repeatedly and evaluating the magnitude of the given attribute for the

closest instances of the same and different classes.[120]

Working Steps of the ReliefF Algorithm

i. Random Sampling: ReliefF begins by randomly selecting an instance

from the dataset, referred to as the sample instance.

ii. Finding Nearest Neighbors:

• Nearest Hits: Instances that belong to the same class as the

sample.

• Nearest Misses: Instances from each of the other classes that are

closest to the sample instance.

This ensures that the algorithm considers both within-class and between-

class relationships for each feature.

iii. Feature Weight Update:

• For each feature, ReliefF updates a weight based on how well

the feature differentiates between the sample instance and its

neighbors.

73

Feature Reduction

• Specifically, the algorithm increases the weight if the feature

value differs between the sample and its nearest miss (indicating

that it can separate different classes).

• Conversely, the algorithm decreases the weight if the feature

value differs between the sample and its nearest hit (indicating

inconsistency within the same class).

• Mathematically, for a feature f , the weight update rule can be

expressed as:

W [f] = W [f] +
1

m

m∑
i=1

(∆Miss −∆Hit)

where m is the number of sampled instances, and the differences

depend on the feature values between the sample and its neigh-

bors.

iv. Repeating the Process:

• Steps 1-3 are repeated for a predefined number of sampled in-

stances.

• The algorithm can revisit features multiple times, refining the

weights as it processes more samples.

v. Ranking and Selecting Features:

• After iterating through multiple samples, the algorithm produces

a weight for each feature.

• Higher weights indicate more relevant features, as they consis-

tently contribute to distinguishing between classes.

• Features with the highest weights are selected for the final model.

2. Wrapper Methods

74

Feature Reduction

Wrapper feature selection is a powerful technique for identifying the most rel-

evant features for classification tasks, as it tailors feature subsets to a specific

classification model by ”wrapping” the selection process around the algorithm

as shown in Figure . It involves generating different feature subsets, train-

ing a classifier on each subset, evaluating its performance, and selecting the

best-performing subset. This approach can achieve high accuracy and captures

feature interactions, making it especially useful when feature relationships are

essential for prediction. However, it is computationally expensive, prone to

overfitting, and requires retraining for different classifiers. Common techniques

include the Sequential Selection Algorithms and Heuristic Search Algorithms.

The sequential selection algorithms start with an empty set (fullset) and add

features (remove features) until the maximum objective function is obtained.

[118]To speed up the selection, a criterion is chosen which incrementally in-

creases the objective function until the maximum is reached with the minimum

number of features. The heuristic search algorithms evaluate different subsets

to optimize the objective function. Different subsets are generated either by

searching around in a search space or by generating solutions to the optimization

problem.[121, 122]

75

Feature Reduction

Figure 2.6: Working of Wrapper Technique

Types of Wrapper Method

(a) Best First (BF)

Best First is a feature selection method that explores the feature space

using a search strategy to identify the subset of features that optimally

contribute to model performance. This technique can start from an empty

set, a full set, or any random subset of features, allowing flexibility in

search direction. It employs a heuristic search strategy, typically a greedy

approach, that incrementally adds or removes features based on an evalua-

tion criterion, such as model accuracy or a scoring function that reflects

feature relevance.[123].

(b) Exhaustive Search (ES)

76

Feature Reduction

Exhaustive Search (ES) is a feature selection method that evaluates all

possible subsets of features to find the optimal combination for a given

model. This approach systematically tests each feature subset, starting

from single-feature sets and progressing through all possible combinations

up to the full set of features.[124, 125] For each subset, a model is trained

and evaluated, usually based on a chosen metric (such as accuracy, F1-

score, or cross-validation error). The subset with the best performance on

this metric is selected as the final feature set.

How Exhaustive Search Works

• Generate All Subsets: ES begins by generating all possible feature

subsets from the dataset. For n features, this results in 2n− 1 possible

subsets (excluding the empty set), meaning the number of subsets

grows exponentially with the number of features.

• Train and Evaluate: For each subset, a model is trained, and its per-

formance is evaluated using the chosen metric. This step is repeated

for each subset, ensuring every combination is thoroughly tested.

• Select the Optimal Subset: The subset that yields the highest perfor-

mance metric is chosen as the optimal feature set for the model.

(c) Genetic Search (GS)

Genetic Search (GS) is an advanced feature selection method based on

genetic algorithms (GA), inspired by natural selection and evolution prin-

ciples. It is particularly advantageous for high-dimensional datasets

where exhaustive feature selection is computationally infeasible [126].

GS identifies the optimal feature subset by simulating evolutionary pro-

cessesâselection, crossover, and mutation effectively navigating the feature

space without testing every possible combination.

77

Feature Reduction

How Genetic Search Works

• Initial Population: The process starts by creating an initial popula-

tion of feature subsets, represented as binary vectors where each bit

denotes the inclusion (1) or exclusion (0) of a feature.

• Fitness Evaluation: Each subset’s ”fitness” is evaluated by training

a model and assessing its performance on metrics like accuracy or

cross-validation error.

• Selection: The highest-performing subsets, or parents, are selected to

create the next generation.

• Crossover: Parts of the binary vectors are exchanged between pairs

of parents, generating new feature combinations and increasing popu-

lation diversity.

• Mutation: Mutation flips bits in some subsets to include or exclude

random features, further exploring the feature space and reducing the

chance of premature convergence.

• Iteration and Stopping Criteria: This process of evaluating, select-

ing, and breeding new generations is repeated until a stopping cri-

terionâsuch as a fixed number of generations or minimal fitness im-

provementâis met.

• Optimal Subset Selection: The subset with the best fitness score at

the end is selected as the optimal feature set.

(d) Greedy Stepwise Search (GSS)

Greedy Stepwise Search (GSS) is a feature selection method that itera-

tively selects or removes features based on a chosen evaluation metric.

GSS is a straightforward approach that operates either in a forward or

backward manner to build an optimal feature subset. In forward selection,

78

Feature Reduction

the algorithm starts with an empty set and adds features one by one; in

backward elimination, it starts with all features and removes them one by

one. At each step, GSS evaluates the current subset’s performance and

only adds or removes a feature if it improves the model’s performance

[127].

How Greedy Stepwise Search Works

• Initial Setup: Depending on the strategy, GSS begins with either an

empty set (for forward selection) or a full set (for backward elimina-

tion).

• Iterative Addition or Removal:

– Forward Selection: GSS evaluates each unused feature by adding

it to the current subset and assessing the model’s performance.

– Backward Elimination: GSS removes each feature one at a time,

observing the effect on model performance.

• Greedy Decision Making: After each evaluation, the feature that most

improves the performance is added or removed permanently. If no

feature improves the subset, the algorithm stops.

• Stopping Criteria: The process continues until there is no further per-

formance improvement from adding or removing features, or another

predefined stopping criterion is met.

(e) Random Search (RS)

Random Search for feature selection is a method that explores the feature

space by randomly generating and evaluating subsets of features rather than

systematically examining every combination. Unlike structured methods

like exhaustive or greedy searches, Random Search offers a way to handle

high-dimensional feature sets by quickly generating a diverse set of subsets

79

Feature Reduction

without any particular pattern. It is often used when the feature space is

too large to feasibly evaluate each subset, providing a balance between

exploration and computational efficiency [127].

How Random Search Works

• Generate Random Subsets: The algorithm starts by generating random

subsets of features. Each subset can contain any number of features

chosen randomly from the full set.

• Evaluate Subsets: Each randomly generated subset is evaluated based

on a specific performance metric, such as accuracy, precision, or

cross-validation error. A model is trained with each subset, and the

results are recorded.

• Track the Best Subset: The algorithm keeps track of the best-performing

subset observed so far. As more subsets are evaluated, the algorithm

identifies the subset that yields the highest performance on the chosen

metric.

• Stopping Criteria: The process of generating and evaluating random

subsets continues until a predefined criterion is met, such as a fixed

number of iterations or reaching a performance threshold.

3. Embedded Methods Embedded methods are a powerful feature selection

approach that integrates selection directly into the model training process as

seen in Figure 2.7, making the process efficient and tailored to the model being

used. The typical workflow involves training a machine learning model, deriving

feature importance from it, and selecting the top predictor variables based on

their importance. This approach allows embedded methods to consider feature

interactions, similar to wrapper methods, but with faster computation and less

risk of overfitting. They also generally yield more accurate results than filter

80

Data Balancing

methods, offering a balanced solution for selecting optimized feature subsets.

Popular embedded methods include regularization-based techniques, such as

Lasso (L1 regularization) and Elastic Net, which reduce coefficients of less

relevant features to zero, which leverage inherent feature ranking capabilities.

By combining strengths of both filter and wrapper approaches, embedded

methods provide a practical and effective middle ground for feature selection

[128].

Figure 2.7: Working of Embedded Technique

2.10 Data Balancing

After removing the redundant and irrelevant attributes from data, we observed a sig-

nificant disparity in the number of data points between the low defect and high defect

81

Data Balancing

classes, resulting in imbalanced datasets (see Table 2.4). The non-defect modules con-

tained a substantially greater number of instances compared to the defective modules,

indicating a potential bias that could skew the predictions of any model trained on this

data. This imbalance is critical to address because it can lead to models that perform

well in predicting non-defective instances while failing to accurately identify defective

cases, thus undermining the overall effectiveness of Software Defect Prediction (SDP)

models. To develop effective and unbiased Software Defect Prediction (SDP) models,

it is crucial to tackle the issue of imbalanced data. In this thesis, we employ the

Synthetic Minority Over-sampling Technique (SMOTE) to address the imbalance in

the dataset. SMOTE is an advanced oversampling method that generates synthetic

instances of the minority class, in this case, the defective modules, by interpolating

between existing instances. This process involves selecting a sample from the minority

class and identifying its nearest neighbours. New synthetic samples are then created

by calculating the differences between the sample and its neighbours, adding these

differences to the original sample to produce new instances that are similar but not

identical [129, 130].

By augmenting the minority class with these synthetic examples, SMOTE helps

to balance the dataset, reducing the bias that can lead to skewed predictions. This

approach not only increases the number of defective instances available for training

but also enhances the model’s ability to learn the underlying patterns associated with

defects. Consequently, models trained on this balanced dataset are better equipped

to accurately predict both defective and non-defective modules, thereby improving

their overall predictive performance and reliability in real-world software engineering

applications. Through this method, we aim to mitigate the effects of data imbalance

and contribute to the development of robust and effective SDP models [100].

82

Prediction Model Development and Validation

2.11 Prediction Model Development and Validation

This thesis develops software defect prediction models in order to identify defect

prone modules in future and yet unseen releases of the software. The prediction

models learn from historical data of a project to identify which modules are likely to

be defective in future releases. The models are developed using supervised machine

learning techniques and use various data analysis techniques as discussed in Section

2.6. The training data for the model consists of both the independent variables

(software metrics) and the target variable (âdefectiveâ or ânon-defectiveâ). The data

analysis technique helps in learning the model. After the model is constructed, it is

validated. The validation data is such that only the value of independent variables is

provided to the model and the model is supposed to predict a label. The predicted

label is matched with the actual label to ascertain the performance of the model. There

exist various validation methods such as Leave-one-out, Hold-out, Cross validation

and Bootstrapping method [4].

But in this thesis, we utilized the 10-fold cross-validation method because it

strikes an effective balance between bias and variance. 10-fold cross-validation

provides a comprehensive evaluation by ensuring every data point is used for both

training and testing across multiple iterations, reducing the variance in performance

estimates through averaging. This approach balances the bias-variance trade-off

effectively, offering a stable and reliable estimate of model performance. Additionally,

by repeating the process, the reliability of the results is further enhanced, making

10-fold cross-validation a robust choice for evaluating predictive models [131].

Working

In 10-fold cross-validation:

1. The dataset is randomly divided into 10 equal-sized subsets or ”folds”.

83

Performance Measures

2. The model is trained and tested 10 times:

• In each iteration, 9 folds are used for training and 1 fold is used for testing.

• Each fold serves as the test set exactly once.

3. Performance metrics (e.g., accuracy) are calculated for each of the 10 iterations.

4. The average performance across all 10 iterations is used as the final estimate.

2.12 Performance Measures

In this thesis, performance metrics play a crucial role in evaluating the effectiveness of

software defect prediction (SDP) models. These metrics provide quantitative measures

to assess how well a model distinguishes between defect-prone and non-defect-prone

modules. By examining the predictions made by each model against the actual

data, performance metrics offer insights into various aspects of model quality, such

as accuracy, precision, recall, and overall reliability. Selecting appropriate metrics

is essential, as they reflect the modelâs ability to balance false positives and false

negatives, ensuring that defect predictions are both precise and practical for real-world

applications. This section outlines the specific performance metrics utilized in this

study and their relevance to achieving robust software defect prediction. In this thesis,

several performance metrics are used to evaluate the effectiveness of our SDP models.

These metrics include the confusion matrix, accuracy, ROC-AUC (Receiver Operating

Characteristic - Area Under the Curve), and MCC (Matthews Correlation Coefficient).

Below, each metric is explained in detail along with its mathematical formula.

Several performance metrics are used to evaluate the effectiveness of our SDP

models. These metrics include the confusion matrix, accuracy, ROC-AUC (Receiver

Operating Characteristic - Area Under the Curve), and MCC (Matthews Correlation

84

Performance Measures

Coefficient). Below, each metric is explained in detail along with its mathematical

formula.

1. confusion matrix

The confusion matrix is a powerful tool for evaluating the performance of

classification models, providing a detailed summary of correct and incorrect

predictions. It organizes the results of a binary classification task into four

distinct categories: true positives (TP), true negatives (TN), false positives (FP),

and false negatives (FN). Each of these components reveals specific aspects of

model behavior and contributes to a deeper understanding of model performance

[132, 133].

Components of the Confusion Matrix

(a) True Positives (TP): Cases where the model correctly predicts a positive

class (e.g., predicting a module as ”defective” when it is indeed defective).

(b) True Negatives (TN): Cases where the model correctly predicts a negative

class (e.g., predicting a module as ”non-defective” when it is indeed non-

defective).

(c) False Positives (FP) (Type I Error): Cases where the model incorrectly

predicts the positive class (e.g., predicting a module as ”defective” when

it is actually non-defective).

(d) False Negatives (FN) (Type II Error): Cases where the model incorrectly

predicts the negative class (e.g., predicting a module as ”non-defective”

when it is actually defective).

The confusion matrix is typically represented as a 2x2 grid as shown in Figure

2.8.

85

Performance Measures

Figure 2.8: Structure of Confusion Matrix

2. Accuracy

Accuracy is a commonly used metric that calculates the proportion of correct

predictions (both TP and TN) over the total number of predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.39)

While accuracy provides a general measure of model performance, it may not

be ideal for imbalanced datasets, as it does not distinguish between types of

errors [134].

3. ROC-AUC (Receiver Operating Characteristic - Area Under the Curve)

The ROC-AUC evaluates the model’s ability to distinguish between classes.

The ROC curve plots the true positive rate (TPR) against the false positive rate

(FPR) at various threshold settings. The AUC (Area Under the Curve) score

provides a single value ranging from 0 to 1, where a score closer to 1 indicates

better model performance [135].

TPR =
TP

TP + FN
(2.40)

FPR =
FP

FP + TN
(2.41)

86

Statistical Analysis Techniques

AUC =

∫ 1

0

TPR d(FPR) (2.42)

A value of 1 represents perfect classification, while 0.5 represents random

guessing.

4. Matthews Correlation Coefficient (MCC)

The Matthews Correlation Coefficient is a balanced measure [136] that takes

into account all four values in the confusion matrix (TP, TN, FP, and FN):

MCC =
(TP · TN)− (FP · FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.43)

The MCC ranges between -1 and +1, where +1 indicates perfect prediction, 0

indicates random prediction, and -1 indicates total disagreement.

Each of these metrics provides unique insights, but together they give a compre-

hensive view of the model’s performance. High accuracy indicates general predictive

power, ROC-AUC confirms the model’s ability to discriminate between classes, and

MCC confirms the model’s robustness even with imbalanced data. Therefore, a ”good”

SDP model would exhibit high values across these metrics, reflecting reliability and

effectiveness in identifying defect-prone modules.

2.13 Statistical Analysis Techniques

In the field of software defect prediction, it is essential to evaluate and validate various

hypotheses to ensure the reliability and robustness of the developed models. To achieve

this, we employ the Friedman statistical test, followed by the Wilcoxon signed-rank

post-hoc test. These non-parametric tests are advantageous because they do not

87

Statistical Analysis Techniques

rely on stringent assumptions regarding the underlying data, such as normality or

homogeneity of variances, which are often required for parametric tests. Furthermore,

as highlighted by Lessmann et al.[137], there is a notable scarcity of studies that

rigorously assess the statistical significance of results when comparing different defect

prediction models. Therefore, conducting thorough statistical analyses is crucial for

enhancing the validity of our conclusions and providing a more solid foundation for

the effectiveness of the proposed software defect prediction methodologies.

2.13.1 Friedman Test

Friedman test is used to rank the performance of k techniques over multiple datasets

[138]. It is based on the assumption that the performance measures of techniques

computed over different datasets are independent of each other. The Friedman test

hypothesis can be stated as follows:

• Null Hypothesis (H0): The performance of different techniques is not statisti-

cally different from each other.

• Alternate Hypothesis (Ha): The performance of different techniques is signifi-

cantly different from each other.

The Friedman test is based on the chi-square statistic (χ2), which can be computed

as follows:

Step 1:For a specific dataset, sort the performance values of all the techniques in

descending order. Allocate ranks to each technique based on their performance on

the specific dataset. Rank ‘1’ is designated to a technique with the best performance,

and rank ‘k’ is designated to the technique with the worst performance. In case two

techniques have equivalent performance on the dataset, assign the average of the ranks

that would have been assigned to the techniques.

88

Statistical Analysis Techniques

Step 2:Compute the total of ranks allocated to each technique on all the datasets.

The total ranks allocated to each technique are denoted by R1, R2, R3, . . . , Rk.

Step 3:Compute the χ2 statistic according to the following formula:

χ2 =
12n

k(k + 1)

k∑
i=1

(
R2

i

)
− 3n(k + 1) (2.44)

where Ri is the rank total of the ith technique and n is the total number of datasets.

The degree of freedom of the Friedman test is

2.13.2 Wilcoxon Signed Rank Test

This test is used either as a post-hoc test after the results of the Friedman test are found

significant or as an independent test to compare the pairwise performance of two

techniques. The test is applicable only when two different techniques are evaluated on

the same set of datasets [139]. The Wilcoxon test hypothesis can be stated as follows:

• Null Hypothesis (H0): The performance of the two compared techniques is not

statistically different from each other.

• Alternate Hypothesis (Ha): The performance of the two compared techniques is

significantly different from each other.

To conduct the test, we first compute the differences among the related pair of

values of both techniques. The resulting differences are ranked based on their absolute

values. The ranks are allocated according to the following rules:

• Remove the pairs where the difference between both techniques is zero. The

number of reduced pairs is denoted as nr.

• Assign a rank of â1â to the smallest absolute difference and so on to all the nr

pairs.

89

Statistical Analysis Techniques

• In case of a tie, an average of tied ranks is allocated.

Next, two variables R+ and R− are computed:

• R+ is computed as the sum of ranks where the difference is positive (i.e., the

first technique outperforms the second technique).

• R− is computed as the sum of ranks where the difference is negative (i.e., the

second technique outperforms the first technique).

The Z statistic is then computed as follows:

Z =
Q− µ

σ
(2.45)

where Q = min(R+, R−), µ = nr(nr+1)
4

, and σ =
√

nr(nr+1)(2nr+1)
24

.

If the Z statistic is in the critical region at a specific level of significance (e.g.,

α = 0.05), we reject the null hypothesis. This means that the performance of the two

compared techniques is significantly different from each other.

The Wilcoxon test was performed with Bonferroni correction to account for family-

wise error. With Bonferroni correction, a p-value is considered significant only if it is

less than α/c, where c is the total number of comparisons performed.

To evaluate the practical significance of the obtained results, we also report the

effect size of the Wilcoxon test for significant cases. The effect size was computed

using the following formula:

r =
Z√
N

(2.46)

where N is the total number of observations.

As indicated by Cohen [140], an effect size value of 0.1 is considered small, 0.3 is

considered medium, and 0.5 is considered large.

90

Chapter 3

A Systematic Review of Feature

Reduction Techniques for Software

Quality Predictive Modelling using

Object-Oriented Metrics

3.1 Introduction

Quality of software can be measured in terms of many attributes such as reliability,

maintainability, defect proneness, effort, and change proneness. To predict these

attributes in the upcoming version of the software, Software Quality Predictive Models

(SQPM) are constructed with the help of software metrics and quality attributes. There

are plenty of object-oriented metrics proposed by researchers in the past to measure

these quality aspects, such as QMOOD’s metrics, Chidamber & Kemerer metrics,

Lorenz & Kidd metrics, Li & Henry, and Briand et al., to name a few. These SQPMs

91

Introduction

quantitatively describe how the internal structural properties relate to relevant external

software quality attributes such as maintainability [141].

However, according to researchers in [142, 143], there are some grave issues that

need to be fixed before using the software quality prediction results to escort the quality

assurance process. One main concern is about identifying a subgroup of software

attributes that are considerably correlated with software quality attributes. Many

studies in Software Quality Prediction have stated a remarkably higher misprediction

rate that might be credited to some in-built issues linked with the project corpus. One

of the issues may be that the dataset contains unnecessary and redundant information,

and therefore, there is a requirement for preprocessing before using them for quality

prediction.

Many studies show that a large number of features may result in decreased accuracy

and high errors as compared to a reduced set of features. The high dimensionality

of the dataset can also result in high computational cost and memory usage. As

the efficiency of the Software Quality Prediction model is dependent on a group of

software metrics used for the model building process, the choice of the correct set of

software features is an essential and primary task[144].

Feature selection is a process of choosing a reduced set of relevant features from

available features such that the efficiency of the prediction model can be improved.

Each feature selection method analyses the available features and adopts a relevant set

of features. The criteria used to search the useful features depend on the nature of the

technique used. The author incorporated a software metric reduction technique, such

as Principal Component Analysis (PCA), to advance the efficiency of the models and

to decrease multicollinearity. In [145], Malhotra et al. used Correlation-based Feature

Selection (CFS), which helps to determine redundant and undesirable noisy features.

To identify the association between the feature reduction techniques and Software

Quality predictive modelling, it is essential to systematically examine empirical

92

Introduction

studies reported in the literature about the use of feature reduction techniques for the

development of Software Quality Predictive Modelling. In order to do so, we perform

a systematic review of existing studies in this area. We investigated the following

Research Questions (RQs), and the motivation behind them is provided:

Table 3.1: Research Questions and Motivations

RQ # Research Questions Motivation
RQ1 Which feature reduction tech-

niques have been widely used
for SQPM?

Identifies the commonly adopted
feature reduction techniques by re-
searchers.

RQ2 Which Object-oriented met-
rics are mostly used in studies
based on feature reduction in
SQPM?

Identifies the commonly used object-
oriented metrics by researchers in
the field of feature reduction for
SQPM.

RQ3 Which Object-oriented
datasets are commonly used
in studies based on feature
reduction in SQPM?

Identifies the popularly used
datasets by researchers in the field
of feature reduction for SQPM.

RQ4 Which feature reduction tech-
niques in combination with
machine learning techniques
have been widely used for soft-
ware quality attribute predic-
tion?

Explores the compatibility of feature
reduction techniques with machine
learning techniques.

RQ5 Which performance metrics
are used by experiments
for analyzing the developed
SQPM based on feature
reduction?

Identifies the performance metrics
used in literature for evaluating a
specific software quality predictive
model.

RQ6 Which validation method has
been used for SQPM based on
feature reduction?

Identifies the validation methods
commonly employed in the litera-
ture to assess the effectiveness of
software quality prediction models
(SQPM) that incorporate feature re-
duction techniques.

The review also helps in the identification of research gaps and provides future

93

Review Procedure

guidelines to researchers and practitioners. The aim of the review is to systematically

summarize the empirical evidence reported in the literature with respect to various

metrics, datasets, data analysis techniques, performance measures, validation methods,

and statistical tests used for software change prediction.

The chapter is organized as follows: Section 3.2 describes the review procedure

and the stages involved in conducting the review. Section 3.3 states the review protocol.

Section 3.4 provides the answers to each of the investigated RQs. Finally, Section 3.5

discusses the future directions.

3.2 Review Procedure

According to the guidelines advocated by Kitchenham et al. [146], a review is con-

ducted in three fundamental stages. These stages are reportedly planning, conducting

and reporting. The foremost step of the planning stage is to evaluate the necessity of

the review. As already discussed, the aim of the review was to assess and summarize

the empirical evidence in the domain of software change prediction. It intends to

provide an overview of existing literature in the domain and would scrutinize possible

future directions. Once the need of the review is assessed, the planning stage involves

formation of RQs. Thereafter, a review protocol is formulated. The protocol includes

a detailed search strategy. The search strategy consists of the list of possible search

databases one intends to scrutinize, the search string and the criteria for including

and excluding the extracted studies. Apart from the search strategy, the protocol also

includes the criteria for assessing the quality of the candidate studies, the procedure

for collecting the relevant data from the primary studies and synthesis of the collected

data. The second stage involves the actual execution of the review protocol. In this

stage, all the relevant literature studies are extracted, scrutinized and the relevant data

is obtained. The final stage of the review reports the results of the investigated RQs.

94

Review Protocol

The RQs are answered on the basis of the data extracted from primary studies.

3.3 Review Protocol

The review protocol includes the search strategy, inclusion and exclusion criteria,

and the quality criteria for assessing the collected candidate studies. The following

sections describe the review protocol followed.

3.3.1 Search Strategy

In order to design our search terms, we divided the explored RQs into comprehensive

logical units. Moreover, terms were identified from paper titles, keywords, and

abstracts. Thereafter, all equivalent terms and synonyms were compiled using Boolean

OR, while distinguishable search terms were aggregated using Boolean AND. The

period of the search was chosen from January 2000 to December 2020. The search

string for extracting candidate studies is as follows:

“Software” OR “Application” OR “Project” OR “Open-source project” OR “Prod-

uct” OR “Object-oriented” OR “empirical” OR “quality” OR “coupling” OR “cohe-

sion” OR “class” OR “inheritance” AND (“Bug” OR “Defect” OR “Fault” OR “Error”

OR “Cost” OR “Maintainability” OR “Maintenance” OR “Change” OR “Size”) AND

(“proneness” OR “prone” OR “prediction” OR “probability” OR “classification” OR

“estimation” OR “investigation”) AND (“Features” OR “Metrics” OR “Attribute” OR

“Variable”) AND (“Reduction” OR “Selection” OR “Extraction” OR “Subset”).

We searched a number of prominent search databases such as SCOPUS, Wiley,

SpringerLink, IEEExplore, ScienceDirect, and ACM Digital Library. We also searched

the reference lists of the extracted studies. As a result of this comprehensive effort,

we identified 115 relevant studies. These studies were then subjected to the inclusion

95

Review Protocol

and exclusion criteria, as described in Section 3.3.2.

3.3.2 Inclusion and Exclusion Criteria

The following inclusion and exclusion criteria were applied to the identified studies:

Inclusion Criteria

• Empirical studies using feature selection or extraction techniques.

• Empirical studies using datasets based on Object-oriented metrics.

• Empirical studies comparing the performance of feature selection or extrac-

tion techniques, machine learning techniques, deep learning, and statistical

techniques.

• Empirical studies proposing hybrid techniques by combining machine learning

techniques with some evolutionary feature reduction techniques.

Exclusion Criteria

• Studies on software quality prediction without empirical analysis of results.

• Empirical studies without any dataset based on Object-oriented metrics.

• Empirical studies where the dependent variable was other than fault/bug/defect,

change, or maintainability.

• Review studies.

• In case a conference paper was extended in a journal, only the journal version

of the paper was included.

96

Results Analysis

The inclusion and exclusion criteria mentioned above were analyzed by two

different researchers to arrive at the same decision after meetings and discussions.

In cases of differing views, in-depth scrutiny of the complete text was performed to

reach an agreement on inclusion or exclusion for that article. By implementing the

above-mentioned inclusion and exclusion conditions, 26 studies were selected.

3.3.3 Quality Criteria

It is important to analyse the significance and contribution of each selected study in

answering the various RQs. To attain assurance in the applicable studies, a quality

questionnaire is developed which contains 15 quality-based questions as given in

Table to measure their impact and offer weightage to the studies with respects to the

research questions of the systematic review. The Table includes the complete framed

15 questions and the percentage of primary studies answering these quality assessment

questions. The studies are graded between 0 to 1. 1 implies Yes (Y), 0 implies NO (N)

and 0.5 denotes Partly (P). For each study, the grade for each question is aggregated to

compute total marks. At max, any study could score a maximum of 15 and a minimum

of 0. All the studies whose QS was less than 7.5 (50% of the total quality score) were

rejected. After this step, a total of 22 literature studies were selected, which were

termed as primary studies of our review. Table 3.2 lists all the primary studies with

a specific allocated study number and its QS. Relevant data pertaining to RQs was

extracted from these studies and the obtained results are reported in Section 3.4

3.4 Results Analysis

This section states the results of the review. Around 56% of publications were from

journals, and 44% were from reputed national and international conferences. Table 3.3

97

Results Analysis

Table 3.2: List of Quality Assessment Questions

SN. Quality Assessment Question
Q1 Whether the objective of the study is clear?
Q2 Does the study add value to the existing literature?
Q3 Is the dataset size sufficient for this type of study?
Q4 Does the study perform the pre-processing analysis?
Q5 Are the independent and dependent variables clearly defined?
Q6 Is the data collection procedure clearly defined?
Q7 Does the study use statistical tests for result evaluation?
Q8 Are the experiment details clearly defined?
Q9 Are the validity threats given?
Q10 Does the study provide parameters of the test?
Q11 Are the drawbacks of the study given?
Q12 Does the study clearly define the performance parameters used?
Q13 Are the learning techniques clearly defined?
Q14 Are the results clearly stated?
Q15 Does the abstract provide sufficient information about the content of the

study?

lists the most popular journal and conference venues.

The quality assessment questions were allotted scores that were distributed into

three groups:

• High: 13 ≤ scores ≤ 15

• Medium: 10 ≤ scores ≤ 12

• Low: 0 ≤ scores ≤ 9

The Table 3.4 below represents a unique identifier for every chosen primary study.

These exclusive identifiers will be used in all successive segments to refer to their

equivalent selected primary study. A total of six primary studies, i.e., PS12, PS16,

PS18, PS19, PS20, and PS21, attained the highest scores. Keen readers can go through

these studies for further reading. Studies with low scores were discarded, and as a

98

Results Analysis

result, four studies with a score of ≤ 7.5 were removed from the relevant studies,

resulting in a total of 22 primary studies deemed suitable for the systematic review.

3.4.1 Result Analysis based on RQ1

RQ1: Which Feature Reduction Techniques Have Been Widely Used for SQPM?

Feature selection is a method of choosing a subset of significant features or

attributes from the available features of the dataset. Feature selection techniques can

be grouped into various categories such as wrappers, filters, and embedded techniques.

Wrappers refer to algorithms that use feedback from a learning algorithm to

determine which attribute(s) to use in building a classification model. In contrast,

filters select attributes using a method independent of an induction algorithm to

identify the most relevant attributes. Embedded techniques integrate the feature

selection algorithm as part of the learning algorithm, with the most typical example

being the random forest.

99

Results Analysis

Figure 3.1: Commonly Used Feature Reduction Techniques

Figure 3.1 illustrates the number of studies based on specific categories of feature

reduction techniques for SQPM, including change prediction, defect prediction, and

maintainability prediction. A total of 47 feature reduction methods have been identified

in the selected studies, out of which 17 have been used by two or more primary studies,

100

Results Analysis

and the remaining 30 have been used by a single primary study.

The most commonly used feature reduction technique for SQPM is Correlation-

Based Feature Selection (59%), followed by InfoGain, ChiSquare, and OneR (32%).

Other prominent techniques include PCA and Gain Ratio (27%).

3.4.2 Result Analysis based on RQ2

RQ2: Which Object-Oriented Metrics Are Mostly Used in Studies Based on Feature

Reduction in SQPM?

Among the selected primary studies, we identified 47 object-oriented independent

metrics (Figure 3.2). Number of Children (NOC) and Depth of Inheritance Tree (DIT)

are the most highly studied object-oriented metrics, being used by all primary studies.

Following these, Weighted Method per Class (WMC), Lack of Cohesion of Methods

(LCOM), and Response For Class (RFC) are the Chidamber and Kemerer (C&K)

metrics used in 95%, 95%, and 90% of primary studies, respectively.

On the other hand, coupling metrics such as Ancestor Class MethodâMethod

Import Coupling (AMMIC), Descendant Class MethodâMethod Export Coupling

(DMMEC), Other Class MethodâMethod Export Coupling (OMMEC), and Other

Class MethodâMethod Import Coupling (OMMIC) are evaluated by the least number

of primary studies, as they are used in only 4.5% of the studies.

101

Results Analysis

Figure 3.2: Object-Oriented Metrics Used in SQPM Studies

3.4.3 Result Analysis based on RQ3

RQ3:Which Object-oriented datasets are commonly used in studies based on feature

reduction in SQPM?

102

Results Analysis

With respect to the software systems and datasets used in the primary studies, it

was found (Figure 3.3) that a total of eight unique types of datasets were identified.

Among these:

• 11% are open-source projects,

• 8% are student projects,

• 11% are web-based datasets,

• 7% are Eclipse datasets,

• 22% are NASA datasets, and

• 33% are PROMISE datasets.

Key Datasets and Their Types

1. NASA Datasets: These datasets are publicly available in the NASA repository

provided by the NASA Metrics Data Program. They are the most used datasets

for SQPM and include projects such as KC1, KC2, and PC1, among others.

2. Student Data: These include academic software developed by students from

different universities.

3. PROMISE: These datasets are freely available in the PROMISE repository

(https://code.google.com/p/promisedata/) and include software

projects such as Camel, Ivy, and Xerces.

4. Open-Source Projects: This category involves studies that use open-source

projects such as Frinika, FreeMind, Drumbox, and Drumkit, among others.

5. Commercial Datasets: This category includes industrial and private datasets,

such as those from a commercial bank, a commercial Java application, and

103

https://code.google.com/p/promisedata/

Results Analysis

telecommunication companies. Examples include the User Interface System

(UIMS) and Quality Evaluation System (QUES).

6. Eclipse: The Eclipse dataset includes Eclipse JDT Core, Eclipse PDE UI,

Equinox Framework, and Mylyn projects. These are part of an open-source

project whose defect datasets are publicly available. Eclipse is an integrated

development environment developed in Java.

7. Android: Android packages such as Contacts and Gallery are used for the

prediction of software attributes.

Figure 3.3: Types of Datasets Used in Primary Studies

3.4.4 Result Analysis based on RQ4

RQ4: Which feature reduction techniques in combination with machine learning

technique have been widely used for Software quality attribute Prediction?

According to Figure 3.4, a total of 46 unique machine learning techniques were

identified. These techniques belong to various categories such as neural networks,

ensemble-based techniques, and evolutionary techniques.

104

Results Analysis

Approximately 45% of primary studies utilize Random Forests, Logistic Regres-

sion, and NaÃ¯ve Bayes, followed by Decision Trees, which are used by around 32%

of primary studies. Other notable techniques include Support Vector Machines and

ensemble techniques such as boosting.

Figure 3.4: Machine Learning Techniques Used in Primary Studies

105

Results Analysis

3.4.5 Result Analysis based on RQ5

RQ5: Which performance metrics are used by experiments for analysing the developed

SQPM based on feature reduction? In order to develop a predictive model and evaluate

its effectiveness, it is essential to use an efficient performance measure.

Figure 3.5: Performance Measures Used in Primary Studies

Figure 3.5 illustrates the performance measures identified in the selected primary

studies. Among these, we identified 25 unique performance metrics. Some of these

measures are used for regression-based problems, such as maintainability, while others

are used for binary classification problems, such as the prediction of change proneness

and defect proneness.

Nearly 63% of primary studies use the ROC-AUC measure for performance

evaluation. The second most popular measure is accuracy (27%), followed by F-

measure (23%).

106

Discussion

3.5 Discussion

In this study, we performed a systematic literature review to analyze and assess

the performance of feature reduction techniques for Software Quality Predictive

Modelling (SQPM). Following a systematic series of steps and evaluating the quality

of the studies, we identified 22 primary studies (2000â2020). We then summarized

the insights from the primary studies based on feature reduction techniques, metrics,

machine learning techniques, datasets, and performance measures.

The main findings obtained from the selected primary studies are as follows:

• The feature reduction techniques were broadly grouped into filter, wrapper, and

embedded categories. The most frequently used feature reduction techniques for

SQPM were Correlation-Based Feature Selection, OneR, and InfoGain. Other

prominent techniques included PCA and Gain Ratio.

• Two object-oriented metrics, i.e., Number of Children (NOC) and Depth of

Inheritance Tree (DIT), were used in all primary studies. Three metrics from

the CK metric suite were used in nearly 90% of the studies, whereas coupling

metrics like AMMIC, DMMEC, OMMEC, and OMMIC were evaluated in only

4.5% of primary studies.

• The PROMISE dataset was the most frequently used object-oriented dataset in

the primary studies. However, it was observed that not many studies utilized

commercial or Android datasets for assessing the usefulness of feature reduction

methods.

• Various machine learning techniques were identified in the literature for SQPM.

About 45% of primary studies used Random Forests, Logistic Regression, and

NaÃ¯ve Bayes, followed by Decision Trees, which were used in approximately

107

Discussion

32% of primary studies. Support Vector Machines and ensemble techniques,

such as boosting, were also prominently used with feature reduction techniques.

• Nearly 63% of primary studies used the ROC-AUC measure for performance

evaluation. Accuracy (27%) and F-measure (23%) were the next most popular

performance measures.

The following are guidelines for researchers and software practitioners for carrying

out future research on Software Quality Predictive Modelling using feature reduction

techniques:

1. To achieve more generalizable results, more studies should focus on SQPM

using feature reduction techniques. Comparative studies assessing the perfor-

mance of feature reduction techniques alongside machine learning techniques

should be conducted.

2. There is a lack of studies in the literature that examine the effect of feature ex-

traction techniques on software quality attributes using object-oriented metrics.

Future research should focus on assessing the prediction efficiency of these

seldom-used techniques.

3. More commercial object-oriented datasets should be made publicly available to

enable more experiments on freely accessible datasets.

4. Before applying feature reduction techniques to a dataset, researchers should

thoroughly understand the decision to use a specific feature reduction technique,

the characteristics of the machine learning technique, and the properties of the

dataset.

108

Discussion

Table 3.3: List of Publication Sources

SN. Publication Name Publication Type Count Percentage (%)
1 International Conference on Product Fo-

cused Software Process Improvement
C 1 4.348

2 Information and Software Technology J 1 4.348
3 Information Sciences J 1 4.348
4 International Conference on Multimedia

and Information Technology
C 1 4.348

5 Software Engineering: An International
Journal

J 2 8.696

6 Int. J. Mach. Learn. & Cyber. J 1 4.348
7 IEEE International Conference on Recent

Advances and Innovations in Engineering
C 1 4.348

8 Information and Software Technology J 2 8.696
9 Service-oriented Computing and Applica-

tions
J 1 4.348

10 IEEE International Conference on Compu-
tational Systems and Information Technol-
ogy for Sustainable Solutions

C 1 4.348

11 IEEE Annual Computer Software and Ap-
plications Conference

C 1 4.348

12 Journal of Intelligent & Fuzzy Systems J 2 8.696
13 IEEE ACCESS J 1 4.348
14 Innovations in Software Engineering Con-

ference (formerly known as India Software
Engineering Conference)

C 3 13.043

15 IEEE/ACM International Conference on
Mining Software Repositories

C 1 4.348

16 Empirical Software Engineering J 1 4.348
17 The Journal of Systems and Software J 1 4.348
18 International Conference on Enterprise In-

formation Systems
C 1 4.348

109

Discussion

Table 3.4: List of Selected Primary Studies

Primary Study Identifier Paper
PS 1 Catal (2007)
PS 2 Kanmani (2007)
PS 3 Catal (2009)
PS 4 Jin (2010)
PS 5 Malhotra (2011)
PS 6 Malhotra (2012)
PS 7 Malhotra (2013)
PS 8 He (2014)
PS 9 Singh (2014)

PS 10 Laradji (2015)
PS 11 Muthukumaran (2015)
PS 12 Kumar (2016)
PS 13 Kumar (2016)
PS 14 Nanda (2017)
PS 15 Chen (2017)
PS 16 Ghotra (2017)
PS 17 Malhotra (2018)
PS 18 Malhotra (2019)
PS 19 YU (2019)
PS 20 Kumar (2019)
PS 21 Kondo (2019)
PS 22 Sousa (2019)

110

Chapter 4

Software Defect Prediction using

Feature Extraction Techniques

4.1 Introduction

Software defect prediction (SDP) aims to classify software modules as defective

or non-defective, allowing software quality assurance teams to focus resources on

the most defect-prone components. Each software module is typically described

by a set of metrics or features, but as datasets have grown, many of these features

have become redundant or irrelevant. High-dimensional datasets lead to increased

computational costs and reduced model performance, a problem known as the ”curse

of dimensionality.” According to Bellman, the amount of data required for reliable

performance rises exponentially with the number of features, making large feature

sets inefficient and difficult to manage [147–149].

Feature extraction [150] is an essential technique to address high-dimensionality

in SDP. By transforming the original feature set into a smaller, more relevant subset,

feature extraction reduces complexity, removes noise, and improves model inter-

111

Research Background and Methodology

pretability. This technique allows models to retain the most informative features,

enhancing computational efficiency and prediction accuracy. Unlike feature selection,

which simply removes features, feature extraction generates new, non-redundant fea-

tures through transformations that preserve essential information. Common feature

extraction techniques include Principal Component Analysis (PCA), Linear Discrimi-

nant Analysis (LDA), and Kernel-based PCA, which help create a lower-dimensional

representation of the data while minimizing information loss.

In this chapter, both linear and non-linear feature extraction methods are investi-

gated to optimize defect prediction models. Reducing the dimensionality of feature

space without compromising data quality is crucial for effective defect prediction,

as it enables more efficient processing and yields more reliable, interpretable predic-

tions, ultimately supporting better software quality assurance practices. Furthermore,

the chapter examines the effectiveness of four feature extraction technique (FE) for

software defect prediction model. The results were validated with statistical test.

The structure of this chapter is as follows: Section 4.2 presents the research back-

ground and outlines the research methodology. Section 4.3 details the experimental

design. Section 4.4 provides the analysis of results, and finally, Section 4.5 discusses

the key findings of the chapter. The results of the chapter are published in [151]

4.2 Research Background and Methodology

This section provides insight into the procedures and methods used in this study.

Here we have briefly discussed each method required to perform the empirical study

such as the process involved in data collection, pre-processing, classification, model

validation, measuring performance and selection of statistical test.

112

Research Background and Methodology

4.2.1 Dataset Collection

In this study, nine open-source projects namely Ant - Version 1.7, ArcPlatform -

Version 1, Camel - Version 1.6, jEdit - Version 4.3, Log4j - Version 1.2, Poi - Version

3.0, Prop - Version 6.0, Tomcat - Version 6 and Xalan - Version 2.7 from Apache

software Foundation Systems which are publicly available in the open-source dataset

repository called PROMISE Repository are used as datasets. This is the most used

repository in Software Fault Prediction. For this study, different projects of varied

size as well as with different defect rate is considered, and these projects have 20

Object-Oriented metrics. Also, there is a defect label for each class which shows

whether a module is defective or not. The detailed information in present in Section

2.7.1.

4.2.2 Data Normalisation

Selection of normalization technique for specific data totally depends upon the user.

For this comparative study, 20 input variables are not in the same range of mag-

nitude. Hence, we perform data normalization on these attributes using min-max

normalization (Detailed in Section 2.8.1) to transform data within the range of [0, 1].

4.2.3 Feature Extraction Techniques

Dimensionality reduction techniques, such as Principal Component Analysis (PCA),

Linear Discriminant Analysis (LDA), Kernel-based Principal Component Analysis

(K-PCA), and Autoencoders, are applied to reduce the dataset’s dimensionality. PCA

maximizes variance retention while reducing dimensions, improving computational

efficiency. LDA focuses on maximizing class separation, making it suitable for

distinguishing defective from non-defective instances. K-PCA captures non-linear re-

113

Research Background and Methodology

lationships, allowing for flexibility in modelling complex data patterns. Autoencoders

utilize deep learning to learn compressed representations, effectively uncovering

intricate feature interactions. This combination of techniques addresses high dimen-

sionality challenges and enhances model performance and interpretability in defect

prediction. These techniques are detailed in Section 2.9.1.

4.2.4 classification Technique

The choice to focus on Support Vector Machine (SVM) in this study stems from its

proven effectiveness in handling classification tasks, particularly in the context of

software defect prediction. SVM is known for its ability to create robust decision

boundaries that maximize the margin between classes, making it particularly suitable

for datasets with clear class separations. Details of this method is given in subsection

3.8. Additionally, SVM performs well with high-dimensional data, which is common

in software metrics [152]

4.2.5 Model validation Technique

For model validation, we employed the 10-fold cross-validation method. The detailed

working can be found in Section 2.11.This approach was chosen to ensure robust

evaluation of model performance by dividing the dataset into ten subsets, allowing

each subset to serve as a test set while the remaining nine are used for training. This

technique minimizes overfitting and enhances generalization.

4.2.6 Performance Measures

Accuracy provides a straightforward assessment of the model’s overall correctness,

while ROC-AUC evaluates the trade-off between sensitivity and specificity, offering a

114

Experimental Design

comprehensive understanding of the model’s discriminative ability across different

thresholds. Hence these two methods are employed and comprehensive description

can be found in Section 2.12

4.2.7 Statistical Test

To statistically evaluate the performance of the feature extraction technique, we

employ the Friedman test (A full description can be found in Section 2.13). This

non-parametric test is advantageous due to its less stringent assumptions, allowing for

the potential oversight of anomalies within the datasets, as well as issues related to

homogeneity of variance and normality of distributions.

4.3 Experimental Design

This section outlines the process of variable selection, distinguishing between inde-

pendent and dependent variables essential for the study. It also details the formulation

of hypotheses that guide the research direction. Additionally, the tools and methodolo-

gies employed for conducting experiments are discussed, ensuring a robust framework

for data analysis.

4.3.1 Variable Selection

The independent variables used in this study consist of 20 software metrics, including

Lines of Code (LOC) and CK metrics. Examples of these metrics are Response for the

Class (RFC), Weighted Methods per Class (WMC), Depth of Inheritance Tree (DIT),

Number of Children (NOC), Coupling Between Objects (CBO), Lack of Cohesion in

Methods (LCOM), Afferent Coupling (CA), Efferent Coupling (CE), and Number of

Public Methods (NPM). A comprehensive overview of these independent variables

115

Results Analysis

is provided in Section 2.5. The dependent variable in this study is defect proneness,

which indicates whether a class is defect-prone or not.

4.3.2 Hypothesis Formulation

The following set of hypotheses has been developed to evaluate the defect prediction

model using machine learning techniques based on feature extraction.

• Null Hypothesis (H0): The ROC-AUC results of the defect prediction models

developed using SVM does not show any significant difference when no feature

extraction method or four different feature extraction methods (PCA, LDA,

K-PCA, Autoencoders) are used for the given datasets.

• Alternate Hypothesis (H1): The ROC-AUC results of the defect prediction

models developed using SVM shows the significant difference when no feature

extraction method or four different feature extraction methods (PCA, LDA,

K-PCA, Autoencoders) are used for the given datasets.

4.4 Results Analysis

4.4.1 Result Analysis based on RQ1

RQ1:How do different feature extraction techniques (PCA, LDA, K-PCA, Autoen-

coders) impact the accuracy of Support Vector Machine (SVM) models in defect

prediction across various software projects?

According to the value of accuracy performance measures in Table 4.1 and Fig-

ure 4.1, the analysis of the results for the various feature extraction techniques com-

bined with Support Vector Machine (SVM) classification reveals distinct performance

trends across different projects.

116

Results Analysis

The results indicate that the combination of PCA with SVM generally yields

competitive accuracy across most projects, achieving high scores particularly in

the Jedit (0.975) and Xalan (0.985) datasets. Linear Discriminant Analysis (LDA)

combined with SVM consistently provides solid results, particularly excelling in

projects such as Ant (0.828) and Arc (0.897). However, it slightly underperforms

compared to PCA in certain cases, such as Camel (0.801) and Log4j (0.902).

While Kernel PCA (K-PCA) shows good results, it appears less effective than

PCA in projects like Jedit (0.877) and Poi (0.632). Its performance might suggest

challenges in capturing complex patterns in some datasets. Using only SVM with-

out dimensionality reduction techniques yielded varying results. For instance, it

performed best in the Arc (0.898) and Jedit (0.970) datasets but was outperformed

by other combinations in the Camel (0.796) and Poi (0.765) datasets. Among the

feature extraction methods, Autoencoders (AE) combined with SVM also show strong

performance, especially with Jedit (0.977) and Prop (0.903).

Table 4.1: Accuracy Calculated for Each Project

Projects PCA LDA K-PCA AE Without FE

Ant 0.808 0.828 0.776 0.776 0.827
Arc 0.880 0.897 0.880 0.881 0.898
Camel 0.800 0.801 0.801 0.811 0.796
Jedit 0.975 0.957 0.877 0.977 0.970
Log4j 0.925 0.902 0.892 0.922 0.922
Prop 0.853 0.902 0.893 0.903 0.902
Poi 0.765 0.774 0.632 0.706 0.765
Tomcat 0.907 0.908 0.906 0.909 0.906
Xalan 0.985 0.986 0.878 0.987 0.978

117

Results Analysis

Figure 4.1: Accuracy of each FE technique.

4.4.2 Results Analysis based on RQ2

RQ2:To what extent do feature extraction methods influence the ROC-AUC perfor-

mance of Support Vector Machine (SVM) models, and how do these methods compare

when applied to datasets with diverse characteristics?

The evaluation of four feature extraction methods, as presented in Table 4.2 and

Figure 4.2, reveals notable differences in their effectiveness, particularly highlighting

the performance of Autoencoder (AE). With a mean accuracy of approximately 0.705,

AE emerges as the top-performing technique, demonstrating its ability to capture

complex patterns and relationships within the data. This high performance suggests

118

Results Analysis

that AE is particularly well-suited for feature extraction in contexts where capturing

nuanced information is crucial for model accuracy.

In contrast, the approach of using raw features without any extraction also yields a

commendable mean accuracy of around 0.693, placing it second overall. This finding

is somewhat surprising, as it indicates that, for certain datasets, the inherent features

may already contain sufficient information for effective predictive modeling. This

underscores the importance of thoroughly understanding the dataset before opting for

more complex feature extraction techniques.

Principal Component Analysis (PCA) ranks third with a mean accuracy of ap-

proximately 0.608. While PCA is widely recognized for its utility in reducing dimen-

sionality, its performance in this analysis suggests that it may not capture all relevant

aspects of the data as effectively as AE. Kernel PCA (K-PCA), which follows closely

with a mean accuracy of about 0.595, indicates that while it is designed to model

non-linear relationships, its performance does not significantly surpass that of PCA in

this context.

Linear Discriminant Analysis (LDA) ranks lowest, with a mean accuracy of around

0.582. This suggests that LDA may not be suitable for datasets where class separation

is not pronounced or where the assumptions of normality and equal variance do not

hold, further emphasizing the need to align the choice of feature extraction method

with the characteristics of the dataset.

The variability in performance across projects, ranging from 0.439 to 0.824,

highlights the significance of project-specific characteristics in determining the ef-

fectiveness of feature extraction methods. This variability suggests the potential for

tailoring methods to individual datasets or combining different techniques in ensemble

approaches, thereby improving predictive performance in future applications.

119

Results Analysis

Table 4.2: ROC-AUC Value for Each Project

Projects PCA LDA K-PCA AE Without FE

Ant 0.817 0.840 0.773 0.818 0.792
Arc 0.499 0.838 0.467 0.738 0.735
Camel 0.625 0.435 0.515 0.696 0.689
Jedit 0.289 0.595 0.447 0.762 0.560
Log4j 0.704 0.253 0.424 0.745 0.716
Prop 0.345 0.360 0.579 0.508 0.401
Poi 0.810 0.841 0.807 0.847 0.816
Tomcat 0.592 0.595 0.625 0.757 0.707
Xalan 0.788 0.478 0.719 0.476 0.822

Figure 4.2: ROC-AUC of each FE technique.

120

Discussion

4.4.3 Result Analysis based on RQ3

RQ3: What is the statistical significance of the differences in ROC-AUC performance

among software defect prediction models using various feature extraction methods

(Autoencoders, PCA, LDA, K-PCA), and how do these methods compare in their

effectiveness?

Using a non-parametric Friedman test to evaluate the hypothesis, the results led to

the rejection of the null hypothesis, indicating that the performance of models based

on different feature extraction methods significantly differed. Notably, the Autoen-

coder method demonstrated superior performance, achieving the highest ROC-AUC

score and ranking first among all techniques with a p-value of 0.009. This statisti-

cal significance suggests that Autoencoders are particularly effective for software

defect prediction in this context. The results highlight the importance of selecting an

appropriate feature extraction method, as the choice directly influences the model’s

performance. The significant differences in ROC-AUC scores between the various

methods underscore the potential benefits of using advanced techniques like Autoen-

coders, which may capture complex data patterns more effectively than traditional

methods such as PCA, LDA, or K-PCA. Overall, the findings emphasize the neces-

sity for careful consideration of feature extraction methods in developing effective

predictive models for software defects

4.5 Discussion

In this chapter, a comparison is performed on nine open-source software-systems

written in Java from PROMISE Repository using four mostly used feature extraction

technique such as Principal Component Analysis, Linear Discriminant Analysis,

Kernel-based Principal Component Analysis and Autoencoders and a machine learning

121

Discussion

classifier, i.e. Support Vector Machine. The model validation is performed by 10-

fold cross validation method, and the performance of the model is evaluated using

accuracy and ROC-AUC. Results of this study indicate that Autoencoders is the

effective method to reduce the dimensions of a software defect dataset successfully.

The findings highlight the effectiveness of using feature extraction techniques in

conjunction with SVM for improving prediction accuracy across different software

projects. PCA and AE appear to be the most promising techniques for enhancing

SVM performance, while LDA shows strong potential in specific scenarios on the

basis of accuracy as performance measure. Further exploration of these methods may

lead to improved predictive modelling in software defect prediction.

The result analysis on the basis of ROC-AUC reveals that Autoencoder (AE)

is the most effective feature extraction method, outperforming others with a mean

accuracy of 0.705. Surprisingly, raw features are nearly as effective. The variability in

performance across projects emphasizes the need for tailored approaches, suggesting

that combining methods or customizing feature extraction techniques could enhance

predictive modelling outcomes.

The analysis confirms significant differences in model performance based on

feature extraction methods, with Autoencoders achieving the highest ROC-AUC

score (p-value of 0.009). This underscores the effectiveness of Autoencoders for

software defect prediction, highlighting the critical role of selecting suitable feature

extraction techniques to enhance predictive model performance. In conclusion, this

chapter underscores the pivotal role of feature extraction techniques in enhancing

the predictive accuracy of software defect models. The comparative analysis of

nine open-source software systems demonstrates that Autoencoders stand out as

the most effective method, achieving the highest ROC-AUC scores. The findings

advocate for the strategic selection and customization of feature extraction methods

to optimize performance, revealing that a tailored approach can significantly impact

122

Discussion

the effectiveness of defect prediction models. Future research should continue to

explore these techniques, aiming for innovations that further improve the reliability

and accuracy of software defect predictions across diverse projects.

123

Chapter 5

Effect of Feature Selection on

Cross-Project Defect Prediction

5.1 Introduction

For SDP usually we perform conventional Within-Project Defect Prediction (WPDP),

in which for building the prediction model the training and test set belongs to a

single project. But it becomes difficult to predict defects in a new project because of

unavailability of past data and here WPDP remains ineffective.

However, CPDP in software has appealed much consideration of researchers in

the area of software engineering. To build an effective classification model in case of

unavailability of past data, CPDP turns out to be a promising method. In CPDP, the

training of the model is performed on different project and testing is performed on

the new project in which we intent to find the defects [153]. The dataset required for

training & testing consists of different types of software metrics such as size metric,

object- oriented metrics and process metrics. In many related works, researcher uses

datasets consisting of combination of these metrics which leads to high dimensionality

125

Introduction

of datasets and unwittingly incorporates redundant and irrelevant software metrics

into the dataset.

The predictive performance of classifiers in the CPDP model is adversely affected

due to presence of redundant and irrelevant metrics [154]. These undesirable software

metrics cause noise, over fitting and decrease in the performance of CPDP model. To

deal with these serious issues many feature selection techniques have been employed

for CPDP [155, 156]. These procedures decrease the dimensionality of dataset by

removing the software metrics which are irrelevant to the target variable. In many

related study authors have applied feature subset selection and feature ranking al-

gorithms for CPDP. Some previous studies have proposed models for analysing the

influence of FS techniques on the performance of cross-project defect prediction [157].

These methods for selecting features recognise and obtain the most useful features of

the dataset that are essential for prediction process. Features can also play a significant

role in a successful defect prediction model. If the data is available, but it is noisy,

or the features are trivial, the model will produce an ineffective result. As a result,

this data must undergo pre-processing to ensure that it is free of noise and is lesser

redundant [158].

Ever since several software metrics have been used and a number of FS methods

are existing to choose the most suitable metrics for CPDP, it is essential to investigate

and compare them. This finding persuades us to perform an empirical study by com-

paring of five feature subset selection (FSS) and five feature ranking (FR) techniques

for CPDP. The experiments are performed on four datasets that we have collected

from open-source PROMISE repository. The dataset is pre-processed using SMOTE

algorithm. Receiver Operating Characteristics- Area under Curve (ROC-AUC) is

used as performance indicator along with statistical tests for evaluation. The aim of

conducting this study is many-fold.

In this work, we aim to provide answers to the subsequent research questions

126

Introduction

(RQs): The motivation behind each research question (RQ) is driven by the need

to address critical challenges in Cross-Project Defect Prediction (CPDP) and the

importance of feature selection techniques in improving prediction accuracy.

• RQ1: Which features are selected by FSS and feature ranking (FR) techniques

for CPDP?

This question aims to identify the specific software metrics selected by feature

subset selection (FSS) and feature ranking (FR) techniques, which are essential

to determine which features contribute most effectively to defect prediction. By

exploring this, we aim to reduce the impact of irrelevant and redundant metrics,

which can degrade model performance in CPDP.

• RQ2: Which FS technique performed best for CPDP?

The motivation behind this question is to compare the effectiveness of different

feature selection (FS) techniques, specifically FSS and FR methods, in terms of

their ability to reduce dimensionality and improve the predictive performance

of CPDP models. It is crucial to identify the best-performing FS technique, as

the right method will enhance model accuracy and robustness by eliminating

irrelevant metrics.

• RQ3: Which classifier performed best using FSS & FR techniques for CPDP?

This question seeks to investigate how different classifiers perform when applied

to datasets processed using FSS and FR techniques. The goal is to identify

which classifier achieves the best predictive performance, taking into account

the feature selection process, and ultimately enhance the effectiveness of CPDP

models for defect prediction in new projects.

The organization of the chapter includes the Research Methodology in Section

5.2 beginning with data collection, it identifies the dependent and independent

127

Research Methodology

variables, discusses data balancing techniques, and outlines the feature selection

methods employed. The answers to the RQ’s are reported in Section 5.3 followed

by a discussion in Section 5.4. The results of the chapter are communicated as

[CPDP paper].

5.2 Research Methodology

In this segment, brief information related to the dataset used, feature selection tech-

niques, machine learning techniques, performance indicators, and statistical tests has

been discussed.

5.2.1 Data Collection

We selected open-source publicly available Ant-(1.7), Camel-(1.6), Ivy-(2), and

Tomcat-(6.0) datasets from the PROMISE repository. For a detailed description,

Section 2.7 can be referred to. These datasets are among the most extensively used

in the area of software defect prediction (SDP). The dataset consists of numeric data

types only. The selection of PROMISE datasets was based on the size of the projects

and the programming language used. These projects have more than 350 classes and

several release versions. Hence, these Java-based projects were found to be most

suitable for studies based on object-oriented metrics.

5.2.2 Dependent and Independent Variables

The independent variables used in this study are 20 object-oriented software metrics:

WMC, DIT, NOC, CBO, RFC, LCOM, CA, CE, NPM, DAM, MOA, MFA, CAM,

IC, CBM, AMC, MAX CC, AVG CC, LOC, and LCOM3. A complete overview can

be found in Section 2.5.1 of Chapter 2 . The dependent variable (DV) is the target

128

Research Methodology

variable being measured in the experimental process. The DV used in this study is

defect proneness, which has a binary value of ‘0‘ or ‘1‘. A value of ‘0‘ indicates

that the class or module is not prone to defects, whereas a value of ‘1‘ indicates

defect-proneness.

5.2.3 Feature Selection Techniques

In this study, we utilized five wrapper-based techniques: Best First (BF), Exhaustive

Search (ES), Genetic Search (GS), Greedy Stepwise Search (GSS), and Random

Search (RS), as well as five filter-based techniques: Gain Ratio (GR), Symmetri-

cal Uncertainty (SU), One-rule (OneR), Information Gain (IG), and ReliefF. These

techniques were employed for feature selection (FS) to preprocess the datasets. A

thorough overview is available in Section 2.9.

To apply the FS techniques to the datasets, a given model of FS for cross-project

defect prediction (CPDP) is shown in Figure 5.1. Here, S represents the original

source project containing a feature set {f1, f2, f3, . . . , fm}. T is the original target

project containing the same feature set. After performing feature selection on the

source project S, we obtain Sp, a preprocessed source project containing a reduced

set of features {f1, f2, f3, . . . , fn}, where n < m. This reduced set of features is then

applied to the target project T , yielding Tp, the preprocessed target project containing

the reduced feature set. The datasets Sp and Tp are then used for training and testing,

respectively, to calculate the results of CPDP with FS.

5.2.4 Data Balancing

The preprocessed dataset is balanced using SMOTE (Synthetic Minority Oversampling

Technique) to address the issue of imbalanced class data. For a complete overview,

refer to Chapter 2 Section. Many studies in existing SDP literature involve data

129

Research Methodology

Figure 5.1: Framework for Feature Selection in Cross-Project Defect Prediction.

preprocessing by applying balancing techniques to improve results. SMOTE and its

modified versions are the most popular and widely used methods for this purpose.

5.2.5 Machine Learning Classifiers

The attribute sets selected by each feature selection approach were evaluated using

specific learning algorithms to compare the effectiveness of various feature selection

strategies. The chosen algorithms include Naive Bayes (NB) for probabilistic classifi-

cation, K-Nearest Neighbors (KNN) for instance-based learning, Bagging (BAG) for

ensemble averaging, Random Forest (RF) for robust decision tree aggregation, and

AdaBoost (AB) for adaptive boosting. For an in-depth overview of machine learning

techniques, see Section 2.6.

In AdaBoost, the value of the maximum number of estimators was set to ‘100‘,

while all other parameters were left at their default values. Similarly, for Bagging, the

number of base estimators in the ensemble was set to ‘100‘, with other parameters at

default settings. For Random Forest, all parameters were set to their default values.

All experiments were performed using the Weka tool.

130

Result Analysis

5.2.6 Performance Indicator

The Receiver Operating Characteristic - Area Under the Curve (ROC-AUC) was used

as the performance indicator in our experiments to evaluate classifier performance.

When dealing with the classification of imbalanced class data, conventional perfor-

mance metrics such as accuracy, F-measure, or misclassification rate often prove

ineffective. Section 2.12 contains a detailed explanation of ROC-AUC.

5.2.7 Statistical Test

To validate the implications derived from the ROC-AUC values, statistical validation

was performed on the results. The Friedman test was used to determine whether

significant differences existed among the performances of various classifiers. In cases

where significant differences were observed, the Friedman test was followed by a

post hoc Wilcoxon signed-rank test for pairwise comparisons. This provided a deeper

understanding of classifier performance differences. A comprehensive overview of

these statistical tests and their application in this context can be found in Section 2.13.

5.3 Result Analysis

The analysis of our results is structured around addressing the key research questions

formulated at the outset of this study. Each research question was designed to evaluate

specific aspects of the predictive modelling framework, feature selection techniques,

and classifier performance in the context of software defect prediction. By aligning

the results with these research questions, we have ensured a focused and systematic

exploration of each objective.

131

Result Analysis

5.3.1 Result Analysis based on RQ1

RQ1. Which features are selected by FSS and feature ranking FR techniques for

CPDP?

To address RQ1, we analyzed the features selected by various feature subset

selection (FSS) and feature ranking (FR) techniques across different datasets. Table 5.1

presents FSS techniquesâsuch as BF, ES, and RSâshowing that some techniques

consistently select the same feature set (e.g., BF and GSS), while others (GS and ES)

select a unique set for 50% of datasets. Table 5.2 provides details on FR techniques like

GR, IG, and SU, which often share common features in certain datasets, while others

(OneR and ReliefF) display more variability by selecting unique features each time.

This comparison highlights how different techniques prioritize specific features across

datasets, offering insight into their effectiveness for cross-project defect prediction.

Features Selected by FSS Techniques

Table 5.1 shows that FSS techniques BF and GSS always select the same set of

features for all datasets. In contrast, the GS, ES, and RS techniques select a unique set

of features for 50% of datasets, while for the other 50%, they select a common set of

attributes.

Table 5.1: Details of selected features using the various FSS techniques.

Project Technique #Selected Features Selected Features

Ant BF, ES, GSS 2 RFC, NPM
GS 3 CBO, RFC, NPM
RS 3 RFC, CE, NPM

Camel BF, GSS, RS 9 DIT, NOC, CBO, LCOM, CA, IC, CBM, AMC, MAX CC
ES 9 DIT, NOC, CBO, CA, NPM, IC, CBM, AMC, MAX CC
GS 10 WMC, DIT, NOC, CBO, CA, NPM, IC, CBM, AMC, MAX CC

Ivy BF, GSS 8 WMC, CBO, RFC, CE, NPM, LOC, MOA, AMC
ES, GS, RS 9 CBO, RFC, LCOM, CE, NPM, LOC, DAM, MOA, AMC

Tomcat BF, ES, GS, GSS 5 CBO, RFC, LOC, MOA, MAX CC
RS 4 CBO, RFC, LOC, MAX CC

Features Selected by FR Techniques

132

Result Analysis

Table 5.2 represents the software metrics (features) picked by the FR techniques

based on the equation log2(f), where f = 20 (the total number of features in

each dataset). The initial four software metrics are chosen from the ranked list,

as log2(20) ≈ 4.

From the table, it can be determined that for three out of four datasets, GR and

SU select the same set of features. In 50% of cases, IG selects common features with

GR and SU, but in the remaining cases, it selects a unique set. In contrast, OneR and

ReliefF consistently select a unique set of features.

Table 5.2: Details of selected features using the various FR techniques.

Project Technique Selected Features

Ant GR, IG, SU RFC, LOC, CAM, LCOM
OneR RFC, MAX CC, CAM, LCOM
ReliefF RFC, MAX CC, CE, LOC

Camel GR DIT, NOC, CA, CBM
IG CBO, CA, AMC, MAX CC
OneR CA, DAM, IC, CBM
ReliefF DIT, CAM, IC, CBM
SU NOC, CBO, LCOM, CA

Ivy GR, SU MOA, LOC, RFC, NPM
IG LOC, RFC, WMC, LCOM
OneR CAM, CBO, LCOM, MOA
ReliefF DAM, LCOM3, CAM, MFA

Tomcat GR, IG, SU RFC, LOC, MAX CC, CBO
OneR RFC, CE, DAM, NPM
ReliefF DAM, LCOM3, CAM, MFA

133

Result Analysis

5.3.2 Result Analysis based on RQ2

RQ2. Which FS technique performed best for CPDP?

In Tables 5.3 to 5.6, we presented the ROC-AUC values of the five machine

learning classifiers with the features selected by the FSS techniques, FR techniques,

and when no feature selection was applied.

In Table 5.3, the values represent the ROC-AUC value for the case when Ant is

taken as the source (training dataset) and Camel, Ivy, or Tomcat is taken as the target

(testing dataset). Here, the ROC-AUC values vary from 0.53 to 0.82.For the case of

Ant→ Camel (where Ant is the training dataset and Camel is the testing dataset), the

best value of 0.7 is achieved by two combinations: GS+AB and RS+RF, where GS and

RS are the feature selection (FS) techniques and AB and RF are the classifiers. When

Ant is the training dataset and Ivy is the testing dataset, the best value of 0.81 is given

by the ReliefF+BAG combination. For Ant â Tomcat, the most promising ROC-AUC

values are given by ReliefF+BAG, while the worst performance is observed with the

GS and BAG combination.

When considering the case of Camel as the source dataset and the rest as the target

datasets, as shown in Table 5.4, the ROC-AUC values range from 0.43 to 0.81. The

best performance is achieved with the BAG classifier (0.81) using a subset of features

selected by the GS algorithm. In contrast, the FR techniques do not perform well

in this scenario, resulting in the least values (0.43), which is observed with the NB

classifier when features are ranked using the OneR technique.

The ranked features did not substantially increase the ROC-AUC values compared

to the values calculated for the entire set of features for the Ivy dataset. From Table 5.5,

it is evident that the AB classifier provided the best value of 0.8 for Ivy when features

were selected using the ES, GS, and RS techniques. The ROC-AUC values for the Ivy

dataset range from 0.51 to 0.8.

134

Result Analysis

Table 5.3: ROC-AUC Values for Ant

Category Types Classifiers Ant→ Camel Ant→ Ivy Ant→ Tomcat

No Feature Selection

NONE AB 0.67 0.81 0.76
RF 0.56 0.73 0.75
BAG 0.63 0.80 0.81
KNN 0.55 0.72 0.73
NB 0.53 0.67 0.71

Feature Subset Selection

BF, ES, GSS AB 0.65 0.80 0.76
RF 0.61 0.78 0.76
BAG 0.68 0.79 0.77
KNN 0.65 0.73 0.74
NB 0.57 0.68 0.73

GS AB 0.70 0.79 0.76
RF 0.58 0.75 0.75
BAG 0.53 0.71 0.67
KNN 0.54 0.75 0.73
NB 0.56 0.68 0.71

RS AB 0.60 0.80 0.74
RF 0.70 0.75 0.70
BAG 0.53 0.72 0.73
KNN 0.55 0.74 0.70
NB 0.53 0.67 0.72

Feature Ranking

GR, IG, SU AB 0.55 0.78 0.80
RF 0.53 0.71 0.76
BAG 0.54 0.73 0.75
KNN 0.58 0.74 0.74
NB 0.54 0.69 0.70

OneR AB 0.67 0.80 0.81
RF 0.55 0.78 0.76
BAG 0.63 0.80 0.78
KNN 0.55 0.71 0.71
NB 0.54 0.67 0.72

ReliefF AB 0.66 0.78 0.82
RF 0.58 0.76 0.76
BAG 0.59 0.82 0.74
KNN 0.55 0.77 0.74
NB 0.54 0.69 0.73

As shown in Table 5.6, for the Tomcat dataset, the AB classifier consistently yields

the maximum ROC-AUC value of 0.83, irrespective of the FS techniques used. The

minimum ROC-AUC values of 0.53 are primarily observed with the NB classifier

when features are ranked using RS, GR, IG, or SU techniques. Additionally, the

minimum value is also observed with the KNN and RF classifiers when features are

135

Result Analysis

Table 5.4: ROC-AUC Values for Camel

Category Types Classifiers Camel→ Ant Camel→ Ivy Camel→ Tomcat

No Feature Selection

NONE AB 0.74 0.71 0.80
RF 0.70 0.67 0.72
BAG 0.74 0.75 0.75
KNN 0.57 0.58 0.66
NB 0.68 0.67 0.74

Feature Subset Selection

BF, GSS, RS AB 0.73 0.76 0.79
RF 0.69 0.71 0.76
BAG 0.69 0.76 0.77
KNN 0.56 0.59 0.60
NB 0.56 0.62 0.69

ES AB 0.73 0.76 0.80
RF 0.65 0.71 0.76
BAG 0.68 0.78 0.76
KNN 0.59 0.59 0.67
NB 0.61 0.60 0.67

GS AB 0.74 0.73 0.77
RF 0.67 0.76 0.74
BAG 0.68 0.76 0.81
KNN 0.65 0.60 0.64
NB 0.58 0.63 0.69

Feature Ranking

GR AB 0.62 0.56 0.59
RF 0.59 0.60 0.64
BAG 0.58 0.63 0.64
KNN 0.57 0.55 0.59
NB 0.51 0.52 0.54

IG AB 0.72 0.75 0.78
RF 0.68 0.72 0.73
BAG 0.65 0.70 0.77
KNN 0.51 0.52 0.65
NB 0.62 0.57 0.70

OneR AB 0.70 0.68 0.69
RF 0.56 0.65 0.63
BAG 0.59 0.63 0.61
KNN 0.54 0.63 0.61
NB 0.43 0.64 0.62

ReliefF AB 0.58 0.66 0.59
RF 0.53 0.58 0.58
BAG 0.58 0.63 0.59
KNN 0.59 0.65 0.63
NB 0.49 0.57 0.51

SU AB 0.60 0.63 0.60
RF 0.55 0.59 0.60
BAG 0.58 0.63 0.59
KNN 0.60 0.65 0.61
NB 0.48 0.53 0.51

136

Result Analysis

Table 5.5: ROC-AUC Values for Ivy

Category Types Classifiers Ivy→ Ant Ivy→ Camel Ivy→ Tomcat

No Feature Selection

NONE AB 0.66 0.59 0.67
RF 0.76 0.55 0.67
BAG 0.75 0.54 0.74
KNN 0.73 0.52 0.72
NB 0.71 0.52 0.74

Feature Subset Selection

BF, GSS AB 0.75 0.62 0.75
RF 0.75 0.57 0.73
BAG 0.75 0.54 0.71
KNN 0.75 0.53 0.74
NB 0.67 0.53 0.72

ES, GS, RS AB 0.80 0.61 0.72
RF 0.73 0.54 0.71
BAG 0.74 0.55 0.72
KNN 0.75 0.53 0.68
NB 0.67 0.54 0.74

Feature Ranking

GR, SU AB 0.77 0.66 0.77
RF 0.71 0.54 0.69
BAG 0.75 0.61 0.69
KNN 0.74 0.53 0.70
NB 0.67 0.53 0.74

IG AB 0.74 0.55 0.75
RF 0.68 0.52 0.74
BAG 0.70 0.54 0.72
KNN 0.69 0.51 0.64
NB 0.67 0.53 0.70

OneR AB 0.74 0.66 0.78
RF 0.71 0.60 0.72
BAG 0.69 0.62 0.77
KNN 0.62 0.57 0.67
NB 0.63 0.55 0.72

ReliefFs AB 0.70 0.54 0.72
RF 0.66 0.54 0.71
BAG 0.68 0.54 0.67
KNN 0.68 0.55 0.65
NB 0.70 0.55 0.76

ranked by the ReliefF algorithm.

To find the best performing feature selection technique independently, we calcu-

lated the average AUC-ROC values for each FSS and FR technique. From Table 5.7, it

can be observed that BF, ES, and GSS perform the best with an approximate average

137

Result Analysis

Table 5.6: ROC-AUC Values for Tomcat

Category Types Classifiers Tomcat→ Ant Tomcat→ Camel Tomcat→ Ivy

No Feature Selection

NONE AB 0.81 0.68 0.83
RF 0.69 0.62 0.74
BAG 0.75 0.58 0.76
KNN 0.64 0.53 0.67
NB 0.65 0.55 0.68

Feature Subset Selection

BF, ES, GS, GSS AB 0.78 0.70 0.83
RF 0.72 0.67 0.73
BAG 0.74 0.70 0.81
KNN 0.65 0.65 0.78
NB 0.64 0.59 0.69

RS AB 0.75 0.69 0.83
RF 0.72 0.70 0.77
BAG 0.76 0.70 0.81
KNN 0.64 0.56 0.69
NB 0.64 0.53 0.68

Feature Ranking

GR, IG, SU AB 0.74 0.60 0.78
RF 0.67 0.57 0.70
BAG 0.73 0.60 0.77
KNN 0.64 0.56 0.68
NB 0.65 0.53 0.69

OneR AB 0.77 0.61 0.81
RF 0.69 0.57 0.76
BAG 0.70 0.61 0.75
KNN 0.64 0.54 0.68
NB 0.67 0.55 0.69

ReliefF AB 0.72 0.56 0.82
RF 0.68 0.53 0.68
BAG 0.65 0.53 0.67
KNN 0.66 0.55 0.69
NB 0.69 0.54 0.68

Table 5.7: Average AUC-ROC Values of FSS and FR Techniques

None BF ES GSS GS RS GR IG SU OneR ReliefF

0.68 0.70 0.70 0.70 0.68 0.68 0.65 0.66 0.65 0.66 0.64

AUC-ROC value of 0.70. Hence, it is evident that FSS techniques outperform FR

techniques when considering the average value of 60 combinations of cross-project

defect validation.

138

Result Analysis

5.3.3 Result Analysis based on RQ3

RQ3. Which classifier performed best using FSS & FR techniques for cross-project

defect prediction

Table 5.8: Mean Rank of the Classifiers Calculated by Friedman Test for FSS and FR
Techniques

Classifiers Mean Rank (Feature Subset Selection) Mean Rank (Feature Ranking)

AB 1.56 1.51
RF 2.70 3.10
BAG 2.31 2.58
KNN 4.29 3.77
NB 4.14 4.04

From Table 5.8, the Friedman test results indicate that the AB classifier exhibited

the best performance with mean ranks of 1.56 and 1.51 for FSS and FR techniques,

respectively. The null hypothesis, which states that ”the predictive performance of all

classifiers is equal,” is rejected, confirming statistically significant differences among

the classifiers’ performances.

Table 5.9: Results of Wilcoxon Signed-Rank Test for Pairwise Comparison of Classi-
fiers

Feature Subset Selection AB RF BAG KNN NB Feature Ranking AB RF BAG KNN

AB * S S S S AB * S S S
RF * S S S RF * NS S
BAG * S S BAG * S
KNN * NS KNN *
NB * NB

Table 5.9 displays the results of the Wilcoxon signed-rank test. For FSS techniques,

pairwise performances of all classifiers were significantly different (S), except for

KNN and NB, where the null hypothesis was accepted. For FR techniques, two

pairsâRF and BAG, and KNN and NBâdid not exhibit statistically significant differ-

ences (NS).

139

Discussion

Based on these statistical tests, it can be concluded that: AB is the best-performing

classifier for both FSS and FR techniques, showing statistically significant differences

from other classifiers. KNN and NB were the least-performing classifiers, with no

significant difference in their pairwise performances in specific cases.

5.4 Discussion

This chapter presents a comprehensive empirical comparison of feature selection

(FS) techniques for cross-project defect prediction (CPDP) using publicly available

PROMISE datasets. By examining five feature subset selection (FSS) and five feature

ranking (FR) techniques, alongside five machine learning classifiers, we aim to assess

the impact of FS on model performance.

Key Findings

• Both FSS and FR techniques significantly improve CPDP performance over

using no feature selection, emphasizing the need for a representative feature

subset or rationally ranked features to optimize model performance.

• When averaged across all datasets, FSS techniques consistently outperform

FR methods and scenarios without FS, demonstrating the advantage of FSS in

enhancing CPDP results.

• ROC-AUC values and statistical testing at a 95% confidence interval identify

AdaBoost (AB) as the most effective classifier, frequently producing superior

results when paired with FSS-selected features.

Findings Within Feature Selection Techniques

• BF and GSS consistently select the same set of features across datasets, indicat-

ing stability.

140

Discussion

• GS, ES, and RS offer flexibility by selecting unique sets of features in half of

the cases, and common features in the remaining cases.

• GR and SU typically select common feature sets across three out of four datasets.

• OneR and ReliefF regularly choose distinct feature sets, providing flexibility

for feature selection based on specific dataset needs.

Conclusively, ensemble-based classifiers like AdaBoost, when paired with FSS-

selected features, yield the most promising models for defect prediction, with this

approach being highly applicable across similar projects. Future research will explore

evolutionary FS techniques and expand CPDP analyses to include additional open-

source software projects, aiming to refine and generalize these findings further.

141

Chapter 6

A Novel Software Defect Prediction

Model using two-phase Grey Wolf

Optimisation for Feature Selection

6.1 Introduction

Software quality is a crucial factor in software engineering, directly influencing

user satisfaction, business efficiency, and cost-effectiveness. High-quality software,

with fewer defects, improves performance, reduces maintenance efforts, and offers a

competitive edge in the marketplace. Software Defect Prediction (SDP) helps identify

code sections prone to defects, improving development by targeting high-risk areas.

Feature Selection (FS) in SDP enhances model performance by eliminating irrelevant

or redundant features, thereby reducing dimensionality and improving classification

accuracy [159].

Evolutionary FS techniques, such as Grey Wolf Optimizer (GWO), have emerged

143

Introduction

as effective solutions to address the challenges of high-dimensional datasets. These

techniques, particularly metaheuristic-based approaches, help optimize the feature

subset by balancing exploration and exploitation. However, traditional methods like

exhaustive search are computationally expensive, making evolutionary methods like

GWO more suitable for large datasets. By using natural-inspired algorithms, these

techniques overcome local optima and enhance diversity, improving feature selection

efficiency [160–165].

In this chapter, we propose a novel SDP model using the 2M-GWO algorithm,

which incorporates a two-phase mutation operation to improve performance and avoid

local optima. The model was tested on 27 publicly available datasets, with results

demonstrating its superior performance in selecting the most relevant features. Com-

parisons with other metaheuristic techniques, such as Harris Hawks Optimization and

Whale Optimization, showed the 2M-GWO’s robustness and effectiveness in optimiz-

ing SDP tasks. The statistical analysis using ROC-AUC values further validated the

modelâs performance. This approach represents a significant advancement in SDP,

showcasing the potential of evolutionary FS techniques in improving the accuracy and

efficiency of software defect prediction. The chapter explores the following RQs:

RQ 1. What is the effect of FS techniques on the SDP models? Does 2M-GWO

significantly improve the performance of SDP models as compared to GWO and WFS

Models?

The primary motivation behind RQ 1 is to investigate the impact of Feature

Selection (FS) techniques on the performance of Software Defect Prediction (SDP)

models. FS techniques are crucial for reducing dimensionality, removing irrelevant

features, and improving the generalization ability of predictive models. By exploring

the effect of FS techniques, specifically the Grey Wolf Optimizer (GWO) and the

two-phase mutation GWO (2M-GWO), this research aims to evaluate whether the

incorporation of 2M-GWO results in a significant improvement in the prediction

144

Introduction

accuracy compared to traditional methods. Understanding this relationship can lead to

more efficient and accurate defect prediction models.

RQ 2 Which is the best-performing ML technique for predicting software defects?

RQ 2 seeks to identify the best-performing machine learning (ML) technique

for predicting software defects. Different ML classifiers exhibit varying levels of

performance depending on the feature set and dataset used. The motivation is to

compare the predictive power of various ML techniques in the context of software

defect prediction. By determining which classifier consistently performs better, this

research will provide valuable insights for practitioners in selecting the most effective

ML techniques for defect prediction tasks, ultimately improving software quality.

RQ 3. Which software metrics are frequently selected using the proposed algo-

rithm?

RQ 3 aims to explore which software metrics are most frequently selected by

the proposed 2M-GWO algorithm. Feature selection is a crucial aspect of SDP, and

the success of defect prediction depends on selecting the most relevant features. By

understanding which metrics are consistently chosen, this research aims to reveal key

software characteristics that are strong indicators of defects. This can help software

engineers and researchers focus on the most important metrics, improving both the

prediction model and the software development process.

RQ 4 What is the predictive performance of the proposed model as compared to

other benchmark FS models for SDP?

The motivation for RQ 4 is to evaluate the performance of the proposed 2M-

GWO-based SDP model against other benchmark feature selection (FS) models.

By comparing the predictive accuracy of the proposed model with established FS

techniques, this research will assess the effectiveness and competitiveness of the 2M-

GWO algorithm in defect prediction. This comparison will highlight the advantages

or limitations of the proposed approach, providing evidence of its superiority or

145

Proposed Methodology

suggesting areas for further improvement in the field of software defect prediction.

These RQ’s statistically compares the performance of the models developed, pro-

viding insights into the efficacy of various feature selection techniques and machine

learning classifiers in software defect prediction. By identifying key metrics and eval-

uating predictive capabilities, this study contributes valuable knowledge to enhance

software quality and reliability in development practices.

This chapter details the proposed methodology in section 6.2, starting with the

dataset selection and feature selection process using the 2M-GWO algorithm, includ-

ing the Grey Wolf Optimizer and its two-phase mutation variant. It then discusses

classifiers, evaluation methods, parameter settings, and statistical tests. Finally, Sec-

tion 6.3 presents the result analysis and Section 6.4 discusses the key findings. The

result of the chapter is communicated as [166]

6.2 Proposed Methodology

To build an efficient Software Defect Prediction (SDP) model, we developed a wrapper

strategy [70] based on an enhanced version of the Grey Wolf Optimizer (GWO)

algorithm. Figure 6.1 explores the mechanism of the suggested algorithm. A 10-

fold cross-validation (10-CV) procedure is performed at each iteration. Initially, the

algorithm applies 2M-GWO on the SDP dataset. Using the 10-CV method, the chosen

dataset is subdivided at each iteration. The SMOTE [167]mechanism is used to resolve

the unbalanced problem of the dataset on which the model should be trained. This

procedure will generate a training dataset using oversampling.

Five distinct classifiers (i.e., SVM, RF, GB, AB, and KNN) are used to construct

an SDP model, which is then assessed using K-Fold = 10. The suggested method

terminates whenever the best solution in terms of the objective function is attained, or

the value of iterations reaches its maximum value.

146

Proposed Methodology

Figure 6.1: Mechanism of the suggested 2M-GWO algorithm.

6.2.1 Dataset Details

For this study’s defect datasets, data from four different sources were collected (NASA,

PROMISE, RELINK, and AEEEM). This study made use of the NASA dataset as it

was created by Shepperd, et al. The NASA datasets include metrics generated from

static code parts that take into account the size and complexity of the code. Projects

from the PROMISE repository are based on features that are gathered at the class

level for object-oriented software and information about defects found in software

components. This dataset was developed using the JAVA programming language and

147

Proposed Methodology

was retrieved from the Apache software [106]. The open-source RELINK dataset

comprises three open-source projects (Apache HTTP, Safe, and Zxing) and has a total

of twenty-six attributes [52].

AEEEM datasets differ from other data [10] as they include software attributes

from source code measurements. The change metrics, entropy, and churn of source

code metrics form the foundation of source code metrics. The datasets include Ant-1.7,

Camel-1.2, Camel-1.4, Jedit-3.2, Jedit-4.1, Jedit-4.2, Log4j-1.0, Log4j-1.1, Lucene-

2.0, Lucene-2.2, Tomcat, Xalan-2.4, Xalan-2.5, Xalan-2.6, Apache, Safe, Zxing, Cm1,

Mw1, PC1, PC3, PC4, EQ, JDT, LC, ML, and PDE. These datasets are obviously

dependent on various software features. The datasets details are mentioned in Chapter

2.

6.2.2 Feature selection using 2M-GWO

Grey Wolf Algorithm (GWO)

Grey wolves (GWs) are superb predators with exceptional hunting abilities. This

is due to the fact that they live in a disciplined and orderly pack. The GWO algorithm

was recently presented to imitate the hunting, seeking, and surrounding behaviour of

GWs [161]. There are four main varieties of GWs with varying levels of dominance

and leadership in the wolf population. The first, second, and third-best solutions in

the GWO method are denoted by the letters α, β, and δ, correspondingly. The rest of

the possible solutions are referred to as ω.

The hunting mechanism in GWO involves three main steps: encircling the prey,

hunting (attacking), and searching for prey. These steps are mathematically modelled

as follows:

• Encircling Prey: The wolves encircle the prey during the hunt. This behaviour

is modelled using the position vectors of the prey and the wolves. The position

148

Proposed Methodology

of each wolf is updated according to the position of the prey using the following

equations:

Dv = |Cv ·Xp
v −Xv(t)| (1)

Xv(t+ 1) = Xp
v (t)− Av ·Dv (2)

Av = 2av · randomv1 − av (3)

Cv = 2 · randomv2 (4)

a = 2− t · 2

iterations
(5)

Here, Xv(t) represents the position vector of a wolf at iteration t, and Xp
v (t)

represents the position of the prey. Cv and Av are coefficient vectors. The pa-

rameter iterations determines the maximum number of iterations. The randomv1

and randomv2 are random vectors, whereas av decreases linearly from 2 to 0

over the course of iterations.

• Attacking the Prey: The alpha (best solution), beta, and delta wolves have better

knowledge about the potential location of the prey. Therefore, the positions of

the other wolves (omegas) are updated based on the positions of the alpha, beta,

and delta wolves:

Xv(t+ 1) =
Xv1 +Xv2 +Xv3

3
(6)

Here, Xv1, Xv2, and Xv3 are the positions of the alpha, beta, and delta wolves,

respectively, updated using similar equations to the encircling mechanism but

centered around each of these three wolves.

• Searching for Prey: To simulate the search for prey, the wolves diverge from

each other and explore the search space. This is modelled by allowing the

random vectors randomv1 and randomv2 to take values that can potentially

149

Proposed Methodology

increase the distance between the position of a wolf and the position of the prey.

Although the standard GWO is known for its effectiveness in various optimization

tasks, but it faces challenges such as premature convergence and getting trapped in

local optima when dealing with complex feature selection problems. To address

these challenges, the authors propose a two-phase mutation mechanism integrated

into the GWO. This enhancement aims to improve the exploitation capabilities of the

algorithm, making it more effective in navigating the search space of feature selection

problems.

Two-phase mutation Grey Wolf Optimisation (2M-GWO)

The Two-Phase Mutation Grey Wolf Optimizer (TMGWO) is an enhanced version

of the standard GWO, specifically adapted for feature selection problems in classifica-

tion tasks. This enhancement integrates a two-phase mutation mechanism to improve

the exploitation capabilities of the algorithm, making it more effective in navigating

the complex search space of feature selection problems. The benefits of using two

mutation phases are as follows:

First Mutation Phase: This phase aims to reduce the number of selected features

while maintaining high classification accuracy. It selectively mutates certain features

of the best solution (alpha wolf), turning some of the selected features off (from 1 to

0).

Second Mutation Phase: This phase attempts to add potentially informative

features that could increase classification accuracy. It operates by turning some

unselected features on (from 0 to 1) based on their potential to improve the solution.

This 2M-GWO algorithm includes four steps: Initialization (step 1), evaluation

(step 2), transformation function (step 3), and two-phase mutation (step 4) make up

the core components of 2M-GWO.

• Initilisation:The first step is to initialize a colony of n grey wolves (GWs) or

150

Proposed Methodology

search agents (SA) generated randomly. Each SA represents a potential solution

and has a size of d, equal to the number of attributes in the actual dataset [167].

For classifying classes, the feature selection (FS) process is used to identify

the subset of features that produce the most accurate results. This is achieved

by setting some features to ”1” (selected) and others to ”0” (not selected), as

shown in Fig. 6.2. At the start, each solution is represented by binary values of

either ”0” or ”1”.

Figure 6.2: Solution representation of 2M-GWO.

• Evaluation

The feature selection (FS) process has multiple objectives, as it must achieve

two goals: reduce the count of features selected and increase the classifier’s

accuracy. To achieve this balance, the fitness function is designed to evaluate

the solutions and meet both objectives simultaneously, as given in Eq.7.

fitness = α · γR(D) + β · |s|
|d|

(7)

Here, γR(D) represents the rate of classification error of R, the condition at-

tribute set, with respect to decision D, which is computed via the machine

learning (ML) classifier KNN. The span of the chosen attribute subset’s car-

dinality is represented by |s|. Each sample of the actual dataset that contains

features is represented by a cardinality of |d|. α and β are weight constraints,

which are equivalent to the values of the classification accuracy and the length

of the subset of the chosen feature, respectively. These parameters satisfy

151

Proposed Methodology

α ∈ [0, 1] and α + β = 1.

The evaluation function will overlook results that might have equivalent ac-

curacy but use fewer attributes, which is a key component in reducing the

dimensionality problem if it solely considers classification accuracy.

• Transformation Function

The grey wolf’s (GW) positions produced by the typical GWO are continuous in

nature. Since this conflicts with the binary structure of the feature selection (FS),

it cannot be directly applied to this case. The issue with FS arises from selecting

(1) or ignoring (0) the advantageous attributes that improve the classifier’s

capability. The task of converting the continuous values of the search space into

binary values is performed by the transformation function (TF). The TF used in

this study is an S-shaped sigmoidal function [168].

The conversion of continuous values to binary values is achieved using the

following equations of the sigmoidal transformation function:

xi =
1

1 + e−xi
(8)

xbinary =


0 if rand < xi

1 if rand ≥ xi

(9)

Here, xi represents the continuous value of the feature, where i varies from 1 to

d. xbinary can have a value of 0 (not selected) or 1 (selected) based on comparing

xi with a random value rand.

• Two-Phase Mutation

152

Proposed Methodology

A mutation operator is utilized to enhance the performance of the proposed

algorithm. In the initial phase of mutation, the primary objective is to reduce

the number of selected attributes while preserving high classification accu-

racy [168]. The subsequent phase focuses on improving classification efficacy

by introducing more nuanced attributes. To mitigate delays that may arise

from the mutation operator, step 4 can be executed with a mutation probability

(Mp). This approach optimizes the mutation process, allowing for controlled

adjustments without compromising efficiency.

Figure 6.3 provides the detailed pseudocode for the proposed mutation process.

Additionally, the complete pseudocode for the 2M-GWO algorithm, incorporating

both mutation and other key components, is outlined in Algorithm 2.

In Figure 6.4, Xα, Xβ, and Xδ represent the positions of the best three grey wolves

(alpha, beta, delta), which guide the search process. Xi denotes the position of the i-th

grey wolf. Fitness is the variable that shows the fitness value of Xα. one positions is

a vector storing the positions of selected features in Xα, and zero positions stores the

positions of unselected features in Xα.

153

Proposed Methodology

Figure 6.3: Pseudocode of the proposed 2M-GWO.

154

Proposed Methodology

Figure 6.4: Pseudocode of the Two-Phase Mutation step

155

Proposed Methodology

6.2.3 Classifiers

The literature has a number of learning classifiers. As a result, we restrict our research

to using only five distinct classifiers, namely SVM, RF, GB, AB, and KNN. The

detailed overview of these techniques can be found in Chapter 2, Section.

6.2.4 Evaluation Method

To assess the model’s performance and facilitate result comparison, we employ

ROC AUC. It is a graphical tool that assesses a binary classifier’s effectiveness

by varying the discrimination threshold value.

6.2.5 Parameter Setting

To address the stochastic character, each algorithm is performed 20 times indepen-

dently using a random seed. The maximum number of iterations for all subsequent

tests is set at 100. There are 5 search agents (SA) in the entire population. Additionally,

10-CV is used in this case.

In order to choose the optimal values for α and β, and based on certain values

collected from past studies, several tests are carried out on various datasets. As a

consequence, α and β are set to corresponding values of 0.01 and 0.99. To enable

a fair comparison of the algorithms, the parameter specifications of the techniques

are collected from existing studies. The parameters of some of the optimization

techniques are mentioned in Table 6.1. For all other techniques, the default value is

taken.

156

Results Analysis

Table 6.1: Parameter settings for Optimization techniques

Technique Parameter Value

2M-GWO Mutation Probability, Mp 0.5
SCO Constant value, a 2
WO Spiral Coefficient, b 1

6.2.6 Statistical Test

In software defect prediction, the Friedman test is often employed to evaluate and

compare the effectiveness of various defect prediction models or techniques. This

is crucial because software defect prediction models are designed to predict the

likelihood of defects in software modules, and choosing the most effective model can

significantly impact the quality and reliability of software.

6.3 Results Analysis

This subsection provides the findings in response to the Research Questions (RQ) as

follows:

6.3.1 Result Analysis based on RQ1

RQ 1. What is the effect of FS techniques on the SDP models? Does 2M-GWO

significantly improve the performance of SDP models as compared to GWO and WFS

Models?

Table 6.2-7.3 explores the experimental results of the original GWO, modified

2M-GWO and WFS model for 27 datasets using five classifiers, namely SVM, RF,

GB, AB and KNN. The experimental data include the feature size and ROC-AUC

value for each dataset. We employed SMOTE to balance the classes in the given

157

Results Analysis

dataset. The ROC-AUC value for 27 open-source datasets is obtained by taking the

average value of 20 runs for each project.

Table 6.2: ROC-AUC Scores by SVM

Projects GWO 2M-GWO WFS
PROMISE-Ant-1.7 0.821 0.815 0.880
PROMISE-Camel-1.2 0.515 0.618 0.618
PROMISE-Camel-1.4 0.704 0.629 0.629
PROMISE-Jedit-3.2 0.779 0.810 0.782
PROMISE-Jedit-4.1 0.870 0.783 0.725
PROMISE-Jedit-4.2 0.747 0.830 0.725
PROMISE-Log4j-1.0 0.912 0.914 0.900
PROMISE-Log4j-1.1 0.867 0.880 1.000
PROMISE-Lucene-2.0 0.765 0.807 0.807
PROMISE-Lucene-2.2 0.656 0.589 0.589
PROMISE-Tomcat 0.709 0.737 0.737
PROMISE-Xalan-2.4 0.757 0.672 0.672
PROMISE-Xalan-2.5 0.603 0.752 0.647
PROMISE-Xalan-2.6 0.649 0.961 0.752
AEEEM-EQ 0.801 0.803 0.825
AEEEM-JDT 0.836 0.848 0.556
AEEEM-LC 0.801 0.868 0.556
AEEEM-ML 0.772 0.798 0.556
AEEEM-PDE 0.653 0.755 0.667
NASA-Cm1 0.751 0.795 0.698
NASA-Mw1 0.578 0.777 0.683
NASA-PC1 0.736 0.846 0.849
NASA-PC3 0.812 0.896 0.852
NASA-PC4 0.851 0.906 0.919
RELINK-Apache 0.732 0.776 0.689
RELINK-Safe 0.629 0.629 0.886
RELINK-Zxing 0.667 0.714 0.705
Average (Avg) 0.739 0.785 0.737

The data presented in Table 6.2 clearly demonstrates that the 2M-GWO algorithm

outperforms the other two algorithms, showing promising results in terms of ROC-

AUC values across a majority of projects. Analysis of average ROC-AUC values

indicates that the modified 2M-GWO algorithm surpasses the original GWO and

WFS methods, with a maximum average value of 0.785. Furthermore, the proposed

algorithm, in conjunction with SVM, significantly improved average ROC-AUC

values by over 6% across all datasets, demonstrating strong overall performance.

Table 6.3 illustrates the results of the RF classifier utilized to evaluate the original

GWO, the modified 2M-GWO, and the complete dataset. It is evident that the 2M-

158

Results Analysis

Table 6.3: ROC AUC Scores by RF

Projects GWO 2M-GWO WFS
PROMISE-Ant-1.7 0.832 0.845 0.843
PROMISE-Camel-1.2 0.641 0.634 0.652
PROMISE-Camel-1.4 0.736 0.710 0.715
PROMISE-Jedit-3.2 0.775 0.776 0.758
PROMISE-Jedit-4.1 0.886 0.862 0.692
PROMISE-Jedit-4.2 0.733 0.730 0.692
PROMISE-Log4j-1.0 0.879 0.889 0.871
PROMISE-Log4j-1.1 0.876 1.000 1.000
PROMISE-Lucene-2.0 0.730 0.767 0.749
PROMISE-Lucene-2.2 0.563 0.616 0.616
PROMISE-Tomcat 0.811 0.830 0.824
PROMISE-Xalan-2.4 0.754 0.749 0.715
PROMISE-Xalan-2.5 0.656 0.827 0.748
PROMISE-Xalan-2.6 0.820 1.000 0.814
AEEEM-EQ 0.818 0.841 0.825
AEEEM-JDT 0.877 0.881 0.850
AEEEM-LC 0.884 0.821 0.849
AEEEM-ML 0.859 0.838 0.857
AEEEM-PDE 0.787 0.784 0.793
NASA-Cm1 0.623 0.718 0.766
NASA-Mw1 0.733 0.500 0.613
NASA-PC1 0.927 0.925 0.930
NASA-PC3 0.825 0.835 0.827
NASA-PC4 0.919 0.931 0.938
RELINK-Apache 0.732 0.697 0.680
RELINK-Safe 0.786 0.786 0.971
RELINK-Zxing 0.611 0.827 0.807
Average (Avg) 0.780 0.800 0.792

GWO algorithm outperforms the other two methods, as it demonstrates the highest

ROC-AUC values across a larger number of projects. The enhanced 2M-GWO

surpasses the original GWO and WFS techniques in terms of average ROC-AUC

values, with a maximum average value of 0.8. The average ROC-AUC value for all

datasets saw an increase of approximately 2% when utilizing the proposed algorithm.

The ROC-AUC value calculated by Gradient Boosting (GB) for the full dataset

and processed datasets, in which features were selected GWO and 2M-GWO, is

presented in Table 6.4 . The results indicate that the 2M-GWO-based model demon-

strates superior performance compared to the GWO and WFS cases, with an average

improvement of 2.3% in the ROC-AUC value. In approximately 40% of datasets,

the 2M-GWO-based model outperformed the others, while in approximately 19% of

159

Results Analysis

Table 6.4: ROC-AUC Scores by GB

Projects GWO 2M-GWO WFS
PROMISE-Ant-1.7 0.780 0.710 0.710
PROMISE-Camel-1.2 0.514 0.551 0.551
PROMISE-Camel-1.4 0.726 0.673 0.673
PROMISE-Jedit-3.2 0.823 0.771 0.771
PROMISE-Jedit-4.1 0.786 0.819 0.702
PROMISE-Jedit-4.2 0.687 0.731 0.702
PROMISE-Log4j-1.0 0.700 0.800 0.764
PROMISE-Log4j-1.1 0.752 0.933 0.933
PROMISE-Lucene-2.0 0.754 0.728 0.728
PROMISE-Lucene-2.2 0.714 0.714 0.714
PROMISE-Tomcat 0.758 0.805 0.805
PROMISE-Xalan-2.4 0.731 0.720 0.720
PROMISE-Xalan-2.5 0.663 0.656 0.666
PROMISE-Xalan-2.6 0.798 0.983 0.797
AEEEM-EQ 0.836 0.841 0.828
AEEEM-JDT 0.780 0.820 0.784
AEEEM-LC 0.868 0.803 0.764
AEEEM-ML 0.787 0.805 0.804
AEEEM-PDE 0.737 0.697 0.748
NASA-Cm1 0.519 0.656 0.588
NASA-Mw1 0.613 0.561 0.535
NASA-PC1 0.900 0.895 0.907
NASA-PC3 0.810 0.798 0.801
NASA-PC4 0.911 0.926 0.931
RELINK-Apache 0.683 0.789 0.684
RELINK-Safe 0.857 0.857 0.700
RELINK-Zxing 0.738 0.747 0.717
Average (Avg) 0.749 0.767 0.741

datasets, its performance was comparable to either the GWO-based model or the full

dataset.

Table 6.5 presents the computed ROC-AUC value by AB for the entire datasets

and the processed datasets, where the features were selected by GWO and 2M-GWO.

It is observed that the 2M-GWO-based model outperforms the GWO and WFS case

in terms of overall performance, with an average ROC-AUC value improvement of

4.6%. Specifically, for approximately 33% of the datasets, the 2M-GWO-based model

performs better, while for around 11% of the datasets, it performs similarly to either

of the two approaches.

According to the data presented in Table 7.3 , the 2M-GWO-KNN demonstrates

superior classification performance compared to the other model in over 50% of the

160

Results Analysis

Table 6.5: ROC-AUC Scores by GB

Projects GWO 2M-GWO WFS
PROMISE-Ant-1.7 0.741 0.793 0.693
PROMISE-Camel-1.2 0.507 0.517 0.517
PROMISE-Camel-1.4 0.732 0.714 0.714
PROMISE-Jedit-3.2 0.791 0.780 0.780
PROMISE-Jedit-4.1 0.789 0.822 0.714
PROMISE-Jedit-4.2 0.673 0.692 0.714
PROMISE-Log4j-1.0 0.757 0.793 0.657
PROMISE-Log4j-1.1 0.752 0.933 0.933
PROMISE-Lucene-2.0 0.770 0.767 0.767
PROMISE-Lucene-2.2 0.573 0.704 0.704
PROMISE-Tomcat 0.659 0.731 0.721
PROMISE-Xalan-2.4 0.738 0.734 0.724
PROMISE-Xalan-2.5 0.680 0.806 0.648
PROMISE-Xalan-2.6 0.807 1.000 0.806
AEEEM-EQ 0.766 0.845 0.818
AEEEM-JDT 0.819 0.825 0.831
AEEEM-LC 0.845 0.778 0.577
AEEEM-ML 0.787 0.786 0.803
AEEEM-PDE 0.673 0.643 0.702
NASA-Cm1 0.588 0.603 0.642
NASA-Mw1 0.570 0.600 0.613
NASA-PC1 0.909 0.899 0.916
NASA-PC3 0.796 0.768 0.705
NASA-PC4 0.910 0.920 0.924
RELINK-Apache 0.732 0.775 0.589
RELINK-Safe 0.914 0.914 0.729
RELINK-Zxing 0.601 0.715 0.719
Average (Avg) 0.736 0.772 0.728

datasets, as indicated by the ROC-AUC value. The average ROC-AUC value for

the overall performance of 2M-GWO shows an increase of approximately 4% when

compared to the other two models.

Based on the analysis presented in Table 6.7 and Figure 6.5, on taking an average

value, the 2M-GWO algorithm achieved an approximate 80% reduction in feature

sets across various datasets. The NASA dataset showed the most significant reduction

at around 86%, followed by the AEEEM and RELINK datasets, which saw an 80%

reduction each. In contrast, the PROMISE dataset had the smallest reduction in

features at 75

161

Results Analysis

Table 6.6: ROC-AUC Scores by KNN

Projects GWO 2M-GWO WFS
PROMISE-Ant-1.7 0.741 0.793 0.693
PROMISE-Camel-1.2 0.507 0.517 0.517
PROMISE-Camel-1.4 0.732 0.714 0.714
PROMISE-Jedit-3.2 0.791 0.780 0.780
PROMISE-Jedit-4.1 0.789 0.822 0.714
PROMISE-Jedit-4.2 0.673 0.692 0.714
PROMISE-Log4j-1.0 0.757 0.793 0.657
PROMISE-Log4j-1.1 0.752 0.933 0.933
PROMISE-Lucene-2.0 0.770 0.767 0.767
PROMISE-Lucene-2.2 0.573 0.704 0.704
PROMISE-Tomcat 0.659 0.731 0.721
PROMISE-Xalan-2.4 0.738 0.734 0.724
PROMISE-Xalan-2.5 0.680 0.806 0.648
PROMISE-Xalan-2.6 0.807 1.000 0.806
AEEEM-EQ 0.766 0.845 0.818
AEEEM-JDT 0.819 0.825 0.831
AEEEM-LC 0.845 0.778 0.577
AEEEM-ML 0.787 0.786 0.803
AEEEM-PDE 0.673 0.643 0.702
NASA-Cm1 0.588 0.603 0.642
NASA-Mw1 0.570 0.600 0.613
NASA-PC1 0.909 0.899 0.916
NASA-PC3 0.796 0.768 0.705
NASA-PC4 0.910 0.920 0.924
RELINK-Apache 0.732 0.775 0.589
RELINK-Safe 0.914 0.914 0.729
RELINK-Zxing 0.601 0.715 0.719
Average (Avg) 0.736 0.772 0.728

Figure 6.5: Comparison of GWO, 2M-GWO, and WFS techniques on the basis of the
number of features selected
162

Results Analysis

Table 6.7: Number of Features Calculated by GWO, 2M-GWO, and WFS Across
Various Projects

Projects GWO 2M-GWO WFS
PROMISE-Ant-1.7 5 6 20
PROMISE-Camel-1.2 6 6 20
PROMISE-Camel-1.4 5 6 20
PROMISE-Jedit-3.2 5 5 20
PROMISE-Jedit-4.1 5 4 20
PROMISE-Jedit-4.2 4 4 20
PROMISE-Log4j-1.0 4 4 20
PROMISE-Log4j-1.1 3 3 20
PROMISE-Lucene-2.0 6 5 20
PROMISE-Lucene-2.2 7 6 20
PROMISE-Tomcat 4 4 20
PROMISE-Xalan-2.4 6 5 20
PROMISE-Xalan-2.5 10 7 20
PROMISE-Xalan-2.6 7 6 20
AEEEM-EQ 11 12 61
AEEEM-JDT 14 13 61
AEEEM-LC 6 6 61
AEEEM-ML 12 14 61
AEEEM-PDE 12 13 61
NASA-Cm1 4 2 37
NASA-Mw1 4 4 37
NASA-PC1 4 4 37
NASA-PC3 8 6 37
NASA-PC4 8 8 37
RELINK-Apache 5 6 26
RELINK-Safe 3 3 26
RELINK-Zxing 8 7 26
Average (Avg) 7 6 31

Table 6.8: Mean Rank Obtained on the Basis of ROC-AUC for Feature Selection
Techniques

Techniques Mean Rank (p-value=0.022)
2M-GWO 1.00 (I)
GWO 2.40 (II)
WFS 2.60 (III)

Table 6.8 presents the comparative performance of different feature selection

techniques based on their mean rank achieved by Friedman’s test, determined through

the ROC-AUC metric. The mean rank serves as a measure of each technique’s efficacy

in enhancing the prediction accuracy of a software defect prediction model. A lower

mean rank indicates better performance.

The p-value associated with these rankings is 0.022, suggesting that the differ-

163

Results Analysis

ences in performance among these techniques are statistically significant at the 95%

confidence interval. 2M-GWO stands out as the most effective technique, achieving

the highest performance with a mean rank of 1.00, denoted as rank I. GWO is ranked

second with a mean rank of 2.40, labelled as rank II. This shows that the standard

Grey Wolf Optimiser, while effective, is outperformed by its two-phase variant in the

context of feature selection for defect prediction. WFS is closely ranked third with a

mean rank of 2.60, marked as rank III.

6.3.2 Result Analysis based on RQ2

RQ 2 Which is the best-performing ML technique for predicting software defects?

Table 6.9: Mean Rank Obtained on the Basis of ROC-AUC for ML Techniques

Classification Techniques Mean Rank (p-value=0.034)
2M-GWO-RF 2.19 (I)
2M-GWO-KNN 2.94 (II)
2M-GWO-SVM 3.15 (III)
2M-GWO-AB 3.35 (IV)
2M-GWO-GB 3.37 (V)

Table 6.9 displays the mean ranks obtained by the Friedman’s test on the basis of

ROC-AUC for the ML techniques used in the study. 2M-GWO-RF achieved the best

mean rank of 2.19, indicating its superior performance in terms of prediction accuracy

and efficiency.

2M-GWO-KNN attained a mean rank of 2.94, placing it second in terms of

performance. While it is not as effective as 2M-GWO-RF, it still demonstrates good

performance. With a mean rank of 3.15, 2M-GWO-SVM is ranked third in terms of

performance.

AB and GB are the ensemble classifiers with mean ranks of 3.35 and 3.37, ranking

fourth and last among the classifiers evaluated. The p-value of 0.034 indicates that the

differences in the mean ranks of these techniques are statistically significant.

164

Results Analysis

Overall, the combination of 2M-GWO and Random Forest (2M-GWO-RF) appears

to offer the best performance among the tested classification techniques.

6.3.3 Result Analysis based on RQ3

RQ 3. Which software metrics are frequently selected using the proposed algorithm?

The analysis of feature selection across various datasets using the 2M-GWO FS

technique is detailed in Figures 4 to 7. These figures graphically represent the selection

frequency of specific software metrics (features) crucial for predicting software defects.

The x-axis of each figure indicates different software metrics derived from the datasets,

while the y-axis quantifies how frequently each metric was selected across multiple

iterations.

For the RELINK dataset (Figure 6.6), metrics such as CountLineCodeDecl, Count-

LineBlank, and CountLineCode show high selection frequencies of 26, 21, and 20

times, respectively, out of 60 total runs distributed across three projects (each executed

20 times). In the case of the PROMISE dataset (Figure 6.7), the object-oriented

metrics rfc, ce, and npm were selected 131 and 102 times each out of 280 iterations.

Regarding the AEEEM dataset (Figure 6.8), which includes 61 process metrics across

five projects, metrics such as CVSEntropy, numberOfNontrivialBugsFoundUntil, and

Ck OO numberOfMethodsInherited were most frequently selected, with counts of 49,

45, and 41 respectively, out of 100 runs. For the NASA project (Figure 6.9), which

focuses on Halstead’s and size metrics, the metrics LOC CODE AND COMMENT,

LOC BLANK, and LOC EXECUTABLE were identified as the most frequently occur-

ring, with each being selected 28, 25, and 25 times respectively in twenty runs across

five projects.

165

Results Analysis

Figure 6.6: Occurrence of metrics for RELINK Dataset

Figure 6.7: Occurrence of metrics for PROMISE Dataset

Figure 6.8: Occurrence of metrics for AEEEM Dataset

166

Results Analysis

Figure 6.9: Occurrence of metrics for NASA Dataset

6.3.4 Result Analysis based on RQ3

RQ 4 What is the predictive performance of the proposed model as compared to other

benchmark FS models for SDP

In order to conduct a comprehensive comparative analysis, two types of analysis

are made.

In the first type, the proposed algorithm is evaluated against five closely related

meta-heuristic algorithms: Harris Hawks Optimization (HHO) [169], Salp Swarm

Optimization (SSO) [170], Whale Optimization (WO) [171], Jaya Optimization (JO)

[172], and Sine Cosine Optimization (SCO) [173]. These comparisons, summarized

in Table 6.10, were carried out under consistent experimental conditions to ensure

fairness and accuracy in the results. Each algorithm was implemented and executed

within the same computational environment, adhering to identical parameter settings.

The ROC-AUC measure was used as the primary basis for evaluating performance

across all algorithms, as it provides a comprehensive measure of an algorithm’s ability

to distinguish between classes or optimize solutions effectively. By examining the

167

Results Analysis

AUC scores, we analyzed the fact that the proposed technique outperforms the other

techniques in approximately 55.5% of the total datasets. SSO obtained a promising

outcome in approximately 18.5% of the datasets. HHO and WO resulted in the best

ROC AUC value for two datasets, whereas SCO and JO outperformed for only one

dataset each. This showcases the effectiveness of the proposed method in selecting

the most pertinent features, which notably boost the performance of the SDP model.

Table 6.10: ROC AUC Values for 2M-GWO-RF and Other Metaheuristic Techniques

Projects 2M-GWO-RF SCO-RF SSO-RF JO-RF WO-RF HHO-RF
PROMISE-Ant-1.7 0.845 0.824 0.830 0.829 0.820 0.818
PROMISE-Camel-1.2 0.634 0.625 0.604 0.615 0.630 0.615
PROMISE-Camel-1.4 0.710 0.787 0.729 0.753 0.765 0.798
PROMISE-Jedit-3.2 0.776 0.799 0.799 0.808 0.784 0.831
PROMISE-Jedit-4.1 0.862 0.807 0.842 0.813 0.809 0.850
PROMISE-Jedit-4.2 0.730 0.650 0.615 0.685 0.712 0.727
PROMISE-Log4j-1.0 0.889 0.875 0.817 0.865 0.812 0.801
PROMISE-Log4j-1.1 1.000 0.954 1.000 0.957 0.964 0.997
PROMISE-Lucene-2.0 0.767 0.767 0.760 0.769 0.789 0.785
PROMISE-Lucene-2.2 0.616 0.645 0.664 0.614 0.623 0.613
PROMISE-Tomcat 0.830 0.799 0.802 0.772 0.825 0.809
PROMISE-Xalan 2.4 0.749 0.804 0.849 0.816 0.718 0.788
PROMISE-Xalan 2.5 0.827 0.824 0.824 0.823 0.877 0.812
PROMISE-Xalan-2.6 1.000 0.988 0.998 0.991 0.962 0.990
AEEEM-EQ 0.841 0.897 0.839 0.896 0.875 0.807
AEEEM-JDT 0.881 0.814 0.881 0.805 0.803 0.817
AEEEM-LC 0.821 0.820 0.803 0.805 0.803 0.805
AEEEM-ML 0.838 0.822 0.837 0.801 0.811 0.808
AEEEM-PDE 0.784 0.775 0.709 0.773 0.823 0.807
NASA-Cm1 0.718 0.708 0.682 0.705 0.713 0.674
NASA-Mw1 0.500 0.655 0.604 0.615 0.680 0.691
NASA-PC1 0.925 0.888 0.894 0.905 0.893 0.817
NASA-PC3 0.835 0.870 0.886 0.884 0.872 0.818
NASA-PC4 0.931 0.917 0.902 0.879 0.892 0.852
RELINK-Apache 0.697 0.655 0.604 0.615 0.618 0.691
RELINK-Safe 0.786 0.737 0.817 0.785 0.802 0.816
RELINK-Zxing 0.827 0.773 0.813 0.886 0.836 0.814

In the second type, the performance outcomes of established approaches are

sourced from existing literature and subjected to a thorough comparison. In the

RKEE-based model, Riaz et al. [174] proposed two-stage data pre-processing which

incorporates FS and a new rough set Easy Ensemble scheme, which shows an average

value of 0.771, whereas the existing model proposed by Tumar et al. [70] was based

on improved binary Moth Flame Optimization with Adaptive synthetic sampling

168

Discussion

(ADASYN) to predict software defects. BMFO is employed as a wrapper FS, while

ADASYN enhances the input dataset, addresses the imbalanced dataset and shows

a ROC-AUC value of 0. 7552. When compared with the existing methods based on

evolutionary FS techniques, the proposed model based on 2M-GWO and Random

Forest classifier obtained a ROC-AUC of 0.800, which is better than the existing

methods.

6.4 Discussion

In this chapter, we proposed a novel prediction model based on the Two-Phase

Grey Wolf Optimizer (2M-GWO) for Software Defect Prediction (SDP). This model

uniquely integrates feature selection (FS) to improve the predictive performance of var-

ious machine learning (ML) classifiers, specifically Support Vector Machine (SVM),

AdaBoost (AB), Gradient Boosting (GB), NaÃ¯ve Bayes (NB), and k-Nearest Neigh-

bors (KNN). These classifiers were employed to evaluate the binary classification task

on a dataset constructed from 27 well-established software defect datasets, namely

AEEEM, PROMISE, RELINK, and NASA datasets.

The experiments were systematically designed, and the results demonstrated that

the 2M-GWO method provides significant benefits for software defect prediction. The

primary findings of this study are outlined as follows:

1. The two-phase Grey Wolf Optimizer-based feature selection, in conjunction

with the Random Forest (RF) classifierâtermed 2M-GWO-RFâproved highly

effective in SDP tasks. The FS method played a pivotal role in reducing the

feature space, which in turn enhanced model performance across different

datasets. By eliminating redundant and irrelevant features, the model could

focus on the most impactful metrics, leading to more accurate predictions and

169

Discussion

improved computational efficiency.

2. The 2M-GWO-RF model showed superior performance compared to other mod-

els, particularly in terms of the Receiver Operating Characteristic - Area Under

the Curve (ROC AUC) metric. With a mean rank of 2.19 for ROC AUC, this

model demonstrated remarkable prediction accuracy and efficiency, answering

Research Question 2 (RQ2). This result underscores the modelâs ability to

maintain high predictive performance across different data sources, further

validating the robustness of the proposed approach.

3. To statistically validate the performance of the 2M-GWO-RF model, we em-

ployed Friedmanâs test to compare mean rank differences among the models.

The results showed a significant difference (p = 0.034), reinforcing the efficacy

of the 2M-GWO-RF model as a top classification technique within the examined

classifiers. This test further supports the hypothesis that 2M-GWO-RFâs feature

selection approach contributes meaningfully to its predictive success.

4. The 2M-GWO-RF modelâs robustness is evident through its performance on di-

verse datasets. Important metricsâsuch as CountLineCodeDecl, RFC (Response

for Class), CE (Coupling between Classes), NPM (Number of Public Methods),

CVSEntropy, and LOC CODE AND COMMENTâwere consistently identified

as influential features, highlighting their relevance in defect prediction. The

consistent effectiveness across these metrics indicates the modelâs adaptability

to varied datasets and suggests that these features may be crucial for future data

collection and SDP model development.

5. Compared to five other metaheuristic techniques, the 2M-GWO-RF model out-

performed in more than 55% of the datasets, positioning it as a superior choice

for software defect prediction. This result underlines the modelâs advanced ca-

170

Discussion

pability to leverage feature selection more effectively than other state-of-the-art

methods, making it a promising alternative for practitioners seeking improved

prediction performance and model interpretability.

In conclusion, the two-phase Grey Wolf Optimizer with Random Forest classifier

2M-GWO-RF shows significant promise for enhancing software defect prediction.

By providing a powerful feature selection mechanism and achieving high prediction

accuracy across multiple datasets, this model offers a robust tool for defect prediction

tasks. The findings suggest that the 2M-GWO-RF approach not only enhances

predictive capability but also sets a foundation for further advancements in feature

selection and optimization techniques in software engineering.

171

Chapter 7

Impact of Hyperparameter tuning on

Software Defect Prediction Model

7.1 Introduction

In recent years, machine learning (ML) and deep learning (DL) techniques have been

widely adopted in Software Defect Prediction (SDP) [40]. Algorithms such as Naive

Bayes, random forests (RF), support vector machines (SVMs), and logistic regres-

sion (LR), as well as DL models like Convolutional Neural Networks (CNNs), Long

Short-Term Memory networks (LSTMs), and Gated Recurrent Units (GRUs), have

demonstrated effectiveness in identifying complex patterns in software [175, 176].

However, the performance of these models is highly influenced by their hyperpa-

rameters, which dictate learning rates, the number of neurons, batch sizes, and other

key factors in the training process. Optimizing these hyperparameters is essential to

achieving accurate predictions, avoiding issues like underfitting or overfitting, and

ensuring that models generalize well to unseen data.

Hyperparameter tuning (HPT) plays a critical role in enhancing the performance

173

Introduction

of SDP models. Standard models with default hyperparameters often underperform in

SDP tasks, especially when dealing with imbalanced datasets, which are common in

defect prediction. For example, tuning hyperparameters in regression models has been

shown to improve prediction accuracy by over 15%, while optimally tuned DL models

can see performance boosts of up to 40%. HPT frameworks like Optuna facilitate the

systematic search for optimal hyperparameters, making it easier to identify the best

configurations for both traditional ML and DL models [177].

Furthermore, HPT can also optimize preprocessing techniques such as the Syn-

thetic Minority Over-sampling Technique (SMOTE), which addresses class imbalance

issues by augmenting minority class samples. Studies have shown that optimized

versions of SMOTE, such as SMOTUNED, can enhance the performance of neural

networks and other classifiers on imbalanced defect datasets. Through frameworks

like Bayesian optimization (BO) and differential evolution (DE), HPT has proven

effective in fine-tuning both classifiers and sampling techniques, yielding more robust

SDP models [178–182].

This chapter aims to examine the impact of HPT on SDP models, particularly by

employing the Optuna framework to optimize DL models and ensemble approaches as

well as preprocessing techniques. By leveraging optimized hyperparameters, the study

demonstrates substantial improvements in prediction accuracy, model stability, and

computational efficiency. This chapter synthesizes insights from two novel studies

focused on the role of HPT in enhancing SDP models. The first study introduces a

tailored approach for balancing imbalanced datasets, which is a common challenge

in defect prediction. The second study explores HPT techniques for DL models in

SDP, proposing a robust ensemble-based solution. Together, these studies demonstrate

how HPT can elevate the performance of defect prediction models, showcasing

improvements across various predictive metrics.

174

Research Methodology

7.2 Research Methodology

This chapter presents two innovative methods OpTunedSMOTE and a Stacked Ensem-

ble Approach or hyperparameter tuning in Software Defect Prediction (SDP) using the

Optuna framework. The OpTunedSMOTE model optimizes only SMOTE parameters

to effectively handle class imbalance, improving classifier performance for imbalanced

datasets. Meanwhile, the Stacked Ensemble Approach combines CNN, LSTM, and

GRU as base learners with Random Forest (RF) as the meta-learner, optimizing both

SMOTE and classifier parameters. These techniques leverage Optuna’s optimization to

achieve higher prediction accuracy and model robustness. Each approach is structured

to address unique challenges in SDP, as illustrated in the comprehensive workflows

provided.

7.2.1 Research Methodology of Study 1

The proposed approach leverages the Optuna [183] framework to perform efficient and

effective hyperparameter tuning, ensuring that the classifiers operate at their optimal

capacity. By integrating advanced optimization algorithms with robust evaluation

metrics, our methodology aims to provide a scalable and generalizable solution for

improving the accuracy and reliability of classification models across various datasets.

175

Research Methodology

Figure 7.1: A detailed framework for the OpTunedSMOTE approach

Figure 7.1 illustrates a comprehensive workflow for optimizing classification mod-

els using the Optuna framework. Data is taken from open-source repositories. Then,

the data is further divided into training and test data. Before training the classifier,

data balancing techniques are applied to training data to address class imbalance

issues. This step ensures that the model is not biased towards the majority class. The

balanced data is fed into a classifier. In the case of the OpTunedSMOTE approach,

only parameters of the SMOTE technique are tuned. In the case of BOTH, the hyper-

parameters of both SMOTE and classifiers are optimized using the Optuna framework.

The BOTH approach is included to compare the effectiveness of the OpTunedSMOTE

approach. The classifier generates a prediction model based on the training data.

The performance of the prediction model is evaluated using appropriate performance

metrics. This step ensures that the model meets the desired criteria. Finally, statistical

tests are conducted to validate the model’s performance and robustness.In the HPT of

parameters using Optuna, the first step involves defining the objective function that

needs to be optimized. This function encapsulates the model training and evaluation

176

Research Methodology

process, and it is the metric we aim to improve. Optuna uses a trial object to suggest

different hyperparameter values. These suggestions are generated based on the ob-

jective function. A study object is created, and the optimized method is invoked to

perform the optimization over 100 trials. Each trial evaluates a set of hyperparameters

and records the performance. The workflow ensures a systematic approach to optimize

and evaluate classification models, leveraging the capabilities of Optuna for HPT and

employing a robust framework for model development and assessment.

7.2.2 Research Methodology of Study 2

Figure 7.2: A detailed framework for the Stacked Ensemble approach

177

Experimental Framework

In this part, we introduce our proposed model which utilizes an ensemble of CNN

[99, 184], GRU [185, 186], and LSTM with RF as the meta learner. Additionally, we

include hyperparameter tuning (HPT) using Optuna. We have obtained the datasets

from the PROMISE repository. In addition, we have used Recursive Feature Elimina-

tion (RFE) as a strategy for selecting the most relevant characteristics for the target

class. The datasets are divided into training and testing datasets to train and evaluate

the proposed models. Eventually, we developed and assessed our models using the

ROC-AUC metric. Figure 7.2 depicts the whole workflow of the proposed Software

Defect Prediction (SDP) technique.

7.3 Experimental Framework

In this section, we outline the experimental framework designed to implement and eval-

uate both the OpTunedSMOTE and Stacked Ensemble approaches for SDP. Each study

follows a structured process encompassing data preprocessing, hyperparameter tuning,

model training, and performance evaluation. For Study 1 (OpTunedSMOTE), we

focus on optimizing SMOTE parameters alone to address class imbalance effectively,

while in Study 2 (Stacked Ensemble), we employ a combination of CNN, LSTM,

and GRU as base learners, with RF as the meta-learner, optimizing both SMOTE

and classifier hyperparameters. This framework ensures a systematic approach to

assessing each model’s accuracy and robustness across diverse datasets.

7.3.1 Dataset Collection

For Study 1, three criteria guided the data selection process:

• C1: Accessibility of Public Defect Datasets: To reduce bias and ensure

reproducibility, we used publicly accessible datasets from varied corpora and

178

Experimental Framework

domains, acknowledging the impact dataset choice has on model performance.

• C2: Minimum Events Per Variable (EPV) Threshold: Following recommen-

dations, we included datasets with EPV values above 10 to avoid overfitting

risks associated with small sample sizes.

• C3: Defect Ratio Threshold: Datasets with a defect ratio under 50% were

selected to prevent model bias toward the majority class.

The study analyzed 17 datasets: Camel-1.2, Debug, Derby-10.2.1.6, Derby-

10.3.1.4, JDT, JM1, ML, PC5, PDE, Prop-1 to Prop-5, SWT, Xalan-2.5, and Xalan-2.6.

For Study 2, we selected six open-source Java projects, namely Ant-1.7, Camel-1.6,

Ivy-2.0, Jedit-4.3, Log4j-1.2, Xerces-1.4, from the PROMISE dataset, accessible at

https://www.kaggle.com/datasets/nazgolnikravesh/software\

protect\penalty\z@-defect-prediction-dataset. These datasets

represent diverse project scales, with instance counts from 205 to 965 and defect

rates ranging from 2.23% to 92.19%.

7.3.2 Data Preprocessing

In both studies, data preprocessing is a critical stage aimed at enhancing the accuracy

and robustness of the ML models developed for SDP. Effective preprocessing involves

addressing key issues such as data imbalance, feature selection, and normalization,

which impact the overall quality and performance of predictive models.

In Study 1, the Synthetic Minority Over-sampling Technique (SMOTE) is em-

ployed to resolve class imbalance, a common issue where one class significantly

outnumbers the other. Class imbalance can bias models toward the majority class,

leading to poor performance on minority class predictions. SMOTE counters this by

179

https://www.kaggle.com/datasets/nazgolnikravesh/software\protect \penalty \z@ -defect-prediction-dataset
https://www.kaggle.com/datasets/nazgolnikravesh/software\protect \penalty \z@ -defect-prediction-dataset

Experimental Framework

generating synthetic samples of the minority class, which improves model generaliza-

tion and reduces bias. Building on this, an advanced version called OpTunedSMOTE

is introduced, which leverages the Optuna framework for hyperparameter tuning to

customize SMOTE parameters according to specific dataset characteristics, aiming to

achieve consistent results across various datasets and models.

Study 2 applies Min-Max normalization to scale data within a specific range,

making optimization processes more effective and reducing the influence of outliers.

Feature selection is another key step, where Recursive Feature Elimination (RFE)

is utilized to retain only the most significant features. By iteratively removing less

impactful features, RFE enhances the model’s efficiency, focusing on critical predictors

and thus improving SDP model accuracy and interpretability.

7.3.3 Hyperparameter Tuning Setup

Hyperparameter tuning (HPT) is essential in Software Defect Prediction (SDP) be-

cause it significantly impacts the performance of machine learning (ML) models.

Default hyperparameters often lead to suboptimal results, and tuning them can im-

prove the predictive power of models by up to 40% [4,5]. Several techniques are

employed for HPT in SDP. Grid Search method involves systematically searching

through all possible combinations of hyperparameters to find the optimal set. While it

is exhaustive, it can be computationally expensive. Random Search method involves

randomly sampling hyperparameters from a specified range. Although it is less compu-

tationally expensive than grid search but has several disadvantages. It lacks systematic

exploration, potentially missing optimal combinations. Its effectiveness depends heav-

ily on the sampling strategy and number of iterations. Bayesian Optimization uses

Bayesian inference to iteratively update the hyperparameter settings based on previous

results. It uses an informed search strategy, creating a probabilistic model of the

180

Experimental Framework

objective function and updating it iteratively. By learning from previous evaluations,

it directs the search towards more promising regions, effectively balancing exploration

and exploitation. This method also excels in handling continuous hyperparameters.

In both studies, Optuna is employed for hyperparameter tuning (HPT) to optimize

model performance using Bayesian optimization principles. Optuna is a sophisti-

cated and flexible hyperparameter optimization framework designed to automate and

accelerate the optimization process for machine learning models, offering a unified in-

terface within the Python programming language. OPTUNA has gained popularity for

hyperparameter optimization due to its distinct advantages [187]. These advantages

are outlined as follows:

• Define-by-Run Style API: This flexible approach allows users to dynamically

establish the hyperparameter search space, facilitating efficient and targeted

optimization [87].

• Ease of Setup: Optuna’s architecture is versatile and user-friendly, enabling

smooth configuration for both lightweight experiments and large-scale dis-

tributed computations [185].

• Pruning and Sampling Mechanism: Optuna incorporates various sampling

algorithms, such as GridSearch, RandomSearch, TPE, and CMA-ES. Pruning

helps conserve computational resources by discontinuing unpromising trials

early in the process [136, 188, 189].

Figure 7.3 illustrates the architectural design of the Optuna framework. In the

Optuna hyperparameter optimization process, each study involves executing an objec-

tive function by each worker. The objective function utilizes Optuna APIs to conduct

trials. By leveraging the API, the objective function can access shared storage and

retrieve historical study data when required. Each worker runs the objective function

181

Experimental Framework

independently and communicates progress on the study through the shared storage

facility.

[h]

Figure 7.3: Architectural design of the Optuna framework.

The parameter details of the tuned parameter for study 1 is mentioned in Table 7.1

and for study 2 it is in Table 7.2.

7.3.4 Model Training and Testing Framework

In this chapter, the 10-fold cross-validation method is employed for both studies to

ensure the robustness and generalizability of the models. The significance of using

10-fold cross-validation lies in its ability to maximize the use of available data while

providing a reliable measure of model performance. The in-depth description of this

method, is present in Section 2.7 in Chapter 2, where it is defined and discussed in

detail.

182

Experimental Framework

Table 7.1: Parameter descriptions for techniques used in study 1.

Technique Parameter Description Datatype Range

SMOTE
sampling strategy Sampling information to resample

the data set.
str {’minority’, ’not minority’, ’not

majority’, ’all’}
k neighbors The nearest neighbours are used to

define the neighbourhood of sam-
ples to use to generate the synthetic
samples.

int [1, 20]

RF

n estimators The number of trees in the forest. int [100, 1000]

max depth The maximum depth of the tree. int [2, 20]

min samples split The minimum number of samples
required to split an internal node.

int [2, 10]

min samples leaf The minimum number of samples
required to be at a leaf node.

int [1, 10]

SVM
C Regularization parameter. float [0.1, 10]

kernel Specifies the kernel type to be used
in the algorithm.

str {’linear’, ’poly’, ’rbf’, ’sigmoid’}

MLP
alpha Strength of the L2 regularization

term.
float [0.00001, 0.001]

activation Activation function for the hidden
layer.

str {’relu’, ’tanh’, ’logistic’}

KNN
n neighbors Number of neighbours. int [3, 50]

weights Weight function used in prediction. str {’uniform’, ’distance’}
p Power parameter for the

Minkowski metric.
float [1, 2]

XGB

n estimators The number of boosting rounds. int [100, 1000]

max depth Maximum tree depth for base
learners.

int [3, 10]

learning rate Boosting learning rate. float [0.01, 0.1]

subsample Subsample ratio of the training in-
stance.

float [0.5, 1]

gamma Minimum loss reduction required
to make a further partition on a leaf
node of the tree.

float [0, 5]

7.3.5 Evaluation Metrics

In this chapter, we assess the performance of Software Defect Prediction (SDP)

models using ROC-AUC and MCC performance metrics to provide a comprehensive

evaluation of the proposed techniques. For Study 1, the primary metrics used include

Receiver Operating Characteristic Area Under the Curve (ROC-AUC) and Matthew’s

Correlation Coefficient (MCC), both of which capture model accuracy and the balance

between false positives and negatives. Additionally, we measure execution time

183

Experimental Framework

Table 7.2: Parameter descriptions for techniques used in study 2.

Technique Parameter Name Description Datatype Range

GRU
gru units1 Number of units in the

first GRU layer.
int [16, 64]

gru units2 Number of units in the
second GRU layer.

int [32, 128]

CNN

conv filters1 Number of filters in
the first convolutional
layer.

int [16, 64]

conv filters2 Number of filters in the
second convolutional
layer.

int [32, 128]

conv kernel size1 Size of the kernel in
the first convolutional
layer.

int [3, 5]

conv kernel size2 Size of the kernel in the
second convolutional
layer.

int [3, 5]

LSTM
lstm units1 Number of units in the

first LSTM layer.
int [16, 64]

lstm units2 Number of units in the
second LSTM layer.

int [32, 128]

Common (GRU, CNN, LSTM)

dense units Number of units in the
dense (fully connected)
layer.

int [32, 128]

learning rate Learning rate for model
optimization.

float [0.0001, 0.01]

batch size Number of samples per
gradient update.

categorical [32, 128]

activation Activation function
used in the layers.

categorical {’relu’, ’tanh’, ’sig-
moid’}

optimizer Optimization algorithm
for training.

categorical {’adam’, ’rmsprop’,
’sgd’}

RF
n estimators Number of trees in the

Random Forest.
int [50, 200]

max depth Maximum depth of
each tree in the Ran-
dom Forest.

int [5, 20]

to assess computational efficiency, recognizing that the proposed method achieves

superior performance compared to existing models. In Study 2, we focused only on

the ROC-AUC metric to evaluate model performance, reaffirming the metric’s utility

in assessing classification accuracy. These performance metrics collectively provide

an objective and thorough evaluation of the models, supporting the effectiveness of

the proposed techniques for SDP. Section 2.7 provides a comprehensive account of

184

Results Analysis

ROC-AUC and MCC performance metrics.

7.3.6 Statistical tools

In analysing the effect of hyperparameter tuning (HPT) on software defect prediction

(SDP), a statistical test plays a crucial role by providing a rigorous means of assessing

the significance of observed differences between models. By applying statistical

tests, such as the Friedman test, researchers can determine whether changes in model

performance, after applying HPT, are statistically significant rather than due to ran-

dom variation. This is essential for validating that HPT genuinely improves SDP

model outcomes and that observed improvements aren’t merely coincidental. In this

context, statistical tests allow for an objective comparison across models, classifiers,

or techniques, reinforcing the reliability and validity of the findings.

In both Study 1 and Study 2, the Friedman test, a non-parametric statistical tool, is

utilized to assess statistically significant differences across multiple groups. In Study

1, the Friedman test is applied to evaluate the performance of various models and

classifiers in software defect prediction (SDP), specifically analyzing different models

based on resampling and HPT techniques for imbalanced datasets. This allows for

a robust comparison of the models’ effectiveness in handling such data. In Study

2, the test is used to compare the mean ranks of four distinct techniques following

hyperparameter tuning (HPT), enabling an objective assessment of their relative

performance. Section 2.7 of Chapter 2 offers a detailed explanation of Friedman test.

7.4 Results Analysis

The result analysis section of this chapter outlines the findings from our empirical

investigation into the impact of automated hyperparameter tuning (HPT) using Op-

185

Results Analysis

tuna within the scope of software defect prediction (SDP) models. It provides an

in-depth analysis of improvements in predictive performance, the effectiveness of

various learning algorithms, and the time-space efficiency achieved through HPT

by assessing ROC-AUC and MCC values across multiple datasets and classifiers.

The findings from Study 1 offer a comprehensive view of how automated parameter

optimization enhances the effectiveness of SMOTE in addressing class imbalance in

SDP. Meanwhile, the results for Study 2 showcase the performance of our proposed

ensemble-based deep learning (DL) model for SDP.

7.4.1 Results analysis of Study 1

Table 3-7 provides a tabular representation of the impact of HPT on the performance of

the SMOTE in the context of SDP models. The tables categorize differences in ROC-

AUC and MCC between the default or untuned SMOTE (S), SMOTETUNED (ST), i.e.

SMOTE tuned with DE, the proposed approach i.e. optimized OpTunedSMOTE (OS)

and the BOTH in which SMOTE, as well as the classifiers, are tuned using OPTUNA,

presenting a comprehensive overview of the observed improvements across multiple

classifiers and datasets. The analysis is performed assuming SMOTE as the baseline

method.

7.4.1.1 Results analysis based on RQ1

RQ1: How does hyperparameter tuning (HPT) of SMOTE impact the predictive

performance of software defect prediction (SDP) models across various datasets and

classifiers?

Considering the ROC-AUC values presented in Table 7.3 for the KNN classifier,

the SMOTETUNED approach shows an average improvement across datasets. The

biggest improvements are seen in Debug (18.68%) and JM1 (11.68%). It provides

186

Results Analysis

better ROC-AUC scores than SMOTE but doesn’t always achieve the highest gains

compared to the proposed approach. OpTunedSMOTE shows substantial improve-

ments, particularly in datasets like SWT (9.53%) and Derby-10.2.1.6 (19.43%). It

consistently provides higher percentage improvements over SMOTE, indicating it

generally enhances model performance more effectively. Improvements shown by

BOTH vary and are generally lower compared to OpTunedSMOTE, but they are still

positive. The highest gains are observed in SWT (7.35%) and Derby-10.2.1.6 (2.83%).

Tuning both the SMOTE as well as the classifier provides competitive results but is

not always better than individual optimized methods.

In the case of MCC values, SMOTETUNED shows significant improvements,

with the highest being Camel-1.2 (98.9%) and PDE (96.12%). The gains are notable,

especially for datasets with initially low MCC scores. OpTunedSMOTE also provides

substantial improvements, with the highest in PDE (105.83%) and PC5 (86.58%). It

generally shows better performance improvements than SMOTETUNED in MCC

scores, indicating it might offer a more effective balance in classifying both classes.

BOTH provide varied improvements, with significant gains in SWT (28.37%) and

PC5 (32.89%). While effective, the gains are generally lower compared to the best-

performing single methods.

Table 7.4, presents the case of the MLP classifier, considering the measure of

ROC-AUC, the highest improvement in ROC-AUC is shown in JM1 (35.65%), indi-

cating that SMOTETUNED effectively enhances the model’s ability to distinguish

between classes. The minimal improvement in Xalan-2.6 (2.48%) suggests that

SMOTETUNED has a limited impact on this dataset. OpTunedSMOTE leads to the

biggest improvement in PC5 (57.47%) and the least in SWT (7.87%), indicating that

this advanced tuning technique significantly boosts the model’s performance. BOTH

provides the highest notable improvement in ROC-AUC for Prop-3 (15.79%). No

improvement is observed in Prop-1 (0.00%), indicating that BOTH does not provide

187

Results Analysis

Table 7.3: Performance metrics of the KNN algorithm across various datasets.

Dataset ROC-AUC MCC
S ST OS BOTH S ST OS BOTH

Camel-1.2 0.569 0.578 0.623 0.607 0.091 0.181 0.195 0.093

Debug 0.654 0.776 0.799 0.665 0.200 0.305 0.325 0.318

Derby-10.2.1.6 0.672 0.755 0.802 0.691 0.252 0.357 0.370 0.296

Derby-10.3.1.4 0.670 0.751 0.785 0.750 0.259 0.358 0.378 0.335

JDT 0.815 0.867 0.910 0.822 0.497 0.550 0.563 0.540

JM1 0.592 0.661 0.707 0.697 0.123 0.165 0.179 0.152

ML 0.696 0.775 0.798 0.735 0.251 0.284 0.295 0.280

PC5 0.646 0.741 0.768 0.676 0.149 0.259 0.278 0.198

PDE 0.682 0.739 0.775 0.724 0.103 0.202 0.212 0.154

Prop-1 0.743 0.757 0.790 0.752 0.291 0.321 0.332 0.316

Prop-2 0.729 0.737 0.786 0.777 0.192 0.262 0.276 0.268

Prop-3 0.589 0.683 0.731 0.627 0.113 0.129 0.148 0.140

Prop-4 0.632 0.707 0.755 0.685 0.118 0.175 0.185 0.153

Prop-5 0.659 0.700 0.741 0.720 0.074 0.098 0.114 0.077

SWT 0.872 0.909 0.955 0.936 0.601 0.782 0.798 0.771

Xalan-2.5 0.719 0.765 0.805 0.758 0.329 0.378 0.391 0.355

Xalan-2.6 0.782 0.831 0.854 0.817 0.401 0.492 0.507 0.472

any additional benefit over the baseline SMOTE. Considering the MCC values, the

highest improvement in JM1 (702.74%) is shown by SMOTETUNED, suggesting

that JM1 has a complex imbalance that is well addressed by tuning SMOTE param-

eters, while the least improvement is achieved in Xalan-2.6 (5.77%). The highest

improvement in JM1 (720.55%) and lowest improvement in Prop-3 (18.67%) with

OpTunedSMOTE further underscores the dataset’s complexity and the effectiveness

of optimal parameter tuning. For BOTH, there is a normal improvement range varying

from Xalan-2.6 (5.13%) to Prop-2 (6.43%).

In Table 7.5, for the RF classifier, considering ROC-AUC, SMOTETUNED shows

improvements in ROC-AUC ranging from slight decreases to moderate increases, with

most datasets showing positive improvements such as in Derby-10.3.1.4 (10.04%) and

Derby-10.2.1.6 (6.78%). OpTunedSMOTE consistently shows a higher percentage

improvement in ROC-AUC compared to default SMOTE, with some datasets showing

188

Results Analysis

Table 7.4: Performance metrics of MLP algorithm across various datasets

Dataset ROC-AUC MCC
S ST OS BOTH S ST OS BOTH

Camel-1.2 0.599 0.628 0.660 0.638 0.153 0.251 0.264 0.212

Debug 0.705 0.767 0.806 0.705 0.237 0.358 0.372 0.290

Derby-10.2.1.6 0.651 0.732 0.754 0.663 0.252 0.421 0.432 0.405

Derby-10.3.1.4 0.619 0.749 0.783 0.662 0.250 0.401 0.420 0.266

JDT 0.770 0.860 0.908 0.822 0.474 0.548 0.568 0.540

JM1 0.460 0.624 0.653 0.557 0.073 0.586 0.599 0.084

ML 0.762 0.818 0.851 0.789 0.299 0.349 0.365 0.331

PC5 0.482 0.719 0.759 0.534 0.106 0.251 0.267 0.108

PDE 0.713 0.747 0.767 0.761 0.225 0.292 0.307 0.243

Prop-1 0.705 0.762 0.807 0.705 0.160 0.282 0.300 0.278

Prop-2 0.703 0.758 0.806 0.773 0.171 0.186 0.203 0.182

Prop-3 0.633 0.719 0.758 0.733 0.075 0.136 0.153 0.089

Prop-4 0.676 0.746 0.780 0.690 0.172 0.214 0.230 0.207

Prop-5 0.673 0.721 0.752 0.748 0.109 0.157 0.174 0.166

SWT 0.865 0.885 0.933 0.878 0.545 0.792 0.803 0.548

Xalan-2.5 0.683 0.744 0.775 0.733 0.225 0.346 0.363 0.294

Xalan-2.6 0.808 0.828 0.867 0.810 0.468 0.495 0.511 0.492

significant improvements. The highest improvements are shown in Derby-10.3.1.4

(15.19%) and Debug (10.00%). When both SMOTE and classifiers are tuned, im-

provements in ROC-AUC are generally positive and sometimes slightly lower than

OpTunedSMOTE alone. For example, Derby-10.3.1.4 shows a 6.83% improvement,

and Prop-1 shows a 5.46% improvement. In the case of MCC values, SMOTE-

TUNED typically shows a positive percentage improvement in MCC, with substantial

gains in some datasets. Notable improvements include Derby-10.3.1.4 (60.27%)

and Camel-1.2 (71.29%). OpTunedSMOTE consistently provides higher percentage

improvements in MCC compared to default SMOTE. The highest improvements are

seen in datasets like Derby-10.3.1.4 (66.78%) and Prop-2 (45.91%). BOTH generally

results in positive percentage improvements in MCC, often comparable to OS alone.

Significant improvements are observed in datasets like Derby-10.3.1.4 (19.86%) and

Prop-2 (43.59%).

189

Results Analysis

Table 7.5: Performance metrics of RF algorithm across various datasets

Dataset ROC-AUC MCC
S ST O BOTH S ST O BOTH

Camel-1.2 0.653 0.652 0.695 0.671 0.202 0.346 0.366 0.244

Debug 0.760 0.789 0.836 0.789 0.325 0.292 0.331 0.308

Derby-10.2.1.6 0.723 0.772 0.794 0.735 0.356 0.457 0.470 0.460

Derby-10.3.1.4 0.717 0.789 0.826 0.766 0.292 0.468 0.487 0.350

JDT 0.867 0.884 0.908 0.902 0.550 0.574 0.586 0.563

JM1 0.674 0.700 0.732 0.729 0.218 0.247 0.266 0.235

ML 0.820 0.835 0.878 0.840 0.344 0.386 0.400 0.392

PC5 0.778 0.835 0.870 0.833 0.378 0.386 0.399 0.385

PDE 0.762 0.774 0.804 0.792 0.293 0.298 0.315 0.308

Prop-1 0.787 0.784 0.832 0.830 0.237 0.332 0.346 0.263

Prop-2 0.738 0.787 0.837 0.768 0.257 0.356 0.375 0.369

Prop-3 0.709 0.723 0.749 0.712 0.110 0.152 0.168 0.114

Prop-4 0.739 0.763 0.806 0.799 0.168 0.238 0.249 0.203

Prop-5 0.724 0.732 0.777 0.749 0.107 0.131 0.150 0.120

SWT 0.920 0.935 0.961 0.933 0.692 0.838 0.855 0.732

Xalan-2.5 0.775 0.784 0.814 0.808 0.419 0.454 0.467 0.429

Xalan-2.6 0.848 0.859 0.909 0.876 0.540 0.549 0.564 0.546

Table 7.6: Performance metrics of SVM algorithm across various datasets.

Dataset ROC-AUC MCC
S ST OS BOTH S ST OS BOTH

Camel-1.2 0.543 0.651 0.681 0.638 0.064 0.227 0.244 0.210

Debug 0.615 0.724 0.771 0.770 0.188 0.246 0.260 0.194

Derby-10.2.1.6 0.497 0.711 0.755 0.709 0.083 0.100 0.112 0.087

Derby-10.3.1.4 0.505 0.595 0.624 0.538 0.018 0.045 0.064 0.021

JDT 0.783 0.810 0.843 0.823 0.332 0.335 0.350 0.341

JM1 0.542 0.668 0.717 0.559 0.519 0.523 0.541 0.536

ML 0.612 0.691 0.733 0.706 0.082 0.085 0.099 0.096

PC5 0.615 0.691 0.713 0.711 0.188 0.220 0.236 0.194

PDE 0.651 0.700 0.721 0.679 0.016 0.141 0.160 0.138

Prop-1 0.564 0.616 0.645 0.634 0.154 0.294 0.311 0.168

Prop-2 0.544 0.562 0.588 0.558 0.069 0.056 0.072 0.067

Prop-3 0.523 0.558 0.587 0.539 0.096 0.110 0.122 0.117

Prop-4 0.525 0.631 0.656 0.611 0.071 0.162 0.176 0.076

Prop-5 0.559 0.626 0.672 0.646 0.123 0.143 0.156 0.128

SWT 0.844 0.856 0.877 0.846 0.554 0.689 0.699 0.689

Xalan-2.5 0.659 0.670 0.692 0.685 0.219 0.248 0.267 0.244

Xalan-2.6 0.785 0.792 0.835 0.828 0.387 0.394 0.411 0.408

190

Results Analysis

In Table 7.6, for the SVM classifier, SMOTETUNED shows improvements in ROC-

AUC, ranging from slight increases to significant increases, with most datasets showing

positive improvements. Notable improvements include Derby-10.2.1.6 (43.06%) and

Camel-1.2 (19.89%). Consistently, there is a higher percentage of improvements in

ROC-AUC than in default SMOTE. Significant improvements are observed in datasets

such as Derby-10.2.1.6 (51.90%) and Camel-1.2 (25.41%). BOTH generally leads to

positive improvements in ROC-AUC, sometimes slightly lower than OpTunedSMOTE

alone. For example, Debug shows a 25.20% improvement, and Camel-1.2 shows a

17.51% improvement. In the case of MCC, SMOTETUNED typically shows positive

percentage improvements in MCC, with substantial gains in some datasets. Notable

improvements include Camel-1.2 (254.69%) and PDE (781.25%). OpTunedSMOTE

consistently provides higher percentage improvements in MCC compared to default

SMOTE. Highest improvements are observed in datasets like PDE (900.00%) and

Camel-1.2 (281.25%). BOTH results in positive percentage improvements in MCC,

often comparable to OpTunedSMOTE alone. Significant improvements are observed

in datasets like PDE (762.50%) and Camel-1.2 (228.13%).

In Table 7.7, for the XGB classifier, SMOTETUNED shows improvements in

ROC-AUC ranging from slight increases to significant increases, with most datasets

showing positive improvements. Notable improvements include Camel-1.2 (29.38%)

and PDE (26.53%). OpTunedSMOTE consistently shows higher percentage improve-

ments in ROC-AUC compared to default SMOTE. Significant improvements are

observed in datasets such as Camel-1.2 (38.26%) and PDE (32.20%). BOTH show

positive improvements in ROC-AUC, sometimes slightly lower than OpTunedSMOTE

alone. For example, Debug shows a 5.98% improvement, and Camel-1.2 shows a

4.74% improvement. SMOTETUNED typically shows positive percentage improve-

ments in MCC, with substantial gains in some datasets. Notable improvements include

SWT (22.04%) and Derby-10.3.1.4 (48.75%). OpTunedSMOTE consistently pro-

191

Results Analysis

Table 7.7: Performance metrics of XGB algorithm across various datasets.

Dataset ROC-AUC MCC
S ST OS BOTH S ST OS BOTH

Camel-1.2 0.549 0.710 0.759 0.575 0.306 0.343 0.356 0.335

Debug 0.786 0.800 0.837 0.833 0.304 0.426 0.443 0.311

Derby-10.2.1.6 0.762 0.779 0.812 0.801 0.364 0.470 0.488 0.444

Derby-10.3.1.4 0.756 0.783 0.814 0.764 0.320 0.476 0.495 0.353

JDT 0.881 0.889 0.911 0.900 0.527 0.541 0.556 0.556

JM1 0.699 0.709 0.729 0.714 0.250 0.250 0.269 0.264

ML 0.828 0.843 0.867 0.833 0.317 0.356 0.376 0.333

PC5 0.796 0.802 0.843 0.835 0.373 0.387 0.403 0.396

PDE 0.634 0.802 0.838 0.707 0.291 0.299 0.318 0.295

Prop-1 0.786 0.804 0.843 0.820 0.232 0.317 0.333 0.271

Prop-2 0.838 0.853 0.896 0.843 0.313 0.350 0.363 0.326

Prop-3 0.681 0.742 0.765 0.690 0.130 0.136 0.152 0.151

Prop-4 0.681 0.766 0.807 0.748 0.138 0.155 0.168 0.149

Prop-5 0.728 0.760 0.791 0.749 0.093 0.100 0.111 0.100

SWT 0.919 0.925 0.971 0.920 0.685 0.836 0.853 0.790

Xalan-2.5 0.784 0.791 0.812 0.789 0.406 0.448 0.467 0.455

Xalan-2.6 0.858 0.867 0.893 0.858 0.568 0.586 0.601 0.585

vides higher percentage improvements in MCC compared to default SMOTE. The

highest improvements are observed in datasets like Derby-10.3.1.4 (54.69%) and

Debug (45.72%). BOTH results in positive percentage improvements in MCC, often

comparable to OpTunedSMOTE alone. Significant improvements are observed in

datasets like Derby-10.3.1.4 (10.31%) and SWT (15.33%).

7.4.1.2 Results analysis based on RQ2

RQ2: Which classifiers benefit the most from optimized SMOTE techniques (SMOTE-

TUNED, OpTunedSMOTE, and BOTH) in terms of predictive accuracy and robust-

ness?

192

Results Analysis

[h]

Figure 7.4: Average performance of different classification techniques with various
data balancing techniques (a) on the basis of ROC-AUC values and (b) on the basis of
MCC values.

Considering the average performances of the classification techniques for 17

datasets in Figure 7.4(a), KNN benefits substantially from hyperparameter tuning,

with OpTunedSMOTE leading to the highest ROC-AUC scores of 0.79 compared

to other data balancing techniques. MLP shows a significant gain in ROC-AUC

(0.79), indicating it performs well with enhanced data balancing techniques like

OpTunedSMOTE. RF consistently achieves high ROC-AUC scores (0.82), particularly

with OpTunedSMOTE, highlighting its robustness and effectiveness. SVM shows

moderate improvements, with the highest gains seen with OpTunedSMOTE in terms

of ROC-AUC score (0.71). XGB stands out with the highest ROC-AUC scores (0.83),

particularly with OpTunedSMOTE, indicating it excels with hyperparameter-tuned

SMOTE.

193

Results Analysis

From Figure 7.4(b), it can be concluded that KNN shows moderate improvements

in the average value of MCC (0.33) with hyperparameter tuning, particularly with

OpTunedSMOTE and SMOTETUNED. MLP shows a notable increase in MCC

(0.37) with OpTunedSMOTE, indicating it responds well to these enhancements. RF

demonstrates a robust performance boost from hyperparameter tuning, achieving the

highest MCC (0.40) among all classifiers. While SVM benefits from OpTunedSMOTE,

its highest MCC values (0.25) are generally lower compared to other classifiers,

indicating it may not be the best choice for these datasets. XGB shows strong

performance gains with hyperparameter tuning, making it one of the top-performing

classifiers in terms of MCC (0.40).

7.4.1.3 Results analysis based on RQ3

RQ3: What are the statistically significant differences among classification methods

following hyperparameter-tuned SMOTE in SDP models?

194

Results Analysis

[h]

Figure 7.5: Friedman test results for classification techniques based on ROC-AUC
values (a) for SMOTE techniques (b) for SMOTETUNED technique (c) for Op-
TunedSMOTE technique (d) for BOTH techniques

The Friedman test results provide a comparative ranking of various classification

techniques (KNN, MLP, RF, SVM, and XGB) based on their ROC-AUC values under

different data balancing techniques (SMOTE, SMOTETUNED, OpTunedSMOTE,

195

Results Analysis

and BOTH).

From Figure 7.5(a), XGB and RF are the top-performing classifiers with the highest

mean ranks (4.35), indicating they achieve the highest ROC-AUC values using default

SMOTE. SVM ranks the lowest (1.29), showing it performs the worst in terms of ROC-

AUC with default SMOTE. KNN and MLP have moderate ranks, suggesting average

performance with default SMOTE. Figure 7.5(b) shows the case for SMOTETUNED

and reveals that XGB continues to be the best performer with the highest mean rank

(4.82) when SMOTE is tuned with DE, followed by RF (4.18). SVM remains the

lowest (1.24), indicating it still performs poorly even with SMOTETUNED. KNN

and MLP show slight improvements but remain in moderate ranks. Depicting the

case of OpTunedSMOTE, Figure 7.5(c), XGB and RF continue to dominate with the

highest ranks (4.65 and 4.15, respectively) under OpTunedSMOTE, indicating their

strong performance. SVM again ranks the lowest (1.29), showing little improvement.

KNN and MLP remain in the middle, with no significant changes in rank. Figure

7.5(d) depicts the case of BOTH, in which RF takes the top spot (4.50) when both

SMOTE and classifiers are tuned, followed by XGB (3.85). SVM, although showing

some improvement, still ranks the lowest (1.79). KNN and MLP have consistent

moderate performance with slight variations. XGB and RF consistently rank the

highest across all tuning methods. The rankings of XGB and RF remain at the top

before and after tuning, indicating their robustness and substantial improvement with

SMOTE tuning. Both classifiers show the most significant performance gains with

OpTunedSMOTE, reinforcing the effectiveness of combined tuning. The rankings of

KNN and MLP remain relatively stable, showing moderate improvements with each

tuning method. Their ranks do not change drastically, suggesting they benefit from

tuning but are not as sensitive to it as XGB and RF. SVM consistently ranks the lowest

across all methods. While there are slight improvements with tuning, its rank remains

the lowest, indicating limited benefit from SMOTE tuning and the potential need for

196

Results Analysis

further optimization or alternative techniques.

[h]

Figure 7.6: Friedman test results for classification techniques based on MCC values
(a) for SMOTE techniques (b) for SMOTETUNED technique (c) for OpTunedSMOTE
technique (d) for BOTH technique

From Figure 7.6(a), it can be analyzed that in the case of default SMOTE, RF is

the top performer with the highest mean rank (4.24), followed closely by XGB (4.12).

SVM ranks the lowest (1.71), showing it performs the worst in terms of MCC with

197

Results Analysis

default SMOTE. KNN and MLP have moderate ranks, indicating average performance

with default SMOTE. Figure 7.6(b) reveals that RF maintains its top position (4.24)

with SMOTETUNED, followed by XGB (3.79). SVM remains the lowest (1.53),

indicating it still performs poorly even with SMOTETUNED. KNN shows slight

improvement, while MLP’s rank decreases slightly. In Figure 7.6(c), RF continues

to dominate (4.26) under OpTunedSMOTE, with XGB also performing well (3.79).

SVM remains the lowest (1.53), showing little improvement. KNN shows the best

performance improvement, moving to Rank II. In the case of BOTH from Figure

7.6(d), RF takes the top position (3.82) when both SMOTE and classifiers are tuned,

with XGB closely following (4.12). SVM, although showing some improvement, still

ranks the lowest (1.71). KNN and MLP maintain moderate performance with slight

variations.

7.4.1.4 Results analysis based on RQ4

RQ4: How does hyperparameter tuning of SMOTE affect the computational resources

required, such as memory usage and execution time, for different classifiers?

[h]

Figure 7.7: Comparison of execution time and memory usage for different classifica-
tion techniques with various SMOTE variations.

198

Results Analysis

Based on Figure 7.7, KNN shows a slight increase in memory usage with SMOTE-

TUNED (237.10 MB) and OpTunedSMOTE (239.11 MB), with the highest usage

observed in BOTH (239.38 MB). MLP’s memory usage increases moderately with

tuning, with BOTH (247.54 MB) showing the highest usage. RF shows a significant in-

crease in memory usage with tuning methods, with a slight decrease in BOTH (247.42

MB) compared to SMOTETUNED (252.43 MB) and OpTunedSMOTE (252.01 MB).

SVM shows significant increases with tuning, except for BOTH (256.13 MB), which

slightly reduces memory usage. XGB’s memory usage increases with SMOTETUNED

(315.87 MB) and OpTunedSMOTE (314.69 MB) but significantly decreases with

BOTH (250.83 MB), indicating a trade-off optimization. Memory usage increases

for all classifiers when moving from SMOTE to SMOTETUNED, OpTunedSMOTE,

and BOTH. BOTH generally shows the highest memory usage, indicating the most

computationally intensive method.

In the case of execution time, KNN’s execution time increases significantly with

tuning methods, particularly with BOTH (162.88 sec). MLP shows the highest increase

in execution time with SMOTETUNED (184.46 sec) and BOTH (199.87 sec), with

OpTunedSMOTE being slightly lower (135.83 sec). RF’s execution time increases

significantly with all tuning methods, particularly with BOTH (194.3 sec). SVM’s

execution time increases significantly with tuning, with OpTunedSMOTE (163.48

sec) being the most time-intensive. XGB shows significant increases in execution

time with all tuning methods, with BOTH (168.20 sec) having the highest execution

time. Execution time increases significantly for all classifiers with SMOTETUNED,

OpTunedSMOTE, and BOTH compared to SMOTE. BOTH consistently results in the

highest execution time, indicating a significant trade-off for improved performance.

Our findings highlight the importance of parameter settings in defect prediction

models and advocate for the use of automated hyperparameter optimization techniques

to fully utilize ML classifiers in software development processes. The findings show

199

Results Analysis

that HPT of SMOTE improves the predictive performance of software development

process models. The use of Optuna for optimization resulted in significant improve-

ments in the models. The study also explores the comparative effectiveness of different

learning algorithms after HPT. The time and space efficiency of the HPT process is

demonstrated, with Optuna outperforming other techniques. The study suggests that

off-the-shelf configurations for data balancing techniques may not be advisable; HPT

is required for optimal performance.

7.4.2 Results analysis of Study 2

This section presents the outcomes of our study on SDP using DL techniques and

proposed model based on stacked ensemble model.

7.4.2.1 Results analysis based on RQ1

RQ1 How does HPT affect the performance of different DL techniques in terms of

AUC improvement?

The study evaluated the impact of hyperparameter tuning (HPT) on the perfor-

mance of various deep learning (DL) techniques, specifically focusing on the percent-

age improvement in AUC. The results, summarized in Figure 7.8 and detailed in Table

7.8, provide a comprehensive comparison of the performance gains across different

models.

Figure 7.8 visually represents the average percentage improvement in AUC for

techniques before HPT and after HPT, clearly illustrating that CNN benefited the

most from HPT with an impressive average improvement of 20.87%. This substantial

gain indicates that CNNs are highly sensitive to hyperparameter adjustments, leading

to significant performance enhancements when appropriately tuned. LSTM also

exhibited considerable gains, with an average AUC improvement of 19.75%, as shown

200

Results Analysis

in Table 1. This close performance to CNN suggests that LSTM methods also gain

significantly from hyperparameter tuning, though slightly less than CNN.

GRU demonstrated a moderate improvement of 15.05% in AUC, as presented

in both Figure 7.8 and Table 7.8. While GRUs benefit from hyperparameter tuning,

the extent of improvement is less pronounced compared to CNN and LSTM. This

moderate gain suggests that GRUs are somewhat less sensitive to hyperparameter

changes. Lastly, EL methods showed the smallest improvement at 6.74%, indicating

a relative robustness to hyperparameter adjustments. As presented in Figure 2, this

minimal improvement suggests that EL models may perform adequately even with

default hyperparameters, implying a lower sensitivity to tuning.

Table 7.8: ROC-AUC Scores for CNN, LSTM, GRU, and ENSEMBLE Models With
and Without HPT

Datasets CNN LSTM GRU ENSEMBLE
W/O HPT With HPT W/O HPT With HPT W/O HPT With HPT W/O HPT With HPT

Ant-1.7 0.779 0.839 0.682 0.824 0.758 0.825 0.835 0.880

Camel-1.6 0.688 0.717 0.642 0.682 0.580 0.661 0.679 0.737

Ivy-2.0 0.620 0.871 0.714 0.819 0.639 0.787 0.845 0.893

Jedit-4.3 0.644 0.914 0.751 0.830 0.632 0.753 0.901 0.953

Log4j-1.2 0.687 0.848 0.685 0.786 0.608 0.743 0.850 0.932

Xerces-1.4 0.859 0.923 0.838 0.873 0.877 0.903 0.903 0.952

201

Results Analysis

Figure 7.8: Percentage improvement in ROC-AUC for each technique.

These findings highlight the varying degrees to which different models rely on

HPT for optimal performance, with CNNs and LSTMs showing the greatest sensitivity

and potential for enhancement through fine-tuning. The visual and tabular data

collectively emphasize the importance of model-specific tuning strategies to achieve

optimal performance in DL applications.

202

Results Analysis

7.4.2.2 Results analysis based on RQ2

RQ2 Which DL method demonstrates the highest performance in predicting software

defects in this study?

This study employed Friedman’s test to evaluate the mean rank of four different

techniques after HPT. The mean ranks obtained are depicted in Table 7.9. The test

yielded a p-value of 0.001 at a 5% level of significance. The p-value indicates a

statistically significant difference in the performance of these techniques.

Table 7.9: Mean rank of various techniques with HPT

Techniques Mean Rank (p = 0.001)
CNN 2.00 (II)

LSTM 3.33 (III)

GRU 3.67 (IV)

ENSEMBLE 1.00 (I)

Among these, the Ensemble Learning (EL) technique demonstrated the most

promising results, achieving the first rank (I). This consistent superiority of the EL

technique across various datasets suggests that it outperforms the other evaluated

techniques. The enhanced performance of the EL technique can be attributed to

its ability to amalgamate the strengths of multiple techniques, thereby enhancing

predictive accuracy and robustness. Consequently, within the scope of this analysis,

the EL technique emerges as the most effective technique.

In comparison, the other techniques also exhibited noteworthy performances. With

a mean rank of 2.00, the CNN technique performed relatively well, indicating a solid

predictive capability after hyperparameter tuning. The LSTM technique, with a mean

rank of 3.33, acquired the III rank and showed moderate performance. Although it

did not outperform the EL or CNN techniques, LSTM’s ability to capture long-term

dependencies makes it a viable option for time-series data and sequential predictions.

203

Discussion

The GRU technique had the lowest performance among the techniques with a mean

rank of 3.67.

Overall, while Ensemble Learning stands out as the most promising technique,

CNNs and LSTM techniques also show substantial potential in specific applications.

GRUs, though ranked lowest, still provide a valuable option depending on the context

of the problem. The statistical significance of the Friedman’s test reinforces the

reliability of these findings.

7.5 Discussion

This chapter highlights the significant impact of automated hyperparameter tuning

(HPT) using Optuna on enhancing Software Defect Prediction (SDP) models across

Machine Learning (ML) and Deep Learning (DL) frameworks. Both studies demon-

strate that HPT markedly improves predictive performance, with tailored parameter

adjustments in SMOTE and DL models enhancing key performance metrics like

ROC-AUC and MCC across diverse datasets.

In Study 1, the OpTunedSMOTE approach consistently demonstrated superior

performance over default SMOTE and SMOTETUNED across all evaluated classi-

fiers. By tuning SMOTE’s parameters to adapt to the characteristics of each dataset,

OpTunedSMOTE achieved the highest improvements in ROC-AUC and MCC scores,

indicating more effective handling of class imbalance and better overall predictive

accuracy. Random Forest (RF) and Extreme Gradient Boosting (XGB) emerged as the

top-performing classifiers, showing the most significant gains from OpTunedSMOTE.

These classifiers, known for their robustness and adaptability, benefited greatly from

HPT, suggesting that automated parameter optimization can maximize their per-

formance in defect prediction tasks. Although OpTunedSMOTE yielded notable

improvements in performance, it came with increased computational costs, especially

204

Discussion

in terms of memory usage and execution time. This trade-off implies that while

OpTunedSMOTE is highly effective, it may not be ideal for resource-constrained

environments. For such cases, SMOTETUNED offers a balanced option, providing

moderate improvements with lower computational demands. The comparative analysis

in Study 1 employed the Friedman test to statistically validate the effectiveness of dif-

ferent tuning approaches. This analysis confirmed the superiority of OpTunedSMOTE

over other methods, with the highest rankings across various classifiers.

Study 2 showed that Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) models are particularly sensitive to HPT, resulting in AUC

improvements of 20.87% and 19.75%, respectively. These results indicate that CNNs

and LSTMs benefit significantly from tuning, making HPT a crucial step for applica-

tions involving spatial or sequential data in SDP tasks. While Gated Recurrent Units

(GRUs) showed moderate AUC improvements of 15.05%, they appeared less sensitive

to hyperparameter changes compared to CNNs and LSTMs. This finding suggests

that GRUs could be more suitable for applications where computational efficiency is

prioritized over maximum performance, offering a good balance between accuracy

and resource consumption. The study also found that Ensemble Learning (EL) models

showed the least sensitivity to HPT, with an AUC improvement of only 6.74%. This

robustness to hyperparameter adjustments suggests that EL models can achieve satis-

factory performance with default settings, making them suitable for resource-limited

environments.

The findings from both studies underscore the importance of selecting the appro-

priate model and tuning approach based on the specific requirements of the SDP task.

OpTunedSMOTE and HPT-enhanced CNNs and LSTMs are recommended for tasks

requiring high accuracy and capable of handling computational costs. Conversely,

GRUs and Ensemble Learning models may be preferred in scenarios where simplicity,

robustness, or resource efficiency is essential.

205

Discussion

Practitioners are encouraged to prioritize HPT in the model development process

to maximize predictive accuracy. For complex and data-intensive tasks, especially in

SDP, dedicating resources to explore a range of hyperparameter configurations can

yield substantial performance benefits. While OpTunedSMOTE and DL models like

CNNs and LSTMs offer maximum performance improvements, practitioners should

consider the increased computational requirements. In resource-limited settings,

models like GRUs and EL with moderate or default tuning may be preferable for their

balance of efficiency and effectiveness.

206

Chapter 8

Conclusion

8.1 Summary of the Research Work

Software Defect Prediction (SDP) is a critical aspect of the software development

lifecycle, enabling early identification of potential issues within code. As software sys-

tems grow in complexity, the likelihood of defects increases, necessitating proactive

strategies to maintain quality and reliability. The primary aim of the work conducted

in this thesis is to develop models that improve the prediction of defect-prone areas,

facilitating efficient allocation of limited testing and maintenance resources. Accurate

defect prediction allows organizations to prevent costly post-release failures and main-

tain high customer satisfaction. This thesis proposes and evaluates several techniques

to optimize SDP models, ranging from traditional machine learning approaches to

advanced metaheuristic optimization and deep learning methods. Given the promis-

ing performance of these methods in enhancing predictive accuracy, the work also

explores ensemble techniques and automated hyperparameter tuning to further refine

results. Through structured empirical experiments, the research presented in this thesis

demonstrates the effectiveness of these approaches, providing valuable insights for

207

Summary of the Research Work

researchers and practitioners aiming to improve software quality assurance.

To evaluate and assess the current state of literature in the domain of software

evolution, we performed a systematic literature review to examine and evaluate exist-

ing feature reduction techniques for Software Quality Predictive Modeling (SQPM).

Covering research from 2000 to 2019, this study analyzed 22 primary studies and

identified commonly used feature selection methods, metrics, datasets, and machine

learning techniques in SDP. Techniques were grouped into three main categories: filter,

wrapper, and embedded. Frequently used methods included Correlation-based Feature

Selection, OneR, and Information Gain, while less common but valuable approaches

included Principal Component Analysis (PCA) and Gain Ratio. Additionally, the

PROMISE dataset was used in 45% of the studies, while Random Forest, Logistic

Regression, and NaÃ¯ve Bayes were the preferred machine learning classifiers in

45% of the studies. ROC-AUC was used as the primary evaluation metric in 63%

of the studies, followed by accuracy at 27% and F-measure at 23%. This literature

review laid the groundwork by identifying gaps and establishing a baseline for further

empirical investigations into feature selection techniques in SDP.

In software defect prediction (SDP), handling high-dimensional data is a critical

challenge that can significantly impact the performance of predictive models. Feature

extraction techniques are essential for reducing the complexity of datasets while

preserving the most relevant information. By providing an in-depth comparison

of various feature extraction techniques, we performed a study that significantly

contributes to SDP by providing a comparison of feature extraction techniques. In

this conducted a detailed empirical analysis of four feature extraction techniques in

combination with a Support Vector Machine (SVM) classifier. The study utilized the

PROMISE dataset, employing evaluation metrics such as accuracy and ROC-AUC to

assess the effectiveness of each feature extraction technique. The results demonstrated

that autoencoders achieved the highest ROC-AUC scores, with an improvement of 15%

208

Summary of the Research Work

over other methods, while Linear Discriminant Analysis (LDA) also showed favorable

performance with an average improvement of 10% across various datasets. Statistical

validation through the non-parametric Friedman test confirmed the reliability of these

findings, highlighting autoencoders as a promising method for defect prediction tasks.

This study illustrated the importance of feature extraction in improving model accuracy

and underscored the potential of deep learning techniques in enhancing SDP models.

In real-world software development, projects often suffer from limited historical

data, making it challenging to build effective defect prediction models. Cross-project

defect prediction (CPDP) techniques are vital as they allow the use of data from

other projects to predict defects in a target project. It is essential to address the need

to improve CPDP models, particularly through the integration of feature selection

techniques, which can enhance the transferability ty and accuracy of predictions across

different projects. For this we performed a study which addresses the challenge of

building effective software defect prediction models for projects with limited past data

by exploring CPDP techniques. This study compared five Feature Subset Selection

(FSS) techniques and five Feature Ranking (FR) methods across multiple datasets

using five machine learning classifiers. The results indicated that FSS techniques

consistently outperformed FR techniques and non-feature selection methods, with

a 12% average improvement in ROC-AUC scores. AdaBoost emerged as the most

effective classifier with a 15% improvement in predictive accuracy when paired with

FSS-selected features. Additionally, certain FSS methods, such as Best First and

Greedy Stepwise, demonstrated consistent feature selection across datasets. Statistical

testing confirmed that these FSS techniques could improve CPDP in various scenarios,

particularly for datasets with limited historical data, revealing a valuable approach for

enhancing defect prediction accuracy by selectively choosing features.

From past studies we can analyse that evolutionary feature selection techniques

play a crucial role in software defect prediction by effectively handling high-dimensional

209

Summary of the Research Work

data and identifying the most relevant features for prediction accuracy. These tech-

niques, inspired by natural selection processes, iteratively improve feature subsets,

eliminating redundant and irrelevant attributes that could hinder model performance.

Hence, we introduced a novel two-phase Grey Wolf Optimizer (2M-GWO) com-

bined with a Random Forest classifier to improve feature selection for SDP. Using 27

datasets from diverse sources, the study demonstrated that the 2M-GWO-RF model

achieved the highest average ROC-AUC rank with a mean score of 2.19 across datasets,

showcasing an improvement of 18% over other feature selection approaches. The

two-phase 2M-GWO approach effectively reduced feature dimensionality, with an av-

erage reduction of 25% in feature set size, while maintaining high prediction accuracy.

Statistical validation with the Friedman test (p = 0.034) confirmed the significance

of these results, positioning the 2M-GWO-RF model as a robust feature selection

approach for defect prediction. This study underscored the potential of meta-heuristic

optimization techniques in refining feature selection to enhance the predictive power

of SDP models.

Hyperparameter optimization plays a pivotal role in enhancing the performance

and reliability of software defect prediction models, particularly when dealing with

challenges like imbalanced data and hyperparameter tuning. While tuning hyperparam-

eters of classifiers improves the model’s specific learning patterns, tuned preprocessing

optimizes the data foundation, enhancing the classifier’s ability to generalize accu-

rately. Together, they create a robust, reliable model, with preprocessing setting the

stage for more effective classifier performance. We carried out experiments investi-

gating the effects of hyperparameter tuning on the Synthetic Minority Oversampling

Technique (SMOTE) for addressing class imbalance issues in SDP. Using the Optuna

framework for automated hyperparameter tuning, this study showed that optimized

SMOTE (OpTunedSMOTE) outperformed standard SMOTE and other tuning meth-

ods. Notably, OpTunedSMOTE yielded an average increase of 20% in ROC-AUC

210

Summary of the Research Work

and 18% in MCC scores across various classifiers. Random Forest and Extreme

Gradient Boosting (XGB) classifiers showed the most significant improvements, with

predictive performance gains of 22% and 21%, respectively, when combined with

OpTunedSMOTE. However, the study also highlighted a trade-off, as hyperparameter

tuning increased computational costs by an average of 30% in memory usage and

execution time. These findings demonstrated that hyperparameter tuning of SMOTE

significantly enhances model performance in handling class imbalance, a common

issue in defect prediction.

Parameter optimization has proven highly effective for improving machine learn-

ing models, leading to enhanced predictive accuracy in software defect prediction

(SDP). Building on these successes, we extended our approach to deep learning (DL)

models by conducting a study focused on optimizing parameters specifically for

DL-based SDP. This study examined the impact of hyperparameter tuning on Con-

volutional Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs),

Gated Recurrent Units (GRUs), and ensemble-based models for SDP. Using the Op-

tuna framework, the study demonstrated substantial improvements in AUC scores for

CNN and LSTM models, with a 20.87% and 19.75% increase, respectively, follow-

ing hyperparameter tuning. GRUs showed moderate improvements with a 15.05%

increase, while ensemble models displayed a high baseline performance and exhibited

only a 6.74% increase in AUC post-tuning. Statistical analysis revealed that, after

hyperparameter optimization, ensemble-based models emerged as the top performers,

capitalizing on the strengths of multiple algorithms to achieve superior predictive

accuracy and robustness. These findings underscored the importance of tailored hy-

perparameter tuning strategies, particularly for deep learning models, in enhancing

defect prediction accuracy.

This thesis highlights the transformative impact of feature selection, machine

learning, and deep learning techniques on enhancing Software Defect Prediction

211

Summary of the Research Work

(SDP) models. The findings can be concluded as follows:

1. Feature selection is essential for enhancing the accuracy and efficiency of

Software Defect Prediction (SDP) models. By focusing on relevant features

and removing redundant data, it reduces dimensionality, improving model

performance.

2. Optimized feature selection methods, like the Grey Wolf Optimizer and Feature

Subset Selection, significantly boost predictive accuracy, helping identify defect-

prone areas early, enabling teams to allocate resources effectively, reduce costs,

and improve software quality.

3. Both machine learning (ML) and deep learning (DL) classification techniques

are key to SDP success. ML classifiers such as Random Forest and AdaBoost

performed robustly, especially with parameter tuning, making them reliable

choices for diverse datasets.

4. DL models, including CNNs and LSTMs, excelled with complex, high-dimensional

data, achieving notable AUC improvements of 20.87% and 19.75% after tuning.

DL ensembles emerged as top performers, showing enhanced accuracy and

robustness.

5. Overall, ML offers effective, resource-efficient solutions, while DL, especially

with optimized tuning, provides superior accuracy for complex datasets, posi-

tioning this research as a valuable contribution to scalable and reliable defect

prediction models.

212

Application of the Work

8.2 Application of the Work

The work conducted in the thesis would aid the software practitioners, researchers and

society in the following ways:

1. Aid to Researchers

This work provides significant insights and tools for researchers in software

defect prediction, contributing to the advancement of the field through the

following:

• Establishes a structured framework for evaluating feature selection, ex-

traction, and hyperparameter optimization techniques that researchers can

apply or extend in their studies.

• Offers detailed comparisons of both machine learning and deep learning

classifiers, assisting researchers in identifying which methods work best

for different dataset characteristics and prediction goals.

• Introduces and validates novel optimization approaches, like the advanced

version of Grey Wolf Optimizer, that researchers can adapt for other

predictive modeling tasks within software quality assurance.

2. Aid to Software Practitioners

This research provides practical strategies and tools for software developers and

quality assurance teams, directly enhancing their work through:

• Helps managers allocate resources effectively by identifying defect-prone

areas early, allowing for better budget management and project timeline

adherence.

• Provides developers with optimized models for accurately detecting defect-

prone code, enabling proactive quality improvements and reducing rework.

213

Future Work

• Enables testers to prioritize high-risk areas in the software, making testing

efforts more efficient and improving defect detection accuracy.

3. Aid to Society

The improvements in software defect prediction also benefit society by enhanc-

ing software reliability and usability, including:

• Reduces the likelihood of software failures, leading to more robust, de-

pendable applications that better meet users’ needs and expectations.

• Contributes to safer software in critical areas like healthcare, finance, and

infrastructure, where reliable performance is essential for public safety.

• Minimizes the costs of software maintenance and post-release fixes, sup-

porting a more efficient and sustainable software development industry.

8.3 Future Work

While this thesis covers a wide range of feature selection techniques and classification

models, future research could expand these experiments to datasets from different

application domains and built using other programming languages, Doing so would

increase the generalizability of the findings and broaden their applicability across

various software ecosystems.

Further studies could also explore the application of advanced evolutionary algo-

rithms to optimize feature selection techniques for Software Defect Prediction (SDP).

Examining these algorithm’s effectiveness for imbalanced datasets and predictive

modelling would enhance the robustness of SDP methods.

Additionally, future research may benefit from hyperparameter tuning (HPT) of

other preprocessing tasks, including data normalization, feature selection, and data

214

Future Work

balancing methods. Optimizing these preprocessing stages could lead to improved

model accuracy and adaptability.

Replication remains essential, as it builds a stronger evidence base for researchers

and practitioners, aiding in experimental planning and decision-making. It also enables

the evaluation of results’ applicability to diverse real-world scenarios or industrial

settings. Therefore, future studies should aim to replicate these experiments to achieve

more generalized and reliable conclusions.

215

Bibliography

[1] T. Menzies, J. DiStefano, A. Orrego, and R. Chapman, “Assessing predictors

of software defects,” in Proc. Workshop Predictive Software Models, 2004, pp.

1–11.

[2] M. DâAmbros, M. Lanza, and R. Robbes, “Evaluating defect prediction ap-

proaches: a benchmark and an extensive comparison,” Empirical Software

Engineering, vol. 17, pp. 531–577, 2012.

[3] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,”

IEEE Transactions on software engineering, vol. 20, no. 6, pp. 476–493, 1994.

[4] C. Tantithamthavorn, “Towards a better understanding of the impact of exper-

imental components on defect prediction modelling,” in Proceedings of the

38th International Conference on Software Engineering Companion, 2016, pp.

867–870.

[5] F. J. Buckley and R. Poston, “Software quality assurance,” IEEE Transactions

on Software Engineering, no. 1, pp. 36–41, 1984.

[6] B. A. Kitchenham, “Software quality assurance,” Microprocessors and mi-

crosystems, vol. 13, no. 6, pp. 373–381, 1989.

217

Bibliography

[7] D. S. Alberts, “The economics of software quality assurance,” in Proceedings

of the June 7-10, 1976, national computer conference and exposition, 1976, pp.

433–442.

[8] M. V. Mäntylä, F. Khomh, B. Adams, E. Engström, and K. Petersen, “On

rapid releases and software testing,” in 2013 IEEE international conference on

software maintenance. IEEE, 2013, pp. 20–29.

[9] F. Akiyama, “An example of software system debugging.” in IFIP congress (1),

vol. 71, 1971, pp. 353–359.

[10] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of bug pre-

diction approaches,” in 2010 7th IEEE working conference on mining software

repositories (MSR 2010). IEEE, 2010, pp. 31–41.

[11] A. E. Hassan, “Predicting faults using the complexity of code changes,” in 2009

IEEE 31st international conference on software engineering. IEEE, 2009, pp.

78–88.

[12] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller, “Predicting faults

from cached history,” in 29th International Conference on Software Engineering

(ICSE’07). IEEE, 2007, pp. 489–498.

[13] A. Mockus and D. M. Weiss, “Predicting risk of software changes,” Bell Labs

Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.

[14] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the efficiency of

change metrics and static code attributes for defect prediction,” in Proceedings

of the 30th international conference on Software engineering, 2008, pp. 181–

190.

218

Bibliography

[15] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy, “Change

bursts as defect predictors,” in 2010 IEEE 21st international symposium on

software reliability engineering. IEEE, 2010, pp. 309–318.

[16] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu, “Bugcache for

inspections: hit or miss?” in Proceedings of the 19th ACM SIGSOFT symposium

and the 13th European conference on Foundations of software engineering,

2011, pp. 322–331.

[17] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,” in

Third International Workshop on Predictor Models in Software Engineering

(PROMISE’07: ICSE Workshops 2007). IEEE, 2007, pp. 9–9.

[18] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, “Software depen-

dencies, work dependencies, and their impact on failures,” IEEE Transactions

on Software Engineering, vol. 35, no. 6, pp. 864–878, 2009.

[19] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of code

review coverage and code review participation on software quality,” in Pro-

ceedings of the Working Conference on Mining Software Repositories (MSR).

ACM, 2014, pp. 192–201.

[20] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan, “High-impact

defects: a study of breakage and surprise defects,” in Proceedings of the 19th

ACM SIGSOFT symposium and the 13th European conference on Foundations

of software engineering, 2011, pp. 300–310.

[21] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location and

number of faults in large software systems,” IEEE Transactions on Software

Engineering, vol. 31, no. 4, pp. 340–355, 2005.

219

Bibliography

[22] T. Zimmermann and N. Nagappan, “Predicting defects with program dependen-

cies,” in 2009 3rd international symposium on empirical software engineering

and measurement. IEEE, 2009, pp. 435–438.

[23] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict component

failures,” in Proceedings of the 28th international conference on Software

engineering, 2006, pp. 452–461.

[24] N. Nagappan and T. Ball, “Using software dependencies and churn metrics

to predict field failures: An empirical case study,” in First International Sym-

posium on Empirical Software Engineering and Measurement (ESEM 2007).

IEEE, 2007, pp. 364–373.

[25] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational

structure on software quality: an empirical case study,” in Proceedings of the

30th international conference on Software engineering, 2008, pp. 521–530.

[26] T. Zimmermann and N. Nagappan, “Predicting defects using network analysis

on dependency graphs,” in Proceedings of the 30th international conference on

Software engineering, 2008, pp. 531–540.

[27] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-

project defect prediction: a large scale experiment on data vs. domain vs.

process,” in Proceedings of the 7th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The foundations

of software engineering, 2009, pp. 91–100.

[28] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead, “Does bug

prediction support human developers? findings from a google case study,” in

220

Bibliography

2013 35th International Conference on Software Engineering (ICSE). IEEE,

2013, pp. 372–381.

[29] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang, “An industrial study

on the risk of software changes,” in Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering, 2012,

pp. 1–11.

[30] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction for im-

balanced data,” in 2015 IEEE/ACM 37th IEEE International Conference on

Software Engineering, vol. 2. IEEE, 2015, pp. 99–108.

[31] B. Caglayan, B. Turhan, A. Bener, M. Habayeb, A. Miransky, and E. Cialini,

“Merits of organizational metrics in defect prediction: an industrial replica-

tion,” in 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, vol. 2. IEEE, 2015, pp. 89–98.

[32] J. Shimagaki, Y. Kamei, S. McIntosh, A. E. Hassan, and N. Ubayashi, “A study

of the quality-impacting practices of modern code review at sony mobile,” in

Proceedings of the 38th International Conference on Software Engineering

Companion, 2016, pp. 212–221.

[33] M. McDonald, R. Musson, and R. Smith, The practical guide to defect preven-

tion. Microsoft Press, 2007.

[34] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software defect-

proneness prediction framework,” IEEE transactions on software engineering,

vol. 37, no. 3, pp. 356–370, 2010.

[35] S. Wang and X. Yao, “Using class imbalance learning for software defect

221

Bibliography

prediction,” IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–443,

2013.

[36] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to

learn defect predictors,” IEEE transactions on software engineering, vol. 33,

no. 1, pp. 2–13, 2006.

[37] I. Sommerville, “Software engineering 9th edition,” ISBN-10, vol. 137035152,

p. 18, 2011.

[38] M. Thomas and H. Thimbleby, “Computer bugs in hospitals: a new killer,”

IT, Cybersecurity and Risk to Patients, Gresham College, Gresham College,

available at:(accessed 26 February 2018), 2018.

[39] H. Wang, T. M. Khoshgoftaar, and A. Napolitano, “A comparative study of

ensemble feature selection techniques for software defect prediction,” in 2010

Ninth International Conference on Machine Learning and Applications. IEEE,

2010, pp. 135–140.

[40] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software defect

prediction,” Neurocomputing, vol. 385, pp. 100–110, 2020.

[41] P. S. Bishnu and V. Bhattacherjee, “Software fault prediction using quad tree-

based k-means clustering algorithm,” IEEE Transactions on knowledge and

data engineering, vol. 24, no. 6, pp. 1146–1150, 2011.

[42] J. M. Bieman, “Software metrics: A rigorous & practical approach,” IBM

Systems Journal, vol. 36, no. 4, p. 594, 1997.

[43] J. Nam, “Survey on software defect prediction,” Department of Compter Sci-

ence and Engineerning, The Hong Kong University of Science and Technology,

Tech. Rep, 2014.

222

Bibliography

[44] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction ap-

proaches: A benchmark and an extensive comparison,” Empirical Software

Engineering, vol. 17, no. 4-5, pp. 531–577, 2012.

[45] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro interaction metrics for

defect prediction,” in Proceedings of the 19th ACM SIGSOFT symposium and

the 13th European conference on Foundations of software engineering, 2011,

pp. 311–321.

[46] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative value

of cross-company and within-company data for defect prediction,” Empirical

Software Engineering, vol. 14, pp. 540–578, 2009.

[47] T. J. McCabe and C. W. Butler, “Design complexity measurement and testing,”

Communications of the ACM, vol. 32, no. 12, pp. 1415–1425, 1989.

[48] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software Engi-

neering, vol. SE-2, no. 4, pp. 308–320, 1976.

[49] S. Henry and D. Kafura, “Software structure metrics based on information flow,”

IEEE Transactions on Software Engineering, vol. SE-7, no. 5, pp. 510–518,

1981.

[50] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect predic-

tion,” in 2011 33rd International Conference on Software Engineering (ICSE).

IEEE, 2011, pp. 481–490.

[51] G. J. Pai and J. B. Dugan, “Empirical analysis of software fault content and

fault proneness using bayesian methods,” IEEE Transactions on Software

Engineering, vol. 33, no. 10, pp. 675–686, 2007.

223

Bibliography

[52] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: Recovering links be-

tween bugs and changes,” in Proceedings of the 19th ACM SIGSOFT symposium

and the 13th European conference on Foundations of software engineering.

ACM, 2011, pp. 15–25.

[53] A. Bacchelli, M. D’Ambros, and M. Lanza, “Are popular classes more defect

prone?” in Fundamental Approaches to Software Engineering. Springer

Berlin Heidelberg, 2010, pp. 59–73.

[54] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and A. E.

Hassan, “Revisiting common bug prediction findings using effort-aware mod-

els,” in 2010 IEEE International Conference on Software Maintenance (ICSM).

IEEE, 2010, pp. 1–10.

[55] A. B. Nassif, M. A. Talib, M. Azzeh, S. Alzaabi, R. Khanfar, R. Kharsa,

and L. Angelis, “Software defect prediction using learning to rank approach,”

Scientific Reports, vol. 13, no. 18885, 2023.

[56] Y. Kamei and E. Shihab, “Defect prediction: Accomplishments and future

challenges,” in 2016 IEEE 23rd International Conference on Software Analysis,

Evolution, and Reengineering (SANER). IEEE, 2016, pp. 33–45.

[57] Z. Li, J. Niu, and X.-Y. Jing, “Software defect prediction: future directions and

challenges,” Automated Software Engineering, vol. 31, no. 19, 2024.

[58] I. Arora, V. Tetarwal, and A. Saha, “Open issues in software defect prediction,”

Procedia Computer Science, vol. 46, pp. 906–912, 2015.

[59] J. Jiarpakdee, C. K. Tantithamthavorn, H. K. Dam, and J. Grundy, “An empir-

ical study of model-agnostic techniques for defect prediction models,” IEEE

Transactions on Software Engineering, vol. 48, no. 1, pp. 166–185, 2020.

224

Bibliography

[60] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “Rusboost: A

hybrid approach to alleviating class imbalance,” IEEE transactions on systems,

man, and cybernetics-part A: systems and humans, vol. 40, no. 1, pp. 185–197,

2009.

[61] Z. Eivazpour and M. R. Keyvanpour, “Adversarial samples for improving

performance of software defect prediction models,” in Data Science: From

Research to Application. Springer, 2020, pp. 299–310.

[62] P. S. Kumar and R. Venkatesan, “Improving software defect prediction using

generative adversarial networks,” Int. J. Sci. Eng. Appl, vol. 9, pp. 117–120,

2020.

[63] S. S. Rathore, S. S. Chouhan, D. K. Jain, and A. G. Vachhani, “Generative over-

sampling methods for handling imbalanced data in software fault prediction,”

IEEE Transactions on Reliability, vol. 71, no. 2, pp. 747–762, 2022.

[64] A. W. Dar and S. U. Farooq, “A survey of different approaches for the class

imbalance problem in software defect prediction,” International Journal of

Software Science and Computational Intelligence (IJSSCI), vol. 14, no. 1, pp.

1–26, 2022.

[65] S. K. Pandey and A. K. Tripathi, “Class imbalance issue in software defect pre-

diction models by various machine learning techniques: an empirical study,” in

2021 8th International Conference on Smart Computing and Communications

(ICSCC). IEEE, 2021, pp. 58–63.

[66] D. Bassi and H. Singh, “A comparative study on hyperparameter optimiza-

tion methods in software vulnerability prediction,” in 2021 2nd International

225

Bibliography

Conference on Computational Methods in Science & Technology (ICCMST).

IEEE, 2021, pp. 181–184.

[67] R. Shu, T. Xia, J. Chen, L. Williams, and T. Menzies, “How to better distinguish

security bug reports (using dual hyperparameter optimization),” Empirical

Software Engineering, vol. 26, pp. 1–37, 2021.

[68] A. Agrawal, X. Yang, R. Agrawal, R. Yedida, X. Shen, and T. Menzies, “Sim-

pler hyperparameter optimization for software analytics: Why, how, when?”

IEEE Transactions on Software Engineering, vol. 48, no. 8, pp. 2939–2954,

2021.

[69] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is it really

necessary?” Information and Software Technology, vol. 76, pp. 135–146, 2016.

[70] I. Tumar, Y. Hassouneh, H. Turabieh, and T. Thaher, “Enhanced binary moth

flame optimization as a feature selection algorithm to predict software fault

prediction,” Ieee Access, vol. 8, pp. 8041–8055, 2020.

[71] H. Turabieh, M. Mafarja, and X. Li, “Iterated feature selection algorithms with

layered recurrent neural network for software fault prediction,” Expert systems

with applications, vol. 122, pp. 27–42, 2019.

[72] N. S. Harzevili and S. H. Alizadeh, “Analysis and modeling conditional mutual

dependency of metrics in software defect prediction using latent variables,”

Neurocomputing, vol. 460, pp. 309–330, 2021.

[73] N. Gayatri, S. Nickolas, A. Reddy, S. Reddy, and A. Nickolas, “Feature selec-

tion using decision tree induction in class level metrics dataset for software

defect predictions,” in Proceedings of the world congress on engineering and

computer science, vol. 1, 2010, pp. 124–129.

226

Bibliography

[74] T. M. Khoshgoftaar and K. Gao, “Feature selection with imbalanced data for

software defect prediction,” in 2009 International Conference on Machine

Learning and Applications. IEEE, 2009, pp. 235–240.

[75] Y. Xia, G. Yan, X. Jiang, and Y. Yang, “A new metrics selection method for

software defect prediction,” in 2014 IEEE International Conference on Progress

in Informatics and Computing. IEEE, 2014, pp. 433–436.

[76] W. Han, C.-H. Lung, and S. Ajila, “Using source code and process metrics for

defect prediction-a case study of three algorithms and dimensionality reduction.”

J. Softw., vol. 11, no. 9, pp. 883–902, 2016.

[77] L. Miao, M. Liu, and D. Zhang, “Cost-sensitive feature selection with appli-

cation in software defect prediction,” in Proceedings of the 21st international

conference on pattern recognition (ICPR2012). IEEE, 2012, pp. 967–970.

[78] S. Goyal, “Genetic evolution-based feature selection for software defect predic-

tion using svms,” Journal of Circuits, Systems and Computers, vol. 31, no. 11,

p. 2250161, 2022.

[79] J. B. Awotunde, S. Misra, A. E. Adeniyi, M. K. Abiodun, M. Kaushik, and

M. O. Lawrence, “A feature selection-based k-nn model for fast software defect

prediction,” in International Conference on Computational Science and Its

Applications. Springer, 2022, pp. 49–61.

[80] A. B. Nasser, W. Ghanem, A. S. H. Abdul-Qawy, M. A. Ali, A.-M. Saad, S. A.

Ghaleb, and N. Alduais, “A robust tuned k-nearest neighbours classifier for soft-

ware defect prediction,” in International Conference on Emerging Technologies

and Intelligent Systems. Springer, 2022, pp. 181–193.

227

Bibliography

[81] X. Dong, Y. Liang, S. Miyamoto, and S. Yamaguchi, “Ensemble learning based

software defect prediction,” Journal of Engineering Research, vol. 11, no. 4,

pp. 377–391, 2023.

[82] M. J. Hernández-Molinos, A. J. Sánchez-Garcı́a, R. E. Barrientos-Martı́nez,

J. C. Pérez-Arriaga, and J. O. Ocharán-Hernández, “Software defect prediction

with bayesian approaches,” Mathematics, vol. 11, no. 11, p. 2524, 2023.

[83] O. F. Arar and K. Ayan, “A feature dependent naive bayes approach and its

application to the software defect prediction problem,” Applied Soft Computing,

vol. 59, pp. 197–209, 2017.

[84] M. A. Khan, N. S. Elmitwally, S. Abbas, S. Aftab, M. Ahmad, M. Fayaz,

and F. Khan, “Software defect prediction using artificial neural networks: A

systematic literature review,” Scientific Programming, vol. 2022, no. 1, p.

2117339, 2022.

[85] A. Abdu, Z. Zhai, H. A. Abdo, R. Algabri, M. A. Al-Masni, M. S. Muhammad,

and Y. H. Gu, “Semantic and traditional feature fusion for software defect

prediction using hybrid deep learning model,” Scientific Reports, vol. 14, no. 1,

p. 14771, 2024.

[86] J. M. Catherine and S. Djodilatchoumy, “Multi-layer perceptron neural network

with feature selection for software defect prediction,” in 2021 2nd International

Conference on Intelligent Engineering and Management (ICIEM). IEEE,

2021, pp. 228–232.

[87] Y. N. Soe, P. I. Santosa, and R. Hartanto, “Software defect prediction using

random forest algorithm,” in 2018 12th South East Asian Technical University

Consortium (SEATUC), vol. 1. IEEE, 2018, pp. 1–5.

228

Bibliography

[88] S. Thapa, A. Alsadoon, P. Prasad, T. Al-Dalaâin, and T. A. Rashid, “Software

defect prediction using atomic rule mining and random forest,” in 2020 5th

International Conference on Innovative Technologies in Intelligent Systems and

Industrial Applications (CITISIA). IEEE, 2020, pp. 1–8.

[89] N. S. Thomas and S. Kaliraj, “An improved and optimized random forest based

approach to predict the software faults,” SN Computer Science, vol. 5, no. 5, p.

530, 2024.

[90] M. J. Siers and M. Z. Islam, “Software defect prediction using a cost sensitive

decision forest and voting, and a potential solution to the class imbalance

problem,” Information Systems, vol. 51, pp. 62–71, 2015.

[91] T. Sharma, A. Jatain, S. Bhaskar, and K. Pabreja, “Ensemble machine learning

paradigms in software defect prediction,” Procedia Computer Science, vol. 218,

pp. 199–209, 2023.

[92] A. Alazba and H. Aljamaan, “Software defect prediction using stacking gener-

alization of optimized tree-based ensembles,” Applied Sciences, vol. 12, no. 9,

p. 4577, 2022.

[93] B. Gezici and A. K. Tarhan, “Explainable ai for software defect prediction

with gradient boosting classifier,” in 2022 7th International Conference on

Computer Science and Engineering (UBMK). IEEE, 2022, pp. 1–6.

[94] P. Bahad and P. Saxena, “Study of adaboost and gradient boosting algorithms

for predictive analytics,” in International Conference on Intelligent Computing

and Smart Communication 2019: Proceedings of ICSC 2019. Springer, 2020,

pp. 235–244.

229

Bibliography

[95] L. Lusa et al., “Gradient boosting for high-dimensional prediction of rare

events,” Computational Statistics & Data Analysis, vol. 113, pp. 19–37, 2017.

[96] D. Pradhan and D. Muduli, “Automated software defect prediction model:

Adaboost-based support vector machine approach,” in International Confer-

ence on VLSI, Signal Processing, Power Electronics, IoT, Communication and

Embedded Systems. Springer, 2023, pp. 257–270.

[97] ——, “Software defect prediction model using adaboost based random forest

technique,” in 2023 14th International Conference on Computing Communica-

tion and Networking Technologies (ICCCNT). IEEE, 2023, pp. 1–6.

[98] Y. Al-Smadi, M. Eshtay, A. Al-Qerem, S. Nashwan, O. Ouda, and A. Abd

El-Aziz, “Reliable prediction of software defects using shapley interpretable

machine learning models,” Egyptian Informatics Journal, vol. 24, no. 3, p.

100386, 2023.

[99] K. Wongpheng and P. Visutsak, “Software defect prediction using convolu-

tional neural network,” in 2020 35th International Technical Conference on

Circuits/Systems, Computers and Communications (ITC-CSCC). IEEE, 2020,

pp. 240–243.

[100] N. A. A. Khleel and K. Nehéz, “A novel approach for software defect prediction

using cnn and gru based on smote tomek method,” Journal of Intelligent

Information Systems, vol. 60, no. 3, pp. 673–707, 2023.

[101] J. Deng, L. Lu, and S. Qiu, “Software defect prediction via lstm,” IET software,

vol. 14, no. 4, pp. 443–450, 2020.

[102] R. B. Bahaweres, D. Jumral, I. Hermadi, A. I. Suroso, and Y. Arkeman, “Hybrid

software defect prediction based on lstm (long short term memory) and word

230

Bibliography

embedding,” in 2021 2nd International Conference On Smart Cities, Automa-

tion & Intelligent Computing Systems (ICON-SONICS). IEEE, 2021, pp.

70–75.

[103] H. Wang, W. Zhuang, and X. Zhang, “Software defect prediction based on

gated hierarchical lstms,” IEEE Transactions on Reliability, vol. 70, no. 2, pp.

711–727, 2021.

[104] H. S. Munir, S. Ren, M. Mustafa, C. N. Siddique, and S. Qayyum, “Attention

based gru-lstm for software defect prediction,” Plos one, vol. 16, no. 3, p.

e0247444, 2021.

[105] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on approaches to software defect

prediction,” Iet Software, vol. 12, no. 3, pp. 161–175, 2018.

[106] M. Jureczko and L. Madeyski, “Towards identifying software project clus-

ters with regard to defect prediction,” in Proceedings of the 6th international

conference on predictive models in software engineering, 2010, pp. 1–10.

[107] E. A. Felix and S. P. Lee, “Predicting the number of defects in a new software

version,” PloS one, vol. 15, no. 3, p. e0229131, 2020.

[108] W. Albattah and M. Alzahrani, “Software defect prediction based on machine

learning and deep learning techniques: An empirical approach,” AI, vol. 5,

no. 4, pp. 1743–1758, 2024.

[109] N. Dhamayanthi and B. Lavanya, “Improvement in software defect prediction

outcome using principal component analysis and ensemble machine learning

algorithms,” in International Conference on Intelligent Data Communication

Technologies and Internet of Things (ICICI) 2018. Springer, 2019, pp. 397–

406.

231

Bibliography

[110] S. K. Pandey, D. Rathee, and A. K. Tripathi, “Software defect prediction using

k-pca and various kernel-based extreme learning machine: an empirical study,”

IET Software, vol. 14, no. 7, pp. 768–782, 2020.

[111] Z. Xu, J. Liu, X. Luo, Z. Yang, Y. Zhang, P. Yuan, Y. Tang, and T. Zhang,

“Software defect prediction based on kernel pca and weighted extreme learning

machine,” Information and Software Technology, vol. 106, pp. 182–200, 2019.

[112] A. B. Nasser, W. A. H. Ghanem, A.-M. H. Saad, A. S. H. Abdul-Qawy, S. A.

Ghaleb, N. A. M. Alduais, F. Din, and M. Ghetas, “Depth linear discrimination-

oriented feature selection method based on adaptive sine cosine algorithm for

software defect prediction,” Expert Systems with Applications, vol. 253, p.

124266, 2024.

[113] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” Machine learning for

data science handbook: data mining and knowledge discovery handbook, pp.

353–374, 2023.

[114] L.-q. Chen, C. Wang, and S.-l. Song, “Software defect prediction based on

nested-stacking and heterogeneous feature selection,” Complex & Intelligent

Systems, vol. 8, no. 4, pp. 3333–3348, 2022.

[115] J. Dai and Q. Xu, “Attribute selection based on information gain ratio in

fuzzy rough set theory with application to tumor classification,” Applied Soft

Computing, vol. 13, no. 1, pp. 211–221, 2013.

[116] K. Gao and T. M. Khoshgoftaar, “Assessments of feature selection techniques

with respect to data sampling for highly imbalanced software measurement

data,” International Journal of Reliability, Quality and Safety Engineering,

vol. 22, no. 02, p. 1550010, 2015.

232

Bibliography

[117] G. Sosa-Cabrera, M. Garcı́a-Torres, S. Gómez-Guerrero, C. E. Schaerer, and

F. Divina, “A multivariate approach to the symmetrical uncertainty measure:

Application to feature selection problem,” Information Sciences, vol. 494, pp.

1–20, 2019.

[118] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Com-

puters & electrical engineering, vol. 40, no. 1, pp. 16–28, 2014.

[119] C. Lee and G. G. Lee, “Information gain and divergence-based feature selection

for machine learning-based text categorization,” Information processing &

management, vol. 42, no. 1, pp. 155–165, 2006.

[120] Z. Wang, Y. Zhang, Z. Chen, H. Yang, Y. Sun, J. Kang, Y. Yang, and X. Liang,

“Application of relieff algorithm to selecting feature sets for classification of

high resolution remote sensing image,” in 2016 IEEE international geoscience

and remote sensing symposium (IGARSS). IEEE, 2016, pp. 755–758.

[121] P. Yang, W. Liu, B. B. Zhou, S. Chawla, and A. Y. Zomaya, “Ensemble-

based wrapper methods for feature selection and class imbalance learning,” in

Advances in Knowledge Discovery and Data Mining: 17th Pacific-Asia Confer-

ence, PAKDD 2013, Gold Coast, Australia, April 14-17, 2013, Proceedings,

Part I 17. Springer, 2013, pp. 544–555.

[122] A. O. Balogun, S. Basri, L. F. Capretz, S. Mahamad, A. A. Imam, M. A.

Almomani, V. E. Adeyemo, A. K. Alazzawi, A. O. Bajeh, and G. Kumar,

“Software defect prediction using wrapper feature selection based on dynamic

re-ranking strategy,” Symmetry, vol. 13, no. 11, p. 2166, 2021.

[123] M. A. Hall, “Correlation-based feature selection for machine learning,” Ph.D.

dissertation, The University of Waikato, 1999.

233

Bibliography

[124] K. Nagata, J. Kitazono, S. Nakajima, S. Eifuku, R. Tamura, and M. Okada,

“An exhaustive search and stability of sparse estimation for feature selection

problem,” IPSJ Online Transactions, vol. 8, pp. 25–32, 2015.

[125] S. Nersisyan, V. Novosad, A. Galatenko, A. Sokolov, G. Bokov, A. Konovalov,

D. Alekseev, and A. Tonevitsky, “Exhaufs: exhaustive search-based feature

selection for classification and survival regression,” PeerJ, vol. 10, p. e13200,

2022.

[126] F. Hussein, N. Kharma, and R. Ward, “Genetic algorithms for feature selection

and weighting, a review and study,” in Proceedings of sixth international

conference on document analysis and recognition. IEEE, 2001, pp. 1240–

1244.

[127] R. Sadeghi, R. Zarkami, K. Sabetraftar, and P. Van Damme, “Application of

genetic algorithm and greedy stepwise to select input variables in classification

tree models for the prediction of habitat requirements of azolla filiculoides

(lam.) in anzali wetland, iran,” Ecological modelling, vol. 251, pp. 44–53, 2013.

[128] A. K. Naik and V. Kuppili, “An embedded feature selection method based on

generalized classifier neural network for cancer classification,” Computers in

Biology and Medicine, vol. 168, p. 107677, 2024.

[129] S. Feng, J. Keung, X. Yu, Y. Xiao, and M. Zhang, “Investigation on the sta-

bility of smote-based oversampling techniques in software defect prediction,”

Information and Software Technology, vol. 139, p. 106662, 2021.

[130] A. O. Balogun, F. B. Lafenwa-Balogun, H. A. Mojeed, V. E. Adeyemo, O. N.

Akande, A. G. Akintola, A. O. Bajeh, and F. E. Usman-Hamza, “Smote-

based homogeneous ensemble methods for software defect prediction,” in

234

Bibliography

Computational Science and Its Applications–ICCSA 2020: 20th International

Conference, Cagliari, Italy, July 1–4, 2020, Proceedings, Part VI 20. Springer,

2020, pp. 615–631.

[131] P. D. Singh and A. Chug, “Software defect prediction analysis using machine

learning algorithms,” in 2017 7th international conference on cloud computing,

data science & engineering-confluence. IEEE, 2017, pp. 775–781.

[132] R. Jayanthi and L. Florence, “Software defect prediction techniques using

metrics based on neural network classifier,” Cluster Computing, vol. 22, pp.

77–88, 2019.

[133] D. Bowes, T. Hall, and J. Petrić, “Software defect prediction: do different

classifiers find the same defects?” Software Quality Journal, vol. 26, pp. 525–

552, 2018.

[134] F. Matloob, T. M. Ghazal, N. Taleb, S. Aftab, M. Ahmad, M. A. Khan, S. Abbas,

and T. R. Soomro, “Software defect prediction using ensemble learning: A

systematic literature review,” IEEe Access, vol. 9, pp. 98 754–98 771, 2021.

[135] A. J. Bowers and X. Zhou, “Receiver operating characteristic (roc) area under

the curve (auc): A diagnostic measure for evaluating the accuracy of predictors

of education outcomes,” Journal of Education for Students Placed at Risk

(JESPAR), vol. 24, no. 1, pp. 20–46, 2019.

[136] J. Yao and M. Shepperd, “Assessing software defection prediction performance:

Why using the matthews correlation coefficient matters,” in Proceedings of

the 24th International Conference on Evaluation and Assessment in Software

Engineering, 2020, pp. 120–129.

235

Bibliography

[137] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classi-

fication models for software defect prediction: A proposed framework and

novel findings,” IEEE transactions on software engineering, vol. 34, no. 4, pp.

485–496, 2008.

[138] M. Friedman, “A comparison of alternative tests of significance for the problem

of m rankings,” The annals of mathematical statistics, vol. 11, no. 1, pp. 86–92,

1940.

[139] F. Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs

in statistics: Methodology and distribution. Springer, 1992, pp. 196–202.

[140] J. Cohen, Statistical power analysis for the behavioral sciences. routledge,

2013.

[141] R. Malhotra, M. Khanna, and R. R. Raje, “On the application of search-based

techniques for software engineering predictive modeling: A systematic review

and future directions,” Swarm and Evolutionary Computation, vol. 32, pp.

85–109, 2017.

[142] L. Kumar, S. Lal, A. Goyal, and N. B. Murthy, “Change-proneness of object-

oriented software using combination of feature selection techniques and ensem-

ble learning techniques,” in Proceedings of the 12th Innovations in Software

Engineering Conference (formerly known as India Software Engineering Con-

ference), 2019, pp. 1–11.

[143] R. Malhotra, “A systematic review of machine learning techniques for software

fault prediction,” Applied Soft Computing, vol. 27, pp. 504–518, 2015.

[144] S. S. Rathore and A. Gupta, “A comparative study of feature-ranking and

236

Bibliography

feature-subset selection techniques for improved fault prediction,” in Proceed-

ings of the 7th India software engineering conference, 2014, pp. 1–10.

[145] R. Malhotra and Y. Singh, “On the applicability of machine learning tech-

niques for object oriented software fault prediction,” Software Engineering: An

International Journal, vol. 1, no. 1, pp. 24–37, 2011.

[146] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and

S. Linkman, “Systematic literature reviews in software engineering–a sys-

tematic literature review,” Information and software technology, vol. 51, no. 1,

pp. 7–15, 2009.

[147] Z. M. Hira and D. F. Gillies, “A review of feature selection and feature extraction

methods applied on microarray data,” Advances in bioinformatics, vol. 2015,

no. 1, p. 198363, 2015.

[148] P. Jindal and D. Kumar, “A review on dimensionality reduction techniques,” Int.

J. Comput. Appl, vol. 173, no. 2, pp. 42–46, 2017.

[149] Z. Xu, J. Liu, Z. Yang, G. An, and X. Jia, “The impact of feature selection on

defect prediction performance: An empirical comparison,” in 2016 IEEE 27th

international symposium on software reliability engineering (ISSRE). IEEE,

2016, pp. 309–320.

[150] Z. A. Rana, M. M. Awais, and S. Shamail, “Impact of using information gain in

software defect prediction models,” in International Conference on Intelligent

Computing. Springer, 2014, pp. 637–648.

[151] R. Malhotra and K. Khan, “A study on software defect prediction using feature

extraction techniques,” in 2020 8th International Conference on Reliability, In-

237

Bibliography

focom Technologies and Optimization (Trends and Future Directions)(ICRITO).

IEEE, 2020, pp. 1139–1144.

[152] S. A. Putri et al., “Combining integreted sampling technique with feature

selection for software defect prediction,” in 2017 5th International Conference

on Cyber and IT Service Management (CITSM). IEEE, 2017, pp. 1–6.

[153] C. Ni, W.-S. Liu, X. Chen, Q. Gu, D.-X. Chen, and Q.-G. Huang, “A cluster

based feature selection method for cross-project software defect prediction,”

Journal of Computer Science and Technology, vol. 32, pp. 1090–1107, 2017.

[154] A. Saifudin, A. Trisetyarso, W. Suparta, C. Kang, B. Abbas, and Y. Heryadi,

“Feature selection in cross-project software defect prediction,” in Journal of

Physics: Conference Series, vol. 1569, no. 2. IOP Publishing, 2020, p. 022001.

[155] S. Hosseini, B. Turhan, and M. Mäntylä, “A benchmark study on the effective-

ness of search-based data selection and feature selection for cross project defect

prediction,” Information and Software Technology, vol. 95, pp. 296–312, 2018.

[156] Q. Yu, S. Jiang, and J. Qian, “Which is more important for cross-project defect

prediction: instance or feature?” in 2016 International Conference on Software

Analysis, Testing and Evolution (SATE). IEEE, 2016, pp. 90–95.

[157] J. Nam and S. Kim, “Heterogeneous defect prediction,” in Proceedings of the

2015 10th joint meeting on foundations of software engineering, 2015, pp.

508–519.

[158] M. Anbu and G. Anandha Mala, “Feature selection using firefly algorithm in

software defect prediction,” Cluster Computing, vol. 22, pp. 10 925–10 934,

2019.

238

Bibliography

[159] K. P. Ramulu and R. Murhtyr, “Importance of software quality models in

software engineering,” International Journal of Engineering Technologies and

Management Research, vol. 5, no. 3, pp. 200–218, 2018.

[160] M. Abdel-Basset, D. El-Shahat, I. El-Henawy, V. H. C. De Albuquerque, and

S. Mirjalili, “A new fusion of grey wolf optimizer algorithm with a two-phase

mutation for feature selection,” Expert Systems with Applications, vol. 139, p.

112824, 2020.

[161] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in

engineering software, vol. 69, pp. 46–61, 2014.

[162] M. Mustaqeem, S. Mustajab, and M. Alam, “A hybrid approach for optimiz-

ing software defect prediction using a grey wolf optimization and multilayer

perceptron,” International Journal of Intelligent Computing and Cybernetics,

vol. 17, no. 2, pp. 436–464, 2024.

[163] P. Dhavakumar and N. Gopalan, “An efficient parameter optimization of soft-

ware reliability growth model by using chaotic grey wolf optimization algo-

rithm,” Journal of Ambient Intelligence and Humanized Computing, vol. 12,

pp. 3177–3188, 2021.

[164] S. Mallik, D. Pradhan, D. Muduli, A. Rath, G. Panda, S. Dash, and H. Qin, “A

novel approach to enhance software defect prediction using an improved grey

wolf optimization based extreme learning machine technique,” 2024.

[165] M. Prashanthi and M. Chandra Mohan, “Hybrid optimization-based neural

network classifier for software defect prediction,” International Journal of

Image and Graphics, vol. 24, no. 04, p. 2450045, 2024.

239

Bibliography

[166] R. Malhotra and K. Khan, “A novel software defect prediction model using

two-phase grey wolf optimisation for feature selection,” Cluster Computing,

pp. 1–23, 2024.

[167] I. M. El-Hasnony, S. I. Barakat, and R. R. Mostafa, “Optimized anfis model

using hybrid metaheuristic algorithms for parkinsonâs disease prediction in iot

environment,” IEEE Access, vol. 8, pp. 119 252–119 270, 2020.

[168] S. Mirjalili and A. Lewis, “S-shaped versus v-shaped transfer functions for

binary particle swarm optimization,” Swarm and Evolutionary Computation,

vol. 9, pp. 1–14, 2013.

[169] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen,

“Harris hawks optimization: Algorithm and applications,” Future generation

computer systems, vol. 97, pp. 849–872, 2019.

[170] Y. Khatri and S. K. Singh, “An effective feature selection based cross-project

defect prediction model for software quality improvement,” International Jour-

nal of System Assurance Engineering and Management, vol. 14, no. Suppl 1,

pp. 154–172, 2023.

[171] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in

engineering software, vol. 95, pp. 51–67, 2016.

[172] L. S. A. da Silva, Y. L. S. Lúcio, L. d. S. Coelho, V. C. Mariani, and R. V. Rao,

“A comprehensive review on jaya optimization algorithm,” Artificial Intelligence

Review, vol. 56, no. 5, pp. 4329–4361, 2023.

[173] T. Sharma and O. P. Sangwan, “Sine-cosine algorithm for software fault predic-

tion,” in 2021 IEEE International Conference on Software Maintenance and

Evolution (ICSME). IEEE, 2021, pp. 701–706.

240

Bibliography

[174] S. Riaz, A. Arshad, and L. Jiao, “Rough noise-filtered easy ensemble for

software fault prediction,” Ieee Access, vol. 6, pp. 46 886–46 899, 2018.

[175] I. Gondra, “Applying machine learning to software fault-proneness prediction,”

Journal of Systems and Software, vol. 81, no. 2, pp. 186–195, 2008.

[176] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of classifi-

cation techniques on the performance of defect prediction models,” in 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering,

vol. 1. IEEE, 2015, pp. 789–800.

[177] J. Pachouly, S. Ahirrao, K. Kotecha, G. Selvachandran, and A. Abraham, “A

systematic literature review on software defect prediction using artificial intelli-

gence: Datasets, data validation methods, approaches, and tools,” Engineering

Applications of Artificial Intelligence, vol. 111, p. 104773, 2022.

[178] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse, “Improving software-quality

predictions with data sampling and boosting,” IEEE Transactions on Systems,

Man, and Cybernetics-Part A: Systems and Humans, vol. 39, no. 6, pp. 1283–

1294, 2009.

[179] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Tackling class overlap and imbalance

problems in software defect prediction,” Software Quality Journal, vol. 26, pp.

97–125, 2018.

[180] D. Bassi and H. Singh, “The effect of dual hyperparameter optimization on

software vulnerability prediction models,” e-Informatica Software Engineering

Journal, vol. 17, no. 1, 2023.

[181] A. Agrawal and T. Menzies, “Is” better data” better than” better data miners”?

241

Bibliography

on the benefits of tuning smote for defect prediction,” in Proceedings of the

40th International Conference on Software engineering, 2018, pp. 1050–1061.

[182] N. Mittas and L. Angelis, “Ranking and clustering software cost estimation

models through a multiple comparisons algorithm,” IEEE Transactions on

software engineering, vol. 39, no. 4, pp. 537–551, 2012.

[183] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-

generation hyperparameter optimization framework,” in Proceedings of the

25th ACM SIGKDD international conference on knowledge discovery & data

mining, 2019, pp. 2623–2631.

[184] X. Qiu, P. Fan, and J. Ren, “Convolutional neural network-based research on

software engineering defect prediction,” in Proceedings of the 6th International

Conference on Information Technologies and Electrical Engineering, 2023, pp.

305–308.

[185] G. Giray, K. E. Bennin, Ö. Köksal, Ö. Babur, and B. Tekinerdogan, “On the

use of deep learning in software defect prediction,” Journal of Systems and

Software, vol. 195, p. 111537, 2023.

[186] I. Batool and T. A. Khan, “Software fault prediction using deep learning

techniques,” Software Quality Journal, vol. 31, no. 4, pp. 1241–1280, 2023.

[187] K. O. Elish and M. O. Elish, “Predicting defect-prone software modules using

support vector machines,” Journal of Systems and Software, vol. 81, no. 5, pp.

649–660, 2008.

[188] K. Thirumoorthy et al., “A feature selection model for software defect predic-

tion using binary rao optimization algorithm,” Applied Soft Computing, vol.

131, p. 109737, 2022.

242

Bibliography

[189] T. Mende and R. Koschke, “Revisiting the evaluation of defect prediction

models,” in Proceedings of the 5th international conference on predictor models

in software engineering, 2009, pp. 1–10.

243

Supervisor’s Biography

Prof. Ruchika Malhotra
Head of the Department & Professor
Department of Software Engineering

Delhi Technological University
Email: ruchikamalhotra@dtu.ac.in

Educational Qualifications:
Postdoc (Indiana University-Purdue University Indianapolis, USA), Ph.D (Computer Applica-
tions)

Ruchika Malhotra is the Head of the Department and a Professor in the Department
of Software Engineering at Delhi Technological University (DTU), Delhi, India. She has
previously served as the Associate Dean of Industrial Research and Development at DTU.
She was awarded the prestigious Raman Fellowship for post-doctoral research at Indiana
University-Purdue University Indianapolis, USA. She earned her master’s and doctorate
degrees in software engineering from the University School of Information Technology at
Guru Gobind Singh Indraprastha University, Delhi, India. In 2013, she received the IBM
Faculty Award. Her contributions to the field have earned her recognition as one of the
worldâs top 2% scientists, according to a Stanford University report from 2020 to 2024,
specifically for her work in ”Artificial Intelligence & Image Processing” . She has also
received the Commendable Research Award from Delhi Technological University for the years
2018-2024. Her h-index is 38 as reported by Google Scholar. She is the author of the book
”Empirical Research in Software Engineering,” published by CRC Press, and co-author of
”Object Oriented Software Engineering,” published by PHI Learning. She has published over
250 research papers in international journals and conferences. Her research interests include
software testing, software quality improvement, statistical and adaptive prediction models,
software metrics, and the definition and validation of software metrics.

Author’s Biography

Kishwar Khan
Research Scholar

Department of Software Engineering
Delhi Technological University

Email: kishwarkhan037@gmail.com

Educational Qualifications:
M.Tech (SWE), B.Tech (CSE)

Kishwar Khan received her B.Tech. degree in Computer Science and Engineering from
Dr. A. P. J. Abdul Kalam Technical University, Lucknow, India, and her M.Tech. degree in
Software Engineering from Delhi Technological University, Delhi, India. She is currently
pursuing a Ph.D. in Software Engineering at Delhi Technological University. Her doctoral
research focuses on software quality improvement and the application of machine learning
and deep learning in various aspects of software quality. Her current research interests include
Artificial Intelligence, software quality, predictive modelling, and data analytics.

A novel software defect prediction model using two-phase grey wolf
optimisation for feature selection

Ruchika Malhotra1 • Kishwar Khan1

Received: 8 March 2024 / Revised: 13 May 2024 / Accepted: 23 May 2024
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The process of accurately predicting software defects is highly crucial during the early period of software development

before testing activities begin. A variety of computational methods have been constructed to achieve this based on static

code metrics. However, one of the major issues in predictive modelling is the presence of redundant and irrelevant features

in available datasets, which can lead to inaccuracies in the prediction model. Swarm optimization methods have shown

excellent performance in Feature Selection (FS) issue mitigation and reduced the execution time of the prediction model.

This study proposes a novel model for predicting software defects. This model utilizes a variant of Grey Wolf Optimiser as

a wrapper-based feature selection method, paired with Synthetic Minority Oversampling Technique to balance the dataset,

with the objective of maximizing the prediction efficiency of the learning model. The performance of the proposed model

is assessed on 27 open-source datasets. The result findings show that the feature selection method improves prediction

performance. Furthermore, the two-phase Grey Wolf Optimization-based feature selection with Random Forest classifier

demonstrates superior efficacy on datasets compared to another benchmark model in handling the problem of FS. The

results are also validated using statistical techniques.

Keywords Software defect prediction � Feature selection � Grey wolf optimisation � Synthetic minority oversampling

technique (SMOTE) � Machine learning

1 Introduction

Software quality is a significant aspect of software engi-

neering that needs to be considered when developing

software products. The extent to which software conforms

to customer needs and expectations is the software quality

[1]. High-quality software products are more likely to meet

user needs and expectations, resulting in greater user sat-

isfaction. High-quality software is effective and efficient,

with minimal defects. This can result in smoother business

processes and better use of resources. Quality software

development can reduce overall testing and maintenance

efforts, resulting in lower costs. Reducing the number of

faults through quality development practises might ulti-

mately save money because correcting defects can be

expensive. High-quality software can give organizations a

competitive advantage in the marketplace. Customers are

more likely to choose a software product that meets their

needs and performs well. Standardizing software quality

practices can improve overall software quality and promote

consistency across organizations [2].

Additionally, by predicting software defects, software

engineers can improve their overall development pro-

cesses, as they can use the data generated by Software

Defect Prediction (SDP) to identify parts of the code that

are prone to defects and make changes to reduce the risk of

future defects data [3]. SDP is the process of identifying

those software components that are most likely to have

defects based on current software metrics or features for

prospective software releases [4]. Software characteristics

may indicate software properties like complexity and the

number of operators, and the connections between the

features and the class may change. Some of these traits

& Kishwar Khan

kishwarkhan037@gmail.com

Ruchika Malhotra

ruchikamalhotra@dtu.ac.in

1 Department of Software Engineering, Delhi Technological

University, Delhi, India

123

Cluster Computing
https://doi.org/10.1007/s10586-024-04599-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-6323-067X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04599-w&domain=pdf
https://doi.org/10.1007/s10586-024-04599-w

Kishwar Khan <kishwarkhan037@gmail.com>

Your Submission IDA-240485R1
Intelligent Data Analysis <em@editorialmanager.com> 23 August 2024 at 16:06
Reply-To: Intelligent Data Analysis <editor1@ida-ij.com>
To: Kishwar Khan <kishwarkhan037@gmail.com>

Ref.: Ms. No. IDA-240485R1
OpTunedSMOTE: A Novel Model for Automated Hyperparameter Tuning of SMOTE in Software Defect Prediction
Intelligent Data Analysis

Dear Ms. Khan,

I am pleased to tell you that your work has now been accepted for publication in Intelligent Data Analysis. It was
accepted on Aug 21, 2024, comments from the Editor and Reviewers can be found below.

Your paper will now be sent to the publisher's typesetting office. Assuming there are no technical errors with the
manuscript then, after the paper has been typeset, you will be informed by e-mail and asked to proofread the final
copy. Please provide your feedback within 48 hours after receiving the proof.
After final publication in an issue of the journal you will receive a complimentary PDF copy of the final published article
which will include the final page numbers.

Please complete the Author Publication Fee Payment form at the following link:
http://www.iospress.nl/journal-fee-form/?id=16&journal=29241.

More information is available at our website: http://www.iospress.nl/journal/intelligent-data-analysis/.

When you pay your publication fee, please make sure to enter your reference number (IDA-240485R1)

If you experience any problems with the payment, please contact Authorfees@iospress.nl

We would like to thank you again for all your efforts and your interest in the IDA journal, we look forward to receiving
your future work as well.

With kind regards

IDA Journal

Jose M Pena, PhD
Editor-in-Chief
Intelligent Data Analysis

Comments from the Editors and Reviewers:

__
In compliance with data protection regulations, you may request that we remove your personal registration details at
any time. (Use the following URL: https://www.editorialmanager.com/ida/login.asp?a=r). Please contact the
publication office if you have any questions.

9/5/24, 11:22 PM Gmail - Your Submission IDA-240485R1

https://mail.google.com/mail/u/0/?ik=e8189105ca&view=pt&search=all&permmsgid=msg-f:1808174312934447962&simpl=msg-f:1808174312934… 1/1

http://www.iospress.nl/journal-fee-form/?id=16&journal=29241
http://www.iospress.nl/journal-fee-form/?id=16&journal=29241
http://www.iospress.nl/journal-fee-form/?id=16&journal=29241
http://www.iospress.nl/journal/intelligent-data-analysis/
http://www.iospress.nl/journal/intelligent-data-analysis/
http://www.iospress.nl/journal/intelligent-data-analysis/
mailto:Authorfees@iospress.nl
https://www.editorialmanager.com/ida/login.asp?a=r
https://www.editorialmanager.com/ida/login.asp?a=r

A Study on Software Defect Prediction
using Feature Extraction Techniques

Ruchika Malhotra
Department of Computer Science & Engineering

Delhi Technological University Shahbad Daulatpur,
Bawana Road, New Delhi, India

ruchikamalhotra@dtu.ac.in

Kishwar Khan
Department of Computer Science & Engineering

Delhi Technological University Shahbad Daulatpur,
Bawana Road, New Delhi, India

kishwarkhan037@gmail.com

Abstract— Identification and elimination of defects in
software is time and resource-consuming activity. The
maintenance of a defective software system is burdensome.
Software defect prediction (SDP) at an early stage of the
Software Development Life Cycle (SDLC) results in quality
software and reduces its development cost. In this study, a
comparison is performed on nine open-source software-
systems written in Java from PROMISE Repository using four
mostly used feature extraction techniques such as Principal
Component Analysis (PCA), Linear Discriminant Analysis
(LDA), Kernel-based Principal Component Analysis (K-PCA)
and Autoencoders with Support Vector Machine (SVM) as
base machine learning classifier. The model validation is
performed using a ten-fold cross-validation method and the
efficiency of the model is evaluated using accuracy and ROC-
AUC. The results of this study indicate that Autoencoders is an
effective method to reduce the dimensions of a software defect
dataset successfully.

Keywords— Software Defect Prediction, Feature Extraction,
Dimensionality reduction, Machine Learning.

I. INTRODUCTION
Software defect prediction (SDP) is a process of

classification that determines whether a software module is
defective or not. It helps the Software Quality Assurance
team to concentrate on the finite assets on the mostly defect
susceptible software components. In this, every software
component is categorized by a class tag and a number of
metrics. The class tag indicates if a given module is defective
or not [31].

Early prediction of defects may prompt to timely
rectification of defects and leads to the delivery of
maintainable software. Managers can allot testing resources
suitably. Developers can audit defect-prone code more
closely. Testers can prioritize their testing efforts and
resources on the basis of defect-proneness data.

We know that machine learning methods are prevailing
these days, various classification models have been presented
during the previous decade. Despite that, a problem that
scares the modeling method is the high-dimensionality of the
dataset used for SDP, i.e., datasets with extreme features
having irrelevant and redundant ones. As exposed by
previous works, high-dimensionality issues can prompt high
computational charge and deprivation of the accuracy of
definite models [9], [10], [13]. Due to these reasons, a range
of feature reduction techniques was projected to improve this
problem of high dimensionality by removing extraneous &
repeated features.

According to [30], with an increase in the dimensionality
of data, there is an exponential increase in the amount of data
needed to offer reliable performance, this fact is termed as
the 'curse of dimensionality by Bellman when taking into
account issues related to dynamic optimization. A well-liked
undertaking to this issue of high-dimension datasets is to
look for a projection of the data against a lesser amount of
features, which conserve the information so far as possible.
To conquer this issue, it is essential to discover a manner to
reduce the number of variables in consideration [1], [8].

Feature extraction (FE) [24] is a technique to extract non-
redundant and relevant features from the given set of features
by using some transformation to decrease complications and
to provide an easy demonstration of each variable in feature
space as a linear arrangement of input variables. It is a more
general technique than a feature selection technique.
Principal Component Analysis, Linear Discriminant
Analysis, and Kernel-based Principal Component Analysis
are some of the approaches of feature extraction. In this
study, we are comparing both linear as well as non-linear
techniques.

The remaining part of the paper is arranged as follows:
section II concisely presents the literature study and section
III describes the research methodology used in this study.
Section IV states the experimental design in which variable
selection, hypothesis formulation, and tools required for the
study are explained. Section V states and analyses the results
of the study based on accuracy and ROC-AUC. Section VI
concludes the study and provides guidelines for future work.

II. LITERATURE STUDY
Some of the previous studies about SDP are concisely

summarized to depict the drift and trends in literature
focusing on feature selection and extraction in SDP. Liu et
al. [1] examined the effect of some 32 feature selection
approaches such as filter-based, wrapper-based, clustering-
based & extraction-based on the NASA dataset. Gayatri et al.
[3] proposed a novel procedure for feature reduction build on
Decision_Tree_Induction and compared it with the RELIEF
method and discovered the proposed method outperformed
others.

Ceylan et al. [4] conducted experiments in which PCA is
used for feature-reduction. For classification Decision Tree,
Multi-Layer Perceptron and Radial Basis Functions are used.
Khoshgoftaar et al. [6] carried his research on the influence
of data sampling, followed by wrapper-based feature
selection. He found out that the proposed approach works

2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)
Amity University, Noida, India. June 4-5, 2020

978-1-7281-7016-9/20/$31.00 ©2020 IEEE 1139
Authorized licensed use limited to: DELHI TECHNICAL UNIV. Downloaded on September 08,2024 at 15:02:37 UTC from IEEE Xplore. Restrictions apply.

	List of Tables
	List of Figures
	List of Publications
	Abbreviations
	Introduction
	Introduction
	Software Defect
	Software Defect Prediction

	What is Predictive Modelling?
	Steps in Predictive Modelling
	Predictive Modelling for Software Defect Prediction
	Factors Affecting the Performance of Predictive Modelling for Software Quality

	Literature Survey
	Software Metrics
	Software Defect Prediction
	Class Imbalance Problem
	Hyperparameter Tuning
	Feature Selection

	Objectives of the Thesis
	Vision
	Focus
	Goals

	Organization of the Thesis

	Research Methodology
	Introduction
	Research Process
	 Identify the Research Problem
	Literature Review
	Defining Study Variables
	Independent Variables
	Dependent Variables

	Data Analysis Methods
	Support Vector Machine
	K-Nearest Neighbors (KNN)
	Naive Bayes
	Multi Layer Perceptron
	Random Forest (RF)
	 Bootstrap Aggregating (Bagging)
	Gradient Boosting (GB)
	Adaptive Boosting (AdaBoost)
	XGBoost (Extreme Gradient Boosting)
	CNN (Convolutional Neural Networks)
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit

	Empirical Data Collection
	Dataset Details

	Data Preprocessing
	Data Normalisation

	Feature Reduction
	Feature Extraction
	Feature selection

	Data Balancing
	Prediction Model Development and Validation
	Performance Measures
	Statistical Analysis Techniques
	Friedman Test
	Wilcoxon Signed Rank Test

	A Systematic Review of Feature Reduction Techniques for Software Quality Predictive Modelling using Object-Oriented Metrics
	Introduction
	Review Procedure
	Review Protocol
	Search Strategy
	Inclusion and Exclusion Criteria
	Quality Criteria

	Results Analysis
	Result Analysis based on RQ1
	Result Analysis based on RQ2
	Result Analysis based on RQ3
	Result Analysis based on RQ4
	Result Analysis based on RQ5

	Discussion

	Software Defect Prediction using Feature Extraction Techniques
	Introduction
	Research Background and Methodology
	Dataset Collection
	Data Normalisation
	Feature Extraction Techniques
	classification Technique
	Model validation Technique
	Performance Measures
	Statistical Test

	Experimental Design
	Variable Selection
	Hypothesis Formulation

	Results Analysis
	Result Analysis based on RQ1
	Results Analysis based on RQ2
	Result Analysis based on RQ3

	Discussion

	Effect of Feature Selection on Cross-Project Defect Prediction
	Introduction
	Research Methodology
	Data Collection
	Dependent and Independent Variables
	Feature Selection Techniques
	Data Balancing
	Machine Learning Classifiers
	Performance Indicator
	Statistical Test

	Result Analysis
	Result Analysis based on RQ1
	Result Analysis based on RQ2
	Result Analysis based on RQ3

	Discussion

	A Novel Software Defect Prediction Model using two-phase Grey Wolf Optimisation for Feature Selection
	Introduction
	Proposed Methodology
	Dataset Details
	Feature selection using 2M-GWO
	Classifiers
	Evaluation Method
	Parameter Setting
	Statistical Test

	Results Analysis
	Result Analysis based on RQ1
	Result Analysis based on RQ2
	Result Analysis based on RQ3
	Result Analysis based on RQ3

	Discussion

	Impact of Hyperparameter tuning on Software Defect Prediction Model
	Introduction
	Research Methodology
	Research Methodology of Study 1
	Research Methodology of Study 2

	Experimental Framework
	Dataset Collection
	Data Preprocessing
	Hyperparameter Tuning Setup
	Model Training and Testing Framework
	Evaluation Metrics
	Statistical tools

	Results Analysis
	Results analysis of Study 1
	Results analysis of Study 2

	Discussion

	Conclusion
	Summary of the Research Work
	Application of the Work
	Future Work

	Bibliography
	Supervisor's Biography
	Author's Biography
	A novel software defect prediction model using two-phase grey wolf optimisation for feature selection
	Abstract
	Introduction

