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ABSTRACT 

The widespread integration of smartphones into modern society has 

revolutionized communication, work, entertainment, and access to information, with 

Android-based devices dominating the market, accounting for approximately 70% of 

global smartphone usage. However, this popularity has made Android devices prime 

targets for malware attacks, posing serious threats due to the sensitive personal and 

financial data they store. Consequently, there is an urgent need for innovative and 

effective malware detection techniques. 

Our study addresses this challenge by introducing three novel approaches to 

Android malware detection. First, we applied rough set theory to select and rank static 

features such as permissions, API calls, system commands, and opcodes, using a 

Discernibility Matrix to assign importance to each feature and calculate reducts—

streamlined subsets that enhance detection accuracy while minimizing complexity. 

Machine learning algorithms, including Support Vector Machines (SVM), K-Nearest 

Neighbor (KNN), Random Forest, and Logistic Regression, were employed to achieve 

an impressive 97% detection accuracy, surpassing many state-of-the-art techniques. 

Secondly, we pioneered a hybrid method by establishing covalent bonds 

between permissions and system calls, combining static and dynamic analysis to 

uncover malicious behavior. A novel Covalent Bond Strength Score was introduced to 

assess the combined impact of these pairs, with distinct scores for benign and 

malicious behaviors. This approach provided a comprehensive framework for malware 

detection, achieving a detection accuracy of 97.5%, further improving upon existing 

methods. 

Lastly, we developed a visual malware detection technique based on Android 

process memory dumps. The memory dump files were transformed into grayscale 

images, from which features such as color histograms, Hu moments, and Haralick 

textures were extracted. These features were used to train machine learning classifiers 

to differentiate between benign and malicious applications. Among the classifiers 

tested, Random Forest delivered the best performance. 
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In conclusion, our integrated approaches provide robust frameworks for 

Android malware detection, each contributing significant advancements to the field 

and demonstrating superior performance compared to existing technique 
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Chapter One: INTRODUCTION 

This chapter introduces the concept of malware, types of malwares, Android 

malware and security issues in Android. The objectives of the research work are 

highlighted. Chapter wise thesis coverage is summarized at the end of the chapter. 

1.1 Malware 

Malware refers to any type of malicious software or program code created with 

the intent to harm, exploit, or infiltrate a device without the user's consent. Examples 

of malware include Trojans, rootkits, and backdoors. These harmful programs can 

carry out various harmful activities, such as stealing sensitive information, encrypting 

or deleting data, taking control of critical system functions, and monitoring a user's 

actions without their knowledge or approval. Malware often disrupts normal 

operations, compromising both the security and privacy of the affected device. 

1.1.1 Types of Malwares 

The different types of malware function in distinct ways, depending on their 

purpose and design. The Figure 1.1 Shows various type of malware based on the 

purpose and design. 

 

Figure 1.1 Categories of Malwares 
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1.1.1.1 Viruses  

A Virus is a form of malicious software that embeds itself into legitimate files 

or programs and becomes active when the infected file is run. Its main goal is to 

replicate and spread across systems, typically through file sharing, email attachments, 

or exploiting network vulnerabilities. Once triggered, a virus can cause various types 

of harm, such as damaging or erasing data, disrupting system operations, stealing 

sensitive information, or opening pathways for further attacks. Certain viruses, like 

polymorphic variants, can modify their code to avoid detection by security software. 

The consequences can range from minor performance issues to significant data 

breaches and security threats. 

1.1.1.2 Worm 

A worm is a form of malware that replicates itself and spreads through 

networks without attaching to a specific file or program, setting it apart from traditional 

viruses. Worms take advantage of weaknesses in operating systems, applications, or 

network protocols to access systems, often doing so without requiring any action from 

the user. Once inside, a worm can quickly duplicate itself and send copies to other 

devices within the same network or across the internet. Unlike viruses, which rely on 

users to execute infected files, worms operate independently and can spread 

independently, making them especially dangerous.  

Worms can cause various levels of harm. In some instances, they may simply 

consume network bandwidth or overload system resources, leading to performance 

issues or crashes. However, more advanced worms are capable of delivering malicious 

payloads, such as installing backdoors for unauthorized access, deleting files, or 

distributing other types of malware like ransomware or spyware. Some worms can 

spread globally, causing widespread chaos, as seen with the ILOVEYOU and 

WannaCry worms, which infected millions of devices worldwide. Because of their 

ability to propagate quickly and cause damage without human interaction, worms are 

considered one of the most dangerous types of malware in networked environments. 

1.1.1.3 Trojan  

A Trojan, also known as a Trojan horse, is a type of malicious software that 

masquerades as a legitimate or beneficial application to deceive users into installing 
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it. Unlike viruses or worms, Trojans do not replicate or spread on their own but rely 

on social engineering techniques, such as pretending to be a helpful tool, game, or 

software update, to lure users into running the malicious code. 

Once installed, a Trojan can perform a variety of harmful tasks, depending on 

its design. Some Trojans act as backdoors, granting attackers remote access to the 

infected system, enabling them to steal data, install more malware, or take control of 

the device. Others may track keystrokes to collect sensitive information like passwords 

or financial details, while some can disable security measures, making the system more 

vulnerable to additional attacks. Banking Trojans specifically aim to steal credit card 

numbers, banking credentials, and other financial data. 

Trojans are typically spread through phishing emails, compromised websites, 

or deceptive downloads. After being installed, they can remain hidden for long periods, 

secretly gathering information or maintaining access for attackers. Well-known 

examples include the Zeus Trojan, which was involved in widespread financial theft, 

and Emotet, which has been used to spread ransomware or support botnet operations. 

Because they don’t self-replicate and often appear as legitimate programs, Trojans are 

particularly challenging to detect, making them one of the most dangerous forms of 

malware. 

1.1.1.4 Rootkits 

A rootkit is an advanced form of malware designed to grant unauthorized 

access to a system while remaining hidden from detection. By providing attackers with 

administrative or "root" level privileges, rootkits allow them to control the system at a 

fundamental level without being noticed. These tools are particularly dangerous 

because they can conceal both themselves and other malicious software from 

conventional antivirus programs and system monitoring tools, making detection and 

removal exceptionally challenging. 

Rootkits achieve this by altering system files, intercepting system calls, or 

embedding themselves directly into the operating system's kernel. Once established, 

they enable a wide range of malicious activities, such as data theft, remote command 

execution, user activity monitoring, disabling security mechanisms, and facilitating the 
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deployment of other malware. Due to their stealth capabilities, rootkits allow attackers 

to maintain long-term control over compromised systems without alerting the user to 

the breach. 

Installation of rootkits can occur through various methods, including phishing 

attacks, drive-by downloads, or the exploitation of software vulnerabilities. Rootkits 

are often classified by their operational depth, with kernel-level rootkits being the most 

severe, as they integrate into the core of the operating system, making them nearly 

impossible to detect or remove without specialized tools. User-level rootkits, on the 

other hand, focus on specific applications or services. 

A notable example of rootkit misuse was the Sony BMG incident, where a 

rootkit was covertly installed on users' computers via music CDs to enforce digital 

rights management (DRM), inadvertently creating significant security vulnerabilities. 

Given their ability to avoid detection and provide deep system control, rootkits 

represent a significant threat in the field of cybersecurity, and their removal often 

requires advanced techniques such as booting into secure environments or using 

specialized rootkit detection tools. 

1.1.1.5 Ransomwares 

Ransomware is a type of malware that restricts access to a computer system or 

its data, usually by encrypting files, and demands a ransom payment, often in 

cryptocurrencies like Bitcoin, for the decryption key. However, paying the ransom 

does not guarantee that the data will be recovered, and attackers may withhold the key 

or even re-target the victim later. 

This malware is typically spread via phishing emails, malicious attachments, 

or compromised websites that exploit security flaws. Once activated, ransomware 

locks users out by encrypting critical files or the entire system, rendering them 

unusable. A ransom message is then displayed, providing instructions on how to make 

the payment, usually with a deadline and the threat of permanent data destruction if 

the ransom is not paid. 

Ransomware attacks can differ in complexity. For instance, crypto-

ransomware encrypts files, making them unusable without the decryption key, while 
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locker ransomware prevents access to the system itself without necessarily encrypting 

files. More advanced versions, such as double extortion ransomware, not only encrypt 

files but also threaten to release sensitive information unless the ransom is paid, 

intensifying pressure on the victim. 

Significant ransomware attacks have affected many industries, including 

healthcare and critical infrastructure. Noteworthy examples include the WannaCry 

attack in 2017, which compromised hundreds of thousands of systems globally by 

exploiting a Windows vulnerability, and the Colonial Pipeline attack in 2021, which 

caused fuel supply disruptions across parts of the U.S. 

Preventing ransomware requires a combination of defensive measures, 

including regular software updates, strong passwords, multi-factor authentication, 

consistent backups, and user education to avoid phishing scams. Victims are often 

discouraged from paying the ransom, as it does not ensure data recovery and may 

encourage future attacks. Instead, reporting incidents to authorities and using backups 

or decryption tools is the recommended approach for recovery. 

1.1.1.6 Keyloggers 

Keyloggers are a type of malicious software or hardware designed to covertly 

record every keystroke on a device, enabling attackers to gather sensitive information 

such as passwords, credit card details, and personal messages. These tools operate 

stealthily, making them difficult for users to detect. There are two primary categories: 

software-based and hardware-based keyloggers. Software keyloggers are usually 

introduced into a system through phishing attacks or malware infections, capturing 

keystrokes at different levels, from application-level to deeper kernel-level operations. 

Hardware keyloggers, on the other hand, are physical devices inserted between the 

keyboard and computer, or integrated into the keyboard itself, logging keystrokes and 

either storing the data or sending it wirelessly. 

Keyloggers are often deployed via malicious emails, infected downloads, or 

compromised websites, and can remain hidden while collecting information over long 

periods. The stolen data is then sent to attackers, who use it for identity theft, financial 

fraud, or unauthorized system access. This makes keyloggers particularly hazardous 
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for both individuals and businesses. For individuals, they can lead to the loss of 

personal data and financial harm. In organizations, keyloggers can result in serious 

security breaches, exposing confidential information and giving attackers access to 

critical systems. 

Effective prevention of keylogger threats requires a layered defense strategy. 

Antivirus and anti-malware software are useful in detecting and removing most 

software keyloggers, though some advanced variants can evade detection. Anti-

keylogging tools, two-factor authentication, and keeping systems updated with 

security patches can also help reduce risks. To protect against hardware keyloggers, 

maintaining physical security and regularly inspecting computer devices for suspicious 

attachments is crucial. Keyloggers have been involved in some of the most notorious 

cyberattacks, such as the Zeus Trojan, which targeted online banking data, illustrating 

the significant damage they can cause if not addressed. 

1.1.1.7 Graywares 

Grayware refers to software that falls between legitimate programs and 

malicious software. While it may not inflict direct harm like viruses or ransomware, it 

can still degrade system performance, compromise privacy, and negatively affect user 

experience. Grayware encompasses various unwanted applications, including adware, 

spyware, and potentially unwanted programs (PUPs), which are often unknowingly 

installed alongside free software or through deceptive ads and insecure websites. For 

instance, adware inundates users with intrusive advertisements, while spyware tracks 

user activity and gathers sensitive data without permission. PUPs may introduce 

unnecessary toolbars or alter browser settings without consent. Though typically less 

destructive, grayware can slow down systems, invade user privacy by collecting 

information for third parties, and increase the risk of more dangerous malware 

infections. Grayware often spreads unnoticed through bundled software or phishing 

attacks. Despite being less harmful than other types of malware, grayware can still lead 

to significant performance issues, security vulnerabilities, and privacy concerns, 

making its removal and prevention essential. Preventive measures include 

downloading software from trusted sources, carefully reviewing installation options to 

avoid bundled software, and using security tools to detect and remove grey ware. 
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1.2 Malware in Smartphones 

Smart devices are electronic gadgets that can connect, share, and interact with 

their users and other devices. They utilize advanced computing and connectivity 

technologies to provide enhanced functionality and convenience. Smart devices 

encompass a wide range of gadgets that enhance our daily lives through advanced 

technology and connectivity. 

There are different types of smart devices available in today's world like 

smartphones, smart watches, smart home devices, smart lighting, smart security 

systems, smart appliances, smart TVs and entertainment systems, smart cars, smart 

health devices etc. The smartphone has established themselves as the dominant smart 

devices in the modern digital landscape. Their ubiquity, versatility, and continuous 

innovation set them apart from other smart devices, making them indispensable to our 

daily routines. 

Smartphones have become the personal desktop computers of the modern era, 

integrating seamlessly into our daily lives and profoundly influencing various facets 

of contemporary society. These devices offer a wide range of capabilities once 

reserved for Personal Computers (PCs), including browsing the internet, managing 

emails, capturing high-quality photos and videos, and using navigation tools. Their 

versatility extends to online shopping, gaming, social networking, and location-based 

services [1, 2, 3, 4]. 

In recent years, the increased connectivity options in smartphones, such as 

Bluetooth, GPRS, and Wi-Fi, [5, 6] have significantly enhanced the availability of 

these ubiquitous services [7, 8]. This connectivity, coupled with feature-rich apps, has 

made smartphones far more powerful than early PCs, escalating their popularity [9, 

10]. Smartphones are not just tools for communication; they also support education, 

personal organization, health monitoring, and control of smart home devices, 

revolutionizing how we work, entertain ourselves, and access information. 

In today's digital age, smartphones are indispensable, functioning as mini-

computers that fit into our pockets. They enable us to perform a wide array of tasks 
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that were once limited to desktops, transforming various aspects of our lives. Here's a 

deeper look into their impact 

✓ Communication: Beyond calls and texts, smartphones allow instant 

messaging, video calls, and social media interactions, keeping us connected 

globally. 

✓ Work: With mobile office apps, email management, and remote 

conferencing tools, smartphones facilitate productivity and remote work, 

blurring the lines between office and personal time. 

✓ Entertainment: Streaming services, gaming apps, and multimedia 

capabilities provide endless entertainment options that are accessible 

anytime and anywhere. 

✓ Information Access: Real-time news updates, educational content, and 

digital libraries make smartphones a vital tool for staying informed and 

continuing education. 

✓ Health and Fitness: Health apps and wearable integrations help monitor 

physical activity, diet, and overall well-being, promoting a healthier 

lifestyle. 

✓ Convenience: Online shopping, mobile banking, and digital payments 

simplify daily transactions, making financial management and shopping 

more efficient. 

✓ Navigation and Travel: GPS and location-based services guide us through 

unfamiliar territories, enhancing travel experiences and daily commutes. 

✓ Smart Home Integration: Smartphones control various devices, from 

lighting and security systems to home entertainment, creating a more 

connected and automated living environment. 

Smartphones have thus become integral to modern life, offering functionalities 

that significantly enhance our efficiency, connectivity, and overall quality of life. The 

dominance of smartphones is evident in their market share, which is now 20% higher 

than desktops1. The Figure 1.2 shows the Desktop vs Mobile vs Tablet market share 

 

1 https://techjury.net/blog/mobilevsdesktop-usage/ 
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worldwide from 2014 to 2024. This shift underscores the growing preference for 

mobile devices, highlighting how smartphones have surpassed desktops in terms of 

usage2. Their convenience, portability, and multifunctionality make them 

indispensable in our fast-paced, technology-driven world.  

 

Figure 1.2 Desktop vs Mobile vs Tablet Market Share Worldwide 

Among the various types of smartphones available in the market, those running 

the Android operating system are the most popular. This popularity can be attributed 

to the fact that Android is an open-source platform adopted by numerous 

manufacturers. According to a report by Statcounter3, the Android operating system 

dominates the global mobile market, holding a 70% share. This substantial market 

share is a key factor behind the frequent malware attacks targeting the Android 

platform in recent years. The Figure 1.3 shows the Mobile Operating System Market 

Share Worldwide 2014 to 2024. The figure depicts that Android has been the leading 

 

2 https://gs.statcounter.com/platform-market-share/desktop-mobile 

tablet/worldwide/#yearly-2014-2024 
3 https://gs.statcounter.com/os-market-share/mobile/worldwide/#yearly-2014-2024 
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mobile OS since 2014, and its market share has consistently increased in the last few 

years. 

 

Figure 1.3 Mobile Operating System Market Share Worldwide 2014 - 2024 

Android's widespread adoption and open-source nature make it an attractive 

target for cybercriminals, leading to a higher incidence of security threats than other 

mobile operating systems. The Android operating system has held a dominant position 

in the smartphone industry for the past decade. This dominance is partly due to its 

open-source nature, which encourages widespread adoption by numerous 

manufacturers. Within the Android API framework, functions that provide access to 

sensitive system resources are available. Unfortunately, this accessibility has been 

exploited by cyber attackers who develop and distribute malicious applications via 

alternative app stores or through social media advertisements. Attackers can also 

embed harmful components within legitimate Android applications. 

These malicious applications enable attackers to perform various harmful 

activities, including stealing personal information, sending unauthorized SMS 

messages, and remotely controlling the device. As a result, it is crucial to implement 

robust security measures to protect smartphones from these threats. Given the high 

market share of Android devices, the frequency and sophistication of these attacks 
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underscore the need for vigilant security practices to safeguard user data and maintain 

device integrity [11, 12, 13].  

1.3 Android Mobile Malware 

In several ways, mobile devices or smartphones present more significant 

security risks to users compared to traditional PCs [11] . These devices are equipped 

with sensors that can inadvertently expose stored information, including images, 

videos, and even the user's location [12]. Moreover, many users store sensitive data, 

such as banking details or authentication credentials, on their smartphones, making 

these devices attractive targets for attackers. The rapid rise in smartphone popularity, 

along with widespread user adoption, has been accompanied by a corresponding 

increase in malware attacks. 

According to a report4 , several mobile Trojan subscribers were discovered on 

Google's official app marketplace in 2022. A blog post by the renowned antivirus firm 

McAfee revealed that 60 Android apps, with 100 million downloads, were spreading 

a new strain of malware to unsuspecting users5 . TechRadar reported a new 

ransomware named "Daam," which can evade antivirus software6. Statista7 shared data 

showing that 5.6 million Android malware samples were identified in 2020, with 

millions more detected annually from 2016 to 2020. The surge in Android malware 

and riskware activity throughout 2023 marks a concerning shift after a period of 

relative calm. Reaching levels reminiscent of early 2021 by year-end8. Android 

devices are 50 times more likely to be infected with malware than iOS devices9. These 

findings highlight the urgent need for robust Android malware detection mechanisms 

 

4 https://securelist.com/mobile-threat-report-2022/108844/ 
5 https://www.mcafee.com/blogs/other-blogs/mcafee-labs/goldoson-privacy-

invasive-and-clicker-android-adware-found-in-popular-apps-in-south-korea/ 
6 https://www.techradar.com/news/this-dangerous-new-malware-also-has-

ransomware-capabilities 
7 https://www.statista.com/statistics/680705/global-android-malware-volume/   
8 https://securelist.com/mobile-malware-report-2023/111964/ 
9 https://www.getastra.com/blog/security-audit/malware-statistics/ 
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to effectively identify and mitigate malicious applications. The increase in malware 

attacks on the Android platform can be attributed to several factors [16]: 

✓ The widespread use of Android worldwide means that many users store 

sensitive information on their smartphones, making them lucrative targets for 

identity theft by malware developers. 

✓ Android's open-source kernel policy allows attackers to gain a deep 

understanding of potential vulnerabilities within the system's architecture. 

✓ Third-party app markets provide an easy avenue for distributing malicious 

applications. 

✓ The similarity between desktop operating systems and Android makes it easier 

for attackers to adapt their techniques from desktop environments to the 

Android platform. 

There are several methods through which malicious content can be introduced 

into smartphones, including SMS/MMS, Bluetooth, app markets, internet downloads, 

and update attacks [17]. Here's a brief overview of each infection vector: 

✓ SMS/MMS: Messaging services like SMS and MMS have been exploited as 

attack vectors by malware such as ComWar and Yxe on the Symbian platform 

and FakeToken on Android. 

✓ Bluetooth: Attackers can use Bluetooth technology to spread malware 

between devices within communication range. For example, the Symbian-

based Cabir and Android-based BlueFrag malware utilized Bluetooth to 

propagate across devices and steal data. 

✓ App Markets: App markets are a common entry point for malware 

distribution. Many Android malware samples are introduced through these 

markets, often using the repackaging technique. This involves disassembling 

an existing app, embedding malicious code, and repackaging it. Malware 

families like jSMSHider, DroidDream, and BgServ on Android were spread 

using this method. 

✓ Internet Downloads: The drive-by-download technique, commonly used on 

desktop systems, also applies to smartphones. Users are tricked into clicking 

malicious links, which then download harmful components in the background. 
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Malware such as GGTracker, JiFake, and Zitmo on Android, PhoneCreeper on 

Windows, and Ikee on iOS have infected devices through this method. 

✓ Update Attacks: Many applications require periodic updates to stay current. 

Initially, an app might be harmless, but it can download malicious code during 

an update, thereby infecting the smartphone. Examples include AnserverBot, 

Plankton, and BaseBridge, which targeted Android devices using this attack 

strategy. 

Table 1.1 outlines the different threats that smartphone malware poses to users 

and devices. These threats include system damage, financial loss, and data leakage, 

among others. In addition to these, mobile devices can be exploited by malware 

developers for cyberbullying and sending spam messages on Online Social Networks 

(OSNs) [18, 19, 20]. 

Table 1.1Threats Posed by Smartphone Malware 

 Threats Malware Example 

System 

Damage 

Disable  System Functions like 

Block the Calling Service 

Fakebank (Android), Skulls 

(Symbian) 

Battery Draining DrainerBot (Android),Cabir 

(Symbian) 

Change system configuration 

such as Wallpaper 

ExpensiveWall (Android), Ikee 

(iOS) 

Financial 

Loss 

Send SMS / MMS FakePlayer, HippoSMS (Android) 

Dialling premium numbers BaseBridge, BeanBot (Android) 

Information 

Leakage 

Privacy Breach BaseBridge (Android) 

Stealing Banking Information EventBot (Android), ZeusMitMo 

(Symbian) 

Remote 

Control 
Mobile Botnet ADRD, AnserverBot (Android) 
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1.4 Security Issues in Android 

Android, being one of the most widely used mobile operating systems, faces 

various security issues due to its open nature, diverse hardware ecosystems, and 

popularity. While Google and manufacturers continually update and improve security 

measures, several vulnerabilities still exist that can be exploited by attackers. Here are 

some of the key security issues in Android: 

1. Information leakage: It happens when users unknowingly grant too many 

permissions to apps, and the Android operating system doesn't enforce strict 

enough limits on how those permissions are used. This enables apps to access 

personal data like location, contacts, messages, and even the device's 

microphone and camera, which can then be misused or shared with third parties 

without the user’s consent. Many apps, particularly those from third-party 

sources, request more permissions than they need, posing a privacy risk. Older 

Android versions worsened this issue by lacking detailed permission control, 

forcing users to either accept all permissions or skip the app altogether. While 

newer Android versions allow users to selectively manage permissions, many 

still approve access without understanding what data is being collected or how 

it’s utilized. Additionally, some apps include third-party libraries or SDKs that 

gather and share user data for advertising or analytics, increasing privacy 

concerns. This leads to risks such as unauthorized data collection, profiling, 

and exposure to security threats like phishing or identity theft. To reduce these 

risks, users should carefully examine app permissions, remove unnecessary 

access, and use tools that focus on privacy. Android’s evolving permissions 

system, alongside informed user practices, is key to minimizing information 

leakage and safeguarding user privacy. 

2. Privilege escalation: Privilege escalation in Android occurs when an attacker 

gains elevated permissions or control over a device by exploiting system 

vulnerabilities, particularly within the kernel. The kernel, as the core 

component of the operating system, manages hardware resources and controls 

key system operations. When attackers find and exploit weaknesses in the 
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kernel, they can increase their access from a regular user or app level to that of 

a root or system administrator, effectively bypassing security controls and 

taking full control of the device. Attackers often gain initial access through 

methods like malicious apps or phishing, then leverage kernel vulnerabilities, 

such as buffer overflows or race conditions, to execute unauthorized code and 

escalate their privileges. With elevated access, they can alter system settings, 

steal sensitive data, install malware, or create backdoors for future attacks. This 

kind of attack is particularly dangerous because root-level access allows an 

attacker to override most security protections on the device. They can steal 

personal information, install persistent malware, or even make the device 

unusable by altering critical system files. Notable exploits, like the "Dirty 

COW" vulnerability, highlight how attackers have used kernel flaws to gain 

root access. Preventing privilege escalation requires keeping the system up-to-

date with security patches, carefully managing app permissions, and avoiding 

practices like rooting that disable essential security features. By applying 

regular updates and leveraging security tools such as SELinux, the risk of 

privilege escalation can be significantly reduced, though it remains a serious 

threat if kernel vulnerabilities go unaddressed. 

3. Repacking of Application: Repackaging of applications on Android is a 

significant security threat where attackers modify genuine apps by reverse 

engineering them and injecting malicious code before redistributing them to 

unsuspecting users. This process starts when attackers obtain the APK 

(Android Package) file of a legitimate app, decompile it using common tools, 

and then introduce harmful elements like spyware, malware, or adware into the 

app’s code. After making these changes, the attacker repackages the app, 

making it appear as though it is the original, unaltered version. The modified 

app is then shared through unofficial app stores, third-party websites, or via 

direct download links, often marketed as free or enhanced versions of popular 

apps. Because the repackaged app typically retains its core functionality, users 

may not realize that they have downloaded a compromised version. While the 

app continues to function as expected, it may secretly collect sensitive 

information such as passwords, financial details, or location data and transmit 
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it to the attacker. Additionally, repackaged apps can deliver harmful software 

like ransomware, install further malware, or convert the device into part of a 

botnet. This attack is facilitated by Android’s open ecosystem, which allows 

apps to be downloaded from various sources beyond the Google Play Store, 

where security checks might be less strict or nonexistent. Users are often 

enticed by unofficial sources offering premium features or unlocked content, 

making them more susceptible to these threats. To defend against repackaged 

apps, it's important to download apps only from trusted sources, carefully 

review app permissions, use mobile security tools, and avoid apps that request 

excessive or unnecessary permissions. 

4. Denial of Service Attack: A Denial of Service (DoS) attack on a smartphone 

occurs when an attacker deliberately overwhelms the device’s resources, such 

as the CPU, memory, or network bandwidth, making it difficult or impossible 

to use. Malicious apps can be designed to carry out such attacks by overloading 

system resources or triggering excessive background processes that strain the 

device. For example, a malicious app may continuously send data requests or 

initiate tasks that exhaust the device’s processor, leading to sluggish 

performance, system freezes, or crashes. In severe cases, the phone may 

become unresponsive, preventing users from performing basic functions like 

making calls, sending messages, or using other apps. DoS attacks may also 

target the device’s network connection by flooding it with excessive traffic, 

causing significant slowdowns or disconnecting the device from the internet 

altogether. These attacks can interfere with daily usage, disrupt business 

activities, and cause the battery to drain faster than usual, forcing users to 

reboot their devices or uninstall problematic apps to regain control. In some 

cases, these malicious apps may also be part of a larger network of infected 

devices, turning the smartphone into a participant in a distributed denial-of-

service (DDoS) attack. To prevent DoS attacks, users should avoid suspicious 

apps, manage app permissions carefully, and keep their devices updated with 

security patches to address potential vulnerabilities. 

5. Colluding: Colluding attacks occur when multiple applications installed on a 

device work together to take advantage of the system's shared user ID (UID) 
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feature, typically available to apps signed with the same developer certificate. 

On Android, apps with the same certificate can share a UID, allowing them to 

exchange data and permissions without the usual separation enforced between 

different apps. This collaboration enables these apps to pool their permissions, 

allowing them access to more system resources and sensitive data than they 

could individually. Each app might request only a few basic permissions, but 

by sharing their access through a common UID, they collectively gain 

unauthorized access to critical information. For instance, one app may have 

permission to access the internet, while another can access a user’s contacts or 

location data. While these permissions might seem benign on their own, the 

combination of these permissions across multiple colluding apps can result in 

sharing sensitive data, leading to privacy issues, data theft, or abuse of device 

resources. Colluding apps can also bypass typical security detection, as each 

app might appear harmless when viewed separately. Users may not realize that 

seemingly unrelated apps are working together to exploit system capabilities. 

To guard against these attacks, users should carefully review app permissions, 

limit the installation of apps from the same developer unless necessary, and use 

security tools that monitor for unusual data sharing between apps. 

6. Fragmentation and Delayed Updates: Fragmentation and delayed updates 

present major security issues in the Android ecosystem, largely due to the 

diversity of devices, manufacturers, and customizations. Since Android is 

open-source, manufacturers can modify the operating system to fit their 

specific hardware, resulting in different versions and models across devices. 

When Google releases a new update or security patch, it has to pass through 

various manufacturers and carriers, who must adapt it to their devices before it 

reaches users. This process can lead to significant delays or, in some cases, 

prevent certain devices from receiving updates altogether. This problem is 

worsened by the fact that many devices continue to operate on outdated 

Android versions, making them susceptible to known security vulnerabilities. 

The delay in pushing out security patches and system updates leaves millions 

of devices at risk for cyberattacks. Additionally, many manufacturers stop 

supporting older models after a certain period, leaving them without necessary 
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updates. This fragmentation weakens Android's overall security and makes it 

challenging for users to access the latest protections and features. As a result, 

users need to be extra cautious, often relying on third-party security solutions 

or upgrading to newer devices that receive more timely updates. 

7. Malicious Apps and Google Play Store: Malicious apps remain a significant 

security threat for Android users, even on the Google Play Store, which is 

generally seen as the safest place to download apps. Despite Google’s security 

measures, such as Play Protect, some harmful apps manage to bypass detection 

and become available for users to download. These malicious apps often 

disguise themselves as legitimate tools, games, or services, tricking users into 

installing them. Once installed, they may engage in a variety of harmful 

activities, such as stealing personal data, tracking user behaviour, displaying 

unwanted ads, or installing additional malware. These apps sometimes request 

excessive permissions, such as access to contacts, messages, or location data, 

which they can misuse for purposes like identity theft or fraud. While Google 

continually works to find and remove these apps, the sheer number of apps on 

the platform means that some still slip through, especially when initially 

harmless apps turn malicious after updates. Users who download apps from 

unofficial sources face an even higher risk, as those apps are not subject to 

Google’s security screenings. To stay secure, users should carefully manage 

app permissions, regularly review their installed apps, and avoid downloading 

software from untrusted sources. 

8. Weak Encryption and Data Security: Encryption is designed to protect 

sensitive information, such as personal data, financial transactions, and 

communications, by converting it into a coded format that only authorized 

users with the correct decryption key can access. However, when encryption is 

either weak or poorly implemented, it can be easily compromised by attackers, 

leaving confidential data vulnerable to unauthorized access, theft, or 

manipulation. On Android, encryption is intended to protect both data stored 

on the device and information transmitted over networks. Vulnerabilities arise 

when apps use outdated encryption methods or fail to apply encryption, leaving 

user data, particularly at risk when transmitted over unsecured networks like 
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public Wi-Fi. For example, if login credentials are not encrypted properly, 

hackers can intercept them during transmission, potentially leading to account 

breaches. Additionally, some Android devices, especially older ones or those 

running outdated software versions, may not have encryption enabled by 

default, increasing the likelihood of data being exposed. Applications that store 

sensitive data locally without adequate encryption can make that data 

accessible if the device is lost, stolen, or compromised. Developers may also 

make critical mistakes in implementing encryption, such as embedding 

hardcoded encryption keys within the app, which can be extracted through 

reverse engineering. Weak encryption leaves individual users vulnerable to 

risks such as identity theft and financial fraud, and it also poses broader security 

concerns for organizations where employees use Android devices to access 

corporate networks and sensitive data. To minimize these risks, both Android 

devices and apps must adhere to robust encryption standards, ensure that 

software is regularly updated, and apply proper encryption techniques. Users 

should also take extra steps, such as enabling device encryption, using secure 

networks like VPNs, and avoiding apps that fail to follow best security 

practices. 

9. Rooting and jailbreaking are processes that give users full access to their 

Android or iOS devices by bypassing manufacturer or operating system 

restrictions. While these actions provide benefits such as greater customization, 

the ability to remove unwanted pre-installed apps, and the option to install 

third-party apps unavailable on official platforms, they also introduce 

significant security risks. By obtaining root or administrative privileges, users 

can modify system files and install custom software, but this often disables the 

device's built-in security measures. Devices that have been rooted or jailbroken 

are particularly susceptible to malware, as they allow apps from unverified 

sources, which may not have been subjected to security screenings. 

Furthermore, these devices are more prone to data breaches, instability, and 

performance problems, especially when using custom ROMs or unauthorized 

modifications. Another drawback is that rooting or jailbreaking typically voids 

the device's warranty, leaving manufacturers unwilling to offer support for any 
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issues. Additionally, these devices may not receive important software updates 

or security patches, increasing their vulnerability to cyberattacks. While 

rooting or jailbreaking unlocks advanced customization and features, the 

associated security risks and potential loss of device stability and manufacturer 

support make it a risky decision. 

10. Open Wi-Fi Networks and Man-in-the-Middle Attacks: Open Wi-Fi 

networks, commonly found in public places like cafes, airports, and hotels, 

pose serious security risks due to their lack of encryption. These networks are 

accessible to anyone within range, often without requiring a password or any 

form of authentication. While convenient, they provide an easy target for 

attackers looking to exploit vulnerabilities and intercept data being transmitted 

between a device and the network. Since these networks lack proper 

encryption, sensitive information such as login credentials, financial details, 

emails, and other personal data can be exposed to malicious actors. Users may 

mistakenly assume their connection is secure, not realizing that they are at 

greater risk of being targeted by cybercriminals. One of the primary threats on 

open Wi-Fi is a Man-in-the-Middle (MitM) attack, where an attacker inserts 

themselves between the user and the Wi-Fi network, intercepting the data that 

is being exchanged. In this attack, the hacker can monitor all communications, 

including sensitive information like passwords, credit card numbers, and 

private messages. Additionally, the attacker can manipulate the data being sent, 

potentially injecting malicious code that compromises the security of the 

device. MitM attacks are particularly dangerous because they often go 

unnoticed, as the attacker can make the connection appear normal to the user. 

In some cases, attackers may set up rogue Wi-Fi networks that appear to be 

legitimate public networks, tricking users into connecting. Once connected, the 

attacker gains full access to the user's internet traffic, allowing them to steal 

information or distribute malware. To protect against the risks of open Wi-Fi 

networks and MitM attacks, users should avoid sending sensitive information 

over unsecured networks, use Virtual Private Networks (VPNs) to encrypt their 

data, and ensure that they only visit websites secured with HTTPS. It is also 

wise to disable automatic connections to public Wi-Fi and exercise caution 
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when connecting to unknown or unsecured networks. Taking these steps can 

help reduce the chances of falling victim to a MitM attack or other forms of 

data interception on open Wi-Fi networks. 

1.5 Motivations and Research Gaps 

The work proposed in thesis aims to design and develop malware detection 

techniques for Android based smart phones. Smartphones have gained popularity over 

desktops because of their portability, continuous connectivity, and versatility. They 

provide users with the convenience of accessing the internet, apps, and communication 

tools from anywhere, making them an integral part of everyday life. Consequently, 

smartphones have become the primary device for many people, overtaking desktops 

in usage and engagement. 

Android-based smartphones are more attack-driven in comparison to other 

mobile operating system-based smartphones. The increase in malware attacks on 

Android smartphones can be attributed to several factors. Android's widespread 

adoption makes it an attractive target for cybercriminals, and its open-source nature 

facilitates the exploitation of vulnerabilities. Fragmentation within the Android 

ecosystem often results in delayed security updates, leaving many devices vulnerable. 

Additionally, third-party app markets, which frequently lack robust security measures, 

and the common practice of repackaging legitimate apps with malicious code, 

exacerbate the issue. User behaviour, such as granting excessive permissions or 

downloading apps from unreliable sources, further heightens the risk. These elements 

combined have contributed to the sharp rise in malware attacks on Android devices. 

The primary focus of this section is to describe the motivation behind the 

research work carried out in this thesis. The motivations are based on the research gaps 

identified during the literature survey. The following research gaps were identified 

from the literature survey: 

1. On Android devices, one of the built-in defense mechanisms is the permissions 

system, which controls the access privileges granted to applications [21]. 

Despite this, the system has proven inadequate in preventing malware attacks. 

For example, when downloading an app, users must grant all the requested 
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permissions to proceed with the installation. Most users tend to overlook the 

permissions list and grant them without much consideration. Even those who 

do review the permissions may struggle to recognize potential risks. This 

vulnerability has been exploited by attackers to infiltrate the Android platform 

in recent years. Consequently, there is a need for more effective Android 

malware detection mechanisms to protect against these threats. 

2. Most research in the field of Android malware analysis, particularly within the 

static analysis category, has concentrated heavily on the permissions 

component of the Android manifest file [22, 23, 24, 25, 26]. This focus is due 

to the critical role that permissions play in determining what a particular app 

can do on a device, such as accessing the camera, contacts, or location data. 

Significantly less amount of research considers another component of the 

manifest file. Also, .dex files which contain all Android classes compiled into 

dex file format are not largely utilized for malware analysis and detection in 

comparison to permissions. 

3. Some malware samples are advanced enough to bypass static detection through 

update attacks. Therefore, a dynamic detection model is necessary to identify 

and counteract these types of threats. Many malware samples can evade static 

detection because they obfuscate their malicious component or download their 

malicious component at run time. Static-based solutions may not detect such 

stealthy obfuscated malware. Regarding dynamic analysis, Memory forensics 

has been used in Windows/Linux desktop systems to detect malicious activities 

[27, 28, 29, 30] to detect malicious activities, but to the best of our knowledge, 

it is still unexplored in the field of Android malware detection.  

4. Both dynamic and static analysis methods have their strengths and weaknesses 

when it comes to malware detection. Static analysis often struggles with code 

obfuscation techniques, as well as polymorphic and metamorphic malware, 

whereas dynamic analysis is more effective in these cases by examining the 

runtime behaviour of a program, which is difficult to obfuscate. However, 

dynamic analysis is time-consuming, as each malware sample must be 

executed within a secure environment that differs from a real runtime setting, 

potentially leading to different behaviours [31, 32]. To overcome the 
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limitations of both approaches, a combined method that integrates static and 

dynamic features appears promising for malware classification. Despite this, 

most research has focused on either static or dynamic analysis individually, 

with limited exploration of hybrid approaches. 

1.6 Research Objectives 

The previous section briefly explained the motivations and research gaps in the 

literature. This section briefly highlights the research objectives as follows: 

1. To design and develop a novel malware detection technique using static 

features either from Android manifest files or .dex files or combination of both. 

2. To design and develop a new hybrid malware analysis technique based on static 

and dynamic features in optimal combination for Android devices. 

3. To develop a memory forensics-based technique for classifying Android-based 

applications for malware detection.  

1.7 Contribution of Research Work 

Figure 1.4 depicts the broad overview of the research performed at different 

stages of this thesis. We proposed three Techniques for Android malware detection. 

We briefly explain the contribution of each of the proposed technique as follows: 

 

Figure 1.4 Overview of the proposed work of the thesis 
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1. We have used permissions, API calls, system commands, and opcodes with 

rough set theory for Android malware detection. To the best of our knowledge, 

we are the first to apply rough set theory to the static features mentioned above. 

The rough set theory has several advantages, such as attribute selection and its 

ability to work with qualitative and quantitative attributes. We used a 

Discernibility Matrix to rank and further calculate the reduct of the above 

features. Ranking of features is done to highlight essential features. Reduct, a 

reduced feature set, is estimated to improve the overall detection rate with the 

most minor features. We applied several Machine Learning (ML) algorithms 

such as Support Vector Machines (SVM), K-Nearest Neighbor, Random 

Forest, and Logistic Regression for malware detection. Our results demonstrate 

an overall accuracy of 97%, better than many state-of-the-art detection 

techniques proposed in the literature. 

2. We proposed a covalent bond-based Android malware detection model using 

permissions and system call pair. We use the analogy of covalent bonds 

between two atoms in chemistry to form covalent bonds between every 

permission and system call. We also calculate bond strengths between 

permission and system call pairs to denote the strength of the bond they create 

between them. The estimated bond strength helps detect an Android application 

as malicious or benign. Our detection results demonstrate an overall accuracy 

of 97.5%, better than many state-of-the-art detection techniques proposed in 

the literature. 

3. We developed a visual malware detection technique based on process memory 

dump files. An Android process memory dump, referred to as a memory dump 

or core dump, captures the memory snapshot of a running process on an 

Android device at a specific instance. It encompasses details concerning 

memory allocation, variables, registers, and other pertinent data structures 

linked to the process. 

1.8 Organization of Thesis 

The dissertation explaining research work during the Ph.D. is organized into 

six chapters. Chapter 1 gives the introduction to the field of Android malware detection 
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and outlines the motivation behind the research. Chapter 2 is dedicated to the literature 

review of existing studies and research in the field of Android malware detection. 

Chapter 3 focuses on using permissions, API calls, system commands, and opcodes 

with rough set theory for Android malware detection. Chapter 4 is dedicated on 

building the permission and system call covalent bond pairs to identify and analyze 

the impact of these pairs for malware detection on Android. Chapter 5 is dedicated to 

propose a novel Android malware detection mechanism based on visual techniques. 

The mechanism is based on converting Android process memory dump files into 

grayscale images. Chapter 6 summarizes the conclusions inferred from this research 

work and highlights the potential future work in this ar
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Chapter Two:  
LITERATURE REVIEW 

This chapter presents a comprehensive review of techniques for Android 

malware detection. The Android malware detection techniques can be broadly divided 

into three types: static analysis, dynamic analysis and hybrid analysis. Static detection 

is the art of malware detection technique in which the features are extracted from the 

source code without executing the source code. Dynamic detection is the technique in 

which the run time behaviour of code is examined while the code is under execution. 

Hybrid detection is the combination of both as it uses the methodology of both static 

and dynamic analysis. 

2.1 Static detection 

This section describes research in the area of static malware detection 

techniques and centers on three main techniques, namely detection based on manifest 

files, API calls and Java code. Therefore, the section is divided into three sub sections, 

including, manifest file-based detection, API calls-based detection and java code-

based detection. 

2.1.1 Manifest File Based Detection 

In this subsection, we covered studies that have been conducted about the 

features extracted from the manifest files of Android applications in the context of 

malware detection. According to Grace et al. [33], applications that integrated ad 

libraries into their main programs posed a threat to Android devices, as the offline 

work tended to emphasize the insecure aspects of the bundled ad libraries to host app 

relationships. Others like Enck et al. [34] formalised a simple certification scheme in 

terms of the security properties of the applications in order to provide an anti-virus 

against the highly aggressive applications. Considering mobile malware related 

anxious security concerns [23], Li and colleagues developed SIGPID, a malware 

detection that reduce over-privileged permission identification of malware 

applications by applying 3 levels of pruning. Further, Talha et al. [35] created a client 
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– server application APK-auditor which helps in detection of malicious applications 

based on maintenance of the Android profile database using permission analysis. 

The authors in [36] developed a context category ontology based on 

permissions to identify the potential risk of information leakage caused by malicious 

activities. Song et al. [37] created a prototype called ASE, which uses four levels of 

filtering based on static analysis to classify an application as either benign or 

malicious. DroidChain [38] is another detection approach that employs static analysis 

combined with a behaviour chain model to identify four types of malicious behaviours: 

privacy leakage, SMS financial fraud, malware installation, and privilege escalation. 

ProDroid [39] is a behaviour-based detection model that leverages biological sequence 

techniques and a Markov chain model to compare the classes and APIs of decompiled 

apps with stored malicious behaviour patterns. Moonsamy et al. [40] analyzed both 

requested and used permissions to extract contrasting permission sets, which were then 

used to classify applications as either benign or malicious. 

Idrees et al. [41] employed intent filters and permissions to classify 

applications as either benign or malicious. Wang et al. [21] focused on ranking 

requested permissions by risk, selecting the most risky subset to train machine learning 

models. The authors in [42] introduced DroidRanger, a tool for detecting malicious 

applications using permission behaviours and heuristic filtering, which also 

successfully identified zero-day malware. Qiu et al. [43] uniquely annotated detected 

malware capabilities, particularly concerning security and privacy issues. In [44], 

APIs, intents, and permissions were analyzed to establish similarity associations with 

malware samples, detecting malicious applications using Hamming distance. 

Bai et al. [45] tried to develop a fast malware detection system by taking into 

account numerous features such as permissions and opcode sequences. Drebin [46] is 

a light-weight method for cell phone malware detection, capable of identifying 

malicious apps within ten seconds after the download of such an app. Varsha et al. [47] 

evaluated the feature selection technique of the most valuable features from different 

sets of static features. Mahindru et al. [48] tested ten different feature selection 

techniques to choose the most optimal set of features for efficiently detecting malicious 

applications. 
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Khariwal et al. [49] proposed a novel method to find the best permissions and 

intents combined to detect malicious applications. PermPair [50] is another malicious 

application detection technique that creates permission pairs from each application and 

further constructed malicious and normal permissions pair graphs used for the 

detection mechanism. The work in [51] uniquely compared the dynamics between 

requested permissions and intent filters. In manilyzer [52], stress was given on using 

different manifest components along with requested permissions. Sanz et al. [53] 

developed a malware detection model based on used permissions. Li et al. [54] 

developed a malware detection model using multiple features both from the manifest 

file as well as from the source file, whereas Sato et al. [55] used multiple features from 

the manifest file only. 

2.1.2 API Calls-Based Detection 

Several researchers have utilized static API calls to identify Android malware. 

The Droidmat model [56] employed a combination of manifest file features and API 

calls and applied K-means and KNN algorithms for malware detection. Another study 

[57] examined user-triggered dependencies and sensitive APIs in malicious apps, 

while Zhang et al. [58] constructed dependency graphs of API calls to categorize 

malicious apps into Android malware families using similarity metrics. The authors of 

[59] introduced a model called Apposcopy, which examined control-flow and dataflow 

properties derived from API calls to detect malware. Wang et al. [60] focused on 

analyzing string features like permissions and intents, as well as structural features 

such as API calls and function call graphs, on detecting malicious behaviour in 

Android apps. Similarly, the work described in [61] involved the analysis of API calls 

and their call graphs for malware detection. 

2.1.3 Java Code-Based Detection 

Zhu et al. in [62] developed an image-based malware detection method that 

extracts important parts of Dalvik code and converts it to RGB images. Fang et al. [63] 

also used RGB images generated from Dex files but, apart from classifying an 

application as benign or malicious, did malware familial classification. The work [64] 

eliminated code confusion and calculated scores for every code word based on their 
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importance, which deep learning models then used to detect malicious applications. 

CDGDroid [65] is another technique to detect Android malware based on control flow 

graphs and data flow graphs that are constructed from the code of the application with 

the help of program analysis techniques and later on used as features for the CNN 

model. Xiao et al. [66] developed a method that captures the system call sequence from 

the code of the application, and the captured system call sequence is used to train 

LSTM to detect malicious applications. To form the malware detection model, 

MSNDroid [67] incorporated native-layer code features and combined them with 

permissions and Java layer components. 

2.2 Dynamic Detection 

This section describes the techniques available in literature for performing 

malware detection using dynamic analysis. While static analysis and detection 

methods are fast, they often struggle against malware that uses encryption, 

polymorphism, or code transformation. In contrast, dynamic analysis involves running 

the mobile application within a controlled environment, such as a virtual machine or 

emulator, allowing researchers to observe its behaviour in real time. This approach 

was developed to address the shortcomings of static analysis, particularly in detecting 

malware that downloads harmful code during runtime to avoid static detection. 

Dynamic analysis operates by executing the app in a secure environment that simulates 

all necessary resources, enabling the identification of malicious activities. Although 

several dynamic analysis techniques have been implemented, they are limited by the 

resource constraints inherent in smartphones. Like static analysis, dynamic analysis 

employs a variety of features for detection and analysis, such as OS-level features and 

network traffic data, which we will discuss in detail later. 

2.2.1 OS-Based Detection 

TaintDroid model, which relies on dynamic taint analysis, evaluated system 

call sequences and tracked the flow of sensitive information within third-party 

applications. The researchers found that even many legitimate apps could potentially 

leak private data stored on mobile devices. Several systems, including those referenced 

in [68, 69, 70], were developed based on the TaintDroid model to detect privacy leaks 
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in Android applications. Yang et al. [71] expanded on the TaintDroid framework to 

identify data leaks and determine whether these leaks were intentional by the user. 

However, these studies primarily focused on analyzing data leaks rather than detecting 

malicious applications. 

Shabtai et al. [72] investigated dynamic features such as CPU usage, the 

number of active processes, and Wi-Fi packet transmission to identify malware. The 

CopperDroid model [73] analyzed system calls from malware samples to determine 

whether malicious behaviour originated from Java, JNI, or native code execution. 

Afonso et al. [74] explored a combination of dynamic API calls and system calls for 

identifying malicious apps. 

The CrowDroid model [75] extracted system calls and employed partitioning 

clustering techniques to differentiate between malicious and benign applications. The 

DroidTrace model [76], utilizing ptrace, monitored various dynamic features, 

including system call sequences, file operations, and network connections, for 

malware detection. Almeida et al. [77] evaluated runtime traces such as system calls, 

network traffic behaviour, and real-time user inputs like interactions with apps to 

assess the risk posed by applications. Jang et al. [78] used volatile memory acquisition 

techniques to detect malicious Android applications. 

2.2.2 Network Traffic Based Detection 

Few studies in the literature have focused on using network traffic to analyze 

behaviour and detect Android malware. This section reviews such works. In a study 

[79], authors utilized an Android emulator to capture the network traffic of both 

malicious and benign apps. Among 16 network traffic features, 7 were identified as 

effective in distinguishing between normal and malicious traffic. Chen et al. [80] 

analyzed network traces of malicious apps after capturing their traffic and found that 

over 70% of the samples produced malicious traffic within the first five minutes. They 

noted that features like DNS queries and HTTP requests could be used to detect 

malware. The authors of [81] grouped malware families based on their HTTP traffic 

analysis, examining features like the number of GET/POST requests and the amount 

of data sent in POST messages, using the BIRCH algorithm to cluster similar malware 
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families. They observed that malware samples from the same families exhibited 

similar HTTP features and thus were grouped in the same cluster. 

Wang et al. [82] clustered Android malware samples by analyzing the 

similarities in their HTTP traffic flows. Alan et al. [83] demonstrated that popular 

Android apps could be identified by applying supervised machine learning algorithms 

to the packet sizes of the first 64 packets they generate, although they did not include 

malware apps in their analysis. Mauro et al. [84] analyzed encrypted traffic from 

benign Android apps but did not consider malicious samples in their study, nor did 

they propose a detection model for malicious Android applications. Wang et al. [85] 

employed Natural Language Processing techniques on HTTP headers to detect 

malicious apps. Shabtai et al. [86] applied machine learning algorithms to traffic 

features to generate normal traffic patterns, which were then used to identify malicious 

apps. Wang et al. [87] conducted multilevel network traffic analysis, incorporating 

both HTTP request features and TCP flow-based features, and tested their data using 

the Decision Tree algorithm. They extended this work in [88] by comparing HTTP-

based and TCP-based detection models, developing working prototypes for both to 

allow users to choose the model best suited to their needs. In another study [85], they 

extracted text-level features from HTTP flows, used the Chi-Square Test for feature 

selection, and applied SVM to the selected features for malware detection. They 

suggested extending their model to analyze and detect encrypted malware traffic but 

did not implement this design. The authors of [89] analyzed DNS and HTTP traffic 

from Android smartphones, applying various machine-learning algorithms to detect 

malware. Other studies, such as [90, 91, 92, 93, 94], have also utilized machine 

learning algorithms to detect malicious activity on Android networks. 

2.3 Hybrid Detection 

Only a few studies have integrated static and dynamic detection features into a 

single model to propose a hybrid detection approach. This section reviews such hybrid 

models for Android malware detection. Saracino et al. [95] examined various static 

and dynamic features, including system calls, API calls, user activity logs, and 

permissions, to identify malware. The authors used statistical inference to correlate 

these features, thereby detecting app misbehavior. Han et al. [96] extracted 120 static 
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features, such as APK size, developer information, and API calls, along with 767 

dynamic features, including SMS activity, file operations, and cryptographic usage. 

They applied multiple feature transformations to map the features into a new feature 

space and used ensemble classifiers to detect malicious samples. Sun et al. [97] 

developed a hybrid model that generated static and dynamic graphs from manifest file 

components and system calls, respectively. Xia et al. [98] conducted static API 

analysis and dynamic bytecode analysis to detect data leaks from apps. The Riskranker 

model [99] analyzed dynamic features like run-time Dalvik code loading, along with 

static features such as permissions, to identify malware. The Marvin model [100] 

utilized machine learning classifiers on hybrid features like app name, class structure, 

file operations, intent receivers, network behavior, and phone activity. The 

SAMADroid model [101] extracted system calls and manifest file components and 

applied various machine learning classifiers for malware detection. 

In another study, the authors [102] adapted an open-source framework called 

CuckooDroid to analyze static manifest file components and dynamic API calls for 

detecting malicious behavior within apps. Similarly, Patel et al. [2] proposed a hybrid 

framework by analyzing manifest files and runtime API calls for malware detection. 

Yuan et al. [103] used deep learning to analyze a combination of static permissions 

and dynamic behaviors, such as user-app interactions, to identify malicious apps. Liu 

et al. [104] applied machine learning to a combination of permissions and system calls 

for malware detection. In a related approach, the authors in [105] developed a machine 

learning-based hybrid model using permissions and both static and dynamic API calls. 

Chakraborty et al. [106] applied an ensemble Classification and Clustering approach 

to manifest file components and dynamic logs, such as SMS logs, generated during 

app execution. Their model aimed to detect malware and predict the malware family 

to which a sample belongs. 
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Chapter Three:  
INNOVATIVE APPROACH TO ANDROID MALWARE 

DETECTION: PRIORITIZING CRITICAL FEATURES 

USING ROUGH SET THEORY 

In this chapter we propose a technique for Android malware detection using 

rough set theory. In section 3.1, we highlight the motivation behind the work done and 

briefly explained the overview of the proposed technique. In section 3.2 we explain in 

detail the methodology of the proposed technique. In section 3.3 the details of results 

are discussed and presented. The section 3.4 is dedicated to discussions and findings. 

In section 3.6 limitation of the proposed work is discussed. The section 3.7 summarizes 

the chapter with future directions. 

3.1 Introduction 

The smartphone has practically become the personal desktop computer of the 

modern day and enables us to execute nearly all tasks that one would do on a desktop. 

It brings into our lives components that affect how we communicate, work, entertain 

ourselves, and access information. Besides a call and text, smartphones are used to an 

impressive extent for going on the Internet, social media, email management, photo 

and video capture, GPS navigation, online shopping, banking, tracking health and 

fitness, learning, managing personal tasks, and smart home automation. In this context, 

mobile market use by smartphones out beats desktop usage by 20%. 

In the numerous types of smartphones, the most popular Smartphone falls in 

the category with the Android OS. This trend has been able to be so massive partly 

because of its open-source nature, as many use the Android OS. The Android leads in 

the chart, taking 70% market share in the global mobile operating system. This 

openness has exposed Android to frequent malware attacks in the recent years amid 

its popularity. In this context, there is a huge requirement to develop efficient Android 

malware detection mechanisms to fight and eliminate evil applications. 

Malware analysis is a technique that understands the functionality and origins 

of malware. It includes three types [107]: static, dynamic, and hybrid analysis. These 

approaches can be applied in developing detection models, where applications on 
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Android may either be malicious or benign. There are three kinds of detection models: 

static, dynamic, and hybrid. Extracted Features in static detection can be obtained 

through static analysis that is carried out without installing or running the application. 

Dynamic detection works on the executing of the application to capture its features at 

run-time. A hybrid model of detection combines both static and dynamic analysis to 

extract a more comprehensive set of features from the application. 

In static detection methods: There are several common techniques for feature 

extraction in n static detection methods. The most popular ones among them are 

manifest file-based detection, API call-based detection, and Java code-based detection. 

Manifest file-based detection refers to extracting features from the Android 

application's manifest file. For example, Li et al. [23] were able to achieve 90% 

accuracy using permissions from the manifest file. This foundation was expanded by 

the work of Arora et al. [50], who used permission pairs retrieved from the manifest 

file to obtain 95.44% accuracy. IPDroid [49] combined permissions with intents found 

in the manifest file and made use of a Random Forest classifier to obtain 94.73% 

accuracy. 

Feature detection through API call entails the detection of APIs invoked by 

Android applications. Droidmat [56] integrated components of the manifest file and 

API calls to detect malicious apps with 97.87% precision. Elish et al. [57]constructed 

a detection model based on sensitive API calls invoked by the users while Zhang et al.  

[61] developed association rules between API calls with a whopping 96% precision. 

The Java code-based detection methods use Dex files that contain Java code in 

Android applications for extracting features. Zhu et al. [62] converted the vital parts 

of Dalvik byte code into RGB images and trained the Convolution neural network to 

devise the malware detection system with an accuracy of 96.9%. Fang et al. [63] also 

converted Dex files to RGB images to do malware familial classification with a 

precision of 96%. The work [64] is based on eliminating code confusion and achieves 

an overall accuracy of 92.67%. 



35 

 

3.1.1 Contributions 

In the current work, we have used permissions, API calls, system commands, 

and opcodes with rough set theory for Android malware detection. To the best of our 

knowledge, we are the first to apply rough set theory to the static features mentioned 

above. The rough set theory has several advantages, such as attribute selection and its 

ability to work with qualitative and quantitative attributes. We used a Discernibility 

Matrix to rank and further calculate the reduct of the above features. Ranking of 

features is done to highlight essential features. Reduct, a reduced feature set, is 

estimated to improve the overall detection rate with the most minor features. We 

applied several Machine Learning (ML) algorithms such as Support Vector Machines 

(SVM), K-Nearest Neighbor, Random Forest, and Logistic Regression for malware 

detection. Our results demonstrate an overall accuracy of 97%, better than many state-

of-the-art detection techniques proposed in the literature. The main contributions of 

this paper are summarized below. 

✓ Firstly, we performed data pre-processing, in which we eliminated co-related 

features and features not dependent on the class variable. 

✓ We calculated the ranking score with the help of the discernibility concept of 

rough set theory to rank the features according to their importance. 

✓ We utilized an algorithm for rough set reduct computation to minimize the 

number of features in each category, employing the ranking score and 

discernibility principles from rough set theory.. 

✓ We further applied machine learning algorithms to evaluate the detection 

accuracy with the reduct calculated in the previous step. 

✓ We compared the results of our proposed model with other state-of-the-art 

detection techniques, and our results highlight that the proposed model 

outperforms similar state-of-the-art models. 

 

3.2 Methodology 

This section describes the overall approach to classifying Android applications 

as malware or benign. The process is divided into four phases, as depicted in Figure 
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3.1. The first phase of the approach is the pre-processing phase, the second phase is 

feature ranking, the third phase is the Rough Set Reduct Computation Phase, and the 

fourth phase is the detection phase. 

 

Figure 3.1Proposed Methodology 

3.2.1 Data Pre-Processing Phase 

These data pre-processing phase is more focused on the primary feature 

selection phase. The whole process of this phase is depicted in Figure 3.2. 

The figure referred to here summarizes the whole process of phase 1. The 

proposed technique first considers the OmniDroid Dataset [108] and Androzoo 

Dataset [109]. The OmniDroid dataset is the data set in which various features are 

extracted from an extensive collection of 22,000 APKs. The dataset consists of an 

equal number of benign and malicious applications, i.e., 11,000 each. An additional 

8000 applications are taken from the Androzoo Data set, spreading from 2015 to 2023, 

making it more diverse. These 8000 apps consist of an equal number of benign and 

malicious applications, i.e., 4000 each. The features from these 30,000 apps were 

extracted with the AndroPytool [110]. The AndroPyTool extracts features from the 

Android application supplied as input to the tool. Specifically, the AndroPyTool 

extracts three types of features: pre-static features, static features, and dynamic 

features. This paper focuses on static features, i.e., permissions, API calls, system 

commands, and opcodes. The following is the description of each static feature 

considered in this paper. 
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1. Permissions: Every Android application requests and requires a particular set 

of permissions for its functioning. The apps need these permissions to access 

some data or specific resources. These permissions are listed in the Android 

Manifest file. The OmniDroid dataset consists of 5501 unique permissions. 

2. API Calls: The Application Programming Interface (API) is a set of code 

snippets that the underlying systems use for communicating. API calls are the 

calls to such code snippets with some functionality that must be invoked to 

perform specific tasks. The dataset in consideration consists of 2128 API 

Calls. 

3. System commands: Android applications must access the kernel to perform 

specific tasks and services. So, the services that need to be accessed by the 

app are done by calling the OS routines. The calls to such kinds of OS routines 

are known as system commands. The OmniDroid dataset consists of 103 

system commands. 

4. Opcodes: The Dalvik Bytecode generated by compiling the Android apps 

consists of instructions that need to be executed in terms of opcodes. The data 

set consists of 224 opcodes. 

 

Figure 3.2Data Pre-Processing 
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First, process is applied individually for each of the features above. For all used 

features: permissions, API calls, system commands, opcodes, a correlation score is 

calculated for each set of features, which is used to filter out highly correlated features 

since attribute features usually show strong correlations and typically have high linear 

dependence as well as the same effect on the dependent variable. If two features are 

highly correlated, one can safely be removed. In eliminating one feature, we keep the 

other, provided one's correlation is 90 percent or higher. From this alone, 4428 out of 

5501 permissions, 1589 out of 2128 API calls, 93 out of 103 system calls, and 159 of 

224 opcodes remained. 

Further, the Chi-Square test is executed to select a subset of features for each 

feature set. The Chi-square test is a statistical test used to determine whether there is a 

significant association between two categorical variables. The chi-square test works 

based on the following equation: 

χ2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑛
𝑖=1                                                                                 (3.1) 

The formula for the Chi-square test involves several key terms and 

calculations, as shown in Equation (3.1), where χ2 is the Chi-square test statistic, 𝑛 is 

the number of categories in the contingency table, 𝑂𝑖 is the observed frequency of 

category 𝑖, and 𝐸𝑖 is the expected frequency of category 𝑖  under the null hypothesis. 

The sum is taken over all categories in the contingency table. 

The process begins by assuming the null hypothesis, which it presumes no 

association exists between the feature variable and the class variable. Testing this is 

accomplished by using the Chi-square test, as the value in Equation (3.1) is calculated 

for the computation of the Chi-square test statistic. It then compares the computed 

value against values in the Chi-square distribution table to determine the 

corresponding p-value. The null hypothesis is rejected if the p-value is less than 0.05. 

This signifies that the feature and class variables are correlated. The selected features 

for the new feature subset in each feature set are those whose pvalue is less than 0.05, 

signifying dependency on the class variable with a 95% confidence level. Ultimately, 

this process ends up with a reduced feature set for each category, including 

permissions, API calls, system commands, and opcodes. 
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For the permission feature set, we achieved 206 permissions selected as a 

subset of permission out of 4428 permissions. For the API calls feature set, we 

achieved 1264 API calls selected as a subset of API calls out of 1589 API calls. For 

system command feature space, out of 94 system commands obtained in the previous 

step, we achieved a minimized feature space of 52. Similarly, for the opcodes-based 

feature set, which consisted of 204 opcodes from the previous step, we achieved 158 

opcodes. The entire process is also summarized in the Algorithm 1. 

3.2.2 Feature Ranking Phase 

In this phase, the ranking of minimal feature sets obtained in the previous step 

is performed to rank the features of each type according to their importance. Feature 

ranking is performed through the Discernibility Matrix concept of rough set theory. 

The whole process flow of this phase is depicted in Figure 3.3. 

Rough set theory is a mathematical approach to data analysis and data mining. 

This mathematical tool is powerful in dealing with improper, imprecise, inconsistent, 

incomplete information, and knowledge  [111, 112]. The rough set theory has several 

advantages, such as attribute selection and its ability to work with qualitative and 

quantitative attributes. The critical concepts of the rough set theory used in this paper 

are explained below. 

Algorithm 1: Data Pre-Processing 

1. Input: A feature set of 22,000 APKs regarding four types of features, i.e., 

Permissions (𝑓𝑝), API Calls(𝑓𝑎) , System commands(𝑓𝑠) , and Opcodes(𝑓𝑜). 

2. Output: For each of the feature sets 𝑓𝑝, 𝑓𝑎, 𝑓𝑠, 𝑎𝑛𝑑𝑓𝑜, a minimal feature space 

of important features is obtained as 𝑚𝑖𝑛_𝑓𝑝, 𝑚𝑖𝑛_𝑓𝑎 , 𝑚𝑖𝑛_𝑓𝑠, 𝑎𝑛𝑑 𝑚𝑖𝑛_𝑓𝑜 

respectively. 

3. For each feature set 𝑓𝑖 in feature spaces 𝑓𝑝, 𝑓𝑎, 𝑓𝑠, 𝑎𝑛𝑑𝑓𝑜  do: 

4.  Set |𝑓𝑖| = 𝑁 

5.      For each feature 𝑥𝑖 in feature set 𝑓𝑖  do: 

6.   Set 𝑇𝑟𝑢𝑡ℎ_𝑣𝑎𝑙(𝑥𝑖) = 𝑇𝑟𝑢𝑒 

7.  ENDFor 

8.      For each feature 𝑥𝑖 in feature set 𝒇𝒊  do: 



40 

 

9.   if 𝑇𝑟𝑢𝑡ℎ_𝑣𝑎𝑙(𝑥𝑖) == 𝑇𝑟𝑢𝑒 then: 

10.    For each feature 𝑥𝑖 in feature set 𝒇𝒊  where 𝑗: 𝑖 + 1 → 𝑁do: 

11.     if (𝑐𝑜𝑟𝑟𝑒𝑙[𝑥𝑖, 𝑥𝑗] > 0.9) then: 

12.      do 𝑆𝑒𝑙𝑒𝑐𝑡(𝑥𝑖) 

13.        do 𝑅𝑒𝑗𝑒𝑐𝑡(𝑥𝑗) and set 𝑇𝑟𝑢𝑡ℎ_𝑣𝑎𝑙(𝑥𝑗) = 𝐹𝑎𝑙𝑠𝑒 

14.     ENDIf 

15.    ENDFor 

16.   ENDIf 

17.  ENDFor 

18. ENDFor 

19. For each of the feature sets 𝑓𝑖   in the new feature 𝑓𝑝, 𝑓𝑎, 𝑓𝑠, 𝑎𝑛𝑑𝑓𝑜 obtained 

do: 

20.  For each feature 𝑥𝑖 in feature set 𝒇𝒊   do: 

21.   Apply Chi-Square Test (xi) 

22.   if 𝑝_𝑣𝑎𝑙𝑢𝑒[𝑥𝑖] < 0.05 

23.    do 𝑺𝒆𝒍𝒆𝒄𝒕(𝒙𝒊) 

24.   Else 

25.    do 𝑹𝒆𝒋𝒆𝒄𝒕(𝒙𝒊) 

26.   ENDIf 

27.  ENDFor 

28. ENDFor 

 

3.2.2.1  Information System 

It is defined as an ordered pair, in which the first element of this ordered pair 

is called the universe. In our case, the universe is the set of both malicious and benign 

applications that are considered. We represent the ordered pair as D = (A, F ∪ {l}), 

where D is the data set under consideration, and A is the non-empty finite set called 

the universe of Android application, consisting of both the malicious and benign types. 

F is the non-empty set of features in the data set. In our case, these features are in terms 

of permissions, API calls, system commands, and opcodes. Here, l is the special 
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attribute known as the label attribute, which stores the type of label corresponding to 

each application in set A. This label attribute stores whether a particular application in 

set A is malicious or benign. 

 

 

Figure 3.3 Feature Ranking Phase 

Table 3.1 Instance of permission information system shows an instance of the 

permission information system for five applications assumed as A1, A2, A3, A4, and A5. 

Here, feature attributes are the Content Provider Access, Settings App widget Provider, 

and JPUSH Message. These are permissions, with corresponding values such as 0 or 

1 for each application Ai. The value 0 signifies that particular permission is not present 

in application Ai, whereas the value 1 signifies otherwise. The label column has the 

value BW, signifying that the particular Ai is Benignware, whereas the label value MW 

signifies that application Ai is malware, i.e., a malicious one. 

Similarly, the information systems for API calls, system commands, and 

opcodes are shown in Table 3.2,Table 3.3, Table 3.4 respectively. From these 

information systems, a Discernibility Matrix is formed. The concept of Discernibility 

is explained in the following section. 
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Table 3.1 Instance of permission information system 

 

 

Table 3.2Instance of API calls information system 

 

 

 

Table 3.3 Instance of System Command information system. 

 

 

Application P1 = CONTENT 

PROVIDER 

ACCESS 

P2 = Settings App 

Widget Provider 

P3 = JPUSH 

MESSAGE 

Label 

A1 0 1 0 BW 

A2 1 1 0 MW 

A3 0 1 1 BW 

A4 0 0 1 BW 

A5 1 1 1 MW 

Applic

ation 

AP1 = 

APICALLandroid. 

view.SubMenu 

AP2 = 

APICALLandroid. 

net.RouteInfo 

AP3 = 

APICALLandroid. 

app.Activity 

Label 

A1 0 0 0 BW 

A2 1 1 0 MW 

A3 1 1 1 MW 

A4 1 0 1 BW 

A5 1 1 1 MW 

Applic

ation 

S1 = 

SYSTEMCOMMA

ND-svc 

S2 = 

SYSTEMCOMMA

NDstagefright 

S3 = 

SYSTEMCOMMAN

Dnandread 

Label 

A1 0 1 0 MW 

A2 1 1 0 MW 

A3 0 1 1 BW 

A4 0 0 1 BW 

A5 1 1 1 MW 
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Table 3.4 Instance of Opcode information system. 

 

 

 

3.2.2.2 Discernibility Matrix 

This matrix is created from the information system. The Discernibility Matrix 

is a symmetric |A|X|A| matrix corresponding to each information system. Each entry 

Cij is defined as {f ∈ F|f(Ai) ̸= f(Aj)} if l(Ai) ̸= l(Aj), Φ otherwise. Table 3.5–Table 3.8 

show the instances of Discernibility Matrices corresponding to information system 

shown in Table 3.1-Table 3.4, respectively 

Table 3.5 Instance of permission discernibility 

 

 

 

 

Applic

ation 

O1 =  OPCODE-

remfloat/ 

2addr 

O2 =  OPCODE-

div-int/lit8 

O3 =  

JOPCODEsparse- 

switch 

Label 

A1 1 1 0 BW 

A2 0 1 0 MW 

A3 1 0 1 MW 

A4 0 0 1 BW 

A5 0 1 1 BW 

 A1 A2 A3 A4 A5 

A1 
 

    

A2 
P1 

    

A3  P1, P3    

A4  P1, P2, P3    

A5 P1, P3  P1 P1, P2  
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Table 3.6 Instance of API calls discernibility. 

 A1 A2 A3 A4 A5 

A1 
 

    

A2 
AP1, AP2 

    

A3 AP1, AP2, AP3     

A4  AP2, AP3 AP2   

A5 AP1, AP2, AP3   AP2  

 

Table 3.7 Instance of system call discernibility 

 A1 A2 A3 A4 A5 

A1 
 

    

A2 
 

    

A3     S3 S1, S3    

A4 S2, S3 S1, S2, S3    

A5   S1 S1, S2  

 

Table 3.8 Instance of opcode discernibility 

 A1 A2 A3 A4 A5 

A1 
 

    

A2 
O1 

    

A3 O2, O3     

A4  O2, O3 O1   

A5  O3 O1, O2   
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For each of the selected minimal permission set, API call feature set, system 

command feature set, and opcode feature set, we create the Permission Discernibility 

Matrix, API Call Discernibility Matrix, System Call Discernibility Matrix, and Opcode 

Discernibility Matrix, respectively. Algorithm 2 depicts the whole process. The 

algorithm creates a Discernibility Matrix for each minimal feature set obtained in the 

previous step and further calls the rough set ranking algorithm described in the next 

section. 

3.2.2.3 Rough Set-Based Feature Ranking 

After creating each of these Discernibility Matrices, a rough set-based feature 

ranking methodology, summarized in Algorithm 3, is applied on each matrix to rank 

each of the Permission, API Call, System Command, and Opcode features separately. 

The algorithm takes the Discernibility Matrix as an input and initializes the weight of 

each feature in the corresponding minimal feature set to zero. Then, the Discernibility 

Matrix is traversed, and each entry in the Discernibility Matrix, which consists of one 

or more features, receives the updated weight of the features as per Equation (2). 

w(xk) = w(xk) + |min_fi|/|Cij|                         (2) 

In the above equation, Cij is the entry in the Discernibility Matrix corresponding 

to applications Ai and Aj, and the entry Cij may contain one or more features. Hence, 

|Cij| represents the count of features in the entry. min_fi is the minimal feature set 

corresponding to the Discernibility Matrix, and |min_fi| is the count of features in the 

minimal feature set. w(xk) is the weight of kth feature in the entry Cij, which may contain 

x1, x2, x3, . . . and xn as the features in the entry. 

Algorithm 2 Feature Ranking 

1.   Input: Minimal feature space, i.e., min_fp, min_fa, min_fs, and min_fo obtained 

as output of Algorithm 1. 

2. Output: For each of the minimal feature space, ranked minimal feature list 

Lp, La, Ls, and Lo, respectively, sorted in decreasing order as per the importance 

of the features. 

3. for each of the minimized feature space min_fi in min_fp, min_fa, min_fs, and 

min_fo do  
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4.  create Discernibilty Matrix for min_fi 

5. end for 

6. Let Dp, Da, Ds, and Do be Discernibility Matrix corresponding to min_fi in 

min_fp, min_fa, min_fs, and min_fo, respectively. 

7. for each of Discernibility Matrix Di in Dp, Da, Ds, and Do do 

8.  call Algorithm 3 for each Di in order to perform rough set ranking of each 

of the features in Di 

9.  Let Lp, La, Ls, and Lo be be the sorted list of important features for each of 

min_fi in min_fp, min_fa, min_fs, and min_fo, respectively 

10. end for 

 

This ranking is obtained by arranging each of these features in descending 

order in terms of their importance. The Rough Set-based feature ranking embodies the 

following idea [49]. 

1. The more times an attribute appears in the discernibility, the more important is 

the attributes. 

2. The shorter the entry is, the more important the attribute is in the entry. 

3.2.3 Rough Set Reduct Computation Phase 

This phase focuses on reducing the feature space so that, with as few features 

as possible, i.e., a reduced feature space, the classification algorithms could be applied 

to detect an application as benign or malicious. The reduced feature space obtained 

using the underlying principles of rough set theory is called reduct in rough set theory. 

The Discernibility Matrix and rough set feature ranking obtained in the previous phase 

are used to attain reducts for each of the permission, API call, system command, and 

opcode feature spaces. Hence, after this phase, for each feature space, i.e., permission, 

API call, system command, and opcode, we get a reduced feature space, which we call 

a reduct in rough set theory. Figure 3.4 depicts the current phase under discussion. 

Algorithm 4 describes the whole process in pseudo-code form. The algorithm first 

calculates the net weight w(netij) of each of the entry Cij in the Discernibility Matrix 

Di, containing features x1, x2, x3, . . . and xn by summing their individual weights w(x1), 
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w(x2), w(x3), . . . . . . and w(xn), respectively. Then, all the entries Cij in the Discernibility 

Matrix Di are copied in the list LDi, and then LDi is sorted as per the net weight 

calculated in the previous step. Initially, Redi is assumed to be an empty set. For each 

entry Cz of the sorted list LDi containing features x1, x2, x3, . . . . . . and xn, we check 

weather the Redi contains any common feature in Cz. If no common feature exists, we 

select the feature xi with maximal w(xi) in Cz; otherwise, we skip the entry Cz. The set 

Redi is the reduct computed for min_fi. 

 

Figure 3.4 Rough Set Reduct Computation Phase 

Algorithm 4 Rough Set Reduct Computation 

1. Input: Discernibility Matrix Di with dimensions nXn and weight w(xi) of every 

feature xi in the minimal feature space min_fi in min_fp, min_fa, min_fs, and 

min_fo corresponding to Di in Dp, Da, Ds and Do . 

2. Output: Redi as the reduct of minimal feature space min_fi corresponding to 

Di. 

3. Let LDp, LDa, LDs, and LDo be the empty list corresponding to permission, API 

call, system command and opcode feature space. 

4. for each Di in Dp, Da, Ds, and Do do 

5.  Let Redi = Φ denote the empty reduct set corresponding to minimal feature 

space min_fi. 

6.  for each i : 1 → N do 
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7.   for each j : 1 → i do 

8.    Let Cij be the entry in Discernibility Matrix Di containing features x1, 

x2, x3, . . . and xn 

9.    Let w(netij) be the cumulative weight of entry Cij having features as x1, 

x2, x3, . . . and xn . 

10.    w(netij) = w(x1) + w(x2) + w(x3) . . . . . . . . . + w(xn) 

11.    LDi = append(Cij) 

12.   end for 

13.  end for 

14.  Sort(LDi) based on w(net) calculated previously. 

15.  for each z : 1 → |LDi| do 

16.   Let Cz be the entry in List LDi containing features x1, x2, x3, . . . and xn . 

17.   if Cz ∩ Redi = Φ then 

18.    Select attribute xi with maximal w(xi) in Cz 

19.    Redi = Redi ∪ xi 

20.   end if 

21.  end for 

22. end for 

 

3.2.4 Detection Phase 

For building our Android Malware detection system, we experimented with 

four machine learning algorithms, i.e., the Support Vector Machine (SVM), Random 

Forest, Logistic Regression, and K-nearest neighbour algorithms, to train and test the 

dataset. We also performed training and testing on two deep learning models, i.e., 

Artificial neural network (ANN) and Convolution Neural Network (CNN). Figure 3.5 

portrays the overall purpose of the current phase, i.e., with the help of the machine 

learning models mentioned above and the different reducts, i.e., permission reduct, 

API call reduct, system call reduct, and opcode reduct calculated in the previous phase; 

the machine learning models are trained to build the system capable of detecting an 

Android application as benign or malware. 
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Figure 3.5 Detection Phase 

3.3 Results and Discussions 

In the current section, we present the results of the evaluation carried out on 

the proposed malware detection approach. 

3.3.1 Results of Ranking Phase 

Table 3.9 shows the top 10 important permissions for malware detection. 

Similarly, the Table 3.10– Table 3.12 represent the top 10 important opcodes, API 

calls, and system calls, respectively. 

Table 3.9 Top ten important permissions. 

Rank Permission Name Score 

1 READ_PHONE_STATE 1.56E9 

2 ACCESS_WIFI_STATE 1.33E9 

3 WRITE_EXTERNAL_STORAGE 1.26E9 

4 WAKE_LOCK 1.2E9 

5 ACCESS_COARSE_LOCATION 1.03E9 

6 ACCESS_NETWORK_STATE 1.02E9 

7 ACCESS_FINE_LOCATION 1.01E9 

8 GET_TASKS 9.52E8 

9 RECEIVE_BOOT_COMPLETED 8.82E8 

10 GET_ACCOUNTS 8.4E8 
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Table 3.10 Top ten important opcodes. 

 Rank Opcode Score  

 1 OPCODE − xor − int 3.09E8  

 2 OPCODE − rem − float 3.07E8  

 3 OPCODE − rem − float/2addr 2.98E8  

 4 OPCODE − float − to − long 2.82E8  

 5 OPCODE − and − long 2.78E8  

 6 OPCODE − aget − short 2.7E8  

 7 OPCODE − iget − byte 2.67E8  

 8 OPCODE − aput − short 2.66E8  

 9 OPCODE − iget − short 2.65E8  

 10 OPCODE − rem − double/2addr 2.65E8  

 

Table 3.11 Top ten important API calls 

 Rank API Call  Score 

 1 APICALL − android.app.ActionBar  2.2E8 

 2 APICALL − android.widget.PopupWindow  2.2E8 

 3 APICALL − android.widget.BaseAdapter  2.17E8 

 4 APICALL − android.view.ScaleGestureDetector  2.15E8 

 5 APICALL − android.widget.CheckBox  2.12E8 

 6 APICALL − android.widget.AbsListView  2.1E8 

 7 APICALL − android.widget.ListPopupWindow  2.1E8 

 8 APICALL − android.content.res.XmlResourceParser 2.1E8 

 9 APICALL − android.graphics.Path  2.09E8 

 10 APICALL − android.webkit.MimeTypeMap  2.09E8 
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Table 3.12 Top ten important system commands 

 Rank System Command Score  

 1 SYSTEMCOMMAND − top 4.27E8  

 2 SYSTEMCOMMAND − id 3.75E8  

 3 SYSTEMCOMMAND − start 3.7E8  

 4 SYSTEMCOMMAND − service 3.58E8  

 5 SYSTEMCOMMAND − gzip 3.54E8  

 6 SYSTEMCOMMAND − date 3.44E8  

 7 SYSTEMCOMMAND − log 3.17E8  

 8 SYSTEMCOMMAND − stop 3.1E8  

 9 SYSTEMCOMMAND − mv 3.06E8  

 10 SYSTEMCOMMAND − input 3.02E8  

 

3.3.2 Detection Results with Individual Features 

Table 3.13 displays four different permission sets: full set of permissions from 

dataset; reduced permissions based on correlation feature elimination, which can be 

termed permission correlation; the permission set acquired after applying the Chi-

square test (permission chi); and lastly, the final reduced permission set acquired after 

the application of rough set reduct to the permission chi set (permission reduct). All 

these permission sets have been utilized for training six classifiers, which comprise 

Support Vector Machines, K-Nearest Neighbors, Random Forest, Logistic Regression, 

ANN, and CNN. The results show how the performance in terms of accuracy becomes 

consistently better with the progression of features from the feature set of all 

permissions to permission correlation, then permission chi, and finally permission 

reduct. This means that reduct features are the most efficient for malware system 

development. 
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Likewise, Tables Table 3.14–Table 3.16 summarize the results for the three 

types of features, i.e., opcode feature, API call feature, and system command feature, 

respectively. The same phenomenon is observed in these three tables as was observed 

in Table 3.13, i.e., for each type of classifier, as the feature set is changed from all 

feature to feature correlation then to feature chi and finally to feature reduct, the 

accuracy increases, and training and testing time gets reduced drastically. 

 

Table 3.13 Detection results based on permission. 

 

Classifier Feature Set Used Accuracy 

(%) 

Precision 

(%) 

Recall (%) F1-Score 

(%) 

SVM All Permissions 78 78 79 78 

Permissions 

Correlation 

79 78 79 78 

Permissions Chi 79 79 79 79 

Permissions Reduct 80 79 79 80 

K-Nearest 

Neighbor 

All Permissions 77 77 79 78 

Permission 

Correlation 

78 78 79 78 

Permissions Chi 80 81 78 80 

Permissions Reduct 82 81 82 79 

Random 

Forest 

All Permissions 82 84 80 82 

Permissions 

Correlation 

82 84 80 82 

Permissions Chi 83 82 80 81 

Permissions Reduct 83 84 80 81 

ANN All Permissions 76 76 76 77 

Permission 

Correlation 

78 78 79 78 

Permissions Chi 79 79 78 79 

Permissions Reduct 80 80 80 79 
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Classifier Feature Set Used Accuracy 

(%) 

Precision 

(%) 

Recall (%) F1-Score 

(%) 

CNN All Permissions 77 77 79 78 

Permission 

Correlation 

78 78 79 78 

Permissions Chi 79 80 79 79 

Permissions Reduct 81 80 81 79 

Logistic 

Regression 

All Permissions 79 79 77 78 

Permissions 

Correlation 

79 79 77 78 

Permissions Chi 79 80 78 79 

Permissions Reduct 80 80 77 79 

 

Table 3.14 Detection results based on opcode 

Classifier Feature Set Used Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

SVM All Opcodes 80 88 82 82 

Opcodes Correlation 80 75 87 82 

Opcodes Chi 81 75 87 81 

Opcodes Reduct 81 79 89 81 

K-Nearest 

Neighbor 

All Opcodes 84.50 86 83 84 

Opcodes Correlation 85 86 83 84 

Opcodes Chi 85 85 83 84 

Opcodes Reduct 85 85 83 84 

Random 

Forest 

All Opcodes 86 88 85 87 

Opcodes Correlation 86.80 88 86 87 

Opcode Chi 87 88 86 87 

Opcode Reduct 87 88 86 87 

ANN All Opcodes 78 77 86 81 
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Table 3.15 Detection results based on API calls 

 

 

Classif

ier 

Feature Set Used Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

SVM All API calls 84 83 88 85 

API calls Correlation 85 83 88 85 

API calls Chi 85 83 88 86 

API calls Reduct 86 85 89 83 

K-

Nearest 

Neighb

or 

All API calls 85 86 85 85 

API Calls Correlation 85.70 87 85 86 

API Calls Chi 86 87 85 86 

API Calls Reduct 86 87 84 86 

Classifier Feature Set Used Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

  ANN Opcodes Correlation 79 77 85 82 

Opcodes Chi 80 73 82 80 

Opcodes Reduct 79 73 83 78 

CNN All Opcodes 79 75 83 82 

Opcodes Correlation 80 74 85 80 

Opcodes Chi 80 74 84 78 

Opcodes Reduct 79 74 84 78 

Logistic 

Regression 

All Opcodes 79 76 86 81 

OpcodesCorrelation 80 76 86 81 

Opcodes Chi 80 75 84 79 

Opcodes Reduct 80 74 85 79 
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Classif

ier 

Feature Set Used Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Rando

m 

Forest 

All API Calls 88 90 88 90 

API Calls Correlation 89 88 90 88 

API Calls Chi 89 90 88 89 

API Calls Reduct 90 90 88 89 

ANN All API Calls 83 82 86 83 

API Calls Correlation 83 82 86 83 

API Calls Chi 83 82 86 83 

API Calls Reduct 84 81 86 83 

CNN All API Calls 84 82 87 84 

API Calls Correlation 84 82 87 84 

API Calls Chi 84 82 87 84 

API Calls Reduct 85 82 87 84 

Logisti

c 

Regres

sion 

All API Calls 85 83 88 85 

API Calls Correlation 85 83 88 85 

API Calls Chi 85 83 88 85 

API Calls Reduct 86 83 88 85 

 

Table 3.16 Detection results based on system commands. 

Classifier Feature Set Used Accuracy (%)  Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

SVM All Sys cmd 62 59 86 70 

Sys cmd Correlation 62.50 59 86 70 

Sys cmd Chi 62.80 59 86 70 

Sys cmd Reduct 63 59 86 70 



56 

 

Classifier Feature Set Used Accuracy (%)  Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

K-

Nearest 

Neighbor 

All Sys cmd 79 77 82 80 

Sys cmd Correlation 79 77 82 80 

Sys cmd Chi 79 77 83 80 

Sys cmd Reduct 79 77 83 80 

Random 

Forest 

All Sys cmd 82 81 85 83 

Sys cmd Correlation 82 81 86 83 

Sys cmd Chi 83 82 86 83 

Sys cmd Reduct 83 82 86 83 

ANN 

 

All Sys cmd 63 59 80 68 

Sys cmd Correlation 63 60 80 68 

Sys cmd Chi 64 60 81 70 

Sys cmd Reduct 64 60 81 71 

CNN 

 

All Sys cmd 64 60 81 70 

Sys Cmd 

Correlation 

65 60 81 70 

Sys cmd Chi 65 62 82 70 

Sys cmd Reduct 65 61 82 71 

Logistic 

Regression 

 

All Sys cmd 65 61 82 70 

Sys cmd Correlation 65.13 61 82 70 

Sys cmd Chi 65.98 62 83 71 

Sys cmd Reduct 66 62 83 71 

 

3.3.3 Detection Results with Combinations of Two Features 

Table 3.17 shows that Random Forest emerges as the best algorithm in terms 

of accuracy, precision, recall, and F1-score for permissions and opcodes reduct as the 

feature set. 
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Table 3.17 Detection results based on permissions and opcodes. 

 

Table 3.18 shows results of permission and API calls reduct as feature set used 

by SVM, K-nearest neighbour, Random Forest, and Logistic regression. Random 

Forest emerges as the best, with an accuracy of 92%. 

Table 3.19 shows that Random Forest with an accuracy of 88% is proved to be 

the best detection model among all the other three detection models using permissions 

and system command reduct as the feature set. 

Table 3.20 shows that the detection model with classifier as Random Forest 

and feature set as a combination of opcodes reduct and API calls reduct outperforms 

the other three detection models with an accuracy of 93%. 

Table 3.21 shows the detection results of the models that used opcode reduct 

and system command reduct as the feature set. The Random Forest classifier 

performed best with an accuracy of 90%. 

Table 3.18 Detection results based on permissions and API calls. 

  Classifier   Feature Set 

Used 

Accuracy 

(%) 

Precision 

(%) 

Recall (%) F1-Score 

(%) 

  SVM   Permission + API 

calls Reduct 

87 87 85 87 

Classifier Feature Set Used Accuracy 

(%) 

Precision 

(%) 

Recall (%) F1-Score 

(%) 

SVM Permission + 

Opcode Reduct 

85 86 83 84 

K-Nearest 

Neighbor 

Permission + 

Opcode Reduct 

87 88 86 86 

Random 

Forest 

Permission + 

Opcode Reduct 

90 92 88 90 

ANN Permission + 

Opcode Reduct 

82 83 82 82 

CNN Permission + 

Opcode Reduct 

83 84 82 83 

Logistic 

Regression 

Permission + 

Opcode Reduct 

84 85 83 84 
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  Classifier   Feature Set 

Used 
Accuracy 

(%) 
Precision 

(%) 
Recall (%) F1-Score 

(%) 

  K-Nearest    

Neighbor 

  Permission + API  

calls Reduct 

88 88 87 88 

  Random Forest   Permission + API 

calls Reduct 

92 92 90 91 

  ANN   Permission + API 

calls Reduct 

85 84 84 84 

  CNN   Permission + API 

calls Reduct 

86 85 85 85 

   Logistic 

Regression 

  Permission + API 

calls Reduct 

87 86 86 86 

 

 

Table 3.19 Detection results based on permissions and system commands. 

Classifier Feature Set 

Used 

Accuracy (%) Precision (%) Recall (%) F1- Score 

(%) 

SVM Permission + 

Sys Cmd 

Reduct 

83 84 81 83 

K-Nearest 

Neighbor 

Permission + 

Sys Cmd 

Reduct 

84 84 84 84 

Random 

Forest 

Permission + 

Sys Cmd 

Reduct 

88 91 85 88 

ANN Permissions+ 

Sys Cmd 

Reduct 

80 82 79 81 

CNN Permissions + 

Sys Cmd 

Reduct 

81 83 80 82 

Logistic 

Regression 

Permission + 

Sys Cmd 

Reduct 

82 84 81 83 
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Table 3.20 Detection results based on opcodes and API calls. 

 

Table 3.21 Detection results based on opcodes and system commands 

Classifier Feature Set 

Used 

Accuracy (%)  Precision (%)  Recall (%) F1-Score 

(%) 

SVM Opcode + Sys 

Cmd Reduct 

84 85 82 84 

K-Nearest 

Neighbor 

Opcode + Sys 

Cmd Reduct 

85 87 85 86 

Random 

Forest 

Opcode + Sys 

Cmd Reduct 

90 90 88 89 

ANN Opcode + Sys 

Cmd Reduct 

81 83 84 83 

CNN Opcode + Sys 

Cmd Reduct 

82 84 85 84 

Logistic 

Regression 

Opcode + Sys 

Cmd Reduct 

83 85 86 85 

Classifier Feature Set 

Used 

Accuracy 

(%) 

Precision 

(%) 

         Recall(%) F1-Score (%) 

SVM Opcode + API 

call Reduct 

88 88 86 88 

K-Nearest 

Neighbor 

Opcode + API 

call Reduct 

90 89 88 89 

Random 

Forest 

Opcode + API 

call Reduct 

93 93 92 93 

ANN Opcode + API 

call Reduct 

86 85 85 86 

CNN Opcode + API 

call Reduct 

87 86 86 87 

Logistic 

Regression 

Opcode + API 

call Reduct 

88 87 87 88 
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Table 3.22 shows that the detection model formed with the help of Random 

Forest as the classifier and API calls reduct and system command reduct as the feature 

set attains an accuracy of 91%, which is best among all the models in the table. 

 

Table 3.22 Detection results based on API calls and system commands 

 

3.3.4 Detection Results with Combinations of Three Features 

Table 3.23 shows that when permission reduct, opcode reduct, and system 

command reduct are combined to form a single feature set, that feature set, when used 

with Random Forest, gives the highest accuracy of 95%. 

Table 3.24 shows that when permission reduct, opcode reduct, and system 

command reduct are combined to form a single feature set, that feature set, when used 

with Random Forest, gives the highest accuracy of 93%. 

Classifier Feature Set Used Accuracy (%)

  

Precision (%) Recall 

(%) 

F1-Score 

(%) 

SVM API Call + Sys 

Cmd Reduct 

85 86 84 86 

K-Nearest 

Neighbor 

API Call + Sys 

Cmd Reduct 

86 88 86 87 

Random 

Forest 

API Call + Sys 

Cmd Reduct 

91 91 88 90 

ANN API Call + Sys 

Cmd Reduct 

82 84 86 83 

CNN API Call + Sys 

Cmd Reduct 

83 85 87 84 

Logistic 

Regression 

API Call + Sys 

Cmd Reduct 

84 86 88 85 
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Table 3.25 shows that when permission reduct, opcode reduct, and system 

command reduct are combined to form a single feature set, that feature set, when used 

with Random Forest, gives the highest accuracy of 93%. 

Table 3.23 Detection results based on permissions, API calls, and opcodes. 

 

 

 

Table 3.24 Detection results based on permissions, API calls, and system commands 

Classifier Feature Set Used Accuracy 

(%)

  

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

SVM permissions + API Call 

+ opcode + Reduct 

90 90 88 89 

K-Nearest 

Neighbor 

permissions + API Call 

+ opcode + Reduct 

92 91 90 91 

Random 

Forest 

permissions + API Call 

+ opcode + Reduct 

95 94 93 95 

ANN permissions + API Call 

+ opcode + Reduct 

88 89 89 88 

CNN permissions + API Call 

+ opcode + Reduct 

90 91 90 91 

Logistic 

Regression 

permissions + API Call 

+ opcode + Reduct 

90 89 89 90 

Classifier Feature Set Used Accuracy 

(%)

  

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

SVM permissions + API Call 

+ sys Cmd + Reduct 

86 87 85 87 

K-Nearest 

Neighbor 

permissions + API Call 

+ sys Cmd + Reduct 

87 89 87 88 

Random 

Forest 

permissions + API Call 

+ sys Cmd + Reduct 

93 92 90 92 
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Table 3.25 Detection results based on permissions, opcodes, and system 

commands. 

 

 

Table 3.26 shows combining the opcodes, API calls, and system command 

reducts and applying all four classifiers the detection model with the Random Forest 

as the classifier is best among all, with an accuracy of 94%. 

 

Classifier Feature Set Used Accuracy 

(%)

  

Precision 

(%) 
Recall 

(%) 
F1-Score 

(%) 

ANN permissions + API Call 

+ sys Cmd + Reduct 

84 85 84 84 

CNN permissions + API Call 

+ sys Cmd + Reduct 

85 87 87 85 

Logistic 

Regression 

permissions + API Call 

+ sys Cmd + Reduct 

85 87 88 86 

Classifier Feature Set Used Accuracy 

(%)  

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

SVM permissions + Opcode 

+ sys Cmd + Reduct 

86 87 83 85 

K-Nearest 

Neighbor 

permissions + Opcode 

+ sys Cmd + Reduct 

87 87 86 87 

Random 

Forest 

permissions + Opcode 

+ sys Cmd + Reduct 

93 92 89 91 

ANN permissions + Opcode 

+ sys Cmd + Reduct 

84 86 86 86 

CNN permissions + Opcode 

+ sys Cmd + Reduct 

84 86 86 86 

Logistic 

Regression 

permissions + Opcode 

+ sys Cmd + Reduct 

84 86 86 86 
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Table 3.26 Detection results based on opcodes, API calls, and system commands 

 

3.3.5 Detection Results with Combinations of all Four Features 

Table 3.27 shows that all the feature set reducts, i.e., permissions, opcodes, 

API calls, and system commands reducts, used together with Random Forest emerge 

as the best classifier, with an accuracy of 97%. 

Table 3.27 Detection results based on permissions, opcodes, API calls, and 

system commands. 

Classifier Feature Set Used Accuracy 

(%)  

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

SVM Opcode + API calls + 

sys Cmd + Reduct 

90 91 88 90 

K-Nearest 

Neighbor 

Opcode + API calls + 

sys Cmd + Reduct 

92 90 90 91 

Random 

Forest 

Opcode + API calls + 

sys Cmd + Reduct 

94 94 93 94 

ANN Opcode + API calls + 

sys Cmd + Reduct 

87 87 86 87 

CNN Opcode + API calls + 

sys Cmd + Reduct 

88 88 87 88 

Logistic 

Regression 

Opcode + API calls + 

sys Cmd + Reduct 

89 88 88 89 

Classifier Feature Set Used Accuracy 

(%) 

Precision 

(%) 

Recall (%) F1-Score 

(%) 

SVM Permissions + Opcode + API 

Call + Sys Cmd Reduct 

92 91 90 91 

K-Nearest 

Neighbor 

Permissions + Opcode + API 

Call + Sys Cmd Reduct 

93 93 92 92 

Random 

Forest 

Permissions + Opcode + API 

Call + Sys Cmd Reduct 

97 95 95 95 
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3.4 Discussion and Findings 

We describe in this subsection the rationale behind the detections generated 

using our proposed model. The highest accuracy attained by the model is 97%, which 

occurs when all four categories of feature type are used. What we observed was that 

the four types of features actually improve detection considerably if combined 

together. This is because each of these sets of features captures a different aspect of 

the malicious application behavior. Since the model will be incorporating various 

feature types, there will always be more significant and better understanding of the 

traits that characterize this application. This means that combinations of several feature 

types will increase the entire correctness in the detection process. 

The second thing that was discovered is that API calls are more accurate than 

the rest of the single features. The malware developers might obfuscate their code in 

an attempt to avoid detection, but it is a lot harder for them to hide the usage of certain 

API calls. Detection of those calls can disclose some concealed malware. Therefore, it 

seems that API call-based analysis is more accurate than the others. 

Thirdly, the Random Forest performed best compared to other classifiers. This 

is because Random Forest makes predictions using the ensemble of decision trees. One 

of the ways it reduces variance is through the minimization of the risk of overfitting 

that may occur due to an individual decision tree. The aggregation of the predictions 

that result from several trees gives a consistent improvement in the overall 

performance of the model. 

Last but not least, we have six different possible combinations of two feature 

sets consisting of permission, opcodes, API calls, or system commands. We tried all 

these combinations and found the pair of opcodes and API calls to work best for us, 

Classifier Feature Set Used Accuracy 

(%) 
Precision 

(%) 
Recall (%) F1-Score 

(%) 

ANN Permissions + Opcode + API 

Call + Sys Cmd Reduct 

89 88 87 89 

CNN Permissions + Opcode + API 

Call + Sys Cmd Reduct 

90 89 88 89 
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resulting in the best accuracy. Perhaps it might be because of the reason that an opcode 

is some low-level instruction which a processor executes. The pattern of such 

instructions within the code of an application may represent some malicious behavior. 

Meanwhile, analyzing the API calls of an app will tell what that app does, as some API 

calls are indicators of malicious activity. The integration of opcodes and API calls 

allows for a better view into the behavior of an application-in other words, its code 

level, which could prove useful for identifying sophisticated malware capable of using 

obfuscation techniques. In contrast, permissions give you a more general view based 

on declared capability that may not be specific to the same level. 

We combined all four features-permissions, opcodes, API calls, and system 

commands-together in sets of three, giving us four combinations. We tested out the 

combinations and found that the combination of permissions, opcodes, and API calls 

got us the best result. This might have been because of permissions providing 

important information about an app's declared capabilities. Putting together an opcode 

analysis with API call details really enhances our ability to understand not only how 

the app's intended usage but also how it may be misused. Specific combinations of 

permissions can signal potential issues even before analyzing what code is actually 

being executed in the application. Opcodes and API calls provide a deep, low-level 

insight into what the application is actually doing, but it's an additional layer of 

permissions that helps give it a more wide-ranging view which throws even more light 

on what an application might be trying to achieve and some relevant risks. 

3.5 Comparison with Other Related Work 

We conducted a thorough comparison between the detection outcomes 

achieved by our suggested approach and those of other studies found in the existing 

literature regarding the detection of Android malware. We implemented several other 

state-of-the-art techniques on our data sets and to facilitate this comparison; we present 

a concise summary of the findings in Table 3.28, which encompasses the results 

obtained by various works that have utilized certain or all components of the manifest 

file for detection purposes. By examining these results, it becomes evident that our 

proposed methodology surpasses all of the aforementioned related works in terms of 
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detection accuracy, signifying its superior performance in comparison to existing 

approaches. 

 

Table 3.28 Comparison of proposed model with related works. 

 

Detection 

Technique 

Feature 

set Used 

Detection 

Accuracy 

No. of 

Applications 

Feature 

Ranking 

Method 

Feature 

Selection 

Method 

SIGPID 

[23] 

Permissio

ns 

92 % 5494 

malicious & 

310,926 

benign apps 

Negative 

Rate & 

support 

Sequential 

Forward 

Selection(SF

S) & 

Principal 

Component 

Analysis 

(PCA) 

PermPair 

[50] 

Permissio

ns 

94.60 % 5993 benign 

& 7533 

malicious 

applications 

Ranked 

Permissio

n-pairs 

Not used 

Proposed 

Approach 

Permissio

ns , 

Opcode, 

API Calls 

and 

System 

Calls 

97% 15,000 

benign & 

15,000 

malicious 

Rough Set 

based 

Ranking 

Chi-Square 

Test, Pearson 

Correlation 

& 

Rough Set 

Reduct 
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3.6 Limitations 

The work performed in this research paper is based on static analysis. Static 

Android malware analysis has shortcomings, such as not capturing the run time 

behavior of applications like data leakage and network communications. Due to 

obfuscation techniques employed by malware writers, static analysis may not be able 

to capture the true intention of the code. With these limitations in the picture, static 

analysis may miss the malicious behaviour of Android applications, which may show 

its actual hostile conduct at run time. 

Additionally, the current proposed model is an off-device model, and hence it 

can not be installed on smartphones for real-time detection. 

3.7 Summary 

We presented in this paper a novel Android malware detection model based on 

rough set theory. We utilized a hybrid of static features that are of four categories: 

permissions, opcodes, API calls, and system commands. In the first place, we 

preprocessed the data and eliminated features that had a high correlation and those not 

correlated at all with the class variable. The significance of each feature was 

determined using the ranking score assigned to it with a concept from the rough set 

theory, which is called the Discernibility Matrix. Further, an algorithm was then 

utilized to compute the rough set reducts. Here, the number of features in each category 

were reduced based on the ranking scores. After feature reduction, machine learning 

algorithms were also applied to evaluate the detection accuracy using the refined 

feature sets. Conclusion Results: Comparison with other advanced detection models 

found the proposed model to be superior to many state-of-the-art techniques. 

The next chapter is dedicated in pairing permissions which is a static feature 

with the dynamic feature such as system calls. The pairing of static feature with 

dynamic feature is done to form a hybrid malware detection technique. The hybrid 

techniques contain advantages of both static and dynamic in order to form more robust 

malware detection model.
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Chapter Four:  
COVALENT BOND BASED ANDROID MALWARE 

DETECTION USING PERMISSION AND SYSTEM 

CALL PAIRS 

In this chapter we propose a technique for Android malware detection using 

rough set theory. In section 4.1, we highlight the motivation behind the work done and 

briefly explained the overview of the proposed technique. In section 4.2 we explain in 

detail the methodology of the proposed technique. In section 4.3 the details of results 

are discussed and presented. The section 4.4 presents results and discussions. In 

section 4.5 the proposed approach is compared with other related works. The section 

4.6 highlights the limitation of the approach. The section 4.7 summarizes the chapter 

with future directions. 

4.1 Introduction 

The Android operating system has maintained a dominant position in the 

smartphone industry for the past decade. Within the Android API framework, 

functions grant access to sensitive system resources. Unfortunately, this feature has 

allowed cyber attackers to develop and disseminate harmful applications through 

alternative app stores or social media advertisements. Furthermore, an attacker may 

introduce malicious components in the installed Android application. These 

malevolent applications empower attackers to perform various operations, including 

information theft, SMS transmission, and remote device control. Consequently, 

safeguarding smartphones from these malicious applications is imperative [11, 12, 13]. 

Malware detection methods currently fall into three primary categories: static, 

dynamic, and hybrid analysis. Static analysis is capable of discerning malicious 

behavior by examining an application's source code without executing it [113]. On the 

other hand, dynamic analysis identifies malicious behavior by analyzing the runtime 

information generated during the application's execution, such as system calls [114] . 

The strength of static analysis lies in its ability to pinpoint malicious components 

directly from the source code, resulting in high code coverage [115]. Dynamic analysis 
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excels in uncovering exploits within the runtime environment [116]. Therefore, by 

merging the strengths of static and dynamic analysis, a hybrid analysis approach can 

be formulated to enhance malware detection accuracy [117, 118]. 

Several static works have been proposed in the literature for Android malware 

detection. For instance, in [35], Talha et.al extracted application permissions. They 

then assign a score to each permission, determined by the ratio of malware instances 

containing that specific permission to the total number of malware instances. In [50], 

the study utilized pairs of permissions extracted from the manifest file, resulting in an 

overall accuracy of 95.44%. IPDroid, as discussed in [49], incorporated both 

permissions and intents from the manifest file in their analysis. They achieved a 

notable accuracy of 94.73% by employing a Random Forest classifier. 

The TaintDroid model [119] employed dynamic taint analysis to monitor the 

movement of privacy-sensitive data within third-party applications. Yang et.al. [71] 

expanded upon the TaintDroid model to not only identify data leaks from applications 

but also ascertain whether these leaks are a result of user intention or not. In [85], the 

authors introduced a proficient and automated approach for detecting malware by 

leveraging the textual semantics of network traffic. Specifically, they treated each 

HTTP flow produced by mobile applications as a textual document, allowing them to 

apply natural language processing techniques to extract features at the text level. 

Some of the works have combined static and dynamic features to propose a 

hybrid Android malware detector. MADAM [95] is a host-based malware detection 

system designed for Android devices. It conducts concurrent analysis and correlation 

of attributes across four tiers: kernel, application, user, and package. This 

comprehensive approach aims to identify and thwart malicious activities effectively. 

Monet [97] consists of a module on the user side, an application responsible for 

analyzing malicious activity and signatures. Conversely, the module installed on the 

server side is responsible for detecting malicious applications based on analysis on the 

client side. In [98] authors developed AppAudit which employs a combination of static 

and dynamic analysis to deliver highly effective real-time app auditing. It introduces 

an innovative dynamic analysis approach that leverages this combination to reduce 

false positives generated by an efficient yet conservative static analysis. 
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4.1.1 Motivation 

Identifying dangerous combinations of permissions and system calls is 

instrumental in spotting malicious behavior. Hence, this study endeavors to scrutinize 

permissions and system calls in pairs and introduces a novel methodology to identify 

such pairs that can differentiate between benign and malicious samples. To the best of 

our knowledge, we are the first to use permissions and system call pairs to detect 

Android malware. Pairing permissions and system calls has several key benefits. 

Firstly, permissions are static features, and system calls are dynamic features; pairing 

both of them will combine the advantages of static analysis and dynamic analysis to 

form a hybrid analysis technique. Second, this combination allows for a more detailed 

examination of an application's behavior. Permissions provide a high-level overview 

of what resources an app may access, while system calls offer a finer-grained view of 

actual interactions with the system. By correlating permissions with system calls, we 

can better understand how an application uses the permissions it requests. This context 

is crucial in distinguishing legitimate behavior from potentially malicious actions. It 

enables the detection of anomalies or suspicious activities. For example, if an app with 

camera access permission unexpectedly starts making network-related system calls, it 

may raise a red flag. The app requests access to the camera 

(Android.permission.CAMERA). Additionally, it asks permission to access the 

internet (Android.permission.INTERNET). Based on permissions alone, the app 

seems legitimate. Camera apps naturally require camera access and internet access 

could be justified for features like cloud storage of images. During runtime, if the app 

makes system calls such as open(), read(), write(), and connect(). This observation may 

establish suspicious behavior as the app is accessing files unrelated to image storage 

and making network connections to unusual domains. Hence, this study endeavors to 

scrutinize permissions and system calls in pairs and introduces a novel methodology 

to identify such pairs that can differentiate between benign and malicious samples. 

4.1.2 Contributions 

We present a covalent bond-based Android malware detection model using 

permissions and system call pair. We use the analogy of covalent bonds between two 

atoms in chemistry to form covalent bonds between every permission and system call. 
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We also calculate bond strengths between permission and system call pairs to denote 

the strength of the bond they create between them. The estimated bond strength helps 

detect an Android application as malicious or benign. Our detection results 

demonstrate an overall accuracy of 97.5%, better than many state-of-the-art detection 

techniques proposed in the literature. The main contributions of the paper are 

summarized below. 

✓ We build the permission and system call covalent bond pairs to identify and 

analyze the impact of these pairs. 

✓ We proposed a novel approach to calculate the Covalent bond strength score 

for the permissions and system calls bond pair. Two scores, i.e., malicious and 

benign, are computed for each bond pair. 

✓ We designed a technique for identifying Android applications as malicious or 

benign based on the malicious and benign scores of permission and system call 

pairs. 

✓ We conducted a comparative analysis between our proposed model and other 

state-of-the-art detection techniques. Our findings demonstrate that the 

proposed model surpasses similar state-of-the-art models in terms of 

performance. 

4.2 Methodology 

In this section, we present our novel Covalent Bond Pair-based model for 

detecting malicious Android applications. The proposed model is depicted in Figure 

4.1. 

4.2.1 Data set Description 

KronoDroid [120], a meticulously structured Android dataset, holds the 

distinction of being the largest in its category. It is distinguished by its amalgamation 

of static and dynamic features and the notable inclusion of timestamps. This dataset 

meticulously accounts for the unique characteristics of dynamic data sources, 

encompassing samples from over 209 distinct Android malware families. Its creation 

involved the fusion of diverse sources of benign and malware data, resulting in a 

comprehensive collection spanning a significant period. The dataset comprises 41,382 
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instances of malware belonging to 240 distinct malware families, along with 36,755 

benign applications. 

The dataset predominantly comprises permissions as static features, 

represented as binary indicators of whether the app requested the standard Android 

permissions (1) or not (0). There are a total of 166 distinct permissions in the dataset. 

In contrast, the dynamic feature set mainly consists of system calls, represented by the 

absolute frequency of each system call issued by the app at runtime. The system call 

set comprises 288 features. Hence, the total number of features under consideration 

amounts to 454. 

 

 

Figure 4.1 Proposed Covalent Bond Pair Detection Model 

4.2.2 Feature Space Transformation 

As previously stated, the KronoDroid dataset is well-organized and accessible 

in CSV file format. These files contain information on both malware and benign 

applications. The feature vectors within these CSV files are represented as 

combinations of 0’s and 1’s. A 0 in the feature vector signifies the absence of a 

particular feature in an application, while a 1 indicates its presence. Table 4.1 and 

Table 4.2 provide a visual representation of the feature spaces for benign and malicious 

applications respectively. 
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Table 4.1 Instance of Benign CSV 

Benign 

CSV 

P1 P2 P3 . . . . . Pn S1 S2 S3 . . . . . Sm 

A1B 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 

A2B 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 

. 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 

. 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 0 

AxB 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 

 

Within both the instances of benign and malicious CSV files as represented in 

Table 4.1 and Table 4.2 respectively, the labels P1, P2, P3, ..., and Pn represent the n 

permissions, while S1, S2, S3, ..., and Sm denote the m system calls. In our specific 

dataset, n is set at 166 and m at 288. The benign applications are denoted as A1B, A2B, 

..., and AxB, where x represents the total number of benign applications. Similarly, the 

malicious applications are labeled A1M, A2M, ..., and AyM, with y indicating the total 

number of malicious applications. 

Table 4.2 Instance of Malicious CSV 

Malicious 

CSV 

P1 P2 P3 . . . . . Pn S1 S2 S3 . . . . . Sm 

A1M 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 

A2M 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 

. 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 

. 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 

AyM 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 

 

4.2.3 Covalent Bond Pair Formation Phase 

The concept of feature pair covalent bond formation is based on the concepts 

of the covalent bond theory of chemistry [36].  A covalent bond arises from the mutual 

sharing of electrons between the involved atoms. This pair of electrons engaged in this 

form of bonding is referred to as a shared pair or bonding pair. Additionally known as 
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molecular bonds, covalent bonds facilitate the attainment of outer shell stability, 

resembling the configuration of noble gases, by enabling the sharing of these bonding 

pairs.  Covalent bonds are normally categorized into three types: single covalent bonds, 

double covalent bonds, and triple covalent bonds. We will restrict our proposed 

methodology to single covalent bonds and double covalent bonds only.  

A single bond is established through the sharing of only one pair of electrons 

between the two involved atoms, symbolized by a single dash (-). Despite having lower 

density and strength than double and triple bonds, this type of covalent bond is the 

most stable. 

A double bond is created when two pairs of electrons are shared between the 

participating atoms, denoted by two dashes (=). Double covalent bonds exhibit 

significantly greater strength than single bonds, although comparatively less stable. 

In the case of our proposed methodology, we calculated single covalent bond 

strengths and double covalent bond strengths between two arbitrary features 𝑓𝑖  and 𝑓𝑗, 

and formed feature pair 𝑓𝑖𝑗. We separately calculated these bond strengths from two 

perspectives: w.r.t benign applications and w.r.t malicious applications. Hence, the 

concept of covalent bond strengths helps to calculate benign and malicious feature pair 

scores between every possible feature pair in the dataset. This notion of covalent bond 

strengths gives us a perspective of separately viewing any arbitrary feature pair 

regarding the role played for benign and malicious applications. Algorithm 1 depicts 

the whole phase of Feature Pair Covalent Bond Formation. 

Algorithm 1: Feature Pair Covalent Bond Formation 

1. Input: benign feature matrix 𝑏𝑒𝑛[𝐴𝑥𝐵][𝑓𝑛] where 𝑥 is the number of benign 

applications and 𝑛 is the number of features, malicious feature matrix 

𝑚𝑎𝑙[𝐴𝑦𝐵][𝑓𝑛] where 𝑦 is the number of malicious applications and 𝑛 is the 

number of features. 

2. Output: benign feature pair matrix having double covalent bond strengths 

𝑏𝑒𝑛⇋[𝑓𝑛][𝑓𝑛] and malicious feature pair matrix having double covalent bond 

strengths 𝑚𝑎𝑙⇋[𝑓𝑛][𝑓𝑛]. 
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3. for each  𝒊: 𝟏 →  𝒏 

4.  for each  𝒋: 𝒊 + 𝟏 →  𝒏 

5.   𝑛(𝑓𝑖𝑗) = 0 

6.   𝑛(𝑓𝑖) = 0  

7.   𝑛(𝑓𝑗) = 0  

8.   for each  𝒌: 𝟏 →  𝒙 

9.    If (𝑏𝑒𝑛[𝐴𝑘𝐵][𝑓𝑖] == 1 &&𝑏𝑒𝑛[𝐴𝑘𝐵][𝑓𝑗] == 1) 

10.     𝑛(𝑓𝑖𝑗) = 𝑛(𝑓𝑖𝑗) + 1 

11.    end if 

12.    If (𝑏𝑒𝑛[𝐴𝑘𝐵][𝑓𝑖] == 1 ) 

13.     𝑛(𝑓𝑖) = 𝑛(𝑓𝑖) + 1  

14.    end if 

15.    If (𝑏𝑒𝑛[𝐴𝑘𝐵][𝑓𝑗] == 1 ) 

16.     𝑛(𝑓𝑗) = 𝑛(𝑓𝑗) + 1  

17.    end if 

18.   end for 

19.   𝑏𝑒𝑛⇀[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑗)                                            

20.   𝑏𝑒𝑛↽[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑖)                                            

21.  end for 

22. end for  

23. for each  𝒊: 𝟏 →  𝒏 

24.  for each  𝒋: 𝒊 + 𝟏 →  𝒏 

25.   𝑛(𝑓𝑖𝑗) = 0 

26.   𝑛(𝑓𝑖) = 0  

27.   𝑛(𝑓𝑗) = 0  

28.   for each  𝒌: 𝟏 →  𝒚 

29.    If (𝑚𝑎𝑙[𝐴𝑘𝐵][𝑓𝑖] == 1 &&𝑚𝑎𝑙[𝐴𝑘𝐵][𝑓𝑗] == 1) 

30.     𝑛(𝑓𝑖𝑗) = 𝑛(𝑓𝑖𝑗) + 1 
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31.    end if 

32.    If (𝑚𝑎𝑙[𝐴𝑘𝐵][𝑓𝑖] == 1 ) 

33.     𝑛(𝑓𝑖) = 𝑛(𝑓𝑖) + 1  

34.    end if 

35.    If (𝑚𝑎𝑙[𝐴𝑘𝐵][𝑓𝑗] == 1 ) 

36.     𝑛(𝑓𝑗) = 𝑛(𝑓𝑗) + 1  

37.    end if 

38.   end for 

39.   𝑚𝑎𝑙⇀[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑗)                                            

40.   𝑚𝑎𝑙↽[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑖)                                            

41.  end for 

42. end for 

43. for each  𝒊: 𝟏 →  𝒏 

44.  for each  𝒋: 𝒊 + 𝟏 →  𝒏 

45.   𝑏𝑒𝑛⇋[𝑓𝑖][𝑓𝑗] = (𝑏𝑒𝑛⇀[𝑓𝑖][𝑓𝑗] + 𝑏𝑒𝑛↽[𝑓𝑖][𝑓𝑗])/2  

46.   𝑚𝑎𝑙⇋[𝑓𝑖][𝑓𝑗] = (𝑚𝑎𝑙⇀[𝑓𝑖][𝑓𝑗] + 𝑚𝑎𝑙↽[𝑓𝑖][𝑓𝑗])/2  

47.  end for 

48. end for 

 

The data set is assumed to have benign and malicious feature matrices in which 

each of the application feature vectors in the form of 0’s and 1’s is represented, 

respectively.  Then, the feature vs. the feature matrix is calculated from these feature 

matrices, holding single covalent bond strengths. If  𝑓𝑖  and 𝑓𝑗, are two arbitrary 

features, then we calculate two single covalent bond strengths for the feature pair 𝑓𝑖𝑗, 

one w.r.t 𝑓𝑖  and other w.r.t 𝑓𝑗,. Calculating single bond strength is done from benign 

and malicious perspectives.  The single covalent bond strength of feature vs. feature 

matrices is combined to form new feature vs. feature matrices holding double covalent 

bond strengths for both benign and malicious perspectives. 
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Let us suppose an instance of benign and malicious information systems, as 

shown in Table 4.3 and Table 4.4 P1, P2, and P3 denote permissions as features in both 

instances. Similarly, S1, S2, and S3 denote system calls as features. A1B, A2B, A3B, A4B, 

and A5B denote the benign applications in the supposed instance of benign information 

systems. Similarly, A1M, A2M, A3M, A4M, and A5M denote the malicious applications in 

the supposed instance of a malicious information system.  

After assuming the benign and malicious instances of the information systems, 

now we show how to calculate the single bond strengths of every feature pair. As 

discussed earlier, single bond strengths of two arbitrary features are calculated from 

two perspectives, i.e., benign and malicious. For each perspective, the single bond 

strengths are calculated again from two aspects, i.e., w.r.t 𝑓𝑖  and w.r.t 𝑓𝑗. The formulas 

for this are evident from Eq. 1, 2, 3, and 4. 

Table 4.3 Supposed Instance of Benign Information Systems 

Benign P1 P2 P3 S1 S2 S3 

A1B 0 1 1 1 0 0 

A2B 0 0 1 1 1 0 

A3B 1 0 1 0 1 1 

A4B 0 0 1 0 1 0 

A5B 1 0 1 0 1 0 

 

 

Table 4.4 Supposed Instance of Malicious Information Systems 

Malicious P1 P2 P3 S1 S2 S3 

A1M 1 0 0 1 1 1 

A2M 1 1 0 1 0 1 

A3M 1 1 0 0 1 1 

A4M 0 1 0 0 1 0 

A5M 0 0 1 1 0 0 
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Eq. 1 denotes the single benign bond strength of the feature pair 𝑓𝑖𝑗 w.r.t feature 

𝑓𝑗. As discussed earlier, the single bond is established by sharing only one pair of 

electrons between the two involved atoms, symbolized by a single dash (-). The same 

phenomenon is established in our concept represented by equation 1 as 

𝑏𝑒𝑛⇀[𝑓𝑖][𝑓𝑗]. Here, the (⇀) represents a single covalent bond w.r.t. to the feature at 

the right side of the arrow, simulating the sharing of only one electron pair. It gives us 

the benign score of the single covalent bond between 𝑓𝑖 and 𝑓𝑗 w.r.t. 𝑓𝑗, where 𝑛(𝑓𝑖𝑗) 

is the number of applications for which both features were present simultaneously in 

the benign feature matrix. In addition, 𝑛(𝑓𝑗) is defined as the number of applications 

for which the feature 𝑓𝑗 is present. The value for equation 1 will be lying in the set [0, 

1]. A value of 1 indicates a strong single covalent bond while a value of 0 indicates a 

weak bond. The ratio of 𝑛(𝑓𝑖𝑗) w.r.t 𝑛(𝑓𝑗) denotes the the probability that the 

association between two features 𝑓𝑖 and 𝑓𝑗 in the is strong or weak w.r.t to the feature 

𝑓𝑗 i.e., higher the ratio greater the association. 

𝑏𝑒𝑛⇀[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑗)                                              (1) 

𝑏𝑒𝑛↽[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑖)                                              (2) 

𝑚𝑎𝑙⇀[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑗)          (3) 

𝑚𝑎𝑙↽[𝑓𝑖][𝑓𝑗] = 𝑛(𝑓𝑖𝑗)/𝑛(𝑓𝑖)                                              (4) 

Eq. 2 denotes the single benign bond strength of the feature pair 𝑓𝑖𝑗 w.r.t feature 

𝑓𝑖. Here (↽) represents a single covalent bond w.r.t. to the feature at the left side of the 

arrow, simulating the sharing of only one electron pair. It gives us the benign score of 

the single covalent bond between 𝑓𝑖 and 𝑓𝑗 w.r.t. 𝑓𝑖,  where 𝑛(𝑓𝑖𝑗) is the number of 

applications for which both features were present simultaneously in the benign feature 

matrix. In addition,  𝑛(𝑓𝑖) is defined as the number of applications for which the feature 

𝑓𝑖 is present. The value for equation 2 will be lying in the set [0, 1]. A value of 1 

indicates a strong single covalent bond while a value of 0 indicates a weak bond. 
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Similarly, with the help of equations 3 and 4, we can calculate 𝑚𝑎𝑙⇀[𝑓𝑖][𝑓𝑗]  

and 𝑚𝑎𝑙↽[𝑓𝑖][𝑓𝑗] where the former is the single malicious bond strength of the feature 

pair 𝑓𝑖𝑗 w.r.t feature 𝑓𝑗 while later is the single malicious bond strength of the feature 

pair 𝑓𝑖𝑗 w.r.t feature 𝑓𝑖. They are both calculated from the malicious feature pair matrix. 

The value for equation 5 and 6 will be lying in the set [0, 1]. A value of 1 indicates a 

strong double covalent bond while a value of 0 indicates a weak bond. Since the single 

covalent bonds are calculated from two perspectives i.e., w.r.t  𝑓𝑖 and 𝑓𝑗 separately, 

taking their average will give the strength of association between the two features w.r.t 

both the perspectives. Higher the average value greater the association between both 

the features w.r.t both the perspectives.  

𝑏𝑒𝑛⇋[𝑓𝑖][𝑓𝑗] = (𝑏𝑒𝑛⇀[𝑓𝑖][𝑓𝑗] + 𝑏𝑒𝑛↽[𝑓𝑖][𝑓𝑗])/2     (5) 

𝑚𝑎𝑙⇋[𝑓𝑖][𝑓𝑗] = (𝑚𝑎𝑙⇀[𝑓𝑖][𝑓𝑗] + 𝑚𝑎𝑙↽[𝑓𝑖][𝑓𝑗])/2     (6) 

Eq. 5 and 6 calculate double covalent bond strength for the feature pair 𝑓𝑖𝑗.  

𝑏𝑒𝑛⇋[𝑓𝑖][𝑓𝑗] denotes the double covalent benign bond strength, and 𝑚𝑎𝑙⇋[𝑓𝑖][𝑓𝑗] 

denotes the double covalent malicious bond strength. As discussed, the double 

covalent bond is created when two pairs of electrons are shared between the 

participating atoms, denoted by two dashes (=). We used (⇋) to denote a double 

covalent bond for the feature pair 𝑓𝑖𝑗. The benign single covalent bond strengths 

calculated in equations 1 and 2 are used to calculate double covalent bond strength in 

eq. 5, simulating the sharing of two pairs of electrons between the participating atoms. 

Similarly, the malicious covalent bond strengths calculated in equations 3 and 4 are 

used to calculate double covalent bond strengths in eq. 6. 

Table 4.5 and Table 4.6 depict benign and malicious feature pair matrices 

representing benign and malicious double feature pair covalent bond strengths, respectively. 

Table 4.5 and Table 4.6 are calculated from Table 4.3 and Table 4.4 using equations 1, 2, 

3, 4, 5, and 6. 
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Table 4.5 Instance of Benign Feature Pair Matrix 

Benign P1 P2 P3 S1 S2 S3 

P1  0 0.7 0 0.7 0.75 

P2   0.6 0.75 0 0 

P3    0.7 0.6 0.6 

S1     0.37 0 

S2      0.33 

S3       

 

Table 4.6 Instance of Malicious Feature Pair Matrix 

Benign P1 P2 P3 S1 S2 S3 

P1  0.66 0 0.66 0.66 0.5 

P2   0 0.33 0.66 0.66 

P3    0.6 0 0 

S1     0.33 0.66 

S2      0.66 

S3       

 

4.2.4 Detection Phase 

 The double covalent benign and malicious bond strength calculated in the 

previous phase is used to detect an arbitrary application as malicious or benign. The 

whole process of the detection phase is depicted in Algorithm 2. 

The testing application is first analyzed to form all possible distinct feature 

pairs. After this, the net benign and malicious scores are calculated based on the feature 

pairs formed for the test application. The net benign and malicious scores are 

calculated from the double covalent benign and malicious strengths stored in benign 

and malicious feature pair matrices, respectively. 
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Let us take an instance of the test Android application as 𝐴𝑡, then the net benign 

score and net malicious score of the application are calculated with the help of Eq. 7 

and 8 respectively. 

𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) = 𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) +  𝑏𝑒𝑛⇋[𝑓𝑖][𝑓𝑗]                                                                          (7) 

𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) = 𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) +  𝑚𝑎𝑙⇋[𝑓𝑖][𝑓𝑗]                                                             (8) 

In Eq. 7 the  𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) represents the net benign score of application 𝐴𝑡 

whereas in Eq. 8 the 𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) represents the net malicious score. Both equations 

sum up the benign and malicious feature pair scores of all the distinct feature pairs 

respectively.  If 𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) score is greater than 𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) then we can deduce that 

the test application 𝐴𝑡 is detected as malicious otherwise benign.  

Algorithm 2: Feature Pair Covalent Bond Formation 

1. Input: benign feature pair matrix having double covalent bond strengths 

𝑏𝑒𝑛⇋[𝑓𝑛][𝑓𝑛] and malicious feature pair matrix having double covalent bond 

strengths 𝑚𝑎𝑙⇋[𝑓𝑛][𝑓𝑛]. Set of Applications (𝐴1, 𝐴2, … . . , 𝐴𝑛) to be Tested 

2. Output: Each of the applications is Malicious or Benign. 

3. for each application  (𝑨𝒕)  𝒕: 𝟏 →  𝒏 

4.       𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) = 0 

5.      𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) = 0 

6.  for each  𝒊: 𝟏 →  𝒏 

7.   for each  𝒋: 𝒊 + 𝟏 →  𝒏 

8.    𝒊𝒇(𝒇𝒊  ∈ 𝑨𝒕 && 𝒇𝒋  ∈ 𝑨𝒕)  

9.     𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) = 𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) +  𝑏𝑒𝑛⇋[𝑓𝑖][𝑓𝑗]  

10.     𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) = 𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) +  𝑚𝑎𝑙⇋[𝑓𝑖][𝑓𝑗]  

11.    end if 

12.   end for 

13.  end for 

14.  If (𝑛𝑒𝑡𝑚𝑎𝑙(𝐴𝑡) >  𝑛𝑒𝑡𝑏𝑒𝑛(𝐴𝑡) ) 

15.   Return 𝐴𝑡 as Malicious 

16.  Else 
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17.   Return 𝐴𝑡 as Benign 

18.  end if 

19. end for 

 

4.3 Results and Discussions 

This section reports results obtained from each of the covalent bond pair 

models. Three types of detection models are formed with the help of covalent bonds 

pair: permissions-permissions, system calls-system calls, and permissions-system 

calls.  

4.3.1 Feature Pair Analysis 

Table 4.7 shows the top ten highest-scoring permission pairs based on both 

malicious and benign covalent bond strengths between them. The maximum malicious 

permissions pair is INTERNET and READ_PHONE_STATE, with the malicious 

colavent bond strength score of 0.96. This behavior seems evident because pairing 

INTERNET and READ_PHONE_STATE permissions in an Android app may pose 

privacy and security risks. The INTERNET permission allows access to online 

resources, while READ_PHONE_STATE grants access to device details like phone 

numbers and network information. These permissions could enable an app to collect 

and transmit sensitive user data without consent, potentially indicating malicious 

intent. Similarly, the reason for other pairs could also be inferred. 

Table 4.8 shows system call- system call covalent bond pairs with their 

malicious and benign score arranged in descending order of covalent bond strengths. 

The top pair in this table with the highest malicious score is “getuid32-ioctl”. The 

getuid32 system call retrieves the effective user ID of a process in Linux-based 

operating systems. On the other hand, the ioctl system call, which stands for 

"Input/Output Control," is employed in Unix-like systems to control devices beyond 

standard read and write operations. When used together, these system calls could be 

leveraged in a potentially malicious manner. For instance, a malicious program might 

use getuid32 to ascertain if the current user possesses administrative privileges. If 
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affirmative, it could then utilize ioctl to manipulate a system device or resource, 

potentially resulting in a security breach or compromise. 

Table 4.7 Top Ten highest scoring Permissions pair from both malicious and 

benign perspectives. 

Malicious Benign 

Permissions-Permissions 

pair 

Malicio

us 

score 

Permissions-Permissions pair Beni

gn 

score 

INTERNET- 

READ_PHONE_STATE 

0.96 READ_SYNC_SETTINGS- 

WRITE_SETTINGS 

0.98 

ACCESS_NETWORK_ST

ATE- 

INTERNET 

0.93 BROADCAST_PACKAGE_RE

MOVED- 

BROADCAST_STICKY 

0.96 

ACCESS_COARSE_LOC

ATION- 

ACCESS_FINE_LOCATI

ON 

0.92 BROADCAST_PACKAGE_RE

MOVED- 

RESTART_PACKAGES 

0.84 

ACCESS_NETWORK_ST

ATE- 

READ_PHONE_STATE 

0.92 BIND_WALLPAPERS- 

BLUETOOTH 

0.79 

INTERNET- 

WRITE_EXTERNAL_ST

ORAGE 

0.91 QUERY_ALL_PACKAGES- 

WRITE_APN_SETTINGS 

0.75 

READ_PHONE_STATE- 

WRITE_EXTERNAL_ST

ORAGE 

0.89 ACCESS_MEDIA_LOCATION- 

INTERACT_ACCROSS_PROFI

LES 

0.72 

ACCESS_NETWORK_ST

ATE- 

WRITE_EXTERNAL_ST

ORAGE 

0.88 ACCESS_NETWORK_STATE- 

WRITE_EXTERNAL_STORAG

E 

0.72 
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Malicious Benign 

Permissions-Permissions 

pair 

Malicio

us 

score 

Permissions-Permissions pair Beni

gn 

score 

ACCESS_NETWORK_ST

ATE- 

ACCESS_WIFI_STATE 

0.87 INTERNET- 

READ_PHONE_STATE 

0.71 

ACCESS_WIFI_STATE- 

READ_PHONE_STATE 

0.84 INTERNET- 

WRITE_EXTERNAL_STORAG

E 

0.70 

ACCESS_WIFI_STATE – 

INTERNET 

0.82 ACCESS_NETWORK_STATE- 

INTERNET  

0.70 

 

Table 4.8 Top Ten highest-scoring system call pair from both malicious and 

benign perspectives. 

Malicious Benign 

System Calls-System Calls 

pair 

Malicious 

score 

System Calls-System 

Calls pair 

Benign 

score 

getuid32-ioctl 0.998 prctl-madvise 0.998 

prctl– madvise 0.998 close-SYS_305 0.994 

fstat64-SYS_305 0.998 fstat64-SYS_305 0.993 

prctl-fstat64 0.997 getuid32-ioctl 0.993 

close-SYS_305 0.997 close-fstat64 0.992 

prctl-SYS_305 0.996 ioctl-writev 0.992 

mmap2-SYS_305 0.996 madvise-mmap2 0.992 

mprotect-fstat64 0.996 mprotect-SYS_305 0.991 

prctl-mprotect 0.996 prctl-mmap2 0.991 

close-mmap2  0.996 read-ioctl 

 

0.991 
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Table 4.9 Top Ten highest-scoring system call and permission pairs from both 

malicious and benign perspectives. 

Malicious Benign 

System call-Permissions 

pair 

Malicious 

score 

System call-Permissions 

pair 

Benign 

score 

clock_gettime-INTERNET 0.98 clock_gettime-INTERNET 0.90 

getuid32-INTERNET 0.97 ioctl-INTERNET 0.895 

ioctl-INTERNET 0.97 getuid32-INTERNET 0.894 

close-INTERNET 0.968 read-INTERNET 0.892 

futex-INTERNET 0.968 writev-INTERNET 0.892 

fadvise64_64 - INTERNET 0.968 write-INTERNET 0.889 

SYS_305-INTERNET 0.967 close-INTERNET 0.877 

fstat64-INTERNET 0.967 fadvise64_64-INTERNET 0.877 

mprotect-INTERNET 0.966 fstat64-INTERNET 0.876 

prctl -INTERNET 0.965 SYS_305-INTERNET  0.875 

 

Table 4.9 shows system call and permission pair covalent bonds arranged in 

descending order of their malicious and benign bond strength score, respectively. One 

of the top system call and permission pairs in malicious and benign pairs is 

clock_gettime and INTERNET. An application may use the precise timing obtained 

from clock_gettime with the internet access granted by the INTERNET permission to 

perform covert communication. The combination of precise timing and internet access 

could allow an application to engage in stealthy activities, making it harder to detect 

malicious behavior. The malicious score of this pair is 0.98, while the benign score is 

0.90. Hence, its malicious intent is more in our case than normal intent. Still, one could 

not rule out that many legitimate applications use these functionalities for legitimate 

purposes, such as measuring performance or synchronizing with online services. 
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4.3.2 Detection Results 

Table 4.10 shows the performance of various detection models. The proposed 

models are evaluated on five parameters, i.e., True Positive Rate (TPR), False Positive 

Rate (FPR), Precision, Accuracy, and F1-Score. The permissions-permissions model 

is static as it considers only permission-permission covalent bond score for detecting 

Android Malware applications. The system call – system call covalent bond pair model 

is dynamic and has better results in the evaluation parameters, which is evident from 

the fact that dynamic features consider the run time behavior of the application while 

static feature does not. Hence, those malicious behavior that are activated at run time 

uncovers hidden insights that are helpful in the identification of malicious application. 

The next model is the permissions–system call model, a hybrid model in which a 

covalent bond pair is formed among permissions and system calls, and their bond 

strengths are used to detect malicious applications. This model, which is a hybrid, has 

even better evaluation parameters than the system call- system call detection model. 

The apparent reason seems to be the uncovering of system calls and permissions 

bonding. The permission requested by the application is not alone responsible for 

malicious behavior because benign applications may also use the same permission. 

The combination of permission with system calls allows a more detailed examination 

of an application's behavior. Permissions provide a high-level overview of what 

resources an app may access, while system calls offer a finer-grained view of actual 

interactions with the system. The Permissions-System calls model shown is the best 

of all. This model is a hybrid model and achieves an overall accuracy of 97.50%, which 

is better than both static and dynamic models. The confusion matrix for the 

permissions-system call model is given in Table 4.11. 

 

Table 4.10 Performance of Proposed Detection Models 

Detection Model TPR FPR Precision Accuracy F1-

Score 

Permissions-Permissions 92.27% 5.80% 94.98% 93.39% 93.84% 

System calls-System Calls 95.97% 4.43% 96.06% 95.78% 96.01 % 
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Detection Model TPR FPR Precision Accuracy F1-

Score 

Permissions- System calls 97.77% 2.81% 97.49% 97.50% 97.63% 

 

 

Table 4.11 Confusion Matrix of Proposed Detection Model 

  Predicted 

  Malicious Benign 

A
ct

u
a
l 

Malicious 

12415 

True Positive 

12104 

False Positive 

311 

Benign 

11027 

False Negative 

275 

True Negative 

10752 

 

4.3.3 Detection Results on Unknown Samples 

We comprehensively evaluate our proposed model on unknown samples. The 

sample is taken from the CICAndMal2017 [121] data set. A total of 1800 samples 

were taken, of which 1000 were malicious, and 800 were benign. These are the unseen 

samples as they are in the form of apks. We first installed these applications in a virtual 

environment, and then random clicks were done on installed applications for nearly a 

minute. The generated system calls are captured with the help of a strace script. The 

permissions were extracted from the Android manifest file of each application after 

unpacking each application using the apk tool. The observed result shows an accuracy 

of 96.20 %.  The details of the results are represented in Table 4.12 And Table 4.13. 
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Table 4.12 Performance of Proposed Detection Models on Unknown Samples. 

Detection Model TPR FPR Precision Accuracy F1-

Score 

Permissions-Permissions 93.32% 7.57% 94.% 92.88% 93.62% 

System calls-System Calls 94.30% 5.11% 96% 94.55% 95.14 % 

Permissions- System calls 95.33% 2.5% 98.% 96.20% 96.64% 

 

 

Table 4.13 Confusion Matrix of Proposed Detection Model on Unknown 

Samples 

  Predicted 

  Malicious Benign 

A
ct

u
a
l 

Malicious 

1000 

True Positive 

980 

False Positive 

20 

Benign 

800 

False Negative 

48 

True Negative 

752 

 

4.4 Comparison with other related works 

We comprehensively evaluate the detection results obtained from our 

proposed method, comparing them with findings from previous studies in the literature 

focusing on Android malware detection. We implemented several state-of-the-art 

techniques on our data set and to facilitate this comparison, we provide a concise 

summary in Table 4.14. Upon examination of these results, it becomes apparent that 

our proposed methodology outperforms all the aforementioned related works 

regarding detection accuracy, demonstrating its superior performance compared to 
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existing approaches. Moreover, the data set used by all the approaches was old and 

outdated. The data set used by us is the latest, and it chronicles the entire history of 

Android, covering the years from 2008 to 2020 while also accounting for the distinct 

dynamic data sources. 

 

Table 4.14 Comparison of Proposed Model with Related Works. 

Methodology Approach Features set 

used 

No. of 

Applications 

TPR Accuracy 

PermPair [50] Static Permissions  5993 benign 

and 7533 

malicious 

94.11%  94.54 % 

Guerra-

Manzanares et 

al. [122] 

Dynamic System Call 28343 

Malicious 

and 34981 

Benign 

93.60% 94.40% 

Guerra-

Manzanares et 

al. [123] 

Static Permissions 4174 

Malicious 

and 37020 

Benign 

92.80 % 93.50% 

Guerra-

Manzanares et 

al. [124] 

Dynamic System Call 41382 

Malicious 

and 36755 

Benign 

95.50% 95.90% 

Proposed 

Approach 

Hybrid Permissions 

and System 

Call 

41382 

Malicious 

and 36755 

Benign  

97.77% 97.50% 
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4.5 Limitations 

In this subsection, we address certain ambiguities in our proposed approach. 

Specifically, our model relies on feature pairs to assess applications. Some malware 

samples with a limited number of features may go undetected. To bypass detection, 

attackers may incorporate commonly used features into the malware, thereby 

generating a more significant number of ordinary feature pairs. Additionally, we've 

observed that when a feature pair appears only once in the malicious samples, and both 

individual features have a frequency of one for a specific application, it results in a 

malicious covalent bond strength of one. This misrepresents the actual strength of the 

bond, potentially elevating the significance of an otherwise insignificant feature pair 

and leading to misclassification. We plan to address these limitations by exploring the 

potential of incorporating additional components like intent filters, hardware 

specifications, and API call logs for more efficient detection alongside the existing 

focus on permissions and system calls. 

4.6 Summary 

This study established covalent bonds between permissions and system calls to 

evaluate their combined impact. We introduced a novel methodology for calculating 

these pairs' Covalent Bond Strength Score, resulting in both malicious and benign 

scores. These scores were then utilized in our Android malware detection technique. 

We thoroughly compared our proposed model and other advanced detection 

methods. Our results indicate that our model outperforms similar state-of-the-art 

models in performance.  

The next chapter is based on developing an Android malware detection model 

using process memory dump files. The process memory dump files capture the 

dynamic behaviour of the Android malware application under execution. Some 

stealthy malwares hide their true malicious intent and shows their malicious behaviour 

only at run time. The technique proposed in the next chapter tries to capture the 

dynamic behaviour of malicious application.   
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Chapter Five:  
A VISUAL ANDROID MALWARE DETECTION 

TECHNIQUE BASED ON PROCESS MEMORY DUMP 

FILES 

In this chapter we propose a technique for Android malware detection using 

rough set theory. In section 5.1, we highlight the motivation behind the work done and 

briefly explained the overview of the proposed technique. In section 5.2 we explain in 

detail the methodology of the proposed technique. In section 5.3 the details of results 

are discussed and presented. The section 5.4 concludes the chapter with future 

directions. 

5.1 Introduction 

Android-based smartphones are the most popular among other smartphones, 

which is evident from the fact that Android-based smartphones have approximately 

70% of the total share. The popularity of these devices is the primary reason for the 

growth of malicious attacks on these devices. Malware writers attack millions of these 

devices as they target these devices because of the financial and personal data they 

contain. Hence, there is an urgent need to develop malware detection techniques to 

counter these attacks. 

Malware detection techniques are based on malware analysis techniques. 

Malware analyses are divided into static, dynamic, and hybrid methods. Each static, 

dynamic, and hybrid analysis differentiates itself from another in the way it gathers 

features for performing malware analysis, which is used to develop a malware 

detection model based on the extracted features. 

The static malware analysis technique is one in which the characteristics of 

Android applications are analyzed without actually executing the file. Such techniques 

are fast and more scalable in the sense that no execution of the application is re-quired. 

 



92 

 

In dynamic malware analysis, the characteristics of the Android application are 

analyzed by running the application's functionality in a controlled environment. 

Various characteristics of the applications are considered in execution based on which 

application is characterized as benign or malicious. 

In the case of hybrid analysis, both static characteristics, i.e., those features of 

the application, are derived without executing the application, and dynamic 

characteris-tics, i.e., those features that are derived while the application is under 

execution, are considered. 

5.1.1 Motivation 

The one research methodology that has been explored less in the realm of 

Android malware analysis is one that uses visual techniques. This methodology is 

based on representing Android application-related data as an image. The image 

generated is further used to derive features and, hence, develop a classification model 

based on those features for malware detection. In [125], authors converted the source 

files of Android applications into grayscale images, and further local and global 

features were extracted from these images to train machine learning classifiers. The 

EfficientNet CNN-based Android malware detection model was based on converting 

Android Dex files into images. These images are then fed 26 state-of-the-art CNN 

models, out of which the EfficientNet-B4 CNN-based model gave the best results 

[126]. In [127], the authors converted the non-intuitive malware features into grayscale 

images and used machine learning classifiers on a softmax layer of CNN to analyze 

the generated grayscale images. Ding et al. [128] converted the byte code of Android 

applications into images and used CNN to train on those images to build an effective 

malware detection model. 

In the current chapter, we developed a visual malware detection technique 

based on process memory dump files. An Android process memory dump, referred to 

as a memory dump or core dump, captures the memory snapshot of a running process 

on an Android device at a specific instance. It encompasses details concerning memory 

allocation, variables, registers, and other pertinent data structures linked to the process. 
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Extracting strings from memory is a valuable approach in malware analysis for 

various reasons. For instance: Unveiling Hardcoded Strings: Malicious software often 

embeds hardcoded strings to facilitate command and control (C2) communication, 

encryption keys, or URLs. Delving into memory strings can uncover these hardcoded 

values, providing insights into the malware's functionality and potential indicators of 

compromise (IOCs). 

Uncovering Obfuscated or Encrypted Strings: Certain malware employs tactics 

like string obfuscation or encryption to evade detection by conventional static analysis 

methods. Scrutinizing memory strings may expose these obfuscated or encrypted 

strings in their plain text form, thereby facilitating deeper analysis. 

Exposing Command and Control (C2) Infrastructure: Malware often 

communicates with remote command and control servers to receive instructions or 

exfiltrate data. Memory-extracted strings may harbor URLs, IP addresses, or domain 

names linked with the C2 infrastructure, empowering analysts to identify and 

potentially disrupt malicious communications. 

Discovering Indicators of Compromise (IOCs): Analysts can pinpoint common 

patterns or unique signatures that serve as indicators of compromise (IOCs) by ana-

lysing memory string dumps across multiple malware samples or infected systems. 

These IOCs are pivotal in detecting and mitigating similar threats in the future. 

5.1.2 Contributions 

We introduce an innovative approach for Android malware detection 

leveraging visual techniques. Our method involves the transformation of Android 

process memory dump files into grayscale images. The memory dump files are 

meticulously read, with each byte converted into uniform binary representations. 

These binary sequences are then utilized to generate grayscale images. Subsequently, 

features such as color histograms, Hu moments, and Haralick textures are extracted 

from these grayscale images. These derived features train machine learning classifiers, 

distinguishing between benign and malicious Android applications. 
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5.2 Methodology 

This section explains the technique used to classify an Android application as 

benign or malicious using memory dumps. An Android process memory dump, also 

known as a memory dump or core dump, is a snapshot of the memory state of a running 

process on an Android device at a particular moment in time. It contains information 

about the memory allocation, variables, registers, and other data structures associat-ed 

with the process. The proposed model for classifying an Android application as benign 

or malicious using a memory dump is depicted in Figure 5.1. 

The Proposed model is further divided into to number of sub-phases such as 

the visual representation of Android Process Memory Dump files represented in sub-

section 5.2.1. Sub-Section 5.2.2 is dedicated to explaining feature extraction from 

visual representations. 

 

Figure 5.1 Proposed Model for classifying an Android Application as Benign or 

Malicious from Memory DUMP files. 

5.2.1 Visual representation of Android Process Memory Dump files 

We have taken the contents of the required Android process memory dump as 

a bi-nary bit stream and arranged it into a byte matrix. Within the generated datasets, 

the malware source is depicted as a grayscale image for the sake of this study. Pixel 

values in the grayscale image range from 0 to 255, where 0 denotes black and 255 

denotes white. The length of each image in the datasets varies according to the file 

size, but all of them have a fixed width of 256 pixels. With values ranging from 0 to 
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255, each byte in the created byte matrix represents a pixel in the final grayscale image. 

Following the conversion of the byte matrix into a matrix of values within the 0 to 255 

range, the resulting matrix is preserved as a grayscale image. Figure 5.2 visually 

depicts transforming a malware sample into a grayscale image. 

5.2.2 Feature Extraction from Visual Representations 

Three types of features are extracted from visual representations of memory 

dump files i.e., grayscale images created in the previous step. These features are color 

histogram feature, Hu moments, and Haralick texture. 

 

Figure 5.2 Process of converting Memory Dump files into grayscale images 

Color histograms 

They are commonly employed in the analysis of color images, focusing on the 

distribution of colors like red, green, and blue across various channels. Conversely, in 

grayscale imagery, which contains only one intensity channel, the concept of a color 

histogram is not directly applicable. Instead, we generate a histogram based on pixel 

intensities for grayscale images. This histogram delineates the distribution of pixel 

values (ranging from 0 to 255 in an 8-bit grayscale image) throughout the image. We 

segment the intensity spectrum into 256 bins, each representing a possible intensity 

value. Subsequently, we tally the frequency of pixels associated with each intensity 

value and visualize the resulting histogram. Normalizing the histogram values to sum 

up to 1 facilitates comparison across grayscale images of varying dimensions. We 

utilize the histogram as a feature vector for the grayscale image by considering each 

bin that signifies the occurrence frequency of a specific intensity value within the 
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image. This feature vector is input to machine learning algorithms for subsequent 

analysis and processing. 

5.2.2.1 Hu moments 

They represent a set of seven invariant image descriptors utilized in shape 

analysis and recognition. These descriptors stem from raw moments, which 

mathematically capture an image's shape, allowing for the description of objects 

regardless of their position, size, or orientation. Initially, grayscale images undergo 

conversion into binary images employing thresholding techniques such as Otsu's 

method or adaptive thresholding, given Hu moments' primary application in binary 

images. Subsequently, we compute the central moments of the binary image, ensuring 

translation invariance crucial for Hu moments' robustness. The normalization of 

central moments follows suit to achieve scale invariance, entailing the division of each 

central moment by an appropriate power of the zeroth moment, indicative of the 

object's total mass or area. Ultimately, the computation of Hu moments ensues using 

the normalized central moments. These seven moments, denoted as Hu1 through Hu7, 

arise from specific combinations of the normalized central moments. As a feature 

vector, Hu moments encapsulate the object's shape within the grayscale image. 

Notably, these moments act as features invariant to translation, rotation, and scale 

changes, rendering them invaluable in various image analysis tasks. 

5.2.2.2 Haralick texture 

These features, are also called grey-level co-occurrence matrix (GLCM) 

features, constitute a collection of statistical metrics for characterizing the texture of 

grayscale images. These metrics capture the spatial correlations among pixel 

intensities within an im-age and find widespread application in image analysis and 

classification endeavours. Initially, we computed the grayscale image's grey-level co-

occurrence matrix (GLCM). This matrix tabulates the occurrences of pixel intensity 

pairs at specific spatial relationships, such as distance and direction, within the image. 

Subsequently, we selected particular properties or characteristics for extraction from 

the GLCM. These chosen properties encompass contrast, correlation, energy, and 

homogeneity. Following this, normalization was employed to scale the computed 

texture features within a standardized range of 0 to 1, ensuring uniformity across 
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diverse images. Lastly, a feature vector was constructed to serve as input for machine 

learning classifiers. 

5.3 Results and Discussions 

The last section explained how the visual representation in the form of a 

grayscale image was created from the Android memory dump files. It also explained 

how features such as color histograms, Hu moments, and Haralick texture were 

extracted from those grayscale images. This section discusses the experimentation to 

classify an application as benign or malicious based on the features extracted from the 

grayscale images of memory dump files. 

We used four machine learning classifiers: SVM, Random Forest, K nearest 

neighbors, and Logistic Regressions. The Data set used for experimentation is the 

Android Process Memory String Dump [129]. The data set is built using AndroZoo's 

APK files [109]. The data set mainly consists of strings related to individual process-

es running at the time of APK usage. Each file in the data set corresponds to an APK. 

There are 2375 samples of Android process memory string dump files. Of the 2375 

files, 1,188 samples correspond to malicious applications, while the remaining 1,187 

samples correspond to benign applications. 

We trained the model using the combined feature vector formed from all three 

types of features. We used a train-test split ratio of 70:30. The results are measured on 

the following parameters: accuracy, precision, recall, and F1-score. The results of the 

experiments are depicted in Table 5.1. 

We observed that Random Forest performs better than the rest of the machine 

learning classifiers as Random Forest outperforms other classifiers due to its unique 

methodology. Unlike individual decision trees, Random Forest utilizes an ensemble 

approach by aggregating multiple decision trees for prediction. This ensemble 

technique effectively reduces variance and minimizes overfitting risks present in 

standalone decision trees. By combining predictions from numerous trees, Random 

Forest consistently improves overall performance. 

 



98 

 

Table 5.1 Experimental Results 

ML Techniques Accuracy Precision Recall F1-Score 

K-Nearest Neighbor 0.89 0.87 0.88 0.88 

Logistic Regression 0.89 0.88 0.87 0.89 

SVM 0.92 0.91 0.90 0.91 

Random Forest 0.94 0.95 0.95 0.94 

 

5.4 Summary 

In this work, we have proposed a novel Android malware detection mechanism 

based on visual techniques. The mechanism is based on converting Android process 

memory dump files into grayscale images. The memory dump files are read byte by 

byte, and each byte is converted into equal binary representations. These binary rep-

resentations are used to form grayscale images. These grayscale images derive fea-

tures such as colour histograms, Hu moments, and Haralick textures; these derived 

features per image train machine learning classifiers to predict an Android application 

as benign and malicious. 
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Chapter Six:  
CONCLUSIONS AND FUTURE SCOPE 

Smartphones have surpassed desktop systems in popularity due to their wide 

array of feature-rich applications. They are now an integral part of daily life. They 

offer access to numerous services such as online shopping, gaming, and location-based 

services, making them more powerful than early personal computers. However, as 

smartphones have gained widespread use, particularly Android devices, there has been 

a significant increase in malware attacks targeting these platforms. Malicious 

applications, or malware, can infiltrate smartphones through various channels 

including SMS, MMS, Bluetooth, internet downloads, and both official and third-party 

app stores. These attacks pose serious risks, including system damage, financial loss, 

and data breaches. As a result, the issue of detecting Android malware has attracted 

significant attention from researchers in recent years, given the rising frequency of 

attacks on the Android platform. This thesis focuses on addressing the challenge of 

malware detection on Android smartphones. 

This chapter presents the conclusions of the dissertation. It begins by 

summarizing the key contributions made throughout the thesis, reviewing the proposed 

models for Android malware detection and evaluating how they fulfil the established 

objectives. Following this, we highlight several unresolved challenges in the existing 

literature, discussing areas that require further research and attention in future work. 

6.1 Conclusions 

1. In line with the objective, we successfully developed a novel Android malware 

detection technique utilizing static features extracted from both Android 

manifest files and .dex files. The proposed model is based on rough set theory, 

where we combined four static features: permissions, opcodes, API calls, and 

system commands. The development process began with a comprehensive data 

pre-processing phase, where we eliminated correlated features and those that 

had no relevance to the class variable. This ensured that the model focused only 

on the most impactful features, improving overall efficiency and accuracy. A 
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key innovation in the work was the application of Discernibility Matrices from 

rough set theory to assign a ranking score to each feature, reflecting its 

significance in malware detection. The rough set reducts algorithm was then 

employed to further reduce the number of features based on the ranking score, 

ensuring a more streamlined and focused analysis. After the feature reduction 

step, various machine learning algorithms were applied to evaluate the model's 

detection accuracy. The experimental results demonstrated that the proposed 

approach outperformed other advanced malware detection models. The 

superior performance, as evidenced by the comparative analysis, validates the 

effectiveness of the proposed technique in detecting Android malware, meeting 

the initial objective of designing an efficient and novel static feature-based 

detection model. 

2. In accordance with the objective, we successfully developed a hybrid malware 

analysis technique that optimally combines static and dynamic features for 

Android devices. This study specifically explored the interaction between 

permissions (a static feature) and system calls (a dynamic feature), establishing 

a novel methodology for analyzing their combined effect on malware 

detection. We introduced the concept of a Covalent Bond Strength Score, 

which quantifies the strength of the relationship between these feature pairs. 

By calculating both malicious and benign scores, we were able to effectively 

assess how these features interact in different contexts, contributing to the 

accuracy of malware detection. The proposed model harnesses the combined 

power of static and dynamic features, ensuring a comprehensive analysis that 

addresses the limitations of relying on only one type of feature. By integrating 

the Covalent Bond Strength Score, the model was able to differentiate between 

benign and malicious behaviours with greater precision. A detailed 

comparative analysis was conducted between our hybrid model and other 

advanced malware detection techniques. The results of this comparison 

demonstrated the superior performance of our model, surpassing similar state-

of-the-art approaches in terms of detection accuracy and overall effectiveness. 

This validation highlights the success of the proposed hybrid analysis 
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technique in meeting the objective of optimally combining static and dynamic 

features to enhance malware detection on Android devices. 

3. In line to develop a memory forensics-based technique for malware detection, 

we introduced an innovative Android malware detection mechanism that 

leverages visual analysis techniques. Our approach focuses on analyzing 

memory dump files from Android processes, converting them into grayscale 

images for further examination. The memory dump files were processed byte 

by byte, with each byte being converted into its binary representation. These 

binary representations were then used to form grayscale images, enabling a 

visual interpretation of the memory data. Key features were extracted from 

these grayscale images, including colour histograms, Hu moments, and 

Haralick textures, which capture important visual patterns that differentiate 

between benign and malicious applications. These features were subsequently 

used to train machine learning classifiers, which then classified Android 

applications as either benign or malicious based on the patterns present in the 

memory dumps. The proposed memory forensics-based technique successfully 

incorporates visual methods into malware detection, offering a novel approach 

that effectively combines memory analysis with machine learning. Our 

experimental results demonstrate the capability of this method to accurately 

classify applications, meeting the objective of utilizing memory forensics for 

Android malware detection. The visual analysis approach also opens new 

avenues for further exploration in the field of memory-based malware 

detection, offering a unique and powerful tool for classifying Android 

applications 

6.2 Future Work 

The emergence of increasingly sophisticated and stealthy Android malware 

continues to create significant challenges for the research community, with several 

critical areas still requiring further investigation. This section outlines some of the key 

unresolved issues that demand additional research. 
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1. The proposed models are an off-device model, and hence they can not be 

installed on smartphones for real-time detection. In future, we will propose a 

client–server-based model to integrate in smartphones. 

2. In the future, our research will analyze additional components of the manifest 

file, such as intent filters and hardware specifications, to further enhance 

detection accuracy. 

3. We aim to build more robust techniques by considering other types of features 

that can be derived from the grayscale image of Android process memory dump 

files, which will strengthen the machine learning classifiers. We will also use 

deep-learning models to know their effectiveness in classifying malware using 

visual techniques. 
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