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ABSTRACT

Nowadays, the size of software's is increasing every day. The challenge faced by

software developers and experts is to develop large and detailed software projects

within a reasonable amount of time and with a reasonable amount of resources by

satisfying the customer's requirements. These days, the focus of organizations is on the

creation of quality software within a specified budget and time. However, the company

focuses on delivering quality software considering the quality attributes satisfied by the

software from the developer and customer perspective. Thus, developers keep a check

on the software quality throughout all the phases of development. Software quality

needs to be ensured from the beginning of requirement gathering to the delivery of

software to the end user. However, the software requires continuous updates with

technological advancements or any kind of updates requested in customer requirements

after deployment at the customer site. However, after the deployment of software

at the customer site, it also ensures software quality in terms of maintainability,

user-friendliness, and reliability. The quality of software is important from every

perspective, considering its internal and external qualities. Thus, considering internal

quality attributes, software developers focus on aspects related to the software's

structure, design, and implementation, such as maintainability, flexibility, scalability,

and reusability. Thus, considering external quality attributes, software developers

focus on aspects related to the software's behavior and performance as perceived by

users, such as functionality, reliability, performance, and usability. Moreover, the

software quality is also affected by the amount of data used to develop software. In the

initial stages, developers design a prototype considering conventional software. Due

to this, the performance of developed software is not much better than conventional
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software.

One of the ways to improve quality is to develop predictive models using real-

world data. The prediction models are developed using software's internal properties,

such as cohesion, coupling, and inheritance. The prediction models can be developed

using Machine Learning (ML) techniques by dividing the data into one part as training

data and another part as testing/ validation. It has been seen that researchers tend

to validate the ML models from the dataset used for development, which resulted in

producing biased and non-generalizable results. Keeping this in view, it is important

to develop models using training data from one project and validate the same models

using validation data derived from another project. This concept is often known as

Cross-Project Validation (CPV). Furthermore, the objective of CPV is to develop

prediction models that produce generalized and unbiased results. Thus, this work

focuses on developing and validating models using CPV techniques.

This research is focused on various techniques to improve the performance of

models developed using CPV methodology. Due to the limited availability of data, the

idea of cross-project arises. The cross-project prediction model is further categorized

into two categories based on types of projects and types of features in train data and

test data. The work of this research is to explore Intra-Project validation and Inter-

Project validation. The feasibility of CPV with Intra-Project validation is analyzed

in this research. The research is focused on using existing models for predictions on

future data. The analysis conducted in this study considered ML techniques. Also, the

primary objective of conducting an experiment in this study is to enhance the quality

of software's considering four important aspects defect, change, maintenance, and

effort. The study mainly focused on defect and change prediction models.

Another focus of this research is to explore and validate the applicability of

Transfer Learning (TL). TL is one of the CPV techniques. Using TL concept, the

predictive model is to be designed and will be used to validate other project data. The

main concept is that one project is used as training data, which will be used for creating
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a prediction model, and that model is used to validate other project data. Lastly, this

work focuses on inter-version project validation, where different versions of the same

project are used for training and testing data. Thus, a prediction model will be created

for the inter-version project validation. Furthermore, the impact of feature selection

techniques is also analyzed for cross-project models. A comparison was performed

among ranking-based and greedy search algorithms to design efficient cross-project

models for unseen datasets. The impact of TL models with cross-project models is also

analyzed. The thesis also evaluates the CPV models for enhancing the maintainability

and reusability of projects. We believe that this study's research outcomes would

help improve the quality of software prediction models based on the concept of cross-

project methodologies by developing software projects in a reasonable time and cost.

This research's findings would benefit academicians, researchers, and industry experts

in developing efficient software with better quality.

vii



List of Publications

Papers Accepted/Published in International Journals

1. Ruchika Malhotra and Shweta Meena, “Defect prediction model using transfer

learning”, Soft Computing, vol. 26, no. 10, pp. 4713-4726, 2022 (Impact Factor:

4.1). (https://doi.org/10.1007/s00500-022-06846-x)

2. Ruchika Malhotra and Shweta Meena, “Empirical validation of machine learn-

ing techniques for heterogeneous cross-project change prediction and within-

project change prediction”, Journal of Computational Science, vol. 76, pp.

102230, 2024 (Impact Factor: 3.3). (https://doi.org/10.1016/j.jocs.2024.102230)

3. Ruchika Malhotra and Shweta Meena, “A Systematic Review of Transfer Learn-

ing in Software Engineering”, Multimedia Tools and Applications, 2024 (Impact

Factor: 3.6), Accepted.

4. Ruchika Malhotra and Shweta Meena, “Empirical validation of feature selection

techniques for cross-project defect prediction”, International Journal of System

Assurance Engineering and Management, pp. 1-13, 2023 (Impact Factor: 2.0).

(https://doi.org/10.1007/s13198-023-02051-7)

Papers Accepted/Published in International Conferences

5. Ruchika Malhotra and Shweta Meena, “Empirical validation of cross-version

viii



and 10-fold cross-validation for defect prediction, 2021 Second International

Conference on Electronics and Sustainable Communication Systems, pp. 431-

438, 2021.

6. Ruchika Malhotra and Shweta Meena, “Grid Search-Optimized Artificial Neural

Network for Heterogeneous Cross-Project Defect Prediction”, In International

Conference on Data Analytics and Management, pp. 447-458, Singapore, 2023.

7. Ruchika Malhotra and Shweta Meena, “Empirical Validation of Software Defect

Prediction Models using Grid Search Grey Wolf Optimization”, 3rd Interna-

tional Conference on Computing and Communication Networks (ICCCNet-

2023), United Kingdom, 2023.

Papers Communicated in International Journals

8. Ruchika Malhotra and Shweta Meena, “An improved cross-project defect pre-

diction model developed using optimized neural network”, Arabian Journal for

Science and Engineering.

ix



Contents

Candidate’s Declaration ii

Certificate iii

Acknowledgment iv

Abstract vii

List of Publications viii

List of Tables xvii

List of Figures xxi

List of Symbols and Abbreviations xxiii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction to Software Quality . . . . . . . . . . . . . . . . . . . 3

1.2.1 Software Quality . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Software Quality Attributes . . . . . . . . . . . . . . . . . 4

1.3 Software Quality Predictive Modeling . . . . . . . . . . . . . . . . 5

1.3.1 What is Predictive Modeling? . . . . . . . . . . . . . . . . 5

1.3.2 Steps in SQPM . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Validation Methodologies . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . 7

x



1.4.2 Inter-Version Validation . . . . . . . . . . . . . . . . . . . 8

1.4.3 Cross-Project/ Company Validation . . . . . . . . . . . . . 8

1.5 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Software Defect Prediction . . . . . . . . . . . . . . . . . . 14

1.5.2 Software Change Prediction . . . . . . . . . . . . . . . . . 15

1.5.3 Validation Methodologies for SQPM . . . . . . . . . . . . . 16

1.6 Vision and Focus of the Thesis . . . . . . . . . . . . . . . . . . . . 20

1.7 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 21

1.8 Overview of the Work . . . . . . . . . . . . . . . . . . . . . . . . 23

1.9 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 26

2 Research Methodology 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Research Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Define Research Problem . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Defining Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 Independent Variables (OOM) . . . . . . . . . . . . . . . . 35

2.5.2 Dependent Variable . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Data Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Experimental Design Framework . . . . . . . . . . . . . . . . . . . 42

2.7.1 Empirical Data Collection . . . . . . . . . . . . . . . . . . 42

2.7.2 Metric Matching Analyzer . . . . . . . . . . . . . . . . . . 44

2.7.3 Data Collection Procedure . . . . . . . . . . . . . . . . . . 44

2.8 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.8.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . 51

2.8.2 Data Balancing . . . . . . . . . . . . . . . . . . . . . . . . 53

2.8.3 Prediction Model Development and Validation . . . . . . . 54

2.8.4 Performance Measures . . . . . . . . . . . . . . . . . . . . 55

2.8.5 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . 57

xi



3 Systematic Literature Review 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Review Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Search Strategy . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2 Inclusion and Exclusion Criteria . . . . . . . . . . . . . . . 63

3.2.3 Quality Assessment Criteria . . . . . . . . . . . . . . . . . 64

3.3 Review Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 Results Specific to RQ1 . . . . . . . . . . . . . . . . . . . 65

3.3.2 Results Specific to RQ2 . . . . . . . . . . . . . . . . . . . 68

3.3.3 Results Specific to RQ3 . . . . . . . . . . . . . . . . . . . 71

3.3.4 Results Specific to RQ4 . . . . . . . . . . . . . . . . . . . 90

3.3.5 Results Specific to RQ5 . . . . . . . . . . . . . . . . . . . 94

3.3.6 Results Specific to RQ6 . . . . . . . . . . . . . . . . . . . 96

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Cross-Project Defect Prediction Model using Transfer Learning 103

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.1 Dataset used . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.3 Development of Prediction Model . . . . . . . . . . . . . . 109

4.2.4 Cross-Validation Method . . . . . . . . . . . . . . . . . . . 110

4.2.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . 111

4.2.6 Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.1 Results Specific to RQ1 . . . . . . . . . . . . . . . . . . . 112

4.3.2 Results Specific to RQ2 . . . . . . . . . . . . . . . . . . . 113

4.3.3 Results Specific to RQ3 . . . . . . . . . . . . . . . . . . . 114

4.3.4 Results Specific to RQ4 . . . . . . . . . . . . . . . . . . . 115

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xii



5 Cross-Project Defect Prediction Model using Transfer Learning 124

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.1 Dataset used . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.3 Development of Prediction Model . . . . . . . . . . . . . . 130

5.2.4 Cross-Validation Method . . . . . . . . . . . . . . . . . . . 131

5.2.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . 132

5.2.6 Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.1 Results Specific to RQ1 . . . . . . . . . . . . . . . . . . . 133

5.3.2 Results Specific to RQ2 . . . . . . . . . . . . . . . . . . . 134

5.3.3 Results Specific to RQ3 . . . . . . . . . . . . . . . . . . . 135

5.3.4 Results Specific to RQ4 . . . . . . . . . . . . . . . . . . . 136

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Empirical validation of machine learning techniques for heterogeneous

cross–project change prediction and within–project change prediction 145

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Empirical Data Collection . . . . . . . . . . . . . . . . . . . . . . 150

6.3 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3.1 Selection of Dataset . . . . . . . . . . . . . . . . . . . . . 151

6.3.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . 151

6.3.3 Imbalanced Dataset . . . . . . . . . . . . . . . . . . . . . . 151

6.3.4 FS Technique . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3.5 ML Classifier . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3.6 Cross–Validation method . . . . . . . . . . . . . . . . . . . 155

6.3.7 Performance Measure . . . . . . . . . . . . . . . . . . . . 156

6.3.8 Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . 156

6.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . 156

6.4.1 WPCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xiii



6.4.2 HetCPCP . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.5.1 Results Specific to RQ1 . . . . . . . . . . . . . . . . . . . 159

6.5.2 Results Specific to RQ2 . . . . . . . . . . . . . . . . . . . 164

6.5.3 Results Specific to RQ3 . . . . . . . . . . . . . . . . . . . 166

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 Empirical Validation of FS Techniques for Cross-Project Defect Prediction171

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . 175

7.2.3 Imbalance Dataset . . . . . . . . . . . . . . . . . . . . . . 176

7.2.4 Filter Methods . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2.5 Wrapper Method . . . . . . . . . . . . . . . . . . . . . . . 177

7.2.6 Swarm Search Methods . . . . . . . . . . . . . . . . . . . 178

7.2.7 ML Classifiers . . . . . . . . . . . . . . . . . . . . . . . . 179

7.2.8 Statistical test . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3.1 Results Specific to RQ1 . . . . . . . . . . . . . . . . . . . 182

7.3.2 Results Specific to RQ2 . . . . . . . . . . . . . . . . . . . 183

7.3.3 Results Specific to RQ3 . . . . . . . . . . . . . . . . . . . 184

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8 Empirical Validation of Cross-Version and 10-fold Validation for Defect

Prediction Models 187

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.2 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . 189

8.2.1 Empirical Dataset . . . . . . . . . . . . . . . . . . . . . . . 189

8.2.2 Model Development . . . . . . . . . . . . . . . . . . . . . 190

8.2.3 Performance Measure . . . . . . . . . . . . . . . . . . . . 190

xiv



8.2.4 Validation Method . . . . . . . . . . . . . . . . . . . . . . 190

8.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.3.1 Results Specific to RQ1 . . . . . . . . . . . . . . . . . . . 191

8.3.2 Results Specific to RQ2 . . . . . . . . . . . . . . . . . . . 194

8.3.3 Results Specific to RQ3 . . . . . . . . . . . . . . . . . . . 197

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9 Optimized Artificial Neural Network for Heterogeneous Cross-Project

Defect Prediction using Grid Search 200

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

9.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . 202

9.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9.2.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . 203

9.2.3 Optimization Algorithm . . . . . . . . . . . . . . . . . . . 203

9.2.4 Techniques used for model development . . . . . . . . . . . 203

9.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 204

9.3.1 Results Specific to RQ1 . . . . . . . . . . . . . . . . . . . 204

9.3.2 Results Specific to RQ2 . . . . . . . . . . . . . . . . . . . 206

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

10 Development of Prediction Model using Grid Search Grey Wolf Optimiza-

tion and Optimized Artificial Neural Network 209

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

10.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . 215

10.2.1 Optimization Algorithm . . . . . . . . . . . . . . . . . . . 220

10.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 222

10.3.1 Results Specific to RQ1 . . . . . . . . . . . . . . . . . . . 223

10.3.2 Results Specific to RQ2 . . . . . . . . . . . . . . . . . . . 223

10.3.3 Results Specific to RQ3 . . . . . . . . . . . . . . . . . . . 224

10.3.4 Results Specific to RQ4 . . . . . . . . . . . . . . . . . . . 228

10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

xv



11 Conclusion 233

11.1 Summary of the Work . . . . . . . . . . . . . . . . . . . . . . . . . 233

11.2 Application of the Work . . . . . . . . . . . . . . . . . . . . . . . . 238

11.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Appendices 241

Bibliography 248

Supervisor’s Biography 270

Author’s Biography 271

xvi



List of Tables

2.1 Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Summary of NASA dataset . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Summary of AEEEM dataset . . . . . . . . . . . . . . . . . . . . . 45

2.4 Summary of ReLink dataset . . . . . . . . . . . . . . . . . . . . . 46

2.5 Descriptive Statistics of PROMISE dataset . . . . . . . . . . . . . . 46

2.6 Summary of dataset used . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Quality Assessment Questionnaire . . . . . . . . . . . . . . . . . . 64

3.2 Description of Primary Studies . . . . . . . . . . . . . . . . . . . . 65

3.3 Description of quality attributes . . . . . . . . . . . . . . . . . . . 67

3.4 Distribution of studies according to various techniques . . . . . . . 68

3.5 Independent variables used . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Transfer learning algorithm used . . . . . . . . . . . . . . . . . . . 76

3.7 Description of validation techniques used . . . . . . . . . . . . . . 80

3.8 Description of performance measure . . . . . . . . . . . . . . . . . 82

3.9 Description of statistical test used . . . . . . . . . . . . . . . . . . 85

3.10 Descriptive statistics of performance measure in the existing studies 95

3.11 Advantages and Disadvantages of TL techniques . . . . . . . . . . 97

4.1 AUC values for WPDP . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 AUC values for HetDP (Source dataset:-11 different dataset, Target

dataset:- ant-1.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3 AUC values for HetDP (Source dataset:-10 different dataset, Target

dataset:- CM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xvii



4.4 AUC values for HetDP (Source dataset:-11 different dataset, Target

dataset:- KC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5 AUC values for HetDP (Source dataset:-11 different dataset, Target

dataset:- KC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 AUC values for HetDP (Source dataset:-11 different dataset, Target

dataset:- KC3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7 AUC values for HetDP (Source dataset:-9 different dataset, Target

dataset:- MC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.8 AAUC values for HetDP (Source dataset:-11 different dataset, Target

dataset:-MC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.9 AUC values for HetDP (Source dataset:-11 different dataset, Target

dataset:-MW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.10 AUC values for HetDP (Source dataset:-10 different dataset, Target

dataset:-PC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.11 AUC values for HetDP (Source dataset:= 8 different test, Target

dataset:- PC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.12 AUC values for HetDP (Source dataset:= 11 different test, Target

dataset:- PC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.13 Friedman Mean Rank for defect prediction methods using RF . . . . 122

5.1 AUC values for WPDP . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2 AUC values for HetDP (Source dataset:-11 different dataset, Target

dataset:- ant-1.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 AUC values for HetDP (Source dataset:-10 different dataset, Target

dataset:- CM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4 AUC values for HetDP (Source dataset:-11 different dataset, Target

dataset:- KC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 AUC values for HetDP (Source dataset:-11 different dataset, Target

dataset:- KC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.6 AUC values for HetDP (Source dataset:-11 different dataset, Target

dataset:- KC3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xviii



5.7 AUC values for HetDP (Source dataset:-9 different dataset, Target

dataset:- MC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.8 AAUC values for HetDP (Source dataset:-11 different dataset, Target

dataset:-MC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.9 AUC values for HetDP (Source dataset:-11 different dataset, Target

dataset:-MW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.10 AUC values for HetDP (Source dataset:-10 different dataset, Target

dataset:-PC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.11 AUC values for HetDP (Source dataset:= 8 different test, Target

dataset:- PC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.12 AUC values for HetDP (Source dataset:= 11 different test, Target

dataset:- PC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.13 Friedman Mean Rank for defect prediction methods using RF . . . . 143

6.1 ML techniques used . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2 Analysis of predictive perform of ML techniques for WPCP . . . . 160

6.3 Analysis of predictive performance of ML techniques for HetCPCP 161

6.4 Mean ranks of ML techniques using Friedman test on AUC . . . . . 165

6.5 Computation and comparison of rank difference for ML techniques

(WPCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.6 Mean ranks of ML techniques using Friedman test on AUC . . . . . 167

6.7 Computation and Comparison of rank difference for ML techniques

(HCPCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.1 Average AUC values for filter methods and ML classifiers for CPDP

(13 pairs of AEEEM and ReLink dataset) . . . . . . . . . . . . . . 182

7.2 Average AUC values for swam search based methods and ML classi-

fiers for CPDP (13 pairs of AEEEM and ReLink dataset) . . . . . . 183

7.3 Wilcoxon–signed rank test result for analyzing performance of filter,

wrapper, and swarm search based FS methods (18 pairs not significant))184

xix



7.4 Wilcoxon–signed rank test result for analyzing performance of filter,

wrapper, and swarm search based FS methods (48 pairs not significant)185

8.1 AUC values for cross-version defect prediction . . . . . . . . . . . 191

8.2 Mean Rank of machine learning techniques . . . . . . . . . . . . . 192

8.3 Wilcoxon–signed rank test for cross-version defect prediction . . . . 192

8.4 AUC values for 10-fold cross-validation . . . . . . . . . . . . . . . 194

8.5 Mean Rank of ML Techniques . . . . . . . . . . . . . . . . . . . . 196

8.6 Wilcoxon–signed rank test for 10-fold cross-validation . . . . . . . 196

8.7 Wilcoxon test on CVDP and model developed using 10-fold cross-

validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9.1 AUC values for ANN and grid search ANN model for CPDP . . . . 205

9.2 Model Mean Ranks . . . . . . . . . . . . . . . . . . . . . . . . . . 207

10.1 AUC values for TGWO, GSGWO, and RFGWO for InPDP . . . . . 224

10.2 AUC values of the prediction model developed using ANN, RNN, and

CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

10.3 Friedman test mean rank . . . . . . . . . . . . . . . . . . . . . . . 228

10.4 AUC values of traditional machine learning techniques such as random

forest, naive bayes, K-nearest neighbor . . . . . . . . . . . . . . . . 229

10.5 Friedman test mean rank . . . . . . . . . . . . . . . . . . . . . . . 230

xx



List of Figures

1.1 Transferring knowledge from a source domain to target domain . . . 10

2.1 Research Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Experimental design for developing SDP Models . . . . . . . . . . 43

3.1 Year-wise distribution of primary studies . . . . . . . . . . . . . . . 66

3.2 Quality attribute emphasized in the existing studies . . . . . . . . . 67

3.3 Distribution of studies (in terms of %) of ML techniques used . . . 69

3.4 SVM categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 EL categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 BL categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Division of sub-categories of ML techniques . . . . . . . . . . . . . 72

3.8 Dataset used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 Validation techniques used . . . . . . . . . . . . . . . . . . . . . . 80

3.10 Performance measure used . . . . . . . . . . . . . . . . . . . . . . 81

3.11 Statistical test used . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.12 Type of transfer approach corresponding to different transfer learning

settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.13 Dataset-wise accuracy for TL techniques used . . . . . . . . . . . . 91

3.14 Dataset-wise AUC for TL techniques used . . . . . . . . . . . . . . 92

3.15 Dataset-wise AUC for ML techniques used . . . . . . . . . . . . . 93

3.16 Dataset-wise Recall values for TL techniques used . . . . . . . . . 94

4.1 Framework for Heterogeneous Defect Prediction . . . . . . . . . . 108

xxi



4.2 Framework for Within Project Defect Prediction . . . . . . . . . . . 108

4.3 Friedman Mean Rank for ML Algorithm . . . . . . . . . . . . . . . 115

5.1 Framework for Heterogeneous Defect Prediction . . . . . . . . . . 129

5.2 Framework for Within Project Defect Prediction . . . . . . . . . . . 129

5.3 Friedman Mean Rank for ML Algorithm . . . . . . . . . . . . . . . 136

6.1 Architecture of approach used for within-project change prediction . 157

6.2 Architecture of approach used for heterogeneous cross-project change

prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.1 Proposed methodology . . . . . . . . . . . . . . . . . . . . . . . . 180

10.1 Performance comparison of intra-project defect prediction models . 225

xxii



List of Symbols and Abbreviations

ACO Ant Colony Optimization

ADB ADaBoost

ADCNN Adversarial Discriminative Convolutional Neural Network

AI Artificial Intelligence

AMC Average Method Complexity

ANN Artificial Neural Network

ANOVA Analysis of Variance

API Application Programming Interface

ARTL Adaptation Regularization TL

AST Abstract Syntax Tree

AUC Area Under Curve

AUCEC Area Under the Cost-Effectiveness Curve

B Halstead Effort

BBN Bayesian Belief Network

BDA Balanced Distribution Adaptation

BETL Bagging Based TL

BiNN Bidirectional Neural Network

BL Bayesian Learning

BN Bayesian Network

BNG Bagging

BRC Branch Count

Ca Afferent Coupling

CAM Cohesion Among Methods of Class

xxiii



CBM Coupling Between Method

CBO Coupling Between Objects

CCA Canonical Correlation Analysis

CCA+ Canonical Correlation Analysis Extended

CCB Change Control Board

CD Critical Difference

Ce Efferent Coupling

CLL Conditional log-likelihood

CNN Convolutional Neural Network

CPCP Cross-Project Change Prediction

CPDP Cross-Project Defect Prediction

CPV Cross-Project Validation

CSO Cat Swarm Optimization

CVDP Cross-Version Defect Prediction

CWCARM Correlation Coefficient Weighted Class Association Rule Mining

D Halstead Difficulty

DAM Data Access Metrics

DBT Discriminability Based TL

DE-SDP Dual Ensemble Software Defect Prediction

DIT Depth of Inheritance Tree

DL Deep Learning

DoF Degree of Freedom

DP Defect Prediction

DT Decision Tree

Ei Expected Count

EL Ensemble Learning

EOCM Entropy of Change Metric

ev(g) Essential Complexity

EVS Evolutionary Search

FN False Negative

xxiv



FP False Positive

FPR False Positive Rate

FS Feature Selection

FSR Feature Space Remapping

GA Genetic Algorithm

GAFSR GA for Feature-Space Remapping

GBM Graph-Based Methods

GCMF Graph co-regularized Collective Matrix tri-Factorization

GFK Geodesic Flow Kernel

GrFSR Greedy Search for Feature-Space Remapping

GrS Greedy Search

GTL Graph Co-Regularization TL

GWO Grey Wolf Optimization

HetCPCP Heterogeneous Cross-Project Change Prediction

HetCPDP Heterogeneous Cross-Project Defect Prediction

HoCP Homogeneous Cross Project

HSD Honest Significant Difference

HSO Harmony Search Optimization

HV Hybrid Voting

IC Inheritance Coupling

IDE Integrated Development Environment

IdTL Inductive Transfer Learning

IG Information Gain

IMM Information Measure Metric

InPDP Intra Project Defect Prediction

iv(g) Design Complexity

JIT Just-In-Time

KCCA+ Kernel Canonical Correlation Analysis Extended

KNN K-Nearest Neighbor

KNNDD K-Nearest Neighbor Data Description

xxv



KS test Kolmogorov-Smirnov test

LB LogiBoost

LCOM Lack of COhesion in Methods

LCOM3 Lack of Cohesion

Le Halstead Length

LIME Local Interpretable Model-Agnostic Explanations

LDA Linear Discriminant Analysis

LiR Linear Regression

LOC Line of Code

LR Logistic Regression

LSTM Long Short Term Memory

MAE Mean Absolute Error

MBRE Mean Balanced Relative Error

MCC Matthews Correlation Coefficient

MER Magnitude of Error Relative to the Estimate

MFA Measure of Functional Abstraction

ML Machine Learning

MLP Multi Layer Perceptron

MO Multi-Objective

MOA Measure of Aggregation

MR Manifold Regularization

MRE Magnitude of Relative Error

MSVM Multiclass Support Vector Machine

MTL Multitask Learning

NB Naive Bayes

NEDT Non-Ensemble Decision Trees

NIV Instance Variable

NN Neural Network

NNS Nearest Neighbor Selection

NOA Number of Attributes

xxvi



NOC Number of Children

NOM Number of Methods

Nopn Num Operands

Nopt Num Operators

NPrA Number of Private Attributes

NPrM Number of Private Methods

NPuA Number of Public Attributes

NPuM Number of Public Methods

Oi Observed Count

OO Object-Oriented

OOM Object-Oriented Metrics

PSO Particle Swarm Optimization

QDA Quadratic Discriminant Analysis

QMOOD Quality Model for Object-Oriented Design

RF Random Forest

RFC Response for a Class

RFE Recursive Feature Elimination

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RQs Research Questions

SA Standardized Accuracy

SCL Structural Corresponding Learning

SCM Source Code Metric

SCP Software Change Prediction

SDP Software Defect Prediction

SGD Stochastic Gradient Descent

SHP SHapley Additive exPlanations

SLOC Lines of Source Code

SMO Sequential Minimal Optimization

SMOTE Synthetic Minority Over-sampling TEchnique

xxvii



SoR Softmax Regression

SpMO Spider Monkey Optimization

SQPM Software Quality Predictive Modeling

STL Standard Template Library

SVDDD Support Vector Domain Data Description

SVM Support Vector Machine

T Halstead Program Time

TANN Transfer Artificial Neural Network

TCA Transfer Component Analysis

TCNN Transfer Convolutional Neural Network

TdTL Transductive Transfer Learning

TGWO Transfer Grey Wolf Optimization

TJM Transfer Joint Matching

TKNN Transfer K-Nearest Neighbor

TL Transfer Learning

TN True Negative

TNB Transfer Naive Bayes

TP True Positive

TPR True Positive Rate

TRF Transfer Random Forest

TRNN Transfer Recurrent Neural Network

TSVM Transductive Support Vector Machine

UAR Unweighted Average Recall

UnTL Unsupervised Transfer Learning

V Halstead Volume

v(g) Cyclomatic Complexity

Vd Food source

Vs Ant Colony

WEKA Waikato Environment for Knowledge Analysis

WMC Weighted Method per Class

xxviii



WNBC Weighted NB classifier

WPCP Within-Project Change Prediction

WPDP Within-Project Defect Prediction



Chapter 1

Introduction

1.1 Introduction

Software quality is a primary objective in software engineering. Functional and non-

functional quality attributes are crucial for high-quality software. Most resources 60-70%

go towards evolving software, including code, data, and documentation[1]. Customer

satisfaction is key when delivering good-quality software [2]. To develop quality software,

we must consider existing software's. Developers change and update existing software

for detection and removal of defects to create good-quality software in the future. Soft-

ware quality ensures future updates and respects technological advancements. Predictive

modeling uses historical context and cross-project methodologies. Integrating predictive

modeling aims to develop an ML model using past project data for better software in the

future. The team defines software quality and attributes and then demonstrates predictive

modeling. We discuss cross-project methodologies such as inter-version, cross-project,
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cross-company, and TL. Due to non-availability of a sufficient amount of training data,

cross-project methodologies emerged. The same dataset can be used for training and

testing, but it leads to overfitting and biased results for a specified dataset. Thus, this issue

was resolved using cross-project methodology. Utilization of different dataset for training

and testing removes this problem for researchers.

The integration of TL provides effective results in the software engineering domain.

The knowledge of existing models must be utilized in order to develop more efficient

and reliable software. The following section examines software quality prediction and

transfer learning applications. The predictive modeling considering the historical contexts

is employed with cross-project methodologies. The main aim of integrating predictive

modeling is to develop an ML model to utilize the existing project data to design better

software in the future; it focuses on past practices followed.

The focus of this thesis is the development of efficient prediction models using cross-

project and TL. The basic concepts involved in the thesis and the motivation of research

work are discussed in this chapter. Firstly, the basic terminology of software quality

and software quality attributes is defined, with examples such as functionality, usability,

performance, security, reliability and maintainability (Section 1.1). Further, Software

Quality Predictive Modeling (SQPM) is demonstrated using a hypothetical software project

alongwith basic steps for development of SQPM (Section 1.3). Next, the cross-project

methodologies, such as inter-version, cross-project, cross-company, TL and types of TL

summarized with real-world example (Section 1.4). Section 1.5 discussed the literature

work with respect to cross-project methodologies, defect prediction, change prediction,

and TL. Section 1.6 presents the Vision of thesis. Section 1.7 discussed the objective

of thesis. Section 1.8 presents overview of the work done to improvise the quality of
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software using cross-project and TL. Section 1.9 presents the organization of thesis in the

subsequent chapters.

1.2 Introduction to Software Quality

This section discusses the significance of software quality alongwith software quality

attributes in detail.

1.2.1 Software Quality

Software quality is defined as the extent to which the software satisfies the customer

requirements or end user needs and expectations [2].

• Conformance to requirements

• Fitness for the purpose

• Level of satisfaction

Software quality includes various aspects, including functionality, reliability, usability,

efficiency, maintainability, and security. Thus, developing high-quality software requires

rigorous testing, adherence to coding standards, and continuous improvement of processes

throughout the software development life cycle. However, a constant focus on software

quality ensures that the final software is robust, reliable, and capable of delivering a positive

user experience. Moreover, the software quality is beyond functionality and focus on

developing more robust, user-friendly, and secure software by utilizing existing software.
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1.2.2 Software Quality Attributes

Software quality attributes are termed as software quality characteristics or quality factors.

It represents the various dimensions or facets of software quality. The significance of these

attributes is to assess and analyze the overall quality of software. The standard quality

attributes used are as follows:

• Reliability: This attribute refers to the software's ability to perform its intended

functions correctly and consistently under specific conditions for a defined period.

Reliability indicates the software's stability and its resistance to failures or errors.

• Functionality: The functionality attribute focused on the functioning of the software.

It states that the software has to do what it is designed for. However, software must

perform its intended functionality correctly. Functional quality ensures that the

software delivers on the promises outlined in its requirements and specifications.

• Usability: How easy is the software to learn and use? Does it guide users intuitively

or leave them scratching their heads? Usability encompasses factors like navigation,

clarity of instructions, and the overall ease of achieving goals within the software.

• Security: In today's digitally-connected world, software security is crucial. Qual-

ity software protects user data and resists cyberattacks and unauthorized access.

Security measures like encryption, strong authentication, and regular vulnerability

assessments are vital to maintain user trust.

• Performance: Performance analyzes software's capability by analyzing how well it

performs in terms of various aspects such as speed, responsiveness, throughput, and
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resource utilization. It encompasses response time, execution speed, and scalability

under varying workloads.

• Maintainability: The ease with which the software can be modified, updated, re-

paired, or extended is termed as maintainability. It encompasses attributes such as

modularity, code clarity, documentation quality, and adherence to coding standards.

These are some key software quality attributes, and many additional attributes depend

on specific project requirements or industry standards. However, evaluating and optimizing

software quality considering these attributes are essential for developing and delivering

high-quality software that satisfies user requirements.

1.3 Software Quality Predictive Modeling

This section discusses predictive modeling, the validation process, the steps for SQPM.

1.3.1 What is Predictive Modeling?

Predictive modeling is a procedure for predictive analytics to create a model for predicting

future behavior [3]. The predictive model consists of predictors, which are variable factors

that affect the output variables. It collects historical data for designing predictive rules to

apply to future data is essential for predictive modeling. SQPM means predicting software

quality during the early phase of software development. SQPM helps in efficient utilization

of available resources in a reasonable amount of time. SQPM is a kind of data mining that

uses historical data for model development.
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Development of prediction models uses a specified set of input variables with values

to predict value of output variables/predictors. Predictive modeling is also considered

an essential part of predictive analytics, which is part of data analytics. However, in

software engineering, predictive modeling indicates the development of predictive models

for estimating software quality in terms of defect, change, maintenance, and effort. Thus,

prediction models use software metrics as input variables. Software metrics signifies

Object-Oriented (OO) software characteristics and Halstead metrics such as inheritance,

reusability, coupling, cohesion metrics, size of a program, vocabulary of a program, length

of a program, volume of a program. Moreover, the output of the prediction model can

be the presence or absence of defect, bug count, presence or absence of change, effort

estimation, and maintainability prediction.

1.3.2 Steps in SQPM

The steps [3] for creating a predictive model are as follows:

• Collection of factual data.

• Choosing appropriate learning techniques for model development.

• Outlier analysis and handling of missing values are included in data cleaning.

• Relevant attribute selection.

• Model development using training dataset.

• Validation of the model for its performance determination.

• Use developed model for predictions on future dataset.
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1.4 Validation Methodologies

The discussion encompasses the validation methodologies, the settings and types of TL.

1.4.1 Cross-Validation

It is a technique in ML to analyze the model's performance on future data. Cross-validation

divides the dataset into subsets, using one subset as the validation set and the remaining

folds as the training set. However, there will be multiple folds of the training set, so

that each iteration uses a different fold as the training set. Thus, the average of all folds

produces a more robust model. Cross-validation aims to avoid overfitting. The issue of

overfitting arises when a model is trained too well on training data but needs to perform

better on unseen or future data. However, various cross-validation techniques exist, such

as k-fold cross-validation, leave-one-out cross-validation, and hold-out validation. Cross-

validation focused on developing a model that provides unbiased and generalized results.

The discussion encompasses the different types of cross-validation techniques as follows:

1. Hold-out cross-validation: The dataset is divides into two parts: 50% as a training

dataset, and 50% as a testing purposes. Although it is a simple model. However, it is

not advantageous for models because it may be possible that the remaining 50% of

the dataset contains significant information, which may lead to high bias.

2. Leave-one-out cross–validation: In Leave-one-out cross-validation, training is

performed on the complete dataset but leaves one data point for testing and further

iterates for every data point. However, this method is helpful as n-1 samples are

used for training, and left-out data samples are used for testing, that reduces bias in
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the model. However, if the remaining data point is an outlier, then it would lead to

higher variation.

3. K-Fold cross–validation: The dataset is divided into K subsets. Training is con-

ducted on all subsets except for one, the K-1 subset, which is utilized to evaluate

the model. This process is repeated K times, with different subsets being used for

training each time. The value of K, which represents the number of subsets, is a

crucial parameter. A higher value of K, such as 10, can provide a more accurate

estimate of the model's performance, but it also increases the computational cost.

1.4.2 Inter-Version Validation

The inter-version validation is one of the cross-project methodologies in software engi-

neering. It validates or assesses a software system's performance, functionality, or quality

across different versions or releases. Inter-version validation aims to ensure that changes

introduced in subsequent versions of the software doesn't introduce new errors, defects,

or unexpected behaviors compared to the existing version of that software. However,

it ensures the software's functionality remains consistent and reliable across different

versions. Inter-version validation is not just a process, it's a shield. It plays a crucial role in

software development and maintenance by ensuring the software's reliability, stability, and

consistency across different releases.

1.4.3 Cross-Project/ Company Validation

The development of a prediction model, such as the cross-project model, requires a

sufficient amount of training and testing data. In cases where data is not readily available,
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data from other projects is used to develop the cross-project model. The cross-project

model is then categorized into different types, such as cross-company, inter-project, and

TL, based on the characteristics and behavior of the other projects.

Cross-project is employed in the non-availability of sufficient training dataset. It

considers domain of feature set for both the projects utilize in the development of prediction

model. In cross-company validation methodology, different company projects are used for

training and testing and have similar data distribution. Let's discuss it with an example: we

are considering ordering modules from Flipkart and Amazon. Here, we can train our model

on the Flipkart module and test it on the Amazon module. The concept of cross-company

is now involved here as both modules belong to different companies, i.e., E-commerce

companies. However, a more advanced prediction model has been developed to determine

which modules were utilized by these companies with feature set.

1.4.3.1 Transfer Learning

In the domain of ML, TL emerged as a powerful technique that empowers models to

leverage knowledge acquired from one task (source task) and adapt it to a related but

distinct task (target task). This approach proves particularly effective when faced with

limited labeled data for the target task. The central concept of TL is to use the knowledge

that has been learned from a task (source) having a lot of labeled training data available

and transfer that knowledge to a new task (target) where we don't have a sufficient amount

of data presented in Fig. 1.1.

TL can be utilized in various ways based on source and target data such as Inductive

TL, Transductive TL, Unsupervised TL. Inductive TL can be used for multi-task learning

and self-taught learning. Transductive TL can be used for domain adaptation, sample
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Figure 1.1: Transferring knowledge from a source domain to target domain

selection bias, and covariance shift. The dataset labels (presence/absence) of source and

target datasets differ. Further, based on the type of problem, the TL type and TL settings are

selected. In this manner there is no need to start from scratch, we can utilize the knowledge

gained from a related task (source). In this work, the Inductive TL is performed. Thus, TL

is integrated into the software engineering domain to improve the quality of future projects.

With the help of TL existing projects can be reused with improved functionality in terms

of code, and performance of the software.

1.4.3.2 Types of Transfer Learning

1. Feature transfer: In feature type TL, the relationship among the features of the

source and target dataset is established in a similar space distribution. It synthesizes

example data for model building.

2. Instance-transfer: It provides some example data for model building in the target

dataset considering instances of source dataset.

3. Parameter-transfer: It provides parameter terms for existing models.
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4. Relational transfer: Relational transfer establishes the relationship between source

and target dataset.

1.4.3.3 Transfer Learning Settings

There are three different types of settings in TL based on the type of training and testing

data as follows:

1. Transductive TL: In transductive TL, the model is trained on a source task and

applied directly to the target task without additional training. The target task may

have some labeled data available during inference. The model leverages the source

task data it was trained on and the limited labeled data from the target task to make

predictions. This type of setting is helpful for the limited amount of labeled data

in the target task. Thus, the main goal is to improve prediction performance by

leveraging knowledge from the source task.

2. Inductive TL: Inductive TL involves training the model on a source task and

then fine-tuning it on the target task using the available labeled data. The model's

parameters are updated or fine-tuned during training on the target task to adapt to its

specific characteristics and requirements. It is useful when the target task contains a

considerable amount of labeled data compared to source data. However, the model

can learn features and patterns specific to a task through inductive TL.

3. Unsupervised TL: Using unsupervised TL, the source and target data lack labeled

data, eliminating the need for supervision. This type of TL allows for easy knowledge

transfer to the target task using a source dataset. Moreover, unsupervised TL becomes

useful when no target data is available.
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Each TL type, with its specific settings, presents a strategic advantage and disadvantage.

This strategic use is crucial, as it allows for a advanced approach depending on the situation,

data availability, task, data distribution, latent space, and the resources available for training

and fine-tuning the prediction model, keeping your decision-making informed and strategic.

Advantages of Transfer Learning:

1. Efficient Training: Each TL type, with its specific settings, presents a strategic

advantage and disadvantage. This strategic use is crucial, as it allows for a nuanced

approach depending on the situation, data availability, task, data distribution, latent

space, and the resources available for training and fine-tuning the prediction model,

keeping your decision-making informed and strategic.

2. Improved Generalization: The requirement is the amount of labeled data and

computational resources using pre-trained models with the help of TL. Thus, it is

advantageous when data availability is expensive and resources are limited.

3. Quick Model Deployment: The use of a pre-trained model significantly accelerates

the process of model deployment, particularly in urgent scenarios such as healthcare

sector. This efficiency instills confidence in the reliability and effectiveness of TL in

time-sensitive situations.

Applications of TL

TL becomes a ubiquitous technique across various domains, including:

1. Software Engineering: Task include development of defect prediction model,

change prediction model [4], effort estimation [5, 6] used TL.
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2. Computer Vision: Tasks include object detection, image segmentation, and visual

question answering.

3. Natural Language Processing: Tasks include sentiment analysis, classification,

and machine translation.

4. Speech Recognition: Tasks include speaker identification, emotion recognition, and

automatic speech transcription. By harnessing the power of TL, researchers and

practitioners can address the challenges associated with limited data and accelerate

the development of effective ML models across diverse domains.

1.5 Literature Survey

The previous section discussed the importance of developing good quality software using

predictive modeling. However, researchers, academicians, and industry experts are working

hard to design good quality software considering the reusability of existing software's in

the future. Thus, many researchers integrated the idea of cross-project with the prediction

model. However, TL is one of the cross-project methodologies that efficiently utilizes

existing software for future projects.

Systematic review plays a vital role in developing the solution for existing limitations

regarding research gaps in the respective domain. This section discusses the cross-project

methodologies explored in the existing literature. Further, considering the existing studies,

the exploration of TL for SQPM is concerned.
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1.5.1 Software Defect Prediction

Defect detection and removal of defects before final model deployment is an essential

step in software engineering [7]. The performance of the SDP model is affected by many

factors such as dataset, Feature Selection (FS) technique, and ML technique. Developers

created a two-stage prediction model to detect defective modules [8]. A novel method is

proposed to locate concept drift points for defect prediction [9]. The researchers concluded

that they could predict the model's instability with a certain degree of accuracy without

labeling newly entered data.

Researchers employed traditional ML methods, including Decision Tree (DT), Naive

Bayes (NB), and Support Vector Machine (SVM), to analyze Genetic Algorithms (GA).

Various performance measures such as precision, accuracy, recall, matthew's correlation

coefficient, F-measure, and receiver operating characteristics are used. The applicability

of GA is also analyzed for the selection of relevant features in SDP [10]. A five-stage

framework developed [11] for SDP by selecting datasets and feature optimization using

GA. Three ML classifiers are employed, followed by an ensemble voting technique to

enhance predictive power. In the existing research, the authors focused on developing

interpretable SDP models to aid test managers in identifying defect-prone modules.

A novel approach is designed for SDP using federated learning to remove the issues

of data privacy and information security. The federated learning-based defect prediction

model is deployed on docker, and performance is analyzed using open-source tools. The

effect of dataset size, complexity, characteristics, language, and features such as metrics

analyzed for SDP [12]. The reliability of cross-project prediction is also analyzed. It

investigates the influence of size, complexity, and other code metrics on defect prediction
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and evaluates the reliability of cross-project prediction. The models use ML techniques on

PROMISE datasets to demonstrate interpretability through SHapley Additive exPlanations

(SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) techniques. The

result showed that the contribution of static code metrics is high for prediction models,

and the incorporation of explainability enhances the model's outcome. An SDP-CMPOA

framework [13] was developed for SDP to improve the accuracy and aiming to improve the

performance, and efficiency of defect prediction models. CMPOA focuses on addressing

the dimensionality reduction through FS method. The authors utilize hybrid classifiers such

as Improved Bi-Long Short Term Memory (LSTM) and Deep Max, as demonstrated on

the SDP dataset. The effectiveness of SDP-CMPOA is evaluated against existing schemes

across various measures, showcasing its efficacy in SDP. However, the authors analyzed

the class imbalance issue with defect prediction by developing the Dual Ensemble SDP

model (DE-SDP) [14]. Combined with a diverse ensemble, the Neural Network (NN)

also improvises the performance. The learning-based approaches are explored for SDP

considering FS, ML techniques, and performance measures in existing study [15]. In

the existing studies, authors developed a novel approach for SDP that combined mutual

information and Correlation Coefficient Weighted Class Association Rule Mining named

CWCARM. However, CWCARM employs a cost-sensitive strategy to generate itemsets

for determining the combination through mutual information weighted support [16].

1.5.2 Software Change Prediction

Software Change Prediction (SCP) focuses on predicting changes in software requirements

for small-scale systems. It employs a probabilistic model integrating stakeholder input
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via questionnaires into a Bayesian Network (BN) [17]. The authors also addressed the

issues in industrial organizations due to limited dataset availability and small dataset size

[18]. Due to this, it is only feasible to test some of the models through limited resources.

We should actively predict specific attributes in advance, including whether defects are

present or absent, the likelihood of changes required, and the necessary maintenance and

effort. Early prediction of changes helps developers, allowing them to anticipate changes

when resources are limited and likely to be affected. The researchers [19] have concluded

in the existing study that more studies should be conducted for SCP considering projects

developed in C++/Java/Python language. The existing models, utilizing the variable

elimination method, accurately forecast the likelihood of revisions in the requirements

document. However, the evaluation of the prediction model, including probabilities of low

state revision, is 0.42, and high state revisions are 0.45. The performance of SCP can be

utilized by integrating estimated change sets from impact analysis technique [20]. Existing

studies introduce a framework to combine these approaches to improve cross-project

capabilities.

1.5.3 Validation Methodologies for SQPM

1.5.3.1 Cross-Company Defect Prediction

The cross-company prediction [21] also plays a vital role in improving the quality of

future software's. TL is explored by the researchers for cross-company prediction models,

and SDP methods considered public datasets that belong to various companies. Thus, a

modified NB algorithm developed using TL that leverage knowledge from one company's

dataset to improve the performance of future datasets from different companies. In case
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of cross-company [22], the company must use neighboring company data if a sufficient

amount of data is unavailable. Furthermore, the exploration of Peter filter for cross-

company prediction model, and its performance analysis done in the literature [23]. The

approach is practical when scarcity of data exists in the nearest dataset; then, other company

datasets are used to develop the prediction model. Metrics representation and TL are also

explored for cross-company [24, 25].

1.5.3.2 Cross-Project Defect Prediction (CPDP)

The existing study conducted by the authors [26] reduced the gap between source and

target datasets. Multisource Heterogeneous CPDP developed a multi-source TL algorithm

to minimize the impact of negative transfers and upgrade the classifier's Performance.

The authors used five datasets to evaluate the performance of MHCPDP. However, the re-

searchers have provided a solution to multi-objective learning. The authors [27] developed

a novel Multi-Objective NB (MONB) algorithm based on the Harmony Search Optimiza-

tion (HSO) algorithm. The concept of clustering-based FS method is also integrated for

cross-project [28]. Further, the parameters [29] influenced or affected the performance of

CPDP models are identified.

The feasibility [30] of HetDP is also analyzed, considering various performance

measures. The predictive performance of HetDP is compared with the model developed

using TL. Furthermore, the cross-project model is developed using feature type TL. The

learning is completed through features of two projects [31]. A two-phase TL approach for

CPDP is developed [32]. However, the TL-based model aims to reduce the difference in

data distribution among source and target datasets, enhancing prediction accuracy across

different software projects. In the existing studies, the authors introduced a TL method that
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considers correlation features and instance weights for improved defect prediction across

diverse software projects [33]. The approach enhances prediction accuracy by leveraging

knowledge from related projects. A novel CPSDP algorithm based on TL presents an

innovative TL algorithm for CPDP. This approach utilizes TL techniques to effectively

leverage understanding from source projects, enhancing prediction performance in target

projects with limited data [34]. The problem of class imbalance is addressed alongwith

data distribution through the proposed algorithm (TSboostDF) [35].

The handcrafted features and the semantic features mined from the Abstract Syntax

Tree (AST) are joined with handcrafted features to form the joint features for CPDP [36].

The model was evaluated on 110 models developed with 11 open-source projects, and the

proposed model outperformed the existing deep learning approach. The proposed end-

to-end framework for SDP bypasses the need for feature extraction tools by visualizing

programs such as images, applying a self-attention mechanism, TL, and utilizing pre-

trained deep learning models [37]. Experiments demonstrate its efficacy in enhancing

cross-project and Within-Project Defect Prediction (WPDP) across ten projects from

the PROMISE dataset. The Adversarial Discriminative Convolutional Neural Network

(ADCNN) addresses cross-project limitations by semantic feature extraction from source

code [38]. However, ADCNN outperformed existing approaches in terms of F-measure,

Are Under Curve (AUC), and PofB20 across ten benchmark projects.

1.5.3.3 Cross-Project Change Prediction

The cross-project change proneness prediction model is developed using ten datasets of

Eclipse plugins. A GA-based technique was developed for cross-project. Random Forest

(RF) performed best in within-project settings. Non-Ensemble Decision Trees (NEDT)
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performed best for CP. After detailed analysis, it was observed that CP, alongwith GA,

performed best, followed by WP.

1.5.3.4 TL for Defect Prediction

To improve the quality of software [39] using predictive modeling, the problem of data

redundancy and data distribution differences are addressed by considering AUC and

F1-score measures. In the existing study, the authors [40] showed the effectiveness of

TL for CPDP and proposed Three Stage Weighting frameworks for Multi-Source TL.

Thus, bellwether and weighted vote worked efficiently to select the source dataset, and

3SW-MSTL exists for four multi-source, single-source CPDP methods. Moreover, due to

the differences in data distribution of different projects, the Performance of cross-project

prediction models could be improved. Thus, the authors applied a state-of-the-art algorithm,

Transfer Component Analysis (TCA), to differentiate between the features of the source

and the target dataset. ; a novel TL algorithm was developed [41] by the researcher's named

TCA+ (extended version of traditional TCA). Thus, it is observed that TCA+ performed

better than TCA to improve the Performance of CPs for future or unseen data.

The problem of an imbalanced dataset alongwith cross-project is also addressed by

TL [42]. A cost-sensitive boosting method is designed for CP, assigning weights to the

instances considering class imbalance and data distribution issues. Thus, the cost-sensitive

boosting algorithm outperformed other models. The prediction model's was developed

using the cost-sensitive approach with TL, improving the software quality in reasonable

cost and time. Earlier, TL [43–45] explored for defect prediction. However, the authors

also analyzed the capability of effort prediction models for cross-company. Moreover, the

fact that the organization's older data needs to be more relevant is not true. A survey on TL
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is conducted to analyze its performance, capabilities, and work in the existing literature

by eminent experts [46]. A Bagging Based TL (BETL) [47] algorithm was developed for

cross-project. The BETL algorithm consists of three stages: Initiate, Update, and Integrate.

However, the performance of the developed BETL algorithm is analyzed considering the

University of California, Irvine (UCI) dataset, real-world data set, and text data set. Thus,

the authors concluded that the BETL method can effectively label the unlabeled data in

the target domain, which significantly enhances the performance of the target domain. TL

combined with Low-Shot Classifier (TLLSC) for SDP [48]. The comparison showed that

TLLSC outperformed in comparison to TCA+, Canonical Correlation Analysis Extended

(CCA+), and Kernel CCA+ (KCCA+).

1.6 Vision and Focus of the Thesis

The prime vision of the work is to improve the performance of SQPM using various

cross-project methodologies.

The thesis focuses on validating cross-project methodologies for improving the soft-

ware quality of a prediction model. Development of effective cross-project prediction

models for open-source software systems in this regard. This thesis endeavors to research

predictive modeling using OO Metrics (OOM), Halstead metrics, different FS techniques,

ML techniques, and TL. Keeping in mind the challenges of cross-project while developing

the prediction models, the current study carefully designed and validated existing methods

for producing efficient software in the future using cross-project. Thus, this study explicitly

addressed the cross-project methodologies.
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1.7 Objectives of the Thesis

Aggarwal and Singh [1] have emphasized the importance of efficient software by assuring

the characteristics of good quality software. Developing an efficient, good-quality software

system requires internal and external software characteristics. Also, the literature survey

conducted by the researchers showed that the cost of producing efficient software prediction

models has been increasing daily. It motivates researchers to think about how we can

ensure software quality before its deployment at the customer site. Thus, the existing

software with similar characteristics can be used in the future in order to reduce cost, time,

and effort while at the same time increasing the reusability of software. Concerning the

above problem, this thesis aims to develop effective prediction models to ensure a good

quality of cross-project and efficient utilization of resources by employing cross-project.

The summary of the objectives is as follows:

1. Perform extensive existing literature survey to study TL in cross-project with the

following objectives:

• Study of existing research publications that would help in understanding the

process and procedure of TL. The systematic literature review also helps to

understand the transfer of knowledge using the developed model.

• An extensive study of existing literature to understand the concept of a predic-

tion model using TL.

• Study of various papers that used ML techniques as base learners in literature

and their comparison with TL algorithms.
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• The literature review also helps to identify various statistical test and validation

methods used for TL.

2. Collection of datasets from different open-source software with the following objec-

tives:

• Collection of datasets from different projects for cross-project validation tech-

niques.

• The quality of projects enhanced by using the knowledge of similar projects.

3. Development of prediction models using CPV techniques

• Development of prediction models for SQPM.

• Development of new models for enhancing the quality of cross-project and

cross-company software using various cross-validation techniques.

• Development of efficient and accurate fault prediction model.

• Development prediction models using TL to identify the defect and change-

prone parts.

• Development of predictive model using inter-version of projects. Explore

different releases of the same project for prediction model development.

• Development of prediction model to produce generalized results using Inter-

project validation.

• Exploration of Inter-project validation across different versions of a single

software.
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• Exploration of Inter-project validation across different software of similar

nature i.e., build using the same programming language in the same interface,

performing the same task but with different accuracy.

4. Exploring TL for SQPM.

• Development of new techniques for SQPM using TL concept.

• Identification of defect proneness and change-prone parts of cross-project using

TL.

• Using different statistical tests for validation of techniques developed for

SQPM.

• Explore feature-based and parameter-based TL for SQPM.

• Combining software metrics as features for knowledge transfer.

• Analyze effectiveness of techniques for identifying defects in cross-project

with the help of various performance measures and statistical tests.

1.8 Overview of the Work

The main focus of the research done for this study is to improve the quality of cross-

project models using TL. The concept of cross-project came due to the inability to provide

sufficient data for training and testing in software engineering; the main focus is to produce

good quality software by considering all the quality attributes of the software. TL plays

a significant role in case of non-availability of sufficient data for training and testing.

Following the guidelines of Kitchenham [49], we conducted a comprehensive systematic
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literature review to thoroughly understand how existing research employs cross-project

methodology, such as TL, in software engineering to improve software quality. TL is an

ML technique where a model trained on one task is reused or adapted as the starting point

as a model on second related task. When it comes to SQPM, TL offers several significant

advantages. The prime aim of conducting the review is to understand the contribution of

TL in the software engineering domain from the following aspects:

• The use of TL in software engineering.

• Study the usage of TL and its procedure in software engineering.

• To examine the dataset used in existing literature.

• To examine the performance of TL algorithms in software engineering.

• To examine the types of TL used in the existing literature.

• An extensive study of existing literature to understand the concept of a prediction

model using TL.

• Study of existing literature concerning different software engineering domains.

• Study of existing literature that used ML techniques as base learners in literature

and their comparison with TL algorithms.

• To examine the advantages of TL in software engineering.

• To examine the significance of TL in comparison to WP models.

24



Overview of the Work

• To examine the performance of TL algorithms in comparison to conventional ML

algorithms.

According to [50], the next step is to extract relevant studies from various digital

libraries with the help of a search string. Different search strings are combined to extract

studies related to the topic. Furthermore, search strings are formed to extract empirical

studies from libraries to extract relevant research papers. Systematically analyzing the data

extracted from the studies, Research Questions (RQs) are answered.

The CPDP model is developed using TL. The predictive capability of ML algorithms

is analyzed using an open-source dataset from the repository. Thus, the dataset is collected

through Understand tool and dataset is prepared from the beginning for change prediction.

Further, the performance of ML techniques is analyzed for CPDP and WPDP. The per-

formance analysis of FS techniques for CPDP and WPDP is illustrated. A comparison is

performed between filter, wrapper, and hybrid methods for FS in CPDP and WPDP. Thus,

the authors analyze the search-based or embedded methods performed best for CPDP. The

performance of techniques using WPDP, cross-validation, and 10-fold cross–validation

methods is also analyzed. The search-based techniques, such as Grey Wolf Optimization

(GWO) technique is analyzed with existing techniques. The performance of ANN, CNN,

and RNN is also analyzed. In this work, the improvised ANN-based GWO CPDP model is

developed, which performs better than traditional ML algorithm. Further, the experimental

setup, methodology, and results are explained in detail from Chapter 2 to Chapter 9.

The analysis proved that TL performed at par with existing techniques. The Perfor-

mance of the prediction model developed with and without TL was analyzed with different

traditional datasets and open-source datasets. It aims to explore feature type TL for CPDP

and CPCP to validate cross-project methodologies. Considering the availability of data and
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overfitting issues in the industry, the model developed using feature type TL performs at

par with models developed using traditional techniques. TL considers datasets of a similar

domain. The models developed using modified TL algorithms and traditional algorithms

also conclude that TL is effective for development of efficient prediction models.

1.9 Organization of the Thesis

This section presents the organization of the thesis. Chapter 1 presents basic concepts of

SQPM, cross-project methodologies, and TL in software engineering with the motivation

of the thesis. Chapter 2 discusses the research methodology followed in order to conduct

research work. Chapter 3 discusses a systematic review of existing studies and prevailing

research gaps. Chapter 4 presents the development of a defect-prediction model using

feature type TL. Chapter 5 discusses the validation of ML techniques for change prediction

models develop using open-source dataset. Furthermore, Chapter 6 presents the validation

of FS techniques for cross-project models and compared the model performance using

statistical techniques. Furthermore, Chapter 7 develop defect prediction models to analyze

the performance of cross-version and 10-fold cross-validation. Chapter 8 presents Grid-

Search ANN (GrANN) for heterogeneous cross-project defect prediction. Furthermore,

Chapter 9 presents improvised grid based GWO technique for SDP and develop an

improvised CPDP model using ANN, CNN, and RNN with TL algorithms. Chapter 10

summarizes the conclusion of the thesis. The brief description of each chapter is given

below.

Chapter 2: The detailed description of the research methodology followed in this

research work is discussed in this chapter alongwith a brief explanation of the dataset,
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dependent and independent variables, cross–project, imbalanced dataset, open-source

dataset, inter-version, 10-fold cross-validation, TL, ML techniques, data analysis methods,

validation techniques used, performance measures used, data preprocessing steps, statistical

test used, metrics matching analyzer, steps for the development of prediction model, TL

techniques for software engineering domain are discussed. Furthermore, the effect of

different FS techniques for cross–project, and optimized algorithms for cross-project

prediction models are discussed in this chapter.

Chapter 3: A systematic review of work related to cross-project methodologies since

1991 to 2023 is presented in this chapter. However, RQs were formed to address various

concerns related to SQPM, and cross-project methodologies. This chapter discusses the

procedure of conducting systematic review in detail alongwith number of studies pub-

lished, data extracted from collected studies, and studies collected after quality assessment

criterion. The dataset, ML techniques, the independent and dependent variables, validation

techniques, performance measures used for TL, statistical tests, and categories of TL are

discussed in detail. Furthermore, the review results are compiled, analyzed, and research

gaps are identified.

Chapter 4: This chapter presents a defect prediction model developed using ML tech-

niques. A defect prediction model was developed using NASA and PROMISE repository

dataset. IdTL is used for model development with ML techniques. The results are validated

using statistical testing. The impact of FS on CPDP and WPDP is presented. The applica-

tion of TL to develop an enhanced version of the defect prediction model is discussed. By

leveraging knowledge from source domains, the model aims to improve performance on

target domains. The study delves into methodologies for transferring knowledge between

related datasets to optimize predictive capabilities. Feature type TL is used to establish
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relationship between features of different datasets. Thus, metrics matching and metrics

analyzer are used on a specified threshold to extract relevant features.

Chapter 5: This chapter presents the framework for developing a software change

prediction model using an open-source dataset. The experiment presents the results using

a dataset collected through Understand tool. Dataset collected with subsequent versions of

each software namely Notepad++, CodeLite, and CodeBlocks. The dataset is prepared to

study the impact of ML techniques on software change prediction. The researchers have not

explored change prediction in the existing studies using TL. Thus, the predictive capability

and efficiency of ML techniques with Feature type TL were analyzed. Further, the results

are validated using statistical tests such as Friedman and Nemenyi tests. Heterogeneous

cross-project change prediction perform at par with Within-Project Change Prediction

(WPCP).

Chapter 6: This chapter presents the analysis of FS techniques for CPDP. Experi-

mentation performed using defect dataset in order to evaluate the effectiveness of filter,

wrapper, and swarm search based methods. In the previous work, it was concluded that FS

plays important role in development of CPDP with TL. Thus, CPDP models are developed

using filter methods such as ChiSquare, Correlation Attribute Evaluation, Gain Ratio,

Information Gain, Relief Attribute Selection. Wrapper method used for predictive capa-

bility of CPDP models. Further, swarm search based methods such as Best First Search,

Genetic Search, Greedy Stepwise Search, Harmony Search, Particle Swarm Optimization,

Scatter Search used for development of CPDP models. The performance analyzed with

development of CPDP models using feature type TL considering specified source and

target dataset. The performance of developed models validated using statistical test.

Chapter 7: This chapter evaluates the effectiveness of cross-version and 10-fold
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cross-validation for defect prediction using traditional ML techniques. The prediction

model was developed with 14 different datasets of PROMISE with seven traditional ML

techniques such as NB, Logistic Regression (LR), Multilayer perceptron (MLP), ADaBoost

(ADB), Bagging (BNG), J8(DT), and RF. This research aims to analyze various datasets to

compare the performance of these techniques, potentially shedding light on their strengths

and limitations in practical software engineering scenarios. The study improves defect

prediction methodologies by providing empirical evidence on the efficacy of cross-version

and 10-fold cross-validation.

Chapter 8: This chapter presents an improvised technique based on swarm search

methodology named Grid Search-Optimized Artificial Neural Network (ANN) for Het-

CPDP using NASA and AEEEM datasets. In this research work, the aim was to improve

the performance of the defect prediction model using the grid search warm search method.

The performance of the model developed using traditional ANN is compared with the

model developed using Particle Swarm Optimization (PSO), GrS, and evolutionary search

using the AUC measure. The results are validated using a statistical test such as Friedman

and Wilcoxon–signed rank test.

Chapter 9: This chapter presents an improvised CPDP model using GWO and ANN.

Prediction model developed using NASA, and AEEEM dataset. The focus of this work is

to improvise the performance of prediction models across diverse software projects. Model

developed using GWO such as WPDP GWO, 10-fold GWO, and GSGWO WPDP. The

performance of TL-based algorithms is analyzed. Transfer GWO (TrGWO), GSGWO, and

RFGWO were compared using AUC measure. The improvised CPDP model developed

using ANN is also presented. The model developed using ANN is compared with the mod-

els developed transfer ANN, transfer ANNSMO, transfer ANNCSO, transfer ANNACO,
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transfer RNN, transfer RNNSMO, transfer RNNCSO, transfer RNNACO, transfer CNN,

transfer CNNSMO, transfer CNNCSO, transfer CNNACO. The results are validated using

statistical test.

Chapter 10: This chapter summarizes conclusion of the research work and provides

future directions.
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Research Methodology

2.1 Introduction

A systematic procedure needs to be followed to conduct effective research. We have

followed systematic and sequential methodology to conduct empirical research with

different datasets and techniques in this research. The main objective of using a specified

method is to obtain an effective and efficient solution for the existing problem statement.

In this chapter, the research methodology followed is discussed in detail. The organization

of this chapter is as follows: Section 2.2 discusses the research process followed for

completing the research work. Section 2.3 presents the definition of the research problem

in more detail. Section 2.4 summarized the literature review conducted to complete the

research work. Section 2.5 discusses the explanation of variables used in this section.

Section 2.6 discussed data analysis methods or ML techniques for developing prediction

models. Section 2.7 discussed the experimental framework followed in experimenting with
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this research work, including the data collection procedure, dataset used, cross-validation

methods, statistical tests, and performance measures.

2.2 Research Process

A systematic and prearranged series of actions necessary for investigating a research

problem comprise the research process. The research methodology used in this thesis

chapters is described in Figure 2.1. The following sections provide an explanation of each

step in the research process.

Figure 2.1: Research Process
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2.3 Define Research Problem

In the research process, the primary step focused on the formulation of a research problem.

The research problems are stated in the form of RQs. Furthermore, the experiments

conducted in this work to determine the answers to RQs. The RQs answered in this thesis

are as follows:

1. What is the current state of literature studies in the domain of TL in software

engineering field?

2. What is the predictive capability of Cross-Project Change Prediction (CPCP) and

CPDP models for open source dataset using TL?

3. What is the performance of cross-project prediction models using TL with various

FS techniques?

4. What is the predictive capability of cross-project prediction models using optimiza-

tion algorithms with TL algorithms?

2.4 Literature Survey

To comprehend the research problem, it is imperative to conduct a comprehensive review

of previous studies through a literature survey. The review provides insight into the

extent to which the research problem in the literature has been explored. However, in the

existing literature [51–53] various prediction models were developed for identification

of defect prone and change prone part of a project. These models have been developed
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by considering the existing projects of similar characteristics, and existing version of

the same project [54–56]. Thus, the relationship between the independent variables of

available projects is established to develop prediction models for future projects. Hence, it

enhances the reusability of existing projects in this way. The models developed using open-

source dataset of various repositories. These prediction models help software developers,

academicians, and industry experts to create efficient models for future unseen data using

existing project data for training. It will help developers in reducing the defect prone

and change prone part in the initial stage of software development life cycle models.

Further, it is also effective in efficient utilization of available resources optimally to the

software components with low maintainability. Therefore, it has been well recognized in

the literature that developing effective software prediction models is crucial to improve

software quality. Thus, it is concluded in the existing literature that development of

effective CPDP is important, and it improves the software quality in various aspects such

as functionality, maintainability, testability, reliability, and robustness.

2.5 Defining Variables

An empirical research involves two types of variables: the independent variable termed as

predictor variable or input variables and the dependent variable are termed as response vari-

able or output variables. The dependent variable is a variable that captures the researcher's

interest. The research focuses on software change or defect prediction as the dependent

variable. The dependent variable is affected by the independent factors, often known

as predictor variables. The outcome variable can be forecasted based on the predictor

variables. The independent variable must possess true independence, meaning it should be
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unaffected by other variables. This thesis aims to construct CPDP and CPCP models that

acquire knowledge of the independent variables of different projects in order to improve

the software quality from the initial stage. The research work utilizes OOM as independent

variables to reflect the diverse aspects of the software classes.

2.5.1 Independent Variables (OOM)

The literature has widely recognized the usefulness of OOM and Halstead metrics in

constructing models for forecasting defective classes, change-prone classes, and reusability

of a software.

The quality elements of a software considered such as cohesion, coupling, inheritance,

encapsulation, and abstraction can be measured through OOM. Thus, it is important to

carefully select the identifiers from the software/projects used for experimentation. The

OOM used in the thesis includes the following:

• Chidamber and Kemerer (C&K) metric suite [57] contains six OO metrics, namely

WMC, DIT, CBO, and RFC. C&K metrics are widely used in the literature [58–60].

• Quality Model for Object-Oriented Design (QMOOD) [61] metric suite is also

validated in the thesis. The metrics contained in QMOOD metric suite are MOA,

DAM, MFA, NPM, and CAM.

• Martin metrics [62] namely Ce and Ca have also been analyzed in the thesis. Other

metrics used in the thesis are AMC, SLOC, LCOM3 (given by [63]), CBM, and IC.
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Table 2.1: Independent Variables

Metric Definition Source
FAN IN Maximum number of input parameters. [57]
FAN OUT Maximum number of output parame-

ters.

[57]

Lack of COhesion in

Methods (LCOM)

Number of methods in a class that is not

related to themselves by sharing some

of the class data.

[57]

Number of Attributes

(NOA)

Count of attributes. [57]

NOA Inherited (NOAI) Count of attributes inherited from par-

ent class.

[57]

Source Code Metric

(SCM)

Metrics computed from source code. [57]

Number of Methods

(NOM)

Count of Methods. [57]

NOM Inherited Count of methods inherited from parent

class.

[57]

Number of Private At-

tributes (NPrA)

Count of the number of private at-

tributes defined in a class.

[57]

Number of Private Meth-

ods (NPrM)

Count of the number of private methods

defined in a class

[57]

Number of Public At-

tributes (NPuA)

Count of the number of public attributes

defined in a class.

[57]

Entropy of Change Metric

(EOCM)

Artificial metrics computed from en-

tropy.

[2]

Inheritance Coupling Number of parent classes to which

given class is coupled is called inher-

itance coupling of that class.

[2]
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Branch Count (BRC) Sum of branch count in the software. [2]
Blank Line Sum of blank lines in each module. [2]
Cyclomatic Complexity

(v(g))

Cyclomatic complexity of each module.

v(g) = E −N + 2P (2.1)

Here E= number of edges; N = number

of nodes and P = number of connected

components.

[2]

Design Complexity (iv(g)) Design complexity of every module. [2]
Essential Complex-

ity(ev(g))

Essential complexity of each module. [2]

Num Operands (Nopn) In Halstead metrics, n2 is the count of

unique operands, and N2 is the count of

the total occurrence of operands.

[2]

Num Operators (Nopt) In Halstead metrics, n1 is the count of

unique operators, and N1 is the count

of total occurrences of operators.

[2]

Halstead Difficulty (D) Ratio of the number of unique operators

to the total number of operators in the

program.

D =
(n1

2

)
×
(
N2

n2

)
(2.2)

[2]

Comment and Code Line Line of comments in each module. [2]
Halstead Length (Le) Sum of number of operator and operand

occurrences in the program.

[2]
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Response for Class (RFC) The number of functions executed in

response to a message received by an

object of a class is called response for

class.

[57]

Halstead program Time

(T)

This is the estimated time required to

implement the program, based on the

program effort (E) and a constant value

that depends on the programming lan-

guage and development environment.

[2]

Halstead Volume(V) Volume of each module.

V = N ∗ log2(n) (2.3)

Here, N is program length, and n is

vocabulary size.

[2]

Halstead Effort (B) Measures the mental activity needed to

translate the existing algorithm into im-

plementation in the specified program

language.

E =
V

L
(2.4)

Here, V is program volume and L is

program level.

[2]

Line count Quantitative counting of the source

code, such as count of all lines.

[2]

Depth of Inheritance Tree

(DIT)

It is defined as the length of the longest

path in the inheritance hierarchy.

[57]
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Number of Children

(NOC)

It is defined as the number of imme-

diately derived classes of a particular

class.

[57]

Weighted Method per

Class (WMC)

The sum of cyclomatic complexities of

all methods of a class is called weighted

method per class.

WMC =

∑n
i=1 TMi × Complexityi

Total Number of Methods
(2.5)

Here, TM is a number of methods.

[57]

Coupling between Objects

(CBO)

This metrics shows the number of

classes to which a specific class is cou-

pled where the coupling can be due

to data accesses, function calls, inheri-

tance etc.

[57]

Afferent Coupling (Ca) This metrics measures merely the num-

ber of classes that use a particular class.

[62]

Efferent Coupling (Ce) Number of classes used by a specific

class is called efferent coupling of that

class.

[62]

Number of Public Meth-

ods (NPuM)

This is the count of the number of public

methods defined in a class.

[61]

Data Access Metrics

(DAM)

It is described as the number of pro-

tected or private attributes declared in

a class divided by total number of at-

tributes declared in that class.

[61]
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Measure of Aggregation

(MOA)

This metrics is a count of number of

data fields in a class whose type is user-

defined.

[61]

Measure of Functional Ab-

straction (MFA)

This metric defines the number of meth-

ods that are inherited by a specific class

divided by the sum of methods accessi-

ble by that class.

[61]

Cohesion Among Meth-

ods of Class (CAM)

This metrics measure the relationship

amongst the class methods. The associ-

ation is found by their list of arguments

and defined as: the sum of the number

of unique argument types used by all

of the class methods divided by product

of total number of methods in the class

and total count of unique argument type

in that class.

[61]

Lines of Source code

(SLOC)

It is defined as total number of lines in

the binary code of a class.

[57]

Lack of cohesion

(LCOM3)

LCOM3 is given as:

LCOM3 =
1

n
(

n∑
i

f(pi))− ma

1−ma

(2.6)

Here n= number of attributes in a class;

ma = number of methods in a class and

f(pi) = number of functions that access

an attribute.

[63]
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These metrics describe different aspects of OO systems namely cohesion, coupling,

size, inheritance, composition, and encapsulation etc. The metrics WMC, NPM, LOC,

DAM, and AMC are indicators of the size of a class. The metrics CBO, RFC, Ca, Ce,

IC, and CBM measure the coupling. The inheritance property is measured with the help

of NOC, DIT, and MFC. The metrics LCOM, CAM, and LCOM3 are indicators of class

cohesion, whereas MOA measures composition. The metrics that quantify the different

characteristics of a class are regarded as internal quality attributes. The internal quality

attributes used have significant relation with software maintainability [64–66]. For instance,

the attributes WMC, NPM, LOC, DAM, and AMC measures the size of a class. If the size

increases, code would likely be less maintainable, i.e., likely to require high maintainability

effort [64]. Table 2.1 presented brief explanation of the above OO metrics. These metrics

have been widely used by the researchers for predictive modeling in the domain of software

engineering [60, 67–70].

2.5.2 Dependent Variable

In this thesis, software defect and software change proneness is the dependent variable. It

is a binary variable i.e., there will be two values of software defect and change prone parts

either Yes (1) or No (0).

2.6 Data Analysis Methods

In this thesis, various data analysis methods were used including ML, statistical, and

optimization based methods. ML techniques were used in order to model the relationship

between variables of different projects without relying on pre–determined results of a
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model. In this thesis, the experiments used various ML classifiers such as LR, RF, Hybrid

Voting (HV), MLP, ADB, DT, SVM, K-Nearest Neighbors (KNN), Quadratic Discriminant

Analysis (QDA), Stochastic Gradient Descent (SGD), Sequential Minimal Optimization

(SMO), BNG, LogiBoost (LB), NB, J48, ANN, CNN, RNN. Statistical methods focused

on modelling the relationship between independent and dependent variables using mathe-

matical concept such as mean, median, variance, and standard deviation of the features.

The optimization techniques are used to optimize the results of the prediction model using

specified domain. However, the models developed using different data analysis methods

is further used for making predictions on unseen dataset in upcoming future. The data

analysis methods are further discussed in more detail in Chapter 4, 5, 6, 7, 8, and 9.

2.7 Experimental Design Framework

The diagrammatic representation of the experimental designNis presented in Fig. 2.2. The

various steps are described in detail in the following sections and subsequent chapter.

2.7.1 Empirical Data Collection

In this thesis, the data collection is performed through empirical procedure. Empirical

procedure is a systematic way and process to gather data from various sources. The

empirical data is used to analyze the experiment results and obtain answers to RQs. The

data collected from different sources such as open–source software, industrial software,

proprietary software, and academic projects. In this thesis, the dataset is collected from

open–source repositories and open source software for validation of CPDP methodologies.

The open-source projects dataset is used to validate existing CPDP methodologies for
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Figure 2.2: Experimental design for developing SDP Models

future project reusability. Moreover, in the existing research work, cross-project prediction

models are not analyzed for change prediction, due to which our work emphasize on

validation of CPDP models as well. The empirical defect dataset is also used in this

thesis for development of CPCP model using TL techniques. Defect dataset can be

easily downloaded from open source repository and GitHub. The software used for

data collection from open–source software is discussed in this section. The open-source

software is available at https://scitools.com/.
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2.7.2 Metric Matching Analyzer

A metric matching analyzer is used in TL for software engineering aligns the metrics of

a pre-trained model with the metrics of the target domain. This procedure facilitates the

customization of the pre-trained model to suit the specific requirements and attributes of

the new domain, hence improving its performance and efficacy in tasks like classification,

regression, or clustering. By aligning the measurements, the model can enhance its ability

to comprehend and extrapolate patterns in the new domain, promoting a more efficient

transfer of information and learning.

2.7.3 Data Collection Procedure

The thesis considered two dataset types: defect dataset and software change dataset.

Defect prediction models are developed using existing datasets such as NASA, AEEEM,

PROMISE, and ReLink. Change prediction models are collected using open-source

datasets collected through Understand tool.

2.7.3.1 Software Defect Dataset

The datasets are collected from NASA and PROMISE group. The dataset consists of

independent variables, such as software metrics and process metrics. These variables are

required for the training of a model and to complete the predictive model task. These

software metrics consist of McCabe's cyclomatic metrics, C&K metrics, and other OOM.

We have used eleven datasets of NASA and one dataset of the PROMISE group. All of

these datasets have a different number of independent variables. These software metrics

are characterized based on different measures such as cohesion, inheritance, coupling, the
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complexity of a dataset, and LOC of a particular software.

We have used publicly available datasets on Github. NASA contains confidential

datasets from NASA software company [30]. The PROMISE group comprise of defect

datasets. These datasets are used for various free open-source software projects exist in

various studies [30]. There are total 21 features in the PROMISE group dataset.

Table 2.2: Summary of NASA dataset

Group Dataset

name

Total no. of

instances

Defective In-

stances

No. of met-

rics

Granularity

CM1 498 49 (9.84%) 21
KC1 2109 326 (15.46%) 21
KC2 522 107 (20.50%) 21
KC3 194 36 (18.56%) 39

NASA MC1 1988 46 (2.31%) 38 Function
MC2 125 44 (35.20%) 39
MW1 253 27 (10.67%) 37
PC1 1109 77 (6.94%) 21
PC2 745 16 (2.15%) 36
PC3 1077 134 (12.44%) 37
PC4 1458 178 (12.21%) 37

Table 2.3: Summary of AEEEM dataset

S.No. Project Type No. of

files

% of

buggy

files

No. of met-

rics

1. Equinox (P1 EQ) OSGi framework 325 36.69 71
2. Eclipse JDT Core (P2 JDT) IDE development 997 20.66 71
3. Apache Lucene (P3 LUC) Search engine library 39,691 9.26 71
4. Mylyn (P4 MYL) Task management 1862 13.16 71
5. Eclipse PDE UI (P5 PDE) IDE development 1492 14.01 71
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Table 2.4: Summary of ReLink dataset

S.No. Project Type No. of

files

% of buggy

files

No. of metrics

1. Apace (P6 AP) Web Server 194 50.52 26
2. Safe (P7 SA) Security 56 39.29 26
3. ZXing (P8 ZX) Bar-code reader li-

brary

399 29.57 26

Table 2.5: Descriptive Statistics of PROMISE dataset

Project Number of

Modules

Number of De-

fective Modules

% of Defective Mod-

ules
ant ver1.6 352 92 26.10%
ant ver1.7 745 166 22.30%
camel ver1.0 329 13 3.95%
camel ver1.2 608 216 35.50%
camel ver1.4 872 145 16.60%
camel ver1.6 965 188 19.50%
ivy ver2.0 352 40 11.36%
jedit ver3.2 272 90 33.08%
jedit ver4.0 306 75 24.50%
jedit ver4.1 312 79 25.30%
jedit ver4.2 367 48 13.10%
jedit ver4.3 492 11 2.20%
log4j ver1.0 135 34 25.20%
log4j ver1.1 109 37 33.90%
log4j ver1.2 205 189 92.20%
lucene ver2.0 195 91 46.70%
lucene ver2.2 247 144 58.30%
lucene ver2.4 340 203 59.70%
poi ver2.5 385 248 64.42%
poi ver3.0 442 281 63.60%
synapse ver1.2 266 86 32.33%
xalan ver2.4 723 110 15.20%
xalan ver2.5 803 387 48.20%
xalan ver2.6 885 411 46.40%
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xalan ver2.7 909 898 98.80%
xerces ver1.4 573 426 74.35%

2.7.3.2 Software Change Dataset

The dataset collection has been accomplished by a tool such as Understand SciTools

https://scitools.com/. The summary of change prediction dataset used presented

in Table 2.6.

Table 2.6: Summary of dataset used

Software Source code

programming

language and

license

Release/Version No. of

met-

rics

No. of

classes

Number of

changed and

unchanged

classes and

files
Notepad++ C++/ Notepad++ 6.8.9 10 696 129

GPLv2 Notepad++ 7.3 682 114
Notepad++ 7.5.4 698 88
Notepad++ 7.6.2 748 84
Notepad++ 7.6.3 749 23
Notepad++ 7.8.3 473 750

CodeBlocks C++/ CodeBlocks 10.05 7 1213 158
GNU CodeBlocks 13.12 1320 748
GPLv3 CodeBlocks 20.03 2256 1097

CodeLite C++ and CodeLite-2.9.0.4684 10 1187 341
C/ GNU CodeLite-3.5.5375 1337 343
GPL CodeLite-5.0.6213 1869 735

CodeLite-5.3 1925 441
CodeLite-6.0.1 2050 408
CodeLite-11.0 2688 519
CodeLite-12.0 2790 546
CodeLite-13.0 1149 2837
CodeLite-14.0 3954 2335
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2.7.3.3 Descriptive Statistics

Understand is a static code analysis tool aimed to cover complete code navigation, control

flow graph generation, generation of metrics for a project, code comparison, and code

reengineering for an array of programming languages like C, C++, Python, JAVA, Perl,

.NET, Jovial, and ADA. Understand tool is provided by ‘Scientific Tools In.’. This tool has

been used in many industries, aerospace, defense for analyzing legacy code.

Understand as a tool can be integrated with many other existing tools that researchers,

academicians, software developers, and experts use. Understand tool uses static source

code for complete analysis and then it generates the metrics for each project in the form of a

.csv file. These metrics reports consist of various metrics. Metrics indicate the relationship

between values. The OOM of the dataset used for experimentation is extracted for 18

versions of Notepad++, CodeBlocks and CodeLite presented in Table 2.6.

In the existing study [22], the relationship between OOM and the change proneness of

a class is discussed. The relationship between OOM and change proneness capability of a

class helps in efficient utilization of resources in maintenance and testing phase. With the

help of Understand tool the OOM of different versions of Notepad++, CodeBlocks and

CodeLite was generated. After analyzing each project version with an updated version

in Understand tool window, we have checked whether a particular module is changed or

not in each succeeding version. In the end, we have a final file for each project version,

considering checking if there is an update or not in the current version compared with

the existing version. The module which is having any change is labeled with ‘1’ and the

non-changed module is labeled with ‘0’.

The descriptive statistics of several OOM for each dataset. Descriptive statistics
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are helpful for assessing the attributes of the datasets utilized for experimentation. The

subsequent statistical measures are presented for OOM.

• Minimum: The minimum value of an OO measure represents the lowest value of

that metric in the dataset.

• Maximum: In the context of an OO measure, maximum refers to the lowest value of

the metric inside the dataset.

• Mean: The Mean represents the average value of an OO measure in the dataset. The

mean is calculated by dividing the sum of the OOM values in the dataset by the

number of data points in the dataset.

The change report consists of the following columns:

• Name of the source file, classes.

• OOM data for each class.

• A binary variable indicates whether it is changed (1) or unchanged (0).

The descriptive statistics of the OOM for each dataset used in this study are discussed

in this section. Descriptive statistics is different from inferential statistics. The descriptive

statistics are discussed in Table [5.4–5.6]. In the Notepad dataset, for LOC the maximum

value ranges from 8032 to 9077. LOC plays a significant role in identifying change density.

Change density specifies the number of changes that occurred over a particular number of

LOC. In CodeBlocks, the minimum value of LOC is 1 and the maximum value of LOC

ranges from 13722 to 25091. In CodeLite, the minimum value of LOC is 1 and the range
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for a maximum value of LOC is 7003 to 12107. The number of changes decreases if LOC

increases [71].

Change density measures the number of changes that occur per LOC set. In all the

three datasets used in this study, the minimum value of FAN IN is 0. The maximum value

of FAN IN is 3 for all the datasets used in this study. The count of a superclass for a

specific class impacts the number of changes. If superclass contains changes, then there is

a possibility that the derived class is also change-prone. In this way, the no. of changes

increases if the superclass is change prone. CBO indicates the interdependence between

the instances of different classes. The minimum value of CBO for the datasets used in

this study is 0. The maximum value of CBO for Notepad++ lies between 91 to 100. The

maximum value of CBO for CodeBlocks lies in the range of 43 to 80. The maximum value

of CBO for CodeLite ranges from 45 to 133. The highest value of CBO indicates a large

number of changes. For Notepad++ 7.6.3 and Notepad++ 7.8.3 version, the maximum

value of CBO is 13 100. For CodeBlocks 20.03, the maximum value of CBO is 80. For

CodeLite–14.0, the maximum value of CBO is 133. The maximum coupling between

classes will provide a large number of changes. Hence, the CodeLite–14.0 version is more

change prone. NOC indicates the number of subclasses or derived classes for a particular

class. The highest value of NOC indicates the lesser probability of change proneness.

The maximum value of NOC ranges from 37 to 44 in Notepad++. In CodeBlocks, the

maximum value of NOC ranges from 43 to 98. In CodeLite, the maximum value of NOC

is 181. The maximum value of NOC is 181 for all versions of CodeLite used in this

study. Thus, CodeLite has fewer numbers of changes in comparison to Notepad++ and

CodeBlocks. WMC indicates the sum of all the methods for a class. For Notepad++, the

maximum value of WMC is 427.
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2.8 Results and Analysis

The results of the RQ have been summarized. In this study, the prediction model has been

developed using feature–based TL for HetCPDP. In HetCPDP, the matching metrics have

been selected using Spearman's correlation coefficient. The comparison of ML techniques

used has been done in terms of AUC. AUC is used as one of the best performance measures

for dealing with imbalanced data and noisy data [72].

2.8.1 Data Preprocessing

This section describes the descriptive statistics of OOM of the datasets and data prepro-

cessing steps.

The standard deviation quantifies the dispersion or variability of the OO measure,

providing insight into its central tendency. The low standard deviation values suggest that

the metric values are closely clustered around the mean, whereas high standard deviation

values indicate that the metric is more spread out or dispersed. The median is a statistical

measure that reveals information about the distribution of classes in a given metric. When

dealing with a dataset that contains outliers, the median is a more reliable measure of

central tendency than the mean.

2.8.1.1 Removal of Common Classes not Changed

This thesis predicts defect and change by measuring changes in the subsequent version

of a software. Consequently, following the extraction of data, we eliminated all classes

from the datasets that remained unchanged between the prior version and the subsequent
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release. In order to accomplish this, we conducted a comprehensive scan of all data

points within the dataset and eliminated all data points where the value of the UPDATE

variable was ”no”. We made this decision because the UPDATE variable's value signifies

a modification in the shared class. If the UPDATE has a ”no” value, it indicates that

there has been no modification in the prior version and the subsequent version. Further,

comprehensive overview of the software projects utilized in the thesis, including their

names, analyzed versions, number of common classes, number of modified common

classes, and the percentage of change explained in further Chapter 4, 5, 6 7, 8, and 9.

2.8.1.2 Outlier Analysis

The dataset used in this thesis is analyzed by removing outliers. Thus, the data points

having extreme variability from all the data points in the dataset are considered outliers.

It is always better to remove such data points for the development of a prediction model

that is effective and unbiased. We have used the functionality of Waikato Environment for

Knowledge Analysis (WEKA) tool [73] for computation of Inter Quartile Range (IQR).

IQR is computed as the difference between upper quartile (Q3) and lower quartile (Q1)

i.e.,

IQR = Q3 −Q1 (2.7)

An observation representing a class is classified as an outlier if any of the following

conditions are met for any of the independent variables x of the class.

Q3 +OF ∗ IQR < x ≤ Q3 + EV F ∗ IQR (2.8)

Q1 − EV F ∗ IQR ≤ x < Q1 −OF ∗ IQR (2.9)
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In Eqn. 2.8 and 2.9, EV F represents Extreme Values Factor and OF represents Outlier

Factor. The default values of EV F and OF in the WEKA tool are 6.0 and 3.0, respectively.

The outliers were removed from each dataset before further analysis.

2.8.2 Data Balancing

Synthetic Minority Over-sampling TEchnique (SMOTE) is a widely used method in ML to

tackle the issue of class imbalance, especially in classification jobs. Imbalanced classes are

frequently observed in real-world datasets, where one class (the minority class) has a much

lower number of occurrences compared to the other classes (the majority class or classes).

The presence of class imbalance can result in the development of biased models that exhibit

at par performance when dealing with examples from the minority class. SMOTE resolves

this problem by producing artificial samples for the under represented class. This is the

operational process:

• SMOTE initially determines the occurrences that correspond to the minority class.

• The NN Selection (NNS) method involves identifying the k closest neighbors in the

feature space for each instance of the minority class using the SMOTE algorithm.

Usually, Euclidean distance is employed as a metric to quantify closeness.

• Synthetic Sample Generation: SMOTE generates synthetic samples by creating new

data points along the line segments that connect the k nearest neighbors. This is

achieved by selecting a point at random along the line segments. These synthetic

examples are novel cases that pertain to the minority class but are not identical

replicas of existing instances.

53



Results and Analysis

• Dataset balancing: By generating synthetic examples, the dataset achieves a more

balanced distribution, with an increased presence of the minority class.

SMOTE addresses the class imbalance issue by generating artificial instances, hence

avoid introducing bias into the dataset. By providing a more equitable distribution of the

classes, this enables the model to enhance its performance, particularly in situations when

the minority class is not adequately represented.

2.8.3 Prediction Model Development and Validation

In this thesis work, the CPDP, and CPCP models are developed for increasing the reusability

of existing models and removing overfitting from the model. However, the performance

of the prediction model is analyzed through the usage of historical data and open–source

datasets. The data analysis techniques discussed in subsequent chapters are used to develop

prediction models in supervising learning mode. The models are developed using different

independent variables of various projects. Once a model is developed, its validation is

done by providing the validation or test data to know that how the developed model would

behave on the unknown data points. The only variables included in the validation data

points are independent ones. The generated model is expected to predict the class label

when it receives the test data point. Afterward, the projected label is compared to the

actual label to see the accuracy of the model's predictions. The validation techniques used

in this thesis are discussed in detail in Chapter 1.

• Cross-Validation

The types of cross-validation techniques are discussed as follows:
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– Hold-out cross-validation

– Leave–one–out cross-validation

– K-Fold cross-validation

• Inter-Version Validation

• Cross-Project/ Company Validation

– Transfer Learning

* Instance transfer

* Feature transfer

* Parameter transfer

* Relational transfer

2.8.4 Performance Measures

In this thesis, the performance of the prediction model is analyzed using AUC metric.

The confusion matrix contains the class values in positives and negatives. There are

four entries in the confusion matrix i.e., True Positive (TP), True Negative (TN), False

Positive (FP), and False Negative (FN). Various performance measures are derived from

the confusion matrix to assess the performance of CPDP and CPCP models. One of the

most used statistics for assessing how well binary classification algorithms perform is

AUC. It assesses a model's capacity to discriminate between positive and negative classes

over a range of thresholds.

Receiver Operating Characteristic (ROC) Curve: A graphical depiction called the

ROC curve shows how well a binary classifier system can diagnose problems as its
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discrimination threshold changes. At different threshold values, it shows the True Positive

Rate (Sensitivity) versus the False Positive Rate (1 - Specificity). The percentage of real

positive cases that the classifier properly identifies is called the True Positive Rate (TPR).

The percentage of true negative instances that are mistakenly labeled as positive is called

the False Positive Rate (FPR). This measure assesses a classifier's overall effectiveness

across all threshold combinations. The area under the ROC curve is computed. An ideal

classifier would have an AUC of 1, meaning it maintains the FPR at 0 (zero false positive

rate) while achieving a TPR of 1 (100% sensitivity). A totally random classifier, on the

other hand, would have an AUC of 0.5 since it would only outperform chance. An effective

metric for comparing and evaluating models, AUC offers a single scalar value that sums

up the classifier's performance across all feasible thresholds.

AUC values are a continuous measure of classifier performance, with higher values

indicating greater performance. The model appears to be no more accurate than random

guessing when the AUC is 0.5. AUC values ranging from 0.5 to 1 represent the model's

accuracy in classifying instances in most cases. The model performs better when AUC is

higher. When there is an imbalance in the class distribution, AUC is very helpful since it

evaluates the model's capacity to rank positive instances higher than negative instances,

independent of class prevalence.

Advantages: Adaptability to class imbalance and lack of need for a predetermined

decision threshold make AUC a good choice for classifier evaluation for a range of

operating points. It offers a comprehensive perspective on classifier performance and is

less susceptible to changes in misclassification costs or class distribution variations. To

sum up, AUC is an effective measure for evaluating binary classification models since

it captures the prediction model capacity to distinguish between positive and negative
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examples at different threshold values. It is frequently used in ML evaluation and model

selection, as it offers insightful information about the model's overall performance.

2.8.5 Statistical Analysis

The purpose of a statistical test is to analyze the performance of various ML techniques used.

Friedman's test is used to determine the significant difference among these techniques [74–

76]. It is a non–parametric test. The normality distribution of the dataset is not necessary

for the Friedman test. It assigns a rank to various techniques based on the datasets used.

It takes two hypotheses for testing. The hypothesis designed for testing is as follows:

Null Hypothesis (Ho): Significant difference does not exists among the performance of

ML techniques used. Alternate Hypothesis (Ha): Significant difference exists among the

performance of ML techniques used. The value of the Friedman measure is calculated

using the following equation:

χ2 =
12

nk(k + 1)

k∑
i=1

Ri
2 − 3n(k + 1) (2.10)

where R stands for an average rank of individual techniques, n stands for a number of

datasets, and k stands for the number of techniques used for comparison. The value of

the Friedman measure is distributed over k–1 Degree of Freedom (DoF). If the value of

the Friedman measure lies in a critical area (greater than the significance level i.e., 0.01

or 0.05 and k–1 DoF, then the null hypothesis is rejected and the alternate hypothesis

is accepted. It concludes that there is a significant difference in the performance of ML

techniques. Thus, the null hypothesis is accepted, and the alternate hypothesis is rejected,

and concluded that there is no significant difference in the performance of ML techniques
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used. All the techniques are individually ranked using Friedman's Individual Rank (FIR)

using Eqn. 2.11.

FIR =
C

n
(2.11)

where, C stands for the sum of rank corresponding to individual technique assigned to

each dataset value, and n stands number of datasets. An individual rank has been assigned

to each technique using Eqn. 2.11. The technique with the lowest rank is considered as

worst technique and the technique with the highest rank is considered the best technique.

If the result obtained using the Friedman test is found to be significant, and then it is

verified whether the significant difference exists or not by conducting post hoc analysis

using Wilcoxon–signed rank test and Nemenyi test. The Nemenyi test is used for post hoc

analysis to compare all the techniques individually. Nemenyi test is used when the dataset

size is equal. The Critical Distance (CD) value has been calculated for the Nemenyi test as

follows:

CD = qα

√
k(k + 1)

6n
(2.12)

where qα stands for critical values, k stands for a number of techniques used for

comparison, and n stands for a number of datasets. The computed CD values are compared

with the difference between ranks assigned to individual techniques. If the CD value is less

than the difference between the two techniques, then the two techniques have a significant

difference at a significant level, i.e., α.
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Chapter 3

Systematic Literature Review

3.1 Introduction

Dataset plays an important role in the development of efficient software. Thus, the selection

of an appropriate methodology for the development of a prediction model is important. In

CPDP, the dataset of different projects is employed to develop prediction models in the

existing studies. Researchers also explored cross-language prediction models in the existing

studies. The reusability of prediction models is increased through CPDP, and the challenge

of lack of data is solved in this manner. The issue of data scarcity is resolved using TL

in software engineering. To study CPDP in more detail, it is necessary to summarize

the existing literature. The systematic review aimed to analyze and summarize existing

studies in terms of dataset used, variables used, ML techniques used, TL techniques used,

performance measure, cross-validation method, and statistical test used for prediction

model development. The following RQs were investigated in this review:
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• RQ1: Which quality attributes are used for TL?

• RQ2: Which ML techniques are used for TL?

• RQ3: What experimental settings have been used for TL?

– RQ3.1: Which datasets have been used for TL?

– RQ3.2: Which independent variables have been used for TL?

– RQ3.3: Which algorithms have been used for TL?

– RQ3.4: What validation techniques have been used for TL?

– RQ3.5: What performance measure used for TL?

– RQ3.6: What statistical test has been used for TL?

– RQ3.7: Which category of TL has been used?

• RQ4: Which TL methods are effective using ML techniques?

• RQ5: What are various threats to validity for TL?

• RQ6: What are the advantages & disadvantages of various TL techniques?

The review analyzed the usage of TL in the software engineering domain to enhance

software quality. This review provided existing research findings with future directions to

conduct more research in this direction. Further, based on review findings, future directions

are provided for researchers, academicians, and industry experts to consider the application

of this work.

This review is carried out as per the guidelines of Kitchenham [50]. According

to Kitchenham review methodology, it consists of three-phase: planning the review,
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conducting the review, and presenting the review results. (1) Planning the review phase

investigates the need to conduct a review, designing research questions that need to be

answered in the review, developing a protocol for conducting the review, and evaluating

the method. The RQs are main objective to analyze the existing studies, and it addresses

the need of actual systematic review. Further, appropriate strategy or method is designed

to extract studies from digital libraries, inclusion/exclusion criterion, quality assessment

criterion, design data extraction forms, and data synthesize covered in review protocol.

Relevant studies are extracted initially, further inclusion/exclusion criterions and quality

assessment criterion determines candidate studies. The quality of each selected candidate

study assessed, and assessment criterion in the form of quality questionnaire developed.(2)

Conducting the review phase involves execution of search string for selection of relevant

studies in data extraction forms, and data synthesize from relevant studies. (3) Presenting

the review results involves presentation of review results in the form of pictorial or tabulated

representation with discussion.

Organization of this chapter: Section 3.2 discussed review protocol. Section 3.3

presented the answers to the RQ. Furthermore, Section 3.4 presented the result discussion

and future direction in more detail.

3.2 Review Protocol

The second phase of Kitchenham methodology consist of following steps such as selection

of primary studies, inclusion and exclusion criterion, quality assessment criterion for

analyzing the quality of candidate studies.
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3.2.1 Search Strategy

To conduct review the selection of relevant studies with the review topic is primary

objective. The initial search started with searching of keywords such as “software quality”,

“transfer learning”, “cross-project”. After analyzing the initial search string, the advanced

search string are formed for selection of most useful studies to conduct review.

((“Transfer” OR “transfer learning” OR “transfer knowledge” OR “knowledge transfer”

OR “transfer of learning”) AND (“variables” OR “parameters”) AND (“machine learning”

OR “support vector machine” OR “neural network” OR “ensemble learning” OR “random

forest” OR “decision tree” OR “naive bayes” OR “CART” OR “bayesian network”) AND

(“cross-project” OR “cross-company”) AND (“defect” OR “change” OR “effort” OR

“maintenance” OR “software quality” OR “software quality improvise”) AND (“improved”

OR “better” OR “enhanced”) AND (“validation” OR “empirical” OR “design” OR “devel-

opment”) AND (“evolutionary” OR “search” OR “optimized” OR “heuristic” OR “particle

swarm” OR “harmony search” OR “simulated annealing” OR “bat search” OR “swarm

intelligence” OR “firefly search” OR “gravitational serach” OR “inclined planes sytem”

OR “bio-inspired” OR “genetic algorithm” OR “Grey Wolf” OR “cuckoo serach” OR

“ant colony” OR “artificial bee colony”) AND (“method” OR “technique” OR “algorithm”

OR “variant” OR “model”) AND (“dataset” OR “database”) AND (“cross-validation” OR

“hold-out validation”) AND (“statistically” OR “validated” OR “statistical” OR “statistical

test” OR “paired test” OR “wilcoxon” OR “ANOVA”))

The formulation of above search strings are used to search for relevant studies from

digital libraries such as Google Scholar, IEEE Xplore, Springer Link, ScienceDirect, Wiley

Online Library, ACM Library, and Scopus. We have searched papers from January 1990
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to March 2024. In this period, 122 studies are extracted from above the mentioned digital

libraries. The primary studies are selected subject to inclusion/exclusion criterion, and

quality assessment criterion discussed in Section 3.2.2 and 3.2.3.

3.2.2 Inclusion and Exclusion Criteria

The inclusion/exclusion criterion used mentioned below for selection/rejection of a study

on the basis of RQ. Total 39 studies selected after applying inclusion/exclusion criterion.

Inclusion Criteria

• Experimental studies for TL using different ML techniques.

• Empirical studies relevant to the software engineering field.

• Empirical studies have a combination of ML and non-ML techniques.

Exclusion Criteria

• Empirical studies are not related to TL in software engineering.

• Empirical studies do not describe the experimental investigation.

• Empirical studies not provided the results of ML techniques for TL.

• Review studies.

• Empirical studies which are not written in the English language.

• Empirical studies have a similar author in the conference, and the existing version

has been extended in the journal.

• Chapters of TL.
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3.2.3 Quality Assessment Criteria

In quality assessment criterion, a questionnaire has been formed. These questionnaires are

used to study the purpose and strength of selected primary studies.

Table 3.1: Quality Assessment Questionnaire

S. No. Question Yes Partly No
1 Does the stated aim of the research is clear? 25 7 7
2 Does the definition and usage of quality attributes is clear? 28 5 6
3 Does the explanation of the experimental setup is clear? 29 8 2
4 Does it specify the independent variables used? 21 13 5
5 Does the proper data size used? 28 3 8
6 Do the ML techniques are clearly defined? 27 7 5
7 Does the performance measure been clearly stated and used? 25 14 0
8 Does the validation techniques used in the study? 24 10 5
9 Does the comparative analysis been conducted (ML vs. TL)? 27 8 4
10 Do the stated results, findings, and conclusions are clear? 21 15 3
11 Does the study add some contribution to the literature? 28 7 4
12 Does the stated limitations or threats to validity are clear? 26 8 5
13 Does the study use a repeatable research methodology? 30 3 6

The quality assessment criteria were designed by considering the guidelines and

suggestions provided in the existing studies [57]. We have used quality assessment criteria

to assign a particular weight to every study. Table 3.1 presents quality evaluation criteria.

We have decided on three parameters corresponding to each question, which are based on

whether the particular study answers the question or not. If the study answers the question,

then we tick mark corresponding to the yes parameter. If the study does not answer the

question, then we tick the mark corresponding to no parameter. Every question has been

assigned some rank as 1 (yes), 0.5 (partly), and 0 (no). The summation of values assigned

to each question provides the final score corresponding to each study. The maximum and

minimum score of every study is 13 and 0.
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Table 3.2: Description of Primary Studies

Study# Name Reference Study# Name Reference
SI1 Pratt (1992) [77] SI21 Feuz (2015) [78]
SI2 do (2005) [79] SI22 liu (2017) [80]
SI3 Raina (2006) [81] SI23 Yu (2017) [82]
SI4 Mihalkova (2007) [83] SI24 Weiss (2017) [84]
SI5 Pan (2008) [85] SI25 Pereira (2017) [86]
SI6 Dai (2009) [87] SI26 Gargees (2017) [88]
SI7 Li (2009) [89] SI27 Yan (2017) [90]
SI8 Wan (2015) [91] SI28 Chen (2018) [92]
SI9 Ma (2012) [21] SI29 Krishna (2018) [93]
SI10 Long (2013) [94] SI30 Nam (2015) [30]
SI11 Nam (2013) [41] SI31 Deshmukh (2018) [95]
SI12 Zhou (2014) [96] SI32 Ying (2018) [97]
SI13 Kocaguneli (2015) [45] SI33 Cui (2018) [98]
SI14 Dillon (2014) [99] SI34 Chen (2019) [100]
SI15 Qing (2015) [31] SI35 Tang (2021) [35]
SI16 Jing (2015) [24] SI36 Bai (2022) [40]
SI17 Cao (2015) [101] SI37 Wu (2021) [102]
SI18 Krishna (2016) [103] SI38 Xu (2019) [104]
SI19 Weiss (2016) [105] SI39 Du (2020) [106]
SI20 Su (2016) [107]

3.3 Review Results

The results extracted from the primary studies are presented in this section.

3.3.1 Results Specific to RQ1

The quality attributes emphasized by the existing studies are discussed in order to answer

RQ1. Some quality attributes, such as effectiveness, performance, reliability, effort, change,

and defect. It has been observed that most of the studies focused on defect prediction.
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Defect prediction in the software engineering field plays a vital role before deploying

software at the end user site. Thus, software developers and the software tester team ensure

the software is free from any kind of defect in the deployment stage. Developers need to

take care of defect proneness in future projects with the help of existing datasets using TL

for knowledge transfer in projects with similar data distribution and similar tasks. Fig. 3.1

shows the year-wise distribution of primary studies from January 1990 to March 2024. It

was observed that TL in software engineering actually started in 2010, when there was a

lack of data available for the training of prediction models.

Figure 3.1: Year-wise distribution of primary studies

The most commonly used attribute out of all the quality attributes is performance. It
has been used in 14 studies (SI1, SI3, SI4, SI10, SI11, SI19, SI20, SI21, SI22, SI24, SI25,
SI26, SI27, SI34). The authors have analyzed the performance of an algorithm that has
been developed or used in the study. The next frequently used attribute is effectiveness,
which has been used in 10 (SI2, SI5, SI6, SI7, SI8, SI12, SI14, SI16, SI32, SI33) studies.
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Figure 3.2: Quality attribute emphasized in the existing studies

The defect attributes have been used in 13 studies (SI9, SI15, SI17, SI18, SI23, SI28, SI29,
SI30, SI35, SI36, SI37, SI38, SI39) out of the selected studies.

Table 3.3: Description of quality attributes

Quality

attribute

Description

Effectiveness This attribute can provide the desired output or the capability of

providing the desired output.
Performance This attribute provides the system output by doing some work for

a particular period.
Reliability This attribute is related to the characteristics that deal with the

software potential to maintain its performance level under certain

conditions in a specified period.
Effort This quality attribute tells the reasonable amount of time required

in developing a particular software (in terms of person-hours).
Defect Prone-

ness

This quality attribute is defined as an error made in the source

code or logic in the source code that can lead to crashing or can

produce imprecise/ unpredicted outcomes.

The defect attribute is used to analyze the effect of TL on defect prediction in software
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engineering. The authors have analyzed the effect of defect prediction using TL, whether

it is predicted or not. The effort attribute has been used in 2 studies (SI13, SI39) out of

39 studies that have been used for this review. It has been checked that it is feasible to

build transfer learners for effort estimation [82]. Developers are required to collect all the

user requirements in the initial stage. Further, if any kind of change is requested by the

customer, then it's feasibility must be checked and approved by the Change Control Board

(CCB). Furthermore, the quality attributes identified in the primary studies are presented

in Fig. 3.2.

3.3.2 Results Specific to RQ2

In the existing studies, the prediction model is developed using various ML techniques.
The aim of using such techniques is to establish the relationship between independent and
dependent variable. We have categorized techniques into three different categories such
as ML, TL, and statistical methods. We divide the ML techniques used for developing
prediction models into the following categories such as SVM, DT, Ensemble Learning
(EL), Bayesian Learning (BL), KNN. The distribution of studies according to the above-
mentioned techniques used for TL along with ML is presented in Table 3.4.

Table 3.4: Distribution of studies according to various techniques

Category of

ML classifier

Type Percentage

of studies

Number

of studies
SVM TSVM: Transductive SVM, MSVMs: Multiclass

SVM, LSVM: Linear SVM, SVDDD: Support Vec-

tor Domain Data Description, KNND: KNN Data

Description

35.90 14

DT CART C4.5 25.64 10
BL WNBC: Weighted NB classifier, NB, BN 25.64 10
K-NN NN 17.95 7
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EL RF, Value Aware Boosting with SVM, Stochas-

tic Gradient Descent (SGD) Classifier, Gradient

Boosting Classifier, ABD Classifier

28.21 11

Miscellaneous SoR: Softmax Regression, LiR: Linear Regression,

MTL: Multitask learning, Self-Training, LR, GBM:

Graph-Based Methods, MR: Manifold Regulariza-

tion

12.82 5

Figure 3.3: Distribution of studies (in terms of %) of ML techniques used

The percentage of studies used and a number of studies that used ML techniques are

presented in Table 3.4. Out of all the ML techniques that have been mentioned in the above

table, most of the techniques are from such categories as SVM, EL, DT, and BL examined

in 35.90%, 28.21%, 25.64%, and 25.64% of studies, respectively. It has been observed

that SVM is widely used with TL in 14 studies for software engineering (SI2, SI5, SI6,

SI9, SI10, SI11, SI16, SI19, SI22, SI24, SI26, SI30, SI31, SI37), with LSVM, SVDD,

KNND, MSVMs. Further, EL category ML techniques are used increasingly (SI16, SI17,
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Figure 3.4: SVM categories

Figure 3.5: EL categories

SI18, SI19, SI24, SI29, SI30, SI34, SI36, SI37, SI38) in 11 studies with RF, VAWBSVM,

ADB, SGD classifier, Gradient Boosting classifier. DT category is used in 10 studies

(SI1, SI14, SI15, SI21, SI22, SI24, SI29, SI34, SI37, SI38) with C4.5 and CART variants.
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Figure 3.6: BL categories

Furthermore, the distribution of studies in terms of percentage is presented in Fig. 3.4, 3.5,

3.6, and 3.7. The ML techniques mentioned in Table 3.4 are used for TL.

3.3.3 Results Specific to RQ3

Identifying the datasets, independent variables, algorithms, validation techniques, per-

formance measures, and statistical tests used for TL in the selected primary studies is

important.

Dataset (RQ3.1)

Various types of datasets are used for TL studies. Fig. 3.8 presents the number and

percentage of studies that used multiple types of datasets. All dataset possess different

characteristics. Private datasets consist of data collected by researchers for conducting
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Figure 3.7: Division of sub-categories of ML techniques

specific studies and from other agencies for evaluation or research purposes. Private

datasets are not distributed among researchers and due to this private datasets are not

verified and repeatable by the researchers. Public datasets are freely available. Thus, it

has been concluded that more proprietary and academic datasets must be used for future

experimentation. The exhausted dataset does not provide efficient results in such cases. It is

always advisable to use more industry-oriented datasets that help researchers to understand

and study dataset in more detail.

The various categories of used datasets are as follows :

• AEEEM dataset: This dataset is collected by D’Ambros AEEEM dataset is a com-

monly used dataset concerning to a software defect. This dataset consists of various

metrics such as change metrics, existing defects metrics, code metrics, the entropy
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of changes metrics, and the entropy of source code metrics. It consists of 61 metrics

and 5386 instances [59, 91, 93]. This dataset is used in 11% of the primary studies

(SI11, SI16, SI17, SI18, SI29, SI30, SI34, SI36, SI38).

• MAGIC Gamma Telescope dataset: The MAGIC Gamma dataset, also known as

MAG. This dataset is resourced from the repository of UCI ML. This dataset is in

the form of binary classification, which has various instances and numerical value

attributes. This dataset is used in 4% of the primary studies (SI19, SI24).

• MovieLens dataset: This dataset is collected by GroupLens. It is a movie rating

dataset on a scale of 1 to 5. It provides the rating dataset that is available on the

MovieLens web site. Users provide a rating for each movie during different time

intervals. This dataset is used in 2% of the primary studies (SI7, SI8).

• NASA dataset: This dataset is publicaly available. NASA repository stores this

dataset, and the NASA metrics data program maintains this dataset. All datasets in

the NASA repository act as a particular NASA computer software or sub-part of

software. This software consists of data regarding defect marking and metrics related

to source code. Metrics related to source code consist of length, understandability,

volume, vocabulary, and complexity, which are associated with software quality.

This dataset is used in 15% of the primary studies (SI4, SI9, SI13, SI16, SI17, SI18,

SI23, SI28, SI29, SI30, SI34, SI36, SI38).

• ReLink dataset: This dataset contains information regarding defects. The informa-

tion stored in this is manually proven and improved. ReLink contains 26 complexity

metrics. These metrics are used for defect forecasts. The ReLink dataset has differ-
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Figure 3.8: Dataset used

ent features like time interval, bug owner, change committer, and text similarity. It

consists of total 26 features and 658 instances [94]. This dataset is used in 9% of the

primary studies (SI11, SI16, SI17, SI18, SI29, SI30, P36, SI38).

• Reuters-215782: This dataset was collected by Carnegie Group, Inc. and Reuters,

Ltd. during the period of developing the CONSTRUE text categorization system.

This dataset is one of the commonly used datasets for text categorization. It is defined

as the collection of various documents that are available on the reuters commercial

newswire system. It has five top divisions and many subdivisions. This dataset is

used in 5% of the primary studies (SI2, SI5, SI6, SI10).

Independent Variables (RQ3.2)

The independent variables used for each experimentation in further chapter discussed
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and presented in Table 3.5. Various independent variables have been used by the selected

primary studies like number of features, classes, OOM, Halstead metrics, and C&K metrics.

It is observed that C&K metrics are mostly used.

Table 3.5: Independent variables used

Independent vari-

ables

Study Identi-

fier

Independent vari-

ables

Study Identifier

Information Measure

Metric (IMM)

SI1 Number of test sam-

ples

SI20

Number of classes in

email

SI2 Performance metrics SI21

Vocabulary of words

and a summary of

documents

SI3 Train Pivot Predictors PS27

Eigenvector SI6 Attributes SI9, SI23
Regularization pa-

rameters, Number

of feature clusters k,

Number of nearest

neighbors

SI10 C&K metrics SI15, SI18, SI30, SI35

Defect prediction

metrics

SI11 Line of Code (LOC) SI30

Tradeoff parameter,

Feature corruption

probability p

SI12 Static code metrics SI29

Number of instances,

number of labels

SI14 OOM SI11, SI16, SI17, SI18, SI29,

SI30, SI34, SI36, SI38
Common metrics,

Company-specific

metrics

SI16 Halstead Metrics SI4, SI9, SI13, SI16, SI17,

SI18, SI23, SI28, SI29, SI30,

SI34, SI36, SI38
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Number of instance

classes

SI17 Source code metrics SI15, SI23, SI28, SI35, SI37

Test target size, num-

ber of labeled in-

stances, DoF, p-value

SI19 Quality Model for

Object-Oriented De-

sign (QMOOD) met-

rics

SI35

Algorithms used for TL (RQ3.3)

The various algorithms used by the primary studies are discussed in this section and

Table 3.6. The algorithms are based on the type of target and training data. Two studies

have performed comparison among five TL methods using ML techniques as a base learner.

Adaptation Regularization TL (ARTL), Geodesic Flow Kernel (GFK), TCA, Transfer Joint

Matching (TJM) are the TL algorithms that have been used in two studies.

Table 3.6: Transfer learning algorithm used

Study Identi-

fier

TL algorithm Description

SI2 Task-clustering algorithm This algorithm was used for text classification.

There exists a linear text classification algorithm;

it used inner product across a test document vector

and parameter vector. In the task clustering algo-

rithm, the tasks are grouped via the NN algorithm

to facilitate knowledge transfer. Different parame-

ter functions are used in this algorithm. The param-

eter function is obtained with the help of training

data, and it has been used for testing data.
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SI4 Find a legal mapping for a source

clause

The study used the algorithm to find a mapping for

a source clause. The authors have used the concept

of TL in terms of transferring the mapping learned

from source to target. There are two different types

of mapping. One is global mapping, and the other

is local mapping. In global mapping, mapping is

established for each source predicate to a target

predicate and used for the entire source translation.

The other approach called local mapping, is to find

the top mapping of each source clause individually.
SI5 Dimensionality Reduction algo-

rithm (TL via Maximum Mean

Discrepancy Embedding)

This algorithm is a two-step process. This algo-

rithm minimized the dimensionality with the help

of TL. It is designed to ensure active TL and the

objective was to minimize the distance between

data distributions across different domains.
SI9, SI29 Transfer NB (TNB) This algorithm takes the set of labeled samples and

unlabeled samples as input.
SI10, SI19 Graph co-regularized Collective

Matrix tri-Factorization (GCMF)/

Graph Co-Regularization TL (GTL)

algorithm

It uses any prior knowledge if available, and prior

knowledge includes links in network mining.

SI12 Hybrid HetTL This algorithm transfers features across different

source and target domains.
SI19, SI20,

SI22

ARTL algorithm This algorithm performs the instant adaptation of

different domains and classifier learning.
SI19, SI24,

SI29, SI32,

SI37

TCA algorithm This algorithm explores the similar features be-

tween the training and target data.

SI19, SI24 TJM algorithm The main aim of this algorithm is to decrease the

marginal probabilities.
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SI21 Feature Space Remapping (FSR) It is a HetTL algorithm. It transforms features

among the source and target data. It calculates

meta-features and then computes the similarity be-

tween them.
SI27 Weight - Structural Corresponding

Learning (SCL) algorithm

This algorithm finds out the important and unim-

portant features among the source and target do-

mains.
SI22 Weighted-resampling-based TL al-

gorithm

This algorithm perform several iterations. The

main focus of this algorithm is to transfer weights

assigned to the instances. In each iteration, a new

source training dataset is created. The labeled

data in the target dataset is also combined with

the source training data set.
SI35 TL Oriented Minority Oversampling

Technique based on Feature Weight-

ing TNB

This algorithm transfers the features among the

source and target data. The transferred features

are selected based on their correlation with the

predictor/ output.
SI36 3SW-MSTL A novel method named 3SW-MSTL was developed

for multi-source. In the first stage, it is used to se-

lect multiple source projects from multiple target

projects considered as a training project. Further,

KNN applied to obtain 14 reweighted training in-

stances by minimizing the difference of marginal

distributions between each selected source project,

and target project. It is based on a difference be-

tween the conditional probability distribution of

selected source projects and target projects, a multi-

source data utilization scheme is employed for pre-

diction model training.
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SI38 Balanced Distribution Adaptation

(BDA)

BDA considers both the marginal and the condi-

tional distribution differences between the source

and the target projects.
SI39 Transfer AdB It is a supervised instance based domain adapta-

tion algorithm and is mainly used for classification

tasks. It is considered a reverse boosting concept.

Validation Techniques (RQ3.4)

The various types of cross-validation techniques used in the primary studies are dis-

cussed in this section. The objective of using cross-validation methods are to analyze the

predictive capability of algorithms for prediction on unseen data. It also gives insights

about the generalized capability of prediction model on independent dataset. The different

validation techniques such as K-fold cross-validation, Leave-one-out cross-validation, and

Hold-out validation presented in Table 3.7. The most commonly used validation technique

is K-fold cross-validation.

K-fold cross-validation is used in fifteen studies (SI1, SI2, SI6, SI11, SI12, SI13, SI14,

SI15, SI21, SI22, SI23, SI24, SI29, SI30, SI31) out of all the selected primary studies

for the review. The K-fold cross-validation method helps in removing the overfitting and

provides more reliable result. However, leave-one-out cross-validation is used in two

studies (SI13, SI26), and hold-out cross-validation is used in one study (SI3). Hold-out

validation method is advisable for large size dataset. The datasets used in the existing

studies are of limited size, due to which authors used K-fold cross-validation method. The

graphical representation of the count of studies that used validation techniques is presented

in Fig. 3.9.
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Figure 3.9: Validation techniques used

Table 3.7: Description of validation techniques used

Validation

technique

Description

K–Fold cross–

validation

In this validation technique, the original data is randomly divided into K identical-sized subsets

of original data. Out of the K subsets, a single subset acts as verification data for performing

testing, and the leftover K-1 subsets act as training data.
Hold–out

cross–

validation

This validation technique is a simple and commonly used cross-validation technique. In this

technique, the dataset is categorized into two different sets, one dataset is used as a training

set, and another dataset is used as a testing set. The training set is used to fit a function in the

function approximator. The outcome values are predicted by function approximator using the

testing set data, which is provided as an input to it.
Leave-one-

out cross-

validation

This validation technique is similar to K-fold cross-validation where K is equivalent to N, the

number of data points in the set. It means that the function approximator is trained for all the

data except one point and that one point is used for prediction.
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Performance Measures (RQ3.5)

There are various metrics or measures used to analyze the performance of different

models developed using TL. The evaluation measures play an important role in performing

the comparison and evaluation of developed models using various TL and ML techniques.

Table 3.8 represents the various evaluation measures, the theoretical description of the

specified measures. The illustration of the count of studies for each specified evaluation

metric is represented in Fig. 3.10. From the Fig. 3.10, it has been observed that accuracy

is the widely used evaluation metrics (SI2, SI5, SI10, SI12, SI14, SI18, SI19, SI20, SI21,

SI22, SI24, SI25, SI27, SI28, SI29, SI32, SI33), followed by Recall (SI9, SI11, SI16, SI18,

SI21, SI27, SI28, SI29, SI35, SI36, SI38, SI39), F-measure (SI9, SI11, SI15, SI16, SI17,

SI18, SI28, SI29, SI37, SI38, SI39), AUC measure (SI4, SI9,PS15, SI17, SI21, SI23, SI26,

SI30, SI34, P36, SI38), Precision (SI11, SI14, SI18, SI28, SI29, SI39), FPR (SI9, SI16,

SI18, SI29, SI35), and G-mean (SI36, SI38).

Figure 3.10: Performance measure used
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Table 3.8: Description of performance measure

Evaluation Mea-

sures

Description

Accuracy Accuracy defines a correlation between the correctly classified

classes and the summation of all the classes.

(TP + FN)

(TP + TN + FN + FP )
(3.1)

AUC This performance metric tells us whether the model is capable of

distinguishing between different classes. This metric or performance

measure is used for binary classification. A model having an AUC

value of 0.0 depicts the 100% incorrect predictions made by that

model, and if the AUC is 1.0, that indicates the predictions made by

the model are 100% right.
FPR FPR is defined by the ratio of positive instances that are not correctly

identified, which are originally classified as negative instances to the

total original negative instances.

(FP )

(FP + TN)
(3.2)

F-measure F-measure is a weighted reciprocal of the arithmetic mean of the

reciprocals of recall or sensitivity and precision. Its value depends

on precision and recall value. If the value is less out of precision and

recall, then it results in less F-measure value.

((α+ 1) ∗ recall ∗ p)
(recall + α ∗ precision) (3.3)
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Precision Precision is defined as the proportion of actual positive instances

that are correctly predicted to the overall predicted positive instances.

It provides the count of correct positive predictions. The 100%

precision value for any class A indicates that the instances associated

with class A are correctly determined as a part of class A. It does not

indicate anything about other instances that are associated with class

A and predicted as incorrect instances.

(TP )

(TP + FP )
(3.4)

Recall The recall is defined by the negative instances (which are correctly

classified) to the sum of real positive instances. The recall is also

called the TPR or sensitivity. The recall value of 1.0 for any class,

indicates that a total number of instances that are associated with that

class are identified as a part of that class.

(TP )

(TP + FN)
(3.5)

Matthews Correlation

Coefficient (MCC)

MCC is used to identify the correlation coefficient between the actual

and predicted binary classification. The perfect prediction means

a +1 value of the coefficients, a random prediction is indicated by

the value of coefficients as 0, and a value of -1 indicates complete

disagreement between actual and predicted observation.

(TP ∗ TN − FP ∗ FN)√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(3.6)
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G-Mean G-mean measures the balance between the classification perfor-

mances of both the majority and minority classes.
Other miscellaneous

measures

They include absolute residual, AUCEC, CLL, Error rate, Error

mean, Error median, MAE, MRE, MER, Mean Balanced Relative

Error (MBRE), misclassification error, mean square error, RMSE,

SA, UAR.

The performance metric which is rarely used are united in the miscellaneous category

such as absolute residual, Area Under the Cost-Effectiveness Curve (AUCEC), Conditional

log-likelihood (CLL), Error rate, Error mean, Error median, Mean Absolute Error (MAE),

Magnitude of Relative Error (MRE), Magnitude of Error Relative to the Estimate (MER),

Mean Balanced Relative Error (MBRE), Misclassification error, Mean square error, Root

Mean Square Error (RMSE), Standardized Accuracy (SA), Unweighted Average Recall

(UAR) (SI3, SI4, SI6, SI8, SI13, SI14, SI16, SI25, SI31, SI32).

Statistical test (RQ3.6)

This section describes the various statistical tests that have been used by the studies.

These tests tell us about the significant difference between various distributions. Table

3.9 represents the type of statistical test, their description, and the study identifier in

which they are used. In Fig. 3.11 we have represented graphically the statistical test

and the number of studies in which they are used. The various tests that are used in the

studies is One-way Analysis of Variance (ANOVA), Paired t-test, Wilcoxon test, Wilcoxon

rank-sum test, Tukey's Honest Significant Difference test, Friedman test, Two-tailed T-test,

Kolmogorov-Smirnov test (KS test).

Kruskal-Wallis H-Test is rarely used statistical test. Thus, from the observed data it is

concluded that Wilcoxon test used in majority cases (SI10, SI11, SI13, SI23, SI34, SI36,
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SI37), as it a non-parametric test and used to perform comparison among two independent

samples. Furthermore, the Friedman test is used in the majority of studies (SI22, SI36,

SI38), and it is used to compare multiple treatments. However, the limitation of the

Friedman test is that it can be applied only when the minimum of treatments is 3. However,

if the results of the Friedman test are to accept the alternate hypothesis, then a post-hoc

analysis test must be performed. Thus, a comparison of two techniques must be performed

using the Nemenyi test, Wilcoxon–signed rank test, and Bonferroni Dun test.

Table 3.9: Description of statistical test used

Statistical Test Study Identi-

fier

Description

One-way ANOVA SI14, SI21 One - way ANOVA technique is used for the compari-

son of the mean of two or more than two samples. This

technique applies to numeric data only.
ANOVA SI19, SI24 ANOVA technique is used to check if there is a significant

difference between the mean of two or more then two

groups. It checks dependency between factors with the

help of the mean comparison of different samples.
Kruskal-Wallis H-test SI2, SI18 The Kruskal-Wallis H test is also called as one-way

ANOVA on ranks. It is a rank-based non-parametric test

that can be used to determine if there are statistically sig-

nificant differences between two or more groups of an

independent variable on a continuous or ordinal depen-

dent variable. It is considered as extended version of the

Mann-Whitney U test to perform comparison across more

than two independent groups.
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Paired t-test SI20, SI32 The paired t-test is also known as the paired sample t-test

and dependent sample t-test. It is a statistical test that is

used to identify whether the mean difference between two

sets of observations is zero.
Wilcoxon test SI10, SI11,

SI13, SI23,

SI34, SI36,

SI37

The Wilcoxon test has four different variants. It is a non-

parametric test. One of the variants of the Wilcoxon test

is the Wilcoxon–signed rank test. This test is used to

compare two different samples which are related, matched

samples, or parallel measurements over one sample to an-

alyze the difference between their population mean ranks.

Another variant is Wilcoxon–signed rank test, which is a

non-parametric test that can be used to identify whether

two dependent samples were selected from the populations

having a similar distribution.
Wilcoxon rank-sum

test

SI9, SI16,

SI35

Wilcoxon rank-sum test also known as Mann-Whitney

Wilcoxon, Mann-Whitney U test, or Wilcoxon Mann-

Whitney test. Wilcoxon rank-sum test is a non-parametric

test of no effect that is the value that is randomly selected

form one population sample will be either less than or

greater than a value that is randomly selected from another

population sample. Non-parametric means it does not

have any assumptions of gaussian distributions (normal

distribution). This test applies to independent samples.
KS test SI34, SI35 It is a non-parametric test which is used to test the equality

of continuous or discontinuity
Friedman Test SI22, SI36,

SI38

It is a non-parametric test and it is an alternative measure,

This test is used to test the difference across different

groups when the target variable is of ordinal type.

86



Review Results

Two-tailed T-test SI22 In the two-tailed test, the critical area of the distribution

is two-sided, it tests whether a sample is greater than or

less than a certain range of values. Thus, it is used in null

hypothesis testing.
Tukey's Honest Sig-

nificant Difference

(HSD)

SI19, SI24 Tukey's HSD test also known as Tukey's range test,

Tukey's test, and Tukey method, is a one-step process

of several comparison and statistical tests. This test can

be applicable to unprocessed data or in combination with

an ANOVA to find out the means that are different from

each other.
Nemenyi test SI38 This test is used as a post-hoc analysis test like Wilcoxon–

signed rank test followed by the Friedman test. It is used

to find out which groups are different. The hypothesis for

Friedman test concerning Nemenyi tests as follows:

• The null hypothesis (H0): The mean value for each

of the populations is equal.

• The alternative hypothesis: (Ha): At least one

population mean differs from the others.

Kendall tau-b rank

correlation coeffi-

cient

SI16 It is used to find the strength and direction of association

between two variables on an ordinal scale.

Bonferroni-Dunn test SI36 It is used to perform comparison among multiple pairs

of means (averages) among groups of data and is mostly

used after applying statistical test for mean comparison

such as ANOVA.
One-sided paired t-

test

SI17 In a two-tailed test, the critical area of the distribution is

one-sided, it tests whether a sample is greater than or less

than a certain range of values, but not both.
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Figure 3.11: Statistical test used

Type of TL (RQ3.7)

This section describes the various categories of the TL method used in the studies.

There are three different categories of TL methods, such as Transductive TL (TdTL),

Inductive TL (IdTL), and Unsupervised TL (UnTL). These categories can also be termed

TL as settings in which the TL algorithms have been performed. The TL categories

and their settings are illustrated in Table 3.12. These categories differentiate from each

other based on the type of source data, type of target data, source and target domain, and

source and target task. It has been observed that most of the studies employed feature

TL, and instance TL with IdTL. Moreover, relational knowledge and parameter transfer

are also feasible with IdTL. However, in the existing studies authors explored feature

representation, and instance transfer-based learning. The knowledge transfer is easy with

the features of different projects. Feature transfer considers the features of the source and
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target domain. Further, a correlation needs to be established between the features of both

projects. Based on feature similarity, either direct features will be extracted, or a feature

matching analyzer will be used if there is a huge amount of dissimilarity among the features

of the source and target project. The parameter transfer is used when the algorithm used

for transferring knowledge using default parameters value change, and the target project

sets its algorithm parameter value according to the source project, this is accomplished

for parameter TL. Hyperparameter optimization can also be employed for parameter TL.

In relational knowledge transfer, a relationship needs to be established among the source

project dataset, and using that prediction model must be designed. Furthermore, this

prediction model would be used for knowledge transfer using the same methodology in

the target dataset. In instance type transfer, the knowledge is shared based on the instances

of the source project. The dataset must be preprocessed to apply instance TL. Thus, based

on the analysis of existing literature, it has been concluded that feature transfer is more

effective and efficient with TL in the software engineering domain.

We have observed that TdTL (34.28%) has been widely used among all the categories.

IdTL (28.57%) has been used in only those studies that are related to multi-task learning

and self-taught learning. The last category UnTL has not been used in any of the studies.

Most of the studies considered the labeled data in the source domain while in the case of

UnTL source domain labels are not available, and target domain labels are not available.

Four different approaches correspond to these TL settings, such as instance transfer, feature-

representation transfer, parameter transfer, and relational-knowledge transfer. For InTL

setting, instance transfer is mostly used, and for TnTL, feature-representation transfer is

mostly used. The count of studies for each approach corresponds to different TL settings

presented in Fig. 3.12. Also, if a huge number of features are available, then a specified
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Figure 3.12: Type of transfer approach corresponding to different transfer learning settings

FS technique must be applied to select only relevant features.

3.3.4 Results Specific to RQ4

This section discusses the TL algorithm, which is effective against the various traditional

learners. Traditional learners include ML techniques, which are compared with the

proposed algorithm by different authors. These studies have used different datasets over

which comparisons have been made. We have observed the values of accuracy, AUC,

Recall, and F-measure for analyzing the performance of TL algorithms. However, these

four metrics are mostly used in the existing studies. In the comparative analysis concerning

existing studies, the combined dataset of results is collected and outliers are removed.

Moreover, outliers lead to unbiased results corresponding to specified datasets. Thus, a

boxplot is used to remove these outliers. Fig. 3.13 presents the distribution of studies

concerning accuracy value corresponding to all the datasets majorly used. Fig. 3.14 and
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3.15 present the distribution of studies concerning AUC value corresponding to all the

datasets majorly used. Fig. 3.16 presents the distribution of studies concerning Recall

value corresponding to all the datasets majorly used. Fig. 3.17 presents the distribution

of studies concerning F-measure value corresponding to all the datasets majorly used.

The descriptive statistics of all the performance measure with respect to TL techniques

are presented in Table 3.10 including minimum, maximum, mean, median, and standard

deviation measure values.

Figure 3.13: Dataset-wise accuracy for TL techniques used

In the study given by [108], experiments have been performed on various TL and ML

algorithms on different datasets. The various TL algorithms that are used in the two studies

are GTL, TCA, TJM, and GFK. These algorithms have been tested on five distortion

profiles. It has been observed that the traditional ML algorithm that is RF performed best.

GFK and TJM algorithms provided the worst result. The base classifier is same for both

algorithms. Other base classifiers are flexible to noisy datasets, unlike 1-NN classifier,

due to which these two algorithms performance results in the worst performance. When

SVM is used as a base classifier, then TCA algorithm results in the worst performance.
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Figure 3.14: Dataset-wise AUC for TL techniques used

The performance of the ARTL algorithm is proved to be best in comparison with other

TL algorithms that have been used in the study. The ARTL algorithm has attempted to

resolve boundary and optional distribution differences, which can be a reason for the

best performance of the ARTL algorithm. The overall conclusion of the study stated that

the TCA algorithm performs best out of all the TL algorithms that have been used for

comparison. The TJM algorithm is second best after the TCA algorithm. All of these

algorithms perform best or worst on different distortions. The ARTL algorithm comes

third after the TJM algorithm.

In the study given by [108], five different TL methods were compared on different

datasets with a different statistical test against seven different base learners. The five TL
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Figure 3.15: Dataset-wise AUC for ML techniques used

algorithms used are as follows: GFK, JDA, TJM, TKL, and TCA. The seven different

base learners are RF, SVM, Discriminant Analysis, LR, 5NN, DT, and NB. AUC values

computed for four base learners corresponding to the MAG, USPS, CCC, and CV datasets.

In the next step, accuracy has been calculated for all algorithms corresponding to seven

different distortion profiles. In the third step, accuracy has been computed over seven base

learners corresponding to each TL algorithm. The best base learner for the TL algorithm

individually investigated by Tukey's HSD test and assigned the HSD group for every

accuracy value.

93



Review Results

Figure 3.16: Dataset-wise Recall values for TL techniques used

3.3.5 Results Specific to RQ5

The threats to the validity for TL based on the similarity between domains, the kind of

data used in the source, and the target domain are discussed in this section. Based on data

distribution across different domains, [109] proposed a dimensionality reduction algorithm

for effective TL when data is distributed across different domains. There exist different

latent factors over different domains. TL uses labeled data from a similar learning task. TL

uses available data for learning on the target data, which consists of both training and target

test data. For TL, the source and target data have similarities, and there exists a relationship

between them. It has been examined from all the primary studies that have been studied

for this review that the data must be specified in the target and training domain based on

the algorithm.
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Table 3.10: Descriptive statistics of performance measure in the existing studies

Technique Performance

Measure

Minimum Maximum Mean Median ± Standard

Deviation
Baseline (LR) AUC 0.5796 0.778 0.6688 0.6688 ± 0.06426

Accuracy 57 63 59.333 59.333 ± 1.83356
F-measure 0.1 0.69 0.3538 0.3538 ± 0.14655

BDA AUC 0.651 0.704 0.6737 0.6737 ± 0.0191
AUC 0.703 0.733 0.07165 0.07165 ± 0.0132382
Recall 0.305 0.404 0.36175 0.36175 ± 0.036

CA AUC 0.665 0.79 0.73075 0.73075 ± 0.0451
CC AUC 1 6 2.698113 2.698113 ± 0.8813

F-measure 0.1686 0.5097 0.334 0.334 ± 0.139
CCA+ AUC 0.6732 0.869 0.814 0.814 ± 0.0651

Recall 0.67 0.86 0.76 0.76 ± 0.07778
F-measure 0.55 0.84 0.712 0.712 ± 0.1042

CDT AUC 0.621 0.728 0.669 0.669 ± 0.04063
Recall 0.267 0.375 0.3035 0.3035 ± 0.0424

CPDP-CM AUC 0.654 0.695 0.6628 0.6628 ± 0.01614
CPDP-IFS AUC 0.527 0.736 0.6419 0.6419 ± 0.06944
FeSCH AUC 0.685 0.801 0.72975 0.72975 ± 0.04371

Recall 0.214 0.344 0.276 0.276 ± 0.0604
HDP AUC 0.5139 0.721 0.6326 0.6326 ± 0.63125
HDP KS,0.05 AUC 0.5 0.59 0.5344 0.5344 ± 0.343
HISNN AUC 0.686 0.76 0.708 0.708 ± 0.3045

Recall 0.23 0.286 0.264 0.264 ± 0.02
J48 AUC 0.6712 0.8462 0.8033 0.8033 ± 0.0599
JDT AUC 0.674 0.752 0.7195 0.7195 ± 0.029

Recall 0.249 0.38 0.2995 0.2995 ± 0.0547
KNN FMT AUC 0.21 0.67 0.389 0.389 ± 0.1508
KNN HDP AUC 0.504 0.763 0.644 0.644 ± 0.06054
KNN RM AUC 0.467 1.758 0.6812 0.6812 ± 0.2474
LR FMT AUC 0.54 0.64 0.6498 0.6498 ± 0.0542
LR HDP AUC 0.43 0.794 0.65817 0.65817 ± 0.08938
LR RM AUC 0.414 1.826 0.7143 0.7143 ± 0.6725
ManualUD AUC 1 1 1 1 ± 0

Recall 0.222 0.451 0.345 0.345 ± 0.095
MSMDA AUC 0.6511 0.7993 0.73126 0.73126 ± 0.04618
MTDP AUC 1 5 3 3 ± 1.414214
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NB FMT AUC 0.392 0.687 0.5433 0.5433 ± 0.07829
NB HDP AUC 0.514 0.812 0.6836 0.6836 ± 0.076
NB RM AUC 0.422 1.816 0.699 0.699 ± 0.26057
NN- Recall 0.36 0.65 0.4925 0.4925 ± 0.1145

F-measure 0.34 0.59 0.45 0.45 ± 0.09233
NN Filter AUC 0.5745 0.7612 0.6508 0.6508 ± 0.05828

F-measure 0.1407 0.5372 0.3239 0.3239 ± 0.14125
AUC 0.66662 0.8361 0.79553 0.79553 ± 0.0584
Recall 0.85 1 0.908 0.908 ± 0.0656

Peter-Filter AUC 0.663 0.768 0.70425 0.70425 ± 0.0391
Recall 0.235 0.325 0.27 0.27 ± 0.036

RF AUC 0.5157 0.6564 0.6024 0.6024 ± 0.4403627
TCA AUC 0.1 0.5 0.314 0.314 ± 0.10297

Recall 0.183 0.363 0.254 0.254 ± 0.0665
F-measure 0.23 0.72 0.45 0.45 ± 0.1498

TCA+ Accuracy 43 69 59.111 59.111 ± 7.4889
AUC 0.676 0.757 0.7235 0.7235 ± 0.0314
Recall 0.38 0.47 0.425 0.425 ± 0.045
F-measure 0.23 0.72 0.454 0.454 ± 0.1484
F-measure 0.31 0.36 0.336 0.336 ± 0.025

TCANN AUC 0.15 0.38 0.2855 0.2855 ± 0.0794
F-measure 0.21 0.76 0.4515 0.4515 ± 0.1826

TNB Accuracy 45 61 56.111 56.111 ± 4.7
AUC 0.5981 0.7641 0.6392714 0.6392714 ± 0.0528
Recall 0.83 1 0.901 0.901 ± 0.0719
F-measure 0.3 0.44 0.36 0.36 ± 0.0524

VABSVM AUC 0.23 0.62 0.4085 0.4085 ± 0.1263
F-measure 0.15 0.57 0.3234 0.3234 ± 0.1079

VCB Accuracy 44 65 56.8889 56.8889 ± 7.578
YuFilter AUC 0.563 0.764 0.66 0.66 ± 0.075

Recall 0.198 0.333 0.2525 0.2525 ± 0.0499

3.3.6 Results Specific to RQ6

The advantages and disadvantages of the TL techniques supported by the studies are

discussed in this section. Table 3.11 summarizes the advantages and disadvantages of TL
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techniques.

Table 3.11: Advantages and Disadvantages of TL techniques

TL Tech-

nique

Advantages and Disadvantages

Effectiveness This attribute has the ability to provide the desired output or the capability of

providing the desired output.
Task-

clustering

It provides an idea to achieve inductive transfer in classifier design with the

help of labeled data from the related classification problems to solve a particular

classification problem.
TNB It improves the performance of the dataset collected from various companies or

cross-company data.
Discriminability

Based TL

(DBT)

It has been demonstrated that the destination networks that are initialized via

DBT learn much faster than networks that are initialized randomly. DBT indi-

cates considerable and important learning speed improvement across randomly

initialized networks. DBT is superior in comparison to literal transfer, and to

directly use the destination network on the destination task.
GTL The main focus of GTL is TdTL. In TdTL, the domain has generously labeled

examples, while the destination domain consists of unlabeled examples only.

GTL does not cover the latent features under various domains as the bridge

to transfer knowledge simultaneously. It results in maximizing the empirical

likelihood of all the domains and conserving the geometric structure in every

domain.
Instance-

based tech-

niques

Advantages: These techniques are used for handling instances by removing the

outliers, relevant filtering, or weighting of instances.

Distribution-

based tech-

niques

These techniques aim at managing the instance distribution for training and

testing sets with the help of stratification, cost curves, and mixture models.

EL technique Advantages: This technique performs better than a trained classifier using huge

amount of labeled data in the destination domain.
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TCA Advantages: TCA learns a similar transfer component that comes under both

domains such as the difference in the distribution of data across various domains.

It can be reduced if it is projected on the subspace, and it conserves the various

data properties. It is beneficial to use traditional ML methods in this subspace

to train classification and regression over various domains. If two or more

domains are associated with each other, then there may exist various similar

components under them, due to which the partitioning of data across domains is

to be distinguished.
Hybrid HeTL Advantages: It is useful for transferring knowledge over various feature scopes

and concurrently rectifying the data error on the transformed feature space. The

performance of Hybrid HeTL is best and more stable when the size of parallel

data is increased. The Hybrid HeTL is effective and robust for cross-language

sentiment classification.
GA for

Feature-

Space Remap-

ping (GAFSR)

and Greedy

Search for

Feature-

Space Remap-

ping (GrFSR)

Advantages: These techniques are informed, supervised learning techniques.

The benefit of FSR is that it can be applicable for both cases that are either

informed or uninformed. The main advantage of GAFSR is that it achieves the

best performance scores across all the metrics. Disadvantages: It takes more

time to execute in comparison to IFS. In IFS, the computation count is low, but

the performance score is high.

Stacking Advantages: It is beneficial in terms of combining stacking with IFSR, and

IFSR uses labeled data. Disadvantage: To train ensemble classifiers, it needs

labeled data.
Canonical

Correlation

Analysis

(CCA)

Advantages: It is an effective TL method. It is used to make the distribution

among training and testing data of companies. CCA with CCDP is effective for

HCCDP. CCA acts as a powerful tool in multivariate data analysis to establish

the correlation between two different sets of variables.
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FSR Advantages: It can manage various feature spaces without using any co-

occurrence data. This technique uses originally raw data which is already

mapped on a feature space, and this is why this technique is also known as a

remapping name. It requires a low amount of labeled data in its target domain.

This labeled data is required to understand the relations to the training domain.

It can increase the classification accuracy in the target domain by combining

the relevant information from the training domain with the help of ensemble

learners.
TNB Advantages: TNB performs better for SOFTLAB dataset, and it does not

perform better for NASA dataset. TNB works for both within-company as well

as cross-company. The author focused on cross-company defect prediction.

TNB outperforms naive bayes in the context of performance measures such as

F-measure, AUC over within company, and cross-company defect prediction.

Disadvantages: TNB is limited to a particular company dataset.
Voting EL Advantages: It is defined as the simplest method for combining multiple

classifiers. Bellwether can be used efficiently when the availability of historical

data is limited or negligible. Due to a lack of historical data, developers try

to get data from other projects. It has been examined that irrespective of the

granularity of data, there exists a bellwether dataset that can be used for the

training of defect prediction models. The bellwether does not require brief data

mining methods to discover.

3.4 Discussion

We have studied and examined the various TL algorithms in the fields of AI, ML, and

software engineering. A deep analysis followed by a sequence of systematic points

and identified 39 primary studies during this period (1991-2024). Secondly, the quality
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attributes that are focused on TL are discussed. Thirdly, the characteristics or experimental

settings of the primary studies have been discussed based on the datasets, independent

variables, TL algorithms, validation techniques, performance measures, and statistical

tests. Fourth, we have analyzed the comparison of various TL techniques with traditional

ML algorithms as a base learner. Lastly, the merits and demerits of TL techniques are

summarized. The relevant outcomes obtained from the primary studies selected for this

review are as follows:

• The quality attributes that have been used for TL are defect, effectiveness, per-

formance, reliability, and effort. The most commonly used quality attribute is

performance and effectiveness used in 32%, 23% of studies. There is no study

conducted for change prediction using TL.

• The ML techniques were categorized into different classes such as SVM, EL, DT,

BL, NB, and Miscellaneous. The mostly used ML techniques for TL were SVM,

RF, and NB.

• The most commonly used dataset for performing experiments is NASA in the

literature. The second and third most commonly used datasets is UCI 20 Newsgroups

and AEEEM.

• The independent variables that have been used by various studies do not exhibit any

relationship with each other.

• The algorithms that have been used by the selected studies differ and these algorithms

depend on the type of training and target dataset.
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• The validation technique that has been used in most of the primary studies is K-fold

cross-validation. In K-fold cross-validation, the original dataset is used for both

training as well as validation, and it uses every sample for validation exactly once.

• The performance measure that has been used by most studies is accuracy followed

by AUC, F-measure, and recall.

• The TL categories used in the selected primary studies are IdTL and TdTL. UnTL

has not been used in any study. The instance transfer setting has been mostly used in

IdTL, and feature-representation transfer has been mostly used in TdTL.

• The outcome of systematic review corresponding to characteristics of TL, IdTL is

mostly used in the existing study. The features and instances of different projects

play an important role in transferring knowledge between two different projects. The

performance of TL models was evaluated using the accuracy, adaptability, scalability,

and generalization power of the predictive model. Thus, it has been analyzed that

TL-based algorithms satisfy the above characteristics for the development of efficient

software quality models for future projects.

• The comparison made using SVM as a base learner provides the best classification

accuracy in comparison to other base learners. The comparison made with NB as a

base learner provided the worst classification accuracy in most of the cases.

• These are some of the instructions for the researcher scholars, industry experts, and

software developers to carry out future research on TL in software engineering:

1. More experiments should be carried out to increase the studies for TL in software

101



Discussion

engineering. The number of studies using TL in software engineering must be

increased to show the benefits of TL in software engineering.

2. The experimental settings should be specified in the study. Datasets used, inde-

pendent variables used, performance measures, and the statistical test used in your

study.

3. More studies should be carried out for change prediction using different types of TL.

4. To obtain more accurate, precise, and generalized results, more studies should be

carried out across cross-project and cross-company prediction using TL.

5. More studies for TL should be carried out using ML techniques.

6. More studies should be carried out using different settings and approaches of TL.

Each TL type should be explored corresponding to all the TL categories.

7. It is observed that there are very few studies that transfer knowledge using similar

TL techniques or TL algorithms.

8. More studies should be conducted considering hybrid/evolutionary, and swarm-based

algorithms.

9. More studies must be conducted to analyze the impact of FS techniques with TL.

10. More studies must be conducted with bio-inspired algorithms for TL.

11. The effectiveness of TL models must be analyzed with hyperparameter optimization.
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Chapter 4

Cross-Project Defect Prediction Model

using Transfer Learning

4.1 Introduction

In software engineering field, defect prediction is one of the important research area. In

the last few years, defect prediction is exhaustively studied [30]. SDP aims to detect defect

prone modules at different levels, such as functions, classes, and files. It improves software

quality, reduces cost, and development time. It helps in software quality assurance in terms

of software development effort, software testing or code review. It plays a significant role

when an organization has limited resources. Over the past few years, researchers have

developed various methods for defect prediction at an early stage.

TL is a new research area for transferring knowledge across different projects. The

concept of TL is to learn some knowledge while solving some problems and apply that
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knowledge to a similar problem. TL states that the knowledge extracted or learned from

the existing code can be applied to the innovative system. TL concept has been used for

DP. TL is used such that the model is trained on one dataset which can be also termed

as pre-trained model. Now, pre-trained model is used to test another project of similar

characteristics. Feature based TL is used such that the two training and testing dataset

have a similar features to some extent. In order to select the matching features we have

used algorithm for selection of matching pairs out of all the features for development of

prediction model. TL is used to obtain generalized and unbiased results.

Nowadays, researchers, software experts, and academicians are working beyond WPDP.

Moreover, in the upcoming years, the systems are designed with innovative ideas and

techniques. The larger part of existing codes is used for the designing of innovative

systems. However, using existing code, which is designed by different peoples with

different techniques, was difficult to understand by other people. Thus, the concept of TL

has emerged.

Data on various open source projects has been collected for development of prediction

model. These software data consist of different types of software metrics and label such as

defective or non-defective. Software metrics are defined as a quantitative measure. These

metrics are a descriptive analysis of software data. There are various types of software

metrics discussed in Chapter 2. The label indicates the presence of a defect in the project's

data. Labels are used for the indication of defect presence.

The proposed models for defect prediction are designed for WPDP and HetDP. In

WPDP, training and testing of model has been on the same project. Each instance in WPDP,

represents particular module of a project. The presence of labels corresponding to each

instance whether the module is defective or not, i.e., defect proneness tendency of a project

104



Introduction

is present in the column of a project dataset. In WPDP, the prediction model is trained on

some part of Project X, and testing of the prediction model is done on some part of Project

X. However, WPDP has various limitations. WPDP can not be used when we have to make

a defect prediction for completely new projects. In some other cases also, when different

people were working on the same project for a longer duration, then many changes are

introduced in the code. With the help of the previous code, we can not predict the defect

for a newer version or with new changes in the code. To overcome this issue, researchers

and academicians have started exploring CPDP.

CPDP takes two different projects for training and testing. In CPDP, Project A can

be used for training, and Project B can be used for testing. In this way, CPDP can be

used for projects having lack of historical data. Till now, most of the researchers and

academician have explored CPDP for the projects that have same software metric; that

limits the CPDP. Thus, HetDP approach has been proposed. HetDP allows prediction

between two projects if they use different metrics. There exist various limitations of CPDP

[30]. The open-source, available datasets consist of different metric sets. In heterogeneous

data, all the projects have completely different metrics. For example, the datasets of

AEEEM group consist of 61 software metrics and the NASA dataset in the PROMISE

repository consist of 31 software metrics. There exist various studies in literature based on

cross-project validation [3, 110, 111]. However, most of the authors have not developed

models for generalized results. Thus, to achieve generalized results, we have developed

a predictive model for defect prediction using different ML algorithms across different

projects.

We have analyzed the HetDP approach for defect prediction across various projects

with different metrics suite. Thus, using HetDP, researchers or experts can develop other
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prediction models to predict defects. HetDP finds the matching metrics having same

distribution from source (Project A) to target (Project B) dataset. For effective knowledge

transfer, we have also demonstrated the size of a source and target dataset. To achieve our

aim of improving the model for defect prediction using heterogeneous metrics, we have

formulated the research questions. The RQs are as follows: RQ1: Does the FS is necessary

for WPDP? RQ2: How does WPDP models performed using 10-fold cross-validation?

RQ3: Which ML algorithm performs best for HetDP using TL? RQ4: How does HetDP

models performed using 10-fold cross-validation in comparison to WPDP?

The main contribution of conducting experiment in this chapter is to analyze, experi-

ment and assess the empirical evidence regarding (1) the importance of FS for WPDP (2)

performance capability of ML techniques for HetDP (3) predictive performance capability

of HetDP and WPDP in comparison to 10-fold cross validation (4) the applicability of

CPDP. Defect prediction models are developed using different ML algorithms to produce

generalized results using TL.

This chapter is organized as follows: Section 4.2 describes the research background

with respect to experiment conducted in this chapter. Section 4.3 discusses the results

of the chapter in the form of answers to RQs. Section 4.4 stated the key findings of the

chapter. The results of this chapter are published in [112].

4.2 Research Background

The research background of this chapter is discussed in this section.
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4.2.1 Dataset used

The dataset used for experimentation is referred in Chapter 2 Section 2.7.3.1.

We have discussed HetDP with different datasets of two different groups. In HetDP,

we have considered two different datasets, one is source dataset, and another one is the

target dataset, with different metrics. The instance is represented by a tuple of dataset,

and metrics are represented by an attribute of a dataset. The last attribute of a dataset

represents a label for the presence and absence of defects. In Figure 4.1, we have presented

the framework for HetDP. In the first step, we have selected source (X) and target project

(Y). The source and target dataset have a different metrics set. In the second step, we have

selected metrics from both the projects. We have selected equal number of metrics from

source and target dataset. In the next level, we find matching metrics for the target dataset

into the source dataset. The matching metrics in the source and target dataset are found

based on the similarity among them. The metrics matching performed with the help of a

correlation analyzer. At the end of this process, we have a set of matched metrics from

source and target dataset. The matched source dataset has been trained using different ML

algorithms. This step results in a prediction model that can be further used for predicting

labels of the target dataset.

The WPDP has been explained in Figure 4.2. WPDP considers a single project data due to

lack of traditional data. In WPDP, we have divided a dataset in two different parts. One

part of a dataset is training data and another part is testing data. In the second step, it builds

a model for the training data, and it uses that model for predicting labels of test data. In

the next subsections, we have explained the approach in more detail.
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Figure 4.1: Framework for Heterogeneous Defect Prediction

Figure 4.2: Framework for Within Project Defect Prediction

4.2.2 Data Collection

We have collected data from an open-source repository. NASA and PROMISE group

dataset are used in the study. The dataset collected from these groups has different projects

and attributes. These dataset consist of various software metrics. Each software metric

provided with some numerical value corresponding to each module of a project. The last
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column corresponding to each module of a project provides a label for defect proneness.

The defect proneness attribute is considered as an dependent variable.

4.2.3 Development of Prediction Model

The ML algorithms used for experimentation are LR, RF, HV, MLP, ADB, and DT. These

ML algorithms have been discussed below:

1. LR:- LR is named after a function called as sigmoid function. This function is

interpreted by an S-shaped curve that takes a real-valued number and maps it to

values in the range of 0 and 1, but it should not be at the extreme points. The

coefficients of the LR algorithm are determined from training data.

2. RF:- The name of this technique itself specifies that it consists of various DT. These

individual DT operate as groups, i.e., ensemble. In this technique, each RF redicts

an output class label, and the class having majority counts represents the prediction

model. RF provides an understandable model for researchers and academician. This

algorithm is robust to noisy and missing values of the dataset.

3. HV:- In HV technique, various ML algorithms are combined to build a prediction

model.

4. MLP:- This technique consists of multiple perceptrons. It is focused on creating

robust algorithms and used those algorithms for building a prediction model. How-

ever, NN can learn the training data representation easily, and it easily predicts the

label of the output variable. These networks can learn the mapping function, and

they are proved as a global algorithm. The predictive capability of NN comes from
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the hierarchical or multi-layered structure of the networks. It takes different features

of input data over various scales and group them into high-order features.

5. ADB:- This classifier also makes a prediction. It is similar to the RF classifier.

It applies multiple DT to individual samples, and it takes a combination of these

predictions from each DT or majority trees in the classification problem. Each DT

contributes a significant amount to the final prediction.

6. DT:- This technique works on the divide and conquer concept. It uses a heuristic

approach known as recursive partitioning. This approach is based on the divide

and conquer problem. It divides the original dataset into small groups, which are

repeatedly split into even smaller groups. It solves each subproblem. In the end, the

solution of all subproblems combined to produce solution to the actual problem. DT

is easy to apply and easy for development of prediction models. It is not based on

any assumption. It is not affected by the presence of outliers.

4.2.4 Cross-Validation Method

Cross-validation is a technique used for model evaluation by partitioning the given dataset

into two parts [3]. One part is used for training, and another part is used for testing data.

The data is divided into respective ratio and proportion using cross-validation method. The

model is trained using training dataset. The prediction model is used for making predictions

of testing data. The division of dataset into training and testing dataset depend on the type

of cross-validation method used [113]. There exist three types of cross-validation methods,

such as hold-out validation, K-fold cross-validation, and leave-one-out cross-validation.

We have used K-fold cross-validation for conducting experiment.
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In K-fold cross-validation, the dataset is divided into K different parts. K-1 parts are

used for training the model, and the remaining part is used for testing. The value of K

is considered as 10. In 10-fold cross-validation, the complete dataset is partitioned into

ten parts, and each part is of equal size. Nine parts are randomly selected for training,

while the remaining part, i.e., the tenth part, is used as a validation set. This process

iterates for ten times. In the end, the results of each iteration would be combined. K-fold

cross-validation method is mostly used by the researchers/academician and professionals

in empirical studies [114].

4.2.5 Performance Metrics

There exist various performance metrics/ measures. These metrics/ measures are used to

evaluate and analyze the performance of different ML algorithms. Different performance

metrics exist for classification and regression problems. The selection of performance

metrics/measures is very crucial. We have used AUC-ROC [115] performance metric. It

helps in identifying the goodness of a developed prediction model. AUC-ROC curve is

represented with a curve between recall and specificity. The value of AUC lies from 0 to 1.

Depending on AUC values, we can predict how good or bad the developed model [115].

The significance of AUC corresponding to 0, 0.5, and 1 has been represented in Eqn. 4.1

given below.

AUC =


0, the developed model wrongly classifies output class

0.5, no discrimination between output classes

1, the developed model perfectly classifies output class

(4.1)
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4.2.6 Statistical Test

The statistical test is used for validation of results. The statistical test is used to check if

there is any significant difference between the ML techniques used. Friedman test is used

for independent groups. The data can be randomly selected from any distribution for the

Friedman test [3]. This test does not consider any assumption; i.e., it is a non-parametric

test. With the help of these, we have checked if there is any significant difference among

the performance of ML algorithms used for HetDP. In the first step, we have designed two

hypotheses: the null hypothesis Ho and the alternate hypothesis Ha. In the second step,

we have obtained p value at a significant level of 0.05. The null hypothesis is accepted

if the p value > 0.05. An alternate hypothesis is accepted if the p value ≤ 0.05. The

Wilcoxon–signed rank test performed pairwise comparison [116]. However, it is used to

compare repeated measurements [117].

4.3 Results and Analysis

In this section, we have addressed the answers the RQs designed to experiment with

open-source dataset. The results for the comparison of HetDP and WPDP are presented in

this section.

4.3.1 Results Specific to RQ1

We have applied various FS techniques for selection of features from different projects.

Chi-square method and Recursive Feature Elimination (RFE) method. We have observed

that prediction model does not work efficiently after applying feature elimination method.

112



Results and Analysis

Moreover, the large number of features are reduced and irrelevant features are removed

using FS technique. With FS techniques, we got AUC values near 0.5. AUC value of 0.5

does not make correct predictions. We have performed experiment without FS techniques.

Based on the observation, the prediction model provided efficient result using FS technique.

Hence, it is concluded that FS techniques are necessary for WPDP.

4.3.2 Results Specific to RQ2

We have used different ML algorithms to develop these predictive models. For WPDP,

the AUC values are computed using different ML algorithms and 10-fold cross-validation

method. The values of 12 datasets used for WPDP are shown in Table 4.1. All ML

techniques performed significantly different based on the mathematical interpretation.

Table 4.1: AUC values for WPDP

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 ant-1.7 0.76 0.83 0.82 0.73 0.82 0.72 0.78
CM1 CM1 0.47 0.73 0.65 0.42 0.62 0.58 0.58
KC1 KC1 0.55 0.79 0.73 0.6 0.76 0.74 0.70
KC2 KC2 0.63 0.82 0.76 0.53 0.76 0.66 0.69
KC3 KC3 0.55 0.76 0.73 0.49 0.63 0.62 0.63
MC1 MC1 0.4 0.9 0.78 0.48 0.83 0.71 0.68
MC2 MC2 0.7 0.71 0.77 0.62 0.63 0.59 0.67
MW1 MW1 0.72 0.71 0.74 0.32 0.67 0.59 0.63
PC1 PC1 0.61 0.83 0.77 0.48 0.79 0.75 0.71
PC1 PC1 0.61 0.83 0.77 0.48 0.79 0.75 0.71
PC2 PC2 0.52 0.81 0.71 0.21 0.77 0.59 0.60
PC3 PC3 0.66 0.83 0.79 0.57 0.77 0.74 0.73
PC4 PC4 0.76 0.92 0.9 0.71 0.91 0.88 0.85

From the results obtained for WPDP, we have observed that RF technique performs better than

113



Results and Analysis

LR, HV, MLP, ADB, DT technique. RF works better for building a prediction model for WPDP as

it takes a combination of individual trees. RF provides a binary classification of data points, but it

also provides the probabilities for each instance belongs to defective and non-defective label. It is

observed that AUC values are improved for all datasets. In some of the datasets, LR, and HV also

performed efficiently.

4.3.3 Results Specific to RQ3

To answer this RQ, statistical test has been used. We have designed two hypotheses such as Ho and

Ha.

Ho:There is no statistical difference between six ML algorithms.

Ha: There is a statistical difference between six ML algorithms.

Friedman test is used for testing the above hypothesis. The statistical test is used at a significance

level of 0.05. The p value obtained is 0.00 in this case. The value of Friedman's statistics is

computed as 210.9. Hence, the p value is less than 0.05; we reject Ho and accept Ha. In Figure 4.3,

the Friedman mean rank corresponding to ML algorithms is presented. We have observed that the

mean rank of RF is highest, i.e., 4.92. It implies that RF performs efficiently in comparison to other

algorithms used in the study. ADB is the second-highest mean rank, i.e., 4.05, which implies that

after RF, ADB is best performing ML algorithm for HetDP. We have also performed Wilcoxon–

signed rank test to check the statistical difference among all the algorithms. The Wilcoxon–signed

rank test is used to check if there is any statistical difference exist or not. The hypothesis testing is

performed at 0.05 significance level. The p value provided by Wilcoxon–signed rank test is 0.000.

The computed p value is less than the significance level. Thus, there is a statistical difference

among the performance of ML algorithms. Hence, alternate hypothesis is accepted.
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Figure 4.3: Friedman Mean Rank for ML Algorithm

4.3.4 Results Specific to RQ4

To answer this RQ, we have experimented on different datasets. In HetDP, the source and target

dataset are different. This experiment has been observed at different cutoff threshold for metrics

matching. The metrics matching has been done by Spearman's correlation coefficient analyzer.

In this analyzer, we have performed experiments by taking different threshold values, e.g., cut-

off threshold = 0.1, 0.05, 0.3, 0.9. We have observed in this analyzer that by changing the threshold

to more than 0.05, it doesn’t perform well. Thus, we have set the threshold value to 0.05. Different

datasets are used as a target dataset. For which, we have executed our experiment iteratively, by

setting different source and target dataset in each iteration. In Table [4.2-4.12] presented the AUC

values corresponding to the ML algorithms used. The pairwise combination of the source and target

dataset are presented separately in Table [4.2-4.12].

TL concept helps us in developing a generalized model. Generalized defect prediction model

can be easily developed for industry or academic purpose. The software quality also improves with

generalized prediction model. We have used existing software knowledge for building purpose. We

can remove ambiguities in the new projects by using existed project's knowledge, patterns, design.

It improves maintainability, understandability of a software. It would be easy to use prediction

model for end-users. The feature-based TL method is used. The computed results were compared

with existing studies also. AUC values for RF in HetDP and WPDP is 0.673 and 0.803. However,
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the AUC values for RF in HetDP and WPDP in existing studies is 0.640 and 0.732. The AUC

values for DT in HetDP and WPDP is 0.617 and 0.681. However, the AUC values for DT and

WPDP in existing studies is 0.568 and 0.598. Hence, the computed AUC values indicated that RF

and DT performed better for HetDP and WPDP based on the experiment performed.

Table 4.2: AUC values for HetDP (Source dataset:-11 different dataset, Target dataset:-
ant-1.7)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
CM1 ant-1.7 0.67 0.71 0.69 0.57 0.72 0.67 0.67
KC1 ant-1.7 0.69 0.73 0.67 0.68 0.7 0.69 0.69
KC2 ant-1.7 0.68 0.72 0.67 0.58 0.67 0.7 0.67
KC3 ant-1.7 0.71 0.75 0.72 0.47 0.68 0.66 0.67
MC1 ant-1.7 0.61 0.72 0.66 0.54 0.69 0.66 0.65
MC2 ant-1.7 0.68 0.67 0.66 0.56 0.59 0.54 0.62
MW1 ant-1.7 0.65 0.63 0.64 0.56 0.61 0.6 0.62
PC1 ant-1.7 0.66 0.75 0.71 0.57 0.72 0.71 0.69
PC2 ant-1.7 0.68 0.73 0.7 0.62 0.72 0.69 0.69
PC3 ant-1.7 0.64 0.73 0.66 0.54 0.66 0.66 0.65
PC4 ant-1.7 0.63 0.73 0.67 0.56 0.71 0.69 0.67

Table 4.3: AUC values for HetDP (Source dataset:-10 different dataset, Target dataset:-
CM1)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 CM1 0.64 0.67 0.68 0.6 0.62 0.6 0.64
KC1 CM1 0.6 0.64 0.65 0.6 0.67 0.65 0.64
KC2 CM1 0.59 0.68 0.66 0.56 0.63 0.6 0.62
KC3 CM1 0.54 0.48 0.58 0.64 0.67 0.46 0.56
MC1 CM1 0.54 0.66 0.6 0.59 0.66 0.61 0.61
MW1 CM1 0.56 0.59 0.62 0.61 0.65 0.61 0.61
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PC1 CM1 0.62 0.71 0.63 0.5 0.69 0.59 0.62
PC2 CM1 0.57 0.6 0.6 0.52 0.64 0.54 0.58
PC3 CM1 0.58 0.68 0.63 0.49 0.65 0.61 0.61
PC4 CM1 0.55 0.71 0.6 0.49 0.7 0.49 0.59

Table 4.4: AUC values for HetDP (Source dataset:-11 different dataset, Target dataset:-
KC1)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 KC1 0.68 0.76 0.69 0.75 0.74 0.68 0.72
CM1 KC1 0.64 0.69 0.65 0.61 0.71 0.65 0.66
KC2 KC1 0.61 0.77 0.72 0.57 0.76 0.69 0.69
KC3 KC1 0.71 0.71 0.72 0.6 0.78 0.72 0.71
MC1 KC1 0.59 0.75 0.69 0.62 0.75 0.73 0.69
MC2 KC1 0.54 0.69 0.69 0.51 0.63 0.65 0.62
MW1 KC1 0.64 0.74 0.71 0.56 0.68 0.64 0.66
PC1 KC1 0.67 0.75 0.68 0.62 0.72 0.74 0.7
PC2 KC1 0.68 0.73 0.72 0.61 0.74 0.68 0.69
PC3 KC1 0.62 0.74 0.71 0.55 0.74 0.69 0.68
PC4 KC1 0.62 0.75 0.7 0.62 0.74 0.75 0.7

Table 4.5: AUC values for HetDP (Source dataset:-11 different dataset, Target dataset:-
KC2)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 KC2 0.79 0.82 0.8 0.76 0.78 0.68 0.77
CM1 KC2 0.71 0.79 0.75 0.7 0.8 0.67 0.74
KC1 KC2 0.73 0.81 0.81 0.69 0.77 0.69 0.75
KC3 KC2 0.76 0.82 0.79 0.6 0.8 0.79 0.76
MC1 KC2 0.63 0.79 0.76 0.65 0.76 0.68 0.71
MC2 KC2 0.8 0.76 0.78 0.63 0.74 0.67 0.73
MW1 KC2 0.75 0.79 0.75 0.6 0.67 0.64 0.7
PC1 KC2 0.72 0.79 0.8 0.68 0.76 0.74 0.75
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PC2 KC2 0.78 0.79 0.79 0.7 0.75 0.75 0.76
PC3 KC2 0.72 0.8 0.77 0.67 0.77 0.75 0.75
PC4 KC2 0.74 0.79 0.77 0.64 0.77 0.66 0.73

Table 4.6: AUC values for HetDP (Source dataset:-11 different dataset, Target dataset:-
KC3)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 KC3 0.78 0.84 0.79 0.8 0.77 0.74 0.79
CM1 KC3 0.54 0.58 0.6 0.5 0.47 0.58 0.55
KC1 KC3 0.56 0.61 0.58 0.45 0.45 0.44 0.52
KC2 KC3 0.63 0.64 0.65 0.49 0.6 0.51 0.59
MC1 KC3 0.59 0.62 0.64 0.48 0.56 0.55 0.57
MC2 KC3 0.51 0.57 0.46 0.39 0.52 0.49 0.49
MW1 KC3 0.66 0.63 0.6 0.51 0.69 0.42 0.59
PC1 KC3 0.66 0.6 0.64 0.46 0.59 0.53 0.58
PC2 KC3 0.63 0.57 0.66 0.56 0.55 0.46 0.57
PC3 KC3 0.46 0.54 0.52 0.51 0.58 0.52 0.52
PC4 KC3 0.59 0.52 0.56 0.6 0.56 0.52 0.56

Table 4.7: AUC values for HetDP (Source dataset:-9 different dataset, Target dataset:-
MC1)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 MC1 0.62 0.74 0.62 0.52 0.56 0.54 0.6
CM1 MC1 0.5 0.6 0.59 0.35 0.59 0.56 0.53
KC1 MC1 0.5 0.62 0.62 0.54 0.61 0.67 0.59
KC2 MC1 0.5 0.52 0.59 0.41 0.5 0.5 0.5
MW1 MC1 0.62 0.64 0.55 0.53 0.61 0.52 0.58
PC1 MC1 0.41 0.42 0.51 0.42 0.49 0.51 0.46
PC2 MC1 0.53 0.47 0.5 0.55 0.47 0.56 0.51
PC3 MC1 0.58 0.62 0.62 0.59 0.59 0.46 0.58
PC4 MC1 0.54 0.65 0.64 0.55 0.61 0.65 0.61
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Table 4.8: AAUC values for HetDP (Source dataset:-11 different dataset, Target dataset:-
MC2)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 MC2 0.61 0.46 0.54 0.49 0.46 0.57 0.52
CM1 MC2 0.67 0.68 0.66 0.57 0.67 0.56 0.64
KC1 MC2 0.78 0.76 0.77 0.64 0.81 0.72 0.75
KC2 MC2 0.7 0.71 0.74 0.56 0.61 0.7 0.67
KC3 MC2 0.61 0.66 0.57 0.48 0.59 0.61 0.59
MC1 MC2 0.67 0.59 0.62 0.49 0.57 0.54 0.58
MW1 MC2 0.61 0.52 0.64 0.5 0.56 0.48 0.55
PC1 MC2 0.66 0.56 0.61 0.59 0.55 0.57 0.59
PC2 MC2 0.65 0.57 0.64 0.49 0.46 0.57 0.56
PC3 MC2 0.58 0.57 0.55 0.51 0.57 0.55 0.56
PC4 MC2 0.56 0.56 0.56 0.48 0.6 0.42 0.53

Table 4.9: AUC values for HetDP (Source dataset:-11 different dataset, Target dataset:-
MW1

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 MW1 0.56 0.63 0.56 0.52 0.57 0.51 0.56
CM1 MW1 0.56 0.68 0.62 0.53 0.55 0.55 0.58
KC1 MW1 0.54 0.66 0.6 0.47 0.56 0.56 0.57
KC2 MW1 0.62 0.61 0.66 0.44 0.53 0.43 0.55
KC3 MW1 0.64 0.52 0.46 0.51 0.39 0.48 0.5
MC1 MW1 0.63 0.55 0.6 0.57 0.57 0.5 0.57
MC2 MW1 0.36 0.52 0.57 0.52 0.34 0.68 0.5
PC1 MW1 0.6 0.6 0.6 0.44 0.56 0.54 0.56
PC2 MW1 0.64 0.68 0.64 0.54 0.53 0.6 0.61
PC3 MW1 0.69 0.67 0.71 0.54 0.59 0.47 0.61
PC4 MW1 0.55 0.54 0.55 0.56 0.46 0.57 0.54
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Table 4.10: AUC values for HetDP (Source dataset:-10 different dataset, Target dataset:-
PC1

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 PC1 0.66 0.67 0.62 0.59 0.61 0.47 0.6
CM1 PC1 0.43 0.64 0.6 0.4 0.57 0.51 0.53
KC1 PC1 0.57 0.72 0.67 0.59 0.78 0.74 0.68
KC2 PC1 0.66 0.7 0.59 0.51 0.6 0.53 0.6
KC3 PC1 0.68 0.73 0.76 0.42 0.74 0.63 0.66
MC1 PC1 0.53 0.59 0.56 0.53 0.63 0.66 0.58
MW1 PC1 0.69 0.64 0.68 0.69 0.6 0.62 0.65
PC2 PC1 0.61 0.6 0.65 0.53 0.66 0.49 0.59
PC3 PC1 0.55 0.69 0.63 0.56 0.72 0.67 0.64
PC4 PC1 0.56 0.69 0.64 0.48 0.6 0.57 0.59

Table 4.11: AUC values for HetDP (Source dataset:= 8 different test, Target dataset:- PC2)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 PC2 0.6 0.48 0.51 0.42 0.66 0.58 0.54
CM1 PC2 0.4 0.57 0.49 0.63 0.55 0.66 0.55
KC1 PC2 0.58 0.7 0.73 0.5 0.48 0.6 0.6
KC2 PC2 0.28 0.65 0.4 0.42 0.4 0.41 0.43
MC1 PC2 0.6 0.64 0.59 0.63 0.53 0.5 0.58
PC1 PC2 0.67 0.58 0.64 0.49 0.52 0.6 0.58
PC3 PC2 0.48 0.5 0.49 0.45 0.49 0.56 0.5
PC4 PC2 0.39 0.58 0.45 0.46 0.51 0.48 0.48
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Table 4.12: AUC values for HetDP (Source dataset:= 11 different test, Target dataset:-
PC1)

Source Target LR RF HV MLP ADB DT Average
ant-1.7 PC3 0.66 0.75 0.67 0.65 0.73 0.67 0.69
CM1 PC3 0.57 0.76 0.69 0.58 0.69 0.66 0.66
KC1 PC3 0.56 0.74 0.65 0.59 0.71 0.69 0.66
KC2 PC3 0.6 0.71 0.68 0.58 0.71 0.69 0.66
KC3 PC3 0.45 0.67 0.62 0.42 0.77 0.65 0.6
MC1 PC3 0.63 0.74 0.69 0.61 0.75 0.73 0.69
MC2 PC3 0.67 0.84 0.76 0.46 0.87 0.77 0.73
MW1 PC3 0.63 0.65 0.61 0.37 0.69 0.54 0.58
PC1 PC3 0.62 0.77 0.72 0.55 0.74 0.72 0.69
PC2 PC3 0.78 0.76 0.72 0.6 0.72 0.62 0.7
PC4 PC3 0.6 0.76 0.68 0.48 0.74 0.74 0.67

The feature-based TL method is used for HetDP. We have selected equal feature count from

source and target projects, through which the defect prediction knowledge is transferred for testing

of the target project. We have performed metrics matching from the selected features using

Spearman's correlation coefficient. Based on the correlation coefficient among these features, we

selected metrics for training and test data. The prediction model is developed using one project

dataset for training, and we use that model for the prediction of labels in test data. In this manner, we

have transferred the feature-based knowledge from source and target projects to build a prediction

model. In order to analyze the effectiveness of HetDP, we have performed hypothesis testing.

Hypothesis testing is performed using the Friedman test. These hypotheses are designed based on

the effectiveness of HetDP and WPDP using R algorithm.

Ho:HetDP performs better than WDP for RF

Ha:WDP performs better than HetDP for RF

The Friedman test is used to test the above hypothesis. The statistical test was performed
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at a 0.05 significance level. The obtained p value is 0.001. The value of Friedman's statistics is

computed as 12.0. Hence, the p value is less than 0.05. Therefore, we reject Ho and accept Ha.

Table 4.14, represents the Friedman mean rank for HetDP and WPDP corresponding to RF ML

algorithm. It is observed that the mean rank of WPDP is highest, i.e., 2.00. Hence, RF performed

efficiently for WPDP.

Table 4.13: Friedman Mean Rank for defect prediction methods using RF

DP Method Mean Rank
RF for HetDP 1.00
RF for WPDP 2.00

4.4 Discussion

The datasets used for experimentation contain projects developed in various languages such as C,

Java, and C++. To analyze the capability of defect prediction techniques, we have used dataset of

two different groups, named as NASA and PROMISE. In the experimental procedure, firstly, we

have developed a predictive model for predicting defects using different ML algorithms and 10-fold

cross-validation for WPDP. In the next experiment, we have developed a predictive model using

different ML algorithms and 10-fold cross-validation methods for HetDP. We have observed that the

size of source dataset should be larger than 23%. It is observed that due to the presence of historical

data in WPDP, it provides a better result. In this way, it would be helpful to identify the defects in

the early stage before its delivery to end-users. Lastly, we have tested hypothesis using Friedman

test. The designed hypothesis used to evaluate the significant difference between ML algorithms

for HetDP. The result of Friedman test proves that there is a significant difference among all ML

algorithms used. With our observation on Friedman's mean ranks, RF performs best for HetDP in

our experiments. The hypothesis testing has been performed to analyze the performance of RF in
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WPDP and HetDP. Thus, RF performs best out of all the six ML algorithms used. Moreover, we

test this experiment with large datasets with different techniques. We also investigate the effect of

TL on defect prediction models with different datasets considering optimization.
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Chapter 5

Cross-Project Defect Prediction Model

using Transfer Learning

5.1 Introduction

In software engineering field, defect prediction is one of the important research area. In

the last few years, defect prediction is exhaustively studied [30]. SDP aims to detect defect

prone modules at different levels, such as functions, classes, and files. It improves software

quality, reduces cost, and development time. It helps in software quality assurance in terms

of software development effort, software testing or code review. It plays a significant role

when an organization has limited resources. Over the past few years, researchers have

developed various methods for defect prediction at an early stage.

TL is a new research area for transferring knowledge across different projects. The

concept of TL is to learn some knowledge while solving some problems and apply that
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knowledge to a similar problem. TL states that the knowledge extracted or learned from

the existing code can be applied to the innovative system. TL concept has been used for

DP. TL is used such that the model is trained on one dataset which can be also termed

as pre-trained model. Now, pre-trained model is used to test another project of similar

characteristics. Feature based TL is used such that the two training and testing dataset

have a similar features to some extent. In order to select the matching features we have

used algorithm for selection of matching pairs out of all the features for development of

prediction model. TL is used to obtain generalized and unbiased results.

Nowadays, researchers, software experts, and academicians are working beyond WPDP.

Moreover, in the upcoming years, the systems are designed with innovative ideas and

techniques. The larger part of existing codes is used for the designing of innovative

systems. However, using existing code, which is designed by different peoples with

different techniques, was difficult to understand by other people. Thus, the concept of TL

has emerged.

Data on various open source projects has been collected for development of prediction

model. These software data consist of different types of software metrics and label such as

defective or non-defective. Software metrics are defined as a quantitative measure. These

metrics are a descriptive analysis of software data. There are various types of software

metrics discussed in Chapter 2. The label indicates the presence of a defect in the project's

data. Labels are used for the indication of defect presence.

The proposed models for defect prediction are designed for WPDP and HetDP. In

WPDP, training and testing of model has been on the same project. Each instance in WPDP,

represents particular module of a project. The presence of labels corresponding to each

instance whether the module is defective or not, i.e., defect proneness tendency of a project
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is present in the column of a project dataset. In WPDP, the prediction model is trained on

some part of Project X, and testing of the prediction model is done on some part of Project

X. However, WPDP has various limitations. WPDP can not be used when we have to make

a defect prediction for completely new projects. In some other cases also, when different

people were working on the same project for a longer duration, then many changes are

introduced in the code. With the help of the previous code, we can not predict the defect

for a newer version or with new changes in the code. To overcome this issue, researchers

and academicians have started exploring CPDP.

CPDP takes two different projects for training and testing. In CPDP, Project A can

be used for training, and Project B can be used for testing. In this way, CPDP can be

used for projects having lack of historical data. Till now, most of the researchers and

academician have explored CPDP for the projects that have same software metric; that

limits the CPDP. Thus, HetDP approach has been proposed. HetDP allows prediction

between two projects if they use different metrics. There exist various limitations of CPDP

[30]. The open-source, available datasets consist of different metric sets. In heterogeneous

data, all the projects have completely different metrics. For example, the datasets of

AEEEM group consist of 61 software metrics and the NASA dataset in the PROMISE

repository consist of 31 software metrics. There exist various studies in literature based on

cross-project validation [3, 110, 111]. However, most of the authors have not developed

models for generalized results. Thus, to achieve generalized results, we have developed

a predictive model for defect prediction using different ML algorithms across different

projects.

We have analyzed the HetDP approach for defect prediction across various projects

with different metrics suite. Thus, using HetDP, researchers or experts can develop other
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prediction models to predict defects. HetDP finds the matching metrics having same

distribution from source (Project A) to target (Project B) dataset. For effective knowledge

transfer, we have also demonstrated the size of a source and target dataset. To achieve our

aim of improving the model for defect prediction using heterogeneous metrics, we have

formulated the research questions. The RQs are as follows: RQ1: Does the FS is necessary

for WPDP? RQ2: How does WPDP models performed using 10-fold cross-validation?

RQ3: Which ML algorithm performs best for HetDP using TL? RQ4: How does HetDP

models performed using 10-fold cross-validation in comparison to WPDP?

The main contribution of conducting experiment in this chapter is to analyze, experi-

ment and assess the empirical evidence regarding (1) the importance of FS for WPDP (2)

performance capability of ML techniques for HetDP (3) predictive performance capability

of HetDP and WPDP in comparison to 10-fold cross validation (4) the applicability of

CPDP. Defect prediction models are developed using different ML algorithms to produce

generalized results using TL.

This chapter is organized as follows: Section 4.2 describes the research background

with respect to experiment conducted in this chapter. Section 4.3 discusses the results

of the chapter in the form of answers to RQs. Section 4.4 stated the key findings of the

chapter. The results of this chapter are published in [112].

5.2 Research Background

The research background of this chapter is discussed in this section.
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5.2.1 Dataset used

The dataset used for experimentation is referred in Chapter 2 Section 2.7.3.1.

We have discussed HetDP with different datasets of two different groups. In HetDP,

we have considered two different datasets, one is source dataset, and another one is the

target dataset, with different metrics. The instance is represented by a tuple of dataset,

and metrics are represented by an attribute of a dataset. The last attribute of a dataset

represents a label for the presence and absence of defects. In Figure 4.1, we have presented

the framework for HetDP. In the first step, we have selected source (X) and target project

(Y). The source and target dataset have a different metrics set. In the second step, we have

selected metrics from both the projects. We have selected equal number of metrics from

source and target dataset. In the next level, we find matching metrics for the target dataset

into the source dataset. The matching metrics in the source and target dataset are found

based on the similarity among them. The metrics matching performed with the help of a

correlation analyzer. At the end of this process, we have a set of matched metrics from

source and target dataset. The matched source dataset has been trained using different ML

algorithms. This step results in a prediction model that can be further used for predicting

labels of the target dataset.

The WPDP has been explained in Figure 4.2. WPDP considers a single project data due to

lack of traditional data. In WPDP, we have divided a dataset in two different parts. One

part of a dataset is training data and another part is testing data. In the second step, it builds

a model for the training data, and it uses that model for predicting labels of test data. In

the next subsections, we have explained the approach in more detail.
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Figure 5.1: Framework for Heterogeneous Defect Prediction

Figure 5.2: Framework for Within Project Defect Prediction

5.2.2 Data Collection

We have collected data from an open-source repository. NASA and PROMISE group

dataset are used in the study. The dataset collected from these groups has different projects

and attributes. These dataset consist of various software metrics. Each software metric

provided with some numerical value corresponding to each module of a project. The last
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column corresponding to each module of a project provides a label for defect proneness.

The defect proneness attribute is considered as an dependent variable.

5.2.3 Development of Prediction Model

The ML algorithms used for experimentation are LR, RF, HV, MLP, ADB, and DT. These

ML algorithms have been discussed below:

1. LR:- LR is named after a function called as sigmoid function. This function is

interpreted by an S-shaped curve that takes a real-valued number and maps it to

values in the range of 0 and 1, but it should not be at the extreme points. The

coefficients of the LR algorithm are determined from training data.

2. RF:- The name of this technique itself specifies that it consists of various DT. These

individual DT operate as groups, i.e., ensemble. In this technique, each RF redicts

an output class label, and the class having majority counts represents the prediction

model. RF provides an understandable model for researchers and academician. This

algorithm is robust to noisy and missing values of the dataset.

3. HV:- In HV technique, various ML algorithms are combined to build a prediction

model.

4. MLP:- This technique consists of multiple perceptrons. It is focused on creating

robust algorithms and used those algorithms for building a prediction model. How-

ever, NN can learn the training data representation easily, and it easily predicts the

label of the output variable. These networks can learn the mapping function, and

they are proved as a global algorithm. The predictive capability of NN comes from
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the hierarchical or multi-layered structure of the networks. It takes different features

of input data over various scales and group them into high-order features.

5. ADB:- This classifier also makes a prediction. It is similar to the RF classifier.

It applies multiple DT to individual samples, and it takes a combination of these

predictions from each DT or majority trees in the classification problem. Each DT

contributes a significant amount to the final prediction.

6. DT:- This technique works on the divide and conquer concept. It uses a heuristic

approach known as recursive partitioning. This approach is based on the divide

and conquer problem. It divides the original dataset into small groups, which are

repeatedly split into even smaller groups. It solves each subproblem. In the end, the

solution of all subproblems combined to produce solution to the actual problem. DT

is easy to apply and easy for development of prediction models. It is not based on

any assumption. It is not affected by the presence of outliers.

5.2.4 Cross-Validation Method

Cross-validation is a technique used for model evaluation by partitioning the given dataset

into two parts [3]. One part is used for training, and another part is used for testing data.

The data is divided into respective ratio and proportion using cross-validation method. The

model is trained using training dataset. The prediction model is used for making predictions

of testing data. The division of dataset into training and testing dataset depend on the type

of cross-validation method used [113]. There exist three types of cross-validation methods,

such as hold-out validation, K-fold cross-validation, and leave-one-out cross-validation.

We have used K-fold cross-validation for conducting experiment.
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In K-fold cross-validation, the dataset is divided into K different parts. K-1 parts are

used for training the model, and the remaining part is used for testing. The value of K

is considered as 10. In 10-fold cross-validation, the complete dataset is partitioned into

ten parts, and each part is of equal size. Nine parts are randomly selected for training,

while the remaining part, i.e., the tenth part, is used as a validation set. This process

iterates for ten times. In the end, the results of each iteration would be combined. K-fold

cross-validation method is mostly used by the researchers/academician and professionals

in empirical studies [114].

5.2.5 Performance Metrics

There exist various performance metrics/ measures. These metrics/ measures are used to

evaluate and analyze the performance of different ML algorithms. Different performance

metrics exist for classification and regression problems. The selection of performance

metrics/measures is very crucial. We have used AUC-ROC [115] performance metric. It

helps in identifying the goodness of a developed prediction model. AUC-ROC curve is

represented with a curve between recall and specificity. The value of AUC lies from 0 to 1.

Depending on AUC values, we can predict how good or bad the developed model [115].

The significance of AUC corresponding to 0, 0.5, and 1 has been represented in Eqn. 4.1

given below.

AUC =


0, the developed model wrongly classifies output class

0.5, no discrimination between output classes

1, the developed model perfectly classifies output class

(5.1)
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5.2.6 Statistical Test

The statistical test is used for validation of results. The statistical test is used to check if

there is any significant difference between the ML techniques used. Friedman test is used

for independent groups. The data can be randomly selected from any distribution for the

Friedman test [3]. This test does not consider any assumption; i.e., it is a non-parametric

test. With the help of these, we have checked if there is any significant difference among

the performance of ML algorithms used for HetDP. In the first step, we have designed two

hypotheses: the null hypothesis Ho and the alternate hypothesis Ha. In the second step,

we have obtained p value at a significant level of 0.05. The null hypothesis is accepted

if the p value > 0.05. An alternate hypothesis is accepted if the p value ≤ 0.05. The

Wilcoxon–signed rank test performed pairwise comparison [116]. However, it is used to

compare repeated measurements [117].

5.3 Results and Analysis

In this section, we have addressed the answers the RQs designed to experiment with

open-source dataset. The results for the comparison of HetDP and WPDP are presented in

this section.

5.3.1 Results Specific to RQ1

We have applied various FS techniques for selection of features from different projects.

Chi-square method and Recursive Feature Elimination (RFE) method. We have observed

that prediction model does not work efficiently after applying feature elimination method.
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Moreover, the large number of features are reduced and irrelevant features are removed

using FS technique. With FS techniques, we got AUC values near 0.5. AUC value of 0.5

does not make correct predictions. We have performed experiment without FS techniques.

Based on the observation, the prediction model provided efficient result using FS technique.

Hence, it is concluded that FS techniques are necessary for WPDP.

5.3.2 Results Specific to RQ2

We have used different ML algorithms to develop these predictive models. For WPDP,

the AUC values are computed using different ML algorithms and 10-fold cross-validation

method. The values of 12 datasets used for WPDP are shown in Table 4.1. All ML

techniques performed significantly different based on the mathematical interpretation.

Table 5.1: AUC values for WPDP

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 ant-1.7 0.76 0.83 0.82 0.73 0.82 0.72 0.78
CM1 CM1 0.47 0.73 0.65 0.42 0.62 0.58 0.58
KC1 KC1 0.55 0.79 0.73 0.6 0.76 0.74 0.70
KC2 KC2 0.63 0.82 0.76 0.53 0.76 0.66 0.69
KC3 KC3 0.55 0.76 0.73 0.49 0.63 0.62 0.63
MC1 MC1 0.4 0.9 0.78 0.48 0.83 0.71 0.68
MC2 MC2 0.7 0.71 0.77 0.62 0.63 0.59 0.67
MW1 MW1 0.72 0.71 0.74 0.32 0.67 0.59 0.63
PC1 PC1 0.61 0.83 0.77 0.48 0.79 0.75 0.71
PC1 PC1 0.61 0.83 0.77 0.48 0.79 0.75 0.71
PC2 PC2 0.52 0.81 0.71 0.21 0.77 0.59 0.60
PC3 PC3 0.66 0.83 0.79 0.57 0.77 0.74 0.73
PC4 PC4 0.76 0.92 0.9 0.71 0.91 0.88 0.85

From the results obtained for WPDP, we have observed that RF technique performs better than
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LR, HV, MLP, ADB, DT technique. RF works better for building a prediction model for WPDP as

it takes a combination of individual trees. RF provides a binary classification of data points, but it

also provides the probabilities for each instance belongs to defective and non-defective label. It is

observed that AUC values are improved for all datasets. In some of the datasets, LR, and HV also

performed efficiently.

5.3.3 Results Specific to RQ3

To answer this RQ, statistical test has been used. We have designed two hypotheses such as Ho and

Ha.

Ho:There is no statistical difference between six ML algorithms.

Ha: There is a statistical difference between six ML algorithms.

Friedman test is used for testing the above hypothesis. The statistical test is used at a significance

level of 0.05. The p value obtained is 0.00 in this case. The value of Friedman's statistics is

computed as 210.9. Hence, the p value is less than 0.05; we reject Ho and accept Ha. In Figure 4.3,

the Friedman mean rank corresponding to ML algorithms is presented. We have observed that the

mean rank of RF is highest, i.e., 4.92. It implies that RF performs efficiently in comparison to other

algorithms used in the study. ADB is the second-highest mean rank, i.e., 4.05, which implies that

after RF, ADB is best performing ML algorithm for HetDP. We have also performed Wilcoxon–

signed rank test to check the statistical difference among all the algorithms. The Wilcoxon–signed

rank test is used to check if there is any statistical difference exist or not. The hypothesis testing is

performed at 0.05 significance level. The p value provided by Wilcoxon–signed rank test is 0.000.

The computed p value is less than the significance level. Thus, there is a statistical difference

among the performance of ML algorithms. Hence, alternate hypothesis is accepted.
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Figure 5.3: Friedman Mean Rank for ML Algorithm

5.3.4 Results Specific to RQ4

To answer this RQ, we have experimented on different datasets. In HetDP, the source and target

dataset are different. This experiment has been observed at different cutoff threshold for metrics

matching. The metrics matching has been done by Spearman's correlation coefficient analyzer.

In this analyzer, we have performed experiments by taking different threshold values, e.g., cut-

off threshold = 0.1, 0.05, 0.3, 0.9. We have observed in this analyzer that by changing the threshold

to more than 0.05, it doesn’t perform well. Thus, we have set the threshold value to 0.05. Different

datasets are used as a target dataset. For which, we have executed our experiment iteratively, by

setting different source and target dataset in each iteration. In Table [4.2-4.12] presented the AUC

values corresponding to the ML algorithms used. The pairwise combination of the source and target

dataset are presented separately in Table [4.2-4.12].

TL concept helps us in developing a generalized model. Generalized defect prediction model

can be easily developed for industry or academic purpose. The software quality also improves with

generalized prediction model. We have used existing software knowledge for building purpose. We

can remove ambiguities in the new projects by using existed project's knowledge, patterns, design.

It improves maintainability, understandability of a software. It would be easy to use prediction

model for end-users. The feature-based TL method is used. The computed results were compared

with existing studies also. AUC values for RF in HetDP and WPDP is 0.673 and 0.803. However,
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the AUC values for RF in HetDP and WPDP in existing studies is 0.640 and 0.732. The AUC

values for DT in HetDP and WPDP is 0.617 and 0.681. However, the AUC values for DT and

WPDP in existing studies is 0.568 and 0.598. Hence, the computed AUC values indicated that RF

and DT performed better for HetDP and WPDP based on the experiment performed.

Table 5.2: AUC values for HetDP (Source dataset:-11 different dataset, Target dataset:-
ant-1.7)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
CM1 ant-1.7 0.67 0.71 0.69 0.57 0.72 0.67 0.67
KC1 ant-1.7 0.69 0.73 0.67 0.68 0.7 0.69 0.69
KC2 ant-1.7 0.68 0.72 0.67 0.58 0.67 0.7 0.67
KC3 ant-1.7 0.71 0.75 0.72 0.47 0.68 0.66 0.67
MC1 ant-1.7 0.61 0.72 0.66 0.54 0.69 0.66 0.65
MC2 ant-1.7 0.68 0.67 0.66 0.56 0.59 0.54 0.62
MW1 ant-1.7 0.65 0.63 0.64 0.56 0.61 0.6 0.62
PC1 ant-1.7 0.66 0.75 0.71 0.57 0.72 0.71 0.69
PC2 ant-1.7 0.68 0.73 0.7 0.62 0.72 0.69 0.69
PC3 ant-1.7 0.64 0.73 0.66 0.54 0.66 0.66 0.65
PC4 ant-1.7 0.63 0.73 0.67 0.56 0.71 0.69 0.67

Table 5.3: AUC values for HetDP (Source dataset:-10 different dataset, Target dataset:-
CM1)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 CM1 0.64 0.67 0.68 0.6 0.62 0.6 0.64
KC1 CM1 0.6 0.64 0.65 0.6 0.67 0.65 0.64
KC2 CM1 0.59 0.68 0.66 0.56 0.63 0.6 0.62
KC3 CM1 0.54 0.48 0.58 0.64 0.67 0.46 0.56
MC1 CM1 0.54 0.66 0.6 0.59 0.66 0.61 0.61
MW1 CM1 0.56 0.59 0.62 0.61 0.65 0.61 0.61
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PC1 CM1 0.62 0.71 0.63 0.5 0.69 0.59 0.62
PC2 CM1 0.57 0.6 0.6 0.52 0.64 0.54 0.58
PC3 CM1 0.58 0.68 0.63 0.49 0.65 0.61 0.61
PC4 CM1 0.55 0.71 0.6 0.49 0.7 0.49 0.59

Table 5.4: AUC values for HetDP (Source dataset:-11 different dataset, Target dataset:-
KC1)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 KC1 0.68 0.76 0.69 0.75 0.74 0.68 0.72
CM1 KC1 0.64 0.69 0.65 0.61 0.71 0.65 0.66
KC2 KC1 0.61 0.77 0.72 0.57 0.76 0.69 0.69
KC3 KC1 0.71 0.71 0.72 0.6 0.78 0.72 0.71
MC1 KC1 0.59 0.75 0.69 0.62 0.75 0.73 0.69
MC2 KC1 0.54 0.69 0.69 0.51 0.63 0.65 0.62
MW1 KC1 0.64 0.74 0.71 0.56 0.68 0.64 0.66
PC1 KC1 0.67 0.75 0.68 0.62 0.72 0.74 0.7
PC2 KC1 0.68 0.73 0.72 0.61 0.74 0.68 0.69
PC3 KC1 0.62 0.74 0.71 0.55 0.74 0.69 0.68
PC4 KC1 0.62 0.75 0.7 0.62 0.74 0.75 0.7

Table 5.5: AUC values for HetDP (Source dataset:-11 different dataset, Target dataset:-
KC2)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 KC2 0.79 0.82 0.8 0.76 0.78 0.68 0.77
CM1 KC2 0.71 0.79 0.75 0.7 0.8 0.67 0.74
KC1 KC2 0.73 0.81 0.81 0.69 0.77 0.69 0.75
KC3 KC2 0.76 0.82 0.79 0.6 0.8 0.79 0.76
MC1 KC2 0.63 0.79 0.76 0.65 0.76 0.68 0.71
MC2 KC2 0.8 0.76 0.78 0.63 0.74 0.67 0.73
MW1 KC2 0.75 0.79 0.75 0.6 0.67 0.64 0.7
PC1 KC2 0.72 0.79 0.8 0.68 0.76 0.74 0.75
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PC2 KC2 0.78 0.79 0.79 0.7 0.75 0.75 0.76
PC3 KC2 0.72 0.8 0.77 0.67 0.77 0.75 0.75
PC4 KC2 0.74 0.79 0.77 0.64 0.77 0.66 0.73

Table 5.6: AUC values for HetDP (Source dataset:-11 different dataset, Target dataset:-
KC3)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 KC3 0.78 0.84 0.79 0.8 0.77 0.74 0.79
CM1 KC3 0.54 0.58 0.6 0.5 0.47 0.58 0.55
KC1 KC3 0.56 0.61 0.58 0.45 0.45 0.44 0.52
KC2 KC3 0.63 0.64 0.65 0.49 0.6 0.51 0.59
MC1 KC3 0.59 0.62 0.64 0.48 0.56 0.55 0.57
MC2 KC3 0.51 0.57 0.46 0.39 0.52 0.49 0.49
MW1 KC3 0.66 0.63 0.6 0.51 0.69 0.42 0.59
PC1 KC3 0.66 0.6 0.64 0.46 0.59 0.53 0.58
PC2 KC3 0.63 0.57 0.66 0.56 0.55 0.46 0.57
PC3 KC3 0.46 0.54 0.52 0.51 0.58 0.52 0.52
PC4 KC3 0.59 0.52 0.56 0.6 0.56 0.52 0.56

Table 5.7: AUC values for HetDP (Source dataset:-9 different dataset, Target dataset:-
MC1)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 MC1 0.62 0.74 0.62 0.52 0.56 0.54 0.6
CM1 MC1 0.5 0.6 0.59 0.35 0.59 0.56 0.53
KC1 MC1 0.5 0.62 0.62 0.54 0.61 0.67 0.59
KC2 MC1 0.5 0.52 0.59 0.41 0.5 0.5 0.5
MW1 MC1 0.62 0.64 0.55 0.53 0.61 0.52 0.58
PC1 MC1 0.41 0.42 0.51 0.42 0.49 0.51 0.46
PC2 MC1 0.53 0.47 0.5 0.55 0.47 0.56 0.51
PC3 MC1 0.58 0.62 0.62 0.59 0.59 0.46 0.58
PC4 MC1 0.54 0.65 0.64 0.55 0.61 0.65 0.61
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Table 5.8: AAUC values for HetDP (Source dataset:-11 different dataset, Target dataset:-
MC2)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 MC2 0.61 0.46 0.54 0.49 0.46 0.57 0.52
CM1 MC2 0.67 0.68 0.66 0.57 0.67 0.56 0.64
KC1 MC2 0.78 0.76 0.77 0.64 0.81 0.72 0.75
KC2 MC2 0.7 0.71 0.74 0.56 0.61 0.7 0.67
KC3 MC2 0.61 0.66 0.57 0.48 0.59 0.61 0.59
MC1 MC2 0.67 0.59 0.62 0.49 0.57 0.54 0.58
MW1 MC2 0.61 0.52 0.64 0.5 0.56 0.48 0.55
PC1 MC2 0.66 0.56 0.61 0.59 0.55 0.57 0.59
PC2 MC2 0.65 0.57 0.64 0.49 0.46 0.57 0.56
PC3 MC2 0.58 0.57 0.55 0.51 0.57 0.55 0.56
PC4 MC2 0.56 0.56 0.56 0.48 0.6 0.42 0.53

Table 5.9: AUC values for HetDP (Source dataset:-11 different dataset, Target dataset:-
MW1

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 MW1 0.56 0.63 0.56 0.52 0.57 0.51 0.56
CM1 MW1 0.56 0.68 0.62 0.53 0.55 0.55 0.58
KC1 MW1 0.54 0.66 0.6 0.47 0.56 0.56 0.57
KC2 MW1 0.62 0.61 0.66 0.44 0.53 0.43 0.55
KC3 MW1 0.64 0.52 0.46 0.51 0.39 0.48 0.5
MC1 MW1 0.63 0.55 0.6 0.57 0.57 0.5 0.57
MC2 MW1 0.36 0.52 0.57 0.52 0.34 0.68 0.5
PC1 MW1 0.6 0.6 0.6 0.44 0.56 0.54 0.56
PC2 MW1 0.64 0.68 0.64 0.54 0.53 0.6 0.61
PC3 MW1 0.69 0.67 0.71 0.54 0.59 0.47 0.61
PC4 MW1 0.55 0.54 0.55 0.56 0.46 0.57 0.54
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Table 5.10: AUC values for HetDP (Source dataset:-10 different dataset, Target dataset:-
PC1

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 PC1 0.66 0.67 0.62 0.59 0.61 0.47 0.6
CM1 PC1 0.43 0.64 0.6 0.4 0.57 0.51 0.53
KC1 PC1 0.57 0.72 0.67 0.59 0.78 0.74 0.68
KC2 PC1 0.66 0.7 0.59 0.51 0.6 0.53 0.6
KC3 PC1 0.68 0.73 0.76 0.42 0.74 0.63 0.66
MC1 PC1 0.53 0.59 0.56 0.53 0.63 0.66 0.58
MW1 PC1 0.69 0.64 0.68 0.69 0.6 0.62 0.65
PC2 PC1 0.61 0.6 0.65 0.53 0.66 0.49 0.59
PC3 PC1 0.55 0.69 0.63 0.56 0.72 0.67 0.64
PC4 PC1 0.56 0.69 0.64 0.48 0.6 0.57 0.59

Table 5.11: AUC values for HetDP (Source dataset:= 8 different test, Target dataset:- PC2)

Source Target LR RF HV MLP ADB DT Average
dataset dataset AUC value
ant-1.7 PC2 0.6 0.48 0.51 0.42 0.66 0.58 0.54
CM1 PC2 0.4 0.57 0.49 0.63 0.55 0.66 0.55
KC1 PC2 0.58 0.7 0.73 0.5 0.48 0.6 0.6
KC2 PC2 0.28 0.65 0.4 0.42 0.4 0.41 0.43
MC1 PC2 0.6 0.64 0.59 0.63 0.53 0.5 0.58
PC1 PC2 0.67 0.58 0.64 0.49 0.52 0.6 0.58
PC3 PC2 0.48 0.5 0.49 0.45 0.49 0.56 0.5
PC4 PC2 0.39 0.58 0.45 0.46 0.51 0.48 0.48
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Table 5.12: AUC values for HetDP (Source dataset:= 11 different test, Target dataset:-
PC1)

Source Target LR RF HV MLP ADB DT Average
ant-1.7 PC3 0.66 0.75 0.67 0.65 0.73 0.67 0.69
CM1 PC3 0.57 0.76 0.69 0.58 0.69 0.66 0.66
KC1 PC3 0.56 0.74 0.65 0.59 0.71 0.69 0.66
KC2 PC3 0.6 0.71 0.68 0.58 0.71 0.69 0.66
KC3 PC3 0.45 0.67 0.62 0.42 0.77 0.65 0.6
MC1 PC3 0.63 0.74 0.69 0.61 0.75 0.73 0.69
MC2 PC3 0.67 0.84 0.76 0.46 0.87 0.77 0.73
MW1 PC3 0.63 0.65 0.61 0.37 0.69 0.54 0.58
PC1 PC3 0.62 0.77 0.72 0.55 0.74 0.72 0.69
PC2 PC3 0.78 0.76 0.72 0.6 0.72 0.62 0.7
PC4 PC3 0.6 0.76 0.68 0.48 0.74 0.74 0.67

The feature-based TL method is used for HetDP. We have selected equal feature count from

source and target projects, through which the defect prediction knowledge is transferred for testing

of the target project. We have performed metrics matching from the selected features using

Spearman's correlation coefficient. Based on the correlation coefficient among these features, we

selected metrics for training and test data. The prediction model is developed using one project

dataset for training, and we use that model for the prediction of labels in test data. In this manner, we

have transferred the feature-based knowledge from source and target projects to build a prediction

model. In order to analyze the effectiveness of HetDP, we have performed hypothesis testing.

Hypothesis testing is performed using the Friedman test. These hypotheses are designed based on

the effectiveness of HetDP and WPDP using R algorithm.

Ho:HetDP performs better than WDP for RF

Ha:WDP performs better than HetDP for RF

The Friedman test is used to test the above hypothesis. The statistical test was performed

142



Discussion

at a 0.05 significance level. The obtained p value is 0.001. The value of Friedman's statistics is

computed as 12.0. Hence, the p value is less than 0.05. Therefore, we reject Ho and accept Ha.

Table 4.14, represents the Friedman mean rank for HetDP and WPDP corresponding to RF ML

algorithm. It is observed that the mean rank of WPDP is highest, i.e., 2.00. Hence, RF performed

efficiently for WPDP.

Table 5.13: Friedman Mean Rank for defect prediction methods using RF

DP Method Mean Rank
RF for HetDP 1.00
RF for WPDP 2.00

5.4 Discussion

The datasets used for experimentation contain projects developed in various languages such as C,

Java, and C++. To analyze the capability of defect prediction techniques, we have used dataset of

two different groups, named as NASA and PROMISE. In the experimental procedure, firstly, we

have developed a predictive model for predicting defects using different ML algorithms and 10-fold

cross-validation for WPDP. In the next experiment, we have developed a predictive model using

different ML algorithms and 10-fold cross-validation methods for HetDP. We have observed that the

size of source dataset should be larger than 23%. It is observed that due to the presence of historical

data in WPDP, it provides a better result. In this way, it would be helpful to identify the defects in

the early stage before its delivery to end-users. Lastly, we have tested hypothesis using Friedman

test. The designed hypothesis used to evaluate the significant difference between ML algorithms

for HetDP. The result of Friedman test proves that there is a significant difference among all ML

algorithms used. With our observation on Friedman's mean ranks, RF performs best for HetDP in

our experiments. The hypothesis testing has been performed to analyze the performance of RF in
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WPDP and HetDP. Thus, RF performs best out of all the six ML algorithms used. Moreover, we

test this experiment with large datasets with different techniques. We also investigate the effect of

TL on defect prediction models with different datasets considering optimization.
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Chapter 6

Empirical validation of machine

learning techniques for heterogeneous

cross–project change prediction and

within–project change prediction

6.1 Introduction

SCP focuses on identification of change proneness in the initial phase of software develop-

ment [118]. It reduces the amount of time required for maintenance and testing phase of

the software. The prediction model helps in software quality assurance. Software quality

mainly aims at the design of software and conformance to that design. Thus, software

quality assurance is accomplished using change prediction models. The changes present in

145



Introduction

the modules of software impact the software quality, due to which change–prone modules

first need to be identified. Using prediction models, change–prone modules can be easily

identified in the future projects, in this manner the quality of upcoming software can be

improved. But, in some cases, the project does not contain sufficient data. However, it

results in a lack of training data for the prediction model.

The change prediction works successfully for projects having a large quantity of data.

Moreover, the usage of historical data or empirical data of the same project is not feasible.

The process of predicting changes in one project using historical and empirical data from

other projects is known as CPCP. In this chapter, performance of ML techniques analyzed

for HetCPCP and WPCP using open-source projects [119]. ML techniques can be used to

predict the impact of changes on software quality. The size of the software is increasing

day by day due to which the need of developing more stable and secure software arise.

Thus, many companies employing ML techniques to develop efficient software in terms of

improvising the quality of future software, by reducing the cost and effort. In the existing

studies, many ML algorithms are used to detect bugs in order to find out the amount of

change between two different versions of a project using SVM, Bayesian Belief Network

(BBN), NB, and DT. ML techniques are useful in designing the prediction model for

improvising the software quality change prediction among different projects of similar

characteristics. The changes in the existing software helps to improvise the quality of

future software in terms of reliability, maintenance, functionality, robustness, and efficiency.

Furthermore, ML techniques help in analyzing these changes on the basis of performance

of prediction model.

With the help of data collected from various projects and historical repositories, change

prediction can be easily employed for new projects. There are various studies exist in
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the literature which showed that software repositories dataset can be used for change

prediction for future releases. In some of the studies, it has been shown that the data of the

same project can be used for change prediction. Thus, there is a lack of training data for

creating models due to which other projects are required for change prediction.

CPCP does not give feasible solution in every case. For CPCP, author considered

different versions of a project or software. In cross-project we have two different projects

for training and testing. If both the projects i.e., training and testing projects have different

attributes then it is called as HetCP [120]. In HetCP, the attributes space is different and it

is non–overlapping in both training/source and testing/target projects. The relationship

between attribute space of both the projects need to be established. The correlation between

the attribute space of both the projects should be computed, it will result in reducing the

gap across their attribute space as well as the dimensions of their attributes. The features

are taken as predictors in this chapter.

Feature type transfer is conducted by transferring the features of one project for making

predictions in a new project [46]. If the attributes are not related to each other in the

projects, then the prediction model results in poor performance. If the attributes and

features are similar in both the projects, then it is called a Homogeneous Cross Project

(HoCP). In HoCP, we have similar attributes through which it is feasible to estimate the

correlation between attributes. The main issue is to identify the particular problem, in

which CPCP is applicable. We have to identify the relationship between the attributes or

features of training and testing projects. There are various studies exist in the literature for

CPCP. In some of the studies, the prediction model are developed using various techniques

such as ML and statistical based techniques [3]. The performance of developed models

can be estimated using various performance metrics [121]. The empirical validation of the
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dataset of other projects such as Notepad++, CodeBlocks, and CodeLite has been done for

predicting change prone classes in future projects in the experiment conducted. AUC is

used for analyzing the performance of various ML classifiers.

In the existing studies, the authors have analyzed various ways of data distribution

affecting the accuracy of CPCP models. CPCP model consider different projects for

training and testing of model development and model prediction. Furthermore, it has been

observed that various aspects are considered based on which data distribution impact the

model accuracy such as different project size, project complexity, imbalanced dataset,

data preprocessing, project development practices and process, temporal distribution, and

domain shift. In CPCP model, domain shift occurs when source and target projects have

different characteristics. Moreover, domain shift leads to decreasing predictive capability

and fails to generalize the results for new domain. The domain of different projects features

also plays key role in changing the performance of CPCP. Furthermore, imbalanced dataset

affect the accuracy of CPCP model by providing biased results towards majority class.

The practices, programming language, standards, and process followed for development of

different projects also affect accuracy of CPCPM. Furthermore, generalization of CPCP

models fails on different project considering project size, and complexity. The temporal

changes with respect to development practices also affect the accuracy of CPCP as models

does not adapt evolving changes easily.

TL is useful in transferring some knowledge from one project to another project or

new project by creating a prediction model [122]. There are various methods of TL such

as feature transfer, instance transfer, relational knowledge transfer, and parameter transfer

[46]. NN is integrated with TL which result in higher accuracy and efficiency for finger

printing[123]. In existing study, we have used the feature transfer method. The features
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of one project are transferred for change prediction in future/ new projects for the feature

transfer method [46]. In this chapter, we have created dataset by collecting metrics of

various software. The created dataset has been used for the analysis of the HetCPCP and

WPCP approaches. The feature type TL has been used. If there is a lack of training data in

future, then we can use some other projects for change prediction using HetCPCP. Thus,

using HetCPCP, researchers, experts, or software developers can develop other prediction

models to predict changes in future projects. With the help of TL, the knowledge has been

transferred from one project to another project for identification of change prone parts.

The change prediction model is developed using ML techniques in order to improve

software quality and reducing maintenance effort. Combination of ML with data assimi-

lation provides optimized results for improving software quality [124]. ML is useful for

designing prediction models with better performance and numerical simulation. Prediction

models developed using ML uses large amount of data. In order to analyze the capability

of CPCP and WPCP analyzed using open source projects. ML techniques gives better

insights. Moreover, in upcoming future there will be huge amount of data for analysis

for which ML techniques are easily adaptable. Traditional methods or techniques are not

easily adaptable to changes in the future dataset.

To achieve our aim of analyzing various ML techniques for change prediction, we have

formulated the RQs:

• RQ1: What is the predictive capability of ML techniques for change prediction in

WPCP and HetCPCP?

• RQ2: Which ML technique performed better than other techniques for WPCP?

• RQ3: Which ML technique performed better than other techniques for HetCPCP?
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Aiming at the above RQs, we conducted an experiment on 18 different versions of

3 software (CodeBlocks, Notepad++ and CodeLite) and we have considered 6 different

versions of Notepad++, 3 different versions of CodeBlocks and 9 different versions of

CodeLite. Experiment considering both CPCP and WPCP with all the possible combina-

tions. However, for CPCP source and target dataset have different data distribution for

which metrics matcher is used to extract the matching features from both source and target

projects. It has been analyzed that the CPCP can be employed for future projects in order

to check change prone parts of a project and improvement of software quality.

Organization of this chapter: Section 5.2 presented empirical data collection. Section

5.3 presented the research background. Section 5.4 discussed research methodology.

Section 5.5 presented the answers to RQs. Section 5.6 summarized conlusion. The results

of this chapter are published in [125].

6.2 Empirical Data Collection

The dataset used for experimentation is referred in Chapter 2 Section 2.7.3.2.

6.3 Research Background

We have followed systematic steps to experiment. The concept of TL is used for HetCPCP.

In HetCP, two different versions of two different projects were considered. We learn

some knowledge from one project and use that knowledge to develop a prediction model.

The prediction model will be used for making predictions and testing on another project.

For learning knowledge, feature-based TL used. On the basis of first project features, a
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prediction model is designed. The following steps have been followed for developing a

prediction model:

6.3.1 Selection of Dataset

In this study, we have followed systematic steps to experiment. In this study, we have used

the concept of TL for HetCPCP. In HetCP, two different versions of two different projects

were considered. We learn some knowledge from one project and use that knowledge to

develop a prediction model. The prediction model will be used for making predictions and

testing on another project. For learning knowledge, feature–based TL used in this chapter.

On the basis of first project features, a prediction model is designed.

6.3.2 Data Preprocessing

The metrics value in all the datasets is varying. Normalization is required to bring the

dataset to a common range. Data has been preprocessed using min–max normalization. In

min–max normalization, the minimum value of an independent attribute in the dataset is 0.

The maximum value of an independent attribute in the dataset is made as 1. All the other

values of an attribute are converted into the range of 0 to 1.

6.3.3 Imbalanced Dataset

SMOTE [126] to balance our imbalanced dataset. The imbalanced dataset suffers from

overfitting. Due to overfitting, the model learns some irrelevant noise. With the help of

SMOTE, the imbalance dataset can be converted into a balanced dataset. In SMOTE,
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random samples are created for the minority class. Thus, application of SMOTE provides

the equivalent number of minority and majority class samples.

6.3.4 FS Technique

FS plays an important role in the performance of our model. We need to extract relevant

features. Thus, the usage of irrelevant features provides us with low accuracy. FS helps

in reducing overfitting and training time, and it improves accuracy. We have used the

univariate selection technique. It selects features based on their correlation with the output

variable or target variable. From univariate selection techniques, we have used the chi–

square test for FS. In the chi–square test, we find out the relationship between independent

and dependent variables are established. The SelectKBest library of Python is used to

select relevant features out of feature set [127]. Chi–square calculates the deviation of

expected count (Ei) from observed count (Oi). The formula for chi–square is given below:

χ2 =
n∑

i=1

(Oi − Ei)
2

Ei

(6.1)

where, i stand for a DoF, O stands for observed count, and E stands for expected count

6.3.5 ML Classifier

To develop a prediction model, we have used various ML classifiers. In the existing

software development process, ML techniques can be integrated on the basis of problem

(classification/regression), data analysis, dataset characteristics, data visualization, data

modeling, and data validation. However, in the study conducted by authors, ML techniques
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combined into existing software development process for predictive analytics considering

unseen software. In the study, ML techniques are integrated to change prediction for

cross-project (different projects for training and testing) and WP (same project for training

and testing). Thus, ML based predictive model identify whether software is change prone

or not to improvise the quality of future projects. However, integration of ML techniques

with the traditional software development process helps in various aspects such as defect

removal, effort estimation, and software maintainability. ML classifiers are used such as

LR, RF, SVM, HV, KNN, MLP, ADB, DT, and QDA. A prediction model is designed

using specified classifiers. The prediction model is developed using the dataset of one

project. Later, the prediction model will be used for testing and predictions on another

dataset.

Table 6.1: ML techniques used

Category ML Tech-

nique

Description

Statistical

classifier

LR LR is used for classification problems. LR is used for analyzing the

predictive capability of an algorithm. It is developed based on the concept

of probability. It uses a cost function that is complex and known as the

sigmoid function. The hypothesis of the sigmoid function depicts its

value between 0 to 1. Thus, LR is not known as linear regression.
QDA The statistical techniques used for classification. QDA differs from

Linear Discriminant Analysis (LDA). In LDA, an assumption of equal

covariance for each class is used. QDA computes individual covariance

for each class. However, QDA is a better classifier to find out non-linear

boundaries among the class.
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DT DT Used for classification and regression. It starts from the root node and

ends at a leaf node. At each level, the best variable is selected to split

into two child nodes. To decide the best node at each level of a tree,

checks for the possibility out of all possible nodes left at that level. It has

three different measures for attribute selection such as information gain,

Gini index, and gain ratio. DT algorithm aims at reducing the average

impurity at each level.
SVM SVM Used for classification problems. Designs an N-dimensional hyperplane.

SVM modeling aims to find the optimal hyperplane. The optimal hy-

perplane divides all the data points into classes concerning the output

variable label. The data points that belong to one class of output labels

lie on one side of a plane, and the data points that belong to another class

of output labels lie on another side of the hyperplane. If the hyperplane

is non-linear, then SVM prefers to use kernel function. Various types of

kernel functions exist such as polynomial, linear, and sigmoid.
NN MLP It is a group of feed-forward ANN. It consists of multiple perceptron. It

consists of three layers of nodes such as input layer, hidden layer, and

output layer. All the nodes consist of neurons with activation functions

except input layer nodes. Multiple layers and non-linear activation

function differentiate it from linear perceptron. MLP can be used for

both types of problems that is classification and regression depending

upon the type of activation function used in it. Used for the non-linearly

separable classification of data.
EL RF It consists of various DTs. Each tree in RF is considered as an ensemble.

The output provided by each DT is a prediction label corresponding to

the output class. The class with the majority voting is considered for the

model's prediction.
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ADB One of the most successful algorithms for classification problems from

EL. Used to combine atleast two weak classifiers into one strong classi-

fier. Works fast in comparison to other ML classifiers.
Others KNN It stores all the training instances and the new unlabeled testing instance

will be classified based on a similarity measure. Used for continuous

output variables and categorical output variables. In this chapter, we

have used a categorical output variable. For categorical output variables,

KNN uses hamming distance to measure similarity. If the dataset consists

of a mixture of values, then it standardized the values between 0 to 1.

However, KNN has a very high predictive power.

6.3.6 Cross–Validation method

Cross-validation is a technique that is used for model evaluation. For cross-validation,

division of data is important to evaluate the performance of a model on unseen data. It

divides the data into two parts, that is training and testing data. The data through which the

model is trained, named as training data. With the help of a trained model, we will make

predictions on new unseen data called as test data. The dataset is divided into specified

ratios depending on the type of cross–validation method used. In K–Fold cross–validation,

the value of K indicates the number of parts in which the dataset is divided. After division,

the training of the model uses K parts, and K–1 parts are used for validation and testing

[57]. This process will iterate for K times. In the end, the result of each iteration is

combined. We have selected the value of K as ten for experiment. However, 10–fold

cross–validation provides better model estimation with low bias and low computational

cost.

155



Research Methodology

6.3.7 Performance Measure

AUC is used for performance evaluation. A graph plotted over TP vs. FP rate is depicted by

ROC curve. This curve is also considered as a plot between sensitivity and 1–specificity. FP

rate is defined as the ratio of negative instances that were incorrectly classified. However,

if the value of AUC is closer to 1, then it would be verified that the classification has been

performed correctly.

6.3.8 Statistical Test

In this experiment the Friedman test, alongwith Wilcoxon–signed rank test and Nemeneyi

test used.

6.4 Research Methodology

The research methodology used to conduct this study has been discussed in this section.

We have developed a change prediction model for HetCPCP and WPCP using OOM.

6.4.1 WPCP

The steps followed for this approach are discussed below:

• The metrics values of various projects have been collected using Understand tool

[128].

• The dataset consists of dependent and independent attributes. The dependent attribute

which is the change label indicates the presence and absence of a change.
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• SMOTE applied to balance the dataset.

• Appropriate FS technique that such as chi–square test used to select relevant features

only.

• Prediction model build using various ML techniques.

• Performance of the prediction model evaluated using AUC measure.

Figure 6.1: Architecture of approach used for within-project change prediction

6.4.2 HetCPCP

The steps followed for this approach are discussed below:

157



Research Methodology

Figure 6.2: Architecture of approach used for heterogeneous cross-project change predic-
tion

• The metrics values of various projects collected using Understand tool [128].

• Two different projects have been selected to experiment such as the source and target

dataset.

• The dataset consists of dependent and independent attributes. The dependent attribute

which is the change label indicates the presence and absence of a change.

• A sampling technique has been applied to balance the dataset.
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• Metrics matching used as an analyzer for extracting matching metrics from source

and target projects.

• Appropriate FS technique such chi–square test has been used for FS.

• The prediction model build using various ML techniques.

• The prediction model used for predicting the target dataset based on the knowledge

learned from the source dataset.

• Performance of a prediction model evaluated using AUC measure.

6.5 Results and Analysis

6.5.1 Results Specific to RQ1

The AUC was used to measure the performance of various ML algorithms for HetCPCP

and WPCP. The AUC values corresponding to various ML technique and dataset has been

represented in Table [5.2–5.3]. Table 5.2 presents the AUC values of WPCP for various

techniques and eighteen datasets used in this chapter. For WPCP, we have used the same

project for training and testing. Thus, we have analyzed the performance of nine techniques

for WPCP. The AUC value for the SVM technique is 0.9 for the 61.0% dataset. These 61%

dataset consist of Notepad++ and CodeLite. The predictive efficiency of the HV technique

is 0.91 AUC for the Notepad++ dataset. The predictive performance of KNN technique is

0.94 AUC for Notepad++ 7.5.4 to Notepad++ 7.6.3. The predictive performance of other

techniques is in the range of 0.6 to 0.89 AUC. The effective performance efficiency shown

in Table [5.4–5.5].
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The predictive performance of HetCPDP has been analyzed in Table 5.3. In HetCPCP,
we have selected different source and target datasets. The predictive performance of
most of the techniques using TL is 0.6 for HetCPCP. The predictive performance of
CodeBlocks 13.12 is greater than 0.71 for some specific source datasets. The source
dataset that provided effective predictive performance for CodeBlocks 13.12 dataset
are Notepad++ 7.5.4, Notepad++ 7.6.2, Notepad++ 7.6.3, Notepad++ 7.8.3, CodeLite–
2.9.0.4684, CodeLite–3.5.5375, CodeLite–5.3, CodeLite–13.0, and CodeLite–14.0.

Table 6.2: Analysis of predictive perform of ML techniques for WPCP

S.No.
Dataset ML Algorithm

Source

Dataset

Target

Dataset

LR RF SVM HV KNN MLP AB DT QDA

1 Notepad++

6.8.9

Notepad++

6.8.9

0.63 0.83 0.93 0.92 0.87 0.7 0.74 0.76 0.63

2 Notepad++

7.3

Notepad++

7.3

0.78 0.89 0.97 0.93 0.9 0.78 0.83 0.85 0.78

3 Notepad++

7.5.4

Notepad++

7.5.4

0.75 0.9 0.99 0.94 0.94 0.8 0.85 0.85 0.74

4 Notepad++

7.6.2

Notepad++

7.6.2

0.73 0.88 0.97 0.94 0.93 0.77 0.79 0.81 0.66

5 Notepad++

7.6.3

Notepad++

7.6.3

0.68 0.95 0.99 0.96 0.97 0.79 0.94 0.88 0.5

6 Notepad++

7.8.3

Notepad++

7.8.3

0.71 0.74 0.78 0.77 0.72 0.71 0.76 0.68 0.61

7 CodeBlocks

10.05

CodeBlocks

10.05

0.65 0.74 0.84 0.82 0.76 0.68 0.69 0.69 0.64

8 CodeBlocks

13.12

CodeBlocks

13.12

0.76 0.79 0.84 0.84 0.76 0.76 0.77 0.75 0.72

9 CodeBlocks

20.03

CodeBlocks

20.03

0.69 0.73 0.79 0.8 0.71 0.69 0.71 0.71 0.65

10 CodeLite-

2.9.0.4684

CodeLite-

2.9.0.4684

0.75 0.84 0.93 0.9 0.84 0.76 0.81 0.8 0.7
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11 CodeLite-

3.5.5375

CodeLite-

3.5.5375

0.73 0.85 0.94 0.91 0.85 0.79 0.83 0.83 0.67

12 CodeLite-

5.0.6213

CodeLite-

5.0.6213

0.62 0.74 0.8 0.8 0.7 0.61 0.65 0.72 0.62

13 CodeLite-

5.3

CodeLite-

5.3

0.71 0.8 0.93 0.89 0.84 0.73 0.76 0.76 0.66

14 CodeLite-

6.0.1

CodeLite-

6.0.1

0.7 0.77 0.92 0.89 0.87 0.73 0.75 0.74 0.66

15 CodeLite-

11.0

CodeLite-

11.0

0.68 0.81 0.95 0.91 0.89 0.71 0.75 0.79 0.64

16 CodeLite-

12.0

CodeLite-

12.0

0.68 0.78 0.92 0.9 0.85 0.66 0.74 0.74 0.64

17 CodeLite-

13.0

CodeLite-

13.0

0.72 0.8 0.85 0.83 0.79 0.74 0.78 0.78 0.68

18 CodeLite-

14.0

CodeLite-

14.0

0.64 0.7 0.69 0.72 0.67 0.66 0.68 0.69 0.63

Table 6.3: Analysis of predictive performance of ML techniques for HetCPCP

S.No.
Dataset ML Algorithm

Source

Dataset

Target

Dataset

LR RF SVM HV KNN MLP AB DT QDA

1 Notepad++

6.8.9

CodeBlocks

10.05

0.65 0.69 0.59 0.66 0.6 0.62 0.69 0.67 0.59

2 Notepad++

7.3

CodeBlocks

10.05

0.65 0.66 0.54 0.63 0.56 0.59 0.65 0.64 0.6

3 Notepad++

7.5.4

CodeBlocks

10.05

0.65 0.64 0.57 0.63 0.6 0.61 0.65 0.63 0.6

4 Notepad++

7.6.2

CodeBlocks

10.05

0.63 0.66 0.56 0.62 0.59 0.64 0.65 0.64 0.55

5 Notepad++

7.6.3

CodeBlocks

10.05

0.63 0.64 0.56 0.63 0.58 0.62 0.65 0.64 0.58
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6 Notepad++

7.8.3

CodeBlocks

10.05

0.61 0.6 0.53 0.63 0.57 0.58 0.6 0.61 0.55

7 Notepad++

6.8.9

CodeBlocks

13.12

0.71 0.71 0.61 0.69 0.62 0.7 0.72 0.7 0.56

8 Notepad++

7.3

CodeBlocks

13.12

0.69 0.7 0.58 0.68 0.62 0.69 0.7 0.69 0.57

9 Notepad++

7.5.4

CodeBlocks

13.12

0.7 0.72 0.62 0.69 0.64 0.68 0.71 0.7 0.6

10 Notepad++

7.6.2

CodeBlocks

13.12

0.71 0.72 0.58 0.59 0.63 0.7 0.72 0.71 0.56

11 Notepad++

7.6.3

CodeBlocks

13.12

0.71 0.73 0.57 0.69 0.64 0.71 0.71 0.73 0.57

12 Notepad++

7.8.3

CodeBlocks

13.12

0.72 0.72 0.71 0.72 0.67 0.71 0.71 0.69 0.58

13 Notepad++

6.8.9

CodeBlocks

20.03

0.59 0.59 0.53 0.54 0.53 0.6 0.58 0.57 0.53

14 Notepad++

7.3

CodeBlocks

20.03

0.65 0.68 0.58 0.64 0.58 0.62 0.66 0.64 0.58

15 Notepad++

7.5.4

CodeBlocks

20.03

0.62 0.64 0.58 0.61 0.56 0.64 0.63 0.61 0.57

16 Notepad++

7.6.2

CodeBlocks

20.03

0.64 0.66 0.59 0.62 0.57 0.62 0.64 0.64 0.53

17 Notepad++

7.6.3

CodeBlocks

20.03

0.62 0.66 0.58 0.6 0.57 0.6 0.64 0.64 0.56

18 Notepad++

7.8.3

CodeBlocks

20.03

0.61 0.63 0.51 0.56 0.56 0.61 0.62 0.58 0.51

19 CodeLite-

2.9.0.4684

CodeBlocks

10.05

0.64 0.65 0.58 0.57 0.58 0.63 0.64 0.63 0.61

20 CodeLite-

3.5.5375

CodeBlocks

10.05

0.63 0.63 0.54 0.6 0.59 0.6 0.64 0.62 0.56

21 CodeLite-

5.0.6213

CodeBlocks

10.05

0.65 0.63 0.57 0.62 0.58 0.6 0.65 0.62 0.61
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22 CodeLite-

5.3

CodeBlocks

10.05

0.65 0.67 0.55 0.64 0.59 0.62 0.67 0.65 0.61

23 CodeLite-

6.0.1

CodeBlocks

10.05

0.64 0.64 0.55 0.61 0.59 0.6 0.64 0.64 0.58

24 CodeLite-

11.0

CodeBlocks

10.05

0.63 0.63 0.54 0.6 0.58 0.59 0.64 0.63 0.56

25 CodeLite-

12.0

CodeBlocks

10.05

0.65 0.69 0.59 0.68 0.62 0.57 0.69 0.66 0.64

26 CodeLite-

13.0

CodeBlocks

10.05

0.64 0.65 0.58 0.62 0.6 0.61 0.66 0.66 0.61

27 CodeLite-

14.0

CodeBlocks

10.05

0.65 0.68 0.54 0.65 0.58 0.65 0.68 0.67 0.59

28 CodeLite-

2.9.0.4684

CodeBlocks

13.12

0.71 0.73 0.59 0.68 0.63 0.7 0.73 0.72 0.58

29 CodeLite-

3.5.5375

CodeBlocks

13.12

0.71 0.72 0.6 0.7 0.63 0.71 0.71 0.69 0.57

30 CodeLite-

5.0.6213

CodeBlocks

13.12

0.69 0.71 0.6 0.69 0.62 0.69 0.7 0.67 0.56

31 CodeLite-

5.3

CodeBlocks

13.12

0.71 0.72 0.58 0.71 0.65 0.71 0.71 0.71 0.59

32 CodeLite-

6.0.1

CodeBlocks

13.12

0.68 0.7 0.6 0.68 0.61 0.68 0.7 0.68 0.55

33 CodeLite-

11.0

CodeBlocks

13.12

0.69 0.71 0.59 0.67 0.63 0.7 0.7 0.69 0.58

34 CodeLite-

12.0

CodeBlocks

13.12

0.7 0.71 0.58 0.69 0.63 0.7 0.72 0.7 0.61

35 CodeLite-

13.0

CodeBlocks

13.12

0.71 0.73 0.56 0.68 0.63 0.71 0.72 0.7 0.55

36 CodeLite-

14.0

CodeBlocks

13.12

0.7 0.73 0.58 0.68 0.6 0.7 0.72 0.71 0.57

37 CodeLite-

2.9.0.4684

CodeBlocks

20.03

0.66 0.68 0.56 0.63 0.61 0.65 0.66 0.65 0.55
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38 CodeLite-

3.5.5375

CodeBlocks

20.03

0.66 0.67 0.57 0.64 0.6 0.65 0.67 0.65 0.53

39 CodeLite-

5.0.6213

CodeBlocks

20.03

0.63 0.64 0.56 0.6 0.55 0.61 0.63 0.62 0.54

40 CodeLite-

5.3

CodeBlocks

20.03

0.65 0.68 0.58 0.63 0.6 0.67 0.67 0.68 0.54

41 CodeLite-

6.0.1

CodeBlocks

20.03

0.64 0.66 0.57 0.62 0.59 0.63 0.67 0.65 0.55

42 CodeLite-

11.0

CodeBlocks

20.03

0.64 0.66 0.59 0.63 0.59 0.62 0.66 0.64 0.56

43 CodeLite-

12.0

CodeBlocks

20.03

0.62 0.65 0.54 0.61 0.57 0.62 0.64 0.62 0.55

44 CodeLite-

13.0

CodeBlocks

20.03

0.66 0.68 0.58 0.62 0.58 0.66 0.67 0.66 0.56

45 CodeLite-

14.0

CodeBlocks

20.03

0.64 0.67 0.51 0.61 0.59 0.65 0.66 0.64 0.54

6.5.2 Results Specific to RQ2

To analyze the performance of ML techniques, statistical tests are used. With the help of

statistical differences, we have checked the statistical difference among ML techniques.

According to the existing studies [129] non–parametric statistical tests are used when the

normality of data is not known or homogeneity of variance in the data sample. Friedman

test used to analyze the performance of nine ML techniques on eighteen different datasets.

In the Friedman test, the value of significance level is 0.05 or 5% and the value of the DoF

is eight (i.e., for nine ML techniques). The null hypothesis for the Friedman test states that

the performance of ML techniques is not significantly different. The alternate hypothesis

for the Friedman test states that there is a significant difference among the performance
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of ML techniques. Here, the χtabulated obtained from the chi–square table corresponds to

DoF (8) and significance level (0.05 or 5%). The value of χtabulated is 15.51. The value of

χcalculated is computed using Friedman's test with eighteen data samples and the value of

the DoF is 8. The value of χcalculated is 132.173. Thus, the value of χcalculated is greater

than the χtabulated i.e., the computed value lies in the range of the tabulated value. Hence,

the null hypothesis is rejected and alternate hypothesis is accepted. Thus, it is concluded

that there exists a significant difference among the performance of ML techniques.

The ranking of ML techniques for WPCP is computed. Table 5.4 presents the rank

of each technique. Higher mean rank indicates better will be the performance of that

technique. Thus, SVM performed best for WPCP in this chapter and HV is the second

best technique.

Table 6.4: Mean ranks of ML techniques using Friedman test on AUC

ML Technique Mean Rank
SVM 8.75
HV 8.08
RF 6.39
KNN 6.31
AB 4.72
DT 4.47
MLP 2.83
LR 2.28
QDA 1.17

Friedman test results in accepting the alternate hypothesis, then we proceed for post-

hoc analysis using Nemenyi test. The statistical difference among ML techniques has been

investigated using Nemenyi test. The Critical Difference (CD) value is computed as 2.832

with a number of datasets (18) and the number of ML techniques (9). In the next step, the

rank difference has been calculated for every technique with every other technique.
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The result obtained using Nemenyi test presented in Table 5.5. The rank difference

which is greater than the CD is highlighted. It has been observed that out of 36 pairs of

ML techniques, 18 pairs (highlighted entries) are found to be significantly different based

on their performance. Hence, the performance of 18 pairs out of 36 pairs was found to be

significantly different from other pairs, i.e., the performance of 50% of pairs is significantly

different. Hence, the pairwise comparison of ML technique concluded that SVM and HV

performed better than AB, DT, MLP, LR, and QDA. However, RF performed better than

MLP, LR, and QDA. Thus, based on post-hoc analysis results, SVM and HV outperformed

other techniques.

Table 6.5: Computation and comparison of rank difference for ML techniques (WPCP)

CD=2.832 SVM HV RF KNN AB DT MLP LR QDA
SVM * 0.67 2.36 2.44 4.03 4.47 5.92 6.47 7.58
HV * * 1.69 1.77 3.36 3.61 5.25 5.8 6.91
RF * * * 0.08 1.67 1.92 3.56 4.11 5.22
KNN * * * * 1.59 1.84 3.48 4.03 5.14
AB * * * * * 0.25 1.89 2.44 3.55
DT * * * * * * 1.64 2.19 3.3
MLP * * * * * * * 0.55 1.66
LR * * * * * * * * 1.11
QDA * * * * * * * * *

6.5.3 Results Specific to RQ3

To analyze the performance of ML techniques using statistical tests for HetCPCP. The

Friedman test has been used to analyze the performance of nine ML techniques on forty–

five different pairs (with a combination of 15 source datasets and 3 target datasets). In

the Friedman test, the value of significance level is 0.05 or 5% and the value of DoF

is eight (i.e., for nine ML techniques). The null hypothesis for the Friedman test states
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that the performance of ML techniques is not significantly different for HetCPCP. The

alternate hypothesis for the Friedman test states that there is a significant difference in the

performance of ML techniques for HetCPCP. The χtabulated obtained from the chi-square

table corresponds to the DoF (8) and significance level (0.05 or 5%). The value of χtabulated

is 15.51. The value of χcalculated computed using Friedman's test equation with 18 data

samples and the value of the DoF is 8. The value of χcalculated is 302.653. Thus, the value

of χcalculated is greater than the χtabulated i.e., the computed value lies in the range of the

tabulated value. Hence, the null hypothesis is rejected. Thus, it is concluded that there

exists a significant difference in the performance of ML techniques. Table 5.6 presents

the rank of each individual technique. However, RF performed best for HCPCP and ADB

act as second best technique for HetCPCP. Friedman test results in accepting the alternate

hypothesis, then we proceed for post hoc analysis using the Nemenyi test. The statistical

difference among techniques has been investigated using the Nemenyi test. The CD value

is computed as 2.276 with several datasets with combinations of 15 source datasets and 3

target datasets.

Table 6.6: Mean ranks of ML techniques using Friedman test on AUC

ML Technique Mean Rank
RF 8.37
AB 7.84
LR 6.47
DT 6.14
MLP 5.2
HV 4.71
KNN 2.69
SVM 1.82
QDA 1.76

The result obtained using the Nemenyi test presented in Table 5.7. It has been observed
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that out of 36 pairs of ML techniques, 21 pairs are found to be significantly different
based on their performance. Hence, the performance of 21 pairs out of 36 pairs was found
to be significantly different from other pairs, i.e., the performance of 58.34% of pairs is
significantly different. From the pairwise comparison of the ML technique, it has been
observed that RF and ADB performed better than MLP, HV, KNN, SVM, and QDA. Hence,
based on post hoc analysis results, RF and AB outperformed other techniques.

Table 6.7: Computation and Comparison of rank difference for ML techniques (HCPCP)

CD=2.832 RF AB LR DT MLP HV KNN SVM QDA
RF * 0.53 1.9 2.23 3.17 3.66 5.68 6.55 6.61
AB * * 1.37 1.7 2.64 3.13 5.15 6.02 6.08
LR * * * 0.33 1.27 1.76 3.78 4.65 4.71
DT * * * * 0.94 1.43 3.45 4.32 4.38
MLP * * * * * 0.49 2.51 3.38 3.44
HV * * * * * * 2.02 2.89 2.95
KNN * * * * * * * 0.87 0.93
SVM * * * * * * * * 0.06
QDA * * * * * * * * *

6.6 Discussion

The experiment conducted in this chapter to empirically validate the effect of ML tech-

niques for WPCP and HetCPCP. The dataset used in this chapter is collected from open–

source software. An empirical comparison of nine ML techniques on eighteen different

datasets has been performed. The prediction model is developed using OOM. The most

commonly used OOM is provided as input to the prediction model, and the change prone-

ness label is considered as an output of the prediction model. The performance of ML

techniques analyzed using the AUC performance measure. The significant difference

among various ML techniques analyzed using the Friedman test with post hoc analysis
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used Nemenyi test. The Nemenyi test is used to check whether statistical differences exist

between the pair of various ML techniques. Some of the major findings of this study are as

follows:

• SMOTE used to remove noisy data and to balance the data samples for each label of

the output class.

• A matching analyzer is used to find the common metrics between the source and

target dataset for HetCPDP.

• For WPCP, SVM and HV performed better than other seven ML techniques used.

• For HetCPDP, RF and ADB performed better than other seven ML techniques used.

Hence, the prediction model build using TL for HetCPCP can be used for upcoming

versions of existing software. The developed prediction model helps in identifying the

changes and effectively removing change prone parts in the early phases of software

development life cycle, for upcoming versions of existing software. The outcomes of

the experiment conducted in this chapter are demonstrated and exploratory. Thus, the

change prediction depends on the characteristics of the dataset, density of change data,

and classifiers used. Change prediction is useful in enhancing the software quality by

identifying the highly change prone models in the early stages. Change prediction models

enhance the software maintainability by identifying and modifying the change prone

modules. After the identification of changed prone modules, updates are required to be

done that directly impact the software maintenance. However, there might also be other

factors that affect the generalization of results. We plan to validate the results on the
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industry dataset in future work. Thus, the impact of other types of TL in future studies will

be investigated.
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Chapter 7

Empirical Validation of FS Techniques

for Cross-Project Defect Prediction

7.1 Introduction

Nowadays, prediction model plays important role in ML. In software engineering, SDP is

very crucial domain. To ensure better quality of a software, the defects should be identified

in the early stage. It aims at identification of defects at the initial stage of development

[130]. Defect prediction plays important role in improving the quality of a software in

terms of maintainability, functionality, reliability and testability. In order to release a

defect free software, every developer must check it from the criterion to maintain quality

of a software in upcoming years also. For designing defect prediction model, it must be

ensured that a sufficient amount of training data is used for designing prediction model.

Moreover, the predictive model does not perform efficiently for future data. Prediction
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models are useful for making prediction on unseen data or future data. However, the

unseen data must have similar characteristics to use pre-designed prediction model. In the

existing studies, it has been demonstrated that the SDP models are trained with sufficient

amount of training dataset work efficiently for testing on the same dataset having similar

distribution [131]. However, such type of prediction modes come under the category of

WP. In WP, the training and testing of the prediction model is accomplished using same

dataset. Moreover, the collection of sufficient amount of training data is a serious issue. In

recent years, CPDP gained popularity among researchers, academicians and developers.

The idea of CPDP emerged from availability of sufficient amount of training data. In

CPDP, two different projects are used for training and testing. One project is considered as

a source project for training and another project considered as testing project. The features

of both the projects must be checked. If the features of source and target projects are

same then it is termed as HoCP. If the features of both the projects are different, then it

is termed as HetCP [55]. In case of HetCP, both source and target projects may contain

different attributes. In order to design prediction models, the attributes must be correlated.

Furthermore, the matching metrics are selected based on the amount of correlation between

different pairs of source and target dataset attributes. Moreover, TL work when a prediction

model is used for testing on some other project which are having similar characterizes as of

training data [46]. Moreover, prediction model learned through the knowledge provided by

source project. There are various types of TL settings based on the domain of source and

target dataset. However, TL works perfectly if we want to use our pre-trained model for

future projects. In prediction model, before starting with model development, we have to

preprocess our dataset. In the next phase we extract relevant features of our dataset using

various techniques that is termed as FS. techniques. These techniques [46] are categorized
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into three methods such as filter method, wrapper method, and swarm search based method.

Various FS selection techniques are available under each of the above method. FS helps

in selecting the features which are relevant for model development with respect to output

variable [132]. The main aim of conducting this study is to analyze the impact of various FS

techniques for CPDP. Each and every method has a different criterion, different threshold,

different parameter settings, and aspect to select relevant features. In today's era, the

speed of data warehouse and database accumulation is increasing rapidly, dimensionality

reduction considered as a major problem [133]. In further years, dimensionality reduction

become a major problem for ML algorithms. Negative effects also observed due to scaling

of dimensionality of a dataset. The presence of irrelevant and redundant features add noise

to the dataset, that leads to a problem of overfitting [134]. Thus, data mining algorithms are

developed in various areas such as text mining, bioinformatics, medicine, image processing,

engineering, financial estimation, and sustainability. However, the significance depends

on the ability to convert large amount of a data into acceptable form. Thus, it will help

in knowledge discovery, increase understandability of dataset, make dataset more easy

to analyze and predictable. The cause of the defects in a software module are difficult to

determine [135]. Various studies exist for WPDP for impact of FS and feature reduction

techniques [72], various cross-validation techniques are applied on WPDP [136]. In some

of the existing studies, benchmark ML based models were also proposed for WPDP such

as LR, SVM, NN, KNN, DT, NB etc. In this study, the impact of each FS technique

is analyzed statistically using filter, wrapper, and swarm search based methods. The

importance of the three methods of FS techniques are studied in order to improve software

quality in terms of maintenance and efforts required. AEEEM and ReLink dataset are

considered for experiemntation of CPDP. The projects used in this study are having similar
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metrics with respect to AEEEM and ReLink. AEEEM and ReLink projects are used in

pairwise combination of source and target pairs. The source and target pairs are created

by combining different projects. The experiment performed for 20 pairs of AEEEM and

6 pairs of ReLink dataset. The comparison performed between different FS methods

alongwith the impact on CPDP. The experiment conducted using WEKA 3.9.6. In existing

studies, FS methods are not analyzed with respect to CPDP. Filter methods work on the

concept of ranker while wrapper and swarm search based methods working is based on

the principle of greediness. This experiment performed to evaluate the effectiveness of

different FS methods in conjuction with OOM for CPDP. Furthermore, this study explored

the importance of each FS method individually. Furthermore, the study also explored

different settings of source and target projects with respect to the methods. Furthermore,

the ML classifiers are used for building a prediction model. The results of all the predicted

models are statistically validated for determining the best FS method for CPDP. RQs

addressed in this study are:

• RQ1: What is the predictive capability of filter methods for CPDP with respect to

AEEEM and ReLink dataset?

• RQ2: What is the predictive capability of swarm search based methods of FS

techniques for CPDP?

• RQ3: What is the predictive capability of filter, wrapper and swarm search based

methods for CPDP?

This chapter is organized as follows: Section 6.2 discussed experimental design and

framework for conducting empirical experiment. Section 6.3 presented the results and
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analysis of the experiment. Finally, Section 6.4 states the discussion of the results. The

results of this chapter are published in [137].

7.2 Experimental Design

The dataset characteristics, variables of the dataset, dataset sources are discussed in this

section.

7.2.1 Dataset

The dataset used for experimentation is referred in Chapter 2 Section 2.7.3.1.

7.2.2 Data Preprocessing

In this study, the dataset is preprocessed before using it in model development phase.

For data preprocessing, missing values are handled, outliers are removed, null values are

handled, and normalization of dataset techniques are performed. Firstly, the missing values

or null values are replaced with the mean of the remaining values in the column. Thus,

imputation of missing values by mean prevents information loss. Secondly, the outliers are

handled using imputations. Normalization is a technique of converting data to a specified

range. Furthermore, normalization techniques are helpful for designing prediction model,

statistical model, forecasting model, clustering model, and classification model. Thus,

normalization is performed by converting all the numerical values in [0,1] considering the

data used for normalization.
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7.2.3 Imbalance Dataset

In classification problem, when instances of one target class is more than the other class

instances, this problem is termed as imbalanced dataset problem. There are various tech-

niques exist to deal with imbalance dataset such as SMOTE, oversampling, undersampling,

and cost-sensitive learning. SMOTE is used in this study for balancing dataset. SMOTE is

a technique, that oversample the instances of minority class. Furthermore, new instances

of minority class are synthesized from existing data only.

7.2.4 Filter Methods

7.2.4.1 ChiSquare (FS1)

It selects the relevant features based on ranking criterion. Furthermore, chi-square test

considers independence of two events. Thus, if the value of chi-square is higher, then the

attribute is more depending on the outcome variable. Hence, attribute will be selected by

chi-square test.

7.2.4.2 Correlation Attribute Evaluation (FS2)

It selects the relevant attributes or features of a dataset using correlation matrix. The

correlation matrix predicts the amount of correlation between independent variable using

Pearson's correlation coefficient.
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7.2.4.3 Gain Ratio (FS3)

Gain ratio selects the relevant attributes by using ranker. It assign ranks to the features of

high-dimension. Furthermore, the features with low ranks are removed and create reduced

set of features. However, the K-anonymization privacy preservation techniques is used for

both original set of features and reduced set of features.

7.2.4.4 Information Gain (FS4)

Information gain also use ranker for FS. Information gain provides the amount of useful

information provided by each attribute with respect to the outcome variable. It computes

the gain of the attributes with respect to the target variable. However, the feature with high

gain is selected.

7.2.4.5 Relief Attribute Selection (FS5)

Relief method is also based on ranker criterion. It selects the relevant features according to

the differentiation between instances that are near to each other. However, Relief method

was designed for binary classification problems including non-metric data is discrete or

numerical features.

7.2.5 Wrapper Method

The selection of relevant features using wrapper method follow specific classifier that is

used to develop model. Unlike filter method wrapper method doesn't use ranker. Wrapper

method is based on principle of greediness. It evaluates all the possible combinations
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for selection of relevant attributes against the evaluation criterion. The commonly used

wrapper methods are forward selection, backward selection, and bi-directional elimination.

7.2.6 Swarm Search Methods

We have used six different swarm search methods are used for FS.

7.2.6.1 Best First Search (FS7)

BFS selects the attributes from an attribute set using search space. It selects the attributes

by using greedy hill climbing augmented with a backtracking facility. Best first starts

with empty set of attributes and start searching for attributes in a specific direction by

considering all possible combinations (additions and deletions).

7.2.6.2 Genetic Search (FS8)

GENS can be used for FS and hyperparameter optimization. It finds out the optimal set of

attributes on the basis of evolution.

7.2.6.3 Greedy Stepwise Search (FS9)

GRSS selects the attributes using forward and backward search through the space of

attributes subset. Starting criterion is either zero or all attributes are arbitrary point in the

feature space. Stopping criterion is when the performance of evaluation criterion starts

decreasing after completion of addition/ deletions.
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7.2.6.4 Harmony Search (FS10)

It is inspired by harmony improvisation process. Harmony search method is considered

as global optimization algorithm. In harmony search, at every iteration harmonies are

generated termed as solution. Furthermore, these solutions is stored in harmony memory.

Harmony search method uses five parameters, three mandatory parameters, and two

optional parameters.

7.2.6.5 Particle Swarm Optimization (PSO)(FS11)

PSO method is an optimization approach based on the behavioral study of animals/birds.

Furthermore, PSO performed better for FS with respect to other techniques, Moreover,

PSO has a capability of searching through large space, computationally less expensive,

and require few parameters. Traditional PSOapproach has some limitations. However,

a new variant is developed PSO(4-2) and binary PSO limit overcomes the limitations of

traditional PSO approach.

7.2.6.6 Scatter Search V1 (FS12)

Scatter search methods uses attribute subset for scatter search through attribute space.

However, it is starting with many significant attributes subsets and stops when the output

is higher than a specified threshold or no further chances of improvement.

7.2.7 ML Classifiers

In this study, five ML classifiers are used for designing CPDP such as SGD, SMO, ADB,

BNG, and LB.
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Figure 7.1: Proposed methodology
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7.2.8 Statistical test

Friedman and Wilcoxon–signed rank test [72] are used for measuring the difference among

the performance of various FS techniques for CPDP. The results are validated using

Friedman and Wilcoxon–sign rank test. However, Wilcoxon–sign rank test is used as a

post-hoc test for prediction.

7.3 Results and Analysis

The results and analysis are discussed in this section in detail. We have collected different

projects of AEEEM and ReLink for experimentation. Furthermore, for performing experi-

ment all eight projects are combined to form different pairs for CPDP. However, these pairs

are formed considering the size of training dataset is lower. Moreover, the model is not

more efficient, if the amount of training data is less than the testing data. Initially, 26 pairs

are formed in this study, after extracting only those pairs having source data larger than the

target data 13 pairs are selected. Furthermore, 12 methods are used for FS categorized as 5

filter method, 1 wrapper subset method, and 6 swarm search based methods. Furthermore,

five ML classifiers are used for development of prediction model with selected features.

In this study, 780 models were designed considering possible pairs of source and target

dataset. The performance of each model is analyzed according to ML classifier for each

FS method. However, the performance metric used in this study is AUC. AUC provides

more generalized and unbiased result in case of imbalanced dataset. This section interprets

the results and answers to the RQs discussed in Section 6.1.
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7.3.1 Results Specific to RQ1

In this study, CPDP models are developed successfully in conjuction with software metrics.

Various filter methods are used for selection of relevant attributes. Thus, filter methods are

used with ranker in order to select relevant features based on ranking. Null Hypothesis

(Ho): There is no significant difference among the performance of filter methods used for

FS. Alternate Hypothesis (Ha): There is a significant difference among the performance

of filter methods used for FS. The predictive performance of filter methods was analyzed

using Friedman test for 325 CPDP models. Furthermore, the results obtained using filter

methods are validated using Friedman test [138] at a significance level of 0.05. However,

for 5 FS techniques and DoF as 4, the obtained chi-square value is 7.520, and p-value as

0.111. Moreover, p-value is greater than significance level that is 0.05. Thus, hypothesis

testing proved that there is no significant difference among the performance of filter

methods for five ML classifier for identification of defects in CP. Hence, Ho is accepted

stated that all filter methods performed similar for FS with respect to HoCP. The results

are presented in Table 6.1.

Table 7.1: Average AUC values for filter methods and ML classifiers for CPDP (13 pairs
of AEEEM and ReLink dataset)

Filter Method

ML Classifier

FS1 FS2 FS3 FS4 FS5

SGD 0.59 0.59 0.54 0.60 0.54
SMO 0.61 0.61 0.60 0.63 0.58
AB 0.75 0.75 0.75 0.68 0.65
BNG 0.64 0.64 0.66 0.62 0.63
LB 0.72 0.71 0.72 0.67 0.63
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7.3.2 Results Specific to RQ2

To answer this RQ, various swarm search based methods are used for selection of relevant

attributes in this study. Thus, filter methods are used with correlation based FS in order to

select relevant features. Null Hypothesis (Ho): There is no significant difference among

the performance of six swarm search methods used for FS. Alternate Hypothesis (Ha):

There is a significant difference among the performance of six swarm search methods

used for FS. The predictive performance of swarm search based methods was analyzed

using Friedman test for 390 CPDP models. Furthermore, the results obtained using filter

methods are validated using Friedman test at a significance level of 0.05. However, for 5

FS techniques and DoF as 4, the obtained chi-square value is 7.353, and p-value as 0.196.

Moreover, p-value is greater than significance level that is 0.05. Thus, hypothesis testing

proved that there is no significant difference among the performance of six swarm search

based methods used with five ML classifier for identification of defects in CP. Hence, Ho

is accepted stated that all the swarm search methods performed similar for FS with respect

to HoCP. The results are presented in Table 6.2.

Table 7.2: Average AUC values for swam search based methods and ML classifiers for
CPDP (13 pairs of AEEEM and ReLink dataset)

Filter MethodML

Classifier

FS7 FS8 FS9 FS10 FS11 FS12

SGD 0.58 0.55 0.58 0.59 0.58 0.59
SMO 0.62 0.61 0.62 0.64 0.61 0.61
ADB 0.73 0.74 0.73 0.73 0.73 0.74
BNG 0.70 0.72 0.70 0.69 0.69 0.70
LB 0.75 0.73 0.75 0.72 0.69 0.76
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Table 7.3: Wilcoxon–signed rank test result for analyzing performance of filter, wrapper,
and swarm search based FS methods (18 pairs not significant))

Filter, Wrapper, and Swarm Search based FS Pairs Asymp. Sig. (2-tail)
FS5 - FS2 0.043
FS5 - FS3 0.039
FS7 - FS5 0.042
FS8 - FS5 0.042
FS9 - FS5 0.042
FS10 - FS5 0.042
FS11 - FS5 0.041
FS12 - FS5 0.043
FS7 - FS6 0.038
FS8 - FS6 0.041
FS9 - FS6 0.038
FS10 - FS6 0.042
FS11 - FS6 0.042
FS12 - FS6 0.042
FS9 - FS7 0.025
FS11 - FS7 0.042
FS11 - FS9 0.042
FS12 - FS11 0.042

7.3.3 Results Specific to RQ3

To answer this RQ, the performance of models developed using filter, wrapper, and swarm search based

methods are analyzed. Furthermore, the performance of 780 CPDP models are compared altogether using

Friedman test at a significance level of 0.05. Ho: There is no significant difference among the performance

of filter, wrapper, and swarm search methods used for FS. Ha: There is a significant difference among the

performance of filter, wrapper, and swarm search methods used for FS. However, for 12 FS techniques and

DoF as 11, the obtained chi-square value is 23.185, and p-value as 0.017. However, p-value is less than

significance level that is 0.05. Furthermore, Friedman test resulted in acceptance of alternate hypothesis, that

is there is a significant difference among the performance of all three methods and 12 techniques used for FS.

Thus, Ha is accepted stated that the performance of filter, wrapper, and swarm search based FS methods differ

significantly for HoCP. Furthermore, the results are validated using post-hoc test using Wilcoxon–signed
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rank test. Wilcoxon–signed rank test performed pairwise comparison among all 12 techniques that formed

66 combinational pairs. Furthermore, out of 66 pairs, the Wilcoxon–signed rank test resulted in acceptance

of null hypothesis for 18 pairs presented in Table 6.3. Thus, there is no significant difference among the

performance of 18 pairs of FS techniques. However, for remaining 48 pairs Wilcoxon–signed rank tests

resulted in acceptance of the alternate hypothesis presented in Table 6.4. Hence, there is a significant

difference among the performance of 48 combinational pairs of FS techniques. Thus, the performance of

swarm search based methods is comparatively better than filter and wrapper methods.

Table 7.4: Wilcoxon–signed rank test result for analyzing performance of filter, wrapper,
and swarm search based FS methods (48 pairs not significant)

Filter, Wrapper, and

Swarm Search FS Pairs

Asymp. Sig.

(2-tail)

Filter, Wrapper, and

Swarm Search FS Pairs

Asymp. Sig.

(2-tail)
FS2 - FS1 0.686 FS9 - FS3 0.078
FS3 - FS1 0.892 FS10 - FS3 0.279
FS4 - FS1 0.180 FS11 - FS3 1.000
FS5 - FS1 0.129 FS12 - FS3 0.078
FS6 - FS1 0.684 FS5 - FS4 0.129
FS7 - FS1 0.225 FS6 - FS4 0.684
FS9 - FS1 0.225 FS8 - FS4 0.892
FS10 - FS1 0.080 FS9 - FS4 0.225
FS11 - FS1 1.000 FS10 - FS4 0.176
FS12 - FS1 0.225 FS11 - FS4 1.000
FS3 - FS2 0.336 FS12 - FS4 0.225
FS6 - FS2 0.102 FS8 - FS7 0.498
FS7 - FS2 0.414 FS10 - FS7 0.680
FS8 - FS2 1.000 FS12 - FS7 0.157
FS9 - FS2 0.223 FS9 - FS8 0.276
FS10 - FS2 0.500 FS10 - FS8 0.686
FS11 - FS2 0.343 FS11 - FS8 0.223
FS12 - FS2 0.225 FS12 - FS8 0.104
FS4 - FS3 0.890 FS10 - FS9 0.396
FS6 - FS3 0.102 FS12 - FS9 0.492
FS7 - FS3 0.276 FS11 - FS10 0.223
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7.4 Discussion

The objective of conducting this study was to analyze the effectiveness of FS techniques for CPDP. However,

in this study, HoCP model is designed, that considered source and target projects with similar features. In

this study, three types of methods are explored for CPDP (i) Filter method (ii) Wrapper subset evaluation

method and (iii) Swarm search based methods. The results are evaluated using five ML classifiers in order to

detect defects in future projects with similar features to enhance maintainability, reliability, and robustness

of software. Friedman and Wilcoxon–signed rank test were used for statistical validation.

Five filter methods are compared based on ranking criterion. However, all the filter methods performed

on same scale. However, for wrapper attribute subset evaluation, principal of greediness is used to find out

the global optimal subset of attributes with specified ML classifier. However, wrapper method performed

better than filter method in most of the pairs. Furthermore, six swarm search based methods are used for

FS. However, the swarm methods search for the best attribute through attributes pairs search space and stop

selecting the attribute according to stopping criterion. Furthermore, swarm based methods outperformed

with respect to filter and wrapper method. Hence, for conducting further experiments for CPDP swarm

search based methods are preferable.

186





Chapter 8

Empirical Validation of Cross-Version

and 10-fold Validation for Defect

Prediction Models

8.1 Introduction

The software project size is increasing everyday, it directly impacts the cost and complexity

of software. Due to which the defects in the software are indispensable [139, 140]. The

detection and correction of defects before the beta release of the software is not feasible to

assure the quality of software. The defect prediction focuses on the identification of the

defect-prone modules and files of a software project. Defect prediction helps researchers,

practitioners, and testers to test suspicious modules on priority. The prediction models

developed in existing studies are supervised classification models that are developed using
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labeled data of a project and can be used for prediction on unlabeled dataset of same

project that is termed as WPDP. There is a lack of data availability due to which an efficient

and reliable defect prediction model could not be developed using WPDP. The model

development using WPDP requires huge amount of training data to overcome this issue.

To resolve this limitation, an emerging concept of TL is employed. In TL [46], a prediction

model is developed by utilizing the labeled data of other projects that is termed is CPDP.

The performance of the model developed using the CPDP concept is not effective, due

to data distribution differences across various projects. Existing studies in the literature

created a prediction model by labeled data of earlier versions and predict the unlabeled

module'data of upcoming or future versions of the same project that is termed as Cross-

Version Defect Prediction (CVDP) [141, 142]. In the upgraded version of any software

some of the modules would be deleted, some of the modules would be added, and some

additional functionality would be added. But, in terms of data distribution difference, the

differences across multiple versions of the same project are low in comparison to data

distribution difference across cross-projects because the upcoming version carries a huge

amount of information or data from the existing version of that software [143]. Consider

Project X.1, Project X.2, and Project Y. If Project X.1 is used for training and testing then

it comes under WPDP. If Project X.1 is used for training and Project X.2 is used for testing

then it comes under CVDP. If Project X is used for training and Project Y is used for

testing, then it comes under CPDP. This study demonstrated the applicability of CVDP.

However, various studies exist in the literature for change and defect prediction using

CVDP [110, 111, 144], but no study discussed the applicability of CVDP for generalization.

However, the investigation of CVDP is aimed for generalizability. In the literature, existing

studies developed defect prediction models using either CPDP or WPDP. But to enhance
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the generalizability of results and removal of bias in the study analyzed the performance

of cross-version and 10-fold cross-validation. The following RQs are formulated which

are as follows:

• RQ1: What is the predictive capability of defect prediction models developed using

cross-version validation?

• RQ2: What is the predictive capability of the defect prediction model developed

using 10-fold cross-validation?

• RQ3: What is the feasibility of implementing cross-version in comparison to the

performance of model developed using 10-fold cross-validation i.e. to what extent

cross-version validation is feasible?

In this study, the SDP model is developed using various ML techniques. The generalizabil-

ity of the prediction model is analyzed using cross-version and 10-fold cross-validation.

The organization of this chapter is as follows: Section 7.2 describes the framework of

the experiment, Section 7.3 presented the analysis. Section 7.4 discussed the conclusion.

The results of this chapter are published in [145].

8.2 Experimental Framework

The experimental framework is discussed in this section.

8.2.1 Empirical Dataset

The dataset used for experimentation is referred in Chapter 2 Section 2.7.3.1.
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8.2.2 Model Development

The prediction model developed using ML techniques are used for developing prediction

model such as NB, LR, MLP, ADB, BNG, J48, and RF.

8.2.3 Performance Measure

The predictive performance of defect prediction model developed in this study is analyzed

based on the prevalent performance measure. AUC is used as a performance measure.

AUC ROC curve can be calculated and provides a single score to summarize the plot that

can be used to compare models.

8.2.4 Validation Method

In this study, to develop defect prediction model, a 10-fold cross-validation is used. During

the model development process using training dataset, the dataset is divided into ten parts

of identical size. For validation, randomly nine parts are used for training purpose and

tenth part is used for testing. This process will repeat iteratively ten times for validation.

8.3 Results and Analysis

This section presents the answers to the RQs of this chapter discussed in Chapter 7.1 and

their analysis.
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8.3.1 Results Specific to RQ1

To answer this RQ, we have experimented using seven ML techniques on different versions

of all 8 projects out of 10 projects, 2 projects have one version only. We have created

prediction model for all the 30 combinations and the AUC values have been noted down in

Table 7.1. From the AUC values, it has been observed that in some of the cases CVDP is

outperformed. The results are statistically validated using the Friedman test followed by

post-hoc analysis that is Wilcoxon–signed rank test. For Friedman test, we have formed

and tested the following hypothesis.

Null Hypothesis (Ho1):- There is no significant difference among the performance of

all ML techniques for CVDP.

Alternate Hypothesis (Ha1): There is a significant difference among the performance

of all ML techniques for CVDP.

The ranks obtained using Friedman test of all the ML techniques are shown in Table 7.2.

The p-value obtained using the Friedman test is 0.000 which is less than the significance

value. Hence, null hypothesis (Ho) is rejected and alternate hypothesis (Ha)is accepted.

Table 8.1: AUC values for cross-version defect prediction

Techniques Used NB LR MLP ADB BNG J48 RF
ant ver1.6 → ant ver1.7 0.779 0.778 0.75 0.8 0.826 0.679 0.803
camel ver1.0 → camel ver1.2 0.49 0.586 0.56 0.589 0.558 0.544 0.574
camel ver1.0 → camel ver1.4 0.482 0.644 0.636 0.631 0.644 0.565 0.677
camel ver1.0 → camel ver1.6 0.552 0.63 0.618 0.639 0.638 0.552 0.651
camel ver1.2 → camel ver1.4 0.687 0.68 0.666 0.668 0.761 0.654 0.765
camel ver1.2 → camel ver1.6 0.642 0.589 0.593 0.619 0.656 0.621 0.677
camel ver1.4 → camel ver1.6 0.633 0.628 0.679 0.64 0.68 0.632 0.682
jedit ver3.2 → jedit ver4.0 0.751 0.776 0.788 0.755 0.8 0.756 0.824
jedit ver3.2 → jedit ver4.1 0.759 0.81 0.788 0.775 0.795 0.727 0.813
jedit ver3.2 → jedit ver4.2 0.785 0.805 0.787 0.804 0.825 0.738 0.833
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jedit ver3.2 → jedit ver4.3 0.608 0.64 0.589 0.575 0.586 0.531 0.625
jedit ver4.0 → jedit ver4.1 0.799 0.811 0.763 0.808 0.839 0.667 0.836
jedit ver4.0 → jedit ver4.2 0.826 0.824 0.764 0.83 0.823 0.655 0.852
jedit ver4.0 → jedit ver4.3 0.628 0.702 0.672 0.645 0.631 0.611 0.617
jedit ver4.1 → jedit ver4.2 0.837 0.872 0.797 0.817 0.842 0.784 0.858
jedit ver4.1 → jedit ver4.3 0.629 0.669 0.643 0.586 0.599 0.606 0.688
jedit ver4.2 → jedit ver4.3 0.624 0.648 0.595 0.594 0.686 0.759 0.706
log4j ver1.0 → log4j ver1.1 0.84 0.802 0.802 0.803 0.783 0.748 0.785
log4j ver1.0 → log4j ver1.2 0.621 0.728 0.708 0.66 0.694 0.586 0.666
log4j ver1.1 → log4j ver1.2 0.635 0.626 0.593 0.64 0.504 0.413 0.516
lucene ver2.0 → lucene ver2.2 0.64 0.641 0.615 0.666 0.657 0.564 0.658
lucene ver2.0 → lucene ver2.4 0.68 0.704 0.65 0.671 0.702 0.636 0.699
lucene ver2.2 → lucene ver2.4 0.72 0.678 0.658 0.701 0.648 0.658 0.639
poi ver2.5 → poi ver3.0 0.766 0.677 0.597 0.613 0.614 0.548 0.619
xalan ver2.4 → xalan ver2.5 0.584 0.619 0.567 0.632 0.646 0.472 0.619
xalan ver2.4 → xalan ver2.6 0.756 0.702 0.586 0.707 0.693 0.46 0.69
xalan ver2.4 → xalan ver2.7 0.79 0.762 0.528 0.6 0.778 0.743 0.808
xalan ver2.5 → xalan ver2.6 0.581 0.635 0.71 0.688 0.725 0.672 0.688
xalan ver2.5 → xalan ver2.7 0.705 0.661 0.768 0.826 0.821 0.722 0.883
xalan ver2.6 → xalan ver2.7 0.835 0.841 0.778 0.9 0.903 0.868 0.908

Table 8.2: Mean Rank of machine learning techniques

ML Technique Mean Rank
J48 1.93
MLP 3.23
NB 3.65
ADB 4.22
LR 4.58
BNG 4.82
RF 5.57

Table 8.3: Wilcoxon–signed rank test for cross-version defect prediction

Technique p-value Difference (S/NS)
LR - NB 0.361 NS
MLP - NB 0.361 NS
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ABABOOST - NB 0.361 NS
BAGGING - NB 0.045 NS
J48 - NB 0.009 NS
RANDOMFOREST - NB 0.002 S
MLP - LR 0.001 S
ADABOOST - LOG 1.000 NS
BAGGING - LOG 1.000 NS
J48 - LOG 0.002 S
RANDOMFOREST - LOG 0.265 NS
ABABOOST - MLP 0.100 NS
BAGGING - MLP 0.018 NS
J48 - MLP 0.000 S
RANDOMFOREST - MLP 0.002 S
BAGGING - ABABOOST 0.100 NS
J48 - ABABOOST 0.001 S
RANDOMFOREST - ABABOOST 0.026 NS
J48 - BAGGING 0.000 S
RANDOMFOREST - BAGGING 0.045 NS
RANDOMFOREST - J48 0.000 S

Wilcoxon–signed rank test is performed to validate the alternate hypothesis of the

Friedman test. The Wilcoxon–signed rank test results are shown in Table 7.3. All ML

techniques are paired with other techniques, in such a manner, total 21 pairs are formed.

The S denotes a significant difference and NS denotes no significant difference among that

pair. If the p-value is greater than the significance level (0.05), then it is indicated that

there is no significant difference among that pair. From Table 7.3, it has been observed

that RF performed better than NB in CVDP. MLP and J48 performed better than LR. J48

and RF performed better than MLP. J48 performed better than BNG and ADB. Hence, RF

performed better than J48 all other ML techniques for CVPD. Thus, RF can be used for

CVDP in upcoming projects with multiple versions of the same project.

Therefore, for RQ1 it is concluded that CVDP models developed with the applications
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of J48, MLP, NB, ADB, LR, BNG and RF provided AUC in the range of 0.49 to 0.908 for

overall 30 pairs. RF is outperformed in comparison to all other ML techniques used in a

study for prediction of defect prone modules based on the Friedman test result.

8.3.2 Results Specific to RQ2

To answer this RQ, the performance of SDP is evaluated and analyzed on the same training
and testing dataset. The performance of the evaluated model is noted down in Table 7.4
for all 26 datasets. NB does not perform better in comparison to other ML techniques. The
AUC values obtained using NB are low. The prediction model is developed using 10-fold
cross-validation for all datasets using 7 ML techniques. To validate the results Friedman
test used followed by post-hoc analysis that is Wilcoxon–signed rank test. The Friedman
test is performed with a significance level of 0.05 and 6 DoF. The hypothesis created and
tested for the Friedman test is as follows:

Table 8.4: AUC values for 10-fold cross-validation

Techniques Used NB LR MLP ADB BNG J48 RF
ant ver1.6 → ant ver1.6 0.823 0.844 0.807 0.82 0.882 0.82 0.904
ant ver1.7 → ant ver1.7 0.814 0.823 0.8 0.843 0.88 0.738 0.912
camel ver1.0 → camel ver1.0 0.834 0.736 0.735 0.883 0.825 0.68 0.863
camel ver1.2 → camel ver1.2 0.59 0.654 0.666 0.649 0.805 0.714 0.853
camel ver1.4 → camel ver1.4 0.678 0.678 0.637 0.652 0.701 0.592 0.73
camel ver1.6 → camel ver1.6 0.69 0.72 0.735 0.724 0.855 0.762 0.885
ivy ver2.0 → ivy ver2.0 0.809 0.827 0.803 0.83 0.879 0.8 0.916
jedit ver3.2 → jedit ver3.2 0.781 0.855 0.864 0.851 0.879 0.803 0.925
jedit ver4.0 → jedit ver4.0 0.769 0.811 0.832 0.813 0.88 0.804 0.914
jedit ver4.1 → jedit ver4.1 0.795 0.848 0.829 0.79 0.87 0.794 0.905
jedit ver4.2 → jedit ver4.2 0.845 0.864 0.838 0.873 0.906 0.772 0.928
jedit ver4.3 → jedit ver4.3 0.707 0.75 0.819 0.896 0.855 0.719 0.92
log4j ver1.0 → log4j ver1.0 0.863 0.821 0.846 0.84 0.861 0.767 0.903
log4j ver1.1 → log4j ver1.1 0.832 0.877 0.872 0.904 0.882 0.788 0.914
log4j ver1.2 → log4j ver1.2 0.792 0.81 0.851 0.823 0.887 0.798 0.936
lucene ver2.0 → lucene ver2.0 0.75 0.765 0.743 0.771 0.826 0.712 0.863
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lucene ver2.2 → lucene ver2.2 0.624 0.643 0.706 0.699 0.757 0.687 0.826
lucene ver2.4 → lucene ver2.4 0.756 0.792 0.81 0.77 0.85 0.694 0.893
poi ver2.5 → poi ver2.5 0.773 0.849 0.879 0.888 0.918 0.875 0.944
poi ver3.0 → poi ver3.0 0.8 0.824 0.818 0.883 0.906 0.831 0.932
synapse ver1.2 →

synapse ver1.2

0.768 0.789 0.81 0.823 0.843 0.757 0.892

xalan ver2.4 → xalan ver2.4 0.757 0.801 0.812 0.815 0.881 0.766 0.916
xalan ver2.5 → xalan ver2.5 0.604 0.695 0.719 0.71 0.838 0.759 0.89
xalan ver2.6 → xalan ver2.6 0.781 0.805 0.821 0.828 0.9 0.814 0.924
xalan ver2.7 → xalan ver2.7 0.925 0.933 0.822 0.93 0.894 0.811 0.958
xerces ver1.4 → xerces ver1.4 0.858 0.931 0.943 0.954 0.967 0.901 0.974

Null Hypothesis (Ho2):- For 10-fold cross-validation, there is no significant difference

in the efficiency of all ML techniques.

Alternate Hypothesis (Ha2): For 10-fold cross-validation, there is a significant differ-

ence in the efficiency of all ML techniques.

The ranks obtained using Friedman test of all the ML techniques are shown in Table

7.5. The computed p-value obtained using the Friedman test is 0.000 which is less than the

significance value. Hence, Ho is rejected and alternate Ha FAL THE is accepted.

Wilcoxon–signed rank test is performed to validate the alternate hypothesis of the

Friedman test. Table 7.6 shows the Wilcoxon–signed rank test results. All the techniques

are paired with other techniques, in such a manner, total 21 pairs are formed. The S

denotes a significant difference and NS denotes no significant difference among that pair.

If the p-value is greater than the significance level (0.05), then it indicates that there is no

significant difference among that pair. From Table 7.6, it has been observed that LR, ADB,

BNG, RF performed better than NB. BNG and RF performed better than LR. BNG and

RF performed better than MLP. BNG, J48, and RF performed better than ADB. J48 and

RF performed better than BNG. RF performed better than J48. Hence, RF outperformed
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all other ML techniques for 10-fold cross-validation.

Table 8.5: Mean Rank of ML Techniques

ML Technique Mean Rank
NB 2.28
J48 2.28
LR 3.25
MLP 3.37
AB 4.23
BAGGING 5.70
RF 6.88

Table 8.6: Wilcoxon–signed rank test for 10-fold cross-validation

Technique p-value Difference (S/NS)
LR - NB 0.000 S
MLP - NB 0.201 NS
AB - NB 0.001 S
Bagging - NB 0.000 S
J48 - NB 0.855 NS
RF - NB 0.000 S
MLP - LR 0.584 NS
AB - LR 0.018 NS
Bagging - LR 0.000 S
J48 - LR 0.100 NS
RF - LR 0.000 S
AB - MLP 0.201 NS
Bagging - MLP 0.000 S
J48 - MLP 0.006 NS
RF - MLP 0.000 S
Bagging - AB 0.001 S
J48 - AB 0.001 S
RF - AB 0.000 S
J48 - Bagging 0.000 S
RF - Bagging 0.000 S
RF - J48 0.000 S

Therefore, we concluded that 10-fold cross-validation, defect prediction models devel-
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oped with the applications of J48, MLP, NB, ADB, LR, BNG and RF gave AUC in the

range of 0.59 to 0.974 for overall 26 pairs. RF outperformed in comparison to all other ML

techniques used in this chapter for the prediction of defect-prone modules based Friedman

test result.

8.3.3 Results Specific to RQ3

The performance of prediction models developed using various ML techniques for cross-

version validation should not vary significantly from the model developed using 10-fold

cross-validation by applying same ML techniques to research the applicability of cross-

version methodology to recognize defective modules of the software. Cross-version

validation applicability to defect prediction models, is limited due to the significant amount

of difference. The following hypothesis is established and tested to prove it:

Null Hypothesis (Ho3): The performance of CVDP and the defect prediction model

produced using 10-fold cross-validation are not significantly different.

Alternate Hypothesis (Ha3): The performance of CVDP and the defect prediction

model established using 10-fold cross-validation differs significantly.

To determine the feasibility of cross-version validation, the findings are statistically

validated. On the results of seven ML techniques, we used pairwise Wilcoxon test with a

significance level of 0.05. The performance of seven ML techniques is analyzed individu-

ally for both cross-version and 10-fold cross-validation with respective AUC values.

The pair-wise Wilcoxon test results are presented in Table 7.6 for cross-version and 10-

fold cross-validation. Table 7.7 depicts the p-value obtained from the pair-wise Wilcoxon

test of seven ML techniques for cross-version and 10-fold cross-validation. From Table
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7.7 it has been observed that the p-value is less than that of significance level (0.05).

Therefore, the null hypothesis (Ho3) is rejected and the alternate hypothesis is accepted.

Thus, there exists a significant difference among the performance of cross-version and

10-fold cross-validation. The answer of RQ3 is concluded such that: the performance

of defect prediction modules developed using cross-version and 10-fold cross-validation

differ significantly. Thus, it has been observed that usage of existing versions of software

for upcoming software is not feasible in comparison to 10-fold cross-validation.

Table 8.7: Wilcoxon test on CVDP and model developed using 10-fold cross-validation

Technique p-value
NBCV - NBTF 0.002
LRCV - LRTF 0.000
MLPCV - MLPTF 0.000
ABCV - ABTF 0.000
BaggingCV - BaggingTF 0.000
J48CV - J48TF 0.000
RFCV - RFTF 0.000

8.4 Discussion

The feasibility of cross-version is analyzed using 26 versions of 10 different projects. Two

experiments are conducted in this chapter. In the first experiment, the defect prediction

model is developed using cross-version validation method. The defect prediction model is

developed using 10-fold cross-validation in the second experiment, and the performance

of this model is compared to that of a model developed using cross-version. The results

are validated using statistical test. The results obtained from paired Wilcoxon test proved

that it is not feasible to implement the CVDP model in comparison to the model developed
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using 10-fold cross-validation.

Cross-version helps in improving the quality of software by using existing versions of

software to identify defects in the updated version of that project. It has been observed that

the training and testing dataset of the same project is efficient instead of using different

versions of a project as a training and testing dataset.
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Chapter 9

Optimized Artificial Neural Network for

Heterogeneous Cross-Project Defect

Prediction using Grid Search

9.1 Introduction

Nowadays, SDP is a key domain for efficient utilization of resources in a reasonable

amount of time. The identification of defective modules resulted in the efficient utilization

of resources for academics and industrial workplaces. In ML, the prediction model

holds significant importance. In the past years, the defect prediction model trained using

empirical dataset for the identification of defects in the test data [146]. The defect prediction

models can be developed considering two situations, one is WPDP, and another is CPDP.

Types of defect prediction models differ based on the projects used for training and testing
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[147]. In the context of WPDP, the prediction model is trained and tested using same

project. However, WPDP can be further used for the identification of defects in the

upcoming versions of same project and helps in enhancing the functionality of upcoming

projects. Nowadays, data is exhausted for experiments in the upcoming era. Due to this

researchers are facing issues with the availability of data. The constraint of the limited

amount of data availability can be removed by considering different projects for the

development of prediction models.

CPDP utilizes different projects for model development and testing. The prediction

model designed for CPDP is based on the concept of TL. TL is based on knowledge

transfer learned from one task to another task. The knowledge is transferred using different

mechanisms on the basis of two different projects characteristics [54]. The source and

target domain considers the same project [148] for WPDP. However, CPDP consider

different projects for source and target data. TL is one of the methodology to conduct

CPDP. Further, TL helps in improving the software quality for future projects with similar

feature distribution. The source and target projects consist of different features that is

termed as heterogeneous TL.

The study conducted to analyze the effectiveness of ANN for CPDP and grid search

optimization with ANN for CPDP. ANN is efficient for learning a compact representation

of different behaviors rapidly. They are flexible in managing various behaviors sequen-

tially. One of the advantage of using ANN is to use it without relearning the synaptic

weights or strengths. The CPDP considered two scenarios such as HoCPDP and HetCPDP.

Both scenarios vary depending on the feature types in the training and testing project. In

HoCPDP, the training and target projects consist of similar features. In HetCPDP, the

training and testing dataset contain different features with some similarities. Moreover,
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there must be some relationship between the training and testing dataset when few features

are considered. In case of HetCPDP, the idea of TL emerged [149]. The main aim of inte-

grating TL for CPDP is to enhance the quality of software. The software quality depends

on various parameters depending on the types of features considered for experimentation.

The software quality attributes are categorized into two categories based on functional and

non-functional requirements. Further, the quality attributes consider various measures for

quality estimation using software metrics. In existing research, the researchers considered

traditional ML algorithms for analyzing the efficiency of CPDP models.

The experiment is conducted using AEEEM and NASA datasets. In this chapter, ANN

is used for CPDP grid based model development. This study also identified the grid based

ANN model efficiency with optimization algorithms for CPDP. The grid based ANN model

performed better in comparison to traditional ANN model for CPDP. The RQs addressed

in this study are: RQ1: What is a predictive capability of ANN for CPDP considering

AEEEM and NASA projects? RQ2: What is the predictive capability of the grid search

ANN model for the AEEEM and NASA dataset?

The chapter is organized in the following manner: Section 8.2 explains the research

methodology. Section 8.3 presented result and analysis. Section 8.4 presented conclusion

and future direction.

9.2 Research Methodology

The research methodology followed to conduct the experiment discussed in this chapter.
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9.2.1 Dataset

The dataset used for experimentation is referred in Chapter 2 Section 2.7.3.1.

9.2.2 Data Preprocessing

The dataset used in this study is preprocessed using various data preprocessing techniques.

Thus, the techniques used in this study are handling missing values, outliers removal, null

values handling, and normalization of a dataset is performed.

9.2.3 Optimization Algorithm

In this chapter, three optimization algorithms are used such GrS, PSO, and Evolutionary

Search (EVS). GrS for ANN architecture starts with a small network and iteratively

leads with the selection of neurons and hidden layers till final output. PSO used as an

optimization technique for training ANN. The basic idea is to use PSO to search for the

optimal set of weights and biases for ANN that minimizes the error between the predicted

outputs and actual outputs. EVS used to find out optimal set of weights and biases to

minimize the error between predicted and actual outputs.

9.2.4 Techniques used for model development

In this chapter, traditional ANN with default parameter settings and ANN with optimization

algorithms such as GS, PSO, and EV under varying settings of ANN parameters were used

for the development of prediction models.
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9.3 Results and Analysis

This section presents the results and analysis of answers to the RQs. In this section, the

answers to RQs are discussed in detail. The experiment conducted in this experiment used

two projects of AEEEM and eight projects of NASA. The projects used for experimentation

consist of different features such as Halstead metrics, and OOM. To perform HetCPDP

using TL, the setting of selected projects has been fixed. AEEEM projects are used for

training of prediction model and NASA projects are used for testing of developed prediction

model. Further, 16 pairs are formed for experimentation. In this study, 112 models were

designed considering possible pairs of source and target datasets. The performance of each

pair is analyzed according to the selected classifier with default and grid search parameter

settings. However, the performance of prediction model analyzed using AUC metric. AUC

provides more generalized and unbiased results in the case of imbalanced dataset. This

section interprets the results and answers to the RQs discussed in Section 8.1.

9.3.1 Results Specific to RQ1

In this study, CPDP models are developed using various projects with different features.

CPDP is developed using ANN with default parameter settings. In default parameter

settings, batch size = 100, learning rate = 0.3, momentum = 0.2, epochs (no.) = 500.

The traditional ANN performance does perform well with default parameter settings.

During experimentation, we have to see features of both training and testing dataset must

have the same vector. If the feature vector space is not matching, then TL concept is

not applicable. Since, both source and target projects have similar features considering
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OOM. Thus, the challenging task was to extract relevant features from both the projects.

Moreover, training and testing projects consist of different features. The results obtained

using ANN for CPDP are summarized in Table 8.1. Based on covariance among the

features of both projects, specified feature pairs were selected for designing the prediction

model. Further, the prediction model is used for defect prediction in upcoming projects

with similar characteristics. ANN based prediction model can be improved using grid

search optimization.

Table 9.1: AUC values for ANN and grid search ANN model for CPDP

Source Dataset →

Target Dataset

ANN ANN+PSO ANN+EVS ANN+GrS

EQ → CM1 0.5 0.79 0.74 0.79
EQ → KC1 0.57 0.74 0.7 0.73
EQ → KC3 0.65 0.64 0.65 0.64
EQ → MC2 0.65 0.78 0.76 0.79
EQ → MW1 0.47 0.72 0.7 0.69
EQ → PC1 0.54 0.69 0.65 0.66
EQ → PC2 0.53 0.65 0.63 0.67
EQ → PC3 0.59 0.73 0.72 0.75
Lucene → CM1 0.49 0.72 0.7 0.78
Lucene → KC1 0.53 0.68 0.72 0.7
Lucene → KC3 0.57 0.7 0.67 0.7
Lucene → MC2 0.69 0.65 0.69 0.67
Lucene → MW1 0.5 0.69 0.67 0.69
Lucene → PC1 0.2 0.68 0.67 0.64
Lucene → PC2 0.3 0.78 0.72 0.79
Lucene → PC3 0.5 0.71 0.7 0.74
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9.3.2 Results Specific to RQ2

To answer this RQ, the default parameters of ANN were changed using grid search

approach. In the grid search approach, the model has been trained multiple times for

varying sets of parameter values. In the default parameter setting, the learning rate was 0.3,

which is used for training large and complex datasets. However, the dataset is not much

larger in this study. Thus, the experiment has been conducted for varying sets of learning

values, which provides the best performance of the ANN model at a learning rate of 0.01.

In optimized ANN the number of hidden layers are updated with number of neurons in each

hidden layer. In ANN, we have used the logistic activation function for experimentation.

The performance of the grid search ANN model for CPDP was 0.79. In some of the pairs,

it was 0.3 also depending on the size of the training and testing dataset. ANN ensures that

the size of the training and testing dataset is same. Furthermore, statistical analysis has

been done to analyze the performance of techniques statistically. The null hypothesis states

that there is no significant difference in the performance of four techniques. The alternate

hypothesis says that there is a significant difference in the performance of four prediction

models. Thus, based on the Friedman test result at a 0.05 significance level, the computed

chi-square value is 16.016. The mean rank of four techniques are represented in Table 8.2.

Hence, an alternate hypothesis is accepted such that there is statistical difference among

the performance of four prediction model. The next step is to analyze the performance of

each technique individually using post-hoc analysis such as Wilcoxon–signed rank test.

Furthermore, six combinational pairs are formed for Wilcoxon–signed rank test.
The hypothesis for the further comparison among six pairs are as follows: Null Hy-

pothesis (Ho1): There is no significant difference among the performance of ANN PSO
and ANN. Alternate Hypothesis (Ha1): There is a significant difference among the perfor-
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mance of ANN PSO and ANN. Thus, the Asymp. Sig. (2-tailed) is 0.003 at at significance
level 0.05. Hence, Ha1 is accepted. (Ho2): There is no significant difference among the
performance of ANN EVS and ANN. (Ha2): There is a significant difference among the
performance of ANN EVS and ANN. Thus, the Asymp. Sig. (2-tailed) is 0.003 at at signif-
icance level 0.05. Hence, Ha2 is accepted. (Ho3): There is no significant difference among
the performance of ANN GrSand ANN. (Ha3): There is a significant difference among the
performance of ANN GrSand ANN. Thus, the Asymp. Sig. (2-tailed) is 0.003 at signifi-
cance level 0.05. Hence, (Ha3) is accepted. (Ho4): There is no significant difference among
the performance of ANN EVS and ANN PSO. (Ha4): There is a significant difference
among the performance of ANN EVS and ANN PSO. Thus, the Asymp. Sig. (2-tailed) is
0.105 at significance level 0.05. Hence, (Ho4) is accepted. (Ho5): There is no significant
difference among the performance of ANN GrSand ANN PSO. (Ha5): There is a signifi-
cant difference among the performance of ANN GrSand ANN PSO. Thus, the Asymp.
Sig. (2-tailed) is 0.472 at at significance level 0.05. Hence, (Ho5) is accepted. (Ho6):
There is no significant difference among the performance of ANN GrSand ANN EVS.
Ha6: There is a significant difference among the performance of ANN GrSand ANN EVS.
Thus, the Asymp. Sig. (2-tailed) is 0.027 at at significance level 0.05. Hence, (Ho6) is
accepted. However, it has been observed that ANN+GrS outperformed in comparison to
other models.

Table 9.2: Model Mean Ranks

Model Mean Rank
ANN 1.38
ANN PSO 2.92
ANN EVS 2.46
ANN GrS 3.23
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9.4 Discussion

The main aim of conducting experiment is to analyze the efficiency and evaluate the

performance of ANN with ANN grid search model for CPDP. HetCPDP is developed

in this study considering projects from different repositories. In the source dataset, the

AEEEM dataset was specified, while NASA datasets were specified in the target dataset.

The number of features differs in both, the CPDP model is designed considering similarity

among features to some extent. The experiment performed in this study showed that

traditional ANN performance was not much significant. Grid based ANN performed better

than traditional ANN considering the parameters setting using a grid based approach. Grid

search ANN model worked better by considering more number of neurons and hidden

layers for CPDP. Grid search ANN model outperformed ANN based on no. of neurons in

the hidden layer, no. of hidden layers, and learning rate value. Grid search provides an

effective combination of hyperparameters. Moreover, grid search is expensive, especially

for large networks with many hyperparameters. In future work, random search or bayesian

optimization may be used as an alternative to grid search with deep learning. The grid

search ANN model can be tested further with more optimization algorithms for HetCPDP

and HoCPDP.
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Chapter 10

Development of Prediction Model using

Grid Search Grey Wolf Optimization

and Optimized Artificial Neural

Network

10.1 Introduction

In today's era SDP is one of the important research area in the software engineering field.

SDP helps in developing a more suitable prediction model with a reasonable amount of

resources and in a reasonable amount of time. The main aim of developing SDP model is

to release defect free software to the end user. In order to minimize the failure of software's,

the SDP models helps in maintaining the good quality of software by considering various
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quality attributes. During software quality life cycle phase the defects are identified in

each phase. Software quality is also ensured using defect prediction models considering

relevant quality attribute and domain. Researchers, academicians, and industry experts

are focused on developing defect prediction model using Traditional ML, Deep Learning

(DL), and Artificial Intelligence (AI).

In this study, defect prediction models are developed based on different criterion. Firstly

WPDP, and secondly CPDP. In WPDP, the same project is used for training and testing.

Based on the specified criterion, the dataset is divided into 80:20 or 70:30 that is amount

of training set: amount of testing set ratio. Furthermore, the managerial implications is to

improvise the software quality using different measures. Thus, using experimental settings

of this study such as testability, usability, reusability, interoperability, functionality of the

system can be improvised in future projects. However, the study aims at identification, and

removal of defects with reasonable amount of sources, and minimal amount of time.

In CPDP, different projects are used for training and testing dataset. However, in

today's era most of the researchers prefer to use CPDP approach. Due to limitation of

data, CPDP provides more effective results. Based on the types of features in training

and testing dataset, CPDP is categorized in two sub-categories. The first sub-category is

HetCPDP, and second sub-category is HoCPDP. Homogeneous CPDP is based on similar

feature distribution and space among the training and testing dataset. Moreover, HetCPDP

is based on different space and feature distribution among the training and testing dataset.

However, in the existing GWO there are various demerits, such as low predictive capability,

slow convergence, and local search. Thus, improvised or modified GWO is developed in

this study. The modified GWO technique is developed in combination with RF.

Defect prediction models are helpful in developing an efficient, reliable, and robust
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software. In the existing research, the defect prediction models are developed using various

ML algorithms. In this study, three models are developed for WPDP first is WPDP GWO,

second is 10-fold GWO model, and last is GrS GWO. In the existing research, the GWO

is analyzed for CPDP, but not for WPDP. Thus, it was observed that GrS GWO performed

by optimizing the hyperparameters.

In today's era, everyone wants efficient and reliable software. The software developed

in earlier years was complex with less efficiency. The complexity of software increases

with software size which leads to an increase in the number of defects. However, the

number of defects can be minimized considering the removal of all defects from scratch

is impossible [136]. ML can be used to develop an efficient model for the detection, and

removal of defects in the software. Software development slows down due to the presence

of defects in the software. Software testing is important in the software development life

cycle phases. The presence of defects in the software affects the delivery of software,

development cost, time, resource utilization, and security vulnerability. In upcoming years,

software engineering emerge to produce improvised software considering quality, process,

time, and cost. The objective of software engineering discipline is to create software that

enhances the quality of software in terms of its capacity to be reused, maintained, ported,

made robust, and eliminated defects.

In the existing literature, defect prediction is studied considering two scenarios. Firstly,

no single prediction technique dominates. Secondly, the interpretation of different predic-

tion models hampers the usage of various datasets, preprocessing techniques, validation

schemes, performance measures, and statistical tests. However, such differences in pre-

diction models are overcome by increasing the reusability of existing prediction models.

Moreover, it concludes that the researchers, industry experts, and academicians are not
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able to select a specified technique. Defect prediction aims at the identification of defects

in every phase of software development life cycle and the final testing of software before

its deployment at the user's site.

In traditional research, researchers focused on the traditional method of developing

a defect prediction model. However, the temporal analysis indicated the availability of

training data is very low in the defect prediction domain. Thus, the cross-project domain

emerged with the non-availability of training data. In the traditional prediction model, the

single dataset is used for training and testing using a few validation methods for specified

studies. In the upcoming era, the focus of researchers is to increase the usability of existing

models. Thus, existing models are used iteratively for defect prediction.

Defect prediction models can be constructed using many methods, including WPDP

and CPDP. There are two distinct types of defect prediction models that vary depending

on the projects used for training and testing [150]. In WPDP, the same project (X) can

be used for training as well as for testing. However, in CPDP, different projects (Y and

Z) are required for training and testing. In CPDP the training and testing dataset have

similarities in specified domain and distribution. CPDP can be done in two ways based on

the characteristics and company of the project. Cross-company defect prediction discussed

in Chapter 1. However, if two different projects of the same company are used for the

development of a prediction model named intra-project defect prediction. Furthermore,

the CPDP is also categorized based on the types of features used in the training and testing

dataset. However, the idea of TL emerged from CPDP. CPDP worked on the basics of TL,

four different types of TL exist. Thus, the settings of TL are based on the characteristics

and domain distribution of the training and testing dataset. It transfers knowledge learned

from one task to a future task. The significance of TL is further used in developing more
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efficient prediction models. TL helps in transferring knowledge between different projects

having similar features, and data distribution. If the features are completely different in

both projects, then developers are required to establish relationship among training and

testing dataset considering specified criteria.

This study focused on the identification and removal of defects before the final de-

ployment of the software at the customer site. However, when multiple versions of a

project need to be released, then CVDP [151] plays an important role. Furthermore, in the

existing studies, authors have experienced that using multiple versions of the same project

as a training dataset results in an efficient prediction model. Thus, different versions of

the same project are used as training datasets in most of the studies. Researchers have

experimented with Just-In-Time (JIT) prediction. However, CPDP using JIT resulted in

better performance, while WPDP does not perform well, and the EL idea also worked well

considering the historical data of several projects [152].

In this study, authors have analyzed the impact of ANN, RNN, and CNN in combination

with various optimization and transfer variants. Three optimization algorithms are used in

this study such as Ant Colony Optimization (ACO), Cat Swarm Optimization (CSO), and

GWO. Further, the performance of all the prediction models compared with traditional

ML algorithms such as RF, KNN, and NB.

The performance was analyzed by evaluating the effectiveness of different methodolo-

gies using AEEEM and NASA repository datasets. The authors of the current study have

employed ANN to perform CPDP by utilizing three different techniques: GrS, PSO, and

EVS. Moreover, transfer techniques are employed to compare these models. The study

utilizes datasets from AEEEM and NASA repositories for experimental purpose. In the

existing study [153], Transfer ANN (TANN) was employed to create a grid-based model
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for CPDP. This study also determined the effectiveness of the grid-based ANN model when

combined with optimization methods for the purpose of cross-platform development and

performance. In this study, different types of NN are explored for CPDP. TANN, Transfer

RNN (TRNN), and Transfer Convolutional NN (TCNN) are used for conducting CPDP

experiments. Further, the performance of ANN, RNN, and CNN is first analyzed with tra-

ditional algorithm. In the next step, traditional ANN, RNN, and CNN are optimized using

SpMO, CSO, and ACO algorithms. To analyze the effectiveness of traditional NN, each

NN is compared with the optimized variant. Further, all the NN and their optimized NN

variants are compared interchangeably using statistical tests. In this study, three optimized

algorithms of all the NN are developed such as ANN SpMO, ANN CSO, ANN ACO,

RNN SpMO, RNN CSO, RNN ACO, CNN SpMO, CNN CSO, and CNN ACO. Further,

traditional ML algorithms such as Transfer RF (TRF), Transfer K-NN, and Transfer NB

(TNB) performance evaluated for CPDP using optimization algorithm. Thus, the variants

of TRF, TNB, and TKNN compared with efficient variants of NN.

The following RQs answered in this study:

• RQ1: What is the predictive capability of WPDP, 10-fold GWO, and WPDP GSGWO?

• RQ2: What is the predictive capability of TGWO, GSGWO, and RFGWO for

InPDP?

• RQ3: What is the predictive capability of TANN, TANN SpMO, TANN CSO,

TANN ACO, TRNN, TRNN SpMO, TRNN CSO, TRNN ACO, TCNN, TCNN SpMO,

TCNN CSO, TCNN ACO CPDP model for AEEEM and NASA dataset?

• RQ4: What is the predictive capability of TRF, TRF SpMO, TRF CSO, TRF ACO,
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TNB, TNB SpMO, TNB CSO, TNB ACO, TKNN, TKNN SpMO, TKNN CSO,

TKNN ACO CPDP model for AEEEM and NASA dataset?

The main contribution of this study is as follows:

• Analysis of WPDP with 10-fold cross-validation, and GWO algorithm.

• Analysis of TGWO, GrSGWO, and RFGWO, CPDP, and Intra–Project Defect

Prediction (InPDP).

• Efficiency of GWO for defect prediction models.

• Improvising software quality using GWO in the domain of defect prediction model.

The organization of this chapter is as follows: Section 9.2 discussed research method-

ology. Section 9.3 presented results. Section 9.4 summarized conclusion.

10.2 Research Methodology

This section describes the research methodology followed in this chapter.

The experiment performed using traditional ANN, RNN, and CNN are used with

default parameter settings, and ANN, RNN, and CNN with optimization algorithms such

as ACO, CSO, and SpMO under varying settings used for the development of prediction

models. Furthermore, additional three traditional ML techniques are also used such as RF,

NB, and KNN with a transformed version named TRF, TNB, and TKNN.

1. RF: It is a supervised ML algorithm used to solve real-world classification problems.

However, in general terms, the forest consists of numerous trees, and the quantity of
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trees increases the robustness of the forest. However, the count of trees increases

the accuracy of the classifier, and problem-solving ability. Furthermore, RF consists

of subsets of trees, and it takes the average of all subset trees accuracy to improve

the performance of the model. The concept of EL is used in combining multiple

subtrees to solve complex problems by taking an average of all subtrees. The group

of multiple models is termed an ensemble. EL is categorized into two categories

such as BNG and Boosting. BNG involves generating multiple training subsets from

the original training data by randomly selecting samples with replacement. The

final output is determined by a majority vote process. Boosting is a technique that

combines weak learners to create a powerful learner. This is achieved by sequentially

building models, such as Adaboost and XGBoost, in a way that maximizes accuracy.

Further, the TRF classifier is developed based on an ensemble of multiple TL

approaches, ensuring coverage of similarity among source and target datasets in a

broad domain.

2. NB: It is a supervised ML algorithm and is used for classification problems such

as text classification. However, NB is different from other discriminative classifiers

such as LR, that doesn't learn highly important features to differentiate among output

classes. NB is based on Bayes theorem and is also termed as Baye's rule. The

concept of conditional probability is required for the NB algorithm. The conditional

probability signifies the probability of an event given that some other event occurred

at that time. However, NB classifier works under the assumption that predictions in

NB are conditionally independent, or unrelated to other features in the model. The

classification algorithm performs efficiently with independent probabilities. Further,
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the TNB model is proposed by integrating the TL idea with NB to balance the

distribution among source and target projects.

3. KNN: KNN is a widely used technique for classification and regression problems.

KNN focused on labeling data based on similarity. Thus, it segregates similar data

points with similar labels. Furthermore, KNN works by storing the entire training

dataset for reference, During the training phase, it computes the distance between

data points using euclidean distance. In the next step, based on the computed

distance, it identifies data points or KNN. However, for the classification task, KNN

assigns a common class label to K neighbors as the predicted label for the input data

point. In the regression task, the average or weighted average distance is calculated

to find out the KNN to predict the value of the input data point. The performance

of KNN is affected by the value of K and the distance measures. However, KNN is

used for both classification and regression tasks with simplicity and effectiveness in

different scenarios.

4. ANN: ANN algorithm is named after biologically inspired field the brain. It is a

computational network developed based on a biologicalNN considered brain archi-

tecture. It is similar to human brain architecture as the neurons are interconnected to

each other in our brain, ANN also contains neurons that are linked with each other,

and these neurons are termed as nodes/units. These units or nodes are connected in

a sequence of layers. ANN mainly consists of three layers such as input layer, the

hidden layer, and the output layer. The input layer accepts all the inputs in different

formats by the programmer. The hidden layer is intermediate between the input,

and output layers and performs all the computations to find out hidden patterns, and
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features. The output layer provides the actual result after the transformation of input

neurons through hidden layer. ANN takes input and computes weights including

bias and transfer function. It computes the weighted total, is passed as an input

to an activation function to compute output. However, there are various activation

functions available based on the type of task. ANN is represented as a weighted

directed graph. There exists an association between the input and output neurons as

the directed edges with weights. ANN receives input signals from external sources

in the form of a pattern and image in the form of a vector. In the next step, each

input signal is multiplied by the corresponding weights and these weights represent

interconnection between neurons inside the ANN.

The total of weighted inputs lies in the range of 0 to positive infinity and total

weighted inputs are passed through various activation functions. The set of transfer

functions to compute the desired output is referred to as the activation function.

However, there are linear and non-linear sets of activation functions. The commonly

used activation functions are binary, linear, and tan hyperbolic sigmoidal activation

functions.

5. RNN: RNN is one of the NN types that fed output from the previous step as input

to the current step. RNN is useful when previous output is required to make future

predictions. In traditional ANN, input, and output are independent of each other.

However, RNN has a hidden state that stores information about a sequence. The

hidden state is also termed a memory state since it keeps information about the

previous input. The same parameters are used in every step as the same task

needs to be performed everytime on the hidden layer to provide the same output.
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However, RNN reduces the complexity of parameters, unlike other NN. In RNN, the

fundamental processing unit is the Recurrent Unit not termed a Recurrent Neuron.

This recurrent unit can maintain a hidden state, by allowing the RNN to keep

information about sequential dependencies by remembering previous inputs while

processing. Long terms dependencies can also be handled using LSTM, and gated

recurrent unit. There exist four types of RNN based on the number of inputs and

outputs in the network such as one to one, one-to-many, many-to-one, and many-to-

many. RNNs have the same input and output layers. Moreover, the difference arises

in the way information flows from input to output. The hidden state is computed

for every input Xi. Moreover, RNNs suffer from gradient vanishing, and exploding

problems including training RNNs is a challenging task. The large sequences can not

be processed in the case of Relu or tanh used as an activation function. Furthermore,

advanced versions of RNN are developed to deal with the limitations of RNN. The

advanced versions of RNN are such as Bidirectional Neural Network (BiNN), and

LSTM.

6. CNN: CNN is an extended version of ANN. CNN is used extraction of features from

the grid-like matrix dataset. CNN is most commonly used for image recognition and

classification tasks. It consists of an input layer, convolutional layer, pooling layer,

and fully connected layer. CNN is built upon layers of convolutional operations.

A set of learnable filters is provided as input or convolves across the input. The

convolution operation included arithmetic operation summation including element-

wise multiplication of filter with input. In CNN, a non-linear activation function is

applied to produce non-linearity in the network. Furthermore, pooling layers are
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used to reduce computational complexity. In the next step, fully connected layers are

used which take the flattened output of the last convolutional or pooling layer. The

last convolutional layer is further processed through one or more traditionally fully

connected layers same as traditional ANN. The CNN training phase uses various

gradient descent optimization algorithms and network weights are adjusted during

the training phase. The parameters are adjusted to reduce the difference between

predicted output, and actual labels in the training data. The difference between

predicted, and actual output is reduced with the help of the loss function. Further-

more, overfitting is reduced by integrating regularization, and dropout techniques.

Regularization penalizes large weights in the network. Dropout focused on disabling

a fraction of neurons during training to a repeated adaptation of features. However,

it has been observed that CNN is highly effective for computer vision tasks such as

image classification, object detection, human activity recognition, and segmentation

as it learns hierarchical patterns, and features from raw pixel data.

10.2.1 Optimization Algorithm

Three optimization algorithms are used such as ACO, CSO, and SpMO to optimize

ANN, RNN, and CNN. The three optimization algorithms are also used with traditional

ML algorithms to analyze the performance of traditional ML algorithms with TL-based

algorithms.

1. ACO: ACO is based on a swarm intelligence algorithm similar to particle swarm

optimization. ACO was introduced in the 1990s by Marco Dorigo. The aim behind

the swarm intelligence algorithm is to find the optimal solution by analyzing the
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behavior of insects, ants, and bees. The name of ACO indicates that it is based

on the behavior of ant colonies. Ants communicate through pheromones, which a

chemical secreted by the ants on the soil, and ants from the same colony can smell

pheromones and follow the same path. However, ants use the shortest path to reach

to get the food from the colony. Furthermore, ants secret the pheromones while

going for food, and at the same time, other ants follow the same path. The increase

in the amount of ants leads to an increase in pheromone secretion, and the secretion

of pheromone decreases on other paths. Thus, the shortest path plays an important

role in getting the food from the source to the colony. Consider a graph with vertex

(V) and edges (E). Further, the source vertex and destination vertex are termed as Vs

(ant colony) and Vd (food source). Edges E1, and E2 with L1, and L2 assigned to

both. Pheromones are denoted by R1 and R. Furthermore, it is evident that if R1

greater than R2, then the chances of choosing E1 are higher. Thus, while returning

through the shortest path named Ei, the pheromone value will be updated for the

corresponding path. The updation is based on the path length and evaporation rate

of pheromone.

2. CSO: CSO is also based on swarm intelligence algorithms. Similar to ACO which

is based on ants behavior, CSO is based on the behavior of cats in the real world.

According to research, there are a variety of cat species categorized from lions to

cheetahs, and from tigers to domestic cats. However, these species live in different

environments. Moreover, the behavioral attributes are similar for the cat species.

Considering CSO, there are two different states of cat such as seeking mode, and

tracking mode. The cats are inactive in seeking mode, which indicates looking
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around the surroundings or thinking of moving to another place. The cats are active

in tracking mode, which indicates they are changing their current position.

In CSO, every cat has its dimensions in its solution space, with velocity vi, d that

indicates the state of a cat in either seeking mode or tracking mode and provides

the fitness value that represents the accommodation of cats to the fitness function.

However, to ensure that cats must be in both modes, CSO focused on cats that spend

most of their time in an inactive state. Thus, a ratio is defined that indicates how

much time either of these modes is taken into account by the cats while performing

CSO, a ratio termed a Mixture Ratio (MR). However, the value of MR must be very

low for the cats spending most of their time in an inactive state.

3. SpMO: The study of social species foraging behavior has long been important for

the creation of optimization algorithms. A global optimization system called Spider

Monkey Optimization (SpMO) was developed after studying the fission-fusion social

structure of spider monkeys when they forage. Self-organization and division of

labor are two core ideas of swarm intelligence that SpMO masterfully illustrates.

Recent years have seen a rise in the use of SpMO, a swarm intelligence-based

algorithm, for a variety of engineering optimization issues.

10.3 Results and Analysis

The performance of models developed using GSO and ANN are discussed in this section.
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10.3.1 Results Specific to RQ1

In this study, defect prediction models are developed for analyzing the efficiency of WPDP.

Hence, different versions of same projects are used for training and testing. In order

to answer RQ, the experiment is aimed at WPDP. In WPDP, the same project is used

for training and testing based on some specified criterion. To address this RQ answer,

12 different projects or versions of NASA dataset are used for experimentation. Three

different models are constructed in the study. In the first model, that is WPDP same dataset

is used for training and testing in order to avoid lack of data problem.

10.3.2 Results Specific to RQ2

In order to answer this RQ, specified combinations of source and target project is considered

for TL. On the basis of number of variables and types of variables in the source and target

project specified datasets are used to analyze the predictive capability of TGWO, GSGWO,

and RFGWO. The results are presented in Table 9.1. However, out of three models

RFGWO outperformed TGWO and GSGWO. It has been observed that RF performed

best after optimizing hyperparameters through GWO. In the existing research, it has been

observed that grid search performed best for homogeneous CPDP, where both training

and testing dataset has similar variables. Furthermore, statistical test validated the results

through hypothesis testing. Further, Friedman test concluded that alternate hypothesis

is accepted such as there is a significant difference among the performance of TGWO,

GSGWO, and RFGWO prediction models. Moreover, it has been observed that null

hypothesis is accepted for TGWO and GSGWO. However, alternate hypothesis is accepted

between RFGWO and GSGWO pair, and RFWO and TGWO. Thus, RFGWO performed
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best out of all the prediction models used for CPDP in this study. Hyperparameter tuning

optimizes the parameters to some extent in order to improvise the performance of predictive

model. Hence, RFGWO is best for InPDP. Furthermore, graphical representation of AUC

values for all the pairs of source and target dataset used for InPDP using TGWO, GSGWO,

and RFGWO.

Table 10.1: AUC values for TGWO, GSGWO, and RFGWO for InPDP

Training Dataset → Testing

Dataset

TGWO GSGWO RFGWO

JM1 → KC1 0.62 0.61 0.64
MC1 → PC5 0.67 0.67 0.69
PC4 → PC3 0.70 0.75 0.75
PC4 → PC1 0.70 0.68 0.77
PC4 → CM1 0.57 0.52 0.57
PC4 → MW1 0.40 0.40 0.45
PC3 → PC1 0.86 0.66 0.86
PC3 → CM1 0.63 0.63 0.65
PC3 → MW1 0.61 0.63 0.64
PC1 → CM1 0.73 0.73 0.75

10.3.3 Results Specific to RQ3

This study provides a comprehensive analysis of the RQs and their corresponding responses.

The experiment utilized two projects from AEEEM and eight projects from NASA. The

experimental projects incorporate many features, including Halstead metrics and OOM.

The selection of projects for HetCPDP has been finalized, and TL is being used in the

process. AEEEM projects are utilized to train prediction models, while NASA programs

are employed to test the produced prediction models. In addition, a total of 16 couples are

created specifically for the purpose of conducting experiments. For this investigation, a
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Figure 10.1: Performance comparison of intra-project defect prediction models

total of 112 models were created, taking into account all potential combinations of source

and target datasets. The performance of each pair is evaluated based on the chosen classifier

using default and grid search parameter configurations. Nevertheless, the evaluation of

the prediction models was conducted using the AUC metric. The AUC metric yields more

generalized and unbiased outcomes when dealing with imbalanced datasets. This part

provides an analysis and addresses the RQs stat Section 1.

Table 10.2: AUC values of the prediction model developed using ANN, RNN, and CNN

Source

Dataset

→ Target

Dataset

ANN

SpMO

ANN

CSO

ANN

ACO

TANN RNN

SpMO

RNN

CSO

RNN

ACO

TRNN CNN

SpMO

CNN

CSO

CNN

ACO

TCNN

Mylyn →

EQ

0.77 0.82 0.78 0.81 0.52 0.67 0.57 0.68 0.91 0.92 0.91 0.91
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Mylyn →

Lucene

0.94 0.95 0.95 0.95 0.60 0.60 0.68 0.66 0.90 0.92 0.90 0.91

Mylyn →

PDE

0.94 0.93 0.93 0.96 0.53 0.65 0.53 0.73 0.90 0.91 0.91 0.91

Mylyn →

JDT

0.96 0.95 0.94 0.95 0.44 0.68 0.75 0.54 0.92 0.90 0.92 0.91

PDE → EQ 0.94 0.93 0.92 0.91 0.46 0.68 0.69 0.65 0.88 0.88 0.86 0.88
PDE →

Lucene

0.94 0.93 0.94 0.94 0.60 0.62 0.57 0.70 0.85 0.88 0.89 0.87

PDE →

JDT

0.93 0.93 0.93 0.92 0.67 0.50 0.60 0.59 0.85 0.88 0.88 0.87

JDT → EQ 0.92 0.91 0.94 0.92 0.70 0.56 0.57 0.52 0.87 0.88 0.88 0.88
JDT →

Lucene

0.88 0.91 0.90 0.93 0.64 0.61 0.61 0.68 0.87 0.86 0.89 0.89

Lucene →

EQ

0.98 0.98 0.98 0.98 0.55 0.58 0.65 0.64 0.93 0.89 0.91 0.90

CM1 →

MW1

0.46 0.32 0.55 0.34 0.52 0.63 0.55 0.58 0.73 0.66 0.66 0.70

PC1 →

CM1

0.67 0.32 0.76 0.84 0.68 0.66 0.46 0.70 0.71 0.69 0.74 0.51

PC1 →

MW1

0.78 0.72 0.77 0.78 0.60 0.67 0.64 0.66 0.82 0.85 0.74 0.73

PC3 →

CM1

0.79 0.34 0.35 0.58 0.67 0.42 0.63 0.57 0.64 0.84 0.50 0.79

PC3 →

MW1

0.40 0.44 0.82 0.47 0.48 0.49 0.27 0.26 0.30 0.75 0.66 0.50

PC3 → PC1 0.35 0.82 0.37 0.61 0.51 0.40 0.60 0.69 0.53 0.58 0.53 0.56
PC4 →

CM1

0.87 0.90 0.85 0.89 0.62 0.44 0.47 0.58 0.77 0.82 0.87 0.79

PC4 →

MW1

0.89 0.75 0.79 0.77 0.62 0.71 0.60 0.35 0.82 0.80 0.76 0.73

PC4 → PC1 0.75 0.79 0.86 0.86 0.64 0.65 0.64 0.62 0.88 0.82 0.72 0.79
PC4 → PC3 0.75 0.73 0.90 0.83 0.61 0.64 0.51 0.43 0.83 0.77 0.88 0.81
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To answer this RQ, the model has been developed using 12 different combinations

with 3 ML techniques and 3 optimization techniques. Thus in total 12 combinations were

formed such as ANN SpMO, ANN CSO, ANN ACO, TANN, RNN SpMO, RNN CSO,

RNN ACO, TRNN, CNN SpMO, SNN CSO, SNN ACO, TCNN. Further, the AUC

performance measure is used to analyze the performance of these models.

However, the results are validated using a statistical test such as the Friedman test

and post hoc analysis completed through the Wilcoxon–signed rank test. However, the

Friedman test is performed using N = 20 (combinations of source and target dataset), with

252 models, and 12 different techniques. Through statistical test, it has been analyzed

that there is a significant difference among the performance of models developed by 12

different pairs. Friedman’s test result provided a computed chi-square value of 82.846 and

a p–value of 0.000 at a significance level of 0.005. Thus, the performance of all the 252

models differs significantly.

Furthermore, the performance of each model is analyzed with all other pairs through

post hoc analysis test such as the Wilcoxon–signed rank test. Thus, it has been observed that

TANN and its optimized models with SpMO, CSO, and ACO outperformed in comparison

to RNN and CNN with variants. Thus, it is analyzed that TANN with ACO can be used for

CPDP. Also, ANN ACO and ANN ANN SpMO executive time are less in comparison

to RNN and CNN-optimized models. TANN, ANN ACO, ANN SpMO execution time

was 50 sec, 1 min, 48 sec. Hence, in future projects for improvising the software of

defect prediction models, time complexity needs to be considered for experimenting with

empirical data.
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Table 10.3: Friedman test mean rank

Model Mean Rank
ANN SpMO 8.35
ANN CSO 7.68
ANN ACO 9.10
TANN 9.35
RNN SpMO 3.73
RNN CSO 3.65
RNN ACO 3.65
TRNN 3.75
CNN SpMO 7.28
CNN CSO 7.63
CNN ACO 7.13
TCNN 6.73

10.3.4 Results Specific to RQ4

To answer this RQ, the author has considered three different traditional ML algorithms

with three different optimization techniques. The three traditional ML algorithms use such

as RF, KNN, and NB. To perform CPDP, a total of 20 different pairs were formed with

a dataset of different projects. However, it has been observed that KNB and NN do not

outperform RF. Further, the results were analyzed using the Friedman test with a DoF

is 11, and N = 12. The Friedman test results are demonstrated. The chi-square value

obtained is 158.127 and the p-value is 0.000. However, RF takes more computational

time and NB takes less time. Thus, it has analyzed that there is a significant difference in

the performance of these techniques. To answer this RQ, the default parameters of ANN

were changed using a grid search approach. Moreover, it has been concluded that NB

performs better for multinomial datasets. Thus, RF produce more better and stable results.

Furthermore, to see the final best algorithm technique post–doc analysis test is performed
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using the Wilcoxon–signed rank test. Wilcoxon–signed rank test compares two related

samples at a time to find out the conclusion among those variables. Wilcoxon–signed

rank test showed that TRF and optimized TRF performed better than TNB, TNB SpMO,

TNB CSO, TNB ACO, NN, TKNN SpMO, TKNN CSO, TKNN ACO, TKNN.

Table 10.4: AUC values of traditional machine learning techniques such as random forest,
naive bayes, K-nearest neighbor

SRDataset

→ TR-

Dataset

RF

SpMO

RF

CSO

RF

ACO

KNN

CSO

KNN

ACO

TKNN TNB

SpMO

TNB

CSO

TNB

ACO

TNB

Mylyn →

EQ

0.80 0.79 0.80 0.70 0.70 0.63 0.69 0.69 0.69 0.60

Mylyn

→Lucene

0.80 0.81 0.80 0.70 0.70 0.56 0.69 0.69 0.69 0.58

Mylyn →

PDE

0.81 0.82 0.80 0.70 0.70 0.63 0.69 0.69 0.69 0.70

Mylyn →

JDT

0.83 0.80 0.81 0.70 0.70 0.63 0.69 0.69 0.69 0.59

PDE →

EQ

0.82 0.82 0.83 0.69 0.69 0.59 0.60 0.60 0.60 0.57

PDE →

Lucene

0.81 0.82 0.82 0.69 0.69 0.61 0.60 0.60 0.60 0.57

PDE →

JDT

0.82 0.80 0.81 0.69 0.69 0.73 0.60 0.60 0.60 0.59

JDT →

EQ

0.87 0.88 0.87 0.81 0.81 0.67 0.57 0.57 0.57 0.51

JDT →

Lucene

0.85 0.88 0.85 0.81 0.81 0.58 0.57 0.57 0.57 0.59

Lucene →

EQ

0.77 0.82 0.79 0.71 0.71 0.66 0.60 0.60 0.60 0.46
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CM1→

MW1

0.63 0.63 0.63 0.44 0.44 0.54 0.33 0.33 0.33 0.23

PC1 →

CM1

0.91 0.94 0.92 0.70 0.70 0.60 0.14 0.14 0.14 0.41

PC1 →

MW1

0.95 0.93 0.94 0.70 0.70 0.55 0.14 0.14 0.14 0.19

PC3 →

CM1

0.81 0.79 0.80 0.61 0.61 0.60 0.53 0.53 0.53 0.45

PC3 →

MW1

0.81 0.79 0.80 0.61 0.61 0.67 0.53 0.53 0.53 0.51

PC3 →

PC1

0.81 0.79 0.80 0.61 0.61 0.72 0.53 0.53 0.53 0.44

PC4 →

CM1

0.96 0.95 0.95 0.57 0.57 0.55 0.65 0.65 0.65 0.60

PC4 →

MW1

0.96 0.95 0.95 0.56 0.56 0.60 0.65 0.65 0.65 0.37

PC4 →

PC1

0.96 0.95 0.95 0.57 0.57 0.61 0.65 0.65 0.65 0.70

PC4 →

PC3

0.96 0.95 0.95 0.57 0.57 0.58 0.65 0.65 0.65 0.65

Table 10.5: Friedman test mean rank

Model Mean Rank
TRF 8.45
TRF SpMO 11.08
TRF CSO 10.73
TRF ACO 10.70
TMB SpMO 6.15
TNB CSO 6.08
TNB ACO 6.08
TKNN 4.50
TNB SpMO 4.40
TNB CSO 3.65
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TNB ACO 3.50
TNB 2.70

10.4 Discussion

The aim of conducting this study is analyze the predictive capability of GWO for defect

prediction models with different variants. In this study, NASA dataset is considered with

12 projects. However, for WPDP 12 projects are utilized for experimentation in order to

observe the efficiency of WPDP GWO, 10fold GWO, and GS GWO for WPDP. Hence,

it has been concluded that the grid search results in better performance in comparison

of other models for WPDP. In case limited amount of data availability, WPDP can be

used with GSGWO. The hyperparameters of the traditional algorithms are tuned using

GWO. Furthermore, for intra-project defect prediction, different combinations of source

and target projects are considered for developing models using different versions of same

dataset. Thus, GS GWO tuned following hyper–parameters such as classifier learning rate:

0.01, classifier max depth, classifier estimators, feature selection k. The values of all the

hyper–parameters varied on the each project characteristics. Hence, the developed model

is useful in the lack of data availability scenario for predictive modeling.

The predictive capability of CPDP models was analyzed using ANN, RNN, and CNN

with optimization algorithms. Each optimization algorithm performs differently based

on specific characteristics. In this study, three optimization algorithms were used such as

ACO, SpMO, and CSO. We have created different combinations considering the NASA

and AEEEM dataset for developing CPDP. It is observed that TANN outperformed CNN

and RNN. Thus, in future projects, researchers must use TANN for the development
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of CPDP by reducing overfitting issues from the WPDP model. The performance of

traditional ML techniques was analyzed with TL algorithms and optimization algorithms.

The randomization nature of RF while growing the tress plays a pivotal role in the formal

performance. However, it has been observed that EL performs best in comparison to other

algorithms. TRF and its variants performed better in comparison to TNB, and TKNN.

The issue of the non-availability of data for training and testing is solved through the

development of prediction models using TL.
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Chapter 11

Conclusion

11.1 Summary of the Work

In today's world, the technology is updating everyday. Due to this, traditional software is

outdated. The quality of conventional software ensures it's continuous usage considering

various factors such as functionality, scalability, testability, maintainability, usability, relia-

bility, and robustness. Thus, to deliver good quality software to the end user, developers

must always check and ensure the software quality concerning the software development

life cycle. The software requires continuous modifications and adaptability to new tech-

nology in the real world. However, many changes occur in the software over time due to

various issues such as additional functionality, correction of existing errors, an increment in

several features, and change in output. These changes lead to the occurrence of defects. It

is not possible to make every change or modification in the software. The change approved

by the change control board must only be implemented by the development team, and its
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feasibility should be checked by the members before deployment. Moreover, modifications

and updates in the software may lead to defects.

The primary aim of this thesis is to develop efficient CPDP using HeCP and HoCP

with TL. The efficiency of SDP models increased when TL used for model development

with traditional datasets. However, the usability of conventional datasets can be analyzed

using TL by developing defect prediction models. Further, this thesis also validated the FS

techniques for HeCPDP and HoCPDP. The efficiency of FS techniques analyzed for CPDP

using traditional ML classifiers. The filter, wrapper, and swarm methods are compared to

get efficient results for CPDP. The applicability of CNN, RNN, and ANN is also analyzed

for CPDP using TL with traditional ML classifiers. The hyperparameter optimization is

performed for ANN using TL for CPDP. The limitations of WPDP are overcome through

the work done in this thesis by removing overfitting issues using CPDP. The thesis also

evaluates the effectiveness of CPDP and 10-fold cross-validation. This thesis also validates

the open-source datasets through traditional ML classifiers for CPCP. The applicability of

CPCP is also analyzed. The number of existing studies using TL in SDP could be much

higher. The open-source project datasets aid in the easy replicability and generalizability

of the results. However, the descriptive statistics of open-source datasets used in this

thesis are mentioned. The data preprocessing techniques, alongwith outlier detection, are

described. Performance measures used for performance evaluation of prediction models

are described in this thesis. The statistical models used to analyze the experiment results

performed in this thesis statistically are described in detail.

A systematic literature review is performed to analyze the work done in the existing

studies concerning CPDP and CPDP with HeCP and HoCP. In the review, 39 studies were

reviewed specifically in software engineering from 1990 to 2023. Further, criteria are
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designed to extract the relevant studies for data synthesis and extraction. The RQs are

designed to extract relevant data from the collected studies. The RQs addressed answers

related to types of the dataset used, independent variables used, experimental settings,

ML techniques used, performance measures used, TL types used, statistical methods used

to develop predictive models, threats to validity, merits, and demerits of TL techniques.

Further, it has been observed that defect is used in most studies as a quality attribute. In the

existing literature, the most commonly explored dataset for TL using CPDP is NASA; other

datasets, such as AEEEM and ReLink, have yet to be explored. The open-source dataset

has yet to be examined or investigated in the existing studies. The change prediction study

is not conducted in the literature using TL. Most of the existing studies used AUC metrics

for the analysis of prediction models in the existing studies. IdTL and TdTl are primarily

used in existing studies concerning the TL category. The features play an essential role in

the development of efficient prediction models. Thus, in the work done in this thesis, the

selection of appropriate FS for HeCP and HoCP is explored.

An experiment was conducted to discover the existing literature’s research gaps. The

CPDP prediction model was developed using TL with feature type transfer. The dataset

of different languages for experimentation, such as C, Java, and C++ is used. NASA and

PROMISE datasets are used to analyze the predictive ability of ML techniques for WPDP

and 10-fold cross-validation. Thus, due to the overfitting issue, WPDP performed well.

Further, the performance of CPDP and 10-fold cross-validation is statistically validated.

The observed results suggested that the size of the source dataset should be more significant

than 23%. Hypothetically, results are validated using the Friedman's and Wilcoxon-signed

rank tests. Thus, RF performs best out of all ML algorithms used for experimentation.

Regarding SCP, the CPCP models are developed to validate the results of ML tech-
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niques with TL empirically. Thus, an open-source dataset was collected for empirical

validation of TL. An empirical study is conducted to validate the performance of ML

techniques with 18 open-source datasets. The OOM as an independent variable is extracted

from these dataset source codes through Understand tool. SMOTE is used to balance

the dataset before model development. The results are statistically validated using the

Friedman and Nemenyi test. A metric matching analyzer estimates the matching pair of

metrics between different datasets. A metric matching analyzer is also used to establish

a relationship between dataset variables in the spatial domain. It is observed that for

WPCP, SVM, and HV performed better than the other seven ML techniques used in this

study. For HetCPDP, RF and ADB performed better than this study’s other seven ML

techniques. Thus, the prediction model can identify changes in the subsequent software

version and different projects in the early phases of software development. Estimation of

changes can help in the prediction of software quality in terms of usability, functionality,

maintainability, and reliability.

The performance of different FS techniques was analyzed for HoCPDP models. Filter,

wrapper, and swarm search-based methods select relevant features. The prediction models

are developed using five ML classifiers to identify defects in the future projects. The results

of prediction models developed using ML classifier and FS techniques statistically validated

using Friedman and Wilcoxon–signed-rank tests were used for statistical validation. In

filter methods, five FS techniques are used: correlation coefficient, Chi-square, gain ratio,

relief attribute selection, and information gain based on ranking criteria. However, all filter

methods are performed on the same level. The wrapper method worked on the greediness

approach. Six swarm search methods are used for CPDP: best-first search, genetic search,

greedy stepwise search, harmony search, scatter search, and PSO. Thus, using swarm
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search FS techniques resulted in the efficient performance of HoCPDP models based

on the grid search approach. The cross-version prediction model helps identify defects

in the subsequent versions of an identical project. Using a cross-version approach, the

performance and quality of future projects can be improved. The feasibility of cross-

version was analyzed in comparison with 10-fold cross-validation. It is observed that

practical implementation of different versions in terms of defects is not feasible in large

datasets. The dataset of the same project is helpful for training and testing compared

to the other versions using TL. The experiment was conducted to analyze the efficiency

and evaluate the performance of ANN for CPDP. HetCPDP was developed in this study,

considering projects from different repositories. The AEEEM dataset was specified in the

source dataset, while NASA datasets were specified in the target dataset. The number of

features differs in both, and the CPDP model is designed considering the similarity among

features to some extent. The experiment performed in this study showed that traditional

ANN performance could have been more significant. Grid-based ANN performed better

than conventional ANN, considering the parameters setting using a grid-based approach.

Grid search ANN model worked better with more neurons and hidden layers for CPDP.

Grid search ANN model outperformed ANN based on number of neurons in the hidden

layer, number of hidden layers, and learning rate value. Grid search provides an effective

combination of hyperparameters. Moreover, grid search is expensive, especially for large

networks with many hyperparameters.

Prediction models were also developed with GWO for defect prediction models

and variants. However, the performance of WPDP was analyzed with WPDP GWO,

10fold GWO, and GS GWO for WPDP. Hence, it has been concluded that the grid search

results in better performance than other models for WPDP. In case of limited data availabil-
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ity, WPDP can be used with GSGWO. The hyperparameters of the traditional algorithms

are tuned using GWO. Furthermore, for intra-project defect prediction, different combina-

tions of source and target projects are considered for developing models using different

versions of the same dataset. Thus, GS GWO tuned few hyper–parameters such as clas-

sifier learning rate: 0.01, classifier max depth, classifier estimators, feature selection k.

The values of all the hyperparameters varied on each project’s characteristics. Hence,

the developed model is useful when a sufficient amount of data is not available for the

development of predictive modeling.

11.2 Application of the Work

The work conducted in this thesis would help software practitioners, academicians, devel-

opers, researchers, and industry experts in the following ways:

• A systematic approach and methodology can be used to develop effective prediction

models in CPDP, HeCPDP, and HoCPDP.

• The effectiveness of ML techniques analyzed for CPDP, CPCP, HeCPDP, HoCPDP,

HeCPCP, and HoCPCP, alongwith TL techniques for identification of effective

methods to detect defects using historical data.

• Researchers, Software Practitioners, and Academicians can efficiently select the FS

valid for CPDP and CPCP.

• The work done in the thesis is useful for predicting defects in the development cycle

and allows proactive debugging and quality assurance. Early defect detection in
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future projects using TL. It utilizes existing projects within the company or from

similar projects in the open-source community.

• CPDP model will be adapted by the legacy system using domain adaptation tech-

niques. It helps in improving the maintenance of legacy systems and resource

allocation.

• Large organizations efficiently manage multiple projects using CPDP models to

predict defect-prone areas, adapt models as new projects start, and allocate resources

based on predicted defect density.

• The open-source project uses community data and TL to improve software relia-

bility and attract more contributors by predicting defects from similar projects and

adjusting CPDP models.

• CPDP models can be used for real-time defect predictions, enhancing deployment

stability by reducing production defects and improving usage of feature type TL.

• Startups can improve software quality by applying CPDP models trained on public

datasets or partner organizations, fine-tuning them for specific projects, and achieving

robust defect prediction with minimal initial data.

• A software development team uses defect prediction insights to analyze processes,

identify patterns, and refine development practices. This results in reduced defects

and more efficient cycles. Challenges include data privacy, feature alignment, model

adaptation, and regular evaluation to ensure compliance with regulations, maintain

consistency, and enhance prediction accuracy.
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11.3 Future Work

The experiment conducted in this thesis can be evaluated and analyzed for a sizeable

open-source dataset in the real world. Further, the work performed in this thesis can be

analyzed for datasets with different languages, such as cross-language defect prediction.

In the future, various types of TL settings will be explored. TL can also be examined for

regression problems and unsupervised learning in future prediction models. However, the

researchers may empirically investigate the empirical results for the addition of evidence

on the basis of which the work’s applicability is assured.

Further, the researchers may explore search-based and hybrid techniques must be

explored for CPDP and CPCP along with TL algorithms. The researchers may investigate

the performance of more optimization algorithms to validate the performance of CPDP

and CPCP using TL and traditional ML algorithms with optimization algorithms. The

researchers may explore relational knowledge in the future. Thus, the work done in this

thesis scan can be replicated for more generalized results and strengthen findings.
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Descriptive Statistics of Datasets

The descriptive statistics of datasets used in this thesis as given below.

Descriptive Statistics Notepad++ 6.8.9 dataset

Metric Minimum Maximum Mean
LOC 1 8978 118.07
FAN IN 0 3 0.32
CBO 0 91 2.02
NOC 0 37 0.31
WMC 0 427 26.20
RFC 0 256 10.38
DIT 0 4 .48
LCOM 0 100 38.73
NIM 0 252 9.99
NIV 0 192 3.56

Descriptive Statistics Notepad++ 7.3 dataset

Metric Minimum Maximum Mean
LOC 0 9077 112.02
FAN IN 0 3 0.32
CBO 0 92 1.92
NOC 0 38 0.32
WMC 0 427 26.36
RFC 0 256 10.41
DIT 0 4 0.49
LCOM 0 100 39.50
NIM 0 252 10.02
NIV 0 75 3.18

Descriptive Statistics Notepad++ 7.5.4 dataset

Metric Minimum Maximum Mean
LOC 1 8332 111.99
FAN IN 0 3 0.32
CBO 0 96 1.85
NOC 0 42 0.32
WMC 0 427 27.57
RFC 0 256 10.61
DIT 0 4 0.50
LCOM 0 100 40.21
NIM 0 252 10.22
NIV 0 75 3.11
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Descriptive Statistics Notepad++ 7.6.2 dataset

Metric Minimum Maximum Mean
LOC 1 8540 153.94
FAN IN 0 3 .31
CBO 0 98 1.78
NOC 0 44 0.31
WMC 0 427 26.10
RFC 0 256 10.25
DIT 0 4 .48
LCOM 0 100 40.45
NIM 0 252 9.84
NIV 0 75 2.99

Descriptive Statistics Notepad++ 7.6.3 dataset

Metric Minimum Maximum Mean
LOC 1 8748 155.56
FAN IN 0 3 0.31
CBO 0 100 1.77
NOC 0 44 0.31
WMC 0 427 26.53
RFC 0 256 10.32
DIT 0 4 0.48
LCOM 0 100 41.01
NIM 0 252 9.91
NIV 0 75 3.03

Descriptive Statistics Notepad++ 7.8.3 dataset

Metric Minimum Maximum Mean
LOC 1 8748 155.56
FAN IN 0 3 0.31
CBO 0 100 1.77
NOC 0 44 .31
WMC 0 427 26.53
RFC 0 256 10.32
DIT 0 4 .48
LCOM 0 100 41.01
NIM 0 252 9.91
NIV 0 75 3.03
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Descriptive Statistics CodeBlocks 10.05 dataset

Metric Minimum Maximum Mean

LOC 1.00 24970.00 330.1657

FAN IN 0.00 2.00 0.3619

CBO 0.00 43.00 2.6950

NOC 0.00 43.00 0.3512

WMC 0.00 536.00 30.6603

RFC 0.00 473.00 13.8021

DIT 0.00 4.00 0.5540

Descriptive Statistics CodeBlocks 13.12 dataset

Metric Minimum Maximum Mean

LOC 1.00 13722.00 .4854

FAN IN 0 2 0.44

CBO 0 51 3.01

NOC 0 90 0.43

WMC 0 637 31.09

RFC 0 627 14.27

DIT 0 4 0.65

Descriptive Statistics CodeBlocks 20.03 dataset

Metric Minimum Maximum Mean

LOC 1.00 13722.00 140.4854

FAN IN 0.00 3.00 0.3985

CBO 0.00 80.00 2.8027

NOC 0.00 98.00 0.3914

WMC 0.00 777.00 34.1365

RFC 0.00 727.00 14.3090

DIT 0.00 4.00 0.6006
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Descriptive Statistics CodeLite-2.9.0.4684 dataset

Metric Minimum Maximum Mean
LOC 1 7003 123.33
FAN IN 0 2 0.47
CBO 0 45 2.19
NOC 0 181 0.47
WMC 0 727 16.88
RFC 0 514 10.97
DIT 0 3 0.48
LCOM 0 100 34.61
NIM 0 514 10.80
NIV 0 97 2.09

Descriptive Statistics CodeLite-3.5.5375 dataset

Metric Minimum Maximum Mean
LOC 1 7246 122.33
FAN IN 0 2 0.47
CBO 0 49 2.20
NOC 0 181 0.47
WMC 0 742 16.74
RFC 0 516 10.95
DIT 0 3 0.47
LCOM 0 100 35.75
NIM 0 516 10.77
NIV 0 109 2.15

Descriptive Statistics CodeLite-5.0.6213 dataset

Metric Minimum Maximum Mean
LOC 1 7646 118.24
FAN IN 0 2 0.45
CBO 0 52 2.03
NOC 0 181 0.45
WMC 0 762 19.86
RFC 0 518 10.70
DIT 0 5 0.50
LCOM 0 100 41.73
NIM 0 518 10.53
NIV 0 155 2.26
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Descriptive Statistics CodeLite-5.3 dataset

Metric Minimum Maximum Mean
LOC 1 7273 117.19
FAN IN 0 2 0.45
CBO 0 50 2.05
NOC 0 181 0.45
WMC 0 252 18.19
RFC 0 241 10.24
DIT 0 5 0.50
LCOM 0 100 35.07
NIM 0 239 10.10
NIV 0 179 2.11

Descriptive Statistics CodeLite-6.0.1 dataset

Metric Minimum Maximum Mean
LOC 1 7273 114.84
FAN IN 0 2 0.43
CBO 0 50 2.07
NOC 0 181 0.43
WMC 0 259 17.78
RFC 0 245 10.14
DIT 0 5 0.48
LCOM 0 100 35.06
NIM 0 243 10.00
NIV 0 179 2.29

Descriptive Statistics CodeLite-11.0 dataset

Metric Minimum Maximum Mean
LOC 1 7940 134.55
FAIN IN 0 2 0.43
CBO 0 63 2.71
NOC 0 181 0.43
WMC 0 323 20.64
RFC 0 296 12.67
DIT 0 5 0.47
LCOM 0 100 38.14
NIM 0 294 12.48
NIV 0 179 2.20
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Descriptive Statistics CodeLite-12.0 dataset

Metric Minimum Maximum Mean
LOC 1 12107 141.39
FAN IN 0 2 0.43
CBO 0 63 2.73
NOC 0 181 0.43
WMC 0 326 20.92
RFC 0 297 12.83
DIT 0 5 0.47
LCOM 0 100 37.65
NIM 0 295 12.66
NIV 0 179 2.27

Descriptive Statistics CodeLite-13.0 dataset

Metric Minimum Maximum Mean
LOC 1 12107 140.67
FAN IN 0 2 0.43
CBO 0 60 2.71
NOC 0 181 0.43
WMC 0 330 20.87
RFC 0 300 12.86
DIT 0 5 0.48
LCOM 0 100 37.56
NIM 0 298 12.68
NIV 0 179 2.25

Descriptive Statistics CodeLite-14.0 dataset

Metric Minimum Maximum Mean
LOC 1 12107 121.88
FAN IN 0 3 0.44
CBO 0 133 2.61
NOC 0 181 0.43
WMC 0 3 41 25.96
RFC 0 312 11.75
DIT 0 5 0.53
LCOM 0 100 37.60
NIM 0 310 11.56
NIV 0 179 1.92
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