
Design & Development of Malware Detection

Technique for Android Based Smart Devices

A Thesis

Submitted in partial fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy (Ph. D.)

by

Rahul Gupta

(Roll No. 2K17/PhDIT/07)

Under the supervision of

Dr. Kapil Sharma

Professor

Department of Information

Technology,

Delhi Technological University,

Delhi –110 042

Dr. Ramesh Kumar Garg

Professor

Deenbandhu Chhotu Ram

University of Science and

Technology, Murthal, Sonipat,

Haryana

Delhi Technological University

Shahbad Daulatpur, Main Bawana Road

Delhi-110042

ii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE BY THE

SUPERVISOR(s)

Certified that Rahul Gupta (2K17/PhDIT/07) has carried out their research work

presented in this thesis entitled “Design & Development of Malware Detection

Technique for Android Based Smart Devices” for the award of Doctor of

Philosophy from Department of Information Technology, Delhi Technological

University, Delhi, under our supervision. The thesis embodies results of original

work, and studies are carried out by the student himself and the contents of the

thesis do not form the basis for the award of any other degree to the candidate or

to anybody else from this or any other University/Institution.

Dr. Kapil Sharma

Professor

Department of Information Technology,

Delhi Technological University,

Delhi –110 042

Dr. Ramesh Kumar Garg

Professor

Deenbandhu Chhotu Ram University of

Science and Technology, Murthal,

Sonipat, Haryana

iii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE’S DECLARATION

I Rahul Gupta hereby certify that the work which is being presented in the thesis

entitled Design and Development of Malware Detection Technique for Android

Based Smart Devices, in partial fulfilment of the requirements for the award of the

Degree of Doctor of Philosophy, submitted in the Department of Information

Technology , Delhi Technological University is an authentic record of my own work

carried out during the period from August 2017 to June 2024 under the supervision of

Dr. Kapil Sharma, Professor of Information Technology Department, Delhi

Technological University, Delhi, India and Dr. R.K. Garg, Professor, Deenbandhu

Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana.

The matter presented in the thesis has not been submitted by me for the award of any

other degree of this or any other Institute.

Candidate's

Signature

iv

ACKNOWLEDGEMENTS

In servitude to God, I express my deepest gratitude for His almighty grace,

which has guided and supported me throughout the course of this thesis.

First and foremost, I am sincerely grateful to my advisors, Prof. Kapil Sharma

and Prof. R.K. Garg, for their invaluable guidance, support, and encouragement.

Their expertise and insights have been instrumental in shaping this research and

bringing it to fruition.

I am deeply indebted to my mother, Late Smt. Rekha Gupta, for her blessings

and teachings and my father, Sh. Mahesh Gupta, for his unwavering love and belief

in me throughout this PhD journey. None of this would have been possible without

their unconditional love and trust.

Many thanks to my wife Mrs. Anjali Gupta, and my sister Ms. Palak Gupta

for their constant support, understanding, and prayers. A special mention goes to my

little son, Himaksh Gupta, who brings so much joy into my life. I can never thank

you all enough; your belief in me has been a profound source of strength and

motivation.

I would also like to express my heartfelt gratitude to the Hon’ble Vice

Chancellor of Delhi Technological University and the Head of the Department of

Information Technology, Delhi Technological University, for their unwavering

support and encouragement. Special thanks go to my friends Dr. Ansul Arora for his

insightful comments and stimulating discussions. His camaraderie and encouragement

have made this journey more enjoyable and fulfilling.

Thank you all for being a part of this journey.

 Rahul Gupta

 August, 2024

v

List of Publications

Journals:

1. Rahul Gupta, Kapil Sharma, and R.K. Garg, “Innovative Approach to Android

Malware Detection: Prioritizing Critical Features Using Rough Set Theory,”

Electronics, 13(3), 482, (2024).

2. Rahul Gupta, Kapil Sharma, and R.K. Garg, “Covalent Bond Based Android

Malware Detection Using Permission and System Call Pairs,” Computers,

Materials & Continua, 78(3), 4283-4301, (2024).

International Conferences:

1. Rahul Gupta, Kapil Sharma, and R.K. Garg “Android Malware Detection

based on Feature-pair Bonding: A Hybrid Detection Model” in the 2023 5th

International Conference on Advances in Computing, Communication Control

and Networking (ICAC3N), Nodia, India

2. Rahul Gupta, Kapil Sharma, and R.K Garg “A Visual Android Malware

Detection Technique based on Process Memory Dump Files” in the

Proceedings of Fifth International Conference on Computing,

Communications, and Cyber-Security: IC4S'05 Volume 2, Uttarakhand, India.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... IV

LIST OF PUBLICATIONS .. V

LIST OF FIGURES ... IX

LIST OF TABLES .. X

LIST OF ABBREVIATIONS ... XII

ABSTRACT ... XIII

CHAPTER ONE: INTRODUCTION .. 1

1.1 Malware.. 1
1.1.1 Types of Malwares .. 1

1.2 Malware in Smartphones.. 7

1.3 Android Mobile Malware ... 11

1.4 Security Issues in Android ... 14

1.5 Motivations and Research Gaps ... 21

1.6 Research Objectives ... 23

1.7 Contribution of Research Work ... 23

1.8 Organization of Thesis ... 24

CHAPTER TWO: LITERATURE REVIEW ... 26

2.1 Static detection ... 26
2.1.1 Manifest File Based Detection .. 26
2.1.2 API Calls-Based Detection ... 28

2.1.3 Java Code-Based Detection .. 28

2.2 Dynamic Detection... 29
2.2.1 OS-Based Detection .. 29
2.2.2 Network Traffic Based Detection ... 30

2.3 Hybrid Detection .. 31

vii

CHAPTER THREE: INNOVATIVE APPROACH TO ANDROID MALWARE

DETECTION: PRIORITIZING CRITICAL FEATURES USING ROUGH SET

THEORY .. 33

3.1 Introduction .. 33
3.1.1 Contributions ... 35

3.2 Methodology .. 35
3.2.1 Data Pre-Processing Phase .. 36
3.2.2 Feature Ranking Phase .. 39

3.2.3 Rough Set Reduct Computation Phase ... 46
3.2.4 Detection Phase ... 48

3.3 Results and Discussions ... 49
3.3.1 Results of Ranking Phase .. 49
3.3.2 Detection Results with Individual Features .. 51
3.3.3 Detection Results with Combinations of Two Features 56

3.3.4 Detection Results with Combinations of Three Features 60
3.3.5 Detection Results with Combinations of all Four Features 63

3.4 Discussion and Findings .. 64

3.5 Comparison with Other Related Work ... 65

3.6 Limitations ... 67

3.7 Summary .. 67

CHAPTER FOUR: COVALENT BOND BASED ANDROID MALWARE

DETECTION USING PERMISSION AND SYSTEM CALL PAIRS 68

4.1 Introduction .. 68

4.1.1 Motivation ... 70
4.1.2 Contributions ... 70

4.2 Methodology .. 71
4.2.1 Data set Description .. 71
4.2.2 Feature Space Transformation .. 72
4.2.3 Covalent Bond Pair Formation Phase ... 73
4.2.4 Detection Phase ... 80

4.3 Results and Discussions ... 82
4.3.1 Feature Pair Analysis .. 82
4.3.2 Detection Results .. 86
4.3.3 Detection Results on Unknown Samples .. 87

4.4 Comparison with other related works .. 88

4.5 Limitations ... 90

viii

4.6 Summary .. 90

CHAPTER FIVE: A VISUAL ANDROID MALWARE DETECTION

TECHNIQUE BASED ON PROCESS MEMORY DUMP FILES 91

5.1 Introduction .. 91
5.1.1 Motivation ... 92
5.1.2 Contributions ... 93

5.2 Methodology .. 94

5.2.1 Visual representation of Android Process Memory Dump files 94
5.2.2 Feature Extraction from Visual Representations 95

5.3 Results and Discussions ... 97

5.4 Summary .. 98

CHAPTER SIX: CONCLUSIONS AND FUTURE SCOPE 99

6.1 Conclusions .. 99

6.2 Future Work ... 101

REFERENCES ... 103

ix

LIST OF FIGURES

Figure 1.1 Categories of Malwares .. 1

Figure 1.2 Desktop vs Mobile vs Tablet Market Share Worldwide 9

Figure 1.3 Mobile Operating System Market Share Worldwide 2014 - 2024 10

Figure 1.4 Overview of the proposed work of the thesis ... 23

Figure 3.1Proposed Methodology .. 36

Figure 3.2Data Pre-Processing ... 37

Figure 3.3 Feature Ranking Phase ... 41

Figure 3.4 Rough Set Reduct Computation Phase ... 47

Figure 3.5 Detection Phase .. 49

Figure 4.1 Proposed Covalent Bond Pair Detection Model 72

Figure 5.1 Proposed Model for classifying an Android Application as Benign or

Malicious from Memory DUMP files. ... 94

Figure 5.2 Process of converting Memory Dump files into grayscale images 95

x

LIST OF TABLES

Table 1.1Threats Posed by Smartphone Malware.. 13

Table 3.1 Instance of permission information system ... 42

Table 3.2Instance of API calls information system ... 42

Table 3.3 Instance of System Command information system. 42

Table 3.4 Instance of Opcode information system... 43

Table 3.5 Instance of permission discernibility ... 43

Table 3.6 Instance of API calls discernibility. ... 44

Table 3.7 Instance of system call discernibility ... 44

Table 3.8 Instance of opcode discernibility ... 44

Table 3.9 Top ten important permissions. .. 49

Table 3.10 Top ten important opcodes. .. 50

Table 3.11 Top ten important API calls ... 50

Table 3.12 Top ten important system commands .. 51

Table 3.13 Detection results based on permission. .. 52

Table 3.14 Detection results based on opcode ... 53

Table 3.15 Detection results based on API calls .. 54

Table 3.16 Detection results based on system commands. .. 55

Table 3.17 Detection results based on permissions and opcodes............................... 57

Table 3.18 Detection results based on permissions and API calls. 57

Table 3.19 Detection results based on permissions and system commands. 58

Table 3.20 Detection results based on opcodes and API calls. 59

Table 3.21 Detection results based on opcodes and system commands 59

Table 3.22 Detection results based on API calls and system commands................... 60

xi

Table 3.23 Detection results based on permissions, API calls, and opcodes. 61

Table 3.24 Detection results based on permissions, API calls, and system

commands .. 61

Table 3.25 Detection results based on permissions, opcodes, and system

commands. ... 62

Table 3.26 Detection results based on opcodes, API calls, and system commands .. 63

Table 3.27 Detection results based on permissions, opcodes, API calls, and

system commands. ... 63

Table 3.28 Comparison of proposed model with related works. 66

Table 4.1 Instance of Benign CSV ... 73

Table 4.2 Instance of Malicious CSV .. 73

Table 4.3 Supposed Instance of Benign Information Systems 77

Table 4.4 Supposed Instance of Malicious Information Systems 77

Table 4.5 Instance of Benign Feature Pair Matrix ... 80

Table 4.6 Instance of Malicious Feature Pair Matrix ... 80

Table 4.7 Top Ten highest scoring Permissions pair from both malicious and

benign perspectives. ... 83

Table 4.8 Top Ten highest-scoring system call pair from both malicious and

benign perspectives. ... 84

Table 4.9 Top Ten highest-scoring system call and permission pairs from both

malicious and benign perspectives. .. 85

Table 4.10 Performance of Proposed Detection Models ... 86

Table 4.11 Confusion Matrix of Proposed Detection Model 87

Table 4.12 Performance of Proposed Detection Models on Unknown Samples. 88

Table 4.13 Confusion Matrix of Proposed Detection Model on Unknown

Samples .. 88

Table 4.14 Comparison of Proposed Model with Related Works. 89

Table 5.1 Experimental Results ... 98

xii

LIST OF ABBREVIATIONS

API Application Programming Interface

APK Android Application Package

BEN Benign Android Apps

CNN Convolutional Neural Network

ANN Artificial Neural Network

EM Encrypted Android Malware

FNR False Negative Rate

FPR False Positive Rate

TPR True Positive Rate

KNN K Nearest Neighbors

JNI Java Native Interface

OS Operating System

PCs Personal Computers

RAM Random Access Memory

TNR True Negative Rate

URL Uniform Resource Locator

SVM Support Vector Machine

RF Random Forest

iOS iphone Operating System

xiii

ABSTRACT

The widespread integration of smartphones into modern society has

revolutionized communication, work, entertainment, and access to information, with

Android-based devices dominating the market, accounting for approximately 70% of

global smartphone usage. However, this popularity has made Android devices prime

targets for malware attacks, posing serious threats due to the sensitive personal and

financial data they store. Consequently, there is an urgent need for innovative and

effective malware detection techniques.

Our study addresses this challenge by introducing three novel approaches to

Android malware detection. First, we applied rough set theory to select and rank static

features such as permissions, API calls, system commands, and opcodes, using a

Discernibility Matrix to assign importance to each feature and calculate reducts—

streamlined subsets that enhance detection accuracy while minimizing complexity.

Machine learning algorithms, including Support Vector Machines (SVM), K-Nearest

Neighbor (KNN), Random Forest, and Logistic Regression, were employed to achieve

an impressive 97% detection accuracy, surpassing many state-of-the-art techniques.

Secondly, we pioneered a hybrid method by establishing covalent bonds

between permissions and system calls, combining static and dynamic analysis to

uncover malicious behavior. A novel Covalent Bond Strength Score was introduced to

assess the combined impact of these pairs, with distinct scores for benign and

malicious behaviors. This approach provided a comprehensive framework for malware

detection, achieving a detection accuracy of 97.5%, further improving upon existing

methods.

Lastly, we developed a visual malware detection technique based on Android

process memory dumps. The memory dump files were transformed into grayscale

images, from which features such as color histograms, Hu moments, and Haralick

textures were extracted. These features were used to train machine learning classifiers

to differentiate between benign and malicious applications. Among the classifiers

tested, Random Forest delivered the best performance.

xiv

In conclusion, our integrated approaches provide robust frameworks for

Android malware detection, each contributing significant advancements to the field

and demonstrating superior performance compared to existing technique

1

Chapter One: INTRODUCTION

This chapter introduces the concept of malware, types of malwares, Android

malware and security issues in Android. The objectives of the research work are

highlighted. Chapter wise thesis coverage is summarized at the end of the chapter.

1.1 Malware

Malware refers to any type of malicious software or program code created with

the intent to harm, exploit, or infiltrate a device without the user's consent. Examples

of malware include Trojans, rootkits, and backdoors. These harmful programs can

carry out various harmful activities, such as stealing sensitive information, encrypting

or deleting data, taking control of critical system functions, and monitoring a user's

actions without their knowledge or approval. Malware often disrupts normal

operations, compromising both the security and privacy of the affected device.

1.1.1 Types of Malwares

The different types of malware function in distinct ways, depending on their

purpose and design. The Figure 1.1 Shows various type of malware based on the

purpose and design.

Figure 1.1 Categories of Malwares

2

1.1.1.1 Viruses

A Virus is a form of malicious software that embeds itself into legitimate files

or programs and becomes active when the infected file is run. Its main goal is to

replicate and spread across systems, typically through file sharing, email attachments,

or exploiting network vulnerabilities. Once triggered, a virus can cause various types

of harm, such as damaging or erasing data, disrupting system operations, stealing

sensitive information, or opening pathways for further attacks. Certain viruses, like

polymorphic variants, can modify their code to avoid detection by security software.

The consequences can range from minor performance issues to significant data

breaches and security threats.

1.1.1.2 Worm

A worm is a form of malware that replicates itself and spreads through

networks without attaching to a specific file or program, setting it apart from traditional

viruses. Worms take advantage of weaknesses in operating systems, applications, or

network protocols to access systems, often doing so without requiring any action from

the user. Once inside, a worm can quickly duplicate itself and send copies to other

devices within the same network or across the internet. Unlike viruses, which rely on

users to execute infected files, worms operate independently and can spread

independently, making them especially dangerous.

Worms can cause various levels of harm. In some instances, they may simply

consume network bandwidth or overload system resources, leading to performance

issues or crashes. However, more advanced worms are capable of delivering malicious

payloads, such as installing backdoors for unauthorized access, deleting files, or

distributing other types of malware like ransomware or spyware. Some worms can

spread globally, causing widespread chaos, as seen with the ILOVEYOU and

WannaCry worms, which infected millions of devices worldwide. Because of their

ability to propagate quickly and cause damage without human interaction, worms are

considered one of the most dangerous types of malware in networked environments.

1.1.1.3 Trojan

A Trojan, also known as a Trojan horse, is a type of malicious software that

masquerades as a legitimate or beneficial application to deceive users into installing

3

it. Unlike viruses or worms, Trojans do not replicate or spread on their own but rely

on social engineering techniques, such as pretending to be a helpful tool, game, or

software update, to lure users into running the malicious code.

Once installed, a Trojan can perform a variety of harmful tasks, depending on

its design. Some Trojans act as backdoors, granting attackers remote access to the

infected system, enabling them to steal data, install more malware, or take control of

the device. Others may track keystrokes to collect sensitive information like passwords

or financial details, while some can disable security measures, making the system more

vulnerable to additional attacks. Banking Trojans specifically aim to steal credit card

numbers, banking credentials, and other financial data.

Trojans are typically spread through phishing emails, compromised websites,

or deceptive downloads. After being installed, they can remain hidden for long periods,

secretly gathering information or maintaining access for attackers. Well-known

examples include the Zeus Trojan, which was involved in widespread financial theft,

and Emotet, which has been used to spread ransomware or support botnet operations.

Because they don’t self-replicate and often appear as legitimate programs, Trojans are

particularly challenging to detect, making them one of the most dangerous forms of

malware.

1.1.1.4 Rootkits

A rootkit is an advanced form of malware designed to grant unauthorized

access to a system while remaining hidden from detection. By providing attackers with

administrative or "root" level privileges, rootkits allow them to control the system at a

fundamental level without being noticed. These tools are particularly dangerous

because they can conceal both themselves and other malicious software from

conventional antivirus programs and system monitoring tools, making detection and

removal exceptionally challenging.

Rootkits achieve this by altering system files, intercepting system calls, or

embedding themselves directly into the operating system's kernel. Once established,

they enable a wide range of malicious activities, such as data theft, remote command

execution, user activity monitoring, disabling security mechanisms, and facilitating the

4

deployment of other malware. Due to their stealth capabilities, rootkits allow attackers

to maintain long-term control over compromised systems without alerting the user to

the breach.

Installation of rootkits can occur through various methods, including phishing

attacks, drive-by downloads, or the exploitation of software vulnerabilities. Rootkits

are often classified by their operational depth, with kernel-level rootkits being the most

severe, as they integrate into the core of the operating system, making them nearly

impossible to detect or remove without specialized tools. User-level rootkits, on the

other hand, focus on specific applications or services.

A notable example of rootkit misuse was the Sony BMG incident, where a

rootkit was covertly installed on users' computers via music CDs to enforce digital

rights management (DRM), inadvertently creating significant security vulnerabilities.

Given their ability to avoid detection and provide deep system control, rootkits

represent a significant threat in the field of cybersecurity, and their removal often

requires advanced techniques such as booting into secure environments or using

specialized rootkit detection tools.

1.1.1.5 Ransomwares

Ransomware is a type of malware that restricts access to a computer system or

its data, usually by encrypting files, and demands a ransom payment, often in

cryptocurrencies like Bitcoin, for the decryption key. However, paying the ransom

does not guarantee that the data will be recovered, and attackers may withhold the key

or even re-target the victim later.

This malware is typically spread via phishing emails, malicious attachments,

or compromised websites that exploit security flaws. Once activated, ransomware

locks users out by encrypting critical files or the entire system, rendering them

unusable. A ransom message is then displayed, providing instructions on how to make

the payment, usually with a deadline and the threat of permanent data destruction if

the ransom is not paid.

Ransomware attacks can differ in complexity. For instance, crypto-

ransomware encrypts files, making them unusable without the decryption key, while

5

locker ransomware prevents access to the system itself without necessarily encrypting

files. More advanced versions, such as double extortion ransomware, not only encrypt

files but also threaten to release sensitive information unless the ransom is paid,

intensifying pressure on the victim.

Significant ransomware attacks have affected many industries, including

healthcare and critical infrastructure. Noteworthy examples include the WannaCry

attack in 2017, which compromised hundreds of thousands of systems globally by

exploiting a Windows vulnerability, and the Colonial Pipeline attack in 2021, which

caused fuel supply disruptions across parts of the U.S.

Preventing ransomware requires a combination of defensive measures,

including regular software updates, strong passwords, multi-factor authentication,

consistent backups, and user education to avoid phishing scams. Victims are often

discouraged from paying the ransom, as it does not ensure data recovery and may

encourage future attacks. Instead, reporting incidents to authorities and using backups

or decryption tools is the recommended approach for recovery.

1.1.1.6 Keyloggers

Keyloggers are a type of malicious software or hardware designed to covertly

record every keystroke on a device, enabling attackers to gather sensitive information

such as passwords, credit card details, and personal messages. These tools operate

stealthily, making them difficult for users to detect. There are two primary categories:

software-based and hardware-based keyloggers. Software keyloggers are usually

introduced into a system through phishing attacks or malware infections, capturing

keystrokes at different levels, from application-level to deeper kernel-level operations.

Hardware keyloggers, on the other hand, are physical devices inserted between the

keyboard and computer, or integrated into the keyboard itself, logging keystrokes and

either storing the data or sending it wirelessly.

Keyloggers are often deployed via malicious emails, infected downloads, or

compromised websites, and can remain hidden while collecting information over long

periods. The stolen data is then sent to attackers, who use it for identity theft, financial

fraud, or unauthorized system access. This makes keyloggers particularly hazardous

6

for both individuals and businesses. For individuals, they can lead to the loss of

personal data and financial harm. In organizations, keyloggers can result in serious

security breaches, exposing confidential information and giving attackers access to

critical systems.

Effective prevention of keylogger threats requires a layered defense strategy.

Antivirus and anti-malware software are useful in detecting and removing most

software keyloggers, though some advanced variants can evade detection. Anti-

keylogging tools, two-factor authentication, and keeping systems updated with

security patches can also help reduce risks. To protect against hardware keyloggers,

maintaining physical security and regularly inspecting computer devices for suspicious

attachments is crucial. Keyloggers have been involved in some of the most notorious

cyberattacks, such as the Zeus Trojan, which targeted online banking data, illustrating

the significant damage they can cause if not addressed.

1.1.1.7 Graywares

Grayware refers to software that falls between legitimate programs and

malicious software. While it may not inflict direct harm like viruses or ransomware, it

can still degrade system performance, compromise privacy, and negatively affect user

experience. Grayware encompasses various unwanted applications, including adware,

spyware, and potentially unwanted programs (PUPs), which are often unknowingly

installed alongside free software or through deceptive ads and insecure websites. For

instance, adware inundates users with intrusive advertisements, while spyware tracks

user activity and gathers sensitive data without permission. PUPs may introduce

unnecessary toolbars or alter browser settings without consent. Though typically less

destructive, grayware can slow down systems, invade user privacy by collecting

information for third parties, and increase the risk of more dangerous malware

infections. Grayware often spreads unnoticed through bundled software or phishing

attacks. Despite being less harmful than other types of malware, grayware can still lead

to significant performance issues, security vulnerabilities, and privacy concerns,

making its removal and prevention essential. Preventive measures include

downloading software from trusted sources, carefully reviewing installation options to

avoid bundled software, and using security tools to detect and remove grey ware.

7

1.2 Malware in Smartphones

Smart devices are electronic gadgets that can connect, share, and interact with

their users and other devices. They utilize advanced computing and connectivity

technologies to provide enhanced functionality and convenience. Smart devices

encompass a wide range of gadgets that enhance our daily lives through advanced

technology and connectivity.

There are different types of smart devices available in today's world like

smartphones, smart watches, smart home devices, smart lighting, smart security

systems, smart appliances, smart TVs and entertainment systems, smart cars, smart

health devices etc. The smartphone has established themselves as the dominant smart

devices in the modern digital landscape. Their ubiquity, versatility, and continuous

innovation set them apart from other smart devices, making them indispensable to our

daily routines.

Smartphones have become the personal desktop computers of the modern era,

integrating seamlessly into our daily lives and profoundly influencing various facets

of contemporary society. These devices offer a wide range of capabilities once

reserved for Personal Computers (PCs), including browsing the internet, managing

emails, capturing high-quality photos and videos, and using navigation tools. Their

versatility extends to online shopping, gaming, social networking, and location-based

services [1, 2, 3, 4].

In recent years, the increased connectivity options in smartphones, such as

Bluetooth, GPRS, and Wi-Fi, [5, 6] have significantly enhanced the availability of

these ubiquitous services [7, 8]. This connectivity, coupled with feature-rich apps, has

made smartphones far more powerful than early PCs, escalating their popularity [9,

10]. Smartphones are not just tools for communication; they also support education,

personal organization, health monitoring, and control of smart home devices,

revolutionizing how we work, entertain ourselves, and access information.

In today's digital age, smartphones are indispensable, functioning as mini-

computers that fit into our pockets. They enable us to perform a wide array of tasks

8

that were once limited to desktops, transforming various aspects of our lives. Here's a

deeper look into their impact

✓ Communication: Beyond calls and texts, smartphones allow instant

messaging, video calls, and social media interactions, keeping us connected

globally.

✓ Work: With mobile office apps, email management, and remote

conferencing tools, smartphones facilitate productivity and remote work,

blurring the lines between office and personal time.

✓ Entertainment: Streaming services, gaming apps, and multimedia

capabilities provide endless entertainment options that are accessible

anytime and anywhere.

✓ Information Access: Real-time news updates, educational content, and

digital libraries make smartphones a vital tool for staying informed and

continuing education.

✓ Health and Fitness: Health apps and wearable integrations help monitor

physical activity, diet, and overall well-being, promoting a healthier

lifestyle.

✓ Convenience: Online shopping, mobile banking, and digital payments

simplify daily transactions, making financial management and shopping

more efficient.

✓ Navigation and Travel: GPS and location-based services guide us through

unfamiliar territories, enhancing travel experiences and daily commutes.

✓ Smart Home Integration: Smartphones control various devices, from

lighting and security systems to home entertainment, creating a more

connected and automated living environment.

Smartphones have thus become integral to modern life, offering functionalities

that significantly enhance our efficiency, connectivity, and overall quality of life. The

dominance of smartphones is evident in their market share, which is now 20% higher

than desktops1. The Figure 1.2 shows the Desktop vs Mobile vs Tablet market share

1 https://techjury.net/blog/mobilevsdesktop-usage/

9

worldwide from 2014 to 2024. This shift underscores the growing preference for

mobile devices, highlighting how smartphones have surpassed desktops in terms of

usage2. Their convenience, portability, and multifunctionality make them

indispensable in our fast-paced, technology-driven world.

Figure 1.2 Desktop vs Mobile vs Tablet Market Share Worldwide

Among the various types of smartphones available in the market, those running

the Android operating system are the most popular. This popularity can be attributed

to the fact that Android is an open-source platform adopted by numerous

manufacturers. According to a report by Statcounter3, the Android operating system

dominates the global mobile market, holding a 70% share. This substantial market

share is a key factor behind the frequent malware attacks targeting the Android

platform in recent years. The Figure 1.3 shows the Mobile Operating System Market

Share Worldwide 2014 to 2024. The figure depicts that Android has been the leading

2 https://gs.statcounter.com/platform-market-share/desktop-mobile

tablet/worldwide/#yearly-2014-2024
3 https://gs.statcounter.com/os-market-share/mobile/worldwide/#yearly-2014-2024

0

10

20

30

40

50

60

70

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

P
er

ce
n
ta

g
e

sh
ar

e

Year

Desktop Mobile Tablet

10

mobile OS since 2014, and its market share has consistently increased in the last few

years.

Figure 1.3 Mobile Operating System Market Share Worldwide 2014 - 2024

Android's widespread adoption and open-source nature make it an attractive

target for cybercriminals, leading to a higher incidence of security threats than other

mobile operating systems. The Android operating system has held a dominant position

in the smartphone industry for the past decade. This dominance is partly due to its

open-source nature, which encourages widespread adoption by numerous

manufacturers. Within the Android API framework, functions that provide access to

sensitive system resources are available. Unfortunately, this accessibility has been

exploited by cyber attackers who develop and distribute malicious applications via

alternative app stores or through social media advertisements. Attackers can also

embed harmful components within legitimate Android applications.

These malicious applications enable attackers to perform various harmful

activities, including stealing personal information, sending unauthorized SMS

messages, and remotely controlling the device. As a result, it is crucial to implement

robust security measures to protect smartphones from these threats. Given the high

market share of Android devices, the frequency and sophistication of these attacks

0

10

20

30

40

50

60

70

80

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

P
er

ce
n
ta

g
e

S
h
ar

e

Year

Android iOS Windows

11

underscore the need for vigilant security practices to safeguard user data and maintain

device integrity [11, 12, 13].

1.3 Android Mobile Malware

In several ways, mobile devices or smartphones present more significant

security risks to users compared to traditional PCs [11] . These devices are equipped

with sensors that can inadvertently expose stored information, including images,

videos, and even the user's location [12]. Moreover, many users store sensitive data,

such as banking details or authentication credentials, on their smartphones, making

these devices attractive targets for attackers. The rapid rise in smartphone popularity,

along with widespread user adoption, has been accompanied by a corresponding

increase in malware attacks.

According to a report4 , several mobile Trojan subscribers were discovered on

Google's official app marketplace in 2022. A blog post by the renowned antivirus firm

McAfee revealed that 60 Android apps, with 100 million downloads, were spreading

a new strain of malware to unsuspecting users5 . TechRadar reported a new

ransomware named "Daam," which can evade antivirus software6. Statista7 shared data

showing that 5.6 million Android malware samples were identified in 2020, with

millions more detected annually from 2016 to 2020. The surge in Android malware

and riskware activity throughout 2023 marks a concerning shift after a period of

relative calm. Reaching levels reminiscent of early 2021 by year-end8. Android

devices are 50 times more likely to be infected with malware than iOS devices9. These

findings highlight the urgent need for robust Android malware detection mechanisms

4 https://securelist.com/mobile-threat-report-2022/108844/
5 https://www.mcafee.com/blogs/other-blogs/mcafee-labs/goldoson-privacy-

invasive-and-clicker-android-adware-found-in-popular-apps-in-south-korea/
6 https://www.techradar.com/news/this-dangerous-new-malware-also-has-

ransomware-capabilities
7 https://www.statista.com/statistics/680705/global-android-malware-volume/
8 https://securelist.com/mobile-malware-report-2023/111964/
9 https://www.getastra.com/blog/security-audit/malware-statistics/

12

to effectively identify and mitigate malicious applications. The increase in malware

attacks on the Android platform can be attributed to several factors [16]:

✓ The widespread use of Android worldwide means that many users store

sensitive information on their smartphones, making them lucrative targets for

identity theft by malware developers.

✓ Android's open-source kernel policy allows attackers to gain a deep

understanding of potential vulnerabilities within the system's architecture.

✓ Third-party app markets provide an easy avenue for distributing malicious

applications.

✓ The similarity between desktop operating systems and Android makes it easier

for attackers to adapt their techniques from desktop environments to the

Android platform.

There are several methods through which malicious content can be introduced

into smartphones, including SMS/MMS, Bluetooth, app markets, internet downloads,

and update attacks [17]. Here's a brief overview of each infection vector:

✓ SMS/MMS: Messaging services like SMS and MMS have been exploited as

attack vectors by malware such as ComWar and Yxe on the Symbian platform

and FakeToken on Android.

✓ Bluetooth: Attackers can use Bluetooth technology to spread malware

between devices within communication range. For example, the Symbian-

based Cabir and Android-based BlueFrag malware utilized Bluetooth to

propagate across devices and steal data.

✓ App Markets: App markets are a common entry point for malware

distribution. Many Android malware samples are introduced through these

markets, often using the repackaging technique. This involves disassembling

an existing app, embedding malicious code, and repackaging it. Malware

families like jSMSHider, DroidDream, and BgServ on Android were spread

using this method.

✓ Internet Downloads: The drive-by-download technique, commonly used on

desktop systems, also applies to smartphones. Users are tricked into clicking

malicious links, which then download harmful components in the background.

13

Malware such as GGTracker, JiFake, and Zitmo on Android, PhoneCreeper on

Windows, and Ikee on iOS have infected devices through this method.

✓ Update Attacks: Many applications require periodic updates to stay current.

Initially, an app might be harmless, but it can download malicious code during

an update, thereby infecting the smartphone. Examples include AnserverBot,

Plankton, and BaseBridge, which targeted Android devices using this attack

strategy.

Table 1.1 outlines the different threats that smartphone malware poses to users

and devices. These threats include system damage, financial loss, and data leakage,

among others. In addition to these, mobile devices can be exploited by malware

developers for cyberbullying and sending spam messages on Online Social Networks

(OSNs) [18, 19, 20].

Table 1.1Threats Posed by Smartphone Malware

 Threats Malware Example

System

Damage

Disable System Functions like

Block the Calling Service

Fakebank (Android), Skulls

(Symbian)

Battery Draining DrainerBot (Android),Cabir

(Symbian)

Change system configuration

such as Wallpaper

ExpensiveWall (Android), Ikee

(iOS)

Financial

Loss

Send SMS / MMS FakePlayer, HippoSMS (Android)

Dialling premium numbers BaseBridge, BeanBot (Android)

Information

Leakage

Privacy Breach BaseBridge (Android)

Stealing Banking Information EventBot (Android), ZeusMitMo

(Symbian)

Remote

Control
Mobile Botnet ADRD, AnserverBot (Android)

14

1.4 Security Issues in Android

Android, being one of the most widely used mobile operating systems, faces

various security issues due to its open nature, diverse hardware ecosystems, and

popularity. While Google and manufacturers continually update and improve security

measures, several vulnerabilities still exist that can be exploited by attackers. Here are

some of the key security issues in Android:

1. Information leakage: It happens when users unknowingly grant too many

permissions to apps, and the Android operating system doesn't enforce strict

enough limits on how those permissions are used. This enables apps to access

personal data like location, contacts, messages, and even the device's

microphone and camera, which can then be misused or shared with third parties

without the user’s consent. Many apps, particularly those from third-party

sources, request more permissions than they need, posing a privacy risk. Older

Android versions worsened this issue by lacking detailed permission control,

forcing users to either accept all permissions or skip the app altogether. While

newer Android versions allow users to selectively manage permissions, many

still approve access without understanding what data is being collected or how

it’s utilized. Additionally, some apps include third-party libraries or SDKs that

gather and share user data for advertising or analytics, increasing privacy

concerns. This leads to risks such as unauthorized data collection, profiling,

and exposure to security threats like phishing or identity theft. To reduce these

risks, users should carefully examine app permissions, remove unnecessary

access, and use tools that focus on privacy. Android’s evolving permissions

system, alongside informed user practices, is key to minimizing information

leakage and safeguarding user privacy.

2. Privilege escalation: Privilege escalation in Android occurs when an attacker

gains elevated permissions or control over a device by exploiting system

vulnerabilities, particularly within the kernel. The kernel, as the core

component of the operating system, manages hardware resources and controls

key system operations. When attackers find and exploit weaknesses in the

15

kernel, they can increase their access from a regular user or app level to that of

a root or system administrator, effectively bypassing security controls and

taking full control of the device. Attackers often gain initial access through

methods like malicious apps or phishing, then leverage kernel vulnerabilities,

such as buffer overflows or race conditions, to execute unauthorized code and

escalate their privileges. With elevated access, they can alter system settings,

steal sensitive data, install malware, or create backdoors for future attacks. This

kind of attack is particularly dangerous because root-level access allows an

attacker to override most security protections on the device. They can steal

personal information, install persistent malware, or even make the device

unusable by altering critical system files. Notable exploits, like the "Dirty

COW" vulnerability, highlight how attackers have used kernel flaws to gain

root access. Preventing privilege escalation requires keeping the system up-to-

date with security patches, carefully managing app permissions, and avoiding

practices like rooting that disable essential security features. By applying

regular updates and leveraging security tools such as SELinux, the risk of

privilege escalation can be significantly reduced, though it remains a serious

threat if kernel vulnerabilities go unaddressed.

3. Repacking of Application: Repackaging of applications on Android is a

significant security threat where attackers modify genuine apps by reverse

engineering them and injecting malicious code before redistributing them to

unsuspecting users. This process starts when attackers obtain the APK

(Android Package) file of a legitimate app, decompile it using common tools,

and then introduce harmful elements like spyware, malware, or adware into the

app’s code. After making these changes, the attacker repackages the app,

making it appear as though it is the original, unaltered version. The modified

app is then shared through unofficial app stores, third-party websites, or via

direct download links, often marketed as free or enhanced versions of popular

apps. Because the repackaged app typically retains its core functionality, users

may not realize that they have downloaded a compromised version. While the

app continues to function as expected, it may secretly collect sensitive

information such as passwords, financial details, or location data and transmit

16

it to the attacker. Additionally, repackaged apps can deliver harmful software

like ransomware, install further malware, or convert the device into part of a

botnet. This attack is facilitated by Android’s open ecosystem, which allows

apps to be downloaded from various sources beyond the Google Play Store,

where security checks might be less strict or nonexistent. Users are often

enticed by unofficial sources offering premium features or unlocked content,

making them more susceptible to these threats. To defend against repackaged

apps, it's important to download apps only from trusted sources, carefully

review app permissions, use mobile security tools, and avoid apps that request

excessive or unnecessary permissions.

4. Denial of Service Attack: A Denial of Service (DoS) attack on a smartphone

occurs when an attacker deliberately overwhelms the device’s resources, such

as the CPU, memory, or network bandwidth, making it difficult or impossible

to use. Malicious apps can be designed to carry out such attacks by overloading

system resources or triggering excessive background processes that strain the

device. For example, a malicious app may continuously send data requests or

initiate tasks that exhaust the device’s processor, leading to sluggish

performance, system freezes, or crashes. In severe cases, the phone may

become unresponsive, preventing users from performing basic functions like

making calls, sending messages, or using other apps. DoS attacks may also

target the device’s network connection by flooding it with excessive traffic,

causing significant slowdowns or disconnecting the device from the internet

altogether. These attacks can interfere with daily usage, disrupt business

activities, and cause the battery to drain faster than usual, forcing users to

reboot their devices or uninstall problematic apps to regain control. In some

cases, these malicious apps may also be part of a larger network of infected

devices, turning the smartphone into a participant in a distributed denial-of-

service (DDoS) attack. To prevent DoS attacks, users should avoid suspicious

apps, manage app permissions carefully, and keep their devices updated with

security patches to address potential vulnerabilities.

5. Colluding: Colluding attacks occur when multiple applications installed on a

device work together to take advantage of the system's shared user ID (UID)

17

feature, typically available to apps signed with the same developer certificate.

On Android, apps with the same certificate can share a UID, allowing them to

exchange data and permissions without the usual separation enforced between

different apps. This collaboration enables these apps to pool their permissions,

allowing them access to more system resources and sensitive data than they

could individually. Each app might request only a few basic permissions, but

by sharing their access through a common UID, they collectively gain

unauthorized access to critical information. For instance, one app may have

permission to access the internet, while another can access a user’s contacts or

location data. While these permissions might seem benign on their own, the

combination of these permissions across multiple colluding apps can result in

sharing sensitive data, leading to privacy issues, data theft, or abuse of device

resources. Colluding apps can also bypass typical security detection, as each

app might appear harmless when viewed separately. Users may not realize that

seemingly unrelated apps are working together to exploit system capabilities.

To guard against these attacks, users should carefully review app permissions,

limit the installation of apps from the same developer unless necessary, and use

security tools that monitor for unusual data sharing between apps.

6. Fragmentation and Delayed Updates: Fragmentation and delayed updates

present major security issues in the Android ecosystem, largely due to the

diversity of devices, manufacturers, and customizations. Since Android is

open-source, manufacturers can modify the operating system to fit their

specific hardware, resulting in different versions and models across devices.

When Google releases a new update or security patch, it has to pass through

various manufacturers and carriers, who must adapt it to their devices before it

reaches users. This process can lead to significant delays or, in some cases,

prevent certain devices from receiving updates altogether. This problem is

worsened by the fact that many devices continue to operate on outdated

Android versions, making them susceptible to known security vulnerabilities.

The delay in pushing out security patches and system updates leaves millions

of devices at risk for cyberattacks. Additionally, many manufacturers stop

supporting older models after a certain period, leaving them without necessary

18

updates. This fragmentation weakens Android's overall security and makes it

challenging for users to access the latest protections and features. As a result,

users need to be extra cautious, often relying on third-party security solutions

or upgrading to newer devices that receive more timely updates.

7. Malicious Apps and Google Play Store: Malicious apps remain a significant

security threat for Android users, even on the Google Play Store, which is

generally seen as the safest place to download apps. Despite Google’s security

measures, such as Play Protect, some harmful apps manage to bypass detection

and become available for users to download. These malicious apps often

disguise themselves as legitimate tools, games, or services, tricking users into

installing them. Once installed, they may engage in a variety of harmful

activities, such as stealing personal data, tracking user behaviour, displaying

unwanted ads, or installing additional malware. These apps sometimes request

excessive permissions, such as access to contacts, messages, or location data,

which they can misuse for purposes like identity theft or fraud. While Google

continually works to find and remove these apps, the sheer number of apps on

the platform means that some still slip through, especially when initially

harmless apps turn malicious after updates. Users who download apps from

unofficial sources face an even higher risk, as those apps are not subject to

Google’s security screenings. To stay secure, users should carefully manage

app permissions, regularly review their installed apps, and avoid downloading

software from untrusted sources.

8. Weak Encryption and Data Security: Encryption is designed to protect

sensitive information, such as personal data, financial transactions, and

communications, by converting it into a coded format that only authorized

users with the correct decryption key can access. However, when encryption is

either weak or poorly implemented, it can be easily compromised by attackers,

leaving confidential data vulnerable to unauthorized access, theft, or

manipulation. On Android, encryption is intended to protect both data stored

on the device and information transmitted over networks. Vulnerabilities arise

when apps use outdated encryption methods or fail to apply encryption, leaving

user data, particularly at risk when transmitted over unsecured networks like

19

public Wi-Fi. For example, if login credentials are not encrypted properly,

hackers can intercept them during transmission, potentially leading to account

breaches. Additionally, some Android devices, especially older ones or those

running outdated software versions, may not have encryption enabled by

default, increasing the likelihood of data being exposed. Applications that store

sensitive data locally without adequate encryption can make that data

accessible if the device is lost, stolen, or compromised. Developers may also

make critical mistakes in implementing encryption, such as embedding

hardcoded encryption keys within the app, which can be extracted through

reverse engineering. Weak encryption leaves individual users vulnerable to

risks such as identity theft and financial fraud, and it also poses broader security

concerns for organizations where employees use Android devices to access

corporate networks and sensitive data. To minimize these risks, both Android

devices and apps must adhere to robust encryption standards, ensure that

software is regularly updated, and apply proper encryption techniques. Users

should also take extra steps, such as enabling device encryption, using secure

networks like VPNs, and avoiding apps that fail to follow best security

practices.

9. Rooting and jailbreaking are processes that give users full access to their

Android or iOS devices by bypassing manufacturer or operating system

restrictions. While these actions provide benefits such as greater customization,

the ability to remove unwanted pre-installed apps, and the option to install

third-party apps unavailable on official platforms, they also introduce

significant security risks. By obtaining root or administrative privileges, users

can modify system files and install custom software, but this often disables the

device's built-in security measures. Devices that have been rooted or jailbroken

are particularly susceptible to malware, as they allow apps from unverified

sources, which may not have been subjected to security screenings.

Furthermore, these devices are more prone to data breaches, instability, and

performance problems, especially when using custom ROMs or unauthorized

modifications. Another drawback is that rooting or jailbreaking typically voids

the device's warranty, leaving manufacturers unwilling to offer support for any

20

issues. Additionally, these devices may not receive important software updates

or security patches, increasing their vulnerability to cyberattacks. While

rooting or jailbreaking unlocks advanced customization and features, the

associated security risks and potential loss of device stability and manufacturer

support make it a risky decision.

10. Open Wi-Fi Networks and Man-in-the-Middle Attacks: Open Wi-Fi

networks, commonly found in public places like cafes, airports, and hotels,

pose serious security risks due to their lack of encryption. These networks are

accessible to anyone within range, often without requiring a password or any

form of authentication. While convenient, they provide an easy target for

attackers looking to exploit vulnerabilities and intercept data being transmitted

between a device and the network. Since these networks lack proper

encryption, sensitive information such as login credentials, financial details,

emails, and other personal data can be exposed to malicious actors. Users may

mistakenly assume their connection is secure, not realizing that they are at

greater risk of being targeted by cybercriminals. One of the primary threats on

open Wi-Fi is a Man-in-the-Middle (MitM) attack, where an attacker inserts

themselves between the user and the Wi-Fi network, intercepting the data that

is being exchanged. In this attack, the hacker can monitor all communications,

including sensitive information like passwords, credit card numbers, and

private messages. Additionally, the attacker can manipulate the data being sent,

potentially injecting malicious code that compromises the security of the

device. MitM attacks are particularly dangerous because they often go

unnoticed, as the attacker can make the connection appear normal to the user.

In some cases, attackers may set up rogue Wi-Fi networks that appear to be

legitimate public networks, tricking users into connecting. Once connected, the

attacker gains full access to the user's internet traffic, allowing them to steal

information or distribute malware. To protect against the risks of open Wi-Fi

networks and MitM attacks, users should avoid sending sensitive information

over unsecured networks, use Virtual Private Networks (VPNs) to encrypt their

data, and ensure that they only visit websites secured with HTTPS. It is also

wise to disable automatic connections to public Wi-Fi and exercise caution

21

when connecting to unknown or unsecured networks. Taking these steps can

help reduce the chances of falling victim to a MitM attack or other forms of

data interception on open Wi-Fi networks.

1.5 Motivations and Research Gaps

The work proposed in thesis aims to design and develop malware detection

techniques for Android based smart phones. Smartphones have gained popularity over

desktops because of their portability, continuous connectivity, and versatility. They

provide users with the convenience of accessing the internet, apps, and communication

tools from anywhere, making them an integral part of everyday life. Consequently,

smartphones have become the primary device for many people, overtaking desktops

in usage and engagement.

Android-based smartphones are more attack-driven in comparison to other

mobile operating system-based smartphones. The increase in malware attacks on

Android smartphones can be attributed to several factors. Android's widespread

adoption makes it an attractive target for cybercriminals, and its open-source nature

facilitates the exploitation of vulnerabilities. Fragmentation within the Android

ecosystem often results in delayed security updates, leaving many devices vulnerable.

Additionally, third-party app markets, which frequently lack robust security measures,

and the common practice of repackaging legitimate apps with malicious code,

exacerbate the issue. User behaviour, such as granting excessive permissions or

downloading apps from unreliable sources, further heightens the risk. These elements

combined have contributed to the sharp rise in malware attacks on Android devices.

The primary focus of this section is to describe the motivation behind the

research work carried out in this thesis. The motivations are based on the research gaps

identified during the literature survey. The following research gaps were identified

from the literature survey:

1. On Android devices, one of the built-in defense mechanisms is the permissions

system, which controls the access privileges granted to applications [21].

Despite this, the system has proven inadequate in preventing malware attacks.

For example, when downloading an app, users must grant all the requested

22

permissions to proceed with the installation. Most users tend to overlook the

permissions list and grant them without much consideration. Even those who

do review the permissions may struggle to recognize potential risks. This

vulnerability has been exploited by attackers to infiltrate the Android platform

in recent years. Consequently, there is a need for more effective Android

malware detection mechanisms to protect against these threats.

2. Most research in the field of Android malware analysis, particularly within the

static analysis category, has concentrated heavily on the permissions

component of the Android manifest file [22, 23, 24, 25, 26]. This focus is due

to the critical role that permissions play in determining what a particular app

can do on a device, such as accessing the camera, contacts, or location data.

Significantly less amount of research considers another component of the

manifest file. Also, .dex files which contain all Android classes compiled into

dex file format are not largely utilized for malware analysis and detection in

comparison to permissions.

3. Some malware samples are advanced enough to bypass static detection through

update attacks. Therefore, a dynamic detection model is necessary to identify

and counteract these types of threats. Many malware samples can evade static

detection because they obfuscate their malicious component or download their

malicious component at run time. Static-based solutions may not detect such

stealthy obfuscated malware. Regarding dynamic analysis, Memory forensics

has been used in Windows/Linux desktop systems to detect malicious activities

[27, 28, 29, 30] to detect malicious activities, but to the best of our knowledge,

it is still unexplored in the field of Android malware detection.

4. Both dynamic and static analysis methods have their strengths and weaknesses

when it comes to malware detection. Static analysis often struggles with code

obfuscation techniques, as well as polymorphic and metamorphic malware,

whereas dynamic analysis is more effective in these cases by examining the

runtime behaviour of a program, which is difficult to obfuscate. However,

dynamic analysis is time-consuming, as each malware sample must be

executed within a secure environment that differs from a real runtime setting,

potentially leading to different behaviours [31, 32]. To overcome the

23

limitations of both approaches, a combined method that integrates static and

dynamic features appears promising for malware classification. Despite this,

most research has focused on either static or dynamic analysis individually,

with limited exploration of hybrid approaches.

1.6 Research Objectives

The previous section briefly explained the motivations and research gaps in the

literature. This section briefly highlights the research objectives as follows:

1. To design and develop a novel malware detection technique using static

features either from Android manifest files or .dex files or combination of both.

2. To design and develop a new hybrid malware analysis technique based on static

and dynamic features in optimal combination for Android devices.

3. To develop a memory forensics-based technique for classifying Android-based

applications for malware detection.

1.7 Contribution of Research Work

Figure 1.4 depicts the broad overview of the research performed at different

stages of this thesis. We proposed three Techniques for Android malware detection.

We briefly explain the contribution of each of the proposed technique as follows:

Figure 1.4 Overview of the proposed work of the thesis

24

1. We have used permissions, API calls, system commands, and opcodes with

rough set theory for Android malware detection. To the best of our knowledge,

we are the first to apply rough set theory to the static features mentioned above.

The rough set theory has several advantages, such as attribute selection and its

ability to work with qualitative and quantitative attributes. We used a

Discernibility Matrix to rank and further calculate the reduct of the above

features. Ranking of features is done to highlight essential features. Reduct, a

reduced feature set, is estimated to improve the overall detection rate with the

most minor features. We applied several Machine Learning (ML) algorithms

such as Support Vector Machines (SVM), K-Nearest Neighbor, Random

Forest, and Logistic Regression for malware detection. Our results demonstrate

an overall accuracy of 97%, better than many state-of-the-art detection

techniques proposed in the literature.

2. We proposed a covalent bond-based Android malware detection model using

permissions and system call pair. We use the analogy of covalent bonds

between two atoms in chemistry to form covalent bonds between every

permission and system call. We also calculate bond strengths between

permission and system call pairs to denote the strength of the bond they create

between them. The estimated bond strength helps detect an Android application

as malicious or benign. Our detection results demonstrate an overall accuracy

of 97.5%, better than many state-of-the-art detection techniques proposed in

the literature.

3. We developed a visual malware detection technique based on process memory

dump files. An Android process memory dump, referred to as a memory dump

or core dump, captures the memory snapshot of a running process on an

Android device at a specific instance. It encompasses details concerning

memory allocation, variables, registers, and other pertinent data structures

linked to the process.

1.8 Organization of Thesis

The dissertation explaining research work during the Ph.D. is organized into

six chapters. Chapter 1 gives the introduction to the field of Android malware detection

25

and outlines the motivation behind the research. Chapter 2 is dedicated to the literature

review of existing studies and research in the field of Android malware detection.

Chapter 3 focuses on using permissions, API calls, system commands, and opcodes

with rough set theory for Android malware detection. Chapter 4 is dedicated on

building the permission and system call covalent bond pairs to identify and analyze

the impact of these pairs for malware detection on Android. Chapter 5 is dedicated to

propose a novel Android malware detection mechanism based on visual techniques.

The mechanism is based on converting Android process memory dump files into

grayscale images. Chapter 6 summarizes the conclusions inferred from this research

work and highlights the potential future work in this ar

26

Chapter Two:
LITERATURE REVIEW

This chapter presents a comprehensive review of techniques for Android

malware detection. The Android malware detection techniques can be broadly divided

into three types: static analysis, dynamic analysis and hybrid analysis. Static detection

is the art of malware detection technique in which the features are extracted from the

source code without executing the source code. Dynamic detection is the technique in

which the run time behaviour of code is examined while the code is under execution.

Hybrid detection is the combination of both as it uses the methodology of both static

and dynamic analysis.

2.1 Static detection

This section describes research in the area of static malware detection

techniques and centers on three main techniques, namely detection based on manifest

files, API calls and Java code. Therefore, the section is divided into three sub sections,

including, manifest file-based detection, API calls-based detection and java code-

based detection.

2.1.1 Manifest File Based Detection

In this subsection, we covered studies that have been conducted about the

features extracted from the manifest files of Android applications in the context of

malware detection. According to Grace et al. [33], applications that integrated ad

libraries into their main programs posed a threat to Android devices, as the offline

work tended to emphasize the insecure aspects of the bundled ad libraries to host app

relationships. Others like Enck et al. [34] formalised a simple certification scheme in

terms of the security properties of the applications in order to provide an anti-virus

against the highly aggressive applications. Considering mobile malware related

anxious security concerns [23], Li and colleagues developed SIGPID, a malware

detection that reduce over-privileged permission identification of malware

applications by applying 3 levels of pruning. Further, Talha et al. [35] created a client

27

– server application APK-auditor which helps in detection of malicious applications

based on maintenance of the Android profile database using permission analysis.

The authors in [36] developed a context category ontology based on

permissions to identify the potential risk of information leakage caused by malicious

activities. Song et al. [37] created a prototype called ASE, which uses four levels of

filtering based on static analysis to classify an application as either benign or

malicious. DroidChain [38] is another detection approach that employs static analysis

combined with a behaviour chain model to identify four types of malicious behaviours:

privacy leakage, SMS financial fraud, malware installation, and privilege escalation.

ProDroid [39] is a behaviour-based detection model that leverages biological sequence

techniques and a Markov chain model to compare the classes and APIs of decompiled

apps with stored malicious behaviour patterns. Moonsamy et al. [40] analyzed both

requested and used permissions to extract contrasting permission sets, which were then

used to classify applications as either benign or malicious.

Idrees et al. [41] employed intent filters and permissions to classify

applications as either benign or malicious. Wang et al. [21] focused on ranking

requested permissions by risk, selecting the most risky subset to train machine learning

models. The authors in [42] introduced DroidRanger, a tool for detecting malicious

applications using permission behaviours and heuristic filtering, which also

successfully identified zero-day malware. Qiu et al. [43] uniquely annotated detected

malware capabilities, particularly concerning security and privacy issues. In [44],

APIs, intents, and permissions were analyzed to establish similarity associations with

malware samples, detecting malicious applications using Hamming distance.

Bai et al. [45] tried to develop a fast malware detection system by taking into

account numerous features such as permissions and opcode sequences. Drebin [46] is

a light-weight method for cell phone malware detection, capable of identifying

malicious apps within ten seconds after the download of such an app. Varsha et al. [47]

evaluated the feature selection technique of the most valuable features from different

sets of static features. Mahindru et al. [48] tested ten different feature selection

techniques to choose the most optimal set of features for efficiently detecting malicious

applications.

28

Khariwal et al. [49] proposed a novel method to find the best permissions and

intents combined to detect malicious applications. PermPair [50] is another malicious

application detection technique that creates permission pairs from each application and

further constructed malicious and normal permissions pair graphs used for the

detection mechanism. The work in [51] uniquely compared the dynamics between

requested permissions and intent filters. In manilyzer [52], stress was given on using

different manifest components along with requested permissions. Sanz et al. [53]

developed a malware detection model based on used permissions. Li et al. [54]

developed a malware detection model using multiple features both from the manifest

file as well as from the source file, whereas Sato et al. [55] used multiple features from

the manifest file only.

2.1.2 API Calls-Based Detection

Several researchers have utilized static API calls to identify Android malware.

The Droidmat model [56] employed a combination of manifest file features and API

calls and applied K-means and KNN algorithms for malware detection. Another study

[57] examined user-triggered dependencies and sensitive APIs in malicious apps,

while Zhang et al. [58] constructed dependency graphs of API calls to categorize

malicious apps into Android malware families using similarity metrics. The authors of

[59] introduced a model called Apposcopy, which examined control-flow and dataflow

properties derived from API calls to detect malware. Wang et al. [60] focused on

analyzing string features like permissions and intents, as well as structural features

such as API calls and function call graphs, on detecting malicious behaviour in

Android apps. Similarly, the work described in [61] involved the analysis of API calls

and their call graphs for malware detection.

2.1.3 Java Code-Based Detection

Zhu et al. in [62] developed an image-based malware detection method that

extracts important parts of Dalvik code and converts it to RGB images. Fang et al. [63]

also used RGB images generated from Dex files but, apart from classifying an

application as benign or malicious, did malware familial classification. The work [64]

eliminated code confusion and calculated scores for every code word based on their

29

importance, which deep learning models then used to detect malicious applications.

CDGDroid [65] is another technique to detect Android malware based on control flow

graphs and data flow graphs that are constructed from the code of the application with

the help of program analysis techniques and later on used as features for the CNN

model. Xiao et al. [66] developed a method that captures the system call sequence from

the code of the application, and the captured system call sequence is used to train

LSTM to detect malicious applications. To form the malware detection model,

MSNDroid [67] incorporated native-layer code features and combined them with

permissions and Java layer components.

2.2 Dynamic Detection

This section describes the techniques available in literature for performing

malware detection using dynamic analysis. While static analysis and detection

methods are fast, they often struggle against malware that uses encryption,

polymorphism, or code transformation. In contrast, dynamic analysis involves running

the mobile application within a controlled environment, such as a virtual machine or

emulator, allowing researchers to observe its behaviour in real time. This approach

was developed to address the shortcomings of static analysis, particularly in detecting

malware that downloads harmful code during runtime to avoid static detection.

Dynamic analysis operates by executing the app in a secure environment that simulates

all necessary resources, enabling the identification of malicious activities. Although

several dynamic analysis techniques have been implemented, they are limited by the

resource constraints inherent in smartphones. Like static analysis, dynamic analysis

employs a variety of features for detection and analysis, such as OS-level features and

network traffic data, which we will discuss in detail later.

2.2.1 OS-Based Detection

TaintDroid model, which relies on dynamic taint analysis, evaluated system

call sequences and tracked the flow of sensitive information within third-party

applications. The researchers found that even many legitimate apps could potentially

leak private data stored on mobile devices. Several systems, including those referenced

in [68, 69, 70], were developed based on the TaintDroid model to detect privacy leaks

30

in Android applications. Yang et al. [71] expanded on the TaintDroid framework to

identify data leaks and determine whether these leaks were intentional by the user.

However, these studies primarily focused on analyzing data leaks rather than detecting

malicious applications.

Shabtai et al. [72] investigated dynamic features such as CPU usage, the

number of active processes, and Wi-Fi packet transmission to identify malware. The

CopperDroid model [73] analyzed system calls from malware samples to determine

whether malicious behaviour originated from Java, JNI, or native code execution.

Afonso et al. [74] explored a combination of dynamic API calls and system calls for

identifying malicious apps.

The CrowDroid model [75] extracted system calls and employed partitioning

clustering techniques to differentiate between malicious and benign applications. The

DroidTrace model [76], utilizing ptrace, monitored various dynamic features,

including system call sequences, file operations, and network connections, for

malware detection. Almeida et al. [77] evaluated runtime traces such as system calls,

network traffic behaviour, and real-time user inputs like interactions with apps to

assess the risk posed by applications. Jang et al. [78] used volatile memory acquisition

techniques to detect malicious Android applications.

2.2.2 Network Traffic Based Detection

Few studies in the literature have focused on using network traffic to analyze

behaviour and detect Android malware. This section reviews such works. In a study

[79], authors utilized an Android emulator to capture the network traffic of both

malicious and benign apps. Among 16 network traffic features, 7 were identified as

effective in distinguishing between normal and malicious traffic. Chen et al. [80]

analyzed network traces of malicious apps after capturing their traffic and found that

over 70% of the samples produced malicious traffic within the first five minutes. They

noted that features like DNS queries and HTTP requests could be used to detect

malware. The authors of [81] grouped malware families based on their HTTP traffic

analysis, examining features like the number of GET/POST requests and the amount

of data sent in POST messages, using the BIRCH algorithm to cluster similar malware

31

families. They observed that malware samples from the same families exhibited

similar HTTP features and thus were grouped in the same cluster.

Wang et al. [82] clustered Android malware samples by analyzing the

similarities in their HTTP traffic flows. Alan et al. [83] demonstrated that popular

Android apps could be identified by applying supervised machine learning algorithms

to the packet sizes of the first 64 packets they generate, although they did not include

malware apps in their analysis. Mauro et al. [84] analyzed encrypted traffic from

benign Android apps but did not consider malicious samples in their study, nor did

they propose a detection model for malicious Android applications. Wang et al. [85]

employed Natural Language Processing techniques on HTTP headers to detect

malicious apps. Shabtai et al. [86] applied machine learning algorithms to traffic

features to generate normal traffic patterns, which were then used to identify malicious

apps. Wang et al. [87] conducted multilevel network traffic analysis, incorporating

both HTTP request features and TCP flow-based features, and tested their data using

the Decision Tree algorithm. They extended this work in [88] by comparing HTTP-

based and TCP-based detection models, developing working prototypes for both to

allow users to choose the model best suited to their needs. In another study [85], they

extracted text-level features from HTTP flows, used the Chi-Square Test for feature

selection, and applied SVM to the selected features for malware detection. They

suggested extending their model to analyze and detect encrypted malware traffic but

did not implement this design. The authors of [89] analyzed DNS and HTTP traffic

from Android smartphones, applying various machine-learning algorithms to detect

malware. Other studies, such as [90, 91, 92, 93, 94], have also utilized machine

learning algorithms to detect malicious activity on Android networks.

2.3 Hybrid Detection

Only a few studies have integrated static and dynamic detection features into a

single model to propose a hybrid detection approach. This section reviews such hybrid

models for Android malware detection. Saracino et al. [95] examined various static

and dynamic features, including system calls, API calls, user activity logs, and

permissions, to identify malware. The authors used statistical inference to correlate

these features, thereby detecting app misbehavior. Han et al. [96] extracted 120 static

32

features, such as APK size, developer information, and API calls, along with 767

dynamic features, including SMS activity, file operations, and cryptographic usage.

They applied multiple feature transformations to map the features into a new feature

space and used ensemble classifiers to detect malicious samples. Sun et al. [97]

developed a hybrid model that generated static and dynamic graphs from manifest file

components and system calls, respectively. Xia et al. [98] conducted static API

analysis and dynamic bytecode analysis to detect data leaks from apps. The Riskranker

model [99] analyzed dynamic features like run-time Dalvik code loading, along with

static features such as permissions, to identify malware. The Marvin model [100]

utilized machine learning classifiers on hybrid features like app name, class structure,

file operations, intent receivers, network behavior, and phone activity. The

SAMADroid model [101] extracted system calls and manifest file components and

applied various machine learning classifiers for malware detection.

In another study, the authors [102] adapted an open-source framework called

CuckooDroid to analyze static manifest file components and dynamic API calls for

detecting malicious behavior within apps. Similarly, Patel et al. [2] proposed a hybrid

framework by analyzing manifest files and runtime API calls for malware detection.

Yuan et al. [103] used deep learning to analyze a combination of static permissions

and dynamic behaviors, such as user-app interactions, to identify malicious apps. Liu

et al. [104] applied machine learning to a combination of permissions and system calls

for malware detection. In a related approach, the authors in [105] developed a machine

learning-based hybrid model using permissions and both static and dynamic API calls.

Chakraborty et al. [106] applied an ensemble Classification and Clustering approach

to manifest file components and dynamic logs, such as SMS logs, generated during

app execution. Their model aimed to detect malware and predict the malware family

to which a sample belongs.

33

Chapter Three:
INNOVATIVE APPROACH TO ANDROID MALWARE

DETECTION: PRIORITIZING CRITICAL FEATURES

USING ROUGH SET THEORY

In this chapter we propose a technique for Android malware detection using

rough set theory. In section 3.1, we highlight the motivation behind the work done and

briefly explained the overview of the proposed technique. In section 3.2 we explain in

detail the methodology of the proposed technique. In section 3.3 the details of results

are discussed and presented. The section 3.4 is dedicated to discussions and findings.

In section 3.6 limitation of the proposed work is discussed. The section 3.7 summarizes

the chapter with future directions.

3.1 Introduction

The smartphone has practically become the personal desktop computer of the

modern day and enables us to execute nearly all tasks that one would do on a desktop.

It brings into our lives components that affect how we communicate, work, entertain

ourselves, and access information. Besides a call and text, smartphones are used to an

impressive extent for going on the Internet, social media, email management, photo

and video capture, GPS navigation, online shopping, banking, tracking health and

fitness, learning, managing personal tasks, and smart home automation. In this context,

mobile market use by smartphones out beats desktop usage by 20%.

In the numerous types of smartphones, the most popular Smartphone falls in

the category with the Android OS. This trend has been able to be so massive partly

because of its open-source nature, as many use the Android OS. The Android leads in

the chart, taking 70% market share in the global mobile operating system. This

openness has exposed Android to frequent malware attacks in the recent years amid

its popularity. In this context, there is a huge requirement to develop efficient Android

malware detection mechanisms to fight and eliminate evil applications.

Malware analysis is a technique that understands the functionality and origins

of malware. It includes three types [107]: static, dynamic, and hybrid analysis. These

approaches can be applied in developing detection models, where applications on

34

Android may either be malicious or benign. There are three kinds of detection models:

static, dynamic, and hybrid. Extracted Features in static detection can be obtained

through static analysis that is carried out without installing or running the application.

Dynamic detection works on the executing of the application to capture its features at

run-time. A hybrid model of detection combines both static and dynamic analysis to

extract a more comprehensive set of features from the application.

In static detection methods: There are several common techniques for feature

extraction in n static detection methods. The most popular ones among them are

manifest file-based detection, API call-based detection, and Java code-based detection.

Manifest file-based detection refers to extracting features from the Android

application's manifest file. For example, Li et al. [23] were able to achieve 90%

accuracy using permissions from the manifest file. This foundation was expanded by

the work of Arora et al. [50], who used permission pairs retrieved from the manifest

file to obtain 95.44% accuracy. IPDroid [49] combined permissions with intents found

in the manifest file and made use of a Random Forest classifier to obtain 94.73%

accuracy.

Feature detection through API call entails the detection of APIs invoked by

Android applications. Droidmat [56] integrated components of the manifest file and

API calls to detect malicious apps with 97.87% precision. Elish et al. [57]constructed

a detection model based on sensitive API calls invoked by the users while Zhang et al.

[61] developed association rules between API calls with a whopping 96% precision.

The Java code-based detection methods use Dex files that contain Java code in

Android applications for extracting features. Zhu et al. [62] converted the vital parts

of Dalvik byte code into RGB images and trained the Convolution neural network to

devise the malware detection system with an accuracy of 96.9%. Fang et al. [63] also

converted Dex files to RGB images to do malware familial classification with a

precision of 96%. The work [64] is based on eliminating code confusion and achieves

an overall accuracy of 92.67%.

35

3.1.1 Contributions

In the current work, we have used permissions, API calls, system commands,

and opcodes with rough set theory for Android malware detection. To the best of our

knowledge, we are the first to apply rough set theory to the static features mentioned

above. The rough set theory has several advantages, such as attribute selection and its

ability to work with qualitative and quantitative attributes. We used a Discernibility

Matrix to rank and further calculate the reduct of the above features. Ranking of

features is done to highlight essential features. Reduct, a reduced feature set, is

estimated to improve the overall detection rate with the most minor features. We

applied several Machine Learning (ML) algorithms such as Support Vector Machines

(SVM), K-Nearest Neighbor, Random Forest, and Logistic Regression for malware

detection. Our results demonstrate an overall accuracy of 97%, better than many state-

of-the-art detection techniques proposed in the literature. The main contributions of

this paper are summarized below.

✓ Firstly, we performed data pre-processing, in which we eliminated co-related

features and features not dependent on the class variable.

✓ We calculated the ranking score with the help of the discernibility concept of

rough set theory to rank the features according to their importance.

✓ We utilized an algorithm for rough set reduct computation to minimize the

number of features in each category, employing the ranking score and

discernibility principles from rough set theory..

✓ We further applied machine learning algorithms to evaluate the detection

accuracy with the reduct calculated in the previous step.

✓ We compared the results of our proposed model with other state-of-the-art

detection techniques, and our results highlight that the proposed model

outperforms similar state-of-the-art models.

3.2 Methodology

This section describes the overall approach to classifying Android applications

as malware or benign. The process is divided into four phases, as depicted in Figure

36

3.1. The first phase of the approach is the pre-processing phase, the second phase is

feature ranking, the third phase is the Rough Set Reduct Computation Phase, and the

fourth phase is the detection phase.

Figure 3.1Proposed Methodology

3.2.1 Data Pre-Processing Phase

These data pre-processing phase is more focused on the primary feature

selection phase. The whole process of this phase is depicted in Figure 3.2.

The figure referred to here summarizes the whole process of phase 1. The

proposed technique first considers the OmniDroid Dataset [108] and Androzoo

Dataset [109]. The OmniDroid dataset is the data set in which various features are

extracted from an extensive collection of 22,000 APKs. The dataset consists of an

equal number of benign and malicious applications, i.e., 11,000 each. An additional

8000 applications are taken from the Androzoo Data set, spreading from 2015 to 2023,

making it more diverse. These 8000 apps consist of an equal number of benign and

malicious applications, i.e., 4000 each. The features from these 30,000 apps were

extracted with the AndroPytool [110]. The AndroPyTool extracts features from the

Android application supplied as input to the tool. Specifically, the AndroPyTool

extracts three types of features: pre-static features, static features, and dynamic

features. This paper focuses on static features, i.e., permissions, API calls, system

commands, and opcodes. The following is the description of each static feature

considered in this paper.

37

1. Permissions: Every Android application requests and requires a particular set

of permissions for its functioning. The apps need these permissions to access

some data or specific resources. These permissions are listed in the Android

Manifest file. The OmniDroid dataset consists of 5501 unique permissions.

2. API Calls: The Application Programming Interface (API) is a set of code

snippets that the underlying systems use for communicating. API calls are the

calls to such code snippets with some functionality that must be invoked to

perform specific tasks. The dataset in consideration consists of 2128 API

Calls.

3. System commands: Android applications must access the kernel to perform

specific tasks and services. So, the services that need to be accessed by the

app are done by calling the OS routines. The calls to such kinds of OS routines

are known as system commands. The OmniDroid dataset consists of 103

system commands.

4. Opcodes: The Dalvik Bytecode generated by compiling the Android apps

consists of instructions that need to be executed in terms of opcodes. The data

set consists of 224 opcodes.

Figure 3.2Data Pre-Processing

38

First, process is applied individually for each of the features above. For all used

features: permissions, API calls, system commands, opcodes, a correlation score is

calculated for each set of features, which is used to filter out highly correlated features

since attribute features usually show strong correlations and typically have high linear

dependence as well as the same effect on the dependent variable. If two features are

highly correlated, one can safely be removed. In eliminating one feature, we keep the

other, provided one's correlation is 90 percent or higher. From this alone, 4428 out of

5501 permissions, 1589 out of 2128 API calls, 93 out of 103 system calls, and 159 of

224 opcodes remained.

Further, the Chi-Square test is executed to select a subset of features for each

feature set. The Chi-square test is a statistical test used to determine whether there is a

significant association between two categorical variables. The chi-square test works

based on the following equation:

χ2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑛
𝑖=1 (3.1)

The formula for the Chi-square test involves several key terms and

calculations, as shown in Equation (3.1), where χ2 is the Chi-square test statistic, 𝑛 is

the number of categories in the contingency table, 𝑂𝑖 is the observed frequency of

category 𝑖, and 𝐸𝑖 is the expected frequency of category 𝑖 under the null hypothesis.

The sum is taken over all categories in the contingency table.

The process begins by assuming the null hypothesis, which it presumes no

association exists between the feature variable and the class variable. Testing this is

accomplished by using the Chi-square test, as the value in Equation (3.1) is calculated

for the computation of the Chi-square test statistic. It then compares the computed

value against values in the Chi-square distribution table to determine the

corresponding p-value. The null hypothesis is rejected if the p-value is less than 0.05.

This signifies that the feature and class variables are correlated. The selected features

for the new feature subset in each feature set are those whose pvalue is less than 0.05,

signifying dependency on the class variable with a 95% confidence level. Ultimately,

this process ends up with a reduced feature set for each category, including

permissions, API calls, system commands, and opcodes.

39

For the permission feature set, we achieved 206 permissions selected as a

subset of permission out of 4428 permissions. For the API calls feature set, we

achieved 1264 API calls selected as a subset of API calls out of 1589 API calls. For

system command feature space, out of 94 system commands obtained in the previous

step, we achieved a minimized feature space of 52. Similarly, for the opcodes-based

feature set, which consisted of 204 opcodes from the previous step, we achieved 158

opcodes. The entire process is also summarized in the Algorithm 1.

3.2.2 Feature Ranking Phase

In this phase, the ranking of minimal feature sets obtained in the previous step

is performed to rank the features of each type according to their importance. Feature

ranking is performed through the Discernibility Matrix concept of rough set theory.

The whole process flow of this phase is depicted in Figure 3.3.

Rough set theory is a mathematical approach to data analysis and data mining.

This mathematical tool is powerful in dealing with improper, imprecise, inconsistent,

incomplete information, and knowledge [111, 112]. The rough set theory has several

advantages, such as attribute selection and its ability to work with qualitative and

quantitative attributes. The critical concepts of the rough set theory used in this paper

are explained below.

Algorithm 1: Data Pre-Processing

1. Input: A feature set of 22,000 APKs regarding four types of features, i.e.,

Permissions (𝑓𝑝), API Calls(𝑓𝑎) , System commands(𝑓𝑠) , and Opcodes(𝑓𝑜).

2. Output: For each of the feature sets 𝑓𝑝, 𝑓𝑎, 𝑓𝑠, 𝑎𝑛𝑑𝑓𝑜, a minimal feature space

of important features is obtained as 𝑚𝑖𝑛_𝑓𝑝, 𝑚𝑖𝑛_𝑓𝑎 , 𝑚𝑖𝑛_𝑓𝑠, 𝑎𝑛𝑑 𝑚𝑖𝑛_𝑓𝑜

respectively.

3. For each feature set 𝑓𝑖 in feature spaces 𝑓𝑝, 𝑓𝑎, 𝑓𝑠, 𝑎𝑛𝑑𝑓𝑜 do:

4. Set |𝑓𝑖| = 𝑁

5. For each feature 𝑥𝑖 in feature set 𝑓𝑖 do:

6. Set 𝑇𝑟𝑢𝑡ℎ_𝑣𝑎𝑙(𝑥𝑖) = 𝑇𝑟𝑢𝑒

7. ENDFor

8. For each feature 𝑥𝑖 in feature set 𝒇𝒊 do:

40

9. if 𝑇𝑟𝑢𝑡ℎ_𝑣𝑎𝑙(𝑥𝑖) == 𝑇𝑟𝑢𝑒 then:

10. For each feature 𝑥𝑖 in feature set 𝒇𝒊 where 𝑗: 𝑖 + 1 → 𝑁do:

11. if (𝑐𝑜𝑟𝑟𝑒𝑙[𝑥𝑖, 𝑥𝑗] > 0.9) then:

12. do 𝑆𝑒𝑙𝑒𝑐𝑡(𝑥𝑖)

13. do 𝑅𝑒𝑗𝑒𝑐𝑡(𝑥𝑗) and set 𝑇𝑟𝑢𝑡ℎ_𝑣𝑎𝑙(𝑥𝑗) = 𝐹𝑎𝑙𝑠𝑒

14. ENDIf

15. ENDFor

16. ENDIf

17. ENDFor

18. ENDFor

19. For each of the feature sets 𝑓𝑖 in the new feature 𝑓𝑝, 𝑓𝑎, 𝑓𝑠, 𝑎𝑛𝑑𝑓𝑜 obtained

do:

20. For each feature 𝑥𝑖 in feature set 𝒇𝒊 do:

21. Apply Chi-Square Test (xi)

22. if 𝑝_𝑣𝑎𝑙𝑢𝑒[𝑥𝑖] < 0.05

23. do 𝑺𝒆𝒍𝒆𝒄𝒕(𝒙𝒊)

24. Else

25. do 𝑹𝒆𝒋𝒆𝒄𝒕(𝒙𝒊)

26. ENDIf

27. ENDFor

28. ENDFor

3.2.2.1 Information System

It is defined as an ordered pair, in which the first element of this ordered pair

is called the universe. In our case, the universe is the set of both malicious and benign

applications that are considered. We represent the ordered pair as D = (A, F ∪ {l}),

where D is the data set under consideration, and A is the non-empty finite set called

the universe of Android application, consisting of both the malicious and benign types.

F is the non-empty set of features in the data set. In our case, these features are in terms

of permissions, API calls, system commands, and opcodes. Here, l is the special

41

attribute known as the label attribute, which stores the type of label corresponding to

each application in set A. This label attribute stores whether a particular application in

set A is malicious or benign.

Figure 3.3 Feature Ranking Phase

Table 3.1 Instance of permission information system shows an instance of the

permission information system for five applications assumed as A1, A2, A3, A4, and A5.

Here, feature attributes are the Content Provider Access, Settings App widget Provider,

and JPUSH Message. These are permissions, with corresponding values such as 0 or

1 for each application Ai. The value 0 signifies that particular permission is not present

in application Ai, whereas the value 1 signifies otherwise. The label column has the

value BW, signifying that the particular Ai is Benignware, whereas the label value MW

signifies that application Ai is malware, i.e., a malicious one.

Similarly, the information systems for API calls, system commands, and

opcodes are shown in Table 3.2,Table 3.3, Table 3.4 respectively. From these

information systems, a Discernibility Matrix is formed. The concept of Discernibility

is explained in the following section.

42

Table 3.1 Instance of permission information system

Table 3.2Instance of API calls information system

Table 3.3 Instance of System Command information system.

Application P1 = CONTENT

PROVIDER

ACCESS

P2 = Settings App

Widget Provider

P3 = JPUSH

MESSAGE

Label

A1 0 1 0 BW

A2 1 1 0 MW

A3 0 1 1 BW

A4 0 0 1 BW

A5 1 1 1 MW

Applic

ation

AP1 =

APICALLandroid.

view.SubMenu

AP2 =

APICALLandroid.

net.RouteInfo

AP3 =

APICALLandroid.

app.Activity

Label

A1 0 0 0 BW

A2 1 1 0 MW

A3 1 1 1 MW

A4 1 0 1 BW

A5 1 1 1 MW

Applic

ation

S1 =

SYSTEMCOMMA

ND-svc

S2 =

SYSTEMCOMMA

NDstagefright

S3 =

SYSTEMCOMMAN

Dnandread

Label

A1 0 1 0 MW

A2 1 1 0 MW

A3 0 1 1 BW

A4 0 0 1 BW

A5 1 1 1 MW

43

Table 3.4 Instance of Opcode information system.

3.2.2.2 Discernibility Matrix

This matrix is created from the information system. The Discernibility Matrix

is a symmetric |A|X|A| matrix corresponding to each information system. Each entry

Cij is defined as {f ∈ F|f(Ai) ̸= f(Aj)} if l(Ai) ̸= l(Aj), Φ otherwise. Table 3.5–Table 3.8

show the instances of Discernibility Matrices corresponding to information system

shown in Table 3.1-Table 3.4, respectively

Table 3.5 Instance of permission discernibility

Applic

ation

O1 = OPCODE-

remfloat/

2addr

O2 = OPCODE-

div-int/lit8

O3 =

JOPCODEsparse-

switch

Label

A1 1 1 0 BW

A2 0 1 0 MW

A3 1 0 1 MW

A4 0 0 1 BW

A5 0 1 1 BW

 A1 A2 A3 A4 A5

A1

A2
P1

A3 P1, P3

A4 P1, P2, P3

A5 P1, P3 P1 P1, P2

44

Table 3.6 Instance of API calls discernibility.

 A1 A2 A3 A4 A5

A1

A2
AP1, AP2

A3 AP1, AP2, AP3

A4 AP2, AP3 AP2

A5 AP1, AP2, AP3 AP2

Table 3.7 Instance of system call discernibility

 A1 A2 A3 A4 A5

A1

A2

A3 S3 S1, S3

A4 S2, S3 S1, S2, S3

A5 S1 S1, S2

Table 3.8 Instance of opcode discernibility

 A1 A2 A3 A4 A5

A1

A2
O1

A3 O2, O3

A4 O2, O3 O1

A5 O3 O1, O2

45

For each of the selected minimal permission set, API call feature set, system

command feature set, and opcode feature set, we create the Permission Discernibility

Matrix, API Call Discernibility Matrix, System Call Discernibility Matrix, and Opcode

Discernibility Matrix, respectively. Algorithm 2 depicts the whole process. The

algorithm creates a Discernibility Matrix for each minimal feature set obtained in the

previous step and further calls the rough set ranking algorithm described in the next

section.

3.2.2.3 Rough Set-Based Feature Ranking

After creating each of these Discernibility Matrices, a rough set-based feature

ranking methodology, summarized in Algorithm 3, is applied on each matrix to rank

each of the Permission, API Call, System Command, and Opcode features separately.

The algorithm takes the Discernibility Matrix as an input and initializes the weight of

each feature in the corresponding minimal feature set to zero. Then, the Discernibility

Matrix is traversed, and each entry in the Discernibility Matrix, which consists of one

or more features, receives the updated weight of the features as per Equation (2).

w(xk) = w(xk) + |min_fi|/|Cij| (2)

In the above equation, Cij is the entry in the Discernibility Matrix corresponding

to applications Ai and Aj, and the entry Cij may contain one or more features. Hence,

|Cij| represents the count of features in the entry. min_fi is the minimal feature set

corresponding to the Discernibility Matrix, and |min_fi| is the count of features in the

minimal feature set. w(xk) is the weight of kth feature in the entry Cij, which may contain

x1, x2, x3, . . . and xn as the features in the entry.

Algorithm 2 Feature Ranking

1. Input: Minimal feature space, i.e., min_fp, min_fa, min_fs, and min_fo obtained

as output of Algorithm 1.

2. Output: For each of the minimal feature space, ranked minimal feature list

Lp, La, Ls, and Lo, respectively, sorted in decreasing order as per the importance

of the features.

3. for each of the minimized feature space min_fi in min_fp, min_fa, min_fs, and

min_fo do

46

4. create Discernibilty Matrix for min_fi

5. end for

6. Let Dp, Da, Ds, and Do be Discernibility Matrix corresponding to min_fi in

min_fp, min_fa, min_fs, and min_fo, respectively.

7. for each of Discernibility Matrix Di in Dp, Da, Ds, and Do do

8. call Algorithm 3 for each Di in order to perform rough set ranking of each

of the features in Di

9. Let Lp, La, Ls, and Lo be be the sorted list of important features for each of

min_fi in min_fp, min_fa, min_fs, and min_fo, respectively

10. end for

This ranking is obtained by arranging each of these features in descending

order in terms of their importance. The Rough Set-based feature ranking embodies the

following idea [49].

1. The more times an attribute appears in the discernibility, the more important is

the attributes.

2. The shorter the entry is, the more important the attribute is in the entry.

3.2.3 Rough Set Reduct Computation Phase

This phase focuses on reducing the feature space so that, with as few features

as possible, i.e., a reduced feature space, the classification algorithms could be applied

to detect an application as benign or malicious. The reduced feature space obtained

using the underlying principles of rough set theory is called reduct in rough set theory.

The Discernibility Matrix and rough set feature ranking obtained in the previous phase

are used to attain reducts for each of the permission, API call, system command, and

opcode feature spaces. Hence, after this phase, for each feature space, i.e., permission,

API call, system command, and opcode, we get a reduced feature space, which we call

a reduct in rough set theory. Figure 3.4 depicts the current phase under discussion.

Algorithm 4 describes the whole process in pseudo-code form. The algorithm first

calculates the net weight w(netij) of each of the entry Cij in the Discernibility Matrix

Di, containing features x1, x2, x3, . . . and xn by summing their individual weights w(x1),

47

w(x2), w(x3), and w(xn), respectively. Then, all the entries Cij in the Discernibility

Matrix Di are copied in the list LDi, and then LDi is sorted as per the net weight

calculated in the previous step. Initially, Redi is assumed to be an empty set. For each

entry Cz of the sorted list LDi containing features x1, x2, x3, and xn, we check

weather the Redi contains any common feature in Cz. If no common feature exists, we

select the feature xi with maximal w(xi) in Cz; otherwise, we skip the entry Cz. The set

Redi is the reduct computed for min_fi.

Figure 3.4 Rough Set Reduct Computation Phase

Algorithm 4 Rough Set Reduct Computation

1. Input: Discernibility Matrix Di with dimensions nXn and weight w(xi) of every

feature xi in the minimal feature space min_fi in min_fp, min_fa, min_fs, and

min_fo corresponding to Di in Dp, Da, Ds and Do .

2. Output: Redi as the reduct of minimal feature space min_fi corresponding to

Di.

3. Let LDp, LDa, LDs, and LDo be the empty list corresponding to permission, API

call, system command and opcode feature space.

4. for each Di in Dp, Da, Ds, and Do do

5. Let Redi = Φ denote the empty reduct set corresponding to minimal feature

space min_fi.

6. for each i : 1 → N do

48

7. for each j : 1 → i do

8. Let Cij be the entry in Discernibility Matrix Di containing features x1,

x2, x3, . . . and xn

9. Let w(netij) be the cumulative weight of entry Cij having features as x1,

x2, x3, . . . and xn .

10. w(netij) = w(x1) + w(x2) + w(x3) + w(xn)

11. LDi = append(Cij)

12. end for

13. end for

14. Sort(LDi) based on w(net) calculated previously.

15. for each z : 1 → |LDi| do

16. Let Cz be the entry in List LDi containing features x1, x2, x3, . . . and xn .

17. if Cz ∩ Redi = Φ then

18. Select attribute xi with maximal w(xi) in Cz

19. Redi = Redi ∪ xi

20. end if

21. end for

22. end for

3.2.4 Detection Phase

For building our Android Malware detection system, we experimented with

four machine learning algorithms, i.e., the Support Vector Machine (SVM), Random

Forest, Logistic Regression, and K-nearest neighbour algorithms, to train and test the

dataset. We also performed training and testing on two deep learning models, i.e.,

Artificial neural network (ANN) and Convolution Neural Network (CNN). Figure 3.5

portrays the overall purpose of the current phase, i.e., with the help of the machine

learning models mentioned above and the different reducts, i.e., permission reduct,

API call reduct, system call reduct, and opcode reduct calculated in the previous phase;

the machine learning models are trained to build the system capable of detecting an

Android application as benign or malware.

49

Figure 3.5 Detection Phase

3.3 Results and Discussions

In the current section, we present the results of the evaluation carried out on

the proposed malware detection approach.

3.3.1 Results of Ranking Phase

Table 3.9 shows the top 10 important permissions for malware detection.

Similarly, the Table 3.10– Table 3.12 represent the top 10 important opcodes, API

calls, and system calls, respectively.

Table 3.9 Top ten important permissions.

Rank Permission Name Score

1 READ_PHONE_STATE 1.56E9

2 ACCESS_WIFI_STATE 1.33E9

3 WRITE_EXTERNAL_STORAGE 1.26E9

4 WAKE_LOCK 1.2E9

5 ACCESS_COARSE_LOCATION 1.03E9

6 ACCESS_NETWORK_STATE 1.02E9

7 ACCESS_FINE_LOCATION 1.01E9

8 GET_TASKS 9.52E8

9 RECEIVE_BOOT_COMPLETED 8.82E8

10 GET_ACCOUNTS 8.4E8

50

Table 3.10 Top ten important opcodes.

 Rank Opcode Score

 1 OPCODE − xor − int 3.09E8

 2 OPCODE − rem − float 3.07E8

 3 OPCODE − rem − float/2addr 2.98E8

 4 OPCODE − float − to − long 2.82E8

 5 OPCODE − and − long 2.78E8

 6 OPCODE − aget − short 2.7E8

 7 OPCODE − iget − byte 2.67E8

 8 OPCODE − aput − short 2.66E8

 9 OPCODE − iget − short 2.65E8

 10 OPCODE − rem − double/2addr 2.65E8

Table 3.11 Top ten important API calls

 Rank API Call Score

 1 APICALL − android.app.ActionBar 2.2E8

 2 APICALL − android.widget.PopupWindow 2.2E8

 3 APICALL − android.widget.BaseAdapter 2.17E8

 4 APICALL − android.view.ScaleGestureDetector 2.15E8

 5 APICALL − android.widget.CheckBox 2.12E8

 6 APICALL − android.widget.AbsListView 2.1E8

 7 APICALL − android.widget.ListPopupWindow 2.1E8

 8 APICALL − android.content.res.XmlResourceParser 2.1E8

 9 APICALL − android.graphics.Path 2.09E8

 10 APICALL − android.webkit.MimeTypeMap 2.09E8

51

Table 3.12 Top ten important system commands

 Rank System Command Score

 1 SYSTEMCOMMAND − top 4.27E8

 2 SYSTEMCOMMAND − id 3.75E8

 3 SYSTEMCOMMAND − start 3.7E8

 4 SYSTEMCOMMAND − service 3.58E8

 5 SYSTEMCOMMAND − gzip 3.54E8

 6 SYSTEMCOMMAND − date 3.44E8

 7 SYSTEMCOMMAND − log 3.17E8

 8 SYSTEMCOMMAND − stop 3.1E8

 9 SYSTEMCOMMAND − mv 3.06E8

 10 SYSTEMCOMMAND − input 3.02E8

3.3.2 Detection Results with Individual Features

Table 3.13 displays four different permission sets: full set of permissions from

dataset; reduced permissions based on correlation feature elimination, which can be

termed permission correlation; the permission set acquired after applying the Chi-

square test (permission chi); and lastly, the final reduced permission set acquired after

the application of rough set reduct to the permission chi set (permission reduct). All

these permission sets have been utilized for training six classifiers, which comprise

Support Vector Machines, K-Nearest Neighbors, Random Forest, Logistic Regression,

ANN, and CNN. The results show how the performance in terms of accuracy becomes

consistently better with the progression of features from the feature set of all

permissions to permission correlation, then permission chi, and finally permission

reduct. This means that reduct features are the most efficient for malware system

development.

52

Likewise, Tables Table 3.14–Table 3.16 summarize the results for the three

types of features, i.e., opcode feature, API call feature, and system command feature,

respectively. The same phenomenon is observed in these three tables as was observed

in Table 3.13, i.e., for each type of classifier, as the feature set is changed from all

feature to feature correlation then to feature chi and finally to feature reduct, the

accuracy increases, and training and testing time gets reduced drastically.

Table 3.13 Detection results based on permission.

Classifier Feature Set Used Accuracy

(%)

Precision

(%)

Recall (%) F1-Score

(%)

SVM All Permissions 78 78 79 78

Permissions

Correlation

79 78 79 78

Permissions Chi 79 79 79 79

Permissions Reduct 80 79 79 80

K-Nearest

Neighbor

All Permissions 77 77 79 78

Permission

Correlation

78 78 79 78

Permissions Chi 80 81 78 80

Permissions Reduct 82 81 82 79

Random

Forest

All Permissions 82 84 80 82

Permissions

Correlation

82 84 80 82

Permissions Chi 83 82 80 81

Permissions Reduct 83 84 80 81

ANN All Permissions 76 76 76 77

Permission

Correlation

78 78 79 78

Permissions Chi 79 79 78 79

Permissions Reduct 80 80 80 79

53

Classifier Feature Set Used Accuracy

(%)

Precision

(%)

Recall (%) F1-Score

(%)

CNN All Permissions 77 77 79 78

Permission

Correlation

78 78 79 78

Permissions Chi 79 80 79 79

Permissions Reduct 81 80 81 79

Logistic

Regression

All Permissions 79 79 77 78

Permissions

Correlation

79 79 77 78

Permissions Chi 79 80 78 79

Permissions Reduct 80 80 77 79

Table 3.14 Detection results based on opcode

Classifier Feature Set Used Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

SVM All Opcodes 80 88 82 82

Opcodes Correlation 80 75 87 82

Opcodes Chi 81 75 87 81

Opcodes Reduct 81 79 89 81

K-Nearest

Neighbor

All Opcodes 84.50 86 83 84

Opcodes Correlation 85 86 83 84

Opcodes Chi 85 85 83 84

Opcodes Reduct 85 85 83 84

Random

Forest

All Opcodes 86 88 85 87

Opcodes Correlation 86.80 88 86 87

Opcode Chi 87 88 86 87

Opcode Reduct 87 88 86 87

ANN All Opcodes 78 77 86 81

54

Table 3.15 Detection results based on API calls

Classif

ier

Feature Set Used Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

SVM All API calls 84 83 88 85

API calls Correlation 85 83 88 85

API calls Chi 85 83 88 86

API calls Reduct 86 85 89 83

K-

Nearest

Neighb

or

All API calls 85 86 85 85

API Calls Correlation 85.70 87 85 86

API Calls Chi 86 87 85 86

API Calls Reduct 86 87 84 86

Classifier Feature Set Used Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

 ANN Opcodes Correlation 79 77 85 82

Opcodes Chi 80 73 82 80

Opcodes Reduct 79 73 83 78

CNN All Opcodes 79 75 83 82

Opcodes Correlation 80 74 85 80

Opcodes Chi 80 74 84 78

Opcodes Reduct 79 74 84 78

Logistic

Regression

All Opcodes 79 76 86 81

OpcodesCorrelation 80 76 86 81

Opcodes Chi 80 75 84 79

Opcodes Reduct 80 74 85 79

55

Classif

ier

Feature Set Used Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

Rando

m

Forest

All API Calls 88 90 88 90

API Calls Correlation 89 88 90 88

API Calls Chi 89 90 88 89

API Calls Reduct 90 90 88 89

ANN All API Calls 83 82 86 83

API Calls Correlation 83 82 86 83

API Calls Chi 83 82 86 83

API Calls Reduct 84 81 86 83

CNN All API Calls 84 82 87 84

API Calls Correlation 84 82 87 84

API Calls Chi 84 82 87 84

API Calls Reduct 85 82 87 84

Logisti

c

Regres

sion

All API Calls 85 83 88 85

API Calls Correlation 85 83 88 85

API Calls Chi 85 83 88 85

API Calls Reduct 86 83 88 85

Table 3.16 Detection results based on system commands.

Classifier Feature Set Used Accuracy (%) Precision

(%)

Recall

(%)

F1-

Score

(%)

SVM All Sys cmd 62 59 86 70

Sys cmd Correlation 62.50 59 86 70

Sys cmd Chi 62.80 59 86 70

Sys cmd Reduct 63 59 86 70

56

Classifier Feature Set Used Accuracy (%) Precision

(%)

Recall

(%)

F1-

Score

(%)

K-

Nearest

Neighbor

All Sys cmd 79 77 82 80

Sys cmd Correlation 79 77 82 80

Sys cmd Chi 79 77 83 80

Sys cmd Reduct 79 77 83 80

Random

Forest

All Sys cmd 82 81 85 83

Sys cmd Correlation 82 81 86 83

Sys cmd Chi 83 82 86 83

Sys cmd Reduct 83 82 86 83

ANN

All Sys cmd 63 59 80 68

Sys cmd Correlation 63 60 80 68

Sys cmd Chi 64 60 81 70

Sys cmd Reduct 64 60 81 71

CNN

All Sys cmd 64 60 81 70

Sys Cmd

Correlation

65 60 81 70

Sys cmd Chi 65 62 82 70

Sys cmd Reduct 65 61 82 71

Logistic

Regression

All Sys cmd 65 61 82 70

Sys cmd Correlation 65.13 61 82 70

Sys cmd Chi 65.98 62 83 71

Sys cmd Reduct 66 62 83 71

3.3.3 Detection Results with Combinations of Two Features

Table 3.17 shows that Random Forest emerges as the best algorithm in terms

of accuracy, precision, recall, and F1-score for permissions and opcodes reduct as the

feature set.

57

Table 3.17 Detection results based on permissions and opcodes.

Table 3.18 shows results of permission and API calls reduct as feature set used

by SVM, K-nearest neighbour, Random Forest, and Logistic regression. Random

Forest emerges as the best, with an accuracy of 92%.

Table 3.19 shows that Random Forest with an accuracy of 88% is proved to be

the best detection model among all the other three detection models using permissions

and system command reduct as the feature set.

Table 3.20 shows that the detection model with classifier as Random Forest

and feature set as a combination of opcodes reduct and API calls reduct outperforms

the other three detection models with an accuracy of 93%.

Table 3.21 shows the detection results of the models that used opcode reduct

and system command reduct as the feature set. The Random Forest classifier

performed best with an accuracy of 90%.

Table 3.18 Detection results based on permissions and API calls.

 Classifier Feature Set

Used

Accuracy

(%)

Precision

(%)

Recall (%) F1-Score

(%)

 SVM Permission + API

calls Reduct

87 87 85 87

Classifier Feature Set Used Accuracy

(%)

Precision

(%)

Recall (%) F1-Score

(%)

SVM Permission +

Opcode Reduct

85 86 83 84

K-Nearest

Neighbor

Permission +

Opcode Reduct

87 88 86 86

Random

Forest

Permission +

Opcode Reduct

90 92 88 90

ANN Permission +

Opcode Reduct

82 83 82 82

CNN Permission +

Opcode Reduct

83 84 82 83

Logistic

Regression

Permission +

Opcode Reduct

84 85 83 84

58

 Classifier Feature Set

Used
Accuracy

(%)
Precision

(%)
Recall (%) F1-Score

(%)

 K-Nearest

Neighbor

 Permission + API

calls Reduct

88 88 87 88

 Random Forest Permission + API

calls Reduct

92 92 90 91

 ANN Permission + API

calls Reduct

85 84 84 84

 CNN Permission + API

calls Reduct

86 85 85 85

 Logistic

Regression

 Permission + API

calls Reduct

87 86 86 86

Table 3.19 Detection results based on permissions and system commands.

Classifier Feature Set

Used

Accuracy (%) Precision (%) Recall (%) F1- Score

(%)

SVM Permission +

Sys Cmd

Reduct

83 84 81 83

K-Nearest

Neighbor

Permission +

Sys Cmd

Reduct

84 84 84 84

Random

Forest

Permission +

Sys Cmd

Reduct

88 91 85 88

ANN Permissions+

Sys Cmd

Reduct

80 82 79 81

CNN Permissions +

Sys Cmd

Reduct

81 83 80 82

Logistic

Regression

Permission +

Sys Cmd

Reduct

82 84 81 83

59

Table 3.20 Detection results based on opcodes and API calls.

Table 3.21 Detection results based on opcodes and system commands

Classifier Feature Set

Used

Accuracy (%) Precision (%) Recall (%) F1-Score

(%)

SVM Opcode + Sys

Cmd Reduct

84 85 82 84

K-Nearest

Neighbor

Opcode + Sys

Cmd Reduct

85 87 85 86

Random

Forest

Opcode + Sys

Cmd Reduct

90 90 88 89

ANN Opcode + Sys

Cmd Reduct

81 83 84 83

CNN Opcode + Sys

Cmd Reduct

82 84 85 84

Logistic

Regression

Opcode + Sys

Cmd Reduct

83 85 86 85

Classifier Feature Set

Used

Accuracy

(%)

Precision

(%)

 Recall(%) F1-Score (%)

SVM Opcode + API

call Reduct

88 88 86 88

K-Nearest

Neighbor

Opcode + API

call Reduct

90 89 88 89

Random

Forest

Opcode + API

call Reduct

93 93 92 93

ANN Opcode + API

call Reduct

86 85 85 86

CNN Opcode + API

call Reduct

87 86 86 87

Logistic

Regression

Opcode + API

call Reduct

88 87 87 88

60

Table 3.22 shows that the detection model formed with the help of Random

Forest as the classifier and API calls reduct and system command reduct as the feature

set attains an accuracy of 91%, which is best among all the models in the table.

Table 3.22 Detection results based on API calls and system commands

3.3.4 Detection Results with Combinations of Three Features

Table 3.23 shows that when permission reduct, opcode reduct, and system

command reduct are combined to form a single feature set, that feature set, when used

with Random Forest, gives the highest accuracy of 95%.

Table 3.24 shows that when permission reduct, opcode reduct, and system

command reduct are combined to form a single feature set, that feature set, when used

with Random Forest, gives the highest accuracy of 93%.

Classifier Feature Set Used Accuracy (%)

Precision (%) Recall

(%)

F1-Score

(%)

SVM API Call + Sys

Cmd Reduct

85 86 84 86

K-Nearest

Neighbor

API Call + Sys

Cmd Reduct

86 88 86 87

Random

Forest

API Call + Sys

Cmd Reduct

91 91 88 90

ANN API Call + Sys

Cmd Reduct

82 84 86 83

CNN API Call + Sys

Cmd Reduct

83 85 87 84

Logistic

Regression

API Call + Sys

Cmd Reduct

84 86 88 85

61

Table 3.25 shows that when permission reduct, opcode reduct, and system

command reduct are combined to form a single feature set, that feature set, when used

with Random Forest, gives the highest accuracy of 93%.

Table 3.23 Detection results based on permissions, API calls, and opcodes.

Table 3.24 Detection results based on permissions, API calls, and system commands

Classifier Feature Set Used Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

SVM permissions + API Call

+ opcode + Reduct

90 90 88 89

K-Nearest

Neighbor

permissions + API Call

+ opcode + Reduct

92 91 90 91

Random

Forest

permissions + API Call

+ opcode + Reduct

95 94 93 95

ANN permissions + API Call

+ opcode + Reduct

88 89 89 88

CNN permissions + API Call

+ opcode + Reduct

90 91 90 91

Logistic

Regression

permissions + API Call

+ opcode + Reduct

90 89 89 90

Classifier Feature Set Used Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

SVM permissions + API Call

+ sys Cmd + Reduct

86 87 85 87

K-Nearest

Neighbor

permissions + API Call

+ sys Cmd + Reduct

87 89 87 88

Random

Forest

permissions + API Call

+ sys Cmd + Reduct

93 92 90 92

62

Table 3.25 Detection results based on permissions, opcodes, and system

commands.

Table 3.26 shows combining the opcodes, API calls, and system command

reducts and applying all four classifiers the detection model with the Random Forest

as the classifier is best among all, with an accuracy of 94%.

Classifier Feature Set Used Accuracy

(%)

Precision

(%)
Recall

(%)
F1-Score

(%)

ANN permissions + API Call

+ sys Cmd + Reduct

84 85 84 84

CNN permissions + API Call

+ sys Cmd + Reduct

85 87 87 85

Logistic

Regression

permissions + API Call

+ sys Cmd + Reduct

85 87 88 86

Classifier Feature Set Used Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

SVM permissions + Opcode

+ sys Cmd + Reduct

86 87 83 85

K-Nearest

Neighbor

permissions + Opcode

+ sys Cmd + Reduct

87 87 86 87

Random

Forest

permissions + Opcode

+ sys Cmd + Reduct

93 92 89 91

ANN permissions + Opcode

+ sys Cmd + Reduct

84 86 86 86

CNN permissions + Opcode

+ sys Cmd + Reduct

84 86 86 86

Logistic

Regression

permissions + Opcode

+ sys Cmd + Reduct

84 86 86 86

63

Table 3.26 Detection results based on opcodes, API calls, and system commands

3.3.5 Detection Results with Combinations of all Four Features

Table 3.27 shows that all the feature set reducts, i.e., permissions, opcodes,

API calls, and system commands reducts, used together with Random Forest emerge

as the best classifier, with an accuracy of 97%.

Table 3.27 Detection results based on permissions, opcodes, API calls, and

system commands.

Classifier Feature Set Used Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

SVM Opcode + API calls +

sys Cmd + Reduct

90 91 88 90

K-Nearest

Neighbor

Opcode + API calls +

sys Cmd + Reduct

92 90 90 91

Random

Forest

Opcode + API calls +

sys Cmd + Reduct

94 94 93 94

ANN Opcode + API calls +

sys Cmd + Reduct

87 87 86 87

CNN Opcode + API calls +

sys Cmd + Reduct

88 88 87 88

Logistic

Regression

Opcode + API calls +

sys Cmd + Reduct

89 88 88 89

Classifier Feature Set Used Accuracy

(%)

Precision

(%)

Recall (%) F1-Score

(%)

SVM Permissions + Opcode + API

Call + Sys Cmd Reduct

92 91 90 91

K-Nearest

Neighbor

Permissions + Opcode + API

Call + Sys Cmd Reduct

93 93 92 92

Random

Forest

Permissions + Opcode + API

Call + Sys Cmd Reduct

97 95 95 95

64

3.4 Discussion and Findings

We describe in this subsection the rationale behind the detections generated

using our proposed model. The highest accuracy attained by the model is 97%, which

occurs when all four categories of feature type are used. What we observed was that

the four types of features actually improve detection considerably if combined

together. This is because each of these sets of features captures a different aspect of

the malicious application behavior. Since the model will be incorporating various

feature types, there will always be more significant and better understanding of the

traits that characterize this application. This means that combinations of several feature

types will increase the entire correctness in the detection process.

The second thing that was discovered is that API calls are more accurate than

the rest of the single features. The malware developers might obfuscate their code in

an attempt to avoid detection, but it is a lot harder for them to hide the usage of certain

API calls. Detection of those calls can disclose some concealed malware. Therefore, it

seems that API call-based analysis is more accurate than the others.

Thirdly, the Random Forest performed best compared to other classifiers. This

is because Random Forest makes predictions using the ensemble of decision trees. One

of the ways it reduces variance is through the minimization of the risk of overfitting

that may occur due to an individual decision tree. The aggregation of the predictions

that result from several trees gives a consistent improvement in the overall

performance of the model.

Last but not least, we have six different possible combinations of two feature

sets consisting of permission, opcodes, API calls, or system commands. We tried all

these combinations and found the pair of opcodes and API calls to work best for us,

Classifier Feature Set Used Accuracy

(%)
Precision

(%)
Recall (%) F1-Score

(%)

ANN Permissions + Opcode + API

Call + Sys Cmd Reduct

89 88 87 89

CNN Permissions + Opcode + API

Call + Sys Cmd Reduct

90 89 88 89

65

resulting in the best accuracy. Perhaps it might be because of the reason that an opcode

is some low-level instruction which a processor executes. The pattern of such

instructions within the code of an application may represent some malicious behavior.

Meanwhile, analyzing the API calls of an app will tell what that app does, as some API

calls are indicators of malicious activity. The integration of opcodes and API calls

allows for a better view into the behavior of an application-in other words, its code

level, which could prove useful for identifying sophisticated malware capable of using

obfuscation techniques. In contrast, permissions give you a more general view based

on declared capability that may not be specific to the same level.

We combined all four features-permissions, opcodes, API calls, and system

commands-together in sets of three, giving us four combinations. We tested out the

combinations and found that the combination of permissions, opcodes, and API calls

got us the best result. This might have been because of permissions providing

important information about an app's declared capabilities. Putting together an opcode

analysis with API call details really enhances our ability to understand not only how

the app's intended usage but also how it may be misused. Specific combinations of

permissions can signal potential issues even before analyzing what code is actually

being executed in the application. Opcodes and API calls provide a deep, low-level

insight into what the application is actually doing, but it's an additional layer of

permissions that helps give it a more wide-ranging view which throws even more light

on what an application might be trying to achieve and some relevant risks.

3.5 Comparison with Other Related Work

We conducted a thorough comparison between the detection outcomes

achieved by our suggested approach and those of other studies found in the existing

literature regarding the detection of Android malware. We implemented several other

state-of-the-art techniques on our data sets and to facilitate this comparison; we present

a concise summary of the findings in Table 3.28, which encompasses the results

obtained by various works that have utilized certain or all components of the manifest

file for detection purposes. By examining these results, it becomes evident that our

proposed methodology surpasses all of the aforementioned related works in terms of

66

detection accuracy, signifying its superior performance in comparison to existing

approaches.

Table 3.28 Comparison of proposed model with related works.

Detection

Technique

Feature

set Used

Detection

Accuracy

No. of

Applications

Feature

Ranking

Method

Feature

Selection

Method

SIGPID

[23]

Permissio

ns

92 % 5494

malicious &

310,926

benign apps

Negative

Rate &

support

Sequential

Forward

Selection(SF

S) &

Principal

Component

Analysis

(PCA)

PermPair

[50]

Permissio

ns

94.60 % 5993 benign

& 7533

malicious

applications

Ranked

Permissio

n-pairs

Not used

Proposed

Approach

Permissio

ns ,

Opcode,

API Calls

and

System

Calls

97% 15,000

benign &

15,000

malicious

Rough Set

based

Ranking

Chi-Square

Test, Pearson

Correlation

&

Rough Set

Reduct

67

3.6 Limitations

The work performed in this research paper is based on static analysis. Static

Android malware analysis has shortcomings, such as not capturing the run time

behavior of applications like data leakage and network communications. Due to

obfuscation techniques employed by malware writers, static analysis may not be able

to capture the true intention of the code. With these limitations in the picture, static

analysis may miss the malicious behaviour of Android applications, which may show

its actual hostile conduct at run time.

Additionally, the current proposed model is an off-device model, and hence it

can not be installed on smartphones for real-time detection.

3.7 Summary

We presented in this paper a novel Android malware detection model based on

rough set theory. We utilized a hybrid of static features that are of four categories:

permissions, opcodes, API calls, and system commands. In the first place, we

preprocessed the data and eliminated features that had a high correlation and those not

correlated at all with the class variable. The significance of each feature was

determined using the ranking score assigned to it with a concept from the rough set

theory, which is called the Discernibility Matrix. Further, an algorithm was then

utilized to compute the rough set reducts. Here, the number of features in each category

were reduced based on the ranking scores. After feature reduction, machine learning

algorithms were also applied to evaluate the detection accuracy using the refined

feature sets. Conclusion Results: Comparison with other advanced detection models

found the proposed model to be superior to many state-of-the-art techniques.

The next chapter is dedicated in pairing permissions which is a static feature

with the dynamic feature such as system calls. The pairing of static feature with

dynamic feature is done to form a hybrid malware detection technique. The hybrid

techniques contain advantages of both static and dynamic in order to form more robust

malware detection model.

68

Chapter Four:
COVALENT BOND BASED ANDROID MALWARE

DETECTION USING PERMISSION AND SYSTEM

CALL PAIRS

In this chapter we propose a technique for Android malware detection using

rough set theory. In section 4.1, we highlight the motivation behind the work done and

briefly explained the overview of the proposed technique. In section 4.2 we explain in

detail the methodology of the proposed technique. In section 4.3 the details of results

are discussed and presented. The section 4.4 presents results and discussions. In

section 4.5 the proposed approach is compared with other related works. The section

4.6 highlights the limitation of the approach. The section 4.7 summarizes the chapter

with future directions.

4.1 Introduction

The Android operating system has maintained a dominant position in the

smartphone industry for the past decade. Within the Android API framework,

functions grant access to sensitive system resources. Unfortunately, this feature has

allowed cyber attackers to develop and disseminate harmful applications through

alternative app stores or social media advertisements. Furthermore, an attacker may

introduce malicious components in the installed Android application. These

malevolent applications empower attackers to perform various operations, including

information theft, SMS transmission, and remote device control. Consequently,

safeguarding smartphones from these malicious applications is imperative [11, 12, 13].

Malware detection methods currently fall into three primary categories: static,

dynamic, and hybrid analysis. Static analysis is capable of discerning malicious

behavior by examining an application's source code without executing it [113]. On the

other hand, dynamic analysis identifies malicious behavior by analyzing the runtime

information generated during the application's execution, such as system calls [114] .

The strength of static analysis lies in its ability to pinpoint malicious components

directly from the source code, resulting in high code coverage [115]. Dynamic analysis

69

excels in uncovering exploits within the runtime environment [116]. Therefore, by

merging the strengths of static and dynamic analysis, a hybrid analysis approach can

be formulated to enhance malware detection accuracy [117, 118].

Several static works have been proposed in the literature for Android malware

detection. For instance, in [35], Talha et.al extracted application permissions. They

then assign a score to each permission, determined by the ratio of malware instances

containing that specific permission to the total number of malware instances. In [50],

the study utilized pairs of permissions extracted from the manifest file, resulting in an

overall accuracy of 95.44%. IPDroid, as discussed in [49], incorporated both

permissions and intents from the manifest file in their analysis. They achieved a

notable accuracy of 94.73% by employing a Random Forest classifier.

The TaintDroid model [119] employed dynamic taint analysis to monitor the

movement of privacy-sensitive data within third-party applications. Yang et.al. [71]

expanded upon the TaintDroid model to not only identify data leaks from applications

but also ascertain whether these leaks are a result of user intention or not. In [85], the

authors introduced a proficient and automated approach for detecting malware by

leveraging the textual semantics of network traffic. Specifically, they treated each

HTTP flow produced by mobile applications as a textual document, allowing them to

apply natural language processing techniques to extract features at the text level.

Some of the works have combined static and dynamic features to propose a

hybrid Android malware detector. MADAM [95] is a host-based malware detection

system designed for Android devices. It conducts concurrent analysis and correlation

of attributes across four tiers: kernel, application, user, and package. This

comprehensive approach aims to identify and thwart malicious activities effectively.

Monet [97] consists of a module on the user side, an application responsible for

analyzing malicious activity and signatures. Conversely, the module installed on the

server side is responsible for detecting malicious applications based on analysis on the

client side. In [98] authors developed AppAudit which employs a combination of static

and dynamic analysis to deliver highly effective real-time app auditing. It introduces

an innovative dynamic analysis approach that leverages this combination to reduce

false positives generated by an efficient yet conservative static analysis.

70

4.1.1 Motivation

Identifying dangerous combinations of permissions and system calls is

instrumental in spotting malicious behavior. Hence, this study endeavors to scrutinize

permissions and system calls in pairs and introduces a novel methodology to identify

such pairs that can differentiate between benign and malicious samples. To the best of

our knowledge, we are the first to use permissions and system call pairs to detect

Android malware. Pairing permissions and system calls has several key benefits.

Firstly, permissions are static features, and system calls are dynamic features; pairing

both of them will combine the advantages of static analysis and dynamic analysis to

form a hybrid analysis technique. Second, this combination allows for a more detailed

examination of an application's behavior. Permissions provide a high-level overview

of what resources an app may access, while system calls offer a finer-grained view of

actual interactions with the system. By correlating permissions with system calls, we

can better understand how an application uses the permissions it requests. This context

is crucial in distinguishing legitimate behavior from potentially malicious actions. It

enables the detection of anomalies or suspicious activities. For example, if an app with

camera access permission unexpectedly starts making network-related system calls, it

may raise a red flag. The app requests access to the camera

(Android.permission.CAMERA). Additionally, it asks permission to access the

internet (Android.permission.INTERNET). Based on permissions alone, the app

seems legitimate. Camera apps naturally require camera access and internet access

could be justified for features like cloud storage of images. During runtime, if the app

makes system calls such as open(), read(), write(), and connect(). This observation may

establish suspicious behavior as the app is accessing files unrelated to image storage

and making network connections to unusual domains. Hence, this study endeavors to

scrutinize permissions and system calls in pairs and introduces a novel methodology

to identify such pairs that can differentiate between benign and malicious samples.

4.1.2 Contributions

We present a covalent bond-based Android malware detection model using

permissions and system call pair. We use the analogy of covalent bonds between two

atoms in chemistry to form covalent bonds between every permission and system call.

71

We also calculate bond strengths between permission and system call pairs to denote

the strength of the bond they create between them. The estimated bond strength helps

detect an Android application as malicious or benign. Our detection results

demonstrate an overall accuracy of 97.5%, better than many state-of-the-art detection

techniques proposed in the literature. The main contributions of the paper are

summarized below.

✓ We build the permission and system call covalent bond pairs to identify and

analyze the impact of these pairs.

✓ We proposed a novel approach to calculate the Covalent bond strength score

for the permissions and system calls bond pair. Two scores, i.e., malicious and

benign, are computed for each bond pair.

✓ We designed a technique for identifying Android applications as malicious or

benign based on the malicious and benign scores of permission and system call

pairs.

✓ We conducted a comparative analysis between our proposed model and other

state-of-the-art detection techniques. Our findings demonstrate that the

proposed model surpasses similar state-of-the-art models in terms of

performance.

4.2 Methodology

In this section, we present our novel Covalent Bond Pair-based model for

detecting malicious Android applications. The proposed model is depicted in Figure

4.1.

4.2.1 Data set Description

KronoDroid [120], a meticulously structured Android dataset, holds the

distinction of being the largest in its category. It is distinguished by its amalgamation

of static and dynamic features and the notable inclusion of timestamps. This dataset

meticulously accounts for the unique characteristics of dynamic data sources,

encompassing samples from over 209 distinct Android malware families. Its creation

involved the fusion of diverse sources of benign and malware data, resulting in a

comprehensive collection spanning a significant period. The dataset comprises 41,382

72

instances of malware belonging to 240 distinct malware families, along with 36,755

benign applications.

The dataset predominantly comprises permissions as static features,

represented as binary indicators of whether the app requested the standard Android

permissions (1) or not (0). There are a total of 166 distinct permissions in the dataset.

In contrast, the dynamic feature set mainly consists of system calls, represented by the

absolute frequency of each system call issued by the app at runtime. The system call

set comprises 288 features. Hence, the total number of features under consideration

amounts to 454.

Figure 4.1 Proposed Covalent Bond Pair Detection Model

4.2.2 Feature Space Transformation

As previously stated, the KronoDroid dataset is well-organized and accessible

in CSV file format. These files contain information on both malware and benign

applications. The feature vectors within these CSV files are represented as

combinations of 0’s and 1’s. A 0 in the feature vector signifies the absence of a

particular feature in an application, while a 1 indicates its presence. Table 4.1 and

Table 4.2 provide a visual representation of the feature spaces for benign and malicious

applications respectively.

73

Table 4.1 Instance of Benign CSV

Benign

CSV

P1 P2 P3 Pn S1 S2 S3 Sm

A1B 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1

A2B 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1

. 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1

. 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 0

AxB 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0

Within both the instances of benign and malicious CSV files as represented in

Table 4.1 and Table 4.2 respectively, the labels P1, P2, P3, ..., and Pn represent the n

permissions, while S1, S2, S3, ..., and Sm denote the m system calls. In our specific

dataset, n is set at 166 and m at 288. The benign applications are denoted as A1B, A2B,

..., and AxB, where x represents the total number of benign applications. Similarly, the

malicious applications are labeled A1M, A2M, ..., and AyM, with y indicating the total

number of malicious applications.

Table 4.2 Instance of Malicious CSV

Malicious

CSV

P1 P2 P3 Pn S1 S2 S3 Sm

A1M 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1

A2M 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0

. 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1

. 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1

AyM 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0

4.2.3 Covalent Bond Pair Formation Phase

The concept of feature pair covalent bond formation is based on the concepts

of the covalent bond theory of chemistry [36]. A covalent bond arises from the mutual

sharing of electrons between the involved atoms. This pair of electrons engaged in this

form of bonding is referred to as a shared pair or bonding pair. Additionally known as

74

molecular bonds, covalent bonds facilitate the attainment of outer shell stability,

resembling the configuration of noble gases, by enabling the sharing of these bonding

pairs. Covalent bonds are normally categorized into three types: single covalent bonds,

double covalent bonds, and triple covalent bonds. We will restrict our proposed

methodology to single covalent bonds and double covalent bonds only.

A single bond is established through the sharing of only one pair of electrons

between the two involved atoms, symbolized by a single dash (-). Despite having lower

density and strength than double and triple bonds, this type of covalent bond is the

most stable.

A double bond is created when two pairs of electrons are shared between the

participating atoms, denoted by two dashes (=). Double covalent bonds exhibit

significantly greater strength than single bonds, although comparatively less stable.

In the case of our proposed methodology, we calculated single covalent bond

strengths and double covalent bond strengths between two arbitrary features 𝑓𝑖 and 𝑓𝑗,

and formed feature pair 𝑓𝑖𝑗. We separately calculated these bond strengths from two

perspectives: w.r.t benign applications and w.r.t malicious applications. Hence, the

concept of covalent bond strengths helps to calculate benign and malicious feature pair

scores between every possible feature pair in the dataset. This notion of covalent bond

strengths gives us a perspective of separately viewing any arbitrary feature pair

regarding the role played for benign and malicious applications. Algorithm 1 depicts

the whole phase of Feature Pair Covalent Bond Formation.

Algorithm 1: Feature Pair Covalent Bond Formation

1. Input: benign feature matrix 𝑏𝑒𝑛[𝐴𝑥𝐵][𝑓𝑛] where 𝑥 is the number of benign

applications and 𝑛 is the number of features, malicious feature matrix

𝑚𝑎𝑙[𝐴𝑦𝐵][𝑓𝑛] where 𝑦 is the number of malicious applications and 𝑛 is the

number of features.

2. Output: benign feature pair matrix having double covalent bond strengths

𝑏𝑒𝑛⇋[𝑓𝑛][𝑓𝑛] and malicious feature pair matrix having double covalent bond

strengths 𝑚𝑎𝑙⇋[𝑓𝑛][𝑓𝑛].

75

3. for each 𝒊: 𝟏 → 𝒏

4. for each 𝒋: 𝒊 + 𝟏 → 𝒏

5. 𝑛(𝑓𝑖𝑗) = 0

6. 𝑛(𝑓𝑖) = 0

7. 𝑛(𝑓𝑗) = 0

8. for each 𝒌: 𝟏 → 𝒙

9. If (𝑏𝑒𝑛[𝐴𝑘𝐵][𝑓𝑖] == 1 &&𝑏𝑒𝑛[𝐴𝑘𝐵][𝑓𝑗] == 1)

10. 𝑛(𝑓𝑖𝑗) = 𝑛(𝑓𝑖𝑗) + 1

11. end if

12. If (𝑏𝑒𝑛[𝐴𝑘𝐵][𝑓𝑖] == 1)

13. 𝑛(𝑓𝑖) = 𝑛(𝑓𝑖) + 1

14. end if

15. If (𝑏𝑒𝑛[𝐴𝑘𝐵][𝑓𝑗] == 1)

16. 𝑛(𝑓𝑗) = 𝑛(𝑓𝑗) + 1

17. end if

18. end for

19. 𝑏𝑒𝑛⇀[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑗)

20. 𝑏𝑒𝑛↽[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑖)

21. end for

22. end for

23. for each 𝒊: 𝟏 → 𝒏

24. for each 𝒋: 𝒊 + 𝟏 → 𝒏

25. 𝑛(𝑓𝑖𝑗) = 0

26. 𝑛(𝑓𝑖) = 0

27. 𝑛(𝑓𝑗) = 0

28. for each 𝒌: 𝟏 → 𝒚

29. If (𝑚𝑎𝑙[𝐴𝑘𝐵][𝑓𝑖] == 1 &&𝑚𝑎𝑙[𝐴𝑘𝐵][𝑓𝑗] == 1)

30. 𝑛(𝑓𝑖𝑗) = 𝑛(𝑓𝑖𝑗) + 1

76

31. end if

32. If (𝑚𝑎𝑙[𝐴𝑘𝐵][𝑓𝑖] == 1)

33. 𝑛(𝑓𝑖) = 𝑛(𝑓𝑖) + 1

34. end if

35. If (𝑚𝑎𝑙[𝐴𝑘𝐵][𝑓𝑗] == 1)

36. 𝑛(𝑓𝑗) = 𝑛(𝑓𝑗) + 1

37. end if

38. end for

39. 𝑚𝑎𝑙⇀[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑗)

40. 𝑚𝑎𝑙↽[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑖)

41. end for

42. end for

43. for each 𝒊: 𝟏 → 𝒏

44. for each 𝒋: 𝒊 + 𝟏 → 𝒏

45. 𝑏𝑒𝑛⇋[𝑓𝑖][𝑓𝑗] = (𝑏𝑒𝑛⇀[𝑓𝑖][𝑓𝑗] + 𝑏𝑒𝑛↽[𝑓𝑖][𝑓𝑗])/2

46. 𝑚𝑎𝑙⇋[𝑓𝑖][𝑓𝑗] = (𝑚𝑎𝑙⇀[𝑓𝑖][𝑓𝑗] + 𝑚𝑎𝑙↽[𝑓𝑖][𝑓𝑗])/2

47. end for

48. end for

The data set is assumed to have benign and malicious feature matrices in which

each of the application feature vectors in the form of 0’s and 1’s is represented,

respectively. Then, the feature vs. the feature matrix is calculated from these feature

matrices, holding single covalent bond strengths. If 𝑓𝑖 and 𝑓𝑗, are two arbitrary

features, then we calculate two single covalent bond strengths for the feature pair 𝑓𝑖𝑗,

one w.r.t 𝑓𝑖 and other w.r.t 𝑓𝑗,. Calculating single bond strength is done from benign

and malicious perspectives. The single covalent bond strength of feature vs. feature

matrices is combined to form new feature vs. feature matrices holding double covalent

bond strengths for both benign and malicious perspectives.

77

Let us suppose an instance of benign and malicious information systems, as

shown in Table 4.3 and Table 4.4 P1, P2, and P3 denote permissions as features in both

instances. Similarly, S1, S2, and S3 denote system calls as features. A1B, A2B, A3B, A4B,

and A5B denote the benign applications in the supposed instance of benign information

systems. Similarly, A1M, A2M, A3M, A4M, and A5M denote the malicious applications in

the supposed instance of a malicious information system.

After assuming the benign and malicious instances of the information systems,

now we show how to calculate the single bond strengths of every feature pair. As

discussed earlier, single bond strengths of two arbitrary features are calculated from

two perspectives, i.e., benign and malicious. For each perspective, the single bond

strengths are calculated again from two aspects, i.e., w.r.t 𝑓𝑖 and w.r.t 𝑓𝑗. The formulas

for this are evident from Eq. 1, 2, 3, and 4.

Table 4.3 Supposed Instance of Benign Information Systems

Benign P1 P2 P3 S1 S2 S3

A1B 0 1 1 1 0 0

A2B 0 0 1 1 1 0

A3B 1 0 1 0 1 1

A4B 0 0 1 0 1 0

A5B 1 0 1 0 1 0

Table 4.4 Supposed Instance of Malicious Information Systems

Malicious P1 P2 P3 S1 S2 S3

A1M 1 0 0 1 1 1

A2M 1 1 0 1 0 1

A3M 1 1 0 0 1 1

A4M 0 1 0 0 1 0

A5M 0 0 1 1 0 0

78

Eq. 1 denotes the single benign bond strength of the feature pair 𝑓𝑖𝑗 w.r.t feature

𝑓𝑗. As discussed earlier, the single bond is established by sharing only one pair of

electrons between the two involved atoms, symbolized by a single dash (-). The same

phenomenon is established in our concept represented by equation 1 as

𝑏𝑒𝑛⇀[𝑓𝑖][𝑓𝑗]. Here, the (⇀) represents a single covalent bond w.r.t. to the feature at

the right side of the arrow, simulating the sharing of only one electron pair. It gives us

the benign score of the single covalent bond between 𝑓𝑖 and 𝑓𝑗 w.r.t. 𝑓𝑗, where 𝑛(𝑓𝑖𝑗)

is the number of applications for which both features were present simultaneously in

the benign feature matrix. In addition, 𝑛(𝑓𝑗) is defined as the number of applications

for which the feature 𝑓𝑗 is present. The value for equation 1 will be lying in the set [0,

1]. A value of 1 indicates a strong single covalent bond while a value of 0 indicates a

weak bond. The ratio of 𝑛(𝑓𝑖𝑗) w.r.t 𝑛(𝑓𝑗) denotes the the probability that the

association between two features 𝑓𝑖 and 𝑓𝑗 in the is strong or weak w.r.t to the feature

𝑓𝑗 i.e., higher the ratio greater the association.

𝑏𝑒𝑛⇀[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑗) (1)

𝑏𝑒𝑛↽[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑖) (2)

𝑚𝑎𝑙⇀[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑗) (3)

𝑚𝑎𝑙↽[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑖) (4)

Eq. 2 denotes the single benign bond strength of the feature pair 𝑓𝑖𝑗 w.r.t feature

𝑓𝑖. Here (↽) represents a single covalent bond w.r.t. to the feature at the left side of the

arrow, simulating the sharing of only one electron pair. It gives us the benign score of

the single covalent bond between 𝑓𝑖 and 𝑓𝑗 w.r.t. 𝑓𝑖, where 𝑛(𝑓𝑖𝑗) is the number of

applications for which both features were present simultaneously in the benign feature

matrix. In addition, 𝑛(𝑓𝑖) is defined as the number of applications for which the feature

𝑓𝑖 is present. The value for equation 2 will be lying in the set [0, 1]. A value of 1

indicates a strong single covalent bond while a value of 0 indicates a weak bond.

79

Similarly, with the help of equations 3 and 4, we can calculate 𝑚𝑎𝑙⇀[𝑓𝑖][𝑓𝑗]

and 𝑚𝑎𝑙↽[𝑓𝑖][𝑓𝑗] where the former is the single malicious bond strength of the feature

pair 𝑓𝑖𝑗 w.r.t feature 𝑓𝑗 while later is the single malicious bond strength of the feature

pair 𝑓𝑖𝑗 w.r.t feature 𝑓𝑖. They are both calculated from the malicious feature pair matrix.

The value for equation 5 and 6 will be lying in the set [0, 1]. A value of 1 indicates a

strong double covalent bond while a value of 0 indicates a weak bond. Since the single

covalent bonds are calculated from two perspectives i.e., w.r.t 𝑓𝑖 and 𝑓𝑗 separately,

taking their average will give the strength of association between the two features w.r.t

both the perspectives. Higher the average value greater the association between both

the features w.r.t both the perspectives.

𝑏𝑒𝑛⇋[𝑓𝑖][𝑓𝑗] = (𝑏𝑒𝑛⇀[𝑓𝑖][𝑓𝑗] + 𝑏𝑒𝑛↽[𝑓𝑖][𝑓𝑗])/2 (5)

𝑚𝑎𝑙⇋[𝑓𝑖][𝑓𝑗] = (𝑚𝑎𝑙⇀[𝑓𝑖][𝑓𝑗] + 𝑚𝑎𝑙↽[𝑓𝑖][𝑓𝑗])/2 (6)

Eq. 5 and 6 calculate double covalent bond strength for the feature pair 𝑓𝑖𝑗.

𝑏𝑒𝑛⇋[𝑓𝑖][𝑓𝑗] denotes the double covalent benign bond strength, and 𝑚𝑎𝑙⇋[𝑓𝑖][𝑓𝑗]

denotes the double covalent malicious bond strength. As discussed, the double

covalent bond is created when two pairs of electrons are shared between the

participating atoms, denoted by two dashes (=). We used (⇋) to denote a double

covalent bond for the feature pair 𝑓𝑖𝑗. The benign single covalent bond strengths

calculated in equations 1 and 2 are used to calculate double covalent bond strength in

eq. 5, simulating the sharing of two pairs of electrons between the participating atoms.

Similarly, the malicious covalent bond strengths calculated in equations 3 and 4 are

used to calculate double covalent bond strengths in eq. 6.

Table 4.5 and Table 4.6 depict benign and malicious feature pair matrices

representing benign and malicious double feature pair covalent bond strengths, respectively.

Table 4.5 and Table 4.6 are calculated from Table 4.3 and Table 4.4 using equations 1, 2,

3, 4, 5, and 6.

80

Table 4.5 Instance of Benign Feature Pair Matrix

Benign P1 P2 P3 S1 S2 S3

P1 0 0.7 0 0.7 0.75

P2 0.6 0.75 0 0

P3 0.7 0.6 0.6

S1 0.37 0

S2 0.33

S3

Table 4.6 Instance of Malicious Feature Pair Matrix

Benign P1 P2 P3 S1 S2 S3

P1 0.66 0 0.66 0.66 0.5

P2 0 0.33 0.66 0.66

P3 0.6 0 0

S1 0.33 0.66

S2 0.66

S3

4.2.4 Detection Phase

 The double covalent benign and malicious bond strength calculated in the

previous phase is used to detect an arbitrary application as malicious or benign. The

whole process of the detection phase is depicted in Algorithm 2.

The testing application is first analyzed to form all possible distinct feature

pairs. After this, the net benign and malicious scores are calculated based on the feature

pairs formed for the test application. The net benign and malicious scores are

calculated from the double covalent benign and malicious strengths stored in benign

and malicious feature pair matrices, respectively.

81

Let us take an instance of the test Android application as 𝐴𝑡, then the net benign

score and net malicious score of the application are calculated with the help of Eq. 7

and 8 respectively.

𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) = 𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) + 𝑏𝑒𝑛⇋[𝑓𝑖][𝑓𝑗] (7)

𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) = 𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) + 𝑚𝑎𝑙⇋[𝑓𝑖][𝑓𝑗] (8)

In Eq. 7 the 𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) represents the net benign score of application 𝐴𝑡

whereas in Eq. 8 the 𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) represents the net malicious score. Both equations

sum up the benign and malicious feature pair scores of all the distinct feature pairs

respectively. If 𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) score is greater than 𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) then we can deduce that

the test application 𝐴𝑡 is detected as malicious otherwise benign.

Algorithm 2: Feature Pair Covalent Bond Formation

1. Input: benign feature pair matrix having double covalent bond strengths

𝑏𝑒𝑛⇋[𝑓𝑛][𝑓𝑛] and malicious feature pair matrix having double covalent bond

strengths 𝑚𝑎𝑙⇋[𝑓𝑛][𝑓𝑛]. Set of Applications (𝐴1, 𝐴2, … . . , 𝐴𝑛) to be Tested

2. Output: Each of the applications is Malicious or Benign.

3. for each application (𝑨𝒕) 𝒕: 𝟏 → 𝒏

4. 𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) = 0

5. 𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) = 0

6. for each 𝒊: 𝟏 → 𝒏

7. for each 𝒋: 𝒊 + 𝟏 → 𝒏

8. 𝒊𝒇(𝒇𝒊 ∈ 𝑨𝒕 && 𝒇𝒋 ∈ 𝑨𝒕)

9. 𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) = 𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) + 𝑏𝑒𝑛⇋[𝑓𝑖][𝑓𝑗]

10. 𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) = 𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) + 𝑚𝑎𝑙⇋[𝑓𝑖][𝑓𝑗]

11. end if

12. end for

13. end for

14. If (𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) > 𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡))

15. Return 𝐴𝑡 as Malicious

16. Else

82

17. Return 𝐴𝑡 as Benign

18. end if

19. end for

4.3 Results and Discussions

This section reports results obtained from each of the covalent bond pair

models. Three types of detection models are formed with the help of covalent bonds

pair: permissions-permissions, system calls-system calls, and permissions-system

calls.

4.3.1 Feature Pair Analysis

Table 4.7 shows the top ten highest-scoring permission pairs based on both

malicious and benign covalent bond strengths between them. The maximum malicious

permissions pair is INTERNET and READ_PHONE_STATE, with the malicious

colavent bond strength score of 0.96. This behavior seems evident because pairing

INTERNET and READ_PHONE_STATE permissions in an Android app may pose

privacy and security risks. The INTERNET permission allows access to online

resources, while READ_PHONE_STATE grants access to device details like phone

numbers and network information. These permissions could enable an app to collect

and transmit sensitive user data without consent, potentially indicating malicious

intent. Similarly, the reason for other pairs could also be inferred.

Table 4.8 shows system call- system call covalent bond pairs with their

malicious and benign score arranged in descending order of covalent bond strengths.

The top pair in this table with the highest malicious score is “getuid32-ioctl”. The

getuid32 system call retrieves the effective user ID of a process in Linux-based

operating systems. On the other hand, the ioctl system call, which stands for

"Input/Output Control," is employed in Unix-like systems to control devices beyond

standard read and write operations. When used together, these system calls could be

leveraged in a potentially malicious manner. For instance, a malicious program might

use getuid32 to ascertain if the current user possesses administrative privileges. If

83

affirmative, it could then utilize ioctl to manipulate a system device or resource,

potentially resulting in a security breach or compromise.

Table 4.7 Top Ten highest scoring Permissions pair from both malicious and

benign perspectives.

Malicious Benign

Permissions-Permissions

pair

Malicio

us

score

Permissions-Permissions pair Beni

gn

score

INTERNET-

READ_PHONE_STATE

0.96 READ_SYNC_SETTINGS-

WRITE_SETTINGS

0.98

ACCESS_NETWORK_ST

ATE-

INTERNET

0.93 BROADCAST_PACKAGE_RE

MOVED-

BROADCAST_STICKY

0.96

ACCESS_COARSE_LOC

ATION-

ACCESS_FINE_LOCATI

ON

0.92 BROADCAST_PACKAGE_RE

MOVED-

RESTART_PACKAGES

0.84

ACCESS_NETWORK_ST

ATE-

READ_PHONE_STATE

0.92 BIND_WALLPAPERS-

BLUETOOTH

0.79

INTERNET-

WRITE_EXTERNAL_ST

ORAGE

0.91 QUERY_ALL_PACKAGES-

WRITE_APN_SETTINGS

0.75

READ_PHONE_STATE-

WRITE_EXTERNAL_ST

ORAGE

0.89 ACCESS_MEDIA_LOCATION-

INTERACT_ACCROSS_PROFI

LES

0.72

ACCESS_NETWORK_ST

ATE-

WRITE_EXTERNAL_ST

ORAGE

0.88 ACCESS_NETWORK_STATE-

WRITE_EXTERNAL_STORAG

E

0.72

84

Malicious Benign

Permissions-Permissions

pair

Malicio

us

score

Permissions-Permissions pair Beni

gn

score

ACCESS_NETWORK_ST

ATE-

ACCESS_WIFI_STATE

0.87 INTERNET-

READ_PHONE_STATE

0.71

ACCESS_WIFI_STATE-

READ_PHONE_STATE

0.84 INTERNET-

WRITE_EXTERNAL_STORAG

E

0.70

ACCESS_WIFI_STATE –

INTERNET

0.82 ACCESS_NETWORK_STATE-

INTERNET

0.70

Table 4.8 Top Ten highest-scoring system call pair from both malicious and

benign perspectives.

Malicious Benign

System Calls-System Calls

pair

Malicious

score

System Calls-System

Calls pair

Benign

score

getuid32-ioctl 0.998 prctl-madvise 0.998

prctl– madvise 0.998 close-SYS_305 0.994

fstat64-SYS_305 0.998 fstat64-SYS_305 0.993

prctl-fstat64 0.997 getuid32-ioctl 0.993

close-SYS_305 0.997 close-fstat64 0.992

prctl-SYS_305 0.996 ioctl-writev 0.992

mmap2-SYS_305 0.996 madvise-mmap2 0.992

mprotect-fstat64 0.996 mprotect-SYS_305 0.991

prctl-mprotect 0.996 prctl-mmap2 0.991

close-mmap2 0.996 read-ioctl

0.991

85

Table 4.9 Top Ten highest-scoring system call and permission pairs from both

malicious and benign perspectives.

Malicious Benign

System call-Permissions

pair

Malicious

score

System call-Permissions

pair

Benign

score

clock_gettime-INTERNET 0.98 clock_gettime-INTERNET 0.90

getuid32-INTERNET 0.97 ioctl-INTERNET 0.895

ioctl-INTERNET 0.97 getuid32-INTERNET 0.894

close-INTERNET 0.968 read-INTERNET 0.892

futex-INTERNET 0.968 writev-INTERNET 0.892

fadvise64_64 - INTERNET 0.968 write-INTERNET 0.889

SYS_305-INTERNET 0.967 close-INTERNET 0.877

fstat64-INTERNET 0.967 fadvise64_64-INTERNET 0.877

mprotect-INTERNET 0.966 fstat64-INTERNET 0.876

prctl -INTERNET 0.965 SYS_305-INTERNET 0.875

Table 4.9 shows system call and permission pair covalent bonds arranged in

descending order of their malicious and benign bond strength score, respectively. One

of the top system call and permission pairs in malicious and benign pairs is

clock_gettime and INTERNET. An application may use the precise timing obtained

from clock_gettime with the internet access granted by the INTERNET permission to

perform covert communication. The combination of precise timing and internet access

could allow an application to engage in stealthy activities, making it harder to detect

malicious behavior. The malicious score of this pair is 0.98, while the benign score is

0.90. Hence, its malicious intent is more in our case than normal intent. Still, one could

not rule out that many legitimate applications use these functionalities for legitimate

purposes, such as measuring performance or synchronizing with online services.

86

4.3.2 Detection Results

Table 4.10 shows the performance of various detection models. The proposed

models are evaluated on five parameters, i.e., True Positive Rate (TPR), False Positive

Rate (FPR), Precision, Accuracy, and F1-Score. The permissions-permissions model

is static as it considers only permission-permission covalent bond score for detecting

Android Malware applications. The system call – system call covalent bond pair model

is dynamic and has better results in the evaluation parameters, which is evident from

the fact that dynamic features consider the run time behavior of the application while

static feature does not. Hence, those malicious behavior that are activated at run time

uncovers hidden insights that are helpful in the identification of malicious application.

The next model is the permissions–system call model, a hybrid model in which a

covalent bond pair is formed among permissions and system calls, and their bond

strengths are used to detect malicious applications. This model, which is a hybrid, has

even better evaluation parameters than the system call- system call detection model.

The apparent reason seems to be the uncovering of system calls and permissions

bonding. The permission requested by the application is not alone responsible for

malicious behavior because benign applications may also use the same permission.

The combination of permission with system calls allows a more detailed examination

of an application's behavior. Permissions provide a high-level overview of what

resources an app may access, while system calls offer a finer-grained view of actual

interactions with the system. The Permissions-System calls model shown is the best

of all. This model is a hybrid model and achieves an overall accuracy of 97.50%, which

is better than both static and dynamic models. The confusion matrix for the

permissions-system call model is given in Table 4.11.

Table 4.10 Performance of Proposed Detection Models

Detection Model TPR FPR Precision Accuracy F1-

Score

Permissions-Permissions 92.27% 5.80% 94.98% 93.39% 93.84%

System calls-System Calls 95.97% 4.43% 96.06% 95.78% 96.01 %

87

Detection Model TPR FPR Precision Accuracy F1-

Score

Permissions- System calls 97.77% 2.81% 97.49% 97.50% 97.63%

Table 4.11 Confusion Matrix of Proposed Detection Model

 Predicted

 Malicious Benign

A
ct

u
a
l

Malicious

12415

True Positive

12104

False Positive

311

Benign

11027

False Negative

275

True Negative

10752

4.3.3 Detection Results on Unknown Samples

We comprehensively evaluate our proposed model on unknown samples. The

sample is taken from the CICAndMal2017 [121] data set. A total of 1800 samples

were taken, of which 1000 were malicious, and 800 were benign. These are the unseen

samples as they are in the form of apks. We first installed these applications in a virtual

environment, and then random clicks were done on installed applications for nearly a

minute. The generated system calls are captured with the help of a strace script. The

permissions were extracted from the Android manifest file of each application after

unpacking each application using the apk tool. The observed result shows an accuracy

of 96.20 %. The details of the results are represented in Table 4.12 And Table 4.13.

88

Table 4.12 Performance of Proposed Detection Models on Unknown Samples.

Detection Model TPR FPR Precision Accuracy F1-

Score

Permissions-Permissions 93.32% 7.57% 94.% 92.88% 93.62%

System calls-System Calls 94.30% 5.11% 96% 94.55% 95.14 %

Permissions- System calls 95.33% 2.5% 98.% 96.20% 96.64%

Table 4.13 Confusion Matrix of Proposed Detection Model on Unknown

Samples

 Predicted

 Malicious Benign

A
ct

u
a
l

Malicious

1000

True Positive

980

False Positive

20

Benign

800

False Negative

48

True Negative

752

4.4 Comparison with other related works

We comprehensively evaluate the detection results obtained from our

proposed method, comparing them with findings from previous studies in the literature

focusing on Android malware detection. We implemented several state-of-the-art

techniques on our data set and to facilitate this comparison, we provide a concise

summary in Table 4.14. Upon examination of these results, it becomes apparent that

our proposed methodology outperforms all the aforementioned related works

regarding detection accuracy, demonstrating its superior performance compared to

89

existing approaches. Moreover, the data set used by all the approaches was old and

outdated. The data set used by us is the latest, and it chronicles the entire history of

Android, covering the years from 2008 to 2020 while also accounting for the distinct

dynamic data sources.

Table 4.14 Comparison of Proposed Model with Related Works.

Methodology Approach Features set

used

No. of

Applications

TPR Accuracy

PermPair [50] Static Permissions 5993 benign

and 7533

malicious

94.11% 94.54 %

Guerra-

Manzanares et

al. [122]

Dynamic System Call 28343

Malicious

and 34981

Benign

93.60% 94.40%

Guerra-

Manzanares et

al. [123]

Static Permissions 4174

Malicious

and 37020

Benign

92.80 % 93.50%

Guerra-

Manzanares et

al. [124]

Dynamic System Call 41382

Malicious

and 36755

Benign

95.50% 95.90%

Proposed

Approach

Hybrid Permissions

and System

Call

41382

Malicious

and 36755

Benign

97.77% 97.50%

90

4.5 Limitations

In this subsection, we address certain ambiguities in our proposed approach.

Specifically, our model relies on feature pairs to assess applications. Some malware

samples with a limited number of features may go undetected. To bypass detection,

attackers may incorporate commonly used features into the malware, thereby

generating a more significant number of ordinary feature pairs. Additionally, we've

observed that when a feature pair appears only once in the malicious samples, and both

individual features have a frequency of one for a specific application, it results in a

malicious covalent bond strength of one. This misrepresents the actual strength of the

bond, potentially elevating the significance of an otherwise insignificant feature pair

and leading to misclassification. We plan to address these limitations by exploring the

potential of incorporating additional components like intent filters, hardware

specifications, and API call logs for more efficient detection alongside the existing

focus on permissions and system calls.

4.6 Summary

This study established covalent bonds between permissions and system calls to

evaluate their combined impact. We introduced a novel methodology for calculating

these pairs' Covalent Bond Strength Score, resulting in both malicious and benign

scores. These scores were then utilized in our Android malware detection technique.

We thoroughly compared our proposed model and other advanced detection

methods. Our results indicate that our model outperforms similar state-of-the-art

models in performance.

The next chapter is based on developing an Android malware detection model

using process memory dump files. The process memory dump files capture the

dynamic behaviour of the Android malware application under execution. Some

stealthy malwares hide their true malicious intent and shows their malicious behaviour

only at run time. The technique proposed in the next chapter tries to capture the

dynamic behaviour of malicious application.

91

Chapter Five:
A VISUAL ANDROID MALWARE DETECTION

TECHNIQUE BASED ON PROCESS MEMORY DUMP

FILES

In this chapter we propose a technique for Android malware detection using

rough set theory. In section 5.1, we highlight the motivation behind the work done and

briefly explained the overview of the proposed technique. In section 5.2 we explain in

detail the methodology of the proposed technique. In section 5.3 the details of results

are discussed and presented. The section 5.4 concludes the chapter with future

directions.

5.1 Introduction

Android-based smartphones are the most popular among other smartphones,

which is evident from the fact that Android-based smartphones have approximately

70% of the total share. The popularity of these devices is the primary reason for the

growth of malicious attacks on these devices. Malware writers attack millions of these

devices as they target these devices because of the financial and personal data they

contain. Hence, there is an urgent need to develop malware detection techniques to

counter these attacks.

Malware detection techniques are based on malware analysis techniques.

Malware analyses are divided into static, dynamic, and hybrid methods. Each static,

dynamic, and hybrid analysis differentiates itself from another in the way it gathers

features for performing malware analysis, which is used to develop a malware

detection model based on the extracted features.

The static malware analysis technique is one in which the characteristics of

Android applications are analyzed without actually executing the file. Such techniques

are fast and more scalable in the sense that no execution of the application is re-quired.

92

In dynamic malware analysis, the characteristics of the Android application are

analyzed by running the application's functionality in a controlled environment.

Various characteristics of the applications are considered in execution based on which

application is characterized as benign or malicious.

In the case of hybrid analysis, both static characteristics, i.e., those features of

the application, are derived without executing the application, and dynamic

characteris-tics, i.e., those features that are derived while the application is under

execution, are considered.

5.1.1 Motivation

The one research methodology that has been explored less in the realm of

Android malware analysis is one that uses visual techniques. This methodology is

based on representing Android application-related data as an image. The image

generated is further used to derive features and, hence, develop a classification model

based on those features for malware detection. In [125], authors converted the source

files of Android applications into grayscale images, and further local and global

features were extracted from these images to train machine learning classifiers. The

EfficientNet CNN-based Android malware detection model was based on converting

Android Dex files into images. These images are then fed 26 state-of-the-art CNN

models, out of which the EfficientNet-B4 CNN-based model gave the best results

[126]. In [127], the authors converted the non-intuitive malware features into grayscale

images and used machine learning classifiers on a softmax layer of CNN to analyze

the generated grayscale images. Ding et al. [128] converted the byte code of Android

applications into images and used CNN to train on those images to build an effective

malware detection model.

In the current chapter, we developed a visual malware detection technique

based on process memory dump files. An Android process memory dump, referred to

as a memory dump or core dump, captures the memory snapshot of a running process

on an Android device at a specific instance. It encompasses details concerning memory

allocation, variables, registers, and other pertinent data structures linked to the process.

93

Extracting strings from memory is a valuable approach in malware analysis for

various reasons. For instance: Unveiling Hardcoded Strings: Malicious software often

embeds hardcoded strings to facilitate command and control (C2) communication,

encryption keys, or URLs. Delving into memory strings can uncover these hardcoded

values, providing insights into the malware's functionality and potential indicators of

compromise (IOCs).

Uncovering Obfuscated or Encrypted Strings: Certain malware employs tactics

like string obfuscation or encryption to evade detection by conventional static analysis

methods. Scrutinizing memory strings may expose these obfuscated or encrypted

strings in their plain text form, thereby facilitating deeper analysis.

Exposing Command and Control (C2) Infrastructure: Malware often

communicates with remote command and control servers to receive instructions or

exfiltrate data. Memory-extracted strings may harbor URLs, IP addresses, or domain

names linked with the C2 infrastructure, empowering analysts to identify and

potentially disrupt malicious communications.

Discovering Indicators of Compromise (IOCs): Analysts can pinpoint common

patterns or unique signatures that serve as indicators of compromise (IOCs) by ana-

lysing memory string dumps across multiple malware samples or infected systems.

These IOCs are pivotal in detecting and mitigating similar threats in the future.

5.1.2 Contributions

We introduce an innovative approach for Android malware detection

leveraging visual techniques. Our method involves the transformation of Android

process memory dump files into grayscale images. The memory dump files are

meticulously read, with each byte converted into uniform binary representations.

These binary sequences are then utilized to generate grayscale images. Subsequently,

features such as color histograms, Hu moments, and Haralick textures are extracted

from these grayscale images. These derived features train machine learning classifiers,

distinguishing between benign and malicious Android applications.

94

5.2 Methodology

This section explains the technique used to classify an Android application as

benign or malicious using memory dumps. An Android process memory dump, also

known as a memory dump or core dump, is a snapshot of the memory state of a running

process on an Android device at a particular moment in time. It contains information

about the memory allocation, variables, registers, and other data structures associat-ed

with the process. The proposed model for classifying an Android application as benign

or malicious using a memory dump is depicted in Figure 5.1.

The Proposed model is further divided into to number of sub-phases such as

the visual representation of Android Process Memory Dump files represented in sub-

section 5.2.1. Sub-Section 5.2.2 is dedicated to explaining feature extraction from

visual representations.

Figure 5.1 Proposed Model for classifying an Android Application as Benign or

Malicious from Memory DUMP files.

5.2.1 Visual representation of Android Process Memory Dump files

We have taken the contents of the required Android process memory dump as

a bi-nary bit stream and arranged it into a byte matrix. Within the generated datasets,

the malware source is depicted as a grayscale image for the sake of this study. Pixel

values in the grayscale image range from 0 to 255, where 0 denotes black and 255

denotes white. The length of each image in the datasets varies according to the file

size, but all of them have a fixed width of 256 pixels. With values ranging from 0 to

95

255, each byte in the created byte matrix represents a pixel in the final grayscale image.

Following the conversion of the byte matrix into a matrix of values within the 0 to 255

range, the resulting matrix is preserved as a grayscale image. Figure 5.2 visually

depicts transforming a malware sample into a grayscale image.

5.2.2 Feature Extraction from Visual Representations

Three types of features are extracted from visual representations of memory

dump files i.e., grayscale images created in the previous step. These features are color

histogram feature, Hu moments, and Haralick texture.

Figure 5.2 Process of converting Memory Dump files into grayscale images

Color histograms

They are commonly employed in the analysis of color images, focusing on the

distribution of colors like red, green, and blue across various channels. Conversely, in

grayscale imagery, which contains only one intensity channel, the concept of a color

histogram is not directly applicable. Instead, we generate a histogram based on pixel

intensities for grayscale images. This histogram delineates the distribution of pixel

values (ranging from 0 to 255 in an 8-bit grayscale image) throughout the image. We

segment the intensity spectrum into 256 bins, each representing a possible intensity

value. Subsequently, we tally the frequency of pixels associated with each intensity

value and visualize the resulting histogram. Normalizing the histogram values to sum

up to 1 facilitates comparison across grayscale images of varying dimensions. We

utilize the histogram as a feature vector for the grayscale image by considering each

bin that signifies the occurrence frequency of a specific intensity value within the

96

image. This feature vector is input to machine learning algorithms for subsequent

analysis and processing.

5.2.2.1 Hu moments

They represent a set of seven invariant image descriptors utilized in shape

analysis and recognition. These descriptors stem from raw moments, which

mathematically capture an image's shape, allowing for the description of objects

regardless of their position, size, or orientation. Initially, grayscale images undergo

conversion into binary images employing thresholding techniques such as Otsu's

method or adaptive thresholding, given Hu moments' primary application in binary

images. Subsequently, we compute the central moments of the binary image, ensuring

translation invariance crucial for Hu moments' robustness. The normalization of

central moments follows suit to achieve scale invariance, entailing the division of each

central moment by an appropriate power of the zeroth moment, indicative of the

object's total mass or area. Ultimately, the computation of Hu moments ensues using

the normalized central moments. These seven moments, denoted as Hu1 through Hu7,

arise from specific combinations of the normalized central moments. As a feature

vector, Hu moments encapsulate the object's shape within the grayscale image.

Notably, these moments act as features invariant to translation, rotation, and scale

changes, rendering them invaluable in various image analysis tasks.

5.2.2.2 Haralick texture

These features, are also called grey-level co-occurrence matrix (GLCM)

features, constitute a collection of statistical metrics for characterizing the texture of

grayscale images. These metrics capture the spatial correlations among pixel

intensities within an im-age and find widespread application in image analysis and

classification endeavours. Initially, we computed the grayscale image's grey-level co-

occurrence matrix (GLCM). This matrix tabulates the occurrences of pixel intensity

pairs at specific spatial relationships, such as distance and direction, within the image.

Subsequently, we selected particular properties or characteristics for extraction from

the GLCM. These chosen properties encompass contrast, correlation, energy, and

homogeneity. Following this, normalization was employed to scale the computed

texture features within a standardized range of 0 to 1, ensuring uniformity across

97

diverse images. Lastly, a feature vector was constructed to serve as input for machine

learning classifiers.

5.3 Results and Discussions

The last section explained how the visual representation in the form of a

grayscale image was created from the Android memory dump files. It also explained

how features such as color histograms, Hu moments, and Haralick texture were

extracted from those grayscale images. This section discusses the experimentation to

classify an application as benign or malicious based on the features extracted from the

grayscale images of memory dump files.

We used four machine learning classifiers: SVM, Random Forest, K nearest

neighbors, and Logistic Regressions. The Data set used for experimentation is the

Android Process Memory String Dump [129]. The data set is built using AndroZoo's

APK files [109]. The data set mainly consists of strings related to individual process-

es running at the time of APK usage. Each file in the data set corresponds to an APK.

There are 2375 samples of Android process memory string dump files. Of the 2375

files, 1,188 samples correspond to malicious applications, while the remaining 1,187

samples correspond to benign applications.

We trained the model using the combined feature vector formed from all three

types of features. We used a train-test split ratio of 70:30. The results are measured on

the following parameters: accuracy, precision, recall, and F1-score. The results of the

experiments are depicted in Table 5.1.

We observed that Random Forest performs better than the rest of the machine

learning classifiers as Random Forest outperforms other classifiers due to its unique

methodology. Unlike individual decision trees, Random Forest utilizes an ensemble

approach by aggregating multiple decision trees for prediction. This ensemble

technique effectively reduces variance and minimizes overfitting risks present in

standalone decision trees. By combining predictions from numerous trees, Random

Forest consistently improves overall performance.

98

Table 5.1 Experimental Results

ML Techniques Accuracy Precision Recall F1-Score

K-Nearest Neighbor 0.89 0.87 0.88 0.88

Logistic Regression 0.89 0.88 0.87 0.89

SVM 0.92 0.91 0.90 0.91

Random Forest 0.94 0.95 0.95 0.94

5.4 Summary

In this work, we have proposed a novel Android malware detection mechanism

based on visual techniques. The mechanism is based on converting Android process

memory dump files into grayscale images. The memory dump files are read byte by

byte, and each byte is converted into equal binary representations. These binary rep-

resentations are used to form grayscale images. These grayscale images derive fea-

tures such as colour histograms, Hu moments, and Haralick textures; these derived

features per image train machine learning classifiers to predict an Android application

as benign and malicious.

99

Chapter Six:
CONCLUSIONS AND FUTURE SCOPE

Smartphones have surpassed desktop systems in popularity due to their wide

array of feature-rich applications. They are now an integral part of daily life. They

offer access to numerous services such as online shopping, gaming, and location-based

services, making them more powerful than early personal computers. However, as

smartphones have gained widespread use, particularly Android devices, there has been

a significant increase in malware attacks targeting these platforms. Malicious

applications, or malware, can infiltrate smartphones through various channels

including SMS, MMS, Bluetooth, internet downloads, and both official and third-party

app stores. These attacks pose serious risks, including system damage, financial loss,

and data breaches. As a result, the issue of detecting Android malware has attracted

significant attention from researchers in recent years, given the rising frequency of

attacks on the Android platform. This thesis focuses on addressing the challenge of

malware detection on Android smartphones.

This chapter presents the conclusions of the dissertation. It begins by

summarizing the key contributions made throughout the thesis, reviewing the proposed

models for Android malware detection and evaluating how they fulfil the established

objectives. Following this, we highlight several unresolved challenges in the existing

literature, discussing areas that require further research and attention in future work.

6.1 Conclusions

1. In line with the objective, we successfully developed a novel Android malware

detection technique utilizing static features extracted from both Android

manifest files and .dex files. The proposed model is based on rough set theory,

where we combined four static features: permissions, opcodes, API calls, and

system commands. The development process began with a comprehensive data

pre-processing phase, where we eliminated correlated features and those that

had no relevance to the class variable. This ensured that the model focused only

on the most impactful features, improving overall efficiency and accuracy. A

100

key innovation in the work was the application of Discernibility Matrices from

rough set theory to assign a ranking score to each feature, reflecting its

significance in malware detection. The rough set reducts algorithm was then

employed to further reduce the number of features based on the ranking score,

ensuring a more streamlined and focused analysis. After the feature reduction

step, various machine learning algorithms were applied to evaluate the model's

detection accuracy. The experimental results demonstrated that the proposed

approach outperformed other advanced malware detection models. The

superior performance, as evidenced by the comparative analysis, validates the

effectiveness of the proposed technique in detecting Android malware, meeting

the initial objective of designing an efficient and novel static feature-based

detection model.

2. In accordance with the objective, we successfully developed a hybrid malware

analysis technique that optimally combines static and dynamic features for

Android devices. This study specifically explored the interaction between

permissions (a static feature) and system calls (a dynamic feature), establishing

a novel methodology for analyzing their combined effect on malware

detection. We introduced the concept of a Covalent Bond Strength Score,

which quantifies the strength of the relationship between these feature pairs.

By calculating both malicious and benign scores, we were able to effectively

assess how these features interact in different contexts, contributing to the

accuracy of malware detection. The proposed model harnesses the combined

power of static and dynamic features, ensuring a comprehensive analysis that

addresses the limitations of relying on only one type of feature. By integrating

the Covalent Bond Strength Score, the model was able to differentiate between

benign and malicious behaviours with greater precision. A detailed

comparative analysis was conducted between our hybrid model and other

advanced malware detection techniques. The results of this comparison

demonstrated the superior performance of our model, surpassing similar state-

of-the-art approaches in terms of detection accuracy and overall effectiveness.

This validation highlights the success of the proposed hybrid analysis

101

technique in meeting the objective of optimally combining static and dynamic

features to enhance malware detection on Android devices.

3. In line to develop a memory forensics-based technique for malware detection,

we introduced an innovative Android malware detection mechanism that

leverages visual analysis techniques. Our approach focuses on analyzing

memory dump files from Android processes, converting them into grayscale

images for further examination. The memory dump files were processed byte

by byte, with each byte being converted into its binary representation. These

binary representations were then used to form grayscale images, enabling a

visual interpretation of the memory data. Key features were extracted from

these grayscale images, including colour histograms, Hu moments, and

Haralick textures, which capture important visual patterns that differentiate

between benign and malicious applications. These features were subsequently

used to train machine learning classifiers, which then classified Android

applications as either benign or malicious based on the patterns present in the

memory dumps. The proposed memory forensics-based technique successfully

incorporates visual methods into malware detection, offering a novel approach

that effectively combines memory analysis with machine learning. Our

experimental results demonstrate the capability of this method to accurately

classify applications, meeting the objective of utilizing memory forensics for

Android malware detection. The visual analysis approach also opens new

avenues for further exploration in the field of memory-based malware

detection, offering a unique and powerful tool for classifying Android

applications

6.2 Future Work

The emergence of increasingly sophisticated and stealthy Android malware

continues to create significant challenges for the research community, with several

critical areas still requiring further investigation. This section outlines some of the key

unresolved issues that demand additional research.

102

1. The proposed models are an off-device model, and hence they can not be

installed on smartphones for real-time detection. In future, we will propose a

client–server-based model to integrate in smartphones.

2. In the future, our research will analyze additional components of the manifest

file, such as intent filters and hardware specifications, to further enhance

detection accuracy.

3. We aim to build more robust techniques by considering other types of features

that can be derived from the grayscale image of Android process memory dump

files, which will strengthen the machine learning classifiers. We will also use

deep-learning models to know their effectiveness in classifying malware using

visual techniques.

103

103

REFERENCES

[1] H. Liu, D. Pardoe, K. Liu, M. Thakur, F. Cao and C. Li, “Audience expansion for online

social network advertising,” in Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2016.

[2] K. Patel and B. Buddadev, “Detection and mitigation of android malware through

hybrid approach,” in Security in Computing and Communications: Third International

Symposium, SSCC 2015, Kochi, India, August 10-13, 2015. Proceedings 3, 2015.

[3] B. D. Prasad, “RTI-TRAPS: An Adaptive Vehicle Tracking Methodology for Public

Transportation,” International Journal of Computer Applications, vol. 975, p. 8887,

2013.

[4] R. Trestian, P. Shah, H. Nguyen, Q.-T. Vien, O. Gemikonakli and B. Barn, “Towards

connecting people, locations and real-world events in a cellular network,” Telematics

and Informatics, vol. 34, p. 244–271, 2017.

[5] A. Kaushik and D. P. Vidyarthi, “A cooperative cell model in computational mobile

grid,” International Journal of Business Data Communications and Networking

(IJBDCN), vol. 8, p. 19–36, 2012.

[6] S. K. Singh and D. P. Vidyarthi, “A heuristic channel allocation model with multi

lending in mobile computing network,” International Journal of Wireless and Mobile

Computing, vol. 16, p. 322–339, 2019.

[7] A. Omorinoye, Q.-T. Vien, T. A. Le and P. Shah, “On the resource allocation for D2D

underlaying uplink cellular networks,” in 2019 26th International Conference on

Telecommunications (ICT), 2019.

[8] V. V. Paranthaman, Y. Kirsal, G. Mapp, P. Shah and H. X. Nguyen, “Exploring a new

proactive algorithm for resource management and its application to wireless mobile

environments,” in 2017 IEEE 42nd Conference on Local Computer Networks (LCN),

2017.

104

104

[9] V. S. Pendyala and J. Holliday, “Performing intelligent mobile searches in the cloud

using semantic technologies,” in 2010 IEEE International Conference on Granular

Computing, 2010.

[10] M. Malik and D. P. Agrawal, “Secure web framework for mobile devices,” in 2012

IEEE Globecom Workshops, 2012.

[11] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti and M. Rajarajan,

“Android security: a survey of issues, malware penetration, and defenses,” IEEE

communications surveys & tutorials, vol. 17, p. 998–1022, 2014.

[12] A. P. Felt, M. Finifter, E. Chin, S. Hanna and D. Wagner, “A survey of mobile malware

in the wild,” in Proceedings of the 1st ACM workshop on Security and privacy in

smartphones and mobile devices, 2011.

[13] R. Surendran, T. Thomas and S. Emmanuel, “Detection of malware applications in

android smartphones,” in WORLD SCIENTIFIC REFERENCE ON INNOVATION:

Volume 4: Innovation in Information Security, World Scientific, 2018, p. 211–234.

[14] E. Chin, A. P. Felt, V. Sekar and D. Wagner, “Measuring user confidence in smartphone

security and privacy,” in Proceedings of the eighth symposium on usable privacy and

security, 2012.

[15] D. Puthal, S. P. Mohanty, P. Nanda and U. Choppali, “Building security perimeters to

protect network systems against cyber threats [future directions],” IEEE Consumer

Electronics Magazine, vol. 6, p. 24–27, 2017.

[16] Z. Cheng, “Mobile malware: Threats and prevention,” McAfee Avert, 2007.

[17] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evolution,”

in 2012 IEEE symposium on security and privacy, 2012.

[18] Q. Huang, V. K. Singh and P. K. Atrey, “On cyberbullying incidents and underlying

online social relationships,” Journal of Computational Social Science, vol. 1, p. 241–

260, 2018.

105

105

[19] V. K. Singh, Q. Huang and P. K. Atrey, “Cyberbullying detection using probabilistic

socio-textual information fusion,” in 2016 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining (ASONAM), 2016.

[20] N. Vishwamitra, X. Zhang, J. Tong, H. Hu, F. Luo, R. Kowalski and J. Mazer,

“MCDefender: Toward effective cyberbullying defense in mobile online social

networks,” in Proceedings of the 3rd ACM on International Workshop on Security and

Privacy Analytics, 2017.

[21] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han and X. Zhang, “Exploring permission-

induced risk in android applications for malicious application detection,” IEEE

Transactions on Information Forensics and Security, vol. 9, p. 1869–1882, 2014.

[22] M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh and A. Awajan, “Intelligent mobile

malware detection using permission requests and API calls,” Future Generation

Computer Systems, vol. 107, p. 509–521, 2020.

[23] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An and H. Ye, “Significant permission

identification for machine-learning-based android malware detection,” IEEE

Transactions on Industrial Informatics, vol. 14, p. 3216–3225, 2018.

[24] N. Milosevic, A. Dehghantanha and K.-K. R. Choo, “Machine learning aided Android

malware classification,” Computers & Electrical Engineering, vol. 61, p. 266–274,

2017.

[25] A. K. Singh, C. D. Jaidhar and M. A. Kumara, “Experimental analysis of Android

malware detection based on combinations of permissions and API-calls,” Journal of

Computer Virology and Hacking Techniques, vol. 15, p. 209–218, 2019.

[26] C. Wang, Q. Xu, X. Lin and S. Liu, “Research on data mining of permissions mode for

Android malware detection,” Cluster Computing, vol. 22, p. 13337–13350, 2019.

[27] A. Case, R. D. Maggio, M. Firoz-Ul-Amin, M. M. Jalalzai, A. Ali-Gombe, M. Sun and

G. G. Richard III, “Hooktracer: Automatic detection and analysis of keystroke loggers

using memory forensics,” Computers & Security, vol. 96, p. 101872, 2020.

106

106

[28] P. Fernández-Álvarez and R. J. Rodrı́guez, “Module extraction and DLL hijacking

detection via single or multiple memory dumps,” Forensic Science International:

Digital Investigation, vol. 44, p. 301505, 2023.

[29] J. Liu, Y. Feng, X. Liu, J. Zhao and Q. Liu, “MRm-DLDet: a memory-resident malware

detection framework based on memory forensics and deep neural network,”

Cybersecurity, vol. 6, p. 21, 2023.

[30] I. Kara, “Fileless malware threats: Recent advances, analysis approach through memory

forensics and research challenges,” Expert Systems with Applications, vol. 214, p.

119133, 2023.

[31] P. O'Kane, S. Sezer and K. McLaughlin, “Obfuscation: The hidden malware,” IEEE

Security & Privacy, vol. 9, p. 41–47, 2011.

[32] O. Or-Meir, N. Nissim, Y. Elovici and L. Rokach, “Dynamic malware analysis in the

modern era—A state of the art survey,” ACM Computing Surveys (CSUR), vol. 52, p.

1–48, 2019.

[33] M. C. Grace, W. Zhou, X. Jiang and A.-R. Sadeghi, “Unsafe exposure analysis of

mobile in-app advertisements,” in Proceedings of the fifth ACM conference on Security

and Privacy in Wireless and Mobile Networks, 2012.

[34] W. Enck, M. Ongtang and P. McDaniel, “On lightweight mobile phone application

certification,” in Proceedings of the 16th ACM conference on Computer and

communications security, 2009.

[35] K. A. Talha, D. I. Alper and C. Aydin, “APK Auditor: Permission-based Android

malware detection system,” Digital Investigation, vol. 13, p. 1–14, 2015.

[36] J. Choi, W. Sung, C. Choi and P. Kim, “Personal information leakage detection method

using the inference-based access control model on the Android platform,” Pervasive

and Mobile Computing, vol. 24, p. 138–149, 2015.

[37] J. Song, C. Han, K. Wang, J. Zhao, R. Ranjan and L. Wang, “An integrated static

detection and analysis framework for android,” Pervasive and Mobile Computing, vol.

32, p. 15–25, 2016.

107

107

[38] Z. Wang, C. Li, Z. Yuan, Y. Guan and Y. Xue, “DroidChain: A novel Android malware

detection method based on behavior chains,” Pervasive and Mobile Computing, vol. 32,

p. 3–14, 2016.

[39] S. K. Sasidharan and C. Thomas, “ProDroid—An Android malware detection

framework based on profile hidden Markov model,” Pervasive and Mobile Computing,

vol. 72, p. 101336, 2021.

[40] V. Moonsamy, J. Rong and S. Liu, “Mining permission patterns for contrasting clean

and malicious android applications,” Future Generation Computer Systems, vol. 36, p.

122–132, 2014.

[41] F. Idrees and M. Rajarajan, “Investigating the android intents and permissions for

malware detection,” in 2014 IEEE 10th international conference on wireless and mobile

computing, networking and communications (WiMob), 2014.

[42] Y. Zhou, Z. Wang, W. Zhou and X. Jiang, “Hey, you, get off of my market: detecting

malicious apps in official and alternative android markets.,” in NDSS, 2012.

[43] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, Y. Wang and Y. Xiang, “A3CM: automatic

capability annotation for android malware,” IEEE Access, vol. 7, p. 147156–147168,

2019.

[44] R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian and M. Conti,

“Similarity-based Android malware detection using Hamming distance of static binary

features,” Future Generation Computer Systems, vol. 105, p. 230–247, 2020.

[45] H. Bai, N. Xie, X. Di and Q. Ye, “Famd: A fast multifeature android malware detection

framework, design, and implementation,” IEEE Access, vol. 8, p. 194729–194740,

2020.

[46] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon and K. R. Drebin, “Effective and

explainable detection of android malware in your pocket,” in Network and distributed

system security symposium.

[47] M. V. Varsha, P. Vinod and K. A. Dhanya, “Identification of malicious android app

using manifest and opcode features,” Journal of Computer Virology and Hacking

Techniques, vol. 13, p. 125–138, 2017.

108

108

[48] A. Mahindru and A. L. Sangal, “FSDroid:-A feature selection technique to detect

malware from Android using Machine Learning Techniques: FSDroid,” Multimedia

Tools and Applications, vol. 80, p. 13271–13323, 2021.

[49] K. Khariwal, J. Singh and A. Arora, “IPDroid: Android malware detection using intents

and permissions,” in 2020 Fourth world conference on smart trends in systems, security

and sustainability (WorldS4), 2020.

[50] A. Arora, S. K. Peddoju and M. Conti, “Permpair: Android malware detection using

permission pairs,” IEEE Transactions on Information Forensics and Security, vol. 15,

p. 1968–1982, 2019.

[51] M. Kumaran and W. Li, “Lightweight malware detection based on machine learning

algorithms and the android manifest file,” in 2016 IEEE MIT Undergraduate Research

Technology Conference (URTC), 2016.

[52] S. Feldman, D. Stadther and B. Wang, “Manilyzer: automated android malware

detection through manifest analysis,” in 2014 IEEE 11th International Conference on

Mobile Ad Hoc and Sensor Systems, 2014.

[53] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, J. Nieves, P. G. Bringas and G.

Álvarez Marañón, “MAMA: manifest analysis for malware detection in android,”

Cybernetics and Systems, vol. 44, p. 469–488, 2013.

[54] C. Li, K. Mills, D. Niu, R. Zhu, H. Zhang and H. Kinawi, “Android malware detection

based on factorization machine,” IEEE Access, vol. 7, p. 184008–184019, 2019.

[55] R. Sato, D. Chiba and S. Goto, “Detecting android malware by analyzing manifest

files,” Proceedings of the Asia-Pacific Advanced Network, vol. 36, p. 17, 2013.

[56] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee and K.-P. Wu, “Droidmat: Android

malware detection through manifest and api calls tracing,” in 2012 Seventh Asia joint

conference on information security, 2012.

[57] K. O. Elish, X. Shu, D. D. Yao, B. G. Ryder and X. Jiang, “Profiling user-trigger

dependence for Android malware detection,” Computers & Security, vol. 49, p. 255–

273, 2015.

109

109

[58] M. Zhang, Y. Duan, H. Yin and Z. Zhao, “Semantics-aware android malware

classification using weighted contextual api dependency graphs,” in Proceedings of the

2014 ACM SIGSAC conference on computer and communications security, 2014.

[59] Y. Feng, S. Anand, I. Dillig and A. Aiken, “Apposcopy: Semantics-based detection of

android malware through static analysis,” in Proceedings of the 22nd ACM SIGSOFT

international symposium on foundations of software engineering, 2014.

[60] W. Wang, Z. Gao, M. Zhao, Y. Li, J. Liu and X. Zhang, “DroidEnsemble: Detecting

Android malicious applications with ensemble of string and structural static features,”

IEEE Access, vol. 6, p. 31798–31807, 2018.

[61] H. Zhang, S. Luo, Y. Zhang and L. Pan, “An efficient Android malware detection

system based on method-level behavioral semantic analysis,” IEEE Access, vol. 7, p.

69246–69256, 2019.

[62] H. Zhu, H. Wei, L. Wang, Z. Xu and V. S. Sheng, “An effective end-to-end android

malware detection method,” Expert Systems with Applications, vol. 218, p. 119593,

2023.

[63] Y. Fang, Y. Gao, F. A. N. Jing and L. E. I. Zhang, “Android malware familial

classification based on dex file section features,” IEEE Access, vol. 8, p. 10614–10627,

2020.

[64] Y.-S. Yen and H.-M. Sun, “An Android mutation malware detection based on deep

learning using visualization of importance from codes,” Microelectronics Reliability,

vol. 93, p. 109–114, 2019.

[65] Z. Xu, K. Ren, S. Qin and F. Craciun, “CDGDroid: Android malware detection based

on deep learning using CFG and DFG,” in Formal Methods and Software Engineering:

20th International Conference on Formal Engineering Methods, ICFEM 2018, Gold

Coast, QLD, Australia, November 12-16, 2018, Proceedings 20, 2018.

[66] X. Xiao, S. Zhang, F. Mercaldo, G. Hu and A. K. Sangaiah, “Android malware detection

based on system call sequences and LSTM,” Multimedia Tools and Applications, vol.

78, p. 3979–3999, 2019.

110

110

[67] X. Qin, F. Zeng and Y. Zhang, “MSNdroid: the Android malware detector based on

multi-class features and deep belief network,” in Proceedings of the ACM Turing

Celebration Conference-China, 2019.

[68] M. Ahmadi, A. Sami, H. Rahimi and B. Yadegari, “Malware detection by behavioural

sequential patterns,” Computer Fraud & Security, vol. 2013, p. 11–19, 2013.

[69] M. Sun, T. Wei and J. C. S. Lui, “Taintart: A practical multi-level information-flow

tracking system for android runtime,” in Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, 2016.

[70] L. K. Yan and H. Yin, “{DroidScope}: Seamlessly reconstructing the {OS} and dalvik

semantic views for dynamic android malware analysis,” in 21st USENIX security

symposium (USENIX security 12), 2012.

[71] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning and X. S. Wang, “Appintent: Analyzing

sensitive data transmission in android for privacy leakage detection,” in Proceedings of

the 2013 ACM SIGSAC conference on Computer & communications security, 2013.

[72] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer and Y. Weiss, ““Andromaly”: a

behavioral malware detection framework for android devices,” Journal of Intelligent

Information Systems, vol. 38, p. 161–190, 2012.

[73] A. Reina, A. Fattori and L. Cavallaro, “A system call-centric analysis and stimulation

technique to automatically reconstruct android malware behaviors,” EuroSec, April,

2013.

[74] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera and P. L. de Geus,

“Identifying Android malware using dynamically obtained features,” Journal of

Computer Virology and Hacking Techniques, vol. 11, p. 9–17, 2015.

[75] I. Burguera, U. Zurutuza and S. Nadjm-Tehrani, “Crowdroid: behavior-based malware

detection system for android,” in Proceedings of the 1st ACM workshop on Security and

privacy in smartphones and mobile devices, 2011.

[76] M. Zheng, M. Sun and J. C. S. Lui, “DroidTrace: A ptrace based Android dynamic

analysis system with forward execution capability,” in 2014 international wireless

communications and mobile computing conference (IWCMC), 2014.

111

111

[77] M. Almeida, M. Bilal, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Varvello and J.

Blackburn, “Chimp: Crowdsourcing human inputs for mobile phones,” in Proceedings

of the 2018 World Wide Web Conference, 2018.

[78] J.-w. Jang, H. Kang, J. Woo, A. Mohaisen and H. K. Kim, “Andro-Dumpsys: Anti-

malware system based on the similarity of malware creator and malware centric

information,” computers & security, vol. 58, p. 125–138, 2016.

[79] A. Arora, S. Garg and S. K. Peddoju, “Malware detection using network traffic analysis

in android based mobile devices,” in 2014 Eighth International Conference on Next

Generation Mobile Apps, Services and Technologies, 2014.

[80] Z. Chen, H. Han, Q. Yan, B. Yang, L. Peng, L. Zhang and J. Li, “A first look at android

malware traffic in first few minutes,” in 2015 IEEE Trustcom/BigDataSE/ISPA, 2015.

[81] M. Aresu, D. Ariu, M. Ahmadi, D. Maiorca and G. Giacinto, “Clustering android

malware families by http traffic,” in 2015 10th International Conference on Malicious

and Unwanted Software (MALWARE), 2015.

[82] S. Wang, Z. Chen, X. Li, L. Wang, K. Ji and C. Zhao, “Android malware clustering

analysis on network-level behavior,” in Intelligent Computing Theories and

Application: 13th International Conference, ICIC 2017, Liverpool, UK, August 7-10,

2017, Proceedings, Part I 13, 2017.

[83] H. F. Alan and J. Kaur, “Can Android applications be identified using only TCP/IP

headers of their launch time traffic?,” in Proceedings of the 9th ACM conference on

security & privacy in wireless and mobile networks, 2016.

[84] M. Conti, L. V. Mancini, R. Spolaor and N. V. Verde, “Analyzing android encrypted

network traffic to identify user actions,” IEEE Transactions on Information Forensics

and Security, vol. 11, p. 114–125, 2015.

[85] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao and M. Conti, “Detecting android malware

leveraging text semantics of network flows,” IEEE Transactions on Information

Forensics and Security, vol. 13, p. 1096–1109, 2017.

112

112

[86] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira and Y. Elovici,

“Mobile malware detection through analysis of deviations in application network

behavior,” Computers & Security, vol. 43, p. 1–18, 2014.

[87] S. Wang, Z. Chen, L. Zhang, Q. Yan, B. Yang, L. Peng and Z. Jia, “Trafficav: An

effective and explainable detection of mobile malware behavior using network traffic,”

in 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), 2016.

[88] S. Wang, Z. Chen, Q. Yan, B. Yang, L. Peng and Z. Jia, “A mobile malware detection

method using behavior features in network traffic,” Journal of Network and Computer

Applications, vol. 133, p. 15–25, 2019.

[89] Y. Pang, Z. Chen, X. Li, S. Wang, C. Zhao, L. Wang, K. Ji and Z. Li, “Finding Android

malware trace from highly imbalanced network traffic,” in 2017 IEEE International

Conference on Computational Science and Engineering (CSE) and IEEE International

Conference on Embedded and Ubiquitous Computing (EUC), 2017.

[90] P. Borges, B. Sousa, L. Ferreira, F. B. Saghezchi, G. Mantas, J. Ribeiro, J. Rodriguez,

L. Cordeiro and P. Simoes, “Towards a hybrid intrusion detection system for android-

based PPDR terminals,” in 2017 IFIP/IEEE Symposium on Integrated Network and

Service Management (IM), 2017.

[91] R. Chen, Y. Li and W. Fang, “Android malware identification based on traffic analysis,”

in International conference on artificial intelligence and security, 2019.

[92] A. Feizollah, N. B. Anuar, R. Salleh and F. Amalina, “Comparative study of k-means

and mini batch k-means clustering algorithms in android malware detection using

network traffic analysis,” in 2014 international symposium on biometrics and security

technologies (ISBAST), 2014.

[93] J. Li, L. Zhai, X. Zhang and D. Quan, “Research of android malware detection based on

network traffic monitoring,” in 2014 9th IEEE Conference on Industrial Electronics

and Applications, 2014.

[94] A. Liu, Z. Chen, S. Wang, L. Peng, C. Zhao and Y. Shi, “A fast and effective detection

of mobile malware behavior using network traffic,” in International Conference on

Algorithms and Architectures for Parallel Processing, 2018.

113

113

[95] A. Saracino, D. Sgandurra, G. Dini and F. Martinelli, “Madam: Effective and efficient

behavior-based android malware detection and prevention,” IEEE Transactions on

Dependable and Secure Computing, vol. 15, p. 83–97, 2016.

[96] Q. Han, V. S. Subrahmanian and Y. Xiong, “Android malware detection via (somewhat)

robust irreversible feature transformations,” IEEE Transactions on Information

Forensics and Security, vol. 15, p. 3511–3525, 2020.

[97] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma and Z. Liang, “Monet: a user-oriented behavior-

based malware variants detection system for android,” IEEE Transactions on

Information Forensics and Security, vol. 12, p. 1103–1112, 2016.

[98] M. Xia, L. Gong, Y. Lyu, Z. Qi and X. Liu, “Effective real-time android application

auditing,” in 2015 IEEE Symposium on Security and Privacy, 2015.

[99] M. Grace, Y. Zhou, Q. Zhang, S. Zou and X. Jiang, “Riskranker: scalable and accurate

zero-day android malware detection,” in Proceedings of the 10th international

conference on Mobile systems, applications, and services, 2012.

[100] M. Lindorfer, M. Neugschwandtner and C. Platzer, “Marvin: Efficient and

comprehensive mobile app classification through static and dynamic analysis,” in 2015

IEEE 39th annual computer software and applications conference, 2015.

[101] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song and H. Yu, “SAMADroid: a

novel 3-level hybrid malware detection model for android operating system,” IEEE

Access, vol. 6, p. 4321–4339, 2018.

[102] X. Wang, Y. Yang, Y. Zeng, C. Tang, J. Shi and K. Xu, “A novel hybrid mobile malware

detection system integrating anomaly detection with misuse detection,” in Proceedings

of the 6th International Workshop on Mobile Cloud Computing and Services, 2015.

[103] Z. Yuan, Y. Lu and Y. Xue, “Droiddetector: android malware characterization and

detection using deep learning,” Tsinghua Science and Technology, vol. 21, p. 114–123,

2016.

[104] Y. Liu, Y. Zhang, H. Li and X. Chen, “A hybrid malware detecting scheme for mobile

Android applications,” in 2016 IEEE International Conference on Consumer

Electronics (ICCE), 2016.

114

114

[105] H.-Y. Chuang and S.-D. Wang, “Machine learning based hybrid behavior models for

Android malware analysis,” in 2015 IEEE International Conference on Software

Quality, Reliability and Security, 2015.

[106] T. Chakraborty, F. Pierazzi and V. S. Subrahmanian, “Ec2: Ensemble clustering and

classification for predicting android malware families,” IEEE Transactions on

Dependable and Secure Computing, vol. 17, p. 262–277, 2017.

[107] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh and L. Cavallaro, “The evolution of

android malware and android analysis techniques,” ACM Computing Surveys (CSUR),

vol. 49, p. 1–41, 2017.

[108] A. Martı́n, R. Lara-Cabrera and D. Camacho, “Android malware detection through

hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the

OmniDroid dataset,” Information Fusion, vol. 52, p. 128–142, 2019.

[109] K. Allix, T. F. Bissyandé, J. Klein and Y. Le Traon, “Androzoo: Collecting millions of

android apps for the research community,” in Proceedings of the 13th international

conference on mining software repositories, 2016.

[110] A. Martı́n, R. Lara-Cabrera and D. Camacho, “A new tool for static and dynamic

Android malware analysis,” in Data Science and Knowledge Engineering for Sensing

Decision Support: Proceedings of the 13th International FLINS Conference (FLINS

2018), 2018.

[111] Z. Pawlak, “Rough set theory and its applications to data analysis,” Cybernetics &

Systems, vol. 29, p. 661–688, 1998.

[112] Z. Han, Q. Zhang and F. Wen, “A survey on rough set theory and its application,”

Control theory and applications, vol. 16, p. 153–157, 1999.

[113] D. Wagner and R. Dean, “Intrusion detection via static analysis,” in Proceedings 2001

IEEE Symposium on Security and Privacy. S&P 2001, 2000.

[114] B. B. Kang and A. Srivastava, Dynamic Malware Analysis., 2011.

[115] G. Fraser and A. Arcuri, “Automated test generation for java generics,” in Software

Quality. Model-Based Approaches for Advanced Software and Systems Engineering:

115

115

6th International Conference, SWQD 2014, Vienna, Austria, January 14-16, 2014.

Proceedings 6, 2014.

[116] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic detection, analysis,

and signaturegeneration of exploits on commodity software.,” in NDSS, 2005.

[117] R. Zhang, S. Huang, Z. Qi and H. Guan, “Combining static and dynamic analysis to

discover software vulnerabilities,” in 2011 Fifth International Conference on Innovative

Mobile and Internet Services in Ubiquitous Computing, 2011.

[118] R. Zhang, S. Huang, Z. Qi and H. Guan, “Static program analysis assisted dynamic taint

tracking for software vulnerability discovery,” Computers & Mathematics with

Applications, vol. 63, p. 469–480, 2012.

[119] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel

and A. N. Sheth, “Taintdroid: an information-flow tracking system for realtime privacy

monitoring on smartphones,” ACM Transactions on Computer Systems (TOCS), vol.

32, p. 1–29, 2014.

[120] A. Guerra-Manzanares, H. Bahsi and S. Nõmm, “Kronodroid: time-based hybrid-

featured dataset for effective android malware detection and characterization,”

Computers & Security, vol. 110, p. 102399, 2021.

[121] A. H. Lashkari, A. F. A. Kadir, L. Taheri and A. A. Ghorbani, “Toward developing a

systematic approach to generate benchmark android malware datasets and

classification,” in 2018 International Carnahan conference on security technology

(ICCST), 2018.

[122] A. Guerra-Manzanares, M. Luckner and H. Bahsi, “Concept drift and cross-device

behavior: Challenges and implications for effective android malware detection,”

Computers & Security, vol. 120, p. 102757, 2022.

[123] A. Guerra-Manzanares, H. Bahsi and M. Luckner, “Leveraging the first line of defense:

A study on the evolution and usage of android security permissions for enhanced

android malware detection,” Journal of Computer Virology and Hacking Techniques,

vol. 19, p. 65–96, 2023.

116

116

[124] A. Guerra-Manzanares, M. Luckner and H. Bahsi, “Android malware concept drift

using system calls: detection, characterization and challenges,” Expert Systems with

Applications, vol. 206, p. 117200, 2022.

[125] H. M. Ünver and K. Bakour, “Android malware detection based on image-based

features and machine learning techniques,” SN Applied Sciences, vol. 2, p. 1299, 2020.

[126] P. Yadav, N. Menon, V. Ravi, S. Vishvanathan and T. D. Pham, “EfficientNet

convolutional neural networks-based Android malware detection,” Computers &

Security, vol. 115, p. 102622, 2022.

[127] J. Singh, D. Thakur, F. Ali, T. Gera and K. S. Kwak, “Deep feature extraction and

classification of android malware images,” Sensors, vol. 20, p. 7013, 2020.

[128] Y. Ding, X. Zhang, J. Hu and W. Xu, “Android malware detection method based on

bytecode image,” Journal of Ambient Intelligence and Humanized Computing, vol. 14,

p. 6401–6410, 2023.

[129] I. Homem and P. Papapetrou, “Android Process Memory String Dumps Dataset,”

Stockholm University Dataset, 2017.

