USME

QUESTION PAPERS SUPPLEMENTARY EXAMINATION FEBRUARY-2020

MBA (Business Analytics), BBA and BA (H) ECONOMICS 1st, 3rd & 5th SEMESTER

(USME)

QUESTION PAPERS FOR SUPPLEMENTARY EXAMINATION, FEBRUARY 2020 MBA (Business Communication) SEM- 1 & III BBA & BA (H) ECONOMICS SEMESTER : 1 , III & V

INDEX

	NAME OF THE COURSE	SUBJECT	SEM-I	SEM-III	SEM-V
	" and the second an another in the second se	CODE	Page no.	Page no.	
1	Master of Business Analytics	MB	01-05	06-19	
-		FBE	19-a		
2	Bachelor of Business Administration	BBA	20-29	30-41	42-55
3	B.A.(Hon) Economics	BA	56-61	62-77	78-88

ME A

END SEMESTER EXAMINATION (Supplementary) PAPER CODE-MELOG February 2020 Business Contention **Business Communication**

01-

Time 3.00 Hours

Max. Marks : 50

1.2		:00 Hours	Max. Marks : 50
Not	te: An	swer all question by Selecting any two parts horn Ques.	1,2,3 &5.
	Que	es. 4 is compulsory	
		estions.	الملكي المحمد المحالية المحمد
	Āll	questions carry equal marks.	
	Ass	sume suitable missing data, if any.	Marks: 10
9 . Y			
Q.1	(a)	Explain the 7C'S of communication highlighting the	fole of feedback in Line o
		C C CTTGCTIVE	
	(b)	E-lain the various types of reports and essentials of	a good report writing.
		Highlight the importance of Non Verbal Communica	Marks: 10
	(c)	한 것 같은 것 같	in the
	~	Discuss the challenges fared itr Caree	r Management in the
Q.2	(a)		
		globalised 21 st century? Explain the facilitators in communication highlig	hting the role of effective
÷	(b)	Explain the facilitations in computiness?	
i.		communication in modern business?	행동 않는 것 같은 명령 가지는 것이라는 것이다. 이것은 것이다. 같은 말 것 같아요. 것 같은 것 같은 것 같은 것 같은 것이다.
- 	(c)	Explain the essentials of a good resurne?	Marks: 10
		out out the second skill comm	ent.
.3	(a)	Communication skills are mutual respects skill comm	keeping the dynamic role of
	(b)	Communication skills are mutual respects skill communication skills are mutual respects skill shills Elaborate in details the various variants of soft skills	
		-labeliced manager in mind?	
	(c)	Highlight the legal aspects of busines s cor municatio	n? Marks: 10
			· · · · · · · · · · · · · · · · · · ·
	Uow	can we make a presentation effective. Explain the role of	f active listening in emilancing
4	11000	nunication?	
	COILIT		Marks: 10
		Explain the AIDA approach in writing business letter	s?
5		You are consulting with a large pharmacy with st	ores in multiple states. This
	(b)	You are consuling with a large phantic by with or	oing high Over the period of
		company has improved sales but the attriction rate is g	joing nigh. Over the period o
		6 months, 100 employees have resigned abruptly.	As a facilitator how will you
		approach this issue?	홍정 승규는 물건을 망가 주셨다.
	(c)	What are global business etiqueite?	에 가지 않았다. 이 것은 것이 가지 않는 것을 수 있다. 이 가지 않는 것은 것이 같은 것이 같은 것이 같이 많이 있다.
			사람은 것은 것은 것은 것이 없다.
		그 날 없는 것 같은 것 같은 것을 해야 한다고 있는 것을 만들고 말했는 것 같아요. 한 전값이 없어?	

Total No. of Pages: 3

First Semester

MBA (Business Analytics) Program

Max Marks: 60

Supplementary Examination (Feb-2020)

Paper Title: Introduction to Business Analytics Paper Code: MB 107

Time: 3 Hours

Marks carried by each question are indicated after the question.

Use of scientific calculator is allowed.

Q1. a) Differentiate between Business Analytics and Business Intelligence. (6 marks) b) What do you understand by "Big Data"? How decision-making process is affected by

"Big Data" in current business research?

Q2. a) An "International Journal of Business Analytics" subscriber survey asked some questions about subscriber characteristics and interests. State whether each of the following questions provides Nominal/Ordinal/Interval/Ratio data.

- What is your age?
- i) Are you male or female?
- When did you first start reading the IJBA? ii)
- iii)
- How long have you been in your present job or position? What type of vehicle are you considering for your next purchase? iv)
- V) vi)

b) What are characteristics of measures? What is the need for measurement? Describe

SMART Test for ensuring metric relevance to business. Q3. SARAMONIC a chain of stores that sells audio and video equipment has gathered the

following information as below. These data concerns store sales volume in July ('000\$) and the number of households (measured in '000): 35 165 45 160 146

uic nuise	No. of Households 50 120 150 140 140 20 (2 ma	
		rks)
	Sales volume	by
	of the above data and interf sales volumes generated	-lee)
	ton a scatter diagram of the granding equation of success (4 main (4 main))	KS)
a)	Sales Volume (2 min Develop a scatter diagram of the above data and interpret it. (4 man (4 man (5 min)) (2 min) (4 man (4 man (5 min)) (2 min) (4 man (6 min)) (2 min) (4 man (6 min)) (2 min) (4 min)) (2 min) (4 min)) (2 min) (4 min)) (2	lake
15)	Sales Volume (2 min Develop a scatter diagram of the above data and interpret it. Determine the least square regression equation of sales volumes (4 man Determine the least square regression equation of sales volumes (2 man (2 man (2 man (2 man (2 man (2 man (2 man))))))))))))))))))))))))))))))))))))	ks)
U)	amber of households. Creater bo and bl. Does the comparison of the second secon	ks)
	number coefficients of (2 mar	1.0)
c)	Develop a scatter diagram of the Determine' the least square regression equation of our (4 mar Determine' the least square regression equation of of m number of households. Interpret regression coefficients b0 and b1. Does the interpretation of b0 m (2 mar (2 mar (2 mar (2 mar (2 mar	KS)
•)	number of node- interpret regression coefficients <i>bo</i> that (2 mar practical sense? Estimate the mean sales volume for 48 households in some store. Estimate the mean sales volume for 48 households in some store. Compute coefficient of determination and interpret it. Compute coefficient of determination and interpret it. (2 mar	
	Restignate the mean saids betamination and interpret	• •
d)	Estimate a coefficient of determinant	100)
e)	Compute country answer the following value, (2 mar	K2)
• • • •	in the sensitivity report, a piective function value	
	the information in the and the optimal objective.	
04. Using	Estimate the mean sales ver Estimate the mean sales ver Compute coefficient of determination and interprete Compute coefficient of determination and the sensitivity report, answer the following questions: g only the information in the sensitivity report, answer the following questions: Determine the optimal solution and the optimal objective function value. (2 marks)	
Q a)	Compute coefficient of determinant of answer the following questions. g only the information in the sensitivity report, answer the following questions. Determine the optimal solution and the optimal objective function value. (2 marks)	
a) .	특히 집에 가지 않는 것을 많이 있었다. 이 말을 것 것을 물었다. 이 모님, 그는 것이 모님 말을 것이 하는 것을 수 있다.	

b) Explain the reduced cost associated with x.
c) Explain the shadow price associated with Constraint 2. (2 marks) (2 marks) d) Find the range of values of the R.H.S. of constraint 2 for which the current basis remains optimal. (2 marks)

e) How do the optimal decision variables and objective function value change if the R.H.S. of constraint 1 increases by 20? (2 marks) f) Find the range of values of the objective function coefficient of x for which the current basis remains optimal. (2 marks)

	Maximize profit Z=40x+35y	
s.t.	$2x+3y \le 60$ lb of raw material	
	Art Bur = 06 hours of I ahan	

Cell	Name	Final Value	Reduced Cost		Objective Coefficient	Allowable Increase	Allowable. Decrease
\$B\$7	×	18	1.11	0	40	6.67	16.67
\$C\$7	у	8		0	35	25	g
onstral	nts	•					ed.
C-11		Final	Shadow		Constraint	Allowable	Allowable
Cell	Name	Value	Price		R.H. Side	Increase	Decrease
\$D\$3	constraint1	60		3	60	36	1
SDS4	constarint2	96		8	. 96	24	3

m

An engineering company has received a rush order for a maximum number of two types of items A & B that can be produced and transported during two-week. The sale price for each of the items is dependent upon the quantity to be produced. The sales-price relationships for these two items are as follows:

Items	 Quantity produced 	Unit Price
Α	1000-5p	p
В	3000-10q	<i>q</i>

If x and y are the quantities produced for both the items respectively. The production costs for each of the items are $100x+0.3x^2$ and $500y+0.2y^2$. There is restriction on the production capacity of the items A and B which are 400 units and 600 units respectively. Similarly there is a restriction on man-power available. Total of 500 man-days are available. The production of one unit of A requires 1 man-day and one unit of B requires 2 man-days. Formulate the above problem as Non-Linear optimization model. (12 marks)

Q5. The owner of the readymade garments store sells two types of premium shirts known as ZEE shirts and STAR shirts. He makes a profit of Rs. 200 and Rs. 300 per shirt on ZEE and STAR shirts respectively. He has two tailors, A & B at his disposal to stitch the shirts. Tailor types of shirts are stitched by both the tailors. The time needed for stitching a ZEE shirt is two hours by Tailor A and three hours by tailor B. Similarly, A STAR shirt requires 4 hours by tailor A and 3 hours by tailor B.

(B	Formulate and determine the optimal number of shirts that should be	e stitched so as to
	maximize the total daily profit.(use Graphical method)	(8marks)
	Is the above problem Integer Programming Problem?	(2marks)
	In what conditions Integer and Binary linear models are used?	(2marks)

c) In what conditions Integer and Binary linear models are used?

Total No. of Pages - 3	Roll No
USME, DI	U East Delhi Campus
FIRST SEMESTER	MBA (Business Analytics)
SUPPLEMENTARY EXA Paper Code:MB108 Title of	MINATION Feb-2020 Paper-Database Management Systems
Time: 3:00 Hours	Max. Marks : 60
Note: Marks are indicated a must be answered toge	gainst each question. Parts of a question ther:

Q1. Attempt any *five* questions out of the following: [5* 6marks - 30marks]
a) Describe the lost update and the dirty read problems with an example.
b) What is weak entity set? Explain identifying relationship with the help of an appropriate ER diagram.

c) Discuss open addressing and chaining methods for collision resolution?
d) What is a data model? Discuss relational data model in the context of student relation.

- e) Differentiate between the following:
- (i) Super key and candidate key
 - (ii) Logical data independence and physical data independence(iii) *drop* and *delete*
- What is normalization? Briefly explain transitive and partial functional dependencies.
- Q2. Attempt any <u>two</u> questions out of the following: (2* 8 marks= 16 Marks] a) Draw the ER diagram for the following description. Specify
 - cardinality ratios and participation constraints clearly. Identify entities and types of relationships involved. Identify the primary keys.
 - (i) The company database keeps track of a company's employees, departments, and projects.

Page 1 of 3

(ii) The company is organized into departments. Each department has a unique name, a unique number, and a particular employee who manages the department. We keep track of the start date when that employee began managing the department. A department may have several locations.

- (iii) A department controls a number of projects, each of which has a unique name, a unique number, and a single location.
- (iv) We store each employee's name, social security number, address, salary, gender, and birth date. An employee is assigned to one department, but may work on several projects, which are not necessarily controlled by the same department. We keep track of the number of hours per week that an employee works on each project. We also keep track of the direct supervisor of each employee.
- (v) We want to keep track of the dependents of each employee for insurance purposes. We keep each dependent's first name, gender, birth date, and relationship to the employee.
- b) Explain DBMS along with its advantages and disadvantages.
- c) Describe the various components in the structure of DBMS with the help of an appropriate diagram.

Q3. For the given tables – Employee and Department, write SQL statements for the following queries: [14 Marks]

Department_no	Department_name
10	Analytics
20	Finance
30	Sales
40	HR

Deps

ree		1	1	Dent no	Salary	Manager id
Employee_no	Emp_name	Address	Age			
1	James	London .	24	40	230000	NULL
2	Adam	London	23	10	20000	1
2		Beijing	27	10	90000	1
3			26	40	50000	в
4 .	Ronald		_		21000	4
5	Dave	London	22	10	11000	Ľ
		Employee_no Emp_name 1 James 2 Adam 3 Carol 4 Ronald	Employee_no Emp_name Address 1 Janes London 2 Adam London 3 Carol Beijing 4 Ronald Sydney	Employee_no Emp_name Address Age 1 Janes London 24 2 Adam London 23 3 Carol Beijing 27 4 Ronald Sydney 26	Employce_no Emp_name Address Age Dep_no 1 James London 24 40 2 Adam London 23 10 3 Carol Beijing 27 10 4 Ronald Sydney 26 40	Employee_no Emp_name Address Age Dept_no Salary. 1 Janes London 24 40 230000 2 Adam London 23 10 20000 3 Carol Beijing 27 10 90000 4 Ronald Sydney 26 40 50000

17	(Cula	Chicago	124	120	123000	4
8	Keith	Chicago	25	30	22000	6
9	Mia	Sydney	19	20	10000	5
. 10	Samantha	Beijing	20	30	- 15000	5
in the second	Joannanina	Chicago	32	30	80000	3

(a) Create the Department and Employee tables as shown above.
(b) Identify primary keys and foreign keys.
(c) Display employee details along with the department name in which the tables are in the state.

(d) Display employee details whose age is within the range 20 to 24.
(e) List the employee names managed by Manager_id=1.
(f) Display employee details whose Salary is greater than 20000 and who works in 'Analytics' department.
(g) List details of ampleures who live in Chinase

(g) List details of employees who live in Chicago.

O v

— 6	06 —
rotal No. of Pages 2	Roll No
IIIrd SEMESTER	MBA(BA)
SUPPLEMENTARY EXAMINAT	FION Feburary-2020
MB302	Machine Learning
Time: 3:00 Hours	Max. Marks: 60
NOTE: Question 1 is compulsory. remaining. Assume suitable missing da	Attempt any 4 questions from the ata, if any.
Q1. Answer the following:	1
[a] What is Bayes Theorem and maximum	posterior hypothesis. [4]
[b] What is importance of the following te	erms (i) hidden layer (ii) stopping criterion. [4]
[c] Explain how do you calculate precision class classification problem?	n and recall with a confusion matrix for a 2-
[d] Explain various issues of decision tree [e] What is bias-variance trade-off?	[4] learning. How they are overcome? [4] [4]
The second s	termine and the heigh memory models which while them them the real reality from earlier terms

Q2.[a] What is non-linearly separable problem? Design a two layer network of
perceptron to implement X AND Y.[5][b] What is the procedure of building Decision Tree using ID3 algorithm with Entropy.
Illustrate with the help of an example.[5]

Q3. [a] Find the association rules with 25% support and 70% confidence for the following set of transactions.

[5]

TID	Items bought
1	C, O, Q , Z
2	C, O
3	B, Q, T, Q
4	B, C, D, E
5	B, C
6	Q, Z, C, O
7	B, C, O
8	C, D, E, Q, O
9	E, Q, T
10	B, C, O

[b] Consider the following dataset. Using 3-kNN with feature weighing, find the class label of the test point, x=5.5. [5]

1

- 1		0 224	21	4.6'	4.7	5.0	5.2	5.3	157
	X	0.334	5.1	4-	+	+	-	-	+
	Class	·	and a strend of	····		- A ₂	14 m - 14		<u> </u>

Q4. Differentiate between divisive and agglomerative clustering. Also following data points with the help of k-Means clustering algorithm. Drate cluster after each cluster.

V. V.	У
1.	1
15	1.5
5	5
3	4
4	4
	3.5
and the second	10.22 State 1 1 1 1 1 1

- Q5.[a] What do you understand by multilevel association rule mining? Explain you use Apriori algorithm to find association at multiple levels.
- [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Consider following quantities for a confusion matrix: True Positive = 20, False
 [b] Constant a confusion matrix: True Positive = 20, False
 [b] Constant a confusion matrix: True Positive = 20, False
 [b] Constant a confusion matrix: True Positive = 20, False
 [b] Construe = 20, False
 [b] Constant a confusion matrix:

Q6.[a] What do you understand by rewards and actions in context to rein learning? Also, differentiate between reinforcement learning and supervised lear [b] For each of the Boolean functions given below, state whether the problem separable. (i) A AND B AND C (ii) NOT A AND B

Q7 Compute the entropy for the age, income, student and credit-rating attribute the best attribute for splitting using entropy and construct the decision tree.

RID	Age	Income	Student	Credit-Rating	Buy Compute
RI	Youth	High	No	Fair	No
R2	Youth	High	. No	Excellent	No
R3	Middle-age	High	No	Fair	Yes
R4	Senior	Medium	No	Fair	Yes
R5	Senior	Low	Yes	Fair	Yes
R6	Senior	Low	Yes	Excellent	No
R7	Middle-age	Low .	Yes	Excellent	Yes
R8	Youth	Medium	No	Fair	No
R9	Youth	Low	Yes	Fair	Yes
R10	Senior	Medium	Yes	Fair	Yes
RII	Youth	Medium	Yes	Excellent	Yes
R12	Middle-age	Medium	No	Excellent	Yes
R13	Middle-age	High	Yes	Fair	Yes

2

End-Term Supplementary Examination 2019-20

08-

Course: MBA(BA) Subject: Big Data Analytics Maximum Marks: 60 Semester: 🌠 III Subject code: MB303 Maximum Time: 3 Hrs

Note :-

1) Answer any 6 questions.

2) Please be brief in your answers.

Q1 a) What are some of the reasons why Big Data projects fall short of goals and expectations. Mention any 5 reasons.

b) Define innovation. Do you think traditional bureaucratic approach hampers innovation

(5+2.5+2.5)

Q2 Employ the DGIM algorithm. Shown below is a data stream with N = 22 and the current bucket configuration. New elements enter the window at the right. Thus, the oldest bit of the window is the left-most bit shown.

1011000101101101100101100

(a). What is the largest possible bucket size for N = 22?

(b) What is the estimate of the number of 1's in the latest k = 15 bits of this window?

(c). The following bits enter the window, one at a time: 1 0 1 1 1 0 0 1. What is the bucket configuration in the window after this sequence of bits has been processed by DGIM?

(d). After having processed the bits from (c), what is now the estimate of the number of 1's in the latest k = 15 bits of the window?

(e) Work out the bit streams for the following stream of 8 numbers (oldest first): (125, 2, 77, 5, 13, (2*5=10))9, 99, 56). Compute the sum for k = 3.

Q3 a) Trace the results of using the Apriori algorithm on the grocery store example with support threshold s=60% and confidence threshold c=80% Show the candidate and frequent itemsets for each database scan. Enumerate all the final frequent itemsets. Also indicate the association rules that are generated and highlight the strong ones, sort them by confidence.

Transaction ID	Items
MARK STREET	A,B,C,D,E,F

P. T.O

n men er et i innernine d'act, decenne han di considerizationen anyanistate der die sen om T2 :	B,C,D,E,F,G	
тз	A,D,E,H	
Τ4	i A,D,F,I,J	

b) Explain how the SON algorithm lends itself to a parallel computing environment. Explain the input and output of each map and reduce function. (5+5

Q4 a) Explain consistent hashing with the heip of an example.

b) Outline some basic parameters that should be kept in mind to handle the storage challenges face in a big Data environment (5+5

Q5 a) Briefly describe cloud computing and grid computing .

b) Consider this training data set. Examples are A-E, and the single attribute is X.

	 B	c	
Attribute Value (x)	-2	0.	10

Suppose we apply k means clustering with k = 2. The Iruitial cluster centres are C1 = -4.0 and C2 = 1.0

a). Write down the cluster assignments that result. In which cluster do A, B, C get assigned.

b). Write the new cluster centroid or mean of the examples that were assigned in a) above.

c) After recomputing the cluster centroids (means) in b, you reassign the examples to the clusters to which they are closest (i.e., the example is assigned to the closest cluster centroid). Write down the cluster assignments that result.

d)Write the new recomputed cluster centroid

e) k-Means Clustering is guaranteed to find the same final clusters for the above three points, no matter what the initial cluster center values are. (True or False). (5+5)

Q6 a) Write short notes on

Hbase

Hive

b) Briefly explain the master slave architecture in HDFS. What is the function of the resource manager and node manager (5+25+25)

Q7 a) With the help of a neat labelled diagram, briefly explain neural networksb) Attempt a classification of visual data analysis techniques

(5+5)

Total No. of Pages - 2	Roll No
THIRD SEMESTER	MBA (Business Analytics)
SUPPLEMENTARY EXAMINAT	ION Feb-2020
Paper Code: MB304 Title of I	Paper-R for Machine Learning
Time: 3:00 Hours	Max. Marks : 60
Note: Marks are indicated against e must be answered together.	ach question. Parts of a question

Attempt any <u>six</u> questions out of the following: [6*10 marks=60]Q1. Load the *BreastCancer* dataset from *mlbench* package and write *R* code to perform naïve bayes classification to predict if a given tumor is benign or malignant (variable *Class*) depending upon values of *Cell.size*, *Cell.shape*, *Cl.thickness*. Load *caret* and *e1071* packages and set 70:30 *train:test* ratio to partition the dataset and compute the accuracy of the classifier.

Q2. Write R function to display the remarks for the student based on the total marks percentage obtained by him/her.

Marks Percentage	Remarks
90-100	Outstanding
80-89	Very Good
70-79	Good
60-69	Average
50-59	Poor
40-49	Very Poor
Below 40	Fail

Q3.a) Load the dataset diamonds and use *dplyr* package functions and *pipe* operator for the following: (attempt any *two* parts)

(i) Create a new column that contains price to carat ratio for all records in the dataset.

(ii) Obtain subset of dataset where cut values are 'Ideal' or 'Good'.

Page 1 of 2

(iii) Calculate average price for each type of cut and color in the dataset.

b) What is coercion? Discuss two types of coercion using R syntax with examples.

Q4. Briefly explain the utility of apply(), tapply(), lapply(), sapply() and mapply() functions in R using examples.

Q5. Write *R* code to show that *airquality* dataset contains missing values and to calculate total number of observations with and without missing values. Write a custom function which will replace all missing values in a vector with the mean value. Use that function to perform missing value imputation on *Ozone* column.

Q6.a) Load the Orange dataset. Write R syntax for the following:

- i) Display the first 2 and last 2 rows of the dataset.
- ii) Display records where age of tree is >1200 and circumference is less than 140.
- iii) Arrange the records on the basis of ascending order of age.
 b) Explain the usage of the *which()* and *rep()* functions with an example each.

Q7. Write R code to create any five datatypes in R and also to illustrate the sub-setting (element(/s) referencing) for these datatypes by using examples.

Q8. a) Write R syntax to generate the following output using inbuilt R function.

"Year-2001" "Year-2002" "Year-2003" "Year-2004" "Year-2005" b) Write a function *cube(m)* to print cube of all numbers from 1:m except for m=4. Total No. of Pages 2

IIISEMESTER, MB306

-11-

SUPPLEMENARY EXAMINATION FEB/Mar-2020

MB306 Managing Financial Institutions and Market

Time: 3:00Hours

Max. Marks:6

Note:All questions are compulsory Q.1 and Q.2 have internal choice Please keep answers to the point & observe word limit

Q.1 Write short notes on any three of following

(5 Marks each)

- a) Secondary Market
- b) Statutory Liquidity Ratio
- c) Open ended Mutual Funds
- d) Commercial Banking

(Max. 300 words)

Q.2

a) Briefly explain the financial reform witnessed by Indian economy in 1991. (5 Marks)

b) Elaborate phase I (Pre-1951 organisation) and phase II (post-1951 till mid-eighties) and phase III (Post 1991) of evolution of financial system in India.

<u>OR</u>

b) Elaborate phases of development of Commercial banking in India. (10 marks)

Q.3a). Briefly explain concept of saving and deficit economic unit (1 Marks)

b). New Issues Market are a significant source of raising funds for business in a country. Do you agree? In reference to the statement, explain three stages of floatation of securities in Primary Markets. (9 Marks) **Q.4**

I. Given below are statements pertaining to various financial market instruments. Suggest and briefly explain the relevant instrument as applicable. (5 marks each)

a) Instrument that can be utilized by State/ Central Government to raise funds for funding various projects.

b) Notice money in Inter-Bank market

c) Repo as an instrument of monetary policy.

2. Calculate the amount of *Credit Creation* done by Banking Industry in cycle given below. Kindly only calculate the amount & don't explain the concept..
~ (5 Marks)

There are two banks in a hypothetical economy – Bank 1 and Bank 2. Reserve requirement to be maintained by banks is 10% Given below is set of transactions done in both banks

- Bank 1 accepts deposit from A worth 2000 and lends B a sum of 1500.
- B buys good worth 1000 from C. C deposits the amount with Bank 2.
- Bank 2 further lends 800 to D who then uses the amount to pay off creditor E. E deposits the amount of 500 with Bank 1.

Roll No

Total No. of Pages - 3

End Semester Supplementary Examination; February 2020

Course: MBA (Business Analytics)

Subject: Marketing Analytics

Maximum Marks: 60 marks

Note: There are 3 sections in the question paper spread across 3 pages. All of them need to be attempted as per the instructions given in each of the sections.

Section 1: Understanding of the Fundamental Concepts

30 Marks

MB309

Instructions: Attempt any 6 out of the 8 questions in this section. All questions carry 5 marks each.

Q1. As the e-mail marketing manager of Flipkart, you need to decide which e-mail of out 10 categories should be sent out to a particular customer at any point of time so as to achieve maximum engagement with the e-mails.

- a. What kind of modelling construct can you use to tackle this problem? Illustrate with an example.
- b. What are some of the other considerations that should be kept in mind?

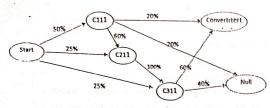
Q2. Suppose you are the app marketing lead for BookMyShow, a company that tickets for movies and events online. What are the different ways that you can market your app effectively to new and existing customers? What key metrics would you use to evaluate the performance of the app?

Q3. Explain the concept of customer acquisition cost and lifetime value. What is the expression to calculate the lifetime value of a customer? Illustrate and compare the sensitivity of the lifetime value expression to various terms like discount rate, retention rate and growth rate.

Q4. What is the importance of segmentation? Illustrate with an example how K-means clustering algorithm can be used to do segmentation?

Q5. a. What are the 3 different dimensions of Search Engine Optimization? Highlight the important aspects of each of them.

b. In relation to search marketing, explain the different kinds of keywords with relevant examples.


Q6. Give example of any 2 marketing analytics problems in day-to-day life and the how companies are able to solve them.

Q7. What are the different types of display ads – based on format, and based on where they appear on the website?

Q8. A primary way to achieve higher revenue from existing customers would be using cross-sell and up-sell strategies. Differentiate between the two, Suppose that you are creating a logistic regression model for cross-sell - What do you understand by a lift chart for the model? Explain its significance.

Section 2: Application of concepts through numericals It Marks Instructions: Attempt any 3 out of the 4 questions in this section. All questions carry 6 marks each.

Q9. Given below is the customer journey for conversion. Evaluate the weights of each of the channels using Markov Chain to solve the problem of Multi-Touch Attribution.

If you have decided to invest \$50,000 across all the channels, what would be the individual investments for channels C1, C2 and C3?

Q10. Answer the following questions on the basis of association rule mining and apriori algorithm:

Transaction ID	Items
1	Banana, Noodles, Juice
2	Banana, Chicken, Juice
3	Banana, Noodles, Chicken, Juice
4	Noodles, Chicken, Juice
5	Banana, Juice, Noodles, Candy
6	Banana, Chicken, Candy

オー

- a. What is the support for the Itemsets : {Banana, Chicken}, {Noodles}
- b. What is the confidence of the rule : (Banana, Noodles) -> (Juice)
- c. Considering a minimum support of 50% and a confidence of 75%, find the applicable rules using apriori algorithm

Q11. During the Holl Sale, major e-commerce players are trying to increase the sales for large Haler refrigerators. They are all bidding for the keyword 'Buy Haler Refrigeration 320L', Answer the questions on the basis of the information below:

Advertiser	Bid	Quality Score
Amazon	\$4.7	. 8
Flipkart	\$5.2	6
Paytm Mall	\$3.9	9
Tata Clin	642	7

a. What would be the rank order of the ads shown by Amazon, Flipkart, Paytm Mall and Tata Cliq?
b. Assuming that you know the bids of your competitors, what should be your bid as a marketer at Paytm Mall to ensure that your ad gets shown at the top?

G12. As the marketing manager for "The Man Company", a men's grooming brand you spent \$50,000 in 3 parts: 30% to create awareness, 30% to increase visits to the website and remaining 40% to generate sales. Your campaign reached out to and generated awareness for 250,000 users and also led to 4,000 visits to the website of The Man Company. It also led to 125 users purchasing The Man Company products worth \$200 each.

- Assuming that the CPM in your industry is \$12, what is the brand awareness value created?
 An average of 10,000 visitors typically lead to \$50,000 sales. What is the website visits value
- created?
- C. What is the overall return on marketing investment assuming brand awareness value, web-ite visits value and additional sales generated?

Section 3: Application of concepts through a case study

Instructions: Attempt the case in entirety. There is no choice in this section.

12 Marks

Q13. Given below is the data for some user	s and their movie ratings on a scale of 1-10 (1 being the lowest
and 10 being the highest)	

	Dil Se	DDU	K3G	Mohabattei n	Don	Swades	Chak De
Α	6	5	6	6	3	8	1
в	7	7	6	1	7	2	2
С	1	6	1	2	4	9	3
D	6	4	4	7	1	3	8
E	1	4	10	8	5	2	7
F	4	8	6	3	10	5	6
G	2	8	6	10	5	1	6

Using your general understanding of recommender systems, along with the above data, answer the following questions:

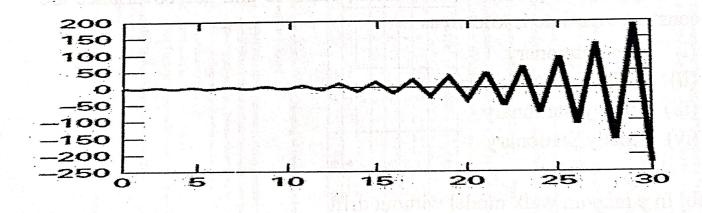
- a. What are recommender systems and where are they generally used apart from movie rating predictions? Differentiate between user based collaborative filtering and item based collaborative filtering algorithms. When should one be used over the other? (4)
- How can you evaluate the performance of a recommender system? Explain accuracy and other key parameters to look at.
 (2)
- c. Find whether "Chak De" is a good recommendation for E using User Based Collaborative Filtering. (Use 2 nearest neighbours and Cosine Similarity / Euclidean metric for similarity calculations) (6)

Note: Cosine Similarity can be calculated as

Euclidean Metric Similarity can be calculated as

,Where d Is the Euclidean distance between 2 points.

- (i) Random walk with drift
- (ii) Random walk without drift
- (iii) Both (a) and (b)
- (iv) Neither (a) nor (b)


[d] A non-stationary series that becomes stationary on differencing the series twice is

的第三人称单数 化热性

eviteriatic tertico sel re

- (i) Integrated of order 0
- (ii) Integrated of order 1
- (iii) Integrated of order 2 A Marcola A
- (iv) Integrated of order 3

[e] Consider the following graph.

A possible equation that might have yielded the above graph is:

- (i) $-0.5y_{t-1} + \varepsilon_t$ (ii) $-1.2y_{t-1} + \varepsilon_t$ (iii) $1.2y_{t-1} + \varepsilon_t$
- (11) 1.2 $y_{t-1} + c_t$
- (iv) $0.9y_{t-1} + \varepsilon_t$

2

SECTION B [1x5=5]

-17-

Q.2 Explain the following terms:

[a] White Noise Process
[b] Cross Sectional Data
[c] Autocorrelation function
[d] Difference equation
[e] Spurious Regression

SECTION C [5x4=20]

Attempt any four questions

Q.3 Explain the different components of a time series using a suitable diagram.

Q.4 Explain the meaning of order of integration. Find out the order of integration for the following models:

`(a)	$Y_t = \mu + 1.25Y_{t-1} - 0.25Y_{t-2} + 0.000$	ϵ_t
(b)	$Y_t = 1.5Y_{t-1} + Y_{t-2} + \epsilon_t$	

Q.5 Consider the second order difference equation:

$$y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + bt$$

Find a particular solution to this equation.

3

Q.6 Fit a linear trend equation to the following data:

Week	Sales	-
	150	a anna a la companya a
	157	
	162	
	166	
)	177	

18-

Q.7 Consider the first order difference equation:

$$y_t = a_0 + a_1 y_{t-1} + \varepsilon_t$$

- (a) Find the solution to this equation using the method of iteration.
- (b) What happens to the solution obtained in (a) if the initial value of y is unknown? Obtain a possible solution in this case.
- (c) Verify that the solution obtained in (b) is actually a solution to the original difference equation.

SECTION D [10x3=30] Attempt any three questions

Q.7 Consider the Random Walk Model $Y_t = \mu + \Phi Y_{t-1} + \varepsilon_t$

(i) Prove that for $\Phi = 1$, the model is non-stationary. Also, explain how the model can be made stationary.

(ii) Prove that for $0 < \phi < 1$, the model is asymptotically stationary.

Q.8 Consider the second order homogeneous difference equation:

 $y_t = a_1 y_{t-1} + a_2 y_{t-2}$

-19-

Find the solution of the equation for the following cases:

(i) $a_1^2 + 4a_2 > 0$ (ii) $a_1^2 + 4a_2 = 0$ (iii) $a_2 < 0$.

Also, comment on the stability conditions in each case.

Q.10 Explain the methodology and the steps involved in checking the stationarity of a time series using the following:

- (i) Graphical Analysis Time Series Plots
- (ii) Correlogram
- (iii) Dickey Fuller Test

Q.11 Consider the following model:

 $Y_t = \beta_1 + \beta_2 t + \beta_3 Y_{t-1} + u_t$

Characterise the nature of the time series for the following cases:

(i) $\beta_1 = 0, \beta_2 = 0 \text{ and } \beta_3 = 1$ (ii) $\beta_1 \neq 0, \beta_2 = 0 \text{ and } \beta_3 = 1$ (iii) $\beta_1 \neq 0, \beta_2 \neq 0 \text{ and } \beta_3 = 0$ (iv) $\beta_1 \neq 0, \beta_2 \neq 0 \text{ and } \beta_3 = 1$ (v) $\beta_1 \neq 0, \beta_2 \neq 0 \text{ and } \beta_3 = 1$

END SEMESTER EXAMINATION MBA PAPER CODE-FBE106 **Business Communication**

Note : Answer all question by Selecting any two parts from each Time: 3:00 Hours questions. All questions carry equal marks. Assume suitable missing data, if any.

Marks

(Supplem Februar

Max. Marks

- Explain the process of communication highlighting the role of feedback in m Q.1 (a)
 - communication complete
 - What is the relevance of cross cultural communication?
 - Highlight the importance of Non Verbal Communication? (b) (ć)

Marks

- Explain the inductive and deductive approach to writing business letters? Q.2 (a)
 - What is para language? (b)

Q.4

Explain the essentials of a good resurne? (c)

Marks:

- What are the Do's and don'ts of resume writing? Q.3 (a)
 - Listening is an art or skill-comment? (b)
 - Highlight the legal aspects of business communication? (c)

Marks:

- Explain the AIDA approach in writing business letters? (a) (b)
- What are the strategies for negotiating in business communication? (c)

Discuss any two forms of non-verbal communication?

Total No. of Pages: 01.

I SEMESTER BA (Hons.) Economics Supplementary Examination (Feb-2020)

_ :56

PAPER CODE BA 101- Introductory Microeconomics

Time: 3:00 Hours

Max. Marks: 75

Answer 5 questions out of 8. All questions carry equal marks. Draw neat diagrams. Simple calculators are allowed.

- 1. Critically analyse Robbin's definition. Explain with examples: Economic Choice; Opportunity Cost; Real Cost, Implicit and Explicit Cost.
- "The three economic problems are based on scarcity and choice." Discuss.
 Explain with the help of a Production Possibility Frontier how these problems are resolved.
- 3. Explain axioms of Cardinal Utility Approach, in detail. How does the money measurement of utility help in deriving a Marshallian demand cure with the help of utility analysis?
- 4. Explain Demand and Supply functions and their determinants. How does market equilibrium take place?
- 5. Explain the properties of Indifference curves, in detail. Explain consumer equilibrium through ordinal utility analysis.
- 6. Discuss 'Law of Variable Proportions'. Explain the relationship between, MPL, APL & TPL.
- 7. Explain three 'Laws of Returns to Scale'. How do these 'Laws' help in determining optimum size of the firm?
- 8. Isoquants of production have certain properties. How do these properties explain producer's equilibrium?

b) If n is a natural number, let n be defined as n! = 1*2*3*....(n-1)*nShow by method of mathematical induction $y = x^n \Rightarrow y^{(n)} = n!$

c) Prove that following function has at least one solution in the given interval

 $x^7 - 5x^5 + x^3 - 1 = 0$ in (-1,1)

Q7 a) Find the inverse of following function defined for $x \ge 1$

 $f(x) = \sqrt{(x+1)} + \sqrt{(x-1)}$

b) Find the integral

$$l_{K} = \int_{1}^{\infty} \left(\frac{k}{x} - \frac{k^{2}}{1 + kx} \right) dx$$

Where k is positive constant. Find the limit as $k \to \infty$, if it exists.

c) Show that the graph of Is a circle if $A^2 + B^2 > 4C$. $x^2 + y^2 + Ax + By + C = 0$ (A, B and C are constants) Find its center and radius. What happens if $A^2 + B^2 \le 4C$?

Total No. of Pages 4 I SEMESTER SUPPLIMENTARY EXAMINATION	BA(H) Economics Feb 2020
PAPER CODE BA 102	
TITLE OF PAPER Mathematical Methods f	for Economics I
Time 2:00 Hours	Max. Marks: 75
Note : Attempt any 5 questions. Each question Use of simple calculator is allowed. Q1 a) Find the domain of following functions	
i) $y = \sqrt{\frac{x-1}{(x-2)(x+3)}}$ <i>ii)</i> y	$=\frac{2x-1}{x^2-x}$
b) Draw graph of following equations and so	lve
i) $x - y = 5$ and $x + y = 1$	a share the second
	x-y=2

c) For following investment function, evaluate the integral.

(K, T and ρ are positive constants) $W(T) = \frac{\kappa}{T} \int_0^T e^{-\rho t} dt$

U

Prove that W(T) takes values in the interval (0, K) and is strictly decreasing.

Q2 a) Evaluate the following definite integrals:

 $i)\int x\sqrt{ax+b}\,dx$

$$ii)\int_0^1 (x^4 - x^9)(x^5 - 1)^{12} dx$$

b) Discuss local extreme points for the function $f(x) = x^3 + ax + b$. Use the result to show that the equation f(x) = 0 has three different roots if and only if $4a^3 + 27b^2 < 0$.

c) A firm has two plants A and B located 60 kilometers apart at two points (0,0) and (60,0). It supplies one identical product priced at \$p

- n) Find the cost incurred by arbitrary purchaser for purchasing a unit from A and B. Can you comment upon which one is higher?
- b) Find the equation for the curve that separates the markets served by two plans, assuming consumer buy from the firm for which total costs are lower.

Q3 a) Show that

$$\int_{-\infty}^{3} \left(\frac{1}{\sqrt{x+2}} + \frac{1}{\sqrt{3-x}}\right) dx = 4\sqrt{5}$$

b) Prove mathematically that continuous compounding is better than simple compounding.

c) A student has current income y_1 and expects future income y_2 . He/she plans current consumption c_1 and future consumption c_2 in order to maximise the utility function given by

 $U(c_1, c_2) = A + \ln(c_1) + \frac{1}{1+\delta} \ln(c_2)$

by the following:

where δ is the discount rate. If current consumption is greater than current income then student borrows and in alternative scenario, the student puts money in bank account. Find the optimal borrowing or saving plan assuming that

borrowing and saving interest rate are same. Q4 a) Suppose that demand and supply equation in a market is given

$$D = a - b(P + t)$$

$$S = \alpha + \beta P$$

Where a, b, α and β are positive constants.

I. Compute rate of change of price received by the seller with respect to tax by implicit differentiation. What is its sign. What is the rate of change of price paid by consumer with respect to tax?

II. Compute tax revenue T as a function of t. For what value of t does the quadratic function reach its maximum?

functions with f' < 0 and g' > 0. Find an expression for $\frac{dr}{dr}$ by implicit differentiation and comment on its sign.

b) Find the derivative of following using logarithmic transformation

$$y = \Lambda \frac{x^{p}(dx+b)^{q}}{(cx+d)^{r}}$$

c) (i) A model occurring in the theory of efficient loan markets involves the function

$$U(x) = 72 - (4 + x)^2 - (4 - rx)$$

where r is constant.

Find the stationary point and through second order derivative test, find whether it is max or min.

Q5 a) Derive the product rule using definition of derivatives

b) The present discounted value of a payment D growing at a constant rate g with the discount rate being r is given by

$$\frac{D}{1+r} + \frac{D(1+g)}{(1+r)^2} + \frac{D(1+g)^2}{(1+r)^3} + \dots$$

Where r and g are positive. What is the condition for convergence? Show that if the series converges with sum $P_0 = D/(r-g)$.

c) A saving account was opened with an initial deposit of \$100 at 12% per annum. What will be amount after a) 10 years b) 50 years, if compounding is done i) annually ii) monthly c) continuously.

Q6 a) Let f be defined by $f(x) = x^3 + \frac{3}{2}x^2 - 6x + 10$

- i. Find f'(x) and f''(x)
- ii. Find the stationary points of f and the intervals where f is increasing.
- iii. Find the inflection points of f and the intervals of concavity/convexity

Total No. of Pages 2 First Semester

5

Roll No. B.A. (Economics)

SUPPLEMENTARY EXAMINATION (FEBRUARY, 2020)

BA – 103 Environmental Studies

Max. Marks: 75

Time	: 3:00 Hrs	1	Max. Marks. 75	
Note	: Answer any SEVEN (7) questions. All questions carry equal marks. Question no. 8 is compulsory. Assume suitable missing data, if any.			

- Draw a neat and clean diagram of temperature based profile 1. of atmosphere. In addition to this briefly discuss about (10) lithosphere with a suitable diagram.
- Write the significance of genetic biodiversity in the 2 In-situ ecosystem? Describe the different Ex and (10) conservation methods to conserve the biodiversity.
- Describe biosphere and biome along with its subdivisions Discuss about different kinds of food insufficiency related (10)global problems.
- Explain the difference between renewable and nonrenewable energy resources with suitable examples. Also write the national ambient air quality standards for SO2, NO2, CO, (10) PM10 and PM2.5.

- 5. What are the different types, sources and different methods for the disposal of solid wastes? Also explain in detail about the effects of thermal pollution.
- 6. What are the major obstacles in the path of sustainable development in India? In addition to this, what kind of approach is required to attain environmental sustainability in Delhi.
- "India is mega diversity nation" discusses. Also throw light on the impact of modern agriculture on the environment. (10) 7. 15 (15)

III

50

I

1111

18 11

- 8. Write short notes on any three:
 - Ecological Pyramids
 - (i) Pond Ecosystem
 - (ii) Acid Rain
 - (iii) Ozone Layer Depletion
 - (iv)

Total No. of Pages 2

I SEMESTER, B.A. (Eco)

60 -

Supplementary Exam: February - 2020

BA-104 FINANCIAL MARKETS & INSTITUTIONS

Time: 3:00 Hours

Max. Marks: 75

Note: All questions are compulsory

Q.1 and Q.5 have internal choice

Please keep answers to the point & observe word limit

Q.1 Write short notes on any three of following:

(5 Marks each)

- a) Development Financial Institution (DFI)
- b) Call Money
- c) Mutual Funds
- d) National Stock Exchange

(Max. 300 words)

Q.2 Elaborate various components of Indian Financial system (20 marks)

Q.3 Highlight the role played by Reserve Eark of India (RBI) as banker of last resort (10 Marks) and monetary authority of India

Q.4 Briefly outline process of credit creation performed by Banking system (10 Marks) along with suitable examples

Q.5 "The present-day commercial banking we see today is the result of slow and gradual evolution of banking over the years". Critically comment on the statement highlighting *different phases* of development of Indian Banking. (20 Marks)

Mr. Vikas Khokher is the founder and CEO of Quickopay, an Indian payment system based in Pune. The tech-giant is the 2ⁿⁱ largest payment system by revenue and market share. Mr. Vikas has been evaluating a new business line which once launched successfully has a potential of giving competition to other players operating in the country. To finance the launch of this new business line as well as reducing promoters stake held by founder members. Quickopay has been evaluating the idea of going public.

-- 61-

<u>Colic</u>

Mr. Vikas is a veteran investor and also holds stakes in a range of companies in diversified industries. He has been tracking the primary markets activity and has been significantly impressed by newspaper headlines like "In Europe, the Middle East, India and Africa region (EMEIA), BSE and SME exchanges recorded the highest proceeds worth \$5.5 billion through 17 IPOs, the EY Global IPO Trends: 2019 (Q4) report added".

(Kindly only consider facts above and nut the current financial markets performance)

Based on facts highlighted above, answer following:

- a) What do you understand by Primary Markets. Is it a wise option for Quickopay to raise funds through primary markets and not through loans/ credit lines. (5 Marks)
- b) Explain Initial Public Offering and stages of flotation of shares through IPO. (15 Marks)

A	6. 60. 15	S. Paris	
Down	5. Z	· 4, 2	
-			

7.2.a.) Find the Nash equilibrium or equilibria. 7.2.b) Which player, if any, has a dominant strategy?

Feb-2020
CONOMICS I Max. Marks : 75
irks)

Q.1 Suppose that by some miracle the number of hours in the day increased from 24 to 30 hours (with luck this would happen shortly before exam week). How would this affect the budget constraint? (5marks)

Explain slutsky equation with endowment effect. (10 marks)

1

9

þð

Q.2 Mr. X's utility function is $U(X; Y) = (X^2)(Y^2)$ where X

is her consumption of good X and Y is her consumption of good Y. If price of both goods is Rs. 1 and income is Rs11. Please solve for demand of X and Y. Derive its Engel curve and indirect utility function. (10 marks)

Martha has the utility function $U = \min\{x, 2y\}$. Write down her demard function for x as a function of the variables m, p_x , and p_y , where m is income, p_x is the price of x, and p_y is the price of y. (5marks)

Q3)

3.1) Use a diagram to show that a quantity tax can make a person worse off even if he is rebated an amount of money equal to what he paid in. (10 Marks)

(2 4) 4.1] (5marks) Explain the Hicks version of income and substitution effects.

4.2] (5marks)

The U.S. currently imports about half of the petroleum that it uses. The rest of its needs are met by domestic production. Could the price of oil rise so much that the U.S. would be made better off?

4.3] (5marks)

Can decrease in the interest rate make a utility maximizing lender become a borrower? Explain with diagram, if it will make the borrower better off or worse off?

Q5)

5.1) (5 marks) What is St. Petersburg paradox. Draw a utility function that exhibits risk-averse behavior .

5.2) (10 Marks) Explain returns to scale. Can a fixed-proportions production function exhibit increasing or decreasing returns to scale? What would its isoquant map look like in each case?

6)

6.1) (5 marks)

The production function $q = K^{a} L^{b}$ where $0 \le a, b \le 1$ is called a Cobb-Douglas production function. This function is widely used in economic research. Using the function, show the following:

6.1.a.) Are marginal productivities diminishing for this production function?

6.1.b) Does the function exhibit diminishing RTS?

6.2) (10 marks) Two students are preparing for their micro exam,

but they seem confused: Student A: "We learned that demand curves always slope downward. In the case of a competitive firm, this downward sloping demand curve is also the firm's marginal revenue curve. So that is why marginal revenue is equal to price."

Student B: "I think you have it wrong. The demand curve facing a competitive firm is horizontal. The marginal revenue curve is also

horizontal, but it lies below the demand curve. So marginal revenue is less than price."

Can you clear up this drivel? Explain why neither student is likely to warrant a grade commensurate with his or her name

Q7)

7.1) (10 marks)

Suppose a firm had a production function with linear isoquants, implying that its two inputs were perfect substitutes for each other. What would determine the firm's expansion path in this case? For the opposite case of a fixed-portions production function, what would the firm's expansion path be?

7.2) (5 marks)

Consider a simultaneous game in which player A chooses one of two actions (Up or Down), and B chooses one of two actions (Left or Right). The game has the following payoff matrix, where the first payoff in each entry is for A and the second for B.

Total No of Pages_03 Roll. No..... THIRD SEMESTER **B.A (H) ECONOMICS** SUPPLEMENTARY SEMESTER EXAMINATION **FEB-2020 BA202 (INTERMEDIATE MACROECONOMICS I)** Time: 03:00 Hours Max. Marks: 75

-64-

Note : First two questions are mandatory. Attempt any three out of remaining four questions. All questions carry equal marks.

Q1. (a) Consider an economy with: $C = 100 + 0.8Y_D$, I = 200 - 5i, G = 0, TR = 050, T = 100 + 0.2Y, X = 100, (Import) IM = 10 + 0.14Y, M^s = 184, L = 0.2Y-10i, P = 2.

(i) Derive IS and LM equations and solve for equilibrium level of income and equilibrium rate of interest.

(ii) If transfer payment (TR) increases by 75, calculate the new equilibrium values. And then calculate the amount of investment and the magnitude of output that has been crowded out.

(iii) How much should be the change in nominal money supply so that there is full multiplier effect when transfer payment increases by 75.

(iv) Continue with part (i), suppose full employment output (Y_F) of this economy is 800. Calculate the amount by which government should change its expenditure for the economy to achieve its full employment output level. (4+3+2+3)

(b) Suppose AS curve is defined by classical conditions and AD curve is downward sloping. In this scenario, how will output change when there is monetary expansion in AS-AD model? What can you conclude about neutrality (3) of money in this context?

Q2. (a) PIP (Policy Ineffectiveness Proposition) implies that central bank should not reveal its policy decisions if it wants to improve the economy's performance. Do you agree with this statement? Explain with diagram (s). How PIP will perform under adaptive expectations.

(b) Suppose that the economy can be described by following three equations: Okun's law $u_{t-1} = -0.4(g_{yt} - \bar{g}_y)$ $\pi_t - \pi_{t-1} = -(\hat{u}_t - 6\%)$ Phillips Curve =

Aggregate Demand

-65-

Also it is given that:

 $g_{yt} = g_{mt} - \pi_t$

Labor force growth rate is 2% and

Labor productivity growth rate is 1%

(i) What is normal rate of growth for this economy?

(ii) Suppose that the unemployment rate is equal to the natural rate, and inflation rate is 7%. What is the growth rate of output? What is the growth r_{at} money supply?

(iii) Suppose that conditions are as in (ii), when, in year t, the authorities monetary policy to reduce the inflation to 4% in year t and keep it there. Get this, what must happen to the unemployment rate, rate of growth of output rate of nominal money growth in year t, t+1, t+2, t+3 and t+4? (1+2)

Q3. (a) Assume economy is initially working at full employment. Now supplicing there is fiscal expansion in the economy. Explain how this change (using AS and IS-LM model) would affect the economy both in the short run medium/long run. You need to explain the full dynamics of adjustment (in w and with diagrams).

(b) Suppose that a firm's markup over cost is 10% and Wage-Setting (equation is given by: W=P(1-u).

(i) What is the real wage as implied by Price-Setting equation?

(ii) What is the natural rate of unemployment?

(iii) Suppose that the markup of prices over cost increases to 20%. What hap to the natural rate of unemployment? Explain the economic logic behind y answer.

Q4. Answer following questions:

(a) Discuss the two cases/circumstances with diagrams when fiscal pomultiplier in IS-LM will be zero.

(b) Prove that smaller the interest responsiveness of money demand, greater be change in income in case of monetary expansion.?

(c) What is arbitrage theory? How does it affect the exchange rate between the currencies in the two countries?

(d) Define Absolute Purchasing Power Theory (PPP) and Real exchange rate and, tell how the two are related with each other.

(e) As per Fischer and Taylor, disinflation will be painful even if monetary policy changes were credible and wage-setters have taken this aspect into account while forming their expectations. True or False? Explain (3+3+3+3+3)

Q5. (a) Empirical evidences suggest that devaluation (or depreciation) will always lead to improvement in current account balance? Do you agree with statement? Explain [Hint: j-curve effect] (6)

(b) Explain the difference between depreciation and devaluation. And tell which one is more prevalent in today's world? (2)

(c) Discuss the effectiveness of fiscal policy in a fixed and flexible exchange rate regime in the presence of perfect capital mobility and fixed prices. Explain with diagram (s) wherever needed. (7)

Q6. (a) Explain exchange rate overshooting through all the relevant diagrams and explanations when central bank unexpectedly increases nominal money supply by 10%, say from 100 billion rupees to 110 billion rupees. (7)

(b) Using the Asset market approach to balance of payment (BOP) under flexible exchange rate, explain how demand of domestic money, domestic bonds and foreign bonds will affected by each of the followings:

(2+2+2+2)

(i) Increase in foreign interest rate.

(ii) Foreign currency is expected to appreciate.

(iii) Increase in domestic price level.

(iv) Decrease in wealth.

Q.11 [B] Prove that the correlation between two independent random Total No. of Pages: 8 variables is equal to zero. **III SEMESTER** [5] [b] Prove the following results: SUPPLEMENTARY EXAMINATION [5] (i) V(X+Y) = V(X) + V(Y) + 2Cov(X,Y)BA 203: Statistical Methods for Economics (ii) Cov(aX, Y) = Cov(X, aY) = aCov(X, Y)Time: 3:00 Hours The question paper consists of four sections. All the Note : 1. sections are compulsory. 2. All parts within each section are to be answered in a continuous manner on the answer sheet. Internal choice is given in some sections. Use of statistical tables and simple calculator is З. 4. allowed. SECTION A $[1 \times 5 = 5]$

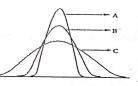
[10]

Roll No....

BA(H) Economics

Feb 2020

Max. Marks : 75


-67-

Q.1 Choose the correct alternative:

[a] Mean Deviation of a given set of observations is minimum when taken from

- Arithmetic Mean (i)
- Geometric Mean (ii)
- Mode (iii)
- (iv) Median

8.75. Which of the following curves best represents the shape of the distribution?

- (i) Curve A
- (ii) Curve B (iii) Curve C
- The information is not sufficient to ascertain the shape of the (iv) distribution

[c] X is a continuous random variable with pdf

$$f(x; A, B) = \begin{cases} \frac{1}{B-A} \text{ for } A < X < B \\ 0, \text{ otherwise} \end{cases}$$

Then the probability f(X=3) is given by

(i) (B+A)/2 (ii) (B-A)/2 (iii) 0 (iv) 2B+A

SECTION D [10 x 2 = 20] Attempt any two questions.

1.1

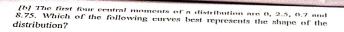
5.1

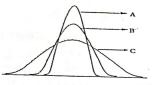
[5]

Q.9 (a) Let X and Y be two random variables each Liking three values -1, 0 and 1, and having the joint probability as given in the table below:

X	-1	0	1. No.	1	24
Y					1 · · · ·
-1	0	0.1	1	0.1	11
0	0.2	0.2	7 4	0.2	1:12
1	0	0.1	81	0.1	

Obtain the marginal probability distributions of X and Y and hence their expected values. [5]


(b) You are given the following continuous joint probability function:


$$f(x,y) = \begin{cases} \frac{x+y}{k}, & 0 < x < 2 \text{ and } 0 < y < 2 \\ 0, & \text{otherwise} \end{cases}$$

- (i) For what value of k is f(x, y) a valid joint pdf?
- (ii) Find the expected value of y.
- Derive marginal probability density function of x. (iii)
- Are x and y independent? (iv)
 - Find P (x < 1 and y > 0.5) (v)

Q.10 The joint pdf of two random variables X and Y is given by

$$f(x,y) = \begin{cases} 24 xy, & 0 \le x \le 1, 0 \le y \le 1 \text{ and } x + y \le 1 \\ 0, & \text{otherwise} \end{cases}$$

(i) Curve A (ii) Curve B

(iii) Curve C

The information is not sufficient to ascertain the shape of the (iv) distribution

[c] X is a continuous random variable with pdf

$$f(x; A, B) = \begin{cases} \frac{1}{B-A} \text{ for } A < X < B\\ 0, \text{ otherwise} \end{cases}$$

Then the probability f(X=3) is given by

(i) (B+A)/2 (ii) (B-A)/2 (iii) 0

(iv) 2B+A

SECTION D [10 x 2 = 20] Attempt any two questions.

1.1

[5]

Q.9 (a) Let X and Y be two random variables each t using three values -1, 0 and 1, and having the joint probability as given in the table below: 11

x	-1	0	1
¥↓	5		
-1	0	0.1	0.1
0	0.2	0.2 7 %	0.2
1	0	0.1	0.1

Obtain the marginal probability distributions of X and Y and hence their expected values. [5]

(b) You are given the following continuous joint probability function:

$$f(x,y) = \begin{cases} \frac{x+y}{k}, & 0 < x < 2 \text{ and } 0 < y < 2\\ 0, & \text{otherwise} \end{cases}$$

7

51 (i) For what value of k is f(x, y) a valid joint pdf? (ii) Find the expected value of y. (iii) Derive marginal probability density function of x. Are x and y independent? (iv) Find P (x < 1 and y > 0.5) (v)

Q.10 The joint pdf of two random variables X and Y is given by

$$f(x,y) = \begin{cases} 24 xy, & 0 \le x \le 1, 0 \le y \le 1 \text{ and } x + y \le 1 \\ 0, & \text{otherwise} \end{cases}$$

[b] The maximum speed of mopeds follows a normal distribution with mean value 46.8 km/h and standard deviation 1.75 km/h.

(i) What is the probability that maximum speed is at most 50 km/h?
(ii) What is the probability that maximum speed is at least 48 km/h?

(iii) What is the probability that maximum speed differs from the mean value by at most 1.5 standard deviations? [5]

Q.8 [a] The weekly demand for propane gas (in 1000s of gallons) from a particular facility is a rv X with pdf [1+2+2]

$$f(x) = \begin{cases} 2\left(1 - \frac{1}{x^2}\right), & 1 \le x \le 2\\ 0, & \text{otherwise} \end{cases}$$

(i) ⁵⁵ Obtain the cdf of X.

(ii) Compute E(X) and V(X). (Use $\ln 2 = 0.6931$)

(iii) Obtain an expression for the (100p) th percentile. What is the value of the median?

[b] Suppose that 10% of all steel shafts produced by a certain process are nonconforming but can be reworked (rather than having to be scrapped). Consider a random sample of 200 shafts, and let X denote the number among these that are nonconforming and can be reworked. What is the (approximate) probability that X is [5]

(i) At most 30?

(ii) Less than 30?

(iii) Between 15 and 25 (inclusive)?

VISC

[d] Twenty one persons in a room have an average height of 5 feet 6 inches. A 22^{nd} person enters the room. How tall would be have to be to raise the average height of all 22 persons by one inch?

(i)	7 feet 3 inches
(ii)	7 feet 4 inches
(iii)	6 feet 3 inches
(iv)	6 feet 4 inches

[e] The price of a commodity doubles in a period of 4 years. The average annual percentage increase is

(i)	15%
(ii)	19%
(iii)	22%
(iv)	25%

SECTION B $[10 \ge 2 = 20]$ Attempt any two questions.

Q.2 [a] An economy grows at the rate of 2% in the first year, 2.5% in the second year and 3% in the third year. What is the average rate of growth of the economy?

[b] The standard deviation of a symmetrical distribution is 3. What must be the value of the fourth moment about the mean in order to make the distribution mesokurtic?

Q.3 [a] Explain the concepts of negative and positive skewness using suitable examples. [5]

b) Prove that for two series with n_1 and n_2 observations

$$g GM = \frac{1}{n_1 + n_2} (n_1 \log G_1 + n_2 \log G_2)$$

where G_1 and G_2 are the geometric means of Series 1 and 2 respectively while GM is the geometric mean of the combined series. [5]

Q.4 [a] Prove that the sum of the squares of deviations of the given set of observations is minimum when taken from the arithmetic mean.
[5] A batsman is to be selected for a cricket team. The choice is between two players X and Y. Consider their five previous scores:
[5]

X	Y
25	50
85	70
40 -	65
80	45
120	80

Which batsman should be selected if the team wants a

(i) Higher run scorer

(ii) More reliable batsman

lo

SECTION C [10 x 3 = 30] Attempt any three questions.

Q.5 [a] Find the mean and variance of a random variable which follows a binomial distribution. [5]

[b] A particular telephone number is used to receive both calls and fax messages. Suppose that 25% of the incoming calls involve fax messages, and consider a sample of 25 incoming calls. What is the probability that

a. At most 6 of the calls involve a lax messager

b. Exactly 6 of the calls involve a fax message?c. At least 6 of the calls involve a fax message?

d. More than 6 of the calls involve a fax message?

e. What is the expected number of calls among the 25 that involve a fax message? [5]

Q.6 [a] 2% of all births in New Zealand are twins. If there are 500 births in one week, calculate the following probabilities approximately:

(a) The probability that more than 10 births in one week would result in twins.

(b) The probability that at least 5 births result in twins. [5]

[b] The yield strength for A36 grade steel is normally distributed with mean = 43 and standard deviation =4.5. [5]

(i) What is the probability that yield strength is at most 40? Greater than 60?

(ii) What yield strength value separates the strongest 75% from the others?

Q.7 [a] The cumulative distribution function of a continuous random variable X is given by $% \left(\frac{1}{2} \right) = 0$

$$F(x) = \begin{cases} 0, \ x < 0 \\ \frac{x^2}{4}, \ 0 < x < 2 \\ 2, \ x > 2 \end{cases}$$

(i) Find the probability density function of X.

(ii) Find P (0.5 < X < 2)

[5]

 TABLE A Areas of a Standard Normal Distribution (Alternate Version of Appendix I Table 4)

0.0 . 0.1 .	.00	.01	ue of z,			1.1.110	f			
0.0 . 0.1 .	.0000	State B		.03	AL DALL	alaght agus	N. A.		Ó9	
0.1			, ,02		.04	.05	.06	.07	.08	
		.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319.	.0359
0.2 .	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
	1179	1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
	1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
	2257	2291	.2324	2357	.2389		.2454	2486	.2517-	2549
	2580	2611	-2642	2673	2704		.2764	1.2794	.2823	2852
		.2910	2939 -	.2967	2995	3023	.3051	.3078	.3106	.3133
	3159	.3186	3212	.3238	.3264	3289	.3315	.3340	.3365	.3389
	3413 -	.3438	3461	.3485	3508 -	.3531-	.3554	.3577	.3599	.3621
	3643	.3665	.3686	.3708	.3729	.3749	.3770 ·	.3790	.3810	.3830
	3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
2.2	4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
	4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
	4332	.4345	.4357	.4370	.4382	.4394 .	.4405	.4418	.4429	.4441
Sec. 55	4452	.4463	.4474	.4484	4495	4505	.4515	4525	- 17 . /arr.c. 1	
	4554 -	.4564	4573	.4582	4591	.4599	4608	4616	.4625	4545
	4641	.4649	.4656	4664	.4671	- 4678	.4686	4693	and the state	4633
a dan in E	4713	.4719	.4726	.4732	4738	4744	-4750	1 - C	4699	4706
	4772	4778	.4783	.4788	.4793	- 4798	-4803	4756	4761	4767
	4821	.4826	.4830	.4834	.4838	.4842		4808	4812	48.17
	4861	.4864	.4868	.4871	.4875	.4878	.4846	.4850	.4854	.4857
- 1 C	4893	.4896	.4898	.4901	.4904		.4881	.4884	.4887	.4890
	4918	.4920	.4922	.4925	.4927	.4906	.4909	.4911	.4913	.4916
2.5 .4	4938	.4940	.4941	.4943	.4945	.4929	.4931	.4932	.4934	.4936
2.6	4953 -	4955	.4956	4957	4959	.4946	.4948	.4949	.4951	.4952
	4965	.4966	.4967	4968		4960-	.4961	4962	4963	4964
2.8	4974	4975	.4976	4977	.4909	4970		-4972	4973	.4974
2.9 4		4982	4982	4983	.4977			.4979	.4980	
3.04	1987		4987	- 1000	.4984 .4988	1. A. B. B. B.	1			an 17 1 1 7
3.1 .4	4990	.499i	.4991	4988		.4989	.4989		.4990	1
3.2 .4		.4993	.4994	.4991	.4992	.4992	.4992	.4992		
n - 1		.4995		.4994	.4994	.4994	.4994	.4995	.4993	.4993
-		.4997	.4995	.4996	.4996	.4996	.4996		.4995	.499
		.4998	.4997	.4997	.4997	.4997	.4997	.4996		
		.4998	.4998 .		.4998	.4998		.4997		
		SECF.	.4998	.4999		4990	.4998	.4998	.4998	
mal curv	e.	ter than o	or equal to	o 3.70, us	0 4900 +		.4999	.4999	.4998 .4999	

-72-

LOGARITHM TABLES

.9

186

MATHEMATICS

		e al Taurica	a for the	· · · · ·	· 640		inth a with	LO	GA	RI	TH	MS) 1		 						
	-	A local day and	1	1	-			17-1- 1-0-1		The second	and the local division of the local division	T	9		100	-	-		lerer		-
		0	7	2		3	4	5	6		7	8	9	_	1 2	2 3	4	5	6	7	8
	55	7404	7412	741	9 7	427	7435	7443	745	1 7	459	7466	747				3	4	5	5	6
	56	7482	7490	749	7 7	505	7513	7520	752		536	7543	755	11 A	2		3	4	5 5	5 5	6 6
	57	7559	7566	7574		582	7589	7597	760		612 686	7619 7694	7701	S. 198	1	2	3	4	4	5	6
	58	7634	7642	7649		57	7664	7672	767		760	7767	7774		1	2	3	4	4	5	6
	59	7709	7716	7723			7738	7745	7825		332	7839	7846		1	2	3	4	4	5	6
	60	7782	7789	7769	78	103	7810	7818					7917	1	1	2	Э.	4	4	5	6
	61 1	7653	7860	7868	78		7882	7889	7896		903	7910 7980	7987		1	2	3	3	4	5	6
1	82 3	7924	7931	7838	79	-	7952	7959	7966 8035			8048	8055		1	2	3	3			5
	11		8000	8007	80			8028 8096	8102	_		8116	8122	1	1	2	3	3			5
	- 11		8069	8075	80			8162	8169			8182	8189	1	1	2	3	3	4	5	5
-	65 8	129	3136	8142	81	+3 6				1 2		0000	8254	1	1	2	3.	3	4	5 4	58
1	8 8	195 8	3202	8209	821			8228	8235	82			8254	li	1	2	3		4		58
1	11			8274	828	-		8293	8299 8363	83 83			8382	1	1	-		5	· •	1 5	
E	8 8			8338	834			3357	8426	84			3445	1	1				4 4		
E	- 11 -			8401	840	-			8488	845			3506	1	1	2	2	3 4	4 4	1 5	6
7	0 8	151 B	457	8463	847	° °			5 - C		- 0	561 1	3567	1	1	2	2 :	3 4	4	5	
7	1 85	13 8	518 1	8525	853				8549	855 861	_		627	1			2 3	3 4	1.00		
7.	2 85			3585	859				8609 8669	867			686	1		2 2					5
7.				645	865				8727	873			745	•		2 2			4	5 5	5 5
74	11			3704	8710 8768				8785	879		797 8	802	1	1 3	2 2	2 3	1 3	4	ి	1
7	5 87	51 8/	56 8	1.1	•				3842	884	R BE	354 8	859	1	1 2	2 2			4	5	5
78	88 8	08 88			8825					8904	1.1			1	2				4	4	5 5
77	11				8882 8938					8960				1 711				3 3	4	4	5
78	11		1		3993 3993				009	9015	S		025		÷ .		3 3	3	4	4	5
79	11				047	90		58 9	063	9069	90	74 90	79	11 11 12 10	1996	1	10.0		$\frac{1}{2}$		
30	903	1 30						10 0	117	9122	91	28 91	33 1	1-1	2		3	3	4	4	5 5
1	908				101	910 915				9175	1	80 91	86 1		2		3	3	4	4	5
2	1913				154	921				9227	92:		38 1	1	2	2	33	3	4	4	5
3	919				258	926	-	59 92		9279	928			1	22	2	3	3	4		5
4 5	924 929	-			309	931	5 932	20 93	325 9	9330	933	35 93	40	1.1		18 N	12.28		1.12	4	5
5	11				360	936	5 937	0 93	75 9	380	938		4		2	2	32	3		-	4
6	934		1		410	941				430	943		5	1	1	2	2		-		4
7	939 944		-		460	946	5 946			479	948 953			1	1	2	2	3	3 ·		1
3	949			04 95	509	9513				528 576	958		- 10 A	1	1	2	2	3	3 4	4 4	1
5	9542				557	9562	2 956	6 95	1 9	5/4		÷ 5.	1 C 1 C		1	2	2	з :	3 4	4	
		1	5 960	00 96	505	9609	961			624	962			+	41			3 3	3 4	4	
	9590 9638		-		52	9657				571	9678 9722			1	1	2	2 ;	3 3	- A 6.5		
	9630	9689		4 96		9703				717	9768			1				3 3			1.0
	9731	9736	974		-	9750				109	9814			1	1	2 2	2 3	3 3	1 4	4	÷.,
	8777	9782	978	6 97	91	9795	9800						0	1	1	2 2	2 3	3	4	4	4
11		9827	983	2 98	36	9841	9845				9859 9903					2 2	3	3	4	4	
$\ $	9823 9868	9872		7 988	31 9	9886	9890				9903 9948	9952		1.1	1 3	2 2				4	1
11	9912	.9917	992	1 992		9930	9934	993			9991	9996	1		1 2	2 2	3	1.000	3	4	1 de
	9956	9961	9968	5 996	i9 '9	9974	9978					9	_	2 :	3 4	5	6	7	8	9	
1L		1	2	3		4	5	6	7		8		Le.	80 a		1. A.J.				_	

73.

)	Log	ARIT	HM TA	BLES		an fastrin statu	1. 1.1.1.1.1.1.1.1.1.1.1	en e soute a d	and the state of the	1	51 (S. 17. 17.)	187
1.1.1						AN	TIL	06/	RI	THN	8	ang
	_	11		1 0	<u> </u>					8	9	Mean Difference
			מן מ	2	.3	4.	5	6	7			1 2 3 4 5 6 7 8 9
	.00	10	00 10	02 100	05 1007	1009	1012	1014	1016	1019	1021	0 0 1 1 1 1 2 2 2 2
	.01					1033	1035	1038	1040	1042 1067	1045 1069	0 0 1 1 1 1 2 2 2
	.02	10	47 10	50 103		1	1059 1084	1062 1086	1064 1089	1091	1094	0 0 1 1 1 1 2 2 2
*	.03					1107	1109	1112	1114 1140	1117 1143	1119 1146	0 1 1 1 1 2 2 2 2 2 0 1 1 1 1 2 2 2 2 2
ξ.,	.05	1			27 1130		1135	1138	1167	1169	1172	0 1 1 1 1 2 2 2 2 2
	.08	11					1161 1189	1164 1191	1194	1197	1199	
	.07	11			8 1211	1213	1216	1219 1247	1222 1250	1225 1253	1227 1256	0 1 1 1 1 2 2 2 3
	.09	12	30 12				12:5 1274	1276	1279	1282	1285	
	.10	1					1303	1306	1309	1312	1315 1346	
	.11				4 1327	1330	1334 1365	1337 1368	1340 1371	1343 1374	1377	0 1 1 1 2 2 2 3 3
	.15	134	49 13				1396	1400	1403	1406	1409 1442	
	.14						1429	1432	1435	1439 1472	1476	0 1 1 1 2 2 2 3 3
	.16	11.0					1462 1496	1466 1500	1469 1503	1507	1510	0 1 1 1 2 2 2 3 3
	.17	147	9 148				1531	1535	1538	1542 1578	1545 1581	0 1 1 1 2 2 3 3 3
-	.18	151		2 155	6 1560	1563	1567 1603	1570 1607	1574 1611	1614	1618	0 1 1 1 2 2 3 3 3
	.20	158		· .		1600 1637	1641	1644	1648	1652	1656	
	.21	162		1 1		1675	1679	1683	1687	1690 1730	1694 1734	
	.22	166 169	B 170	2 170	8 1710	1714	1718 1758	1722 1762	1726 1766	1770	1774	
	.24	1738	3 174			1754	1799	1803	1807	1811	1816	
- 1	25	1778	1			1837	1841	1845	1849	1854 1897	1858 1901	
	26 27	1820 1862		1	1875	1879	1884 1928	1888 1932	1892 1936	1941	194	5 0 1 1 2 2 3 3 4 4
	28	1905	1910	1		1923 1968	1920	1977	1982	1986	199	
	29	1950 1995				2014	2018	2023	2028	2032		
	30	2042	1		2056	2061	2065	2070	2075 2123	2080		3011223344
		2042	2094	2099	2104	2109	2113 2163	2118 2168	2173	2178	218	3 0 1 2 3 3 4 4 5
.3	3 1	2138	2143	2148		2208	2213	2218	2223		1	6 1 1 2 2 3 3 4 4 5
.3		2188 2239	2193 2244	2249	2254	2259	2265	2270	2275			9 1 1 2 2 3 3 4 4 5
	11	291	2296	2301	2307	2312	2317	2323 2377	2328 2382		239	3 1 1 2 2 3 3 4 4 5
.3 .3		281	2350	2355	2360	2366 2421	2371 2427	2432	2438	244	3 244	9 1 1 2 2 3 3 4 5 5
.3	B 2	399	2404	2410 2466	2415 2472	2477	2433	2489	2495			4 1 1 2 2 3 4 4 5 5
.35	9 2	455 512	2460 2518	2523	2529	2535	2541	2547	2553			24 1 1 2 2 3 4 4 5 5
.40	11		2576	2582	2588	2594	2600	2606 2667	2612 2673		9 268	85 1 1 2 2 3 4 4 5 6
.41 .42		570 630	2636	2642	2649	2655	2661 2723	2729	2735	274	2 274	48 1 1 2 3 3 4 4 5 6
.42		692	2698	2704	2710 2773	2716 2780	2786	2793	2799			$\frac{12}{77}$ 1 1 2 3 3 4 5 5 6
.44	2	754	2761	2767 2831	2838	2844	2851	2858	2864			44 1 1 2 3 3 4 5 5 6
.45	12		2825		2904	2911	2917	2924	2931			13 1 1 2 3 3 4 5 6 6
.46			2891	2897 2965	2972	2979	2985	2992 3062	2999 3069	307	6 30	83 1 1 2 3 4 4 5 6 6
.47			2958 3027	3034	3041	3048	3055 3126	3062	3141		8 31	55 1 1 2 5 6 7 8 9
.48 .49			3097	3105	3112	3119		6	7			9 1 2 2 4 5 6 7 8 8
		0	1	2	3	4	5				<u> </u>	

.

Έ.

.

1.4

•

74--

MATHEMATICS

-75-

SUPPLEMENTARY EXAMINATION : February 2020

76-

PAPER CODE: BA206 Time: 3:00 Hours

TITLE OF PAPER- INVESTMENT MANAGEMENT Max. Marks: 75

TIME: 3 HRS

MAX.MARKS: 75

Attempt any five question. All question carry equal marks.

Q1. a) Define the term investment. How is it different from speculation?

b) The expected return and standard deviation for two investments are as follows:

	Project X		Project Y
Expected return	15%	² •	25%
Standard deviation	10	1.00	15

Advice the investor?

Q2. a) What do you mean by risk-return trade-off? Why have different investment varying degree of expected return?

(8)

b) What is indirect investing? How it is different from direct investing? Give suitable example to support your question. (7)

Q3. a) What is meant by financial system? What are the functions of sound financial system? (7)

b) Write short notes on:

(i) Financial markets (ii) financial instruments.

Q4. a) What factors should an investor consider while making investment decision? (5)

b) Mr. Z had purchased a bond at a price of Rs.800 with a coupon payment of Rs. 150 and sold it for Rs.1,000. (i) What is his holding period return? And (ii) If the bond is sold for Rs. 750 after receiving Rs. 150 as coupon payment, then what is his holding period return?

(5)

(10)

(8)

End-Term Examination.

Course: BA (H) Economics Subject: Development Economics I Maximum Marks: 75

.: (Supplementary - Feb-2020

Semester: V Subject code: BA 302 Maximum Time: 3 Hours

PTO

Instructions:

733

(1) All questions carry equal weight.

(2) Answer any five questions.

- 1. What are the different paths of Political Development? Explain the difference between democracy and non-democracy.
- 2. Discuss the relation between political equality and economic equality. Why is political equality considered essential for democracy?

3. Discuss the three models that theorise the relation between natural resources

and individuals of society.

- 4. Based on Amartya Sen's view on Capability deprivation and Economic deprivation, discuss the social deprivation and issue of unemployment. 5. Discuss differences between absolute and relative poverty. In light of the same,
- 6. If the production function is denoted by $Y = A \mathbb{K}^0 \mathbb{L}^{(1-0)}$, then prove that labour explain the idea of poverty line.
- 7. Calculate growth rate of per capita physical capital (k) and per capita human capital (h). Assume "h/k = r" i.e. : denotes the ratio of human to physical
 - capital in the long run. $(y = k(alu^{1-u}))$.

Subject Code: BA 302 Subject: Development Economics [Semester: V Programme: BA (H) Economics Teacher: Manish Kumar

-78-

ļ

Total No. of Pages: 6 **BA(H)** Economics **V SEMESTER** February 2020 SUPLLEMENTARY EXAMINATION **BA 304: Applied Econometrics** Max. Marks : 75 Time: 3:00 Hours Note: 1. Attempt any five questions. 2: All parts within each question are to be answered in a continuous manner on the answer sheet. 3, Internal choice is given in some questions. 4. Use of statistical tables and calculator is allowed. Q.1 (a) State and explain the assumptions of the Classical Linear Regression Model (CLRM) using matrix notation. (b) Prove the following results: (i) $\hat{\beta} = (X'X)^{-1}X'y$ [5] (ii) var-cov $(\widehat{\beta}) = \sigma^2 (X'X)^{-1}$ (c) Obtain the regression equation of Y on X using the matrix method [5] for the following data: Y X 9 6 11 2 5 10 8 4 7 8

Q.2 [a] Explain the concept of dummy variable trap. Briefly explain the two methods used to avoid the problem of dummy variable trap in regression analysis. Which of the two methods is preferable? [5]

[b] Prove that in a regression model involving only dummy variables, the intercept term is equal to the average of the observations in the base category while the slope coefficient is equal to the difference in the average of the observations in the two categories. [5]

[c] Using data for 526 individuals, the following model of wage determination was estimated:

 $LOG(W)_i = B_0 + B_1D_i + B_2EDU_i + B_3(D * EDU)_i + u_i$

' where

W: Daily wages in rupees

D : Dummy variable for gender, D = 1 for females and 0 for males

EDU : Years of education

D*EDU : Interactive dummy

The table below gives the estimated regression coefficients and their standard errors:

	Estimated Coefficients	Standard errors
CONSTANT	0.3890	0.1190
D	-0.2270	0.1680
EDU	0.0820	0.0080
D*EDU	-0.0056	0.0131

2

 $\hat{C}_{i} = 1.88 + 0.086 \text{YD}_{i} + 0.911 C_{i-1}$

$$DW = 1.569$$
 $R^2 = 0.999$

Which test should be used to test the presence of AR (1) error process in this model? Describe the test and perform this test at 5% level of significance. [5]

Q.6 [a] Explain the concept of omitted variable bias. State and explain the conditions under which the bias disappears. [5]
[b] What are the desirable properties of an instrumental variable? [5]

[c] Consider a simple model to measure the effects of taking a preparatory course (a binary variable, course) on eventual score on a college admissions exam: score = $\beta_0 + \beta_1$ course + u

(i) Why might course be correlated with u?

(ii) Is course likely to be related to parents' income? If so, does this mean parental income is a good IV for course? Explain.
 [5]

males and females separately.

(b) The returns to education are measured by the percentage increase in wages due to an extra year of education. Using the results from part (a), find the returns to education, for females and males.

(c) Is the difference between returns to education for males and females statistically significant at 5% level of significance? [5]

Q.3 [a] Explain the steps involved in executing the Chow Test to test for the presence of structural change in a dataset. What are the limitations of this test? How can the dummy variable technique be used to overcome these limitations? [10]

[b] Consider the regression model, $BILL_t = B_t + B_2 \left(\frac{1}{REENDS_t}\right) + B_2 D_1 + u_{1,1}^{t}$ where BLLL: bill paid by a student for a post-paid mobile connection for the month of July, 2015 (in ruppes) *FRIENDS*; number of close friends of the student $D_t = 1$ If the student's parents live in the same city = 0 otherwise The regression results are reported as follows: $BTLL_t = 539 - 45 \left(\frac{1}{REENDS_t}\right) - 134 D_t$ (p-value) = (0.025) (0.003) (0.012) n=45

(a) Is the data time series or cross section?

(b) Write the regression equations for the students whose parents stay in the same city and for students whose parents do not stay in the same city.

(c) What are the upper limits to the bill paid for the two categories of the students?

(d) Test the statistical significance of B₃ at 5% level of significance. State the null and alternative hypothesis.
[5] Q.4 [a] Prove that in the case of Koyek Model, the Mean and Median lags are given by the following relationships:

(i) Mean Lag =
$$\frac{\lambda}{1-\lambda}$$
 ln 2

(ii) Median Lag =
$$-\frac{1}{\ln \lambda}$$

Where λ is the rate of decline/decay

[5]

[b] Consider the following regression model:

$$Y_t^* = \beta_0 + \beta_1 X_t + u_t$$

where Y_t^* is the desired or long-run business expenditure for new plant and equipment, X_t is sales and t represents time. Using the stock adjustment model, and data on fixed plant and equipment in manufacturing and sales for the period 1970-1991, the following results were obtained:

Dependent variable: 1' Method: Least Square Observations 1971-199	s			
Observations 19/1-195	1 (1 = 21)		•	
	coefficient	std. error	t-ratio	p-value
const	-15.1040	. 4.72945	-3.194	0.0050 ***
X _t .	0.629273	0.0978191	6.433 .	4,70e-06 ***
Yr (-1)	0.271676	0.114858	2.365	0.0294 **
Mean dependent var.	109.2167	S.D. dependent var		51.78550
Sum squared resid.	690.5208	S.E. of regression		6.193728
R-squared	0.987125	Adjusted R-squared		0.985695
F(2, 18)	690.0561	P-value(F)		9.72e-18
Log-likelihood	-66.47341	Akaike criterion		138.9468
Schwarz criterion	142.0804	Hannan-Oninn		139.6269
Rho	0.229740	Durbin-Watson		1.51859

- (i) Show how the stock adjustment's hypothesis regarding Y has been used to transform the model into an autoregressive model. Write down the transformed model and outline its features.
- (ii) What is the estimated coefficient of adjustment? Explain what it means.
- (iii) Write down the estimated long- and short run demand functions for expenditure on new plant and equipment. [5]

[c] Explain how the adaptive expectations hypothesis be used to estimate the following model:

$$Y_t = \beta_0 + \beta_1 X_t^* + u_t$$

Where Y = demand for money

 X^{*} = expected rate of interest

u = error term

Q.5 [a] What is meant by a fixed effects model (FEM)? Since panel data have both time and space dimensions, how does FEM allow for both dimensions? [5]

[5]

[b] When is Hausman Test used? Briefly explain the steps involved. [5]

[c] Based on 147 quarterly observations, an aggregate consumption function is estimated wherein aggregate consumption expenditure Ct is regressed on disposable income YDt and one period lagged dependent variable.

The estimated least squares equation is as follows (standard errors in parantheses):

V SEMESTER

Roll No..... B.A. (III) Economics

SUPPLEMENTARY EXAMINATION

PAPER CODE: BA308 February-2020

TITLE OF PAPER: MONEY AND FINANCIAL MARKETS

Time: 3:00 Hours

Max. Marks: 75

Note: Answer any FIVE questions. All questions carry equal marks.

- 1. Derive deposit multiplier and complete money multiplier. Will deposits, currency holdings and money stock rise / fall / remain the same if the central bank sells Rs 1 lakh worth of government securities from open market, and by how much amount, when:
 - (9+6=15)

 ∞

IN

 (\mathbf{i})

- Required Reserve Ratio = 15% i.
- Desired Excess Reserve Ratio = 10% ii.
- Desired Currency to Deposit Ratio = 20% iii.
- 2. [a] Buying an asset in cash market is better than buying the same asset through a call option. Critically analyze. [b] Discuss various reforms taken place in the following sectors/ markets during the period of 1991-2003 in India:
 - Primary and secondary stock market reforms i.
 - Government securities market ii.
 - 3. [a] What are bank strategies for countering the problems of asymmetric information?

[b] Critically analyze targeting nominal GDP as an intermediate target for the central bank's monetary policy actions, in both shortrun and long-run. Substantiate your answer with the help of diagram(s).

moral hazard problems in financial markets? (6) [b] Suppose the only source of income for various operations of central bank is the interest income that it receives from the holdings of government securities. (9)

i. If central bank increases money supply in the economy, will it necessarily increase the income
 of central bank from its securities portfolio?

- ii. Other things equal, would you expect the central bank to favour increases in monetary base or decreases in the reserve ratio as a means of increasing the money supply? Discuss.
- 5. [a] Determine whether the following scenarios are most consistent with the expectations, segmented-markets, or preferred hypothesis. Give reasons for your answers.
 - i. Rahul's sole criteria in choosing among bonds with varying maturities is the expected yield he will earn on the bonds.
 - Raj wishes to earn a high expected return on his ii. investments but has a preference for five-year bonds. He will, however, consider purchasing shorter or longer-term bonds if they offer a substantial higher yield.
 - iii. Jay prefers one-year bonds even if they have a lower yield than any other bond.

[b] Whenever central bank takes any monetary policy action, changes in money supply do not translate into changes in aggregate demand immediately. Discuss the possible reasons for the same. (9)

- 6. [a] BUS, Inc., has a Rs1 million bond outstanding that will mature in one year. The bond pays a coupon rate of 10%, which equals the default-free market interest rate. (10)
 - If investors believe BUS is certain to meet its payment obligations, how much will they be willing to pay for this bond?

BUS bonds?

- Suppose now, a recent report reveals a 2% chance 111. that BUS will not make any debt payments. A. How much will a risk-neutral investor pay for a
 - BUS bond? B. What is the yield to maturity on this bond
 - given the new information? C. What is the default risk premium given the new
 - information?
 - D. Would your answers in parts (ii) and (iii) differ if investors were risk averse? Explain

[b] Assuming market interest rate is 9%, determine the price and yield of the following: (5)

- i. A Rs10000 treasury bill that matures in one year A Rs1000 coupon bond that has a coupon rate of ii.
 - 10% and matures in one year

7. [a] Central bank sometimes gets wrong on its predictions about the model that can represent the economy in the best way. Consider the following cases and explain how can the central bank's policy decisions be adversely influenced by its use of the wrong model? Explain your answer through diagram(s). (10)

- The economy is best represented by the long-run i. . model, but the central bank thinks the aggregate supply curve is upward sloping.
- The economy is best represented by a model with ii. upward sloping aggregate supply, but the central bank thinks the aggregate supply curve is vertical.

[b] Rich people often worry that others will seek to marry them only for their money. Is this a problem of adverse selection? Discuss (5)

8. [a] What were the policy responses under Basel III norms for tackling the Global Financial Crisis of 2007-08? (12)[b] Write short note on Benchmark Prime Lending Rate System.(3)

2

(7)

 U_{J}

SUPPLEMENTARY EXAMINATIONFebruary 2020PAPER CODE: BA309TITLE OF PAPER: Public EconomicsTime: 3:00 HoursMax. Marks: 75

Q.1. [a] How has Tiebout responded to the conclusion given by Samuelson that the individuals do not reveal their preferences for public goods? Explain his model with a diagram. (8)

- [b] Write short notes on the following theories of public sector growth:
- (i) Wagner's law (ii) Ratchet effect

Note: Attempt any five questions out of seven. All questions carry equal marks.

- Q.2 [a] The source of market inefficiency is the divergence between private and social benefits (costs). How can we eliminate such divergence through Pigouvian taxation? Use diagram to support your answer.
 - [b] Explain the decentralization theorem in context of welfare gains from multiple fiscal units. (7)
 - Q.3 [a] Why are taxes distortionary in nature? The amount by which price rises depends on the shape of the demand and supply curves, not on whom the tax is levied. In this background, explain the relationship between elasticity and tax incidence. Use diagrams to support your answer.

P = 100 - 2QP = 10 + Q

A specific tax of \$ 15 is levied on the consumers:

i)

ii)

- Find the pre-tax and post-tax market equilibrium. (2)
- Show that the tax incidence is invariant to a commodity
- tax of \$15 levied on consumers or producers. (3)
- iii) Who among the consumers and the producers bears the greater burden of the tax and why? (2)

Q.4 [a] How goods can be classified as public goods, private goods or mixed goods on the basis of degree of indivisibility and size of interacting group? Explain with a diagram. (8)

[b] Derive the numerical expression for calculating dead weight loss associated with commodity taxation, clearly specifying the various elements involved. (7)

Q.5 [a] How is lump sum tax different from per unit commodity tax? Compare between a lump sum tax and a commodity tax on a good when the two tax instruments raise the same level of revenue.
Explain your answer in terms of income effect substitution effect and the deadweight loss. Use diagram to support your answer. (8)

[b] Explain with diagram how the provision of a public good takes place. What is the unique feature of such provision vis-à-vis the provision of a private good? (7)

Q.6 [a] Compare the tax schedule and the average and matginal tax rates of a proportional and a progressive flat rate income tax. Support your answer with a diagram. (8) [b] There are large number of commuters who decide to use either their car or a bus. Assuming that commuting by bus is increasing with the proportion of commuters using car (traffic congestion). Let the commuting time by bus be B(x) = 40 + 20x and the commuting time by car be C(x) = 20 + 60x, where x is the proportion of commuters taking their car, $0 \le x \le 1$.

 (i) What is the proportion of commuters who will take their car if everyone is taking their decision independently so as to minimize her own commuting time?

x(ii) What is the proportion of car users that minimize the total commuting time? (7)

Q.7 [a] Explain with the help of an economic model how existence of bureaucracy can lead to excessive public expenditure? (8)
[b] Explain the tax compliance game with reference to audit and tax evasion. (7)

Total No. of Pages <u>2</u> -87-
3 RD SEMESTER
END SEMESTER EXAMINATION = February-2020
PAPER CODE-AE009
Soft skills and personality development
Time: 3:00 Hours Max. Marks : 75
Note : Answer all question by Selecting any two parts from each
questions.
All questions carry equal marks.
Assume suitable missing data, if any.
Q.1[a]Soft skills are mutual respect skills. Explain the role of empathy in
Q.1[a]Soft skins are indical respect skins. Explain the lote of employ making leadership effective?
[b] Discuss the essentials of a good report and how to avoid making
it too lengthy?
[c] Everything begins with goal setting- comment?
[c] Everything begins with goal beining standard
Q.2 [a] Why is it important to answer the question-Who is a self aware
person. What are the assumptions of a self aware person?
[b] What is the difference between mentoring and coaching?
[c] Communication is an art or skill- comment highlighting the role
of effective listening?
of effective listening.
Q.3 [a] Self Confidence can be developed. Comment?
[b] Explain the stages of a Career plan?
[c] What is the impact of Non Verbal Communication in an
interview and group discussion?
mint Alow and Broad and
2018년 1월 2018년 1월 2018년 1월 1919년 1월 19 1919년 1월 2019년 1월 1919년 1월 191 1919년 1월 2019년 1월 1919년 1월 191
2월 일 방법 2월

Q.4 [a] What is the importance of ethical communication?

[b] Explain the KISS rule and 'its relevance in written communication?

80-

[c] Discuss the components of speech?

Q.5 [a] Explain the term self esteem highlighting the facets of low and high self esteem?

[b]Discuss semantic and language barriers in communication? [c]Explain the do' and dont's of Resume writing?