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ABSTRACT 

Groundwater is an integral part of water resources. It has a vital role in 

water use in Kabul, Afghanistan. It is the only available source of water supply in the 

city. Since groundwater is the only accessible source for water supply purposes, 

studying the quantity and quality of underground water is of particular importance. 

The present study aimed to evaluate groundwater quality and its recharge potential in 

Kabul, Afghanistan. This study comprehensively analysed 35 groundwater samples 

and determined their hydrogeochemical characteristics, quality, water types, and 

suitability for drinking purposes. Various parameters were measured using different 

instruments and methods, including total dissolved solids (TDS), pH, electrical 

conductivity (EC), hardness, chloride, bicarbonate, sodium, calcium, magnesium, 

potassium, fluoride, sulphate, and nitrate. The distribution pattern of these parameters 

and the Water Quality Index (WQI) was spatially modelled using the ArcGIS tool. The 

results indicate that the main anions and cations follow an ascending order of Iron < 

Nitrate < Sulphate < Chloride < Bicarbonate and Potassium < Calcium < Sodium < 

Magnesium, respectively. Bicarbonate, chloride, nitrate, magnesium, sodium, calcium, 

and potassium exceeded the World Health Organization (WHO) permissible limits in 

drinking water samples. The Piper diagram analysis shows that the major water type 

is Mg-HCO3 (about 83%). The rest is Na (11.4%), Ca-Na-HCO3 (5.7%), and Ca-Mg-

Cl (5.7%). According to Gibbs' plot results, all water samples are of rock dominance 

and precipitation dominanceAccording to the WQI, approximately 88.57% of the 

study area has excellent to good water quality, while 11.43% has poor to very poor 

water quality. 

The Artificial Neural Network (ANN) model was developed in MATLAB 

to predict groundwater quality. The results of the ANN model for simulating sodium 

concentration in groundwater based on input data (EC, TDS, Salinity) have an average 

variance of 11.53%. The average variance for chloride and sulfate is 3.83% and -

3.41%, respectively. However, the average variance for potassium and total hardness 

is 259.6% and 45.25%, respectively. These different mean percentages of variances 

show the models' accuracy and suitability. Based on these percentages, one can 

conclude that the model is very suitable for simulating the concentrations of sodium, 

chloride, and sulfate in groundwater with the suggested inputs (EC, TDS, and Salinity). 

Therefore, the model is unsuitable for predicting potassium and total hardness in 

groundwater with the same inputs.   

Data on groundwater quality from 54 monitoring wells were collected by 

the National Water Affairs Regulation Authority of Afghanistan, including data from 

both dry and wet seasons. The analysis focused on specific water quality measures 

such as EC, TDS, hardness, nitrate, chloride, fluoride, sulfate, sodium, and some heavy 

metals such as iron and manganese. Spatial distribution maps and temporal variations 

were created to examine trends in groundwater quality and seasonal fluctuations. 

Statistical analysis revealed significant seasonal changes in magnesium, sodium, 

chloride, fluoride, iron, and manganese concentrations. Out of the 20 water quality 

assessments conducted, 14 during the dry season and 15 during the wet season showed 

concentrations exceeding the WHO recommendations. The variations in water quality 

metrics were influenced by factors such as recharge volume, hydraulic conductivity, 
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and the geological formation of the region. Notably, the levels of qualitative 

parameters were higher during the wet season, particularly in wells located near river 

routes or in agricultural areas. 

The study also analyzed groundwater level trends and assessed drought 

dynamics in Kabul city. Cluster analysis was used to classify observation wells based 

on long-term trends in groundwater level data. The Mann-Kendall statistical test was 

employed to determine seasonal and annual variations in groundwater depth. The 

Standardized Groundwater Level Index (SGI) was used to measure groundwater 

drought. The trend analysis revealed that water levels in 82% of the observation wells 

were significantly decreasing. From 2014 to 2020, the study area experienced 

increasingly severe and persistent drought, according to the SGI results. The analysis 

of land use and land cover (LULC) indicated that the built-up area in the study area 

increased from approximately 15% in 2005 to 32% in 2020, while bare land decreased 

from about 67% in 2005 to 52% in 2020. The significant decline in groundwater level 

can be attributed to changes in LULC, excessive groundwater exploitation, and 

declining annual precipitation. 

The study employed an integrated application of the analytical hierarchy 

process (AHP) and ArcGIS to identify potential groundwater zones in the study area. 

Ten different thematic variables were analyzed in the Arc GIS environment with 

various numerical weightage values in the basin. These variables included geology, 

geomorphology, land-use land cover, lineament density, drainage density, soil, slope, 

rainfall, elevation, and water depth. Static groundwater level records have been utilized 

to acquire precision and reliability for discovering groundwater potential zones. 

According to the final output of the results, most parts of the study area are covered by 

a reasonable and very good capacity of groundwater potential zones. Based on the 

results, four categories of the GWPZs were eventually recognized. According to the 

statistics, the area is divided into zones with very poor potential (16%), poor (18%), 

good (35%), and very good (31%).  

Cities in arid and semi-arid regions face challenges in managing urban 

floods and water shortages. Kabul City in Afghanistan is particularly vulnerable to 

groundwater decline and urban floods. This study explores using rainwater harvesting 

(RWH) to manage floods and recharge groundwater in Kabul City. The research 

analyses rainfall patterns, including variability, rainy days, seasonality, probability, 

and maximum daily precipitation. The findings show rainfall greater than 30mm 

occurs approximately every 3-4 years. Rainfall in Kabul is seasonal, with a coefficient 

of variation of 127% in October and 46% in February. The study also investigates the 

potential of RWH in Kabul City for stormwater management and groundwater 

recharge. Based on LULC, implementing an RWH and recharge system could increase 

mean annual infiltration from 4.86 million cubic meters (MCM) to 11.33 MCM. A 

weighted curve number (CN) of 90.5% indicates the dominance of impervious 

surfaces. The study identifies a rainfall threshold of 5.3 mm for runoff generation. Two 

approaches to rainwater collection for groundwater recharge were explored: RWH for 

a residential house (yielding about 88m3/year) and RWH for a street sidewalk 

(collecting water from streets and sidewalks). These findings highlight the potential of 

RWH for effective management of urban floods and artificial groundwater recharge. 
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GIS software utilized remote sensing, geographic information, and a multi-

influencing factor method to determine areas suitable for groundwater recharge 

structures. Geology, geomorphology, lineament density, drainage density, rainfall, soil 

type, LULC, and slope were considered. The results indicate that geology, 

geomorphology, lineament density, and slope are the main factors influencing 

groundwater recharge in the region. The projected recharge potential zones were 

categorized into four groups: very good, good, moderate, and least recharge potential 

areas. The very good and good recharge zones cover more than half of the basin, 

making them suitable for various groundwater-recharging techniques. Based on the 

diverse geo-environmental factors in the study area, several artificial groundwater 

recharge methods, including check dams, contour trenches, recharge wells, and 

rooftop rainwater harvesting with recharge wells, were recommended.  

The findings of this study will contribute to the sustainable development 

of groundwater management strategies in the region. The following recommendations 

are suggested for future research: As cancer rates in the country continue to grow, 

assess water quality across the country, particularly arsenic and heavy metal levels, 

and their potential association with increased cancer rates. Using isotopic analysis to 

determine the age of groundwater in use. Examining and proposing suitable recharge 

methods such as contour trenches, check dams and recharge wells from a structural 

point of view. Modelling the quality and quantity of groundwater in current conditions 

and with artificial recharge applications. Finally, consider wastewater recycling as a 

viable option for groundwater recharge. 
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CHAPTER 1  

INTRODUCTION 

1.1 General 

Water is one of the vital resources on Earth, and all living things depend 

on water. It is a chemical substance available in three states: liquid, solid, and gas. 

These three water states are immensely beneficial to humans using them as per their  

convenience in amenities proportionally. It is a vital renewable resource on the earth, 

and can be replenished by the hydrologic cycle's annual rainfall. Water is also known 

as the universal solvent.  It is also a substratethe for most chemical, biochemical, and 

biological reactions. It is also known as the "elixir of life." 

Human activities such as industrialization, urban development, population 

growth, agricultural activities, and deforestation have caused severe damage to the 

natural hydrological cycle. This profound impact causes ecological imbalances, 

causing climate change resulting unnatural rainfall, global warming, drought and 

floods. This has left the current world facing the challenges of water resource scarcity 

on the one hand and rising water demand on the other. Water resource pollution is also 

growing as a result of development and modernization. As a result, a danger to the 

quantity and quality of this vital resource is rapidly arising. 

1.2 The importance of groundwater 

Groundwater is a safe and reliable source of freshwater for the world. 

Groundwater provides around a quarter of the world's water demands (Hao et al., 

2018). According to a 2004 UNESCO estimate, groundwater serves 70 percent of the 

world's population, with 51 percent of countries obtaining more than 100 cubic meters 

per capita per year (Mengistu et al., 2019). Because groundwater is less susceptible to 

pollution and physicochemical and biological abnormalities, it may be used directly in 

most areas without treatment. Groundwater is readily available in every location, 

particularly in regions with scarce surface water resources. It is the only water source 

for any consumption in arid and semiarid areas. In most places, short-term droughts 

also have little effect on it. Therefore, due to its unique characteristics, groundwater is 

a superior source of water supply. Because groundwater is an important and essential 

natural resource, it must be fundamentally protected and maintained to survive and 

meet future sustainable development goals. 
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1.3 The quality of groundwater 

Water quality, in general, refers to the properties of provided water whose 

acceptability is established for specific uses, i.e., how well the quality fits the user's 

demands. A simple judgment of desirability may involve an individual choice, such as 

taste. Consumers may desire one source over the other if two drinking water of 

equivalent quality is available; the better-tasting water becomes the favoured supply 

(S, 2010). 

Water quality is a fundamental and vital factor for humans because it is 

directly related to human health. A variety of natural and artificial influences influence 

the quality of groundwater. Groundwater pollution may happen during the various 

processes of the hydrological cycle. These processes include evaporation, 

transpiration, plant absorption oxidation and reduction, cation exchange, dissociation 

of minerals, secondary mineral precipitation, mixing of fluids, fertilizers, manure, and 

pollution (S, 2010). 

Some minerals, such as calcium, sodium, iron, and others, may be helpful 

to human health when present in modest concentrations in groundwater because the 

human body requires a specific quantity of these nutrients. However, if these and other 

materials are dissolved excessively, the water may become unsafe to drink. Toxic or 

harmful chemicals such as arsenic, cadmium, and other metals may be present in the 

water, and even in tiny amounts, these substances in the water are harmful to human 

health.  

When measuring the quality of water for industrial and agricultural 

purposes, it is also taken into account. In particular applications, other considerations 

are taken into account. Specific applications have varied quality requirements, and one 

water source is regarded as superior to another if it gives better outcomes and creates 

fewer difficulties. The nature of the relevant industry and the criteria for the quality of 

water utilized determine the quality of water used for industrial purposes. The water 

quality must meet the requirements or standards established for the intended 

application. 

1.4 Research importance 

Groundwater is the only available source of water for Kabul city at the 

moment. It has declined significantly due to population growth and overuse, but its 

statistical significance and magnitude have not been analyzed yet. On the other hand, 

its quality is also deteriorating. However, previous studies in this area have not 

addressed whether seasonal changes also cause changes in groundwater quality. 

Another critical issue we do not yet know is the qualitative groundwater modeling in 

Kabul. This can help better manage and create sensitive and protected areas. 

The literature review illustrates that the tentative project runs on a 

groundwater recharge named the Kabul Managed Aquifer Recharge Program 

(KMARP). Potential sites for artificial recharge systems that have been identified are 

still unclear. Researching and identifying such potential sites will lead to more success 
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in the artificial recharge of groundwater. On the other hand, the potential of harvested 

rainwater on the urban scale is unclear yet. As the reviewed literature illustrates, the 

groundwater has declined severely in the city for several reasons. Therefore, 

identifying the potential of harvesting rainwater for groundwater recharge is crucial in 

sustainable groundwater management in the study area.  

1.5 Objectives of this research 

Because groundwater in Kabul is the only source of drinking water, the 

overall goal of this study is to assess and evaluate the quality of groundwater and its 

recharge potential in Kabul. 

The specific objectives are: 

1. To study the status of groundwater quality in Kabul City, Afghanistan. 

2. To analyse the seasonal variation in groundwater quality in the study area. 

3. Modelling of groundwater quality using Water Quality Index and ArcGIS.  

4. Trend analysis of groundwater table and its fluctuation in Kabul city.  

5. Assessment of water harvesting (recharge) potential in the study area. 

1.6 Scope of the present study 

Groundwater quality in the research region will be evaluated seasonally as 

part of the current investigation. It gives the groundwater quality parameters as spatial 

models in the study area. The present study provides details on groundwater 

degradation in the research region. The current work offers a design approach for 

enhancing groundwater resources using artificial recharge. Additionally, it gives 

information on the research region's recharging potential zones and procedures. 

Furthermore, it provides more knowledge on the water that could be available for 

artificial groundwater recharge. The authorities can estimate the concentration of main 

cations and anions in the groundwater at any given site. 

1.7 Organization of thesis 

This thesis has been arranged in five chapters. A brief description of each 

chapter is given below.  

Chapter 1 provides information on the importance of groundwater and its 

quality. The significance of this research work and objectives of the current study. The 

scope of the present work is also discussed in this chapter.  

Chapter 2 gives clear and detailed information on the review of the 

literature. It includes a comprehensive literature review on groundwater quality and 

quantity in Kabul, Afghanistan. It provides sufficient evidence on the spatial 
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distribution of groundwater in the study area. Consumption of groundwater in Kabul 

and alternative sources, including remote sources and artificial groundwater recharge, 

have been discussed. Moreover, the literature on water quality index, groundwater 

drought index, application of RS and GIS in groundwater studies, AHP and MIF 

approaches, water harvesting, and ANN have been reviewed.  

Chapter 3 covers the materials and methodologies used in this 

contribution. It explains the characteristics of the study area, sample collection and 

analysis methods, and water quality analysis approaches, including WQI, geographic 

information system analysis, application of ANN, and seasonal variation of 

groundwater quality. It also explains the techniques used for groundwater level 

analysis and groundwater drought. Delineation of groundwater potential zones, rainfall 

assessment, artificial groundwater recharge in urban areas, and delineation of 

groundwater recharge potential zones are also discussed.  

Chapter 4 illustrates the results and findings of the study. Significant 

findings of the study, such as the quality of groundwater, comparison of water quality 

parameters with WHO/ANSA standards, WQI, Seasonal changes in groundwater 

quality, and ANN, have been discussed in detail. Groundwater level and trend analysis, 

including clustering of the monitoring wells, have been demonstrated in this chapter. 

Identified groundwater potential zones and the respected output map have been 

illustrated. Moreover, the potential for artificial groundwater recharge in the urban area 

has been discussed. The suitable sites for groundwater recharge and their mechanisms 

are analyzed in this chapter.  

Chapter 5 furnishes the conclusion of this research work based on the 

water quality analysis and suitability of groundwater for drinking purposes, seasonal 

changes in groundwater quality, modelling of groundwater quality using ANN, decline 

in groundwater level, delineation of potential zones of groundwater, the potential of 

artificial recharge in the urban area, and delineation of recharge potential zones with 

suitable mechanisms. This chapter also includes some recommendations and scope for 

future studies. 
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CHAPTER 2  

REVIEW OF LITERATURE 

2.1 General 

Water availability is a primary constraint on achieving sustainable development, 

mainly when both quantitative limitations, linked to population growth, and qualitative 

limitations, associated with threats like overuse, inefficient water utilization, and 

inadequate management of effluents, are considered. Approximately a quarter of the 

global water requirements rely on groundwater (Hao et al., 2018). As per a 2004 

UNESCO report, roughly 70 per cent of the world's population relies on groundwater, 

with 51 per cent of nations reportedly extracting more than 100 cubic meters per capita 

annually (Mengistu et al., 2019). In numerous arid and semiarid regions, groundwater 

plays a pivotal role in meeting nearly all water requirements. Freshwater, constituting 

only 3% of the Earth's total water sources, finds approximately 30% of its availability 

in groundwater. This source is crucial for various aspects such as human health, 

ecosystems, power generation, and other water-dependent activities (Kalhor et al., 

2019). In recent decades, there has been a notable increase in the rates of declining 

water levels in aquifers, destruction of wetlands, intrusion of seawater, and overall 

degradation of water quality (Niu et al., 2014). Simultaneously, there has been a 

substantial increase in groundwater research, encompassing a diverse array of topics, 

including the assessment of groundwater quality (Kalhor et al., 2019; Sadat-Noori et 

al., 2014; Saraswat et al., 2019; Selvakumar, Ramkumar, et al., 2017; Singaraja, 2017; 

Varol & Davraz, 2015; Verma et al., 2020), hydrogeochemical evaluation 

(Chidambaram et al., 2018; Haritash et al., 2017; Karami et al., 2018; Krishna Kumar 

et al., 2015; Srinivas et al., 2017), vulnerability assessments (Abdeslam et al., 2017; 

Awawdeh et al., 2015; Naik et al., 2008; Oroji, 2019), purification of groundwater 

(Ahmad et al., 2018; Dinh et al., 2020; Khan et al., 2020; Nguyen et al., 

2020; Uhl & Tahiri, 2003) Groundwater quantity assessment and modelling, the 

relationship between groundwater, urbanization, and land use (Hall et al., 2020; Hou 

et al., 2020; G. Huang et al., 2020; Kalhor & Emaminejad, 2019; Malik et al., 2010; 

H. Zhang et al., 2019) and groundwater recharge (Abijith et al., 2020; Achu, Thomas, 

et al., 2020; Adhikari et al., 2020; Arefin, 2020; Lentswe & Molwalefhe, 2020; Patel 

et al., 2020; Prabhu & Venkateswaran, 2015; Senanayake et al., 2016; Yeh et al., 2016) 

are the most focused topics globally. 

The Kabul basin, a component of the Kabul River (Indus) basin, represents 

a geological valley encompassing Afghanistan's capital city. Geographically oriented 

from north to south, the Pghman Mountains border to the west and the Saffi Mountains 

to the east (Figure 2.1) (R. Bohannon, 2010). The basin was subdivided into six distinct 

sub-basins, namely Central Kabul, encompassing Kabul, Pagham, Upper Kabul, 

Logar, Deh Sabz, Shomali, and Panjsher (Mack et al., 2009). This study explicitly 

targets the basin's southern region, with a particular emphasis on the Central Kabul, 

Paghman, Upper Kabul, and Logar sub-basins that encompass the city of Kabul. These 

areas are deemed of special significance, as illustrated in Figure 2.1. 
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Figure 2. 1 The Kabul basin with groundwater sub-basins (Mack et al., 2010) 

The geological composition of the Kabul basin includes sand, gravel 

conglomerates, and loess loams endowed with sufficient filtration capacity. However, 

rapid population growth has led to extensive, unplanned urban expansion, creating 

impervious surfaces that hinder natural groundwater infiltration. Notably, the Kabul 
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metropolis lacks a comprehensive wastewater collection and treatment system. 

Pollution sources such as drainage pit latrines, roadside ditches, sewerage, septic tank 

leakage, the Kabul River, and irrigation channels have significantly contributed to 

environmental contamination. 

Furthermore, additional pollution sources impacting groundwater quality 

in the Kabul basin include cesspits, domestic waste, unregulated disposal of generated 

garbage, over-exploitation, the absence of a robust water supply system, and limited 

public awareness of water quality issues. Agricultural practices, such as fertilizer usage 

and landfill sites in highly permeable areas, contaminate groundwater. The relatively 

low precipitation and slow groundwater recharge and depletion result in an imbalance 

between extractions and regeneration. This implies that the cumulative exploitation of 

groundwater is unsustainable, and the diminishing groundwater reserves struggle to 

dilute the increasing groundwater contamination. 

Kabul is one of those urban centres where nearly all water requirements 

are met through groundwater extraction. With a population of approximately five 

million, the city heavily relies on groundwater to fulfil its water needs. In the current 

context, groundwater serves as the predominant accessible source of potable water and 

caters to all residential uses for the city's inhabitants. Earlier feasibility studies aimed 

at expanding the water supply infrastructure projected a population of 4,089,000 in 

2015, with corresponding water requirements estimated at around 123.4 million cubic 

meters per year (Zaryab et al., 2017). Nevertheless, the anticipated groundwater supply 

for Kabul city is approximately 44 million cubic meters per year. The city faces 

challenges as it is a community with constrained water resources and relatively 

underdeveloped water supply and sanitation infrastructure. Merely 1% of its residents 

have access to the sewerage network. 

Additionally, only 29% are connected to the public water supply system, 

with water provision primarily managed by over 70 private companies serving the 

residents. On a broader scale, the national distribution of access to safe drinking water 

is at 27%, with approximately 20% of the rural population having access to clean 

drinking water. This highlights the need for improved water infrastructure and 

accessibility in urban and rural settings (Arezoo TV, 2020; Paiman & Noori, 2019; 

Saffi & Kohistani, 2013).  

A critical literature review component involves examining existing works 

on groundwater quality, quantity, status, and trends within the Kabul basin. This 

evaluation encompasses a diverse range of reports, articles, and published materials 

sourced from various outlets. Over the past two decades, numerous national and 

international organizations and institutions, in addition to academic research, have 

actively contributed to the understanding of groundwater resources in the Kabul basin 

across different scales. 

Given the breadth of this body of work, it is essential to conduct a 

comprehensive review and succinctly present its summary. The upcoming sections of 

this chapter aim to provide detailed insights into the groundwater status, enriching 

factual and intellectual knowledge. Analyzing the historical state of groundwater is 
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crucial for anticipating future consequences. A grasp of the current scenario will 

facilitate the enhancement of future research topics and aid in avoiding redundant and 

repetitive observations. Furthermore, summarizing the findings of prior studies is 

integral to fostering improved groundwater management strategies and exploring 

alternative water resources. 

2.2 Groundwater conditions in Kabul, Afghanistan  

2.1.1 Methodology 

The review process employed data from diverse sources, with Google 

Scholar as the primary tool to explore the various available data types. Additionally, 

Scopus, the United States Geological Survey (USGS) library, Springer Link, and 

Science Direct were consulted to identify relevant and similar works. Printed reports 

and valuable information from various sources were also included in the review. Initial 

searches were conducted using general terms in online databases to compile a 

comprehensive list of research data. The process commenced with a basic search of 

groundwater in Afghanistan. Subsequently, strategies were devised to refine and 

optimize search phrases, drawing insights from the initial Google Scholar data. This 

iterative approach allowed for identifying more specific and pertinent information 

related to the groundwater scenario in the Kabul basin. 

The current review employed carefully selected search terms to gather 

relevant information. These terms include Groundwater, Afghanistan, Kabul basin, 

Kabul city, groundwater quality, groundwater quantity, hydrogeology, condition, 

status, review on groundwater, aquifer, recharge, assessment, analysis, and study. To 

ensure the retrieval of the most precise and pertinent documents, these phrases were 

combined using the directives "AND" and "IN." Most search phrases were formulated 

by the outcomes of an initial search conducted on platforms such as Google Scholar 

and other databases. The Snowball approach was also utilized to identify additional 

papers and reports beyond the initial database search. Each chosen keyword is integral 

to the review's intent, contributing to the overall suitability and significance of the 

review article. 
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Figure 2. 2 The methodological flowchart of the review of literature for groundwater 

condition in Kabul, Afghanistan 

In this study, paramount importance is given to the validity and reliability 

of all information. Several measures were employed to assess the resources' 

credibility: a) Data's Timeliness: The data currency was scrutinized to ensure its 

relevance to the current context. b) Relevance to Study Objectives: The alignment of 



10 

 

10 
 

the source with the study's objectives was assessed to confirm its appropriateness. c) 

Author's Qualifications: The qualifications and expertise of the author were considered 

to ascertain the source's reliability. The majority of the cited references in this study 

are from the last two decades, reflecting a focus on recent and relevant information. 

Emphasis was placed on publications where correct analysis protocols were indicated, 

ensuring the robustness of the observations. Specifically, for the qualitative status of 

groundwater, attention was directed toward samples with qualitative evaluations, 

highlighting and addressing qualitative issues pertinent to the area under investigation. 

This meticulous approach ensures the credibility and accuracy of the information 

included in the study. 

Conversely, the collected data underwent thorough scrutiny for 

quantitative aspects and groundwater tables to identify research specifically addressing 

groundwater levels. Subsequently, the gathered information was meticulously 

summarized and synthesized in the assessment of both qualitative and quantitative 

data. This synthesis aimed to validate the groundwater status in the Kabul basin, 

Afghanistan. The methodological flowchart illustrating the steps followed in this 

comprehensive review of groundwater status in Kabul is presented in Figure 2.2, 

offering a visual representation of the review procedure. 

2.1.2 Groundwater distribution  

 In the Kabul basin, the predominant flow of groundwater originates from 

saturated alluvium and other ground-fill deposits. Across most of the basin, the water 

table surface mirrors the topography, leading to a general groundwater flow in the 

direction of surface-water discharge (Broshears et al., 2005) The study area illustration 

reveals the presence of four major interconnected Quaternary aquifers, as depicted in 

Figure 2.3. The lower Kabul, encompassing the sub-basins of Kabul-Logar, consists 

of two aquifers situated along the course of the Logar River and the lower section of 

the Kabul River. Similarly, the Upper Kabul, which includes the sub-basins of 

Darulaman-Paghman, comprises two aquifers situated along the Paghman River and 

the Kabul River (Pell Frischmann, 2012; Uhl & Tahiri, 2003; Zaryab et al., 2017). The 

Logar aquifer, aptly named after its location beneath and along the sides of the Logar 

River, extends approximately 10 km in length and boasts a width of about 3 km. It 

exhibits an average thickness ranging from thirty to forty meters, with a maximum 

depth of seventy meters. Pump test results indicate that the hydraulic conductivity of 

this aquifer is generally high, albeit subject to some heterogeneity, ranging from 12 to 

112 m/day. 

On the other hand, the Kabul aquifer is situated in a coarse-grained deposit 

adjacent to the Kabul River, spanning a length of approximately 9 km and a width of 

around 2.5 km. The aquifer's thickness varies between 40 and 80 meters, and its 

permeability ranges from 4.32 to 64.8 m/day. The gravel bed alongside the Paghman 

River, which is around 10 km long and 4 km wide, has an average thickness of 45 

meters, with local thicknesses reaching 70 meters. Comprised predominantly of sand 

and gravel, this aquifer is recognized as the primary aquifer within the basin. 

Sandstones and aggregates are present in limited quantities at specific locations. The 

conductivity of this aquifer ranges from 1.73 to 25.92 m/day, indicating its high 
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permeability, which remains relatively uniform throughout the aquifer (Houben, 

Tünnermeier, et al., 2009).   

As noted by the Bundesanstalt für Geowissenschaften und Rohstoffe 

(BGR), groundwater recharge occurs during the snowmelt process through direct 

infiltration from waterways and subsurface penetration at the basin's edges (Niard, 

2005). Kabul's conventional continental climate, characterized by low precipitation 

and high evaporation levels, hinders groundwater replenishment primarily from 

rainfall. According to observations by the USGS and the Afghan Geological Survey 

spanning from 2004 to 2013, water levels beneath the land surface range from less 

than 1.5 to 73.34 meters, while static water levels varied from 1.5 to 40 meters. 

Seasonal fluctuations in water levels ranged from under 1 to 8 meters between 

September 2005 and May 2006 (Houben, Niard et al., 2009; JICA, 2011; Niard, 2005; 

Taher et al., 2013). 

The decline in groundwater levels in Kabul has a longstanding history 

attributed to various factors, including overexploitation, population growth, and 

diminishing recharge zones. This phenomenon has been documented in numerous 

reports over the years (Banks, 2002; DACAAR, 2011; Houben, Niard, et al., 2009; 

JICA, 2011; Pell Frischmann, 2012; Qureshi, 2002; Saffi, 2007; Taher et al., 2013; 

Tünnermeier & Houben, 2005; Uhl & Tahiri, 2003). According to (Mack et al., 2013), 

The rate of decline in the city's groundwater levels has shown an acceleration, 

particularly in recent years. The period from 2008 to 2012 witnessed a higher decline 

rate, with a mean of 1.5 meters per year, compared to the earlier period from 2004 to 

2008, where the mean decline ranged from 0 to 0.7 meters per year. Notably, the most 

recent years have recorded an excessive decrease in groundwater levels. According to 

an evaluation by Zaryab et al. (2017), significant declines in water levels have been 

observed, with reductions exceeding 10 meters in the foothills and ranging from 5 to 

6 meters in the Kabul city area. In the upper Kabul basin regions, water levels have 

decreased by more than 15 meters between 2003 and 2016. The period from 1982 to 

2003 saw a mean groundwater level decrease of 6 meters, averaging 0.28 meters per 

year. However, from 2003 to 2016, the mean reduction in groundwater levels was 15 

meters, averaging 1.15 meters per year. The average annual decrease in groundwater 

levels between 2008 and 2016 further accelerated to 1.7 meters. Notably, 

approximately 33% of supply wells are non-operational due to declining water levels. 

The principal factors contributing to the decreased groundwater levels are population 

growth, which has doubled since the 1990s, and overexploitation of groundwater 

resources. 

As indicated by (JICA, 2011), the aquifer structure of the Kabul basin 

comprises three layers: the shallow aquifer (alluvial aquifer), deep confiners (upper 

Neogene Aquifer), and deep aquifer (lower Neogene Aquifer). Water quality 

examinations conducted on samples from all test wells indicate that the water within 

the deep aquifer should be classified as "Fossil Water," distinct from the regular water 

circulation. Isotopic analysis at the deep and upper deep test wells suggests that the 

groundwater age in these layers corresponds to the glacial epoch. Chemical and 

isotopic studies of surface water and groundwater samples conducted by (Mack et al., 

2010) reveal that shallow groundwater (within 100 meters below the surface) is 
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typically 20 to 30 years old, while in deeper aquifers, groundwater is likely to be 

thousands of years old. This differentiation in age provides insights into the complex 

hydrogeological dynamics and distinct characteristics of various aquifer layers within 

the Kabul basin.  

 

Figure 2. 3 Spatial distribution of aquifer in Kabul city (Landell Mills Ltd., 2018) 

2.1.3 Groundwater quality 

The water quality examinations reveal a concerning pattern, indicating a 

continuous acceleration of groundwater contamination. This underscores the urgent 

need for comprehensive measures to address and mitigate the factors contributing to 

the deterioration of groundwater quality in the Kabul basin. Results from the National 

Groundwater Monitoring Network of wells covering roughly 80 per cent of 

Afghanistan's river basins for data management, evaluation, and mapping demonstrate 

that groundwater capacity in Afghanistan has been consistently declining, and water 

quality is progressively worried due to over-exploitation, low recharge, high 

evaporation and mismanagement (DACAAR, 2011). The water quality examinations 

highlight various groundwater quality issues, particularly in urban environments. 

Kabul's primary qualitative groundwater concerns include nitrate, salinity, boron, 
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hardness, and coliform microorganisms. Addressing and managing these issues are 

crucial for ensuring safe and sustainable groundwater resources in the city. Bacterial 

examinations indicate excessive and increasing degrees of fecal (coliform) bacteria in 

around 58-70% of the groundwater in Kabul's urban vicinity (Saffi, 2011). Given that 

the primary sources of drinking water in Kabul are shallow groundwater, pollution-

related diseases pose a significant threat to the population. Contaminated water sources 

can lead to the spread of waterborne diseases, emphasizing the critical importance of 

addressing and mitigating pollution to safeguard public health in the region. The 

observed intensity exceeds recommendations for drinking water by the World Health 

Organization (WHO) and National Drinking Water Quality Standard (NDWQS) 

(ANSA, 2013)1. 

For nitrates, the evaluations show that one-third of the groundwater has a 

concentration of more than or equal to 45 mg/L, while the WHO has limited the 

concentration of nitrates for drinking water to 50 mg/L. An analysis from Danish 

Committee for Aid to Afghan Refugees (DACAAR, 2019) for the entire province of 

Kabul indicates that the central part of the province, which mostly covers the city has 

nitrate contamination greater than WHO requirements (Brati et al., 2019; WHO, 2017). 

In reports, several levels of heavy metals showed comparatively high concentrations 

than WHO and NDWQS standard values. According to Barati et al. (2019), Mn, Ni, 

Zn are the elements exceeding the WHO standard level of drinking water. The 

elements of Cu, Fe, Me, NO2, PO4, COD, and TN are under the range of standard.  

Table 2. 1 Contaminant concentration in Kabul, Afghanistan. Source: (Hayat & 

Baba, 2017) 

Contaminant Statistics # Of sample Acceptable Limits 

Minimum Maximum Mean SD CoV  WHO NDWQS 

Arsenic  No detectable 0.690 0.003 0.044 14.136 241 0.01 0.05 

Fluoride  No detectable 5.200 0.663 0.578 0.871 276 1.5 1.5 

Boron  No detectable 4.000 0.784 0.660 0.882 276 2.4 2.4 

Sulfate  18.0 1360.0 120.9 150.4 1.2 276 250 250 

Nitrate  0.10 96.0 24.06 24.80 1.03 276 50 50 

Fecal 

coliform  

No detectable 820 112.32 64.69 5.25 276 0 0 

E. Coli  No detectable >200    108 0 0 

Note: The measuring unit for Arsenic, Flouride, Boron, Sulfate, and Nitrate is mg/L, while for Fecal 

coliform and E. Coli is (Col/100 ml) 

According to the analysis conducted by Gesim & Okazaki, (2018)  on the 

physical and chemical characteristics, including metallic elements, the findings reveal 

a range in the Water Quality Index (WQI) from 36.21 to 716.29. The results indicate 

 
1 Afghanistan National Standards Authority (ANSA) 
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that only 0.2% of the groundwater in the studied area exhibits outstanding quality, 

19.69% is deemed appropriate, 62.21% falls under poor quality, 13.65% is categorized 

as very poor quality, and 4.25% is considered unsuitable for drinking. Elevated 

concentrations of chemical elements such as Arsenic, Fluoride, Boron, Sulfate, Nitrate, 

and bacteriological contaminants like Fecal coliform and E. coli exceed the limits set 

by the World Health Organization (WHO) and the National Drinking Water Quality 

Standards (NDWQS) in Kabul and the Kabul Basin (Hayat & Baba, 2017). A summary 

of the statistical data is presented in Table 1.  

An assessment conducted by (Frahmand, 2011) underscores that the 

groundwater in Kabul City and its surrounding areas is characterized by poor quality. 

Elevated concentrations of chemical elements, including lead and arsenic, align with 

the presence of Coliform and E. coli bacteria. Physical parameters such as specific 

conductivity, alkalinity, and bicarbonates also exhibit higher values near the city. As 

one moves away from the city center, the concentration levels of essential constituents 

decrease, suggesting a decay phenomenon. Thus, a notable correlation exists between 

the concentration of significant constituents in groundwater and the population density 

in the city region. 

In-depth investigations conducted by the United States Geological Survey 

(USGS) suggest that the essential ion chemistry of groundwater primarily falls into the 

bicarbonate of calcium-magnesium type. The concentrations of various elements in 

assessments gathered from the central Kabul sub-basins were consistently higher than 

those from other sub-basins. The collected samples frequently exhibited indications of 

anthropogenic contaminants. 

The conditions in the aquifers appeared to be Oxic with varying oxygen 

levels. Among the chemical elements, the highest nitrate concentration, at 40.2 mg/lit, 

was reported in central Kabul. Reports indicate that lead and uranium exceeded WHO 

guidelines in three percent of the samples, while arsenic and selenium surpassed 

guidelines in one percent of the tested samples. Electrical conductivity was also 

reported at elevated levels. Coliform organisms were present in almost all groundwater 

samples, with concentrations exceeding 100 colonies per 100 mL identified in six sub-

basins. E. coli was identified in 97 percent of groundwater quality assessments, but its 

concentration was scattered randomly throughout the basin. 

Based on the specific CFC proportions analyzed, the average age of the 

young groundwater component in the study region is approximately 21 years. The 

majority of tested water is reported to be classified as young water. The average ages 

for groundwater in the sub-basin varied slightly depending on the CFC assessment 

method used. Still, they were around twenty years in the upper Kabul and Paghman 

sub-basin, 28 years in the central Kabul and Deh Sabz sub-basin, and 15-19 years in 

the Shomali sub-basin. CFC records suggest that the age of groundwater increases with 

depth. Recharge rates for the entire basin have been estimated to be between 0.4 to 0.8 

m/yr for 30 percent expected porosity and 0.35 to 0.7 m/yr for 25 percent expected 

porosity based on the interpretation of CFC ages and the depth at which samples were 

collected (Mack et al., 2009). 



15 

 

15 
 

The water assessment conducted by BGR in 2004 encompassed various 

water quality parameters. Among physical characteristics, electrical conductivity 

exceeded WHO limits, and most tested samples were classified as "hard" and "very 

hard" water. Elevated concentrations of magnesium, sodium, and chloride were also 

noted. From the standpoint of Redox potential, the samples fell within the weakly 

oxidizing zone. However, this report highlighted nitrate and sulfate contaminations 

exceeding WHO limits. Notably, only a few samples from the Kabul basin were below 

the limit of 0.5 mg/l for boron or two mg/l for BO2. 

Bacteriological examinations revealed that most investigated wells had a 

significant bacterial content. A considerable number of all explored wells exhibited 

significant coliform bacteria contamination, surpassing the WHO limits of 0 CFU/100 

ml (Houben, Niard, et al., 2009; Houben & Tünnermeier, 2005). 

Nevertheless, an investigation conducted by DACAAR on drinking water 

wells selected by UNHCR in various parts of the country, regularly used by returnees, 

also indicates that the following parameters exceed WHO limits: physical parameters, 

including EC, Hardness, and Turbidity. Chemical variables such as Sulfate, Fluoride, 

Boron, Sodium, Arsenic, Chromium, and Fecal Coliform as bacteriological pollutants 

were reported to be higher than the WHO-recommended limits (Saffi & Jawid, 2013). 

A quality assessment of a shallow aquifer, as presented in the "Piper 

Diagram" by (JICA, 2011), reveals that the water characteristics in most parts of the 

study area fall within the zone of type-II, known as "Bicarbonate Calcium type." 

However, approximately 30% were categorized in Type-I, labeled as "Non-

Bicarbonate Calcium type," or between types II and I. The former represents the 

typical water quality of a common shallow aquifer fed by rainwater. On the other hand, 

the latter represents a somewhat unique water quality known as "Fossil Water" outside 

the natural hydraulic cycle. This suggests that many observation wells have reached 

the deep aquifer or contain a combination of groundwater from shallow and deep 

aquifers. Wells labeled as type II generally include freshwater, whereas those 

categorized as type I or intermediate between II and I are relatively saline water. 

In summary, the analysis of existing literature on groundwater quality in 

Kabul highlights several critical qualitative issues. Kabul's key groundwater quality 

parameters include elevated levels of nitrate, boron, hardness, coliform 

microorganisms such as fecal coliform and E. coli, sulfate, fluoride, and heavy metals 

such as Mn, Ni, and Zn. Additionally, arsenic, selenium, uranium, and lead are 

reported, indicating excessive and increasing concentrations in the urban area of 

Kabul. These parameters consistently exceed the limits of the WHO and the NDWQS.  

2.1.4 The consumption of groundwater resources in Kabul 

The comprehensive water balance assessment for the shallow aquifer 

conducted by JICA in 2011 reveals that the primary sources of groundwater recharge 

are the surface system, accounting for 85.2%, followed by the subsurface influx at 

14.7%. The calculated volume of groundwater extraction is approximately 25 million 

m3/yr, constituting about 79.8%, with about 10.2% of groundwater lost as outflow. 
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The total storage quantity of groundwater is estimated to be 7869 million cubic meters 

(Figure 2.4). The overall water balance for groundwater resulted in a deficit of 2.7 

million m3/yr. This deficit in the groundwater system was supplied from groundwater 

storage, leading to an overall drawdown of the groundwater level. 

 

Figure 2. 4 Total water balance of Kabul basin (recent ten years average) source: 

(JICA, 2011). 

The water consumption in Kabul is closely tied to the population and per 

capita water demand. Previous studies indicate that the population of Kabul city was 

320,000 in 1962, 590,000 in 1972, and 1.8 million in 2001. The exact current 

population is unclear, but estimates from sources such as the Central Intelligence 

Agency (CIA) and the National Statistics and Information Authority (NSIA) suggest 

that Kabul city's population is around 4.3 million people as of 2020 (CIA, 2020; NSIA, 

2020). Notably, the city relies solely on groundwater sources for its water supply. 

Water is sourced through four major suppliers: approximately 52% of 

households use their own wells, around 38% are supplied by commercial water 

companies, public water supply covers 13% of the population, and public wells serve 

3% of the populace (Brati et al., 2019; Houben, Niard, et al., 2009; Zaryab et al., 2017). 

Additionally, 6% of households use public and private water supply companies. 

Unfortunately, precise data on groundwater extraction are not readily available, and 

uncertainties also exist regarding the exact population and per capita water 

consumption. Figure 2.5 illustrates the estimated annual water demand based on 

population growth and assumed per capita water rates. 
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The anticipated groundwater availability in Kabul is approximately 44 × 

106 m3/year, according to the Kreditanstalt für Wiederaufbau (KfW) study. The Logar 

aquifer is reported to have the potential of about 24.64 million cubic meters annually, 

followed by the Allaudin and upper Kabul aquifers, with a combined capability of 

approximately 12.48 million cubic meters yearly. The Afshar and lower Kabul aquifers 

each have an estimated potential of about 3.65 million cubic meters per year. Another 

study by (Houben, Niard, et al., 2009) suggests that the entire groundwater recharge 

volume during the wet period through all mechanisms might range between 15 × 106 

to 40 x 106 m3/yr. In the maximum scenario, this study estimates the entire storage 

volume of groundwater to be about 2405 × 106 m3 with a depth of 50 m and effective 

porosity of 0.13. 

 

Figure 2. 5 Estimating water requirement as a component of water utilization and 

populace reproduced from (Houben, Niard, et al., 2009)  

2.1.5 Alternatives to drinking water in Kabul 

2.1.5.1 Artificial groundwater recharge  

To address water scarcity and counteract excessive groundwater 

abstraction, there is an urgent need for artificial recharge of the Kabul Basin 

groundwater and the implementation of rainwater harvesting as a viable water source 

for Kabul City (Masoom, 2018; K. M. A. Noori & Nasimi, 2019). A pilot project on 

groundwater recharge, known as the Kabul Managed Aquifer Recharge Project 

(KMARP), is currently being implemented at up to four specific sites. This ongoing 

experimental project aims to assess the feasibility of managing groundwater recharge, 

offering a potential solution to water scarcity in Kabul. 
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KMARP involves hydrogeological studies, groundwater recharge 

experiments, and comparisons with other alternatives. If the experiments prove 

successful, the outcomes could pave the way for a comprehensive project to elevate 

Kabul's groundwater levels and enhance water resources (KMARP, 2017). Financial 

support for the project comes from the Asian Development Bank (ADB) and the 

government of Afghanistan. The project commenced on February 10, 2017, and is 

expected to conclude on April 30, 2020. 

2.1.5.2 Remote sources 

Fortunately for Kabul city, there are several potentially proximate surface 

water resources (Figure 2.6). Feasibility studies for most dams above these water 

resources have already been conducted. However, the construction of each of these 

reservoirs requires substantial financial support from the government. The feasibility 

study for the Shatoot dam was completed in 2010, estimating an average available 

water amount of 87.2 × 106 m3/yr upon constructing this reservoir. Another reservoir 

in the planning stages is the Gulbahar dam, which is intended to be built on the 

Panjsher River in the northern part of Kabul city. Completing this multipurpose dam 

is anticipated to solve the ongoing water shortage in the Kabul region. The required 

feasibility study, conducted by JICA, was completed in December 2012. The Gulbahar 

dam is designed as an arch-type concrete dam, with a proposed height of 140 m and a 

storage capacity of 240 × 10^6 m3. 

Furthermore, a feasibility study for the Salang dam was conducted by 

JICA and concluded in December 2012. This dam is categorized as a rockfill dam 

based on its construction material. The proposed height is 110 m, with a capacity limit 

of 40 × 106 m3. The Salang Dam is envisioned to provide water for household and 

industrial purposes in the new city, ensuring water availability for ecological and 

agricultural utilization. 
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Figure 2. 6 Location of potential water resources reproduces from (Zaryab et al., 

2017) 

2.1.6 Conclusion 

The exclusive source of domestic water supply in Kabul city is 

groundwater. This study aims to critically review the existing literature on 

groundwater quality, quantity, status, and trends in the Kabul basin. The findings 

indicate an average annual decrease in groundwater levels of 1.7 meters between 2008 

and 2016. Primary factors contributing to this decline include overexploitation, 

population growth, urban development, land cover changes, and diminishing recharge 
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zones. The annual groundwater extraction volume is estimated at approximately 25 

million m3. In the most optimistic scenario, studies suggest that the entire storage 

volume of groundwater in Kabul could be around 2405 × 106 m3. The total water 

demand for Kabul is projected to range between 73-183 million cubic meters. The 

aquifer structure of the Kabul basin comprises three layers: The Alluvial Aquifer, 

Upper Neogene Aquifer, and Lower Neogene Aquifer. Water within the deep aquifer 

is characterized as "Fossil Water," isolated from the regular water circulation. 

The physicochemical and bacteriological composition of groundwater in 

Kabul exceeds the limits set by the World Health Organization (WHO) and the 

National Drinking Water Quality Standards (NDWQS). The findings reveal that only 

0.2% of groundwater within the research area is of outstanding quality, 19.69% is of 

appropriate quality, 62.21% is of poor quality, 13.65% is of very poor quality, and 

4.25% is unsuitable for drinking. Water is sourced through four leading suppliers: 

private wells (52% of households), private suppliers (38%), public water supply 

(13%), and public wells (3%). Two prominent solutions have been explored to address 

water scarcity in Kabul. The widespread adoption of artificial groundwater recharge is 

contingent upon the success of the pilot project "Managed Aquifer Recharge." 

Additionally, the utilization of surface water resources near Kabul City has been 

proposed as an alternative source of water supply.  

Note: The content of the above literature review is reproduced from the 

review paper titled “Status of groundwater resource potential and its quality at Kabul, 

Afghanistan: a review” (A. R. Noori & Singh, 2021b) With permission from Springer 

Nature.  

2.3 Water Quality Index  

The Water Quality Index (WQI) is widely acknowledged as a 

comprehensive method for evaluating water quality. (Rabeiy, 2018) utilized the WQI 

to assess groundwater quality and ensure suitability. The study examined 812 water 

samples in the central region of Upper Egypt (Sohag Governorate) to evaluate 

groundwater quality for both drinking and irrigation purposes. The study results 

indicate that 20% of groundwater samples are classified as excellent, 75% are deemed 

suitable for drinking, and 7% are categorized as very poor water quality, with only 1% 

considered unsuitable for drinking. Numerous studies have employed the WQI to 

assess the quality and suitability of various water sources (Adimalla, 2021; Aenab et 

al., 2012; Akter et al., 2016; Alum et al., 2021; Boyacioglu, 2007; Chakraborty et al., 

2021; Haritash et al., 2017; Karunanidhi et al., 2021; Liou et al., 2004; Mahmud et al., 

2020; Oukil et al., 2021; Rabeiy, 2018; Radouane et al., 2021; Ram et al., 2021; 

Ramakrishnaiah et al., 2009; River et al., 2018; Shan et al., 2021; Tunc Dede et al., 

2013; Uddin et al., 2021; Vaiphei et al., 2020; Vasanthavigar et al., 2010; Yisa & 

Jimoh, 2010; D. Zhang et al., 2018). 

2.2 Groundwater drought index  

The Standardized Groundwater Level Index (SGI) is an innovative tool for 

normalizing groundwater level time series and identifying periods of groundwater 
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shortages. Building on the Standardized Precipitation Index (SPI) concept, the SGI 

considers variations in both groundwater level and precipitation time series' structure 

and properties (Bloomfield & Marchant, 2013). (Halder et al., 2020) applied the SGI 

to analyze years of groundwater scarcity in the West Bengal region of India. In a study 

by (Pathak & Dodamani, 2019), SGI was employed to assess groundwater drought in 

the Ghataprabha River Basin, India. Over 61% of the wells in the studied area 

exhibited significant declining trends, with an average decrease of 0.21 meters. The 

study's SGI findings indicated that wells in clusters 1 and 2 frequently experienced 

droughts, which were attributed to declining rainfall and overuse of groundwater 

resources. SGI has been utilized in various studies to examine groundwater drought in 

different regions (Hsin-Fu Yeh & Chang, 2019; Jeongju et al., 2018; Sishodia et al., 

2016).  

2.3 Application of RS and Arc GIS  

Remote sensing (RS) and Geographic Information Systems (GIS) hybrid 

applications provide a potent method for identifying potential groundwater zones and 

minimizing time consumption and human resources. By incorporating various 

influential factors such as geology, lineament and drainage density, slope, 

geomorphology, precipitation, land-use land-cover, soils, elevation, and water depth, 

this approach ensures precision and reduces the likelihood of human errors. Integrating 

primary and secondary datasets is feasible in RS and GIS applications (Etikala et al., 

2019). 

Recently, several researchers have utilized RS and GIS to delineate 

groundwater potential zones employing different methodologies, including the 

Analytical Hierarchy Process (AHP) (Abijith et al., 2020; Achu, Reghunath, et al., 

2020; Luo et al., 2020; Muralitharan & Palanivel, 2015), the Influence Factor (IF) 

technique (Etikala et al., 2019; Selvam et al., 2016; Siddi Raju et al., 2019), the linear 

equation approach, and others (Al-Abadi et al., 2016; Arnous, 2016) , Probabilistic 

approach (Dadgar et al., 2017; Manap et al., 2014), geophysical technique (Abuzied 

& Alrefaee, 2017; Kolandhavel & Ramamoorthy, 2019; Mpofu et al., 2020), and 

Multi-criteria decision analysis (MCDA) (Akinlalu et al., 2017; Chowdhury et al., 

2010; JHARIYA et al., 2016).  

ArcGIS facilitates the analytical extrapolation of diverse experimental 

results to generate thematic maps and geospatial representations, reducing the 

unknowns in water characteristics. It employs a statistical approach to depict 

groundwater quality across the research area visually. Commonly used methods for 

creating spatial distribution maps include inverse distance weighting (IDW), kriging, 

and co-kriging. IDW interpolation estimates missing parameters based on proximity, 

giving greater weight to the nearest points and decreasing with increasing distance. 

Researchers like (Tiwari et al., 2018) have utilized this method to produce geographic 

distribution maps of various characteristics. Interpolation maps provide a generalized 

overview of hydrogeochemical processes and the drainage system in the studied 

region, aiding individuals and decision-makers in understanding groundwater quality. 

This information can be crucial for water management, pollution prevention, 

identifying pollution sources, and future groundwater conservation modelling. 
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2.4 AHP 

The Analytical Hierarchy Process (AHP), proposed by Thomas L. Saaty, 

is a systematic multi-criteria approach used to assess and interpret complex decisions. 

This method analyzes dynamic decision-making problems through analysis, 

comparative decisions, and priority synthesis (Achu, Thomas, et al., 2020). AHP is 

designed to handle intricate decision scenarios by breaking them down into a 

hierarchical structure, facilitating a structured evaluation of criteria and alternatives to 

arrive at informed decisions. 

In recent studies, researchers have applied the Analytical Hierarchy 

Process (AHP) integrated with Remote Sensing (RS) and Geographic Information 

Systems (GIS) to identify groundwater potential zones (Abijith et al., 2020; Achu, 

Reghunath, et al., 2020; Luo et al., 2020; Muralitharan & Palanivel, 2015). For 

example, (Muralitharan & Palanivel, 2015) presented a methodology for delineating 

groundwater potential zones using integrated RS, GIS, and AHP methods. The study 

focused on the Karur area in Tamil Nadu, Southern India, considering seven thematic 

maps: lithology, lineament density, geomorphology, slope, post-monsoon water level, 

drainage density, and land use/land cover. The attributes of these thematic layers were 

assigned weights based on their relevance to groundwater occurrence using Saaty's 

scale. After normalization using AHP, a groundwater targeting map was generated 

through a weighted linear combination approach in GIS. The resulting map classified 

the research area into five groundwater potential zones: "very good," "good," 

"moderate," "poor," and "very poor." The accuracy of the map was verified using well 

discharge data, yielding satisfactory results and highlighting advantageous 

groundwater potential zones in the study area. 

2.5 MIF 

The multi-influencing factor (MIF) method is a valuable technique for 

assessing groundwater potential zones and recharge potential zones. In a study by 

(Mandal et al., 2021), the MIF method delineated groundwater potential zones in Port 

Blair and its surrounding areas in the south Andaman District of the Andaman & 

Nicobar Islands. Various variables, including geology, geomorphology, slope, soil, 

drainage density, lineament density, rainfall, NDVI, and land use/land cover (LULC), 

were considered for defining groundwater potential zones (GWPZ). Thematic layers 

for each component were created using ground and remotely sensed data, and weights 

were assigned based on their impact on groundwater, as identified in previous research 

and literature. 

Following integrating all thematic layers, a map of Port Blair's GWPZ and 

its surroundings was generated using overlay analysis. The resulting map identified 

high, medium, and low groundwater potential zones. This approach, combining GIS 

and the MIF method with various input factors, has been applied in several studies to 

identify groundwater potential zones and optimal locations for recharging (Anbarasu 

et al., 2020; Etikala et al., 2019; Fagbohun, 2018; Magesh et al., 2013; Mandal et al., 

2021; Sidiqi & Shrestha, 2021).  
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2.6 Water harvesting  

Rainwater harvesting is a traditional method employed in arid and semi-

arid regions to address water shortages, and it has historical roots in many ancient 

civilizations for drinking and agriculture (Mahmoud et al., 2014). In modern contexts, 

rainwater harvesting serves as a sustainable adaptation strategy in urban areas to 

combat water scarcity and mitigate flooding issues (Gado & El-Agha, 2020; Krishna 

kumar et al., 2015; Ranaee et al., 2021; Zabidi et al., 2020). Urban hydrological 

challenges arise from surface runoff and river flow distribution alterations, reduced 

infiltration, groundwater recharge, and the prevalence of impermeable surfaces 

(Nachshon et al., 2016). 

Traditional rainwater harvesting involves collecting and storing rainwater 

for various purposes, such as drinking and agriculture. A recent approach gaining 

attention involves collecting rainwater to replenish underground aquifers. This 

innovative method addresses urban water challenges and contributes to sustainable 

water management (Ghazavi et al., 2018; Z. Huang et al., 2021; Hussain et al., 2019; 

Qi et al., 2019). Floods are a widespread phenomenon, with their increasing frequency 

often linked to changes in climatic factors. Urban floods can have severe 

consequences, disrupting daily life, causing damage to both public and private 

infrastructure, eroding riverbanks, contaminating water resources, and even leading to 

fatalities. Beyond substantial economic and environmental impacts, urban floods 

disrupt traffic systems, water supply, electricity supply, telephone lines, and socio-

cultural disturbances. 

In Kabul city, urban flooding is a significant challenge. A study by 

(Manawi et al., 2020) reveals that from 1964 to 2009, there have been substantial 

changes in land use and land cover patterns in Kabul. The study indicates a 15% 

reduction in green areas, a 27% decrease in bare soil, and a 51% increase in impervious 

surfaces. The primary contributors to urban floods in Kabul are unsustainable 

urbanization, a deficient drainage system, and substantial changes in land cover. 

Hence, in watershed systems, metropolitan areas, and regions facing 

uneven water resource distribution, implementing a rainwater harvesting (RWH) 

strategy can prove beneficial by reducing runoff loss and augmenting water resource 

potential. The inevitable increase in population and subsequent urban development 

leads to increased impermeability of land surfaces, resulting in urban floods even with 

minimal rainfall. Therefore, rainwater through RWH is a supplementary water source 

to address water shortages in arid and semi-arid urban areas. Recent research has 

recognized rainwater as a dependable source and RWH as an effective method for 

replenishing underground water resources (Alataway & El Alfy, 2019; Nachson et al., 

2022; Rajasekhar et al., 2020; Stiefel et al., 2009).  

2.7 Artificial Neural Networks modeling  

Artificial neurons were initially developed in 1943, and the introduction of 

the back-propagation training (BP) technique for feedforward Artificial Neural 

Networks (ANNs) marked the inception of their applications in various research fields 
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in 1986 (Palani et al., 2008). An artificial neural network is an information processing 

system designed to simulate the functionality and connections of biological neurons, 

approximating the behaviour of the human brain. In ANNs, various parameters are 

adjusted or trained to optimize their output and make it more comparable to the 

measured output on a known dataset. ANNs can represent complex, non-linear 

functions, requiring substantial historical data for training. Once trained, ANNs can 

generate output for previously unseen inputs. 

(Samson S, 2010) employed Artificial Neural Networks (ANN) to predict 

the Total Dissolved Solids (TDS) of groundwater. This study considered TDS as the 

output variable, and various input variables were processed to achieve the prediction. 

The input or independent variables included Conductivity of topsoil, Depth of topsoil, 

Geomorphologic type, Depth of each substratum layer, Conductivity of each 

substratum, Land cover, Rainfall, and Water level. The accuracy evaluation of the 

ANN model suggests that its output is suitable for estimating TDS from 

hydrogeological data at any location during both the pre-monsoon and post-monsoon 

seasons. 

(Dadhich et al., 2021) conducted a study using eight years of groundwater 

data (2012-2019) for 171 Phagi tehsil, Jaipur district villages. The research focused on 

analyzing water level and quality patterns and projecting future trends. The study 

utilized three different time series forecasting models (Simple Exponential Smoothing, 

Holt's Trend Method, ARIMA) and artificial neural network (ANN) algorithms to 

achieve accurate forecasts for groundwater level and quality characteristics. 

The results indicated that the ANN model outperformed time series 

forecasting techniques in accurately characterizing groundwater level and quality 

characteristics. While the ANN findings for 2023–2024 projected no significant rise 

in water level (>4.0 m), there had been notable changes in groundwater level, with 

over a 4.0 m rise observed in 81 villages during 2012–2013. However, the anticipated 

findings for 2024 suggested that the water level would decrease by more than 6.0 m in 

16 Phagi villages. Furthermore, the water quality index indicated that groundwater in 

74% of the villages would be unfit for human consumption in 2024. 

(Najwa Mohd Rizal et al., 2022) utilized artificial neural networks (ANN) 

to predict six distinct water quality metrics in Langat, Malaysia. The study involved 

the prediction of biochemical oxygen demand (BOD5), total suspended solids (TSS), 

dissolved solids (DS), total solids (TS), nitrate, and phosphate. The researchers 

employed 25 water quality factors and six hydrological parameters as inputs for the 

ANN models. Additionally, they developed an application (app) based on the ANN 

models they created. 

The study's findings suggest that ANNs can effectively forecast various 

water quality metrics by incorporating diverse inputs. Artificial neural networks have 

come increasingly common as a valuable tool in water quality modelling (Ghobadi et 

al., 2022; Gholami et al., 2022; Kuo et al., 2004; Sunayana et al., 2020).
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CHAPTER 3  

MATERIALS AND METHOD 

3.1 Study area 

3.1.1 General 

The research region is the Kabul Basin (JICA, 2011), which includes most 

parts of Kabul City, the centre of Afghanistan. The research area is located in the 

country's central-east region, between 34°36′30" N and 34°24′40" N latitude and 

69°01′25" E and 69°22′30" E longitude (Figure 3.1). The basin has a total size of 496 

sq. km. The climate condition of the study area is arid to semiarid. Rainfall in Kabul 

is seasonal and usually snows and rains during winter (December, January, February) 

and early spring (March, April). The study area's annual average precipitation was 

around 330 mm yearly (Source: Afghanistan Meteorological Department, data 

recorded 2008-2018). Kabul is the country's most populated city, with a population of 

more than four million (CIA, 2020; NSIA, 2020). The basin's highest and lowest 

average temperature ranges were 32ºC in July and -7˚C in January (Zaryab et al., 

2017). The most common land use typology in the research region is built-up. It is the 

country's leading national commercial base, and many refugees returned to their 

homeland after 2001, mostly settling in Kabul city. Also, many people from other 

provinces came to Kabul to find a career. Low but quite steep mountain ranges enclose 

the basin. The basin's elevation ranges from 1763m to 2823m (Figure 3.2). Generally, 

the southern and southwestern mountains have a higher elevation than the others.  

3.1.2 Drainage System 

Three waterways have entered the city of Kabul. Paghman stream spills 

out from east to west. The Maidan River (Kabul River) arrives at the study area from 

the south and flows 21 kilometres before joining the Paghman River.  

The Logar River, an enormous tributary of the Kabul River, flows south-

north and joins the Kabul River around 17 km downstream of the mouth of the 

Paghman waterways (Figure 3.2). In recent years, the Kabul and Paghman rivers have 

some discharge only in late winter due to rainfall and the spring period due to snow 

melting and rain. The river beds have seemed to be the primary medium of 

groundwater recharge in Kabul. Groundwater recharge from precipitation through 

infiltrating accounts for a small percentage for many reasons, such as low precipitation, 

high evapotranspiration, covering the recharge zones by built-up areas, and clay layers 

(Tünnermeier & Houben, 2005). 
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Figure 3. 1 Geographical location of the study area 
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Figure 3. 2 Elevation and stream map of the basin 

3.1.3 Geology  

 

The research region is a part of the flat Kabul Basin. Metamorphic rocks 

comprise most of the mountain range surrounding and underpin the study region. The 

basin's structure developed due to plate movements during the Late Paleocene. Plate 

movements shaped the Kabul Basin's structure during the early Tertiary (Late 

Paleocene). The rocks, which are part of the Kabul block, are intersected by the Herat-

Bamyan-Panjsher major fault in the west and northwest, the Sorobi fault in the east, 

and the Chaman fault system in the southeast. The common surficial geological forms 

(Figure 3.3) confirmed in the Kabul basin are conglomerate and sandstone, loess, 

metamorphic rocks, limestone, fan alluvium and colluvium, gneiss, limestone and 

dolomite, sandstone and siltstone, ultramafic intrusions and river channel alluvium. 

The Kabul Basin is filled with an aggregation of terrestrial and lacustrine deposits, 

mostly uncemented and semi-consolidated lacustrine, fluvial, and aeolian sedimentary 

rocks such as sand, gravel, and silt from the Quaternary and Neogene periods (Mack 

et al., 2009; Tünnermeier & Houben, 2005; Zaryab et al., 2017).  
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Figure 3. 3 Surficial geology of the basin 

3.1.4 Hydrogeology  

The hydrogeological condition of the Kabul basin is mainly formed of four 

interconnected Quaternary aquifers. The western region of the city, along the banks of 

the Paghman River and the upper stream of the Kabul River, has two aquifers. Along 

the Logar River path and the lower portion of the Kabul River course, two 

interconnected aquifers spanned the southeast, east, and northeast (lower Kabul sub-

basin). The Quaternary and Tertiary upper aquifers are primarily extracted to supply 

the city's water. The most commonly stated processes for groundwater recharge in 

Kabul City include recharge from riverbeds, snowmelts in the foothills, drainage 

channels, and direct recharge from precipitation surplus (Zaryab et al., 2017). 

Recharge from the water distribution network, wastewater filtration, septic 

system leaks, and toilet facilities are all possibilities. The high flow in the river is 
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usually accompanied by the melting of snow and spring rains (April and May), which 

will most likely be the same period of high groundwater recharge. 

3.2 Water sampling and water quality analysis  

3.2.1 Water sample collections and Lab works and Analysis of samples 

Thirty-five samples were acquired from different parts of Kabul city, with 

each municipality district receiving 2-3 samples to enable optimal spatial 

distribution and coverage of the whole research region. The sampling was done from 

October to December 2020. Figure 3.4 shows the sample collection in the field. Before 

sampling water from the hand pump and submersible wells, the water was pumped out 

for ten minutes. For sample collection, one-liter prewashed HDPE bottles were 

utilized. The bottles have been washed with sample water 2-3 times.  A portable digital 

multiparameter equipment (LABMAN Scientific instrument) was used to measure the 

temperature, pH, TDS, and EC on-site. The fluoride test was done using a portable 

digital multiparameter kit. 

 

  

Figure 3. 4 Sample collection and field water quality testing.  

Collected samples were moved to the water lab of Delhi Technological 

University's Department of Environmental Engineering and were promptly analyzed. 

Total hardness, chloride, and bicarbonate were evaluated utilizing the titrimetric 

technique (APHA, 2005). Sodium, calcium, magnesium, and potassium contents were 

measured using a flame photometer. Fluoride was determined using a portable digital 

multiparameter. The concentration of Sulfate and Nitrate was determined using UV-

VIS spectrophotometers (UV 3092 & LT-290). Figure 3.5  
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A. Work with spectrophotometer 

 

B. Results of Phosphate analysis  

 

C. Titration method 

 

D. Tabletop digital multiparameter 

Figure 3. 5 Water Quality Testing and Analysis in DTU Laboratory 

3.3 Water quality analysis  

3.3.1 Analysis of water  

Different laboratory methodologies and instruments have been utilized to 

determine the physicochemical parameters and characteristics of the water sample. 

Each is discussed below. 
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1- Utilizing a multimeter equipped with an electrode 

Electrical Conductivity (EC)  

The electric conductivity was calculated using a multiparameter developed 

by the LABMAN scientific instrument. The EC electrode was first calibrated with a 

standard KCl solution (1413 µS/cm) before analyzing water samples. The multimeter's 

readings were recorded and represented in µS/cm. 

Total Dissolved Solids (TDS) and Salinity 

Using a multimeter of the LABMAN scientific instrument, the total 

dissolved solids and salinity in each sample were calculated and recorded in mg/l. 

Hydrogen potential (pH) 

A digital pH meter (HANNA) was used to determine the pH of water 

samples. Buffer solutions with pH strengths of 4.0, 7.0, and 9.2 were used to calibrate 

the pH meter before analyzing all samples. 

Flouride (F) 

This test was done using a portable digital multiparameter kit. First, the 

device is calibrated with 0.1mg/l, 1mg/l, and 10mg/l fluoride concentrations. Then, the 

test was performed with one ml of cyclohexane diamine tetraacetic acid (CDTA) in a 

10 ml sample.  

2- Conventional titration method  

Chloride (Cl-) 

The Mohr titration method, which uses silver nitrate as a titrant, was used 

to quantify the amount of chloride in water samples. After adding a couple of drops of 

indicator (potassium chromate) to a 10 ml sample volume in a conical flask, samples 

were titrated against a standard AgNO3 solution to produce an endpoint with a brick-

red color. Using the following formula, the chloride concentration was calculated: 

 

Chloride in (
mg

l
) =  

N×V×35.5×1000

Vs
  .......... (3.  1) 

Where V is the amount of titrant (AgNO3) used (ml), N denotes the 

normality of AgNO3 (0.01 N), Vs is the volume of the sample (10 ml). 
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Bicarbonates (HCO3 -) 

By titrating a 10 ml sample volume with standard solution H2SO4 using 

the following formula, bicarbonate (HCO3
-) in a water sample was determined: 

HCO3(
mg

l
) =

B×N×Eq.Wt.of HCO3×1000

Vs
  .......... (3.  2) 

Where B is the amount of titrant ingested; N is the titrant's normality 

(H2SO4); Vs is the sample volume (10 ml); and the equivalent weight of HCO3 is equal 

to 61 

Total Hardness (TH) 

The total hardness of water samples as CaCO3 was assessed using the 

conventional EDTA titration technique. Eriochrome Black T (EBT) indicator (in the 

powdered form) and 1 ml of ammonium buffer were added to a conical flask 

containing 20 ml of sample volume. Samples were then titrated against a standard 

EDTA solution (0.01 M) to obtain an endpoint with a blue color. The following 

formula is used to calculate total hardness: 

Total hardness (as CaCO3) (mg/l) =
M×V×M.W×1000

Vs
  .......... (3.  3) 

Where M stands for the molarity of the EDTA solution (0.01M), V is the 

volume of EDTA utilized, M.W. stands for the molecular weight of CaCO3 (100), and 

Vs is the sample volume (20 ml). 

Calcium Hardness (CaH) 

Titrating water samples ascertained the water's calcium hardness against a 

Standardized EDTA solution. In a conical flask, 20 ml of sample volume and 1 ml of 

sodium hydroxide (NaOH) solution were combined. A small amount of peroxide 

indicator (in powder form) was also added to the sample solution to get an endpoint 

with a purple color. The following formula is used to calculate the calcium hardness: 

Ca hardness (mg/l) =
M×V×M.W×1000

Vs
  .......... (3.  4) 

Where M stands for the EDTA solution's molarity (0.01M), V is the 

amount of EDTA utilized, M.W. stands for calcium's molecular weight (40), and Vs 

stands for the sample volume (20 ml). 
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3- Spectrophotometer  

UV-VIS spectrophotometers determined the sulfate, phosphate, nitrate, 

and silica concentrations. 

Sulfate (SO4 2- ) 

The amount of sulfate in the samples obtained was calculated using the 

turbidimetric (Barium Chloride) method. Standard solutions of Na2SO4 at the 

following concentrations were created using the stock solution: 10, 20, 30, 40, 50, 60, 

70, 80, 90, and 100 ppm. 10 ml of each sample are mixed with 1 ml of a conditioning 

agent to create a turbid solution, then mixed continuously with 1 ml of HCl. Use a UV-

VIS Spectrophotometer to measure the absorbance at 420 nm after adding that turbid 

solution to a glass cuvette cell. 

Phosphate (PO4 3- ) 

Stannous chloride was used to calculate the total phosphate in water 

samples. Using salt and potassium dihydrogen phosphate, a stock solution of 100 ppm 

was created (KH2PO4). The stock solution was used to develop standard solutions with 

concentrations of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5 ppm. Add 1 ml of the 

acid solution (1 ml H2SO4 + 3 ml HNO3) to 10 ml of the sample in the conical flask 

and heat the mixture until it boils to transform the bound state phosphate into a free 

form or the organic phosphate into the inorganic form. Then, after cooling the solution, 

add one drop of the phenolphthalein indicator and continue adding 6N NaOH until the 

solution becomes pink rather than colorless. Right now, note the increased volume and 

determine the dilution factor. Now divide the sample volume equally among the test 

tubes (10 ml), add 0.4 ml of ammonium molybdate to the solution, and the pink hue 

vanishes. A UV-VIS Spectrophotometer was used to detect the intensity of the 

generated blue hue at 690 nm after adding one drop of stannous chloride and mixing 

it thoroughly. 

Nitrate  

A UV-VIS Spectrophotometer and Brucine Sulphanilic Acid measured 

nitrate in water samples. Standard 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 ppm 

solutions were created using a 100 ppm KNO3 stock solution. One milliliter of brucine 

sulphanilic acid was added to each 50-millilitre test tube containing 10 millilitres of 

material from each site. Then, each test tube received 10 ml of nitrate acid (60 ml 

H2SO4 plus 40 ml distilled water), and the test tubes were left in the dark for 25 

minutes. Each test tube received 10 ml of distilled water, added after 25 minutes, and 

correctly mixed with the solution. A yellow hue emerged. The additional solution was 

put into a glass cuvette, and the UV-VIS Spectrophotometer assessed the colour 

intensity at 410 nm. 
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Silica  

To test silica with the Molybdenum blue photometry method, a UV-VIS 

spectrophotometer uses a wavelength of 410 nm. In the first step, 0.2 ml of HCl 

solution with a volume of 10 ml is added to the sample. Then add 0.4 ml of ammonium 

ortho-molybdate ((NH4)2MoO4) solution and wait two minutes. After that, add 0.4 ml 

of oxalic acid (C2HcO4) and perform the test. 

4- Flame photometer  

Cations (Sodium, Na+; Potassium, K+; Calcium, Ca2+ and Magnesium, Mg2+) 

A Flame photometer was used to determine the presence of the cation's 

sodium (Na+), potassium (K+), and calcium (Ca2+). The stock solution created standard 

solutions at 10, 20, 40, 60, 80, and 100 ppm. The standard graph was created by 

adhering to standards using these standard solutions (APHA, 2005). 

Using the volume of titrant (EDTA) used to estimate calcium and total 

hardness, the content of magnesium in water samples was determined using the 

following formula: 

Mg2+ (mg/l) = 
(V1−V2) ×400.8

Vs×1.645
  .......... (3.  5) 

V1 is EDTA used to determine total hardness (Ca + Mg), V2 is used to 

determine CaH, and Vs is the sample volume (10 ml). 

Single factor pollution index  

The single-factor index approach was used to determine the level of 

contamination of one pollutant in a water sample (Dey et al., 2021). This approach was 

employed in the current study to evaluate the level of pollution caused by one 

contaminant in the groundwater samples. This technique might identify the pollutants 

that significantly impact the pollution levels at each sample location. A single pollution 

index was calculated using the following criteria: 

Pi =
Ci

Si
 .......... (3.  6) 

Pi is the single factor pollution index; Ci indicates the measured value of 

the pollutant content of the i parameter (mg/l), and Si shows the allowable limit of the 

i parameter (mg/l).  

Nemerow pollution index method 

An environmental quality index that weighs many factors and considers 

extreme or exceptional maximum values is called the Nemerow index (Su et al., 2022). 

The Nemerow pollution index is calculated using the following formula: 
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PN = √
(P1)2+(Pimax)2

2
  .......... (3.  7) 

In the equation, PN stands for the sample point's overall pollution index, 

Pimax indicates the maximum value of the single factor pollution index, and P1 = 
1

𝑛
∑ 𝑃𝑖

𝑛
𝑖=1  is the mean value of the single factor pollution index.  

3.3.2 Water quality index  

The WQI assesses groundwater quality in the current investigation 

according to 13 variables evaluated at each location. The weight value (wi) for each 

metric varies from 1 to 5 depending on the degree of contamination's influence on 

human health Table 3.1. At the first step of WQI computation, the relative weight of 

each parameter is calculated, as indicated in Equation (3.8) 

Wi = wi/ ∑ wi
n
i=1   .......... (3.  8) 

Where, Wi stands for relative weight, wi for variable weight, and n for the 

number of variables. Each parameter's quality rating scale (qi) will be calculated in the 

second step utilizing Equation (3.9). 

qi =
Ci

Si
× 100   .......... (3.  9) 

Where qi is quality rating, Ci is a measured concentration for each 

parameter of samples in mg/l. Si is the standard limit for each parameter according to 

WHO in mg/l.   

Sub-indices are calculated by multiplying Equations (3.8) and (3.9).  

SIi = Wi × qi  .......... (3.  10)  

Ultimately, WQI (Equation 3.11) is calculated by summing all SI values 

for a particular sample, yielding a composite score based on ranges and water classes. 

WQI = ∑ SIi   .......... (3.  11) 

3.3.3 Geographic information system analysis 

ArcGIS aids the analytical extrapolation of various experimental results to 

create theme maps and geospatial representations. It reduces the number of unknown 

water characteristics. It enables a statistical approach to characterize groundwater 

quality in the research area graphically. The most commonly used and recommended 

methods for generating spatial distribution maps are inverse distance weighting, 

kriging, and co-kriging. As a result, for 35 samples of the research region in this study, 

spatial distribution models of all variables for groundwater quality were developed 

using the Inverse Distance Weighted (IDW) interpolation method in ArcGIS-10.7 

software. The IDW interpolation technique estimates missing parameters concerning 
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an interval, with the nearest point receiving more significant weightage and decreasing 

as the distance increases. 

Furthermore, several researchers utilize this approach to create geographic 

distribution maps of various characteristics. Interpolation maps assist individuals and 

decision-makers in understanding groundwater quality by providing a generalized 

picture of hydrogeochemical processes and the drainage system of the studied region. 

This can aid subsequent water management, prevention, source of pollution, and 

groundwater modelling for future groundwater conservation. 

Table 3. 1 Relative weights (wi) for different water quality parameters. 

Chemical 

parameters 

WHO Limits 

mg/lit 

Weights 

Wi 

Relative weights 

Wi = wi/∑wi 

1 TDS 1500 5 0.116 

2 NO3
- 45 5 0.116 

3 F- 1.5 5 0.116 

4 pH 8.5 4 0.093 

5 EC 1000 4 0.093 

6 SO4
2- 250 4 0.093 

7 HCO3
- 600 3 0.070 

8 Cl- 250 3 0.070 

9 TH 500 3 0.070 

10 Na+ 200 2 0.047 

11 K+ 12 2 0.047 

12 Ca+ 75 2 0.047 

13 Mg+ 30 1 0.023 

Total  43 1 

 

3.4 Artificial neural networks 

3.4.1 General  

Modern systems and computer techniques for machine learning, 

knowledge visualization, and eventually using the acquired information to forecast the 

output reactions of complex systems are known as Artificial Neural Networks (ANN) 

or neural networks. The fundamental principle underlying these networks draws some 

inspiration from how the biological nervous system functions in processing data and 

information necessary for learning and knowledge creation. Despite this apparent 

surface similarity, artificial neural networks exhibit a surprising number of brain-like 

characteristics. For instance, they draw important traits from inputs, including 

irrelevant data, and learn from experience, generalizing from previous examples to 

new ones. Each neuron gathers inputs from several sources and then generates an 

output after processing the weighted aggregate inputs by an activation function. The 

output for a given set of input values may be predicted using a network once trained. 
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Neural networks effectively spot internal connections, patterns, and trends. Figure 3.6 

depicts the typical biological neuron. 

 

 

Figure 3. 6 Structure of a typical neuron (Suresh et al., 2020) 

As seen in Figure 3.6, the neuron comprises three main parts. 

1. The dendrites (constituting a vastly multi-branching tree-like structure that collects 

inputs from other cells). 

2. The cell body (the processing part, called the soma). 

3. The axon (which carries electrical pulses to other cells). 

3.4.2 Biological Neurons and ANN 

The following points may be used to describe the ideas of biological 

neurons and the human brain system, and they can also be expressed schematically, as 

seen in Figure 3.7. 

1. The inputs are the process of gathering information from the necessary sources. 

2. The weights regulate how inputs affect a neuron. In other words, each connection 

in an ANN is given weight, and information is saved over it. These weights are 

continuously changed while attempting to optimize the relationship between input and 

output. 
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3. Net input readings from the processing components are calculated using the 

summation function. 

4. The transfer (activation) function takes the net input from the summation 

function and uses it to calculate the neuron's output. The choice of transfer and 

summation functions depends on the problem's nature. 

 

 

Figure 3. 7 Artificial representation of biological neuron (Samson S, 2010) 

Transfer function generally consists of algebraic equations of linear or 

nonlinear form. Given its self-limitation and straightforward derivative, the sigmoid 

function is frequently utilized. The outputs consider the transfer function's findings 

and present them to the appropriate processing element. The summation function, 

transfer function, structure, and learning algorithm that are all part of an ANN may be 

considered a directed graph. To construct a layer of networks, the processing parts 

must have connections between them. There are three layers of a neural network. They 

are the output layer, the concealed layer, and the input layer. 

 



39 

 

39 
 

3.4.3 Need for ANN model. 

For forecasting groundwater's chemical and physical properties, ANN 

models have been widely employed in groundwater quality prediction. The 

composition and solubility of the rock materials in the soil or aquifer, water 

temperature, partial pressure of CO2, acid-base reactions, oxidation-reduction 

reactions, loss or gain of constituents as water percolates through clay layers, and 

mixing of groundwater from adjacent strata can all have an impact on the quality of 

groundwater. Each effect's impact will vary in size According to how long the water 

stays in each setting. The solubility of rocks and the amount of time water has been 

present in the subsurface affect groundwater quality in general. In addition, the kind 

of rock and the amount of percolating water affect how easily rocks may be dissolved. 

In addition, surface impacts impair the quality of the groundwater. 

However, the groundwater's interaction with the rocks is the primary factor 

influencing the groundwater quality in the studied region. By using the artificial neural 

network model and having some water quality parameters easily determined by 

portable devices, many water quality parameters can be estimated without conducting 

laboratory tests. Estimating water quality parameters without lab tests is essential to 

reduce laboratory materials' time, cost, and consumption. On the other hand, the result 

of this model is vitally crucial for areas where water and chemical materials 

laboratories are inaccessible. 

Employing high-level software based on artificial intelligence may be an 

appropriate method because constructing mathematical relations between various 

water quality metrics is non-linear and highly laborious. The tool ANN is considered 

and implemented in this study to forecast multiple water quality parameters from other 

parameters. 

3.5 Seasonal variation of groundwater quality  

3.5.1 The process of data acquisition and selection from (NWARA) 

The required groundwater quality data from the General Directorate of 

Water Resources of Afghanistan's National Water Affairs Regulation Authority 

(NWARA) has been obtained. The NWARA has some monitoring wells that cover 

most parts of Kabul city. The hydrogeological authority of Kabul city has executed the 

monitoring of groundwater. They collected water samples and analyzed them from 14 

August to 27 September 2017 (dry season) and 27 March to 9 May 2018 (wet season). 

The groundwater quality data includes the seasonal water quality data for 54 

monitoring wells. Out of 54 monitoring wells, only one does not have data in the dry 

season. This well was excluded from the study, and all 53 other wells were included 

in the current Analysis. Groundwater quality figures obtained from the NWARA 

include the following data: static water level (SWL), Temperature (T), Electrical 

Conductivity (EC), pH, Dissolved Oxygen (DO), Total Dissolved Solids (TDS), 

Salinity, Colour, Turbidity, Total Hardness (TH), Calcium (Ca), Magnesium (Mg), 

Sodium (Na), Total Alkalinity, Phenolphthalein Alkalinity, Carbonate (CO3), 

Bicarbonate (HCO3), Chloride (Cl), Fluoride (F), Sulphate (SO4), Phosphate (PO4), 
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Potassium (K), Nitrite (NO2), Nitrate (NO3), Ammonia (NH3), Iron (Fe), Manganins 

(Mn), Copper (Cu), Aluminium (Al), Arsenic (As) and Cyanide (CN). The following 

data from the collected dataset have been selected for the current Analysis:  EC, pH, 

TDS, TH, Mg, Na, HCO3, Cl, F, SO4, PO4, K, Fe, Mn, Cu, Al, and CN. The analyzed 

parameters have been selected from the presented figures based on the following three 

fundamental factors. The parameters exceeded the permissible limits of the World 

Health Organization (WHO) and Afghanistan National Standard Authority (ANSA). 

The parameters that show the most seasonal variations in visual observation. Quality 

parameters are essential in drinking water quality. 

3.5.2 Development of geospatial distribution maps of groundwater quality data 

Data on the quality of groundwater collected from the NWARA were 

aggregated and reviewed for irregularities and inconsistencies. To visualize and 

investigate the geospatial distribution of EC, TDS, TH, Ca, Mg, K, Mn, Na, Cl, F, Fe, 

and NO3, the dataset was entered into a database created within an ArcGIS 10.7.1 

environment. The principal method for deriving regional distributions of groundwater 

quality metrics in the following research was interpolation using the Inverse Distance 

Weighting (IDW) methodology. Interpolation was utilized to convert point data, such 

as concentration levels at each observational point, into a total averaged number. For 

this investigation, an IDW with a power coefficient of 2 was used, assuming that 

contents at any sample point should be closer to the recorded quantity at the 

measurement point. 

Geospatial distribution maps depicting changes for each selected criterion 

were also created to measure seasonal changes in groundwater quality. The positive 

values indicate an increase in concentration, and the negative values show a decrease. 

The following equation was used to compute the change in concentration.:  

Seasonal variation of concentration (mg/l) = C wet period – C dry period .......... (3.  12) 

As a result, these geospatial maps depicted the regional distribution of 

variation in concentration of each groundwater quality indicator from fall (dry season 

data) to spring (wet season data). 

3.5.3 Statistical evaluations 

The "one-sample Kolmogorov–Smirnov (K–S)" test was used to assess the 

normalcy of seasonal changes in the quality of groundwater samples (Elçi & Polat, 

2011) before the testing to see if the seasonal variation in its quality was significant. 

In the normal distribution of seasonal variations, "the paired sample t-test" was 

employed. With the help of this parametric statistical test from a statistical standpoint, 

it will be established if the means of the two populations differ. Only when the 

distribution of accessible data sets meets normal distribution criteria can the "t-test" be 

used (Elçi & Polat, 2011). Another prerequisite for this statistical test is that each 

group's sample size should be more than 30. When employing paired sample "t-tests," 

the computed p-value of two-tailed significance was compared to α (the significance 

level), set at 0.05 in this study. The hypotheses have been proposed as follows: 
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H0: The water quality data will not have any seasonal difference from the 

dry to wet period.  

Hs: The water quality data will have seasonal differences from the dry to 

wet period. 

Suppose the p-value is estimated at less than α. In that case, the null 

hypothesis will be rejected, which indicates no seasonal changes in groundwater 

quality. The alternative hypothesis is accepted, suggesting the seasonal water quality 

difference. An alternative statistical test must be employed in case of an abnormal 

distribution of seasonal variation. The alternate options for parametric statistical tests 

are nonparametric tests that do not have to follow any specific assumptions for data 

distribution. 

Furthermore, the data ranks, a crucial feature of these techniques, are used 

rather than the data values. The alternative to the "t-test" is the "Wilcoxon signed-rank 

test" (Elçi & Polat, 2011), which is employed in this investigation to find out whether 

there is any significant variation in the concentrations of groundwater quality with 

differences of abnormal distribution. The "one-sample Kolmogorov–Smirnov test," 

the "paired-samples t-test," and the "Wilcoxon signed-rank test" were all performed 

using the statistical program SPSS statistics v25 to make statistical studies easier. 

3.6 Groundwater level analysis  

3.6.1 Static water level data 

The National Water Affairs Regulation Authority (NWARA) of 

Afghanistan provided monthly groundwater-level data for 128 wells in the research 

region used in this study. Observations and records of groundwater levels are available 

from November 2006 to May 2009. No figures were available from June 2009 to 

October 2013. Observational data is again available from November 2013 to April 

2020. In order to compensate for this shortcoming and eliminate the data gaps, the 

process of data imputation has been done.  During the observations, some wells, for 

various reasons such as drying, destruction, and collapse, have been replaced by 

alternative wells in their vicinity, which is mentioned in the available figures. The 

obtained data were checked for the maximum length of observations with continuous 

records. Many wells have been excluded from the present study for the following 

reasons: a) wells with observations for a period of less than 45 months were removed; 

b) wells with unknown geographical coordinates; c) wells without measurements 

before 2013; and d) wells with incomplete data after the data imputation step. Finally, 

after the exclusion and the data imputation process, the observations of 66 wells 

(Figure 3.8) for 15 years have been considered for the Analysis. 
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Figure 3. 8 Observational wells 

Precipitation data for six stations in Kabul province were also collected 

from NWARA. Collected data were in the form of daily records from 2008 to 2020, 

converted into monthly and annual total figures for Analysis. Out of six stations, only 

two stations (Payin-i-Qargha and Tang-i-Sayedan) are located within the study area. 

The data for 2008 and 2020 are not complete. Therefore, it was intended to analyze 

the records from 2009 to 2019. Landsat imagery was downloaded to create LULC 

identity maps for four different years: 2005, 2010, 2015, and 2020. The required 

satellite data was obtained from the USGS Portal (https://earthexplo rer.usgs.gov/) 

using the address "path 153 and rows 36." (Table 3.2). Gap filling was done by ENVI 

5.3 by downloading the Landsat Gap-fill IDL model for data downloaded from the 

Landsat 7 satellite. "Supervised classification approach with maximum likelihood 

algorithm" in ENVI 5.3. the environment was applied to create LULCs in the study 

area. 

Table 3. 2 Satellite data acquisition details 

Acquisition date Address (Path & Row) Spacecraft ID  

01/06/2005 153/36  “L7_ETM” 

23/06/2010 153/36 “L5_TM” 

05/06/2015 153/36 “LANDSAT_8” 

18/06/2020 153/36 “LANDSAT_8” 
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Figure 3. 9 Well 16 observational data illustration pre and post imputation 

3.6.2 Data imputation   

The lack of consistent evidence or a gap between observations is a 

common problem in statistical Analysis.  As a consequence, imputation is necessary to 

provide sufficient measurements. The data imputation approach is widely used to fill 

the observational gap between monitoring figures with substituted values (Efron, 

1994; Evans et al., 2020; Manago et al., 2019; Z. Zhang et al., 2017). A univariate time 

series imputation approach was utilized in this study to impute missing values aided 

by the "imputeTS" package in the "R Studio" environment (M. S. Moritz, 2021; S. 

Moritz et al., 2015; S. Moritz & Bartz-Beielstein, 2017). The function "na_seasplit" 

with the algorithm of "Kalman" was used to consider both seasonality and trends in 

the imputation process. The primary status of observed records on well #16 and 

imputed figures results are depicted in (Figure 3.9). 
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3.6.3 Hierarchical Cluster Analysis 

Groundwater levels used in trend analysis differ dramatically across the 

wells. Clustering is classifying observations based on their similar observed variables 

(Sinharay S, 2010). The observational wells in the present study were classified based 

on their water table characteristics. Monthly groundwater observation over a long (15 

years) was used as a clustering variable. Hierarchical clustering is a fundamental 

groundwater study method used among the various clustering methods (El-Hames et 

al., 2013; Halder et al., 2020; Pathak & Dodamani, 2019; Rahbar et al., 2020). The 

"Ward's linkage method" of hierarchical clustering was utilized to locate homogeneous 

wells using static water tables in this Analysis (Vijaya et al., 2019; Yidana et al., 2010). 

The square "Euclidean Distance" measure was applied to assess the degree of 

correlation across the observational water level data. The distance matrix based on the 

groundwater table is determined first in a hierarchical cluster analysis, and each well 

is assigned to a separate category. The "Ward's linkage mechanism" is then used to 

merge each group with the groups nearest to it. Cluster analysis has been conducted 

using the "hclust" package in the "RStudio" statistical framework. 

3.6.4 Groundwater Levels and Groundwater Drought: A Nonparametric Trend 

Test 

The "Mann–Kendall (MK)" test is mainly utilized to determine whether 

there is a significant upward or downward trend in a group of time-series data (P. 

Kumar et al., 2018; Ribeiro et al., 2015; Venegas-Quiñones et al., 2019). Mann first 

suggested the MK test as a nonparametric trend detection test, which Kendall later 

adopted as a test statistic. Statistically, the null hypothesis (Ho) indicates that the 

variable has no trends, while the alternative hypothesis (H1) means trends. The value 

of Z suggests the state of the statistic test in the MK test. Positive trends are shown by 

Z > 0, negative trends are demonstrated by Z< 0, and Z=0 signals no trend. The lag 

one autocorrelation of data at a 95% confidence interval level should be checked 

before utilizing the MK test. The annual and seasonal groundwater levels in Kabul city 

have been studied in this Analysis using the nonparametric MK statistical test. All 

observational wells were subjected to a trend test with a 95% confidence interval, and 

Sen's slope (Sen, 1968) approach was utilized to evaluate the amplitude of the trend. 

This study used the SGI to quantify the degree and significance of 

groundwater drought indicated by water level data. The SGI was suggested 

(Bloomfield & Marchant, 2013) to evaluate groundwater droughts utilizing 

groundwater depths. The SGI is a nonparametric approach in which typical monthly 

groundwater information values are converted with a reciprocal ordinary cumulative 

distribution function, and scores are organized simultaneously per month to provide 

an SGI time series. The identification through SGI was performed similarly to the 

"Standardized Precipitation Index" given by  (Rahman et al., 2017). This was done 

considering a given threshold (-1 throughout this research) for SGI to describe 

groundwater drought features, including frequency, period, and strength. When the 

SGI value is less than zero, it indicates groundwater drought, but a value lower than 

the threshold indicates a moderate drought. 
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3.7 Delineation of groundwater potential zones  

3.7.1 Thematic maps 

Arc GIS.10.6 was utilized to digitize and pre-process multiple thematic 

maps needed for this study. Various data sources were employed. To delineate the 

groundwater potential zone using AHP, ten different influential parameters were 

selected and produced in the form of raster data, including geology, drainage density, 

land-use and land-cover, slope, geomorphology, soil types, lineament density, rainfall, 

elevation, and water depth. These variables are relevant and influential in evaluating 

the potential groundwater recharge zone. 

 The geological map was digitized and georeferenced from the "geologic 

map of quadrangle 3468, Chak Wardak-Syahgerd (509), and Kabul (510) quadrangles, 

Afghanistan" (R. G. Bohannon & Turner, 2005). The geomorphological thematic map 

was digitized and extracted from the country geomorphological map prepared by the 

Afghanistan Information Management System (AIMS) at a scale of 1: 6,000,000. The 

soil map was interpolated based on soil data sources from the Afghanistan Soil 

Catalogue (Ahmadzai & Omuto, 2019). Landsat-8 OLI satellite data was utilized to 

configure the study area's land use and land cover map. Using the address, the required 

Landsat data was obtained from USGS Portal (https://earthexplo rer.usgs.gov/). In the 

Arc GIS 10.6 environment, a "supervised classification strategy" was created by 

training samples for each LULC category. A post-classification smoothing step was 

conducted using the majority filter tool in the Arc GIS environment to reduce and 

merge the tiny pixel distribution of LULC classes in the research area. 

Shuttle Radar Topography Mission (SRTM) Version, 3.0. Global 1 arc sec 

data was downloaded and applied to create the slope thematic layer. Landsat-8 OLI 

data (Landsat Scene Identifier: LC08_L1TP_153036_20200704_20200708_01_T1; 

Date of acquisition: 02-08-2020) was downloaded to provide the lineament thematic 

layer with the integration PCI Geomatica Banff and Arc GIS 10.6 software. The 

rainfall map was created based on meteorological data (2008-2018) from NWARA 

Afghanistan. An Inverse Distance Weighting (IDW) interpolation technique has been 

employed to determine its spatial dissemination in the Arc GIS environment. As well 

as the elevation map was developed using SRTM- Digital Elevation Model (DEM)-30 

m data in an Arc GIS environment. A part of nine years (2004-2013) of groundwater 

level data, recorded by AGS with support of the USGS, was used to create the 

groundwater level thematic layer. The study area's watershed map was generated in 

Arc GIS 10.6 environment employing DEM.  

The weights for each factor were assigned based on the priority scale using 

AHP. Different influential presentive variables had been integrated into the Arc GIS 

environment to discover the GWPZs. The consolidated method's findings were 

characterized in five categories: very good, good, moderate, poor, and very poor zones. 

The accuracy and effectiveness of the adopted methodology for delineating 

groundwater recharge potential zones were obtained utilizing groundwater level data. 

The overall and kappa accuracy assessment methods validated the groundwater 

potential zones map.  
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3.7.2 Analytical hierarchy process (AHP) 

Using AHP, each variable's ranking is assigned between one and five for 

equal and extreme importance. All of the attributes are evaluated based on the paired 

comparison. The current investigation will determine the relevance of the variables 

affecting groundwater potential. Weights obtained from this process are assigned to 

the prepared thematic maps in the Arc GIS environment using an overlay analysis 

approach. A pairwise comparison matrix operates to judge interaction across each 

thematic layer. The maximum eigenvalue is extracted and normalized from the 

pairwise matrix to evaluate each variable's relative significance. Accordingly, a weight 

comparison between the parameters in terms of their impact on groundwater 

occurrence was carried out based on professional judgment and Analysis of the 

relevant publications. Eventually, the following equations will provide the consistency 

ratio and index of consistency accordingly (Abijith et al., 2020; Muniraj et al., 2020).  

CR =
CI

RI
  .......... (3.  13) 

CI – displays the consistency index, CR – indicates the consistency ratio, 

and RI - represents the random index, 

CI =
λ max−n

n−1
  .......... (3.  14) 

Where λmax illustrates the matrix's maximum eigenvalue while n is the 

square matrix order, the RI depends on the number of components. It should be noted 

that the weights provided through this matrix are only reliable when CR is less than 

10%.  

Table 3.3 shows how the criteria were rated against each other. Looking at 

the top row, geology scored a "3" above geomorphology and a "2" above land cover, 

slope, soil, and lineament density rainfall. In contrast, drainage density scored a "3" 

above soil, and elevation scored a "2" above soil.  

Table 3. 3 Pairwise comparison matrix of thematic layers. 

 
To calculate the standardized matrix of AHP, the rated criteria in the Table 

3.3 will be divided by the total value. Table 3.4 illustrates the standardized matrix of 

AHP. The weights for each criterion will then be found by averaging the standardized 

matrix.  

Item Description
Geology

Drainage 

Density 

Land 

cover
Slope

Geomorp

hology
Soil

Lineament 

Density
Rain Elevation

Water 

table

Geology 1 1 2 2 3 2 2 2 1 1

Drainage Density 1 1 1 2 1 3 1 2 2 1

Land cover 1/2 1 1 1 2 2 2 1 1 2

Slope 1/2 1/2 1 1 1 2 2 2 1 1

Geomorphology 1/3 1 1/2 1 1 2 1 1 1 1

Soil 1 1/3 1/2 1/2 1/2 1 3 2 1/2 1/2

Lineament Density 1/2 1 1/2 1/2 1 1/3 1 1/2 1/3 1/2

Rain 1 1/2 1 1/2 1 1/2 2 1 1/4 1/4

Elevation 1 1/2 1 1 1 2 3 4 1 3

Water table 2 1 1/2 1 1 2 2 4 1/3 1

Sum 8.83 7.83 9.00 10.50 12.50 16.83 19.00 19.50 8.42 11.25
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Table 3. 4 Standardized matrix of AHP weights for each respective criterion. 

 
 

The equations (3.6) and (3.7) will be applied to find out the CI and CR 

values. Table 3.5 shows the matrix for calculating CI and CR values. The column 

values of each criterion will be calculated by multiplying the values from pairwise 

comparison to the weights from Tables 3.3 and 3.4. The value of (λ max = 11.216) 

would be the average of sum/weight. The CR can be measured by calculating the CI 

value of 0.135. Based on the matrix size, the RI can be obtained from Saty's RI values 

(Table 3.6). According to the size of the variables, which is equal to 10, the RI value 

is 1.49. Based on the obtained values, the CR value was calculated as 0.09.  

Table 3. 5 Calculated matrices for CI and CR values. 

 

Table 3. 6 Saaty's RI values for matrices based on variable size. 

Size of 

Matrix 

Random Consistency 

(CIr) 

1 0 

2 0 

3 0.58 

4 0.90 

5 1.12 

6 1.24 

7 1.32 

8 1.41 

9 1.45 

10 1.49 

 

Item Description Geology
Drainage 

Density 

Land 

cover
Slope

Geomorp

hology
Soil

Lineament 

Density
Rain Elevation

Water 

table
Weight

Geology 0.1132 0.1277 0.2222 0.1905 0.2400 0.1188 0.1053 0.1026 0.1188 0.0889 0.1428

Drainage Density 0.1132 0.1277 0.1111 0.1905 0.0800 0.1782 0.0526 0.1026 0.2376 0.0889 0.1282

Land cover 0.0566 0.1277 0.1111 0.0952 0.1600 0.1188 0.1053 0.0513 0.1188 0.1778 0.1123

Slope 0.0566 0.0638 0.1111 0.0952 0.0800 0.1188 0.1053 0.1026 0.1188 0.0889 0.0941

Geomorphology 0.0377 0.1277 0.0556 0.0952 0.0800 0.1188 0.0526 0.0513 0.1188 0.0889 0.0827

Soil 0.1132 0.0426 0.0556 0.0476 0.0400 0.0594 0.1579 0.1026 0.0594 0.0444 0.0723

Lineament Density 0.0566 0.1277 0.0556 0.0476 0.0800 0.0198 0.0526 0.0256 0.0396 0.0444 0.0550

Rain 0.1132 0.0638 0.1111 0.0476 0.0800 0.0297 0.1053 0.0513 0.0297 0.0222 0.0654

Elevation 0.1132 0.0638 0.1111 0.0952 0.0800 0.1188 0.1579 0.2051 0.1188 0.2667 0.1331

Water table 0.2264 0.1277 0.0556 0.0952 0.0800 0.1188 0.1053 0.2051 0.0396 0.0889 0.1143

Item description Geology
Drainage 

Density 

Land 

cover
Slope

Geomorph

ology
Soil

Lineament 

Density
Rain Elevation

Water 

table
SUM SUM/Weight

Geology 0.1428 0.1282 0.2245 0.1882 0.2480 0.1445 0.1099 0.1308 0.1331 0.1143 1.5643 10.9553

Drainage Density 0.1428 0.1282 0.1123 0.1882 0.0827 0.2168 0.0550 0.1308 0.2661 0.1143 1.4371 11.2066

Land cover 0.0714 0.1282 0.1123 0.0941 0.1653 0.1445 0.1099 0.0654 0.1331 0.2285 1.2527 11.1597

Slope 0.0714 0.0641 0.1123 0.0941 0.0827 0.1445 0.1099 0.1308 0.1331 0.1143 1.0571 11.2323

Geomorphology 0.0476 0.1282 0.0561 0.0941 0.0827 0.1445 0.0550 0.0654 0.1331 0.1143 0.9209 11.1411

Soil 0.1428 0.0427 0.0561 0.0471 0.0413 0.0723 0.1649 0.1308 0.0665 0.0571 0.8216 11.3698

Lineament Density 0.0714 0.1282 0.0561 0.0471 0.0827 0.0241 0.0550 0.0327 0.0444 0.0571 0.5987 10.8942

Rain 0.1428 0.0641 0.1123 0.0471 0.0827 0.0361 0.1099 0.0654 0.0333 0.0286 0.7222 11.0431

Elevation 0.1428 0.0641 0.1123 0.0941 0.0827 0.1445 0.1649 0.2616 0.1331 0.3428 1.5428 11.5935

Water table 0.2856 0.1282 0.0561 0.0941 0.0827 0.1445 0.1099 0.2616 0.0444 0.1143 1.3214 11.5648
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3.8 Artificial recharge potential of groundwater in urban area 

3.8.1 Data acquisition  

Precipitation data from six meteorological stations in Kabul province were 

obtained from the Department of Meteorology, General Directorate of Water 

Resources, NAWARA Afghanistan, for the 2008–2020 period. The gathered data were 

in the form of daily logs from 2008 to 2020, which were then transformed into monthly 

and yearly totals for study. Only one meteorological station (Payin-i-Qargha), located 

within the research region, is considered out of the six stations for the current study 

(Figure 3.11). Since the data for 2008 and 2020 were not complete, they were omitted 

from the analysis, and the intention was to consider the records from 2009 to 2019 

only. Landsat imagery was downloaded to create land use and land cover (LULC) 

identity maps for 2020. The required satellite data were obtained from the USGS Portal 

(https://earthexplorer.usgs.gov/) using the address "path 153 and rows 36."  

 

Figure 3. 10 Location of meteorological station in the study area 

3.8.2 LULC development 

The availability and sustainability of groundwater are impacted by many 

variables, including land use and land cover (Machiwal et al., 2011; Martin et al., 

2017). Expanding impermeable land surfaces, such as asphalt, concrete roads, streets, 

and waterproof roof materials, would hinder groundwater recharge. To create the 

LULC map of the study area, remotely sensed Landsat-8 satellite data was analyzed. 
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"Supervised classification approach with maximum likelihood algorithm" in ENVI 5.3 

environment was applied to create LULC of the study area (Figure 3.12). The research 

area has bare land and rock, cropland and vegetation, settlements (built-up area), water 

bodies, and marshland. Built-up areas reduce the effect of groundwater recharge, 

whereas vegetation-covered regions provide better prospects for groundwater 

recharges.  

 

Figure 3. 11 LULC map of the study area 

3.8.3 Rainfall Analysis 

This study examined many precipitation characteristics: variability, the 

number of rainy days, their distribution across the season, the likelihood of daily 

precipitation, and the highest amount of rainfall ever recorded in a day.  

The precipitation concentration index (PCI) and seasonal index (SI) were 

introduced by (Oliver, 1980; Walsh & Lawler, 1981), and the contribution index (CI) 

(Mahmoud et al., 2014) was utilized to identify the irregularity and seasonal 

distribution of precipitation over the year. Equation (3.15) was used to calculate the 

PCI using RStudio, while equation (3.16) was used to get the SI. 

PCI = 100 × ∑ (
Xn

2

R2)12
n=1   .......... (3.  15) 
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SI =
1

R
∑ |

Xn−R

12
|12

n=1   .......... (3.  16) 

Where R displays the yearly precipitation, and Xn indicates the 

precipitation in month n. The daily, monthly, or seasonal precipitation is calculated as 

a percentage of the annual total rainfall for the contribution index. By employing the 

Weibull method (Mansell, 2003), daily precipitation data collected from the Payin-i-

Qargha meteorological station from 2009 to 2019 were statistically evaluated: 

P =
m

N+1
× 100  .......... (3.  17) 

Where P shows the probability of the precipitation (%), N is the data size, 

and m is the rank given to the data when sorted in descending order. 

The probability of maximum daily precipitation and its return period were 

analyzed employing the Gumbel distribution approach. The method is the limiting 

form of a large number of uniformly sized samples with an exponential starting 

distribution. The cumulative distribution is used to calculate the likelihood (percent) 

that a rainfall depth X (mm) will be greater than a specified rainfall depth x0 (mm) 

(Mahmoud et al., 2014): 

P(X ≥ x0) = 1 − e−e−y
  .......... (3.  18) 

Where y is a dimensionless variable and calculated as follows:  

y =
1.286(x−x̅)

σx
+ 0.577 where x is variate = 

σx(yT−0.577)

1.2825
+ x̅  .......... (3.  19) 

x̅ is the mean value, and σx is the standard deviation of variate x, as well 

as yT is the reduced variate for a given T  

yT = − [ln . ln
T

T−1
]  .......... (3.  20) 

By determining the reduced mean yn and reduced standard deviation Sn 

using tables based on the sample size, the frequency factor K can be calculated as 

follows:  

K = 
(𝑦𝑡−𝑦̅𝑛)

𝑆𝑛
  .......... (3.  21) 

The following relation may be used to compute Xt by providing the value of K. 

xt = x̅ + Kσn−1  .......... (3.  22) 
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3.8.4 Rainwater harvesting potential based on LULC. 

Land use is a fundamental factor determining the likelihood of surface 

runoff, which directly affects how quickly rain and other precipitation permeates the 

ground.  More permeable surfaces become impenetrable as cities expand. Different 

sources have reported the permeability coefficients of various materials. Nachshon et 

al., (2016), quoted from (Pauleit & Duhme, 2000a), illustrated the infiltration 

coefficients for the built-up and asphalt areas at 5%, pavement areas at 20%, woody 

and vegetation areas at 25%, meadow, and pastures at 35%, arable land 40%, and bare 

soil 50%. Also, according to the argument by (Nachshon et al., 2016), the permeability 

coefficient for the built-up areas with rainwater harvesting and recharge system 

(RWHRS) increases up to 80%, and the remaining 20% they consider as the reason for 

evapotranspiration. As aforementioned, contrary to conventional rainwater harvesting 

(RWH) systems, which store the water on the land for individual use by the property 

owners, some researchers recently addressed the potential of rainwater for recharging 

the nearby aquifers through infiltration wells. 

The site's hydrological, climatic, and surface area characteristics must be 

considered while building the infiltration well structure tools for the rainfall. 

Considering the hydraulic conductivity of the medium at the specific site of 

infiltration, it is necessary to create a deep enough infiltration well with a long filter 

length to allow sufficient water flow from the well into the ground to ensure the 

effective infiltration of collected rainwater into the aquifer without flooding the 

infiltration well system. 

3.8.5 Groundwater recharge 

Estimating the rainwater infiltrating the underground water and the vadose 

zone depends on the target area's infiltration coefficients. The infiltration coefficient 

is related to soil hydraulic characteristics, topography, land surface coverage, etc.  For 

the different types of substrates mentioned in Table 3.7, Nachshon et al., (2016) used 

an illustration from (Pauleit & Duhme, 2000b) to show the infiltration coefficients (Ic) 

values in percent, which indicates the portion of yearly rainfall that is infiltrated 

underground. 

Here, it is projected that 80% of the water is seeping into groundwater for 

RWHRS that route the gathered water from the collecting sites straight into the 

subsurface, either into the vadose zone or the aquifer. In other words, instead of the 5 

percent shown in Table 1 for non-RWHRS situations, the Ic of constructed areas where 

RWHRS is applied is 80 percent. This cautious estimate permits a 20% water loss due 

to evaporation and retention along the RWHRS system. This percentage is most likely 

significantly lower than 20%. 

 

 

 



52 

 

52 
 

Table 3. 7 Infiltration coefficient of different surfaces (Nachshon et al., 2016). 

Land cover Ic (%) 

Built up (without RWHRS) 5 

Asphalt 2 

Pavement 20 

Woody Vegetation 25 

Meadow and pastures  35 

Arable lands 40 

Bare soil 50 

Built up (with RWHRS) 80 
 

By using the weighted arithmetic mean of various infiltration coefficients 

from regions with different land cover qualities (Ic(i)) and taking into account the 

associated surface areas (A(i)) of each LULC (e.g., built-up, bare soil, cropland, etc.), 

the effective infiltration coefficient (Ic(eff)) can be calculated. 

Ic(eff) = 
∑(Ai×Ic(i))

∑ Ai
  .......... (3.  23) 

The exact amount of infiltrated water into groundwater I (m3) is 

determined as follows:  

I = A. R · Ic(eff) .......... (3.  24) 

Where A is the surface area (m2) through which infiltration is occurring, 

and R is the yearly rainfall (m). By assumption of three leading land cover components 

in urban contexts (i.e., built-up, bare soil, and arable land), it is straightforward to 

estimate Ic(eff) for any given area with any combination of the three components by 

knowing the Ic values for each of these constituents.  According to Table 3.7, the 

infiltration coefficients (Ic) of built-up areas without RWHRS are equivalent to 5% 

and 80% for regions developed with RWHRS,50% for bare soil, and 40% for arable 

land. 

3.8.6 Surface runoff  

Due to drainage systems failing during intense rain events, extreme 

flooding events are occurring more frequently in urban contexts due to the combined 

effects of global climate change and the impenetrable nature of modern cities. 

Flooding threatens structures, additional public and private infrastructure, and people's 

lives. Surface runoff must be decreased in urban settings to lessen the risk of flooding 

and the cost of drainage systems (Nachshon et al., 2016). RWHRS may be beneficial 

since it increases the quantity of water that permeates the subsurface instead of flowing 

as surface runoff. 
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A variety of circumstances influence runoff and rainfall relationships. 

Some refer to meteorological properties such as precipitation intensity, duration, and 

evapotranspiration. In contrast, others relate to physical factors of the surfaces 

receiving the precipitations, like their impermeabilities and slopes. These elements 

function in how much of the rainfall depth is absorbed by the atmosphere, the surface 

of the earth, or both. Runoff coefficients were established to calculate the potential 

runoff from a given rainfall depth. These coefficients show how much of the depth of 

the rainfall should be subtracted and accounted for as a loss to runoff. 

The "Natural Resources Conservation Services (NRCS)" equation for 

rainfall-runoff has been employed to determine the possible runoff from a rainstorm. 

The equation, formerly known as the "Soil Conservation Service (SCS)" approach for 

estimating direct runoff from rainstorms, was created by the "United States 

Department of Agriculture (USDA) in 1972"(Mahmoud et al., 2014). It is seen as 

either a probabilistic or deterministic model. 

Since the only relevant rainfall data for this study were daily rainfall time 

series, applying this approach is ideal for the study region because it eliminates rainfall 

intensity and removes time as a component. The correlation between the land cover, 

the "Hydrologic Soil Group (HSG)," and the "Curve Number (CN)" is included in the 

model. A soil class with high CN values is impermeable and will have more runoff 

than infiltration: 

Q =
(P−Ia)2

P−Ia+S
=

(P−0.2S)2

P+0.8S
  .......... (3.  25) 

Q represents the amount of daily runoff in mm, P represents the amount of 

daily precipitation in mm, S represents the region's potential maximum storage (mm), 

and Ia represents the initial abstraction (usually taken as 0.2S) in mm. The following 

equation indicates how much rainfall is directed to surface runoff by using CN, the 

runoff curve number of a hydrologic soil group and land cover combinations: 

S =
25400

CN
− 254  .......... (3.  26) 

According to (USDA, 2009), the average CN values for impervious 

surfaces (built-up area) are about 98. For cropland, it is taken around 76; for bare land, 

it is assumed to be about 86. The following equation gives the weighted calculated 

curve number (CNw) considering different land-use classifications of the study area.  

CNw =
∑ CNwi

100
  .......... (3.  27) 

Where CNwi stands for the weighted curve number of the specific land cover.  
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3.8.7 Models for rainwater harvesting and groundwater recharge.  

Two models have been designed to use precipitation to replenish 

groundwater, avoid waste in terms of surface flows, and stop urban floods. The first 

model is used to collect and direct rainwater from residential houses to feed 

underground water, and the second model is employed to manage and control 

rainwater from the surfaces of roads and streets for groundwater recharge. The first 

case considers a typical residential home, where rainfall is collected and channeled to 

the groundwater recharge (absorbing well) from the roof and the yard. The rainwater 

collecting channels collect the water from the roof and the yard and send it to the grease 

and oil trap basin. 

Grease and oil traps allow water accumulation to be separated from grease 

and oil residues. It is constructed from a tank with a baffle wall in the middle. Water 

enters the basin from one side; solid particles sink to the bottom, while grease and oil 

float to the top. The clear water enters the basin's other side from under the baffle wall 

and exits to the sand filter.  

Sand filters refine the water by passing it through fine sand to eliminate 

the tiniest contaminants. It comprises a basin with a fine-sand layer and a gravel layer. 

The water enters the basin from above and passes through both of these layers to be 

purified. To prevent pore clogging, this filter also has to be backwashed sometimes. 

For backwash water that can have its overflow linked to municipal rainfall channels, a 

backwash water drying basin is also considered. The filtered water enters the recharge 

well, typically equipped with a casing, screen, gravel pack, and gravel bed.  

Similarly, the second model is considered for collecting rainwater from 

roads and streets to direct it to groundwater recharge wells. The system of groundwater 

recharge wells can be constructed at a distance on the sides of the streets (pedestrian 

area). The rainwater from the road surface and sidewalk is collected through the closed 

channel on the side of the road, which is equipped with screens and enters the 

sedimentation basin through specific chambers. The settling tank is separated into two 

separate parts by a buffer wall. The first part is the grease and oil separator, and the 

second is the settling tank. The settling tank is connected to a recharge well similar to 

recharge wells of residential houses based on construction. The settling tanks can be 

cleaned out regularly during the year.  

3.9 Delineation of groundwater recharge potential zones  

3.9.1 Enlarging the study area 

Groundwater supply is not only directly affected by the area where rainfall 

occurs, but it can also be affected by distant areas. Therefore, the recharge zones can 

be searched inside and around the study area. The movement of underground water 

follows the surface slope and topography. This encourages the search for more 

applicable methods of artificial recharge in the upper streams of the basin. Therefore, 

it can be said that the groundwater recharge areas can contain large parts of the higher 

points of the basin. Based on the hydrological characteristics (drainage basin) of the 



55 

 

55 
 

studied area, it has been enlarged so that it can be used to identify more groundwater 

recharge areas and explore more and more applicable artificial recharge methods. 

  

 

 

Figure 3. 12 Location map of the study area  

3.9.2 Identifying influential factors 

The characteristics that broadly impact groundwater potential recharge 

zones were identified in the first stage. Each relevant factor's thematic layers were 

created and pre-processed in Arc GIS 10.7 using the UTM Zone 42 Geographic 

coordinate system and a pixel size of 30 meters. Using the MIF approach, each theme 

layer was assigned a defined weight. All thematic layers were exposed to a weighted 

overlay approach in Arc GIS to determine the optimal zones for groundwater recharge. 
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A "rule-based" method has been employed to locate and recognize the artificial 

recharge mechanisms. 

The following influential indicators have been employed to discover the 

potential sites for groundwater recharge in the Kabul Basin: "geology, 

geomorphology, lineament density, drainage density, rainfall, soil, land use and the 

land cover type, and slope."  

The MIF technique examined how distinct geoenvironmental factors 

influence groundwater recharge capacity. A major influence was assigned a numerical 

value of 1, while a minor impact was rated 0.5 (Table 3.7). The recommended weight 

of each element was then calculated by adding together all of the major and minor 

impacts using the following equation (Equation 3.28): 

Proposed weight =  [
(A+B)

∑(A+B)
] × 100  .......... (3.  28) 

Where A represents the factor's significant impacts, and B signifies the 

factor's lesser effects. The weighting and interrelationships between each variable were 

determined using recently published literature (Achu, Reghunath, et al., 2020; 

Kolandhavel & Ramamoorthy, 2019; Magesh et al., 2012; Thapa et al., 2017; Zghibi 

et al., 2020). Finally, the groundwater recharge potential zones for the study region 

were determined using the weighted overlay method with the thematic layers in an Arc 

GIS environment and the following equation (Equation 3.29). 

GWRPZ = ∑ Fi × Wi
n
i=1   .......... (3.  29) 

Whereby Fi represents the influential variables used for groundwater 

recharge potential zones, and Wi denotes the associated weights. Additionally, a "rule-

based" identification procedure was used to determine the optimal areas in the basin 

for artificial recharge techniques such as check dams, contour trenches, recharge wells, 

and rooftop rainwater harvesting combined with recharge wells.  

The summary of overall methodological approaches is illustrated in Figure 3.13. 
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Figure 3. 13 mythological flow chart of the study  

Note: Major parts of the contents of the above methodologies are reproduced from the 
following research papers with permission from Springer Nature.  

• Groundwater quality assessment and modelling utilizing water quality index 

and GIS in Kabul Basin, Afghanistan (Singh & Noori, 2022b) 

• Assessment of seasonal groundwater quality variation employing GIS and 

statistical approaches in Kabul basin, Afghanistan(A. R. Noori & Singh, 

2023a) 

• Spatial and temporal trend analysis of groundwater levels and regional 

groundwater drought assessment of Kabul, Afghanistan(A. R. Noori & Singh, 

2021a) 

• Delineation of groundwater recharge potential zones for its sustainable 

development utilizing GIS approach in Kabul basin, Afghanistan (Singh & 

Noori, 2022a) 

• Rainfall Assessment and Water Harvesting Potential in an Urban Area for 

Artificial Groundwater Recharge with Land Use and Land Cover Approach (A. 

R. Noori & Singh, 2023b) 

• Delineation of optimal locations for artificial groundwater recharge utilizing 

MIF and GIS in a semi‑arid area (A. R. Noori & Singh, 2024) 
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CHAPTER 4  

RESULTS AND DISCUSSION 

4.1  Water quality analysis  

The results of water quality parameters are summarized in Table 4.1. All 

physicochemical parameters of main anions and cations levels are provided in mg/l 

except pH and electrical conductivity. The table indicates the descriptive statistics of 

the data. It also displays the number of samples that exceeded the allowed limit and 

the percentages of observations that exceeded the allowable limit in line with 

WHO criteria. The following are the details of the groundwater quality metrics 

investigated for drinking purposes. 

Table 4. 1 Descriptive statistics and permissible limits of groundwater quality 

parameters concerning the (WHO, 2011) 

Parameter Min Max Mean Median STD 
WHO 

Limit 

Samples 

exceeding 

permissible limit 

WHO 

# Of 

sample

s  

% Of 

sample

s 

EC 541 15060 

2280.0

0 1199 

3050.5

2 1500 12 34.29 

pH 6.6 7.7 7.19 7.2 0.19 

6.5-

8.5 Nill Nill 

TDS 270 7450 

1135.2

0 598 

1515.6

1 1000 5 14.29 

Salinity 0.19 8.55 1.04 0.535 1.63 - -   

T_Hardness 160 790 318.00 290 147.05 500 4 11.43 

Ca_Hardnes

s 22.0275 420.525 88.45 74.0925 73.23 - - - 

Mg_Hardnes

s 

109.937

5 

587.872

5 229.55 195.945 113.25 - - - 

Calcium 8.811 168.21 35.38 29.637 29.29 75 3 8.57 

Magnesium 

26.7148

1 142.853 55.78 

47.6146

4 27.52 30 34 97.14 

Sodium 23.6 1132.7 152.55 64.74 239.57 200 6 17.14 

HCO3 353.8 2013 800.84 774.7 333.89 600 25 71.43 

Alkalinity 290 1650 656.43 635 273.68 - - - 

Chloride 35 2865 315.86 100 557.36 250 8 22.86 

Sulphate 22.872 264.76 114.07 102.79 74.61 250 3 8.57 

Phosphate 0 2.9302 0.13 0.0404 0.49 - - - 

Fluoride 0.13 0.87 0.34 0.29 0.17 1.5 Nill Nill 

Silica 40.34 104.5 62.40 60.96 13.82 - - - 

Potassium 2.41 80.5 9.15 5.5 13.19 12 6 17.14 

Nitrate 0.233 59.7 8.71 6.047 10.82 45 1 2.86 
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4.1.2 Physicochemical parameters 

4.1.2.1 Electrical conductivity (EC) 

This characteristic determines the quantity of current that an aqueous 

medium can convey. Based on the WHO standard, the highest permitted level for 

electrical conductivity is 1500 μS/cm. The detected EC ranges from 541 to 15060 

μS/cm. Based on (Todd, 1980), there are five primary EC groundwater quality 

classifications, as illustrated in Table 4.2. No sample in the study region had an 

excellent water type with an EC of less than 250 μS/cm. As shown in Figure 4.1a, 

17.14 percent of observations have a good water type (EC, 250–750 μS/cm), 62.86 

percent have a permissible water type (EC, 750 – 2000 μS/cm), 5.71 percent have a 

doubtful water type (EC, 2000 – 3000 μS/cm), and 14.29 percent have an unsuitable 

water type (EC > 3000 μS/cm). As a result of this research, it is apparent that 20 percent 

of groundwater is unadvisable for residential usage. 

Table 4. 2 Classification of groundwater according to electrical conductivity 

EC Classification Samples exceeded permissible 

levels 

% Of the sample that exceeds 

permissible levels 

< 250 Excellent Nill Nill 

250 - 750 Good 6 17.14 

750 - 

2000 

Permissible 22 62.86 

2000 - 

3000 

Doubtful 2 5.71 

> 3000 Unsuitable 5 14.29 
 

Total 35 100.00 

 

4.1.2.2 Hydrogen ion concentration (pH)  

The pH values of water are the most significant and deciding component 

for its level of corrosivity, and this is due to water reacting with CO2 underground to 

create carbonic acid. The interaction of CO2, CO3, and HCO3, and their balance, 

determines the pH content of natural water. The pH measurements found in this study 

ranged between 6.6 and 7.7, within the acceptable limits of the ANSA standard. Based 

on the findings, the pH value in the research location is not acidic. 

The following equations illustrate the natural changes of pH in 

groundwater before reaching the aquifer system: 

1. Carbonic acid is formed when rainwater reacts with the atmosphere. 

𝐻2𝑂 + 𝐶𝑂2 = 𝐻2𝐶𝑂3 .......... (4. 1) 

2. Carbonic acid dissociates into bicarbonate, releasing hydrogen ions, which make it 

acidic. 

𝐻2𝐶𝑂3 → (𝐻𝐶𝑂3)− + 𝐻+ .......... (4. 2) 
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4.1.2.1 Total Dissolved Solids (TDS) 

 Total dissolved solids (TDS) refer to the inorganic salts and trace amounts 

of organic compounds in aqueous solutions. Natural rock formation controls TDS 

primarily through weathering (transport), porosity, and permeability. Sewage disposal 

and fertilizer runoff are examples of anthropogenic sources. TDS readings with a 

highest and lowest range of 270 – 7450 mg/l were discovered, with an allowed limit 

of 2000 mg/l suggested by the ANSA standard. Figure 4.1b represents the geographical 

distribution layout of TDS in the research area. As indicated in Table 4.3, according 

to (Davis & DeWiest, 1966) classification, 40% of the samples are desirable for 

drinking with TDS less than 500 mg/l, 37.14% are permissible for drinking, having 

TDS 500–1000 mg/l, followed by 11.43 % useful for irrigation and 11.43% are unfit 

for drinking and irrigation. According to (Freeze & Cherry, 1979), 77.14 percent of 

observations are freshwater, 22.86 percent are brackish water, and no samples are 

saline or brine water, as indicated in Table 4.4. 

Table 4. 3 Groundwater classification based on total dissolved solids  

TDS Classification The samples exceed 

permissible levels 

% Of samples that exceed 

permissible levels 

<500 Desirable for drinking 14 40.00 

500-

1000 

Permissible for 

drinking 

13 37.14 

1000-

3000 

Useful for irrigation 4 11.43 

>3000 Unfit for drinking and 

irrigation 

4 11.43 

 
Total 35 100.00 

 

Table 4. 4 Groundwater classification based on TDS content  

TDS Classification Samples exceeded permissible 

levels 

% Of samples that exceed 

permissible levels 

<1000 Fresh water 

type 

27 77.14 

1000-10000 Brackish 

water type 

8 22.86 

10000-

100000 

Saline water 

type 

Nill Nill 

>100000 Brine water 

type 

Nill Nill 

 
Total 35 100.00 

 

4.1.2.2 Total Hardness (TH) 

 

Total hardness is an essential factor in determining the properties of 

drinking water quality. It reflects the concentration of Ca and Mg ions in water. In the 

current study, TH concentrations vary from 160 to 790 mg/l. The total hardness 
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maximum threshold has been limited to 500 mg/l by WHO guidelines. Water is divided 

into four categories based on its hardness (i.e., soft, moderate, hard, and very hard). 

No sample has fallen in the soft and moderate water categories with TH less than 75 

mg/l and (TH; 75–150 mg/l). As illustrated in Table 4.5 and the geographical 

distribution map (Figure 4.1c), 57.14 percent of observations are in the hard group (TH 

= 150-300 mg/l), and 42.86 percent are in the very hard classification (TH > 300 mg/l). 

Table 4. 5 Classification of groundwater as per total hardness 

TH as 

CaCO3 

Classification Samples exceed permissible 

levels 

% Of samples that exceed 

permissible levels 

<75 Soft Nill Nill 

75-150 Moderately 

hard 

Nill Nill 

150-300 Hard 20 57.14 

>300 Very hard 15 42.86 

  Total 35 100.00 

 

4.1.2.3 Major ions chemistry 

Anions concentrations were discovered in this investigation in the 

ascending order: F< NO3< SO4< Cl< HCO3 with percentages of 0.03% < 0.70% < 

9.20% < 25.48% < 64.59% respectively. Bicarbonate (HCO3
-) is water's most common 

and stable ion. Temperature, pH, dissolved CO2, cations, and other salts all play a role 

in bicarbonate concentration in water. As shown in Table 4.1, about 71 percent of the 

samples are over the WHO standards, whereas 28.6 percent are below the permitted 

level. Bicarbonate levels in the Kabul basin range from 354 to 2013 mg/l (Figure 4.1d). 

Chloride is the second most prevalent ingredient. Chloride in groundwater is due to 

weathering, sediment, soil leaching, and urbanization (Karanth, 1987). Cl-ion 

concentrations in the examined water samples ranged between 35 and 2862 mg/l 

(Figure 4.1e), except for five samples below the WHO-permitted limit (Table 4.1). 

Sulfate has a mean content of 114 mg/l and a variation of 22.87 to 265 mg/l, within 

the acceptable ranges (Figure 4.1f). Sulfate is commonly found in groundwater due to 

the oxidation of sulfite minerals such as pyrite (FeS2) (Yadav et al., 2012). The nitrate 

concentration in the basin is within the acceptable limit (Figure 4.1g), except for one 

sample that surpassed the WHO guidelines (greater than 45 mg/l).  
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Figure 4. 1 Spatial distribution of observed parameters showing minimum to 

maximum ranges 
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Figure 4.1 (continued) 

The region's average fluoride content is 0.34 mg/l, with minimum and 

maximum values ranging from 0.13 to 0.87 mg/l (Figure 4.1h), all within WHO's 

allowed thresholds. Fluoride sources in groundwater are mainly of orogenic processes 

due to the weathering of granitic rocks having F− -rich minerals as an accessory like 

amphiboles, apatite, fluorite, and mica (Reddy et al., 2010). Fluorosis of the teeth and 

skeleton is caused by high fluoride levels in water (beyond the permitted limit). 

The quantity of cations is shown in ascending order: K+< Mg+2 < Ca+2< 

Na+ contributing 3.28% < 20% < 22% < 55% respectively.  Sodium has the greatest 

proportion, with 152.55 mg/l on average (Figure 4.1j). The highest amount of sodium 

is 1132.7 mg/l, and the lowest observation is 23.6 mg/l. Compared with WHO 

recommendations, 82.85% of the samples are within allowed ranges, whereas 17.14 
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percent of the detected samples exceed the permissible sodium limits. Na+ is found in 

groundwater from silicate minerals. Rainwater, the dissolution of evaporated minerals, 

sewage, and industrial outlets (Handa, 1975) are the other sources of sodium. With an 

average concentration of 61 mg/l, calcium is the second most prevalent element in the 

sample. It constitutes about 22% of the cation concentration. The highest calcium 

content is 453 mg/l, while the least is nine mg/l (Figure 4.1k). Only six of the 35 tested 

samples exceeded the WHO's acceptable threshold. The primary sources of calcium in 

groundwater are igneous and sedimentary rocks. Calcium and magnesium 

concentration relate to the hardness of water and are freely available on both surface 

and subsurface water as carbonates and sources are from rocks like limestone, gypsum, 

and dolomite (Domenico & Schwartz, 1998). 

Magnesium has the third proportion, with 55.77 mg/l on average (Figure 

4.1i). The highest amount of magnesium is 142.85 mg/l, and the lowest observation is 

26.7 mg/l. Only 20 percent of the observed wells have a concentration above the 

allowable limit. The remaining 80 percent of the wells are within the WHO guidelines. 

Magnesium is found to have its source from all three types of rocks, such as igneous 

(basalt, dunites, pyroxenites), metamorphic (amphibolite, talc, tremolite-schists), and 

sedimentary (dolomite, gypsum) (Karanth, 1987). Potassium has the lowest 

concentration, with a mean of 9.14 mg/l and a variation of 2.41 to 80.5 mg/l (Figure 

4.1l). The concentration of 17.14 percent of the samples in the basin exceeds the WHO 

recommendations, while the other samples are within limits. The distribution of 

different parameter concentration percentages in groundwater samples is depicted in 

Figure 4.2. EC is first with 43.36 percent, TDS is second with 21.59 percent, HCO3 is 

third with 15.24 percent, TH is fourth with 6.05 percent, and chloride is fifth with 6.01 

percent. Sodium concentration comprises about 3 percent of the overall groundwater 

quality, while sulfate makes up only about 2% of the concentrations. The remaining 

elements, Ca, Mg, K, F, and NO3, comprise only 2.7% of the concentration.  
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Figure 4. 2 Pie chart illustrating percentage distribution of all measured 

parameters 

4.1.3 Hydrochemical facies 

The interaction between major anions and cations, as well as their 

behaviors, is addressed by the hydrochemical facies of groundwater. Hydrochemical 

facies aid in the identification and classification of various water types (Piper, 1944; 

Venugopal et al., 2009). As a result, the hydrogeochemical facies of groundwater were 

estimated by plotting the concentrations of main anions (Cl, SO4
2, and HCO3) and 

cations (Ca2+, Mg2+, Na+, and K+) in meq/L in a Piper diagram (Figure 4.3). There are 

six main water types in the geochemical evolution process. Six distinct forms of water 

categorization are depicted in Figure 4.3. Grapher 13 was utilized to plot the Piper 

diagram. The following is the percentage distribution of samples of each kind of water: 

about 77% Mg-HCO3 type, 11% Na-Cl type, and about 7% each of Mixed Ca- Na-

HCO3 and mixed Ca-Mg-Cl type. Bicarbonate leads the proportion in the anion’s 

triangle with 83%, followed by chloride with 11 percent, and 6 percent of samples had 

no dominance. For cations, no dominance is the most prominent ion with 48.5 percent 

dominance, magnesium with 34 percent, and 17 percent of samples with sodium type 

(Figure 4.4).  
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Table 4. 6 calculated anions and cations for the Piper plot 

No.  Ca Mg Na + K Cl SO4 HCO3 

1 14.04 62.76 7.33 16.16 4.94 78.90 

2 12.60 59.13 9.33 47.93 14.63 37.44 

3 18.18 49.45 11.51 11.28 5.76 82.96 

4 20.81 52.64 8.99 11.17 4.75 84.08 

5 19.48 51.24 10.14 14.26 7.41 78.33 

6 33.15 40.77 9.43 13.74 8.38 77.89 

7 24.16 59.80 4.97 8.54 4.49 86.97 

8 16.75 52.36 10.72 14.21 7.21 78.58 

9 14.49 10.40 48.72 58.32 8.13 33.55 

10 6.19 49.34 16.91 13.59 10.10 76.31 

11 9.74 48.50 15.72 15.15 10.62 74.23 

12 3.52 18.55 47.79 43.68 7.90 48.42 

13 8.51 55.33 12.68 12.58 6.35 81.07 

14 17.76 46.58 13.12 23.29 8.03 68.67 

15 4.31 39.54 24.45 24.07 12.55 63.37 

16 2.82 31.82 32.15 34.94 13.87 51.19 

17 14.29 42.00 17.33 17.05 6.41 76.54 

18 13.22 42.30 17.68 7.89 3.33 88.78 

19 10.63 42.51 18.87 17.32 15.18 67.51 

20 16.56 42.58 15.87 14.65 10.70 74.65 

21 36.29 29.98 13.61 29.37 12.74 57.89 

22 11.96 53.28 12.25 24.26 24.16 51.58 

23 12.71 47.95 14.65 19.53 22.32 58.15 

24 2.39 9.91 65.21 86.13 5.88 7.99 

25 11.42 65.83 7.06 14.95 8.22 76.83 

26 24.69 27.06 21.80 26.43 12.06 61.51 

27 19.11 42.04 14.96 9.41 8.05 82.54 

28 23.65 51.24 8.51 9.32 5.70 84.98 

29 16.07 44.70 14.90 21.94 9.93 68.13 

30 12.39 49.56 13.94 15.89 21.80 62.31 

31 11.80 51.43 13.23 16.27 22.22 61.51 

32 23.70 46.74 10.51 11.52 6.15 82.33 

33 25.39 50.77 8.05 12.43 6.79 80.78 

34 21.59 20.00 30.00 66.61 14.74 18.65 

35 28.38 24.97 21.17 77.36 10.99 11.65 
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Figure 4. 3 Piper diagram illustrating various hydrochemical facies of 

groundwater 
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a. Water type percentage  

 

 
b. Water type based on Anion and Cation 

 

Figure 4. 4 Percentage of different water types based on the Piper diagram 

4.1.4 Gibbs diagram 

 

Gibbs plot illustrates the chemical specifications of water and the method 

of their interaction with various subsurface rock lithologies. The classification is of 

three types:  type-I evaporation dominant (due to the rate of surface/ subsurface 

evaporation), type-II rock dominance (due to chemical rock weathering by water), and 

type-III precipitation dominance (surface/subsurface precipitation).  
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Table 4. 7 The calculation process for the Gibbs plot  

No

. 

Ca M

g 

Na K HCO

3 

Cl SO

4 

TD

S 

Cl/(Cl+HCO

3) 

(Na+K)/(Na+K+C

a) 

1 26 69 46 5.14 756 90 37 472 0.106332703 0.664247727 

2 46 13

2 

115 7.07 659 490 203 128

5 

0.426532033 0.724950861 

3 33 54 63 6.28 1013 80 55 581 0.073219843 0.679603126 

4 27 42 38 3.94 842 65 37 443 0.071680635 0.603603866 

5 34 54 55 4.64 946 100 70 598 0.095648015 0.640469371 

6 52 39 45 3.34 976 100 83 580 0.092936803 0.481656628 

7 33 49 24 2.41 702 40 29 364 0.053944707 0.441963603 

8 32 61 65 5.16 952 100 69 638 0.095093191 0.685697469 

9 90 39 526 13.2 1183 119

5 

226 343

0 

0.502438614 0.857262868 

10 14 66 107 9.22 1208 125 126 729 0.093787515 0.894992944 

11 18 56 88 5.29 970 115 109 642 0.106000553 0.834344906 

12 38 12

0 

910 80.5 2013 105

5 

259 439

0 

0.343872229 0.963387202 

13 9 35 40 4.85 610 55 38 291 0.082706767 0.836107959 

14 39 62 87 5.5 1116 220 103 879 0.16463369 0.702408844 

15 12 67 175 7.5 1110 245 173 985 0.180785124 0.938262724 

16 10 66 253 5.8 946 375 202 121

8 

0.28398334 0.964122548 

17 26 47 83 16.8

1 

811 105 53 573 0.114591291 0.790418877 

18 20 39 76 2.72 775 40 23 381 0.049097827 0.796607587 

19 13 31 59 10.1

1 

403 60 71 304 0.129701686 0.843394105 

20 34 52 89 9.84 921 105 104 680 0.102329208 0.746885157 

21 62 31 58 14.6

9 

543 160 94 782 0.227628397 0.537741014 

22 18 48 57 3.67 366 100 135 474 0.214592275 0.773821748 

23 18 40 59 5.86 384 75 116 371 0.163291966 0.786715403 

24 27 69 113

3 

23.1 458 286

5 

265 745

0 

0.862302483 0.976979529 

25 41 14

3 

91 3.82 885 100 75 602 0.101574403 0.699295552 

26 50 33 109 3.84 1061 265 164 100

0 

0.199788902 0.694560618 

27 20 27 42 8.46 604 40 46 309 0.062121447 0.714763906 

28 24 32 27 3.37 549 35 29 270 0.059931507 0.560534016 

29 33 55 88 7.25 1122 210 129 799 0.157610327 0.742969844 

30 18 43 60 3.53 506 75 139 450 0.129021159 0.782878687 

31 17 44 58 3.64 488 75 139 452 0.13321492 0.785558573 

 

Continued to the next page  
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Table 4.7 (Continued) 

No

. 

Ca M

g 

Na K HCO

3 

Cl SO

4 

TD

S 

Cl/(Cl+HCO

3) 

(Na+K)/(Na+K+C

a) 

32 30 35 40 4.69 738 60 43 405 0.075178549 0.59942963 

33 32 39 32 5 671 60 44 405 0.082079343 0.533148769 

34 77 43 234 7.8 390 810 243 208

0 

0.674775075 0.758792457 

35 16

8 

90 310 12.2 354 136

5 

263 442

0 

0.794158715 0.657071212 

 

The Gibbs diagram was created by visualizing the main ions data from 

groundwater samples using the following two equations for anions and cations: 

𝐺𝑖𝑏𝑏𝑠 𝑟𝑎𝑡𝑖𝑜 𝐼 𝑓𝑜𝑟 𝑎𝑛𝑖𝑜𝑛𝑠 (
𝑚𝑒𝑞

𝐿
) =  

𝐶𝑙−

(𝐶𝑙−+𝐻𝐶𝑂3
−)

 .......... (4. 3) 

𝐺𝑖𝑏𝑏𝑠 𝑟𝑎𝑡𝑖𝑜 𝐼𝐼 𝑓𝑜𝑟 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (
𝑚𝑒𝑞

𝐿
) =  

𝑁𝑎++𝐾+

(𝑁𝑎++𝐾++𝐶𝑎2+)
 .......... (4. 4) 

As illustrated in Figure 4.5, except for some samples that are dominated 

by evaporation, the rock category dominates the bulk of the samples. The evaporation 

process is rare in surface and subsurface water, but the hot and dry conditions of the 

region's climate can cause some of the samples to fall into it (Selvakumar, 

Chandrasekar, et al., 2017). Nonetheless, maximal observations in rock domination 

show that silicate rocks are chemically degraded with groundwater at appropriate 

pressure and temperature. 

 

Figure 4. 5 Demonstration of principal influencing groundwater chemistry in 

Gibbs plot 
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4.1.5 Single factor pollution index  

Table 4.8 displays the single-factor pollution index technique's 

environmental quality standard assessment grading. Based on Figure 4.6 EC, 66% of 

groundwater samples illustrated no pollution, 20% are slightly polluted, 3% are lightly 

and moderately polluted, but 9% are seriously polluted. pH in all samples is safe. TDS 

has no pollution marks in 77% of the samples. Total hardness in 89% of samples has 

no pollution. From the TH perspective, only 11% of the samples have slight pollution 

conditions. Ca also has shown no pollution in 91% of samples and 6 and 3 percent 

slightly to moderately polluted, respectively. Mg only has pollution in samples that are 

different. Only 3% of samples are safe, 66% are slightly polluted, 23% are lightly 

polluted, and 9% are moderately polluted. Na in 83% of samples are not safe. 

Bicarbonate in 29% of samples is safe, while in 66% of samples slightly polluted. Cl 

in 77% of samples, Sulphate in 91%, fluoride in 100%, potassium in 86%, and nitrate 

in 97 percent of analyzed samples are safe. To sum up, EC, Mg, and HCO3 are the 

parameters that illustrate most pollution conditions in groundwater.  

Table 4. 8 Water quality level determination based on the single factor pollution 

index method. 

Water quality level Pi Pollution assessment 

1 ≤ 1 No pollution 

2 1-2 Slightly pollution 

3 2-3 Lightly pollution 

4 3-5 Moderately polluted 

5 > 5  Seriously polluted 

 

 

Figure 4. 6 Results of water quality assessment by single factor pollution index 

method. 

EC PH TDS TH Ca Mg Na

≤ 1 No pollution 66% 100% 77% 89% 91% 3% 83%

1 to 2 Slightly pollution 20% 0% 9% 11% 6% 66% 9%

2 to 3 Lightly pollution 3% 0% 3% 0% 3% 23% 3%

3 to 5 Moderately polluted 3% 0% 9% 0% 0% 9% 3%

> 5 Seriously polluted 9% 0% 3% 0% 0% 0% 3%
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Figure 4.6 Continued.  

4.1.6 Nemerow pollution index method 

Table 4.9 displays the grading scale for the Nemerow pollution index 

method of evaluating environmental quality. The spatial distribution map of the 

Nemerow pollution index has been created using the IDW technique in the ArcGIS 

environment. As illustrated in Figure 4.7, based on the Nemerow pollution index, most 

of the area has low pollution conditions. Some central-northern parts of the area have 

moderately polluted conditions, and only one monitoring well in the north shows high 

pollution. Some monitoring wells in the western part of the study area illustrated clear 

water conditions. Based on Figure 4.8, 20% of the samples are clear water, 63% are 

low pollution, 14% are moderate pollution, and only 3% are highly polluted.  

Table 4. 9 Nemerow pollution index technique for determining water quality 

level. 

Water quality level PN Pollution assessment  

1  PN ≤ 1 Clearwater  

2 1 < PN ≤ 2.5 Low Pollution 

3 2.5 < PN ≤ 7 Moderate Pollution 

4 PN > 7 High Pollution 
 

HCO3 Cl SO4 F K NO3

≤ 1 No pollution 29% 77% 91% 100% 86% 97%

1 to 2 Slightly pollution 66% 9% 9% 0% 14% 3%

2 to 3 Lightly pollution 3% 9% 0% 0% 0% 0%

3 to 5 Moderately polluted 3% 6% 0% 0% 0% 0%

> 5 Seriously polluted 0% 0% 0% 0% 0% 0%
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Figure 4. 7 Spatial distribution map of Nemerow pollution index 

 

 

Figure 4. 8 Percentage of samples analyzed based on Nemerow pollution index 
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4.1.7 Water quality index of groundwater 

WQI is a concise, consistent, and dependable index for analyzing 

groundwater quality and determining its safety for drinking. Water has been 

categorized into five classes based on WQI values, including excellent water 

type (WQI less than 50), good water type (WQI 50-100), poor water type (WQI 100-

200), very poor water type (WQI 200-300), and unsafe for drinking (WQI greater 

than 300). Most of the samples assessed in the Kabul basin were deemed good water. 

As shown in the scatter plot (Figure 4.6), based on WQI results, 42.85% of observed 

samples are excellent water. Also, 45.71% of tested water is good water for drinking. 

The poor and very poor classes of water types each have 5.71%, respectively. Table 

4.10 indicates no samples of the unfit-for-drinking water type have been identified. 

Figure 4.9 illustrates the WQI geospatial distribution map. The high value of WQI is 

seen in the central (wells 9 and 12) and northern parts (wells 24,34 and 35) of the basin.  

Table 4. 10 Water quality index-based groundwater classifications 

WQI level Water type Samples Percentage 

< 50 Excellent water 15 42.86% 

50.00 - 100 Good water 16 45.71% 

100.01 - 200 Poor water 2 5.71% 

200.01 - 300 Very poor water 2 5.71% 

> 300 Unfit for drinking proposes Nil Nil  
Total 35 100.00% 

 

Higher content of EC, chloride, sodium, and calcium, accompanied by 

sulfate and bicarbonate, indicate that the investigated location's rock–water interaction 

mechanism is the primary source of water quality decline. Agricultural activities may 

also have an impact on the sample wells in the center region of the basin. In the center 

regions of the Kabul basin, there are several agricultural fields around the mentioned 

wells. The high WQI values in this area might be attributed to the widespread usage 

of fertilizers combined with a lack of appropriate waste disposal facilities. 
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Figure 4. 9 Scatter plot showing water quality index (WQI) distribution in 

samples 

 

Figure 4. 10 Geospatial model of water quality index (WQI) in Kabul Basin 
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4.2  Development of ANN model 

The correlation of groundwater quality data has been studied and evaluated 

to develop the ANN model. The water quality from the previous section obtained from 

laboratory test results at DTU was utilized to produce a model for water quality 

prediction by the ANN method. First, there is a need to know the highest correlation 

between different water quality parameters. Figure 4.10 shows the correlation matrix 

of water quality figures. The correlation matrix indicates a strong positive correlation 

between EC, TDS, Salinity, Sodium, and Chloride. A moderate correlation exists 

between EC, TDS, Salinity, Sodium, Chloride, Total Hardness, and potassium. As well 

as Total Hardness has a strong correlation with magnesium hardness and magnesium. 

Since the determination of EC, TDS, and salinity is simple and done in situ, these 

parameters have been selected as input for developing the ANN model. The output 

parameters are Sodium, Chloride, Sulphate, and potassium.  
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4.2.1 Network Architecture 

In the ANN model, Neural Network/Data Manager (nntool) was selected 

based on its excellent accuracy in similar function approximation, which contains 

many input data sets. Neural networks are made of three different layers: the input 

layer, the hidden layer, and the output layer. Their water quality parameter (i.e., EC, 

TDS, and Salinity), which can be measured easily in situ using portable water quality 

test devices, has been used as an input layer. The model has been developed separately 

for each output target (i.e., Na, Cl, SO4, K).  Out of 35 water samples, 25 were used 

for training and testing the model, and ten were used for prediction purposes and 

accuracy assessment. The model used in this research will be trained using ten hidden 

neurons. After observing the regression terms and mean square error (MSE) terms, the 

final network structure (3-10-1) was selected. Figure 4.12 shows a typical structure of 

the ANN model for the current study.  

 

Figure 4. 12 Typical structure of ANN model 

4.2.2 Performance of ANN model 

Here is an illustration of the numerous phases taken in constructing the 

model. An ANN model is created using the MATLAB R2016a program, version 

9.0.0.341360. The program is simple to use and has a wide range of uses. 

4.2.3 Inputs 

Salinity, TDS, and EC are chosen as the input data. A 3 x 25 matrix makes 

up the complete input data set. It has three parameters drawn from 25 sample sites. 

The input data is copied from the Excel sheet database. A new variable was created in 

the MATLAB workspace and renamed “input.” The copied data from the Excel sheet 

is pasted into a variable (input) in MATLAB. The pasted data has been transposed in 

the MATLAB environment for further processing. Each input matrix row represents a 

water quality indicator of the study area.  

To justify the model's validity, a new variable has been created in the 

MATLAB workspace named “sample.” The remaining data from the database (10 

remaining samples out of 35 samples) of groundwater quality data has been copied 

from the Excel sheet and pasted into this new variable (sample) in the MATLAB 

environment. After training the model, the sample data was inputted for the proposed 
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simulation. The values of the simulation and the precise values of the lab report's data 

should be equal, or their differences should be tiny.  

4.2.4 Targeted outputs 

The Sodium, Chloride, sulfate, and potassium values of 25 locations, 

which are found from water quality analysis, are copied from Excel sheet data and 

pasted in newly created variables in MATLAB workspace named “Na_Target, 

Cl_Target, Sulfate_Target, and Potassium_Target.” Each newly focused variable is 

represented as a 1 x 25 matrix. The ANN model must be trained to produce this new 

variable, which is the desired outcome.  

4.2.5 Neural Network Tool 

Neural Network Tool (NNT) provides tools, functions, and applications 

for building, practicing, simulating, and visualizing neural networks. It can carry out 

time-series prediction, dimensionality reduction, clustering, regression, classification, 

and dynamic system modeling and control. An input-output network with two layers 

and several types of networks is solved using NNT. The neural network maps between 

the numerical input dataset and numerical targets in fitting problems. Mean square 

error and regression analysis are used by NNT to assess the performance of neural 

networks. After adding input, target, and sample data in the workspace, by writing 

nntool command in the command window, the Neural network/data manager (nntool) 

page will appear. By selecting the import option, the input, sample, and target data will 

be imported into the Neural Network page by selecting their correct path. A new 

network can be created on the Neural Network page. The new network can be renamed 

based on desired outputs (i.e., Na, Cl, Sulfate, Potassium, TH). 

4.2.6 Network specifications  

By renaming the network, the process will proceed with selecting the 

network type. All network types are selected for this modeling based on the “Feed-

Forward Backup” type. After selecting input and output data, the training function will 

be selected. Mainly, the “TRAINLM” function is used. The adoption learning function 

which is mainly used is “LEARNGDM.” The adopted performance function is Mean 

Square Erro “MSE.” The number of layers is typically 2, and properties were selected 

for layer 1. The number of neurons and transfer functions varies based on the desired 

output variable, illustrated in Table 4.11. 
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Table 4. 11 Illustrate the summary of each network specification. 

target 

variable 

Network type No. of 

neuron 

Transfer 

Function 

R 

Sodium Feed-forward 

backup 

10 LOGSIG 0.996 

Chloride Feed-forward 

backup 

10 LOGSIG 0.999 

Sulphate Feed-forward 

backup 

10 PURELIN 0.927 

Potassium Feed-forward 

backup 

10 LOGSIG 0.955 

Total 

Hardness 

Feed-forward 

backup 

20 TANSIG 0.92 

 

4.2.7 Train network  

The network is trained to match the input and targets. Except for “max fail 

= 1000”, the network has been trained using the default training parameter settings. 

When generalization reaches a plateau, training is automatically terminated. Mean 

Squared Error is the average squared difference between input and targets. The MSE 

should be lower. Zero denotes the absence of inaccuracy. R values measure the 

correlation between production and objectives. An R-value of 1 indicates that the NNT 

output and the desired values are most closely related. About 70% of the samples were 

used in the training process. The MSE and R values are 827.04665e-0 and 9.966e-1, 

respectively. With a low MSE and R-value close to 1, training has demonstrated the 

best results. Numerous training trials have been conducted while modifying the 

transfer function and number of neurons. The best result for each parameter was found 

in the last trials. With 1000 epochs, the training was generalized. This allows for 

determining the number of iterations, time required for convergence, performance 

status, validation checks, gradients, etc. The performance plot and training status for 

Na modeling are presented in Figures 4.13 and 4.14. 
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Figure 4. 13 Performance plot of the network for modeling of Na.  

 

Figure 4. 14 Training status of the network for modelling of Na 
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The regression value R gives a measure or relationship between training 

output and targeted output. The R-value was 0.70 in early iterations, then reached 0.80 

and 0.996. At the end of 1000 epochs, the R-value has a maximum of closer to 1. This 

shows the presence of a high correlation between output and targeted values. The 

various R values are illustrated in Figure 4.15.  

 

Figure 4. 15 Regression plot of the training network for modelling of Na 
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a. Sodium  b. Chloride  

  

c. Sulfate  d. Potassium  

 

e. Total Hardness  

Figure 4. 16 Comparative illustrations of output figures from ANN model and 

target data (exact water quality data) 
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The results of the training of neural networks are satisfactory, and the 

results are saved. Simulink diagrams are formed to give different inputs and get 

respective outputs to apply the trained network to meet its purpose. The display option 

is preferred to display the Na value as output. The Simulink library browser option of 

the network is chosen to formulate the required Simulink diagram. The Simulink is 

saved as mdl file of MATLAB. The various inputs are given in the constant value box 

of the source block parameter window. The input values are saved, and the program is 

run. The output value is shown in the display box of the Simulink window. Figure 4.16 

illustrates the exact water quality values used as target data and the ANN output values 

for all parameters that have been modelled. 

4.2.8 Validation of ANN models 

The model's validity is checked with the groundwater quality test results, 

which have been tested in the DTU Department of Environmental Engineering. Out of 

35 tested groundwater samples, only 25 were used to train the models, and ten 

remaining samples were randomly used to validate the model. The inputs are named 

as sample and fed into the ANN model. Na content of the sampling points are 

determined from ANN model. Comparisons are made between the output from the 

ANN model and the Na content of the observations from the DTU lab results. It 

mentions the variance's proportion. For a few other factors, this process is performed 

as well. The DTU lab findings for water quality and the ANN output are used to assess 

the model's validity. 

The results of water samples collected from ten different places and 

analysed in a water lab for water quality parameters were compared to ANN findings 

to investigate the model's practical applicability. A comparison of water quality from 

the lab test results and simulation from the ANN model is illustrated in Figure 4.17.  

Groundwater quality test data from DTU water lab reports are used to 

verify the model's accuracy. Ten water samples were chosen randomly, and the results 

were utilized to simulate the water quality characteristics.  

The validation using lab findings is shown here for the ANN model created 

for the autumn season. By utilizing an ANN model, it is possible to determine the 

presence of water quality characteristics at the sample locations. Comparing ANN 

findings with the water quality content in the groundwater at certain sample places. 

Table 4.12 offers an overview of the validation outcomes. 

The findings of the feasibility test are used to determine if the ANN model 

application is practically feasible. Since the samples for the feasibility test were 

gathered in the autumn, the ANN model created for that time of year was utilized to 

validate the findings. Table 4.13 provides a summary of the validation outcomes.  
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a. Sodium  b. Chloride 

  

c. Sulfate  d. Potassium  

 

e. Total Hardness  

Figure 4. 17 Comparative illustrations of simulated figures by ANN model and 

actual data from lab 
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The results of the ANN model for simulating sodium concentration in 

groundwater based on input data (EC, TDS, Salinity) have an average variance of 

11.53%. The average variance for chloride and sulfate is 3.83% and -3.41%, 

respectively. However, the average variance for potassium and total hardness is 

259.6% and 45.25%, respectively. These differences in mean percentage of variances 

show the models' accuracy and suitability. Based on these percentages, one can 

conclude that the model is very suitable for simulating the concentrations of sodium, 

chloride, and sulfate in groundwater with the suggested inputs (EC, TDS, and Salinity). 

However, looking at Figure 4.18 d and e, it can be seen that the output result of 

potassium quality parameters and total hardness after several trainings of the model 

seem to be excellent. But, looking at Table 4.10, it can be seen that the model's output 

does not match the real values from the water laboratory. Therefore, the model is 

unsuitable for predicting potassium and total hardness in groundwater with the same 

inputs.  It can be said that the parameters of potassium and total hardness might need 

more correlated inputs for better results.  

4.2.9 Summary and applications of ANN  

A new location's groundwater quality often requires extensive research, 

which takes time and money. However, creating an expression to determine the value 

of water quality parameters before analyzing the water in a water lab is pretty 

challenging. Due to the significant nonlinearity of the pertinent parameters, it is quite 

tricky. Therefore, a method using artificial intelligence is presented in this study to 

derive the values of water quality parameters from these nonlinear and naturally drastic 

regulating factors. An artificial neural network is deemed suitable for this based on its 

underlying concepts. 

The following is the procedure for utilizing the ANN software. A well is 

chosen from the research area's base map. Groundwater quality metrics such as EC, 

TDS, and salinity are in-situ measured using portable instruments. As a result, the 

generated ANN model is fed the input's arriving values. The result is a single number 

representing the target parameters' value in mg/L. 
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4.3  Seasonal water quality analysis  

The findings of the groundwater quality data subsequent processing and 

assessment are illustrated here. In the first stage, groundwater quality in the study 

region was evaluated using descriptive statistics and compared with drinking water 

quality regulations. Additionally, statistical studies such as the "paired-samples t-test" 

and "Wilcoxon signed-rank test" are available to evaluate the significance of seasonal 

variations in groundwater quality in the research region. Lastly, geospatial maps 

illustrating the regional distribution of groundwater quality characteristics with 

concentrations more than WHO/ANSA drinking water guidelines exhibit statistically 

significant seasonal changes. One parameter has no concentration exceeding 

WHO/ANSA guidelines and does not exhibit substantial changes. Furthermore, 

change maps demonstrating seasonal changes in groundwater quality metrics are 

shown in a geographically dispersed format. 

4.3.1 Generic evaluation of the quality of groundwater  

A summarized output of statistical evaluation added a comparison of water 

quality with drinking water quality regulations represented in Tables 4.14 and 4.15. 

According to the findings, the Kabul basin's groundwater temperature (T) varied from 

12.2 to 23.1 degrees Celsius in August and September and from 12 to 27 degrees 

Celsius in March and May. The pH ranges for all samples were 6.96–8.21 in the dry 

period and 7.08–8.57 in the wet period, indicating neutral to mild alkaline waters 

within permitted drinking water standards. The high EC values for most samples and 

the comparatively significant standard deviations are evident. According to WHO and 

ANSA, the maximum permissible concentration of EC in drinking water is 1500 

µS/cm (ANSA, 2013; WHO, 2011). More than 40% of sampling points have EC 

higher than regulations limits in both seasons. 

TDS and TH values were statistically similar to EC. The TDS in sampling 

points ranged between 241 to 6354 mg/l in the dry period and 353 to 5807 mg/l in the 

wet period. The mean content of TDS is 1240 and 1205 mg/l for dry and wet seasons, 

respectively. More than 20% of the samples in both seasons exceeded the required 

TDS limits (1500 mg/l suggested by ANSA) in drinking water. Total hardness in April-

May varies from 28 to 2700 mg/l with a mean of 847 and a standard deviation of 567 

mg/l. From August to September, it varies from 50 to 3580 with a mean value of 772 

and a standard deviation of 745 mg/l. The maximum overall allowed total hardness 

suggested by WHO and ANSA is 500 mg/l. More than 50% of samples in the dry 

season and more than 70% in the wet season exceed the guidelines values.  
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Table 4. 14 Results of sample investigations statistically summarized and 

compared to drinking water quality requirements for Aug & Sep 2017 (Dry 

season) 

Water 

quality 

parameter

s 

Unit Regulations 

for drinking 

water quality 

Wells (n = 53) Samples 

exceeding WHO 

or ANSA limits 

WH

O 

ANS

A 

Min Mean Max Standar

d 

Deviatio

n 

No. of 

Sample 

% Of 

Sample 

T C 12 to 

25 

12 to 

25 

12.2

0 

17.24 23.10 2.09 Nill Nill 

pH  - 6.5 - 

8.5 

6.5 - 

8.5 

6.96 7.54 8.21 0.27 Nill Nill 

EC µS/c

m 

1500 1500 364.

0 

1888.1

1 

9600.

0 

1940.49 22.00 41.51 

TDS mg/l 1000 1500 241.

7 

1240.0 6353.

6 

1316.31 22.00 41.51 

TH mg/l 500 500 50.0

0 

771.74 3580.

0 

744.57 27.00 50.94 

Ca mg/l 75 75 16.0

0 

117.56 505.0

0 

99.77 31.00 58.49 

Mg mg/l 30 30 13.1

0 

285.64 1977.

9 

360.72 48.00 90.57 

Na mg/l 200 200 0.00 123.62 1400.

0 

247.63 7.00 13.21 

HCO3 mg/l 600 600 150.

0 

388.68 1600.

0 

217.29 4.00 7.55 

F mg/l 1.5 1.5 0.00 0.49 1.21 0.40 0.00 0.00 

Cl mg/l NA 250 0.00

0 

0.011 0.050 0.014 0.000 0.00 

NO3 mg/l 50 50 0.00 2.42 7.50 1.86 0.00 0.00 

SO4 mg/l 250 250 5.00 105.51 1000.

0 

134.16 2.00 3.77 

PO4 mg/l NA 6 0.00 0.25 2.12 0.32 0.00 0.00 

K mg/l 10 10 0.90 17.73 146.2

0 

29.20 16.00 30.19 

Al mg/l 0.2 0.2 0.00

0 

0.035 0.214 0.062 6.000 11.11 

Mn mg/l NA 0.3 0.00

0 

0.724 11.50

0 

1.554 30.000 55.56 

Fe mg/l 0.3 0.3 0.00

0 

0.057 0.610 0.112 3.000 5.56 

CN mg/l NA 0.05 0.00

0 

0.012 0.270 0.039 3.000 5.56 

Cu mg/l 2 2 0.00

0 

0.311 6.710 0.990 1.000 1.85 

 

The calcium concentration in the wet season varies from 8 to 721 mg/l, 

with 73% of samples greater than WHO and ANSA limitations (>75mg/l). The mean 

concentration of Ca in the wet season is 193, and its standard deviation is 170 mg/l. It 

ranges from 16 to 505 mg/l in the dry season, with 58% of samples greater than the 
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guideline value. In the autumn, the mean value of Ca is 118, and the standard deviation 

is 100 mg/l. In the wet season, magnesium concentrations range from 4.8 to 589 mg/l, 

with a mean of 118.2 and a standard deviation of 117. About 70% of samples exceed 

the guidelines for drinking water in the wet season. The minimum Mg concentration 

in the dry season is 13, and the maximum is 1977 mg/l, with a mean of 286 and a 

standard deviation of 360 mg/l. About 90% of samples exceeded WHO and ANSA 

standards for drinking water (> 30 mg/l). In the wet season, sodium concentrations 

vary from 25 to 1800 mg/l, with a mean of 173 mg/l. Meanwhile, in the dry season, 

it ranges from 0 to 1400 mg/l, with a mean of 123 mg/l. About 16% of samples in the 

spring and around 13% in the autumn exceed the drinking water guidelines 

requirements.  

Manganese is the other ion concertation with a high concentration in both 

seasons. In the wet season, about 75% of samples and about 55% in the dry season 

exceed the guideline. Potassium concentration in both seasons has exceeded the 

guideline with more than 30% sampling points. Fluoride, chloride, nitrate, and 

phosphate are the parameters with concentrations less than the maximum limits of 

WHO and ANSA in the autumn. In the spring, fluoride and chloride concentrations 

exceed the guidelines in some low percentages. Bicarbonate, sulfate, aluminum, iron, 

cyanide, and copper are the parameters in which less than 10% of samples have a 

concentration higher than drinking water quality standards.  

Eventually, the groundwater in the Kabul basin is of poor quality 

compared to existing guidelines. Most qualitative indicators, such as EC, TDS, TH, 

Ca, Mg, Na, Mn, and K, are the parameters that exceed the suggested ranges of 

guidelines for drinking water. On the other hand, from descriptive statistics, the 

concentration of most qualitative parameters in the spring is higher than in the autumn. 

This evaluation is discussed later in this study.  

4.3.2 Seasonal variations in the groundwater quality 

At the inception stage, the "K–S test" was employed to investigate the 

statistical distribution of variances. For each quality metric across data sets, the 

difference in values between spring and fall was stated as follows: 

𝑑𝑖 = 𝑥1𝑖 − 𝑥2𝑖 .......... (4. 5) 

Where 𝑖 indicates the groundwater quality indicator,  

𝑥1𝑖 shows metrics from the dry period (measurements of Aug - Sep 2017) 

𝑥2𝑖 illustrates metrics of the wet period (measurements of Mar-May 2018) 

The null (H0) and alternative (Hs) hypotheses are developed as follows to 

figure out if the changes are normally distributed:  

H0: The observed data set has a normal distribution.  

Hs: The observed data set has no normal distribution.  
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Table 4. 15 Results of sample investigations statistically summarized and 

compared to drinking water quality requirements for Mar-May 2018 (Wet 

season) 

Water 

quality 

parameter

s 

Unit Regulations for 

drinking water 

quality 

Wells (n = 53) Samples 

exceeding WHO 

or ANSA limits 

WH

O 

Nationa

l 

Min Mean Max Standard 

Deviation 

No. of 

Sampl

e 

% Of 

Sampl

e 

T C 12 to 

25 

12 to 25 12.0

0 

17.68 27.00 2.55 Nill Nill 

pH  - 6.5 - 

8.5 

6.5 - 8.5 7.08 7.58 8.57 0.30 Nill Nill 

EC µS/c

m 

1500 1500 380. 1817. 8710.

0 

1552.47 25.00 47.17 

TDS mg/l 1000 1500 253. 1205.

6 

5807.

5 

1042.71 11.00 20.75 

TH mg/l 500 500 28.8

0 

847.3

4 

2700.

0 

566.93 38.00 71.70 

Ca mg/l 75 75 8.02 192.8

2 

721.4

0 

170.62 39.00 73.58 

Mg mg/l 30 30 4.80 118.0

2 

584.7

0 

116.59 37.00 69.81 

Na mg/l 200 200 25.0

0 

173.8

7 

1800.

0 

272.14 9.00 16.98 

HCO3 mg/l 600 600 125.

0 

368.4

0 

775.0

0 

134.02 2.00 3.77 

F mg/l 1.5 1.5 0.02

0 

0.751 4.010 0.727 3.00 5.66 

Cl mg/l NA 250 -

0.02

0 

20.67

4 

331.0

0 

51.530 1.000 1.89 

NO3 mg/l 50 50 -2.60 2.69 8.70 2.22 0.00 0.00 

SO4 mg/l 250 250 7.00 165.6

4 

1900.

0 

339.02 3.00 5.66 

PO4 mg/l NA 6 0.05 0.32 4.05 0.56 0.00 0.00 

K mg/l 10 10 0.30 17.43 142.8

0 

26.42 17.00 32.08 

Al mg/l 0.2 0.2 -

0.02

0 

0.026 0.152 0.045 0.000 0.00 

Mn mg/l NA 0.3 -

0.50

0 

6.618 266.0

0 

36.581 40.000 75.47 

Fe mg/l 0.3 0.3 0.00

0 

0.114 1.160 0.221 5.000 9.43 

CN mg/l NA 0.05 0.00

0 

0.008 0.130 0.018 1.000 1.89 

Cu mg/l 2 2 0.00 0.31 4.26 0.79 3.000 5.66 
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The calculated p-values have been compared with the selected significance 

level (α = 0.05), and the output statistical test is concluded in Table 4.16. Since all 

groundwater quality variables except Calcium and Nitrate have an abnormal 

distribution (95% confidence interval) substantially, the nonparametric "Wilcoxon 

rank test" has been utilized to examine the significance of groundwater quality 

variation. For the Ca and NO3 (seasonal differences of Ca and NO3 concentration), the 

p values were larger than the α values (p = 0.072 > 0.05 and p = 0.2 > 0.05 for Ca and 

NO3, respectively); consequently, the alternative hypothesis has been rejected, and the 

data of Ca and NO3 might be regarded to have a normal distribution with a 95% 

confidence interval. 

Table 4. 16  Result of the "Kolmogorov-Smirnov test" for normal distribution 

of seasonal changes (n=53) 

Differences of 

Parameters 

Mean SD K-S 

Statistic 

p 

Value 

Hypothesis 

EC 70.717 831.694 0.311 0.000 Hs 

pH -0.039 0.232 0.152 0.004 Hs 

TDS 34.368 543.813 0.320 0.000 Hs 

TH -75.600 741.260 0.160 0.002 Hs 

Ca -75.260 187.179 0.116 0.072 H0 

Mg 167.619 341.657 0.189 0.000 Hs 

Na -46.962 193.054 0.177 0.000 Hs 

HCO3 20.283 156.216 0.292 0.000 Hs 

Cl -20.663 51.532 0.344 0.000 Hs 

F -0.260 0.853 0.200 0.000 Hs 

SO4 -60.136 349.471 0.420 0.000 Hs 

PO4 -0.069 0.606 0.258 0.000 Hs 

K 0.299 18.065 0.294 0.000 Hs 

NO3 -0.271 2.187 0.093 0.200 H0 

Fe -0.057 0.218 0.287 0.000 Hs 

Mn -5.894 36.602 0.480 0.000 Hs 

Cu 0.001 1.097 0.332 0.000 Hs 

Al 0.009 0.085 0.229 0.000 Hs 

CN 0.004 0.043 0.361 0.000 Hs 

 

To statistically examine seasonal groundwater quality changes, the 

following null (H0) and alternative (Hs) hypotheses were proposed: 

H0: The change in seasonal concentration values between dry and wet 

seasons is insignificant.  

Hs: The change in seasonal concentration values between dry and wet 

seasons is significant. 
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The "t-test" can only be used for Ca and NO3 variables based on the results 

of the statistical normality test because their seasonal fluctuation has a normal 

distribution. Ca's seasonal variation is statistically significant, as shown by the paired 

samples "t-test" analysis (Table 4.17). The alternative hypothesis was accepted 

because the p-value is smaller than the α value (p = 0.005 less than 0.05). It was 

established with a 95% confidence interval that calcium concentrations significantly 

vary from the dry to wet period. Although the mean Ca content increased from 117.56 

to 192.82 mg/l over time (all sample sites), the statistical test findings significantly 

increased. 

Furthermore, the "t-test" result for NO3 shows that the seasonal change in 

its concentration is not statistically significant. The calculation results show that the p-

value is larger than the α value (p = 0.372 > 0.05); eventually, the null hypothesis was 

accepted, and the alternative hypothesis was rejected with a 95% confidence interval. 

It was concluded that there is no significant variation in NO3 levels from the dry to 

rainy periods. In addition, the average NO3 level rose significantly from 2.42 to 2.69 

mg/l over time. The increase was not significant according to the statistical test results. 

Table 4. 17 Summary of paired sample "t-test" for Ca and NO3 

Parameters Mean SD 95% Confidence Interval 

of the Differences 

t p Hypothesis 

Lower Upper 

Ca -75.260 187.179 -126.853 -23.667 -2.927 0.005 Ha 

NO3 -0.271 2.187 -0.874 0.332 -0.901 0.372 H0 

 

The "Wilcoxon signed-rank test" was used to determine if seasonal 

variations in quantities of several groundwater quality measures, including EC, pH, 

TDS, TH, Mg, Na, HCO3, Cl, F, SO4, PO4, K, Fe, Mn, Cu, Al, and CN, were 

statistically significant. 

The test results are shown in (Table 4.18) and revealed that most seasonal 

variations were statistically insignificant. On the other hand, the changes in Mg, Na, 

Cl, F, Fe, and Mn contents appeared significant. The table provided positive rankings 

to data pairs with the increasing conditions in their values from dry to wet season. 

Negative ranks have been employed in the opposite instance. The alternative 

hypothesis has been accepted for the data pairs of Mg, Na, Cl, F, Fe, and Mn since p 

< α. From a statistical standpoint, the seasonal variation in concentrations constituted 

significant. It can be summarized that except for Mg, which decreased its concentration 

from the dry to the wet season, the concentration of all other parameters, i.e., Na, Cl, 

F, Fe, and Mn, increased in the spring. The null hypothesis has been accepted since p 

> α for the rest of the water quality parameters.  
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Table 4. 18 Summary of Wilcoxon signed-rank test 

Parameter

s 

Negative ranks Positive ranks Test statistics  

Hypothesi

s 
n  Mean 

rank 

sum 

of 

ranks 

n  Mean 

rank 

sum of 

ranks 

Ties Z p 

EC 2

5 

25.92 648 2

8 

27.96 783 0 -

0.598b 

0.55 H0 

pH 2

3 

24.57 565 2

9 

28.03 813 1 -

1.129b 

0.259 H0 

TDS 2

4 

24.52 588.5 2

8 

28.2 789.5 1 -

0.915b 

0.36 H0 

TH 2

2 

24.25 533.5 3

0 

28.15 844.5 1 -

1.416b 

0.157 H0 

Mg 4

1 

28.46 1167 1

2 

22 264 0 -

0.997a 

0.000 Ha 

Na 1

6 

23.44 375 3

3 

25.76 850 3 -

2.363b 

0.018 Ha 

HCO3 2

8 

21.46 601 1

8 

26.67 480 7 -

0.666a 

0.505 H0 

Cl 7 8.93 62.5 4

1 

27.16 1113.5 5 -5.393 

b 

0.000 Ha 

F 1

9 

25.24 479.5 3

4 

27.99 951.5 0 -2.089 

b 

0.037 Ha 

SO4 2

5 

23.32 558 2

6 

29.54 768 2 -0.985 

b 

0.325 H0 

PO4 2

1 

24.4 512.5 2

9 

26.29 762.5 3 -1.207 

b 

0.227 H0 

K 2

0 

29.28 585.5 3

3 

25.62 845 0 -1.151 

b 

0.25 H0 

Fe 1

1 

28.55 314 3

7 

23.3 862 5 -2.814 

b 

0.005 Ha 

Mn 2

0 

23.15 463 3

3 

29.33 968 0 -2.236 

b 

0.025 Ha 

Cu 2

2 

28.59 629 3

0 

24.97 749 1 -0.547 

b 

0.584 H0 

Al 2

2 

28.82 634 2

9 

23.86 692 2 -0.272 

b 

0.786 H0 

CN 1

8 

22.08 397.5 2

6 

22.79 592.5 9 -1.14 b 0.254 H0 

a. according to negative rank  

b. according to positive rank 

Numerous factors, such as mineral dissolution, anthropogenic and urban 

influences, and evaporitic lacustrine deposits, are potential indicators that could impact 

groundwater quality. The critical determining element of groundwater quality in the 

Kabul basin, according to Zaryab et al. (2021), is evaporitic lacustrine deposits. The 

interaction of water with particular rocks and minerals, such as gypsum and limestone, 

is the cause of the presence of Calcium and magnesium in groundwater. The presence 

of sodium and chloride in groundwater can be attributed to several sources, "including 

the weathering of minerals in the soil, salt-bearing geological formations, deposition 

of salt spray, the use of salt for road de-icing, and in coastal areas, intrusion of salty 

ocean water into fresh groundwater sources." Fluoride is found in groundwater due to 
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weathering and leaching of fluoride-bearing minerals from sediments and rocks. The 

most frequent sources of iron and manganese in groundwater occur naturally, such as 

weathering rocks and minerals containing iron and manganese. Sewage, landfill 

leachate, industrial effluent, and acid-mine drainage can all add iron and manganese 

to the surrounding groundwater.  

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 

 

Figure 4. 18 Spatial distribution maps a. Ca and EC dry season, b. Ca and EC 

wet season, c. change in EC, d. Change in Ca, e. TDS and Mg dry season, f. TDS 

and Mg wet season, g. Change in TDS, h. Change in Mg 
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Figure 4.18 (Continued)  

According to those above, the weathering of minerals and rocks is 

significant in determining most quality criteria in groundwater. Seasonal precipitations 

may infiltrate the soil beds along rivers and nearby lands, sometimes agricultural fields 

and hillsides. During infiltration, they come into contact with rocks and minerals 

containing magnesium, sodium, Calcium, fluoride, and chloride. This can be the main 

reason for increasing these parameters in groundwater in the wet season. The 

infiltration and weathering of minerals in the soil is also a case of iron and manganese. 

Another reason that may increase iron and manganese in groundwater is the infiltration 

of surface water contaminated with sewage through the river beds and municipality 

channels. The city of Kabul does not have a sewage collection and disposal system. 

4.3.3 Spatio-seasonal evaluation of groundwater quality criteria  

In order to spatially depict the quality of groundwater in the Kabul basin, 

spatial distribution maps of some qualitative indicators of groundwater were prepared 

for both dry and wet seasons. Qualitative variables like EC, TDS, TH, Ca, Mg, K, and 

Mn were chosen for geographic distribution maps since their values exceed WHO and 

ANSA drinking water recommendations. Parameters like Ca, Mg, Na, Cl, F, Fe, and 

Mn were considered for spatial distribution maps because they have significantly 

changed. One parameter (NO3) was chosen for the geographical distribution map from 

the other qualitative indicators that are not above WHO and ANSA criteria and have 

not been modified considerably. Furthermore, the spatial distribution maps of changes 

illustrating the degree of differences in measurement results were created to highlight 

how the regional distribution of several groundwater quality indicators altered as the 

seasons switched from dry to wet. 

The spatial pattern of EC contents and Ca values for each measurement 

interval is presented in Figure 4.18 a and b. The concentration of electrical 

conductivity in the west and north parts of the basin is less than 3,000 μS/cm. Only a 

few wells in the central-eastern part of the basin have an electrical conductivity higher 

than 3,000 μS/cm for both seasons. Also, the concentration of Ca is lower in the 

marginal areas added in the western and northern parts of the basin but increases in the 
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central and southeastern parts of the basin and reaches more than 300 mg /l. Figure 

4.18 c and d illustrate the change in EC and Ca in the study area from the dry to wet 

season. The concentration of EC has grown throughout the study's peripheral regions, 

particularly in the south, north, and west. The EC value decreased in other parts of the 

area by changing the season from dry to wet. The minus marks in the figure's legends 

illustrate the decrease in concentration, while the plus marks indicate increased 

concentrations. Ca concentrations in the study region declined in the north, west, and 

some eastern sections up to -240 mg/l but climbed to 630 mg/l in the middle and south. 

Figure 4.18 e and f illustrate the spatial distribution maps of TDS and Mg 

concentrations. TDS values in most observation wells are less than 1000 mg/l in both 

seasons. Only three wells in the middle and central-eastern regions of the basin have 

values larger than 1500 mg/l during the dry season, whereas eleven wells have values 

greater than 1500 mg/l during the wet season. Mg concentration exceeds 400 mg/l in 

most of the basin during the dry period. In comparison, it has decreased in most parts 

of the basin in the wet period.  

Based on Figure 4.18 g, the TDS concentration has increased in the 

western area of the basin up to +880 mg/l from dry to wet season. In contrast, the 

eastern part of the basin shows a negative trend, especially in the central-east, up to -

3500 mg/l. The concentration of Mg (Figure 4.18 h) also has a similar distribution in 

the basin. It has increased to +270 mg/l and decreased to – 1800 mg/l in the exact 

locations as TDS.  

The spatial distribution map of TH and K is depicted in Figure 4.19 a and 

b. The concentration of TH has great values in the central parts of the study area. 

Eleven observational points have TH> 1000 mg/l in the autumn, increasing to 16 wells 

in the spring. The K content in the west part of the study area has fewer values (i.e., 

less than ten mg/l) in both seasons. In autumn and spring, concertation rises in the 

middle area of the study and continues to the southeast. 

In the west section of the research region and north to southeast, there is a 

reduction in TH concentration. The decreasing value in TH is up to -3600 mg/l (Figure 

4.19 c). Other parts of the study area have a light increase in TH concentration. A few 

wells in the central and east parts of the basin increased in concentrations up to 2200 

mg/l. The concentration in K has conditions that are almost similar using spatial 

distribution. It dropped to -79 mg/l and rose to +67 mg/l in some particular wells in 

the basin's center and east (Figure 4.19 d). 

The spatial distribution map of Mn and Na is depicted in Figure 4.19 e and 

f. During the dry season, the concentration of Mn in three wells in the middle section 

of the study region reaches high levels. However, its concentration increased in most 

wells across the study area during the wet season. The Na content is smooth in most 

parts of the basin during the dry season, while it has increased in the eastern region.  

In the research area's middle to the northwest region, there is a reduction 

in Na concentration. It decreases to -720 mg/l from the dry to wet season (Figure 4.19 

g). Other parts of the basin have increased up to +720 mg/l. The situation for Mn 
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content is different in the basin. Smaller areas in the north and south of the basin and 

certain south-easterly regions have decreasing levels of up to -10 mg/l (Figure 4.19 h). 

Other parts of the basin have a smooth increase, but only one well in the northern 

region has dramatically increased up to +260 mg/l. 

 

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 

Figure 4. 19 Spatial distribution maps a. TH and K dry season, b. TH and K wet 

season, c. change in TH, d. Change in K, e. Na and Mn dry season, f. Na and Mn 

wet season 
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Figure 4.19 (Continued)  

As illustrated in Figure 4.20 a and b, the spatial distribution of F and Fe is 

delineated for dry and wet climate conditions. The concentration of F is less than 0.5 

mg/l in most of the study areas during the dry season. Some parts in the central western 

section, north to south, and a small part in the central-eastern portion of the basin has 

a concentration of greater than 0.5 mg/l. However, during the wet season, the 

concentration of F has increased in most of the research regions. Based on Figure 4.20 

b, most of the basin has a concentration greater than 0.5 mg/l in the spring. Fe 

concentration in three sampling points has a value greater than 0.3 mg/l. Most other 

monitoring wells in the study area have concentrations less than 0.09 mg/l. The 

concentration of Fe during the wet period has increased in some wells, and the wells 

with a value greater than 0.3 mg/l are five wells. Some of the monitoring wells with 

low concentrations during the dry period have increased Fe concentrations during the 

wet period.  

Spatially seasonal change in Fe concentration is illustrated in (Figure 4.20 

c). The mainly northern part of the basin has decreased values up to -0.55 mg/l. Some 

wells around the central part of the basin have reduced values. However, most of the 

study areas have increased the change in Fe concentration up to +1 mg/l. The shift in 

F concentration looks similar to Fe in spatial distribution (Figure 4.20 d). It has mainly 

decreased in the north and south of the basin up to -0.94 mg/l. While other parts of the 

basin have an increasing change in F concentration up to +4 mg/l. 
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Figure 4. 20 Spatial distribution maps a. Fe and F dry season, b. Fe and F wet 

season, c. change in Fe, d. Change in F, e. NO3 and Cl dry season, f. NO3 and Cl 

wet season, g. Change in NO3, h. Change in Cl 
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Figure 4.20 (Continued) 

Figure 4.20 e and f delineate the spatial distribution of NO3 and Cl for both 

climate conditions. The content of NO3 is less than three mg/l in most of the 

observational points during the dry season. Only five wells in the central section of the 

basin have a concentration greater than five mg/l in the dry period. However, the 

concentration of NO3 during the wet period increased in some wells. The number of 

wells with rising NO3 concentrations has risen, particularly in the basin's center region. 

The chloride concentration is very low during the dry period in the whole season. But 

it has increased dramatically in all parts of the basin. The spatial distribution of 

chloride concentration is uniform in all parts of the basin in the wet season except for 

one well in the east of the basin with a high concentration. 

Spatially seasonal change in NO3 concentration is illustrated in (Figure 

4.20 g). Based on the change in NO3 concentration, the basin is divided into two 

blocks, west and east. The west part has decreased in NO3 concentration while the east 

part of the basin has increased values. The decrease rate of NO3 is about -6.5 mg/l, and 

the increasing rate is about +5.9 mg/l. Cl concentration (Figure 4.20 h) has increased 

in almost all of the basin, but the eastern section has increased concentration values up 

to 330 mg/l. 

With the increase in urbanization, the recharge area of groundwater has 

decreased significantly. On the other hand, the study area's groundwater level has 

decreased drastically during the last two decades. Groundwater in Kabul is mainly 

recharged through river beds. Public water supply wells are also located next to river 

beds. Other recharge areas, such as hillsides and some open areas, can also have some 

role in groundwater recharge. Increasing and decreasing changes in water quality 

parameters are correlated to recharge volume, hydraulic conductivity, and the 

geological formation of the region. More groundwater recharge causes more contact 

and weathering of minerals and rocks, thus increasing the level of qualitative 

parameters in groundwater. This is the case for the wells that are located near the 

riverbeds. The level of qualitative parameters, such as calcium, sodium, iron, 

manganese, chloride, and fluoride, increases in the wet season, mainly in wells close 

to river beds or in agricultural areas. In some wells located next to riverbeds or 

agricultural fields, and the quality parameters have not increased, the feeding path will 

probably have different geological formations. 
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On the other hand, the concentration of most parameters has decreased in 

the northern and western areas of the study area. The north and western parts of the 

study area have witnessed more urban development in the last two decades, and 

groundwater levels have decreased significantly in these areas. These locations receive 

minimal recharge, and since the groundwater level is so much lower, the recharge 

water is probably unable to reach the groundwater in a single season due to its tiny 

volume and weak hydraulic conductivity. As a result, there is less of a concentration 

of quality factors in the groundwater in these areas. 

4.4  Groundwater level 

4.4.1 Cluster analysis of the wells 

The observational wells were characterized using cluster analysis based on 

the similarity of their water level measurements. The dendrogram that resulted from 

hierarchical clustering with Ward's linkage approach is shown in Figure 4.21.  

 

Figure 4. 21 Dendrogram of hierarchical cluster analysis 

 

The dendrogram must be split at a certain amount of linkage gap called 

threshold to achieve various clusters. Threshold selection is a personal decision that 

differs from person to person. For example, a threshold of 40 results in three clusters, 

while a threshold of 20 results in four clusters. 

A specific approach is required to prevent confusion when selecting a 

threshold. The optimal clustering algorithm was determined using the "Elbow 

method". The aim of cluster grouping techniques, or "total within-cluster sum of square 

(WSS)," is to find clusters with the least amount of intra-cluster variation. The "Elbow 

method" calculates the cumulative WSS as a function of cluster size: The cluster 

numbers should be chosen such that adding another cluster would not increase the total 

WSS significantly.  
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Figure 4. 22 Elbow method for hierarchical cluster analysis 

A WSS plot is constructed based on the number of clusters "k" (Figure 

4.22). The position of a bend (knee) in the plot determines the number of clusters 

needed. From (Figure 4.22), it is seen that the hook is located at k=3, and it indicates 

that the optimal clustering algorithm throughout all wells is three. Based on the 

geographical heterogeneity in the various clusters (Figure 4.23), a group of seven wells 

in the study area's east, west, and north parts shaped cluster 3. Cluster 2 consists of 22 

wells with the same geographic distribution of east, west, and north. Cluster 1 is made 

up of the remaining 37 wells that are scattered across the region. 
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Figure 4. 23 Spatial distribution of wells classified based on cluster analysis 

The average annual static water level in cluster 1 varies from 9 to 28 meters 

below ground level, with a median of 17 meters and a mean of 18 meters (Figure 4.24). 

Cluster 2 has a mean and median yearly averaged static water depth of 6 m below 

ground level, with a least of 5 m and utmost of 9 m. The static water level in cluster 3 

is slightly different. It has a minimum (33 m) variation and maximum (56 m) yearly 

averaged static water table below ground level. The mean and median values in cluster 

3 are 42 and 39 m, respectively.   

 

Figure 4. 24 Variability of groundwater levels in various clusters 
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4.4.2 Trends of Groundwater Table on an Annual and Seasonal Basis 

Seasonal spring (March-May), summer (June - August), fall (September - 

November), winter (December - February), and annual trends of groundwater- table 

for all observational points in the study area were evaluated using the nonparametric 

Mann-Kendall test with a significance level of 0.05. The seasonal and yearly 

groundwater level data were subjected to an autocorrelation test before being included 

in the Mann-Kendall trend test. Most wells had a significant lag 1 serial correlation 

with seasonal and annual groundwater levels. The "Modified Mann-Kendall (MMK) 

test" was utilized to integrate serial correlation effects on trend assessment of 

groundwater level variability. As there is no alter in variance and p-value of the test 

using "mkttest" and "bcpw" tests, therefore "mkttest" the trend analysis is run on the 

initial time series of the groundwater table for all stations in each cluster. 

Table 4.19 displays the findings of groundwater level trends and their 

magnitudes based on Sen's slope procedure. Both annual and seasonal groundwater 

level measurements showed significant trends. According to the trend report, just six 

out of 66 observational wells with annual groundwater levels show increasing trends. 

In comparison, according to the trend report, the remaining 60 wells show 

decreasing trends, often with significant trends (Figure 4.25). 

A total of 32 observational wells included in cluster 1 had a significant 

decrease with an average magnitude of 1.38 m yearly. Additionally, two other clusters 

(2&3) have 15 and 8 wells. Cluster 2 has a significant negative trend value of 0.31 m 

per year, while Cluster 3 has a significant negative trend value of 2.84 m per year. 

Conversely, four regional wells showed a significant increase in groundwater depth, 

with an annual average of 0.7 m. The trend assessment results indicate that most wells 

in both clusters are declining. The Clusters 1 and 3 wells have more significant trends 

than Cluster 2. With an average decline of 4.26 meters per year for all seasons, the 

well 53rd in cluster 3 recorded the greatest decrease in groundwater level among all 

observation points. Similarly, the highest increasing groundwater level is recorded in 

the 42nd cluster 1, with an average value of 1.68 m per year. The water level in 89 per 

cent of cluster 1 wells and 82 per cent of the overall wells in the research region 

significantly decreases annually and, in all seasons, based on a trend evaluation of 

groundwater depth in different clusters. 

In general, the depth of groundwater in more than 90% of the monitoring 

wells is decreasing, with an average annual decline of 1.18 m, which may be attributed 

to a variety of factors, including heavy groundwater use, changes in LULC, low 

precipitation, and poor water resource management. The groundwater level depth in a 

few clusters 1 and 2 wells showed increasing conditions. Wells with positive 

groundwater levels are located near riverbeds in the Kabul area, most likely due to 

these features' vital role in providing groundwater recharge. 
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Table 4. 19 Annual and seasonal trend analysis results based on the MK 

statistics and Sen's slope values 

Wells Spring Summer Autumn Winter Yearly 

Z Sen's 

Slope 

Z Sen's 

Slope 

Z Sen's 

Slope 

Z Sen's 

Slope 

Z Sen's 

Slope 

1 4.38 2.48 4.70 1.61 4.93 1.53 4.49 1.77 4.65 1.79 

2 1.64 1.57 1.16 1.23 0.88 0.83 1.42 1.23 1.09 1.00 

3 -3.61 -0.25 -3.11 -0.30 -2.52 -0.29 -3.18 -0.31 -4.35 -0.34 

4 4.71 2.80 4.70 2.47 4.71 2.34 4.93 2.54 5.05 2.52 

5 4.60 2.20 4.70 1.74 4.71 1.60 4.38 1.97 4.45 1.85 

6 2.74 1.39 3.48 1.43 2.85 1.23 2.96 1.17 3.27 1.26 

7 4.93 1.89 4.70 1.58 4.49 1.62 4.66 1.39 4.75 1.56 

8 4.71 1.75 4.70 2.49 4.82 2.21 4.60 1.96 4.85 2.10 

9 4.27 0.81 4.45 0.73 4.60 0.67 4.71 0.67 4.75 0.69 

10 4.93 0.74 4.52 0.71 4.55 0.68 4.49 0.62 4.95 0.66 

11 1.20 0.08 3.49 0.32 3.50 0.20 3.61 0.28 3.46 0.15 

12 -1.42 -0.08 4.21 0.28 3.61 0.21 2.30 0.10 2.67 0.11 

13 3.94 0.23 4.28 0.26 3.56 0.16 3.34 0.10 3.17 0.15 

14 -2.74 -0.30 -1.96 -0.37 -2.41 -0.53 -2.63 -0.42 -2.97 -0.32 

15 4.49 0.40 3.32 0.26 4.05 0.35 4.49 0.44 4.45 0.32 

16 3.23 0.36 4.58 0.39 4.11 0.39 3.61 0.35 4.06 0.34 

17 3.28 0.18 3.72 0.19 3.07 0.13 4.17 0.13 2.87 0.13 

18 -1.04 -0.03 2.83 0.08 1.43 0.10 1.09 0.06 0.79 0.03 

19 4.16 0.35 4.21 0.57 3.72 0.50 3.07 0.37 4.16 0.40 

20 3.14 0.13 3.79 0.28 3.34 0.16 1.33 0.09 3.27 0.15 

21 4.77 0.70 4.33 0.55 3.94 0.76 2.69 0.33 4.16 0.54 

22 4.71 1.29 4.33 1.20 3.61 1.03 4.60 1.00 4.65 1.11 

23 3.45 0.20 3.11 0.28 4.05 0.33 4.16 0.29 3.56 0.25 

24 4.60 3.63 4.70 3.74 4.93 3.41 4.71 3.40 5.05 3.43 

25 4.93 2.05 4.45 2.08 4.82 2.07 4.93 2.28 4.95 2.05 

26 4.27 0.72 4.33 0.55 4.60 0.49 4.49 0.55 4.55 0.56 

27 4.88 2.40 4.70 2.39 4.93 1.98 4.82 2.25 4.95 2.18 

28 4.28 0.37 4.70 0.52 4.55 0.45 4.49 0.51 4.75 0.42 

29 4.49 1.89 4.70 1.57 4.93 1.28 4.49 1.67 4.85 1.54 

30 4.93 1.98 4.33 1.62 4.93 1.44 4.93 1.41 5.05 1.62 

31 4.71 1.61 3.97 1.29 3.61 1.15 4.60 0.95 4.55 1.19 

32 3.61 1.42 3.30 0.98 4.93 0.69 3.34 1.20 4.26 1.05 

33 4.60 2.46 4.70 2.92 4.82 2.65 4.82 2.33 5.05 2.54 

34 4.71 0.78 4.45 0.79 4.38 0.84 4.71 0.84 4.65 0.77 

35 4.66 0.58 4.45 0.63 4.49 0.58 4.71 0.57 4.85 0.60 

36 2.08 1.17 2.50 0.89 1.76 0.45 2.08 0.83 1.98 0.79 

 

Continued to the next page 
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Table 4.1(9 Continued) 

Wells Spring Summer Autumn Winter Yearly 

Z Sen's 

Slope 

Z Sen's 

Slope 

Z Sen's 

Slope 

Z Sen's 

Slope 

Z Sen's 

Slope 

37 3.83 0.31 3.60 0.41 3.50 0.42 4.38 0.29 4.26 0.35 

38 2.19 0.75 2.50 0.96 1.64 0.67 1.86 0.61 1.98 0.68 

39 3.07 0.19 2.26 0.41 0.11 0.04 -0.11 -0.01 0.89 0.06 

40 4.38 1.77 4.58 2.02 4.38 1.84 4.05 2.05 4.35 1.86 

41 4.05 4.04 4.58 2.85 4.27 3.48 3.94 3.67 4.16 3.29 

42 -3.50 -1.80 -4.21 -1.81 -4.05 -1.75 -3.94 -1.53 -4.45 -1.68 

43 0.66 0.08 0.24 0.02 -1.75 -0.19 -2.30 -0.36 -1.39 -0.15 

44 -2.80 -0.33 -2.87 -0.54 -3.61 -0.55 -2.74 -0.42 -2.77 -0.48 

45 2.36 0.11 3.55 0.12 1.04 0.05 2.97 0.06 2.57 0.09 

46 4.16 1.73 3.60 1.54 3.39 1.29 3.61 1.48 3.76 1.33 

47 4.38 1.51 4.58 2.05 1.97 2.73 1.70 1.31 3.17 1.63 

48 3.18 1.11 3.42 0.70 2.63 0.69 4.05 1.13 3.17 0.91 

49 1.53 0.17 3.97 0.21 1.87 0.09 2.58 0.17 2.97 0.15 

50 -1.59 -0.11 2.75 0.19 0.00 0.00 2.36 0.06 -0.55 -0.01 

51 -1.20 -0.14 -1.47 -0.22 2.08 0.28 -0.60 -0.07 0.20 0.02 

52 4.82 3.52 4.45 3.92 4.82 3.32 4.27 2.96 4.85 3.29 

53 4.82 3.80 4.58 4.51 4.93 4.61 4.82 4.28 5.15 4.26 

54 4.44 1.00 3.97 2.87 4.38 2.00 4.71 2.30 4.85 2.03 

55 4.71 2.49 4.58 2.23 4.93 2.75 4.93 2.43 5.05 2.42 

56 3.23 0.76 4.21 0.50 3.50 0.76 2.19 0.73 4.11 0.62 

57 4.82 0.67 4.58 0.52 4.38 0.53 4.77 0.49 4.55 0.55 

58 3.67 1.61 3.97 1.64 3.89 1.62 4.11 1.93 4.55 1.59 

59 4.60 2.06 4.58 2.41 4.38 2.38 4.49 2.68 4.65 2.35 

60 2.25 1.16 1.77 0.96 1.31 0.87 1.65 1.07 1.68 0.95 

61 2.69 1.57 4.58 1.54 3.83 1.51 2.30 1.19 3.56 1.28 

62 3.15 0.07 1.65 0.09 3.72 0.15 1.98 0.03 1.93 0.06 

63 4.93 1.15 3.18 1.02 4.16 1.13 4.11 0.98 4.65 0.91 

64 -2.85 -0.21 1.83 0.17 4.77 0.45 2.96 0.12 2.38 0.11 

65 3.18 2.08 4.70 1.69 4.82 1.87 4.82 1.51 5.15 1.88 

66 4.05 2.43 4.45 2.23 4.82 2.34 4.88 2.42 5.05 2.30 

* Values that are bolded illustrate a significant trend at a 95% confidence interval 
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Figure 4. 25 Annual groundwater level trends 

4.4.3 Extent and Severity of Groundwater Drought Conditions 

Groundwater drought index (SGI) values were calculated for all of the 66 

observational points of the research area to determine the region's severity and spatial 

distribution of groundwater drought conditions. It is complicated and impossible to 

illustrate the groundwater drought results for all monitoring wells in this paper, so only 

key trends will be outlined here. According to Figure 4.25, all observational wells are 

divided into four main groups based on trend similarities, and a representative well 

within each category was chosen to reflect the groundwater drought outcomes. These 

are the wells identified as ID 1, which is typical of the group of wells that have 

significant decreasing trends; the wells identified as ID 60, which also has a significant 

decreasing trend; the wells ID 50 and ID 14, which have significant increasing trends. 

According to the SGI results, drought in groundwater has developed in the study area 

in recent years and is progressively worsening. Negative SGI values marked in red 

(Figure 4.26) indicate drought months, while values above zero indicate normal 

conditions, as shown in blue. 

The drought conditions in Well 1 started in 2014 and continued until 2020. 

The SGI value increased gradually. During recent years (2019-2020), this well 

experienced extreme drought conditions. As represented in this well, the drought 

conditions in most wells started in 2014 and continued to deteriorate until 2020. This 

well illustrates the drought conditions in most of the wells of the study area. Extreme 

drought conditions in the well were recorded in 2019 with an SGI value of 2.2. The 

situation for well 60, which represents the wells with decreasing trends, is similar to 
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well 1. The drought conditions in this well commenced in 2016 and continued to 

intensify until 2020. During 2019-2020, this well experienced extreme drought 

conditions with an SGI value of 2.2.  The condition for well 50 is different. It has 

undergone several months of drought conditions during its operation. The drought 

conditions appeared in this well alternatively from 2006 to 2011 and 2014 to 2020. A 

particularly high SGI value of 3 occurred in 2008 in this well.  

The condition for well 14 is entirely different because it shows the positive 

trends in its group of wells. Drought in this well started in 2006 and ended in 2014.  

Again, it appeared in 2018 and continued to 2020 but generally with much lower SGI 

values than in the previous group of wells, although this well-experienced extreme had 

an SGI value of 2 in 2014. Only a limited number of wells in the study area show 

positive water level trends. 

The SGI evaluation revealed that most of the wells in the city have been 

experiencing severe and ongoing drought since 2014. However, from a climate change 

perspective, rainfall in one of the meteorological stations shows a decreasing trend. It 

cannot be said that the decrease in groundwater level and drought in groundwater is 

due only to the reduction of rainfall. Consequently, analyses linking meteorological 

factors to groundwater drought are needed to understand the dynamic nature of 

groundwater drought by considering LULC changes and groundwater aquifer 

structures. This helps reduce the effects of groundwater drought vulnerability in a 

given area. 

  

  

Figure 4. 26 SGI time series for representative wells 
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It can be inferred that the wells with IDs of 1 and 60, which have 

significantly declining water levels, have been experiencing severe and continuous 

drought since 2014 and 2016. The groundwater drought is similar to all other wells of 

these two groups. The condition in well 50 is different. This well belongs to a group 

of wells that showed an increasing water level trend. Therefore, the Well 50 

experienced several short periods of drought conditions, which can be very intense. 

Well, 14, which belongs to a group of wells showing significantly increasing water 

levels, experienced continuous drought conditions before 2014. Subsequently, water 

levels in the well increased up to 2017. The signs of drought again appeared in 2018 

and continued until 2020. 

 The persistent drought conditions observed in representative wells in each 

group are of concern for the ongoing management of groundwater resources in Kabul. 

The calculated SGI values in well numbers one and sixty, representing a large part of 

the study wells in the city, indicate the extent and severity of groundwater depletion in 

the region and indicate that management measures are urgently needed to address the 

situation.  

4.4.4 Rainfall conditions and groundwater levels 

Groundwater levels in the region are likely to be influenced by variations 

in the magnitude, duration, and intensity of rainfall events. Daily precipitation data 

from 2009 to 2019 have been collected from NWARA. Among six meteorological 

stations in the Kabul province, two stations (Payin-i-Qargha & Tangi-i-Sayedan) are 

located within the study area.  The annual total precipitation and annual mean 

groundwater levels of all the wells have been plotted to visualize their relationships. 

As illustrated in (Figure 4.27), total yearly rainfall has been plotted with annual mean 

groundwater level separately for both meteorological stations where the continuous 

lines present the groundwater depth; bar charts indicate precipitation and dotted lines 

show linear trends. 

Precipitation and groundwater depth have been graphically illustrated 

from 2009 to 2019. The chart displays the spatiotemporal distribution of two variables. 

From the chart, it can be seen that there is a correlation between precipitation and 

groundwater depth. The Payin-i-Qargha meteorological station shows a slightly 

increasing precipitation trend, but the Tang-i-Sayedan station indicates a decreasing 

trend in rainfall. On the other side, the mean depth of groundwater is going deeper and 

shows a gradual trend. The graph shows that the annual rise in rainfall does not 

positively impact groundwater levels. For instance, the total precipitation in 2012 and 

2014 has risen, but the average depth to groundwater still shows the same linear trend. 

Even the slightly increasing trend in the western part of the city (Payin-i-Qargha 

station) does not positively affect groundwater depth. As already illustrated in the trend 

evaluation of groundwater, some wells in the study area show positive trends. Such 

temporal variance can include a rough estimate of groundwater recharge, although it 

will also be influenced by the LULC features, which can be measured concurrently. 
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Figure 4. 27 Rainfall and groundwater level time series 

4.4.5 Influence of land use/land cover on groundwater recharge 

The extent to which groundwater recharge can occur in a rainfall event 

may also be influenced by land use and land cover (LULC). Human interactions, such 

as the construction of roads and residential areas, can increase the area of impervious 

surfaces that may reduce groundwater recharge. Consequently, the process of 

urbanizing agricultural land may reduce groundwater recharge.  

Due to these factors, LULC patterns in the Kabul area were examined in 

2005, 2010, 2015, and 2020 (Figure 4.28). Six classes of LULC have been developed, 

and their accuracy has been measured using overall accuracy assessment and the 

Kappa index. The overall accuracy index for LULC classification in the study area for 

the years 2005, 2010, 2015, and 2020 was determined to be 94%, 90%,90%, and 90%, 

while the Kappa accuracy index was 91%, 86%,86%, and 86% respectively. The 

summary of LULC analysis of the study area is illustrated in (Table 4.20).  

The urbanized area is a critical component of LULC, as it significantly 

negatively affects groundwater recharge. The proportion of the study area covered by 

urban development was determined to be about 15% in 2005, 20% in 2010, 27% in 

2015, and 32% in 2020.  

The agricultural area is a critical LULC component crucial in groundwater 

recharge. A decrease in agricultural areas can be due to increased urbanization or 

decreased rainfall and desertification of agricultural land (conversion of agricultural 

areas to bare land). However, from 2005 to 2020, the area of agricultural land in Kabul 

decreased by only about two percent.  On the other hand, the bare land is more 

permeable than built-up areas. Water melted by snow can cause the gradual feeding of 

groundwater in the bare land area. The area covered by bare land in the study area has 

decreased from about 67 % in 2005 to 52 % in 2020. Figure 4.29 illustrates the 
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decrease in bare land and the increase in built-up.  The percentage of water bodies 

(Qargha Lake) has not changed. The marshland area also has decreased. 

The LULC analysis indicated that the number of trees in the study area has 

increased. 

To sum up, the city's development and built-up area will cause the 

reduction of agricultural and bare land area. City development would result in 

increased region coverage by impervious surfaces and a decrease in groundwater 

recharge. Most monitoring wells are located in urban areas where artificial 

groundwater recharge measures would be required to increase groundwater 

availability. 

Table 4. 20 Areal specification of LULC class 

Classes 2005 2010 2015 2020 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Waterbody 0.76 0.07 0.70 0.07 0.9621 0.09 0.70 0.07 

Marshland 1.09 0.11 1.02 0.10 1.3833 0.13 0.79 0.08 

Built up 157.90 15.33 209.79 20.36 275.0058 26.70 328.45 31.88 

Bare Land 687.52 66.73 691.66 67.14 589.8357 57.26 538.17 52.24 

Agricultural 

Area 

175.73 17.06 117.09 11.37 160.4259 15.57 151.50 14.71 

Trees 7.32 0.71 9.98 0.97 2.5479 0.25 10.51 1.02 

Total 1030.32 100.00 1030.22 100.00 1030.16 100.00 1030.13 100.00 
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Figure 4. 28 LULC maps of the study area 

 

Figure 4. 29 changes in built-up and bare land area  
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Figure 4. 30 Spatial distribution of variance in groundwater level from 2007 to 

2019 

As can be seen from the spatial map of variance in groundwater level from 

2007 to 2019 (Figure 4.30), in the western, southwestern, and northern areas of the 

study area, some monitoring wells show a very sharp decrease (the decrease in the 

level of underground water in these wells are more than 30 meters). In the same way, 

in the western, southwestern, northern, and some northeastern parts of the basin, a 

large number of observation wells have witnessed a significant decrease of about 15-

30 meters. The remaining parts of the study area have witnessed a decrease in the water 

of fewer than 15 meters. Only some wells located on the bank of the Kabul and Logar 

rivers have witnessed an increase in the water level. 

4.5 Groundwater potential zone 

4.5.1 AHP Weights and Ranks  

The rankings of each parameter and weight in AHP are illustrated in Table 

4.21. Every sub-feature within a parameter is multiplied by its weight. For each 

parameter, the AHP weights are given per subclass influences applied to the ranks, and 

the ranks are numbered from 1 to 9. The weights were measured in such a manner that 

each parameter's effect was significant. 
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4.5.2 Geology 

 

The porosity and penetrance of the rocks are clear indicators of 

groundwater occurrence and recharge in a given area. Whereas geological 

configurations have a detrimental effect on groundwater occurrence, the geological 

map is significant (Maheswaran et al., 2016). The thematic geological map was 

digitized and georeferenced from the "geologic map of quadrangle 3468, Chak 

Wardak-Syahgerd (509) and Kabul (510) quadrangles, Afghanistan" (R. G. Bohannon 

& Turner, 2005). The common geological forms in the study area are sandstone and 

siltstone, conglomerate and sandstone, loess, fan alluvium and colluvium, and 

ultramafic intrusions (Figure 4.31 a). The thematic map is ranked based on regulating 

geological formations' permeability and groundwater effects. Loess, conglomerate, 

and sandstones are good aquifer materials due to their high weathering and fractures. 

Maximum values were classified for loess and conglomerate, and minimum ratings 

were allocated to sandstone and dolomite. The geological characteristic is assigned to 

a corresponding AHP weight of 0.14. 

4.5.3 Drainage density 

Drainage carries precipitation water, glacial, or snowmelt to the plains. It 

is essential in a given area as the source of groundwater recharge. Hydrogeological 

faults, fractures, and joints are essential factors for groundwater recharge, and they are 

perceived as guiding criteria that can impact a basin's drainage systems. Therefore, 

drainage operates as a transmission tool for passing snowmelt and glacial melting. 

Drainage density is the ratio of total stream lengths and the area in a watershed. The 

small runoff will happen within the neighbourhoods with high density due to their 

higher conductivity (Abijith et al., 2020; Pinto et al., 2017). The extraction of drainage 

density has been done in the arc GIS environment by processing SRTM-DEM data 

(Figure 4.31 b). The importance of drainage density and the occurrence of groundwater 

are closely associated. The thematic map of drainage density developed into five 

subclasses. The extracted interval values of 1.8 - 2.6 km/km2 were highlighted with 

high ranking and 0.0 - 0.22 km/km2 with a minor value. The influential layer of 

drainage density is assigned a corresponding weight of 0.12. 
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Table 4. 21 AHP ranking and weighting with classes of parameters 

Parameter & AHP Weights Rank Parameter & AHP Weights Rank 

Geology (14)  Geomorphology (8)  

Limestone and dolomite 2 Mountain relief 7 

Sandstone and siltstone 4 Holocene river valleys 8 

Gneiss 5 Soil (7)  

Fan alluvium and colluvium 5 None 2 

Conglomerate and sandstone 9 Moderately well-drained 5 

Ultramafic intrusion 4 Well-drained 8 

Loess 9 Lineament density (9)  

Drainage Density (12)  0.00 -0.042 1 

0.00 - 0.22 1 0.43 - 0.11 3 

0.23 - 0.61 3 0.12 - 0.2 4 

0.62 - 1.10 4 0.21 - 0.3 7 

1.20 - 1.70 4 0.31 - 0.46 8 

1.80 - 2.60 5 Rainfall (8)  

Land-use land-cover (11) 299.4 - 313.8 6 

Cropland 9 313.9 - 322.9 8 

Marshland  8 323 - 332.9 9 

Barren land 6 333 - 346.6 7 

Barren rock 4 346.7 - 365.2 5 

Settlement 4 Elevation (12)  

Slope (9)  1763 - 1843 9 

0.00 - 4.46 5 1843.1 - 1945 8 

4.461 - 11.54 4 1945.1 - 2089 7 

11.55 - 20.46 3 2089.1 - 2290 6 

20.47 - 30.17 1 2290.1 - 2823 3 

30.18 - 66.90 1   

Water Depth (10)    

2.7 - 7.7  9   

7.8 - 13 7   

14 - 21 6   

22 - 32 2   

33 - 53 1   
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a. Geology 

 

b. Drainage Density 

 

c. Land-use and land-cover 

 
d. Slope 

Figure 4. 31 Geology, Drainage Density, LULC, and Slope maps of the basin 

4.5.4 Land-use and land-cover 

Land use and land cover are crucial aspects that significantly affect the 

recovery and occurrence of groundwater (MacHiwal et al., 2011; Martin et al., 2017). 

The development of cities and the impermeability of the land surface will reduce 

groundwater recharge. Remotely sensed Landsat-8 satellite data was interpreted to 

generate a LULC thematic map (Figure 4.31 c). A supervised classification technique 

was adopted. The study area has mountainous and plain bare land, a bare rock area, a 

cropland and vegetation area, settlements, and a permanently inundated marshland. 

Settlements diminish the effect on groundwater recharge, while vegetation-covered 

areas have more excellent groundwater recharge opportunities. Therefore, bare land 

and settlement areas are weak in terms of groundwater availability, but agricultural 

areas and vegetation are very appropriate. For assigning weights and ranks, the highest 

ranks are appointed on croplands, followed by marshland natural bar lands, and the 

slightest rank is given to settlements. The resultant AHP value of 0.11 is assigned to 

the LULC feature. 
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4.5.5 Slope 

 

The slope has a substantial impact on runoff and represents the elevation 

difference in a given area. Meanwhile, it has a graceful role in the occurrence and 

recharge of groundwater. Areas with steeper slopes are not considered valuable 

substrates for groundwater recharge, as steeper slopes cause rapid runoff, are 

associated with erosion, and reduce water infiltration into the soil. Nevertheless, on 

the contrary, lands with lower slopes and flat areas are a good bed for groundwater 

recharge because, in these areas, runoff moves at a slower speed, and there is enough 

time for the infiltration process to provide the situation for groundwater recharge 

(Martin et al., 2017; Pinto et al., 2017). SRTM-DEM data was interpreted in the Arc 

GIS environment to delineate the slope map. The study area is surrounded by 

mountains whose slope decreases towards the centre of the basin. The lateral parts and 

some central portions of the basin have a high slope, and the majority of the regions 

have a gentle slope with outstanding qualifications for groundwater. Five different 

slope categories are presented in the results of the classification of the slope map in 

the basin (Figure 4.31 d). The lower slope from 0° to 4.46° has been given a high rank, 

and the lowest rank is allocated to 30.18°-66.9°.  The derived weight of 0.09 is 

assigned to the slope feature. 

4.5.6 Geomorphology 

A geomorphological map illustrates notable geomorphic elements, 

landforms, and the underlying geological formations. The morphology and its 

characteristics exert a significant influence on the development, filtration, and 

replenishment of water into the subsurface layers of the Earth (Etikala et al., 2019; A. 

Kumar & Pandey, 2016). A thematic geomorphological layer has been digitized and 

extracted in Arc GIS 10.8 from the country geomorphological map prepared by AIMS 

(Figure 4.32 a). The basin has a Holocene River valley and mountain relief. Holocene 

river valley, having a gentle slope with medium vegetation, widely covers most parts 

of the basin. This geomorphologic point can be the appropriate infiltration bed for 

groundwater recharge potential. Mountain relief covers some parts of the area in the 

east and south. Both geomorphological typologies of the study area were assigned high 

rank. The derived weight of 0.08 is assigned to the geomorphological feature. 

4.5.7 Soil 

Soil forms as a consequence of the erosion process from fragments of 

rocks. It is the only medium in which groundwater is recharged, so its attributes are 

essential for discovering groundwater potential. Soils cause groundwater recharge and 

storage in terms of their storage capacity and absorption rates, depending on the soil 

type (Abijith et al., 2020). The required data were extracted from the Afghanistan Soil 

Catalogue (Ahmadzai & Omuto, 2019) to delineate the soil map. Soil is labelled as per 

the drainage ranges, showing wetness period, well-drained, moderately well-drained, 

and none is observed in the basin (Figure 4.32 b). High and least ranks were assigned 

to well-drained and class of none accordingly. The derived weight of 0.07 is given to 

the soil feature. 
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4.5.8 Lineament density 

In the crystalline terrain, curved or linear geological formations are called 

lineaments and are massively crucial in groundwater potential recharge and flow. 

Primary lineaments and their convergence regions will serve as potential high-yield 

groundwater areas. Its role in the recharging of groundwater is also undeniable (Siddi 

Raju et al., 2019; Thapa et al., 2017). The lineament density map (Figure 4.32 c) is 

prepared from Landsat-8 OLI data (Landsat Scene Identifier: 

LC08_L1TP_153036_20200704_20200708_01_T1; Date of acquisition: 02-08-2020) 

using PCI Geomatica Banff and Arc GIS 10.8. The high to low-density scale is usually 

associated with the groundwater capacity. The alignments of lineament in the current 

study are SW-NE, N-S, and E-W. The intersection areas of lineaments have a high 

groundwater potential. The north, north-central, and south parts of the study area 

represent wider concentrations of lineament. The areas possessing larger lineament 

density (0.31–0.46 km.km-2) were assigned as high rank, and accordingly, areas with 

minor values of lineament density (0–0.042 km.km-2) were assigned low scale values. 

The derived weight of 0.09 is given to the lineament feature. 

4.5.9 Rainfall 

 

Rainfall seems to be the only main groundwater recharge source and the 

water cycle's primary water source. It counts as the critical explanation for recharging 

groundwater where water from cracks and soil penetrates the earth's subsurface. Other 

attributes of precipitation, such as duration and frequency, also affect runoff and 

recharge (Abijith et al., 2020). Ten years (2008-2018) of daily precipitation data were 

obtained from NWARA Afghanistan, and its spatial distribution was interpolated in 

the Arc GIS environment using the IDW technique (Figure 4.32 d). The mean annual 

precipitation is obtained at 330 mm in the Kabul basin. According to average annual 

precipitation, the research area is subdivided into five distinct regions. As the whole 

basin is in a moderate state, the records show somewhat higher precipitation in the 

basin's northwestern parts. A high rainfall area (347-365) mm is ranked with a higher 

value, but the lower rank is assigned to 299-313 mm. The resulting derived wight of 

0.08 is allocated to the precipitation feature. 

 

4.5.10 Elevation 

 

The altitude variable is one of the primary factors in the differentiation of 

GWRPZ. There is an indirect correlation between elevation and infiltration rates 

(Thapa et al., 2017). The 30 m resolution SRTM-DEM data has been utilized to 

delineate the elevational map of the research area. The highest elevation is 

differentiated mainly in the south and southwestern sections of the study region. A 

linear algorithm of elevation from south to north east has appeared in the study area, 

which has relatively higher elevation. 
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Meanwhile, northern parts of the basin also encountered a higher elevation 

area (Figure 4.32 e). According to elevation from mean sea level, the basin is grouped 

into five subclasses, including 1363-1843, 1843.1-1945, 1945.1-2089, 2089.1-2290, 

and 2290.1-2823 m in the Arc GIS environment. Strong preference is assigned to 

lowlands, followed by moderate and high-elevation areas. The resulting weight of 0.12 

is allocated to the elevation feature. 

 

a. Geomorphology 

 

b. Soil 

 
c. Lineament density 

 
d. Rainfall 

 
e. Elevation 

 
f. Groundwater depth  

 

Figure 4. 32 Geomorphology, Soil, Lineament density, Rainfall, Elevation and 

Groundwater depth maps of the study area 
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4.5.11 Groundwater levels  

Long-term statistics on the variance of groundwater tables give insights 

into the prospects for groundwater. It is also regarded as one of the crucial variables 

for the discovery of possible groundwater recharge areas. The AGS, supported by 

USGS, recorded nine-year monthly monitoring (2004-2013) of groundwater levels in 

the Kabul basin. The total number of monitoring wells is 71, out of which forty wells’ 

data were randomly selected to create a groundwater level thematic raster.  

The water level data of 38 observation well stations located within the 

study area were utilized to validate the final produced GWPZ map. The data's 

interpretation revealed that, during observation, the minimum and maximum water 

depth ranged from 2.7 to 7.7 m and 33 to 53 m below ground level, respectively (Figure 

4.32 f). The areas with shallow groundwater levels ranked higher weights, and 

conversely, less weight was given to the more in-depth groundwater classes. The 

resulting weight of 0.10 is allocated to the groundwater level feature. 

4.5.12 Groundwater potential zone mapping 

Finally, weights were allocated to the input variables utilized by the AHP 

method for GWPZ delineation. All influential layers have been converted to a raster 

format and multiplied by using Arc GIS 10.8 with derived weights and ranks. 

Ultimately, the final output of processed thematic layers was obtained in five different 

categories. Finally, the findings were summarized and identified as very good, good, 

poor, and very poor (Figure 4.33). The following equation was considered for the 

development of the ultimate GWPZ map: 

𝐺𝑊𝑅𝑃𝑍 = ∑ (𝐺𝑀𝑤 ∗ 𝐺𝑀𝑟) + (𝐿𝐷𝑤 ∗ 𝐿𝐷𝑟) + (𝐿𝑈&𝐿𝐶𝑤 ∗ 𝐿𝑈&𝐿𝐶𝑟) + (𝐺𝑤 ∗ 𝐺𝑟) +𝑛
𝑖

(𝑆𝑤 ∗ 𝑆𝑟) + (𝑆𝑜𝑤 ∗ 𝑆𝑜𝑟) + (𝑆𝐷𝑤 ∗ 𝑆𝐷𝑟) + (𝑅𝑤 ∗ 𝑅𝑟) + (𝐸𝑤 ∗ 𝐸𝑟) + (𝐺𝑊𝐿𝑤 ∗ 𝐺𝑊𝐿𝑟)  

.......... (4. 6) 

Where GWPZ = Groundwater Potential Zone, w = weighting, and r = 

ranking of the variables. 

GM = Geomorphology, LD = Lineament Density, LU&LC = Land-use 

and Land-cover, G = Geology, S = Slope, So = Soil, SD = Stream Density, R = 

Rainfall, E = Elevation, GWL = Groundwater level. 

A region with a weak and fragile potential is located in the basin's 

periphery, dominated by hills, slopes, and mountainous areas. The centre portion of 

the basin has a moderate to high groundwater potential. Geology has received a high 

priority, and lower priorities have been assigned to soil and geomorphology. The most 

significant groundwater potential zones identified are loess, conglomerate, and 

sandstone in geology, cropland in land-use, and land cover well-drained soil in soil 

types throughout the basin. The centre parts of the basin illustrate groundwater's 

intense potential, with a gentle slope and high drainage density. Rainfall has an 

essential function in the recharging of groundwater. The obtained outcomes from the 

AHP indicate that the percentage of the basin under very poor is about 16%, poor 
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(18%), good (35%), and very good (31%).  High and very high GWPZs have been 

discovered in most parts of the basin, which are located along the river courses. 

 

Figure 4. 33 Groundwater recharge potential zones map using AHP 

4.5.13 Validation of results 

The result has been validated using nine years (2004-2013) recorded data 

of the static water level for 38 monitoring wells through the AGS department 

supported by USGS. The monthly collected data has been classified with the 

minimum, average, and maximum values. Mean values of each monitoring well have 

been used to validate the results. All 71 monitoring wells that are available for the 

Kabul basin were added to ArcGIS, and the required monitoring wells for validation 

of the result were clipped through ArcGIS with the study area boundary. Out of 71 

monitoring wells, only 38 wells were located within the study area (Figure 4.34). The 

average value of water depth in the observed monitoring wells ranged between 4 to 45 

m. According to the observation of static water level in the well, the mentioned 

monitoring wells were classified into four classes viz. 4 - 9 m, 10 - 18 m, 10 – 31 m, 

and 32 – 45 m, which was attributed to as very good, good, poor, and very poor (Figure 

4.34). Accuracy assessment is determining the relationship between the resulting 

groundwater potential zone map and field observations. An uncertainty matrix is used 

to determine reliability (Table 4.22). The following formula is applied to determine 

the overall accuracy (Siddi Raju et al., 2019). 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑜.  𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑀𝑊𝐿

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.  𝑜𝑓 𝑀𝑊𝐿
=

32

38
= 86.84% .......... (4. 7) 
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Where MWL = Monitoring Well Location.  

The agreement's kappa coefficient has been used since 1980 in remote 

sensing as an index to remark the accuracy of classified images for thematic layers. 
The Kappa coefficient of the agreement is calculated using the following formula 

(Foody, 2020). 

𝑘 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
 .......... (4. 8) 

Where po is the percentage of the overall precision and pe is the percentage 

of appropriate agreement with the values measured. The overall accuracy and kappa 

coefficient values are obtained at 86.84 per cent and 0.79, respectively. The accuracy 

assessment in both overall and kappa assessment methods indicates a very good 

association between potential groundwater zones and well record values. 

Table 4. 22 Uncertainty matrix of groundwater recharge potential zones 

No. GWPZ Very 

good 

Good Poor Very poor Total Correct 

Samples 

1 Very 

good 

16 2 0 0 18 16 

2 Good 2 11 0 0 13 11 

3 Poor 0 1 4 0 5 4 

4 Very 

poor 

0 0 0 2 2 2 

  Total 18 14 4 2 38 33 

Overall accuracy = 32/38 = 86.84% 

Kappa coefficient = 0.79 

4.6  Artificial recharge potential of groundwater in urban area 

4.6.1 Rainfall conditions 

The rainfall in Kabul varies over the months, as seen in Figure 4.35. The 

last six months of the year are the wettest according to the coefficient of variation, and 

the coefficient of variation for the rainfall during these months reached as high as 

127% (October). In contrast, it decreases during the first six months of the year, and 

the coefficient of variation has a minimum value of 46% (February).  

According to many indexes, Kabul has inconsistent, seasonal, and intense 

precipitation (Figure 4.35). The most rainfall occurred during February, March, and 

April. In 2019, the first five months of the year (January through May) had more than 

83 per cent of the year's total rainfall. In 2019, the two wettest months (February and 

April) alone saw up to 45 per cent of the yearly precipitation. 
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Figure 4. 34 Variability of precipitation during regular times as determined by 

the coefficient of variation 

 
(a) 

 
(b) 

Figure 4. 35 The seasonality and concentration of precipitation (a) precipitation 

concentration index, (b) seasonality index, and (c) average per cent contribution 

to annual rainfall. 
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(c) 

Figure 4. 36 (Continued) 

Given the region's yearly rainy days, concentration feature, and low overall 

quantity of precipitation, understanding how much rain falls over a day is crucial. For 

the time series depicted in Figure 4.36, the mean annual rainfall is 368 mm, with an 

average rainy day of about 80 days each year. 

 

Figure 4. 37 Time series of annual precipitation, daily maximum precipitation, 

and yearly rainy days. 

According to Figure 4.36, the year 2019 had the most precipitation, with a 

total of 486.21 mm. The minimum amount of precipitation happened in 2017, with a 

total record of 269.4 mm. The maximum daily precipitation was recorded on 17 March 

2014 with a rainfall amount of 80.77 mm, which caused floods with an inundation 
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level of 60 to 80 cm (Manawi et al., 2020). According to the maximum rainfall record 

of the meteorological station, the minimum (from the daily maximum precipitation 

record) precipitation was observed on 28 January 2010 with a precipitation amount of 

18.04 mm. According to observations of rainy days, the research region experienced a 

minimum of 30 rainy days in 2017 and a maximum of 102 rainy days in 2019. 

The probability analysis using the Weibull approach for the years 2009 to 

2019 (Figure 4.37) shows a return period of 3 to 4 years for daily rainfall of less than 

30 mm. Therefore, the previously described urban issues, such as street floods, would 

definitely happen every 3-4 years. The quantity of 80.77 mm, which has a return cycle 

of ten years, was the largest amount of rainfall recorded in 2014 thus far. 

 

Figure 4. 38 daily precipitation probability curve from Jan 2009 to Dec 2019 

The statistical analysis, which used the Gumbel technique for rainfall 

extremes, produced mean and standard deviation values of 36.87 mm and 18.23 mm, 

respectively. As a consequence, the constants yn and Sn Eq. (7) had respective values 

of 0.4996 and 0.9676, respectively. Figure 4.37 depicts the probability curve for the 

highest daily precipitation.  

Using Eq. (6), a return period of 1 to 5 years is calculated for the threshold 

rainfall depth of 55 mm, which is expected to enhance the danger of flooding in the 

city. For the 122 mm record, a return time of about 150 years has also been discovered. 

The findings above demonstrate that there is a very high likelihood that the 

problematic runoff from the 55 mm precipitation will reoccur. As a result, there is a 

very high likelihood that RWH will occur in the urban region of the Kabul basin. 
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Figure 4. 39 Maximum daily rainfall probability curve (2009–2019) 

4.6.2 RWHRS vs non-RWHRS conditions 

Based on a developed LULC map, the Ic(eff) was estimated for the research 

region under the circumstances with and without RWHRS. As stated previously, it is 

expected that the primary land covers of the urban environment are built up having Ic 

of 5% without RWHRS and 80% with RWHRS, arable land with Ic of 40%, and barren 

soil with Ic of 50% has been applied. After segregation of LULC of the study area, 

built-up, bare land, and arable land, as well as their Ic, it was possible to compute the 

total Ic(eff) of the entire region employing (Eq.9) 

The spatial proportion of each LULC is illustrated in Table 4.23, including 

the computed Ic(eff) and groundwater infiltration rates for RWHRS and non-RWHRS 

situations with R = 368 mm (average yearly rainfall at the region from 2009 to 2019 

data from Payin-i- Qargha meteorological station).  The significance of groundwater 

recharge by RWHRS for the regional and municipal water cycles is illustrated in Table 

4.23. According to Table 4.23, compared to non-RWHRS circumstances, RWHRS 

will increase Ic(eff) by factors of 2.33 for the studied area. 

Table 4. 23 Calculated spatial proportion of LULC and their influence on Ic(eff) 

and groundwater recharge in the Kabul basin. 

LULC Total area Spatial 

fraction 

(%) 

Calculated Ic(eff) Calculated groundwater 

recharge (cu.m) 

Without 

RWHRS 

With 

RWHRS 

Without 

RWHRS 

With 

RWHRS 

Built up 234.2079 48.06 27.13% 63.18% 4864510.227 11328409.74 

Arable land 60.381 12.39 

Bare Soil 192.6495 39.53 
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Implementing RWHRS across the entire built-up area of the city may 

increase average annual infiltration from 4.86 MCM (million cubic meters) to 11.33 

MCM for Ic(eff) values of 27.13 per cent and 63.18 per cent, which are calculated for 

study area for non-RWHRS and RWHRS conditions, respectively. These factors, 

along with the total surface area of the Kabul basin, which is equal to 487.24 km2, and 

annual precipitation of 368 mm. This straightforward calculation indicates how the 

Kabul Basin's groundwater recharge might rise by 6.5 MCM as a result of the 

deployment of RWHRS, which is more than 200 per cent greater than groundwater 

recharge under non-RWHRS conditions. The computed Ic(eff) of 63.18 per cent has a 

limited potential to create severe flood events with regard to surface runoff. Based on 

Eqs. (3) and (4), it is predicted that the implementation of RWHRS in the study region 

will result in a 36% reduction in surface runoff volumes for an average land cover of 

48% built-up, 12% arable land, and 40% barren land. Based on Eqs. (11) and (12), it 

is predicted that the implementation of RWHRS in the study region will result in a 

36% reduction in surface runoff volumes for an average land cover of 48% built-up, 

12% arable land, and 40% barren land. 

4.6.3 Surface runoff estimation 

The land-use map of the Kabul Basin is depicted in Figure 4.31 c. The 

correlation between rainfall and runoff is determined by the land cover, which equates 

to the soil's ability to retain water. The region is discovered to be divided into five 

different types: settlements, cropland, marshland, barren land, and barren rocks. 

According to soil characteristics studied by (Ahmadzai & Omuto, 2019) the soil is 

deep and varies in texture from sandy loam to loam and clay. Therefore, based on soil 

classification by (USDA, 2009), the hydrological soil group of the area is assigned to 

group B. Soils in this group have moderately low runoff potential when thoroughly 

wet. 

Table 4. 24 Curve Number values based on LULC. 

No. LULC Area 

(sq.km) 

Land cover area 

(%) 

CN 

(%) 

CNwi 

(%) 

1 settlement (impervious area) 234.21 48.07 98 4710.707 

2 cropland 60.38 12.39 76 941.8297 

3 barren land  9.63 1.98 86 170.0537 

4 barren rock 183.01 37.56 86 3230.306 

Total  487.2384 100 
 

9052.896 

 

The CNwi values for each land use class are displayed in Table 4.24 in 

relation to the associated region. The area's domination of impervious surfaces is 

confirmed by the CNw value, which is determined to be 90.5% (Eq.13). The initial 

abstraction and maximum soil retention are equal to 26.6 mm and 5.3 mm, respectively 

when the CNw value is substituted in Eq. (12). This allows for the determination of 

the probable runoff depth for the daily precipitation. The amount of rainfall required 

to generate runoff is discovered to be 5.3 mm. 
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The highest daily precipitation for the year 2014 was 80.77 mm (Figure 

4.36), and the accompanying runoff depth (potential) is calculated to be about 74.7 

mm, resulting in a surface runoff volume of roughly 37 MCM (Figure 4.39). Since 

many rainfall-runoff models employ a rainfall threshold of 5 mm/event for runoff 

production, the US-NRCS technique provides a fair approximation of the rainfall-

runoff relationship in the research region (Mahmoud et al., 2014).  A projected runoff 

volume of 18.06 MCM would result from the 42 mm rainfall that occurred in 2013 as 

an intense rainstorm event. This volume is far more than the capacity of the urban 

drainage system and has a return period of 5 years (Figures 4.37 and 4.39). 

Consequently, it can be said that water harvesting in the research region has a great 

deal of potential to manage water deficits and mitigate drought. 

 

Figure 4. 40 Potential runoff time series. 

4.6.4 Rooftop and street surface rainwater harvesting for groundwater 

recharge.  

Residential houses in Kabul city typically have an area of 200-400 m2 and 

2-4 stories. In this study, a residential house with a total area of 300 m2 was analyzed, 

60% of which is considered for building, and the rest is considered as a yard. The 
groundwater recharge well with its accessories, which is fed by roof and yard 

rainwater, is considered inside the yard (Figure 4.40).  

Considering the rainfall amount of 368 mm/year and taking into account 

the area of 300 m2, the total area of the residential house, including its yard, and taking 

into account 80% of the ability to collect rainwater, the total volume of rainwater that 

can be collected for groundwater recharge is about 88 cubic meters. To prevent oil and 

silt from entering the absorption well, rainwater, after collection, enters the grease and 

oil trap basin, whose dimensions have been taken 150 × 150 × 100 cm, with an 

overflow height of 120 cm (Figure 4.41). The oil trap basin has a capacity of 1.8 m3. 

The sand filter basin, which was installed after the oil trap basin, has a dimension of 

150 x 300 x 100 cm. Its lower part contains filter material with a depth of 45 cm, and 

the upper part contains a freeboard with a depth of 30cm. The top layer (fine sand) has 
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a thickness of 24 cm, and the bottom layer, which consists of gravel, has a thickness 

of 20 cm. 

 

Figure 4. 41 The proposed RWHRS structure for residential houses. 

The maximum daily precipitation is about 81mm/day with a return period 

of 12 years (Figure 4.37). Since the soil characteristic in the Kabul basin has excellent 

hydraulic conductivity, the recharge wells have a total diameter of 1m, and their casing 
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is about 0.8 m in diameter. The depth of recharge will be typically considered 20 m 

based on the maximum daily rainfall and the total catchment area (total area of 

residential house). 

 

Figure 4. 42 Cross-section of the recharge system  

In order to collect rainwater from roads, streets, and their sidewalk areas, 

the system of groundwater recharge wells with its accessories can be constructed at a 

distance of 100-150 meters on the sides of the road (pedestrian area) (Figure 4.42). 

The distance between the wells depends on the wide of the roads and the hydraulic 

conductivity of the soil. A settling tank has been considered before adding water to 

absorption wells in order to prevent the entry of silt and clay. The settling tank is 

separated into two separate parts by a buffer wall (Figure 4.43).  The first part acts as 

the grease and oil separator, and the second part is for the settlement of solid particles. 

The tank is sized 350 x 150 x 100 cm with a 20 cm freeboard. The settling tank is 

connected to a recharge well, which is similar to recharge wells of residential houses 

based on construction. 
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Figure 4. 43 The proposed RWHRS structure for roads and streets (plan) 
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Figure 4. 44 The proposed RWHRS structure for roads and streets. 

4.7  Delineation of groundwater recharge potential zones  

4.7.1 Influential factors 

Groundwater recharge, the process by which water infiltrates into the 

ground and replenishes underground aquifers, is significantly influenced by various 

factors. Geology plays a crucial role as different types of rocks and formations have 

varying permeability, affecting the rate at which water can infiltrate into the 

subsurface. Geomorphology, or the study of landforms, also influences recharge rates 

by determining surface runoff and infiltration patterns. Land use and land cover alter 

the natural hydrological cycle, with urbanization and deforestation often reducing 

recharge through increased surface runoff and impervious surfaces. Soil type is another 

critical factor, as soil permeability directly impacts the rate at which water can infiltrate 

into the ground. Lineament density, which refers to the presence of linear features such 

as faults or fractures, can enhance recharge by providing pathways for water 

movement. Drainage density affects groundwater recharge by influencing the 

concentration and velocity of surface water flow. Rainfall patterns dictate the 

availability of water for recharge, with higher precipitation rates generally leading to 

more significant recharge. Lastly, slope gradient influences the speed and direction of 

water flow, impacting infiltration rates and groundwater recharge accordingly. 
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Understanding the interplay of these factors is essential for managing groundwater 

resources sustainably. 

4.7.1.1 Geology  

Groundwater occurrence and recharge are affected by a region's geological 

makeup. Therefore, the basin's geological configuration is one of the critical 

determinants of groundwater occurrence and recharge (Maheswaran et al., 2016). This 

influential factor was digitized and mapped using a "geologic map of quadrangle 3468, 

Chak Wardak-Syahgerd (509) and Kabul (510) quadrangles, Afghanistan" (R. G. 

Bohannon & Turner, 2005). The following are some of the most prevalent geological 

features discovered in the research region: "Fan alluvium and colluvium, gneiss, loess, 

conglomerate and sandstone, limestone and dolomite, sandstone and siltstone, gabbro 

and monzonite, marble and quartzite, ultramafic intrusions, metamorphic rocks, basalt 

lava, and granodiorite" (Figure 4.44a). When rating theme layers, groundwater effects 

and permeability regulation of geological formations are taken into consideration. 

Conglomerate sandstones, loess, fan alluvium, and colluvium are attractive substrates 

for aquifers because of their high degradation and fracturing rates. The highest-ranking 

values were assigned to these geological features. Minimum ratings were allocated to 

basalt lava and granodiorite. A proposed weight of 20 was determined and assigned to 

the geological character of the basin.  

4.7.1.2 Geomorphology 

The landscapes, underlying geology, and main physiographic units of an 

area are depicted on a geomorphological map. Morphological qualities and features 

impact groundwater's creation, replenishment, and penetration. The geomorphological 

thematic layer of the Kabul basin has been georeferenced, digitized, and retrieved from 

a geomorphological map of the country (Scale 1: 6,000,000) in Arc GIS 10.7 

environment (Figure 4.44b). According to geomorphological characteristics, the basin 

is split into four different types of relief: "mountain, Holocene River valleys, 

intermountain basin, and piedmont diluvial reliefs." The capacity for groundwater 

recharge may be lower, and the amount of runoff may be higher in mountain reliefs. 

Most of the basin is covered by a moderately sloped intermountain basin and a 

Holocene River valley. These geomorphologic features might serve as suitable 

infiltration platforms for groundwater replenishment. Some areas of the territory in the 

basin's southern-east have mountain relief. The Holocene River valley is assigned the 

highest rank, followed by the intermountain basin. The geomorphic characteristic is 

allotted the deduced weight of 18. 

4.7.1.3 land use and land cover  

Land use and land cover are important factors influencing groundwater 

conservation and occurrence. Groundwater recharging would be hampered by the 

increase of impermeable zones on the land surface, such as asphalt and concrete roads, 

streets, and waterproof roof materials. To create a LULC thematic map, remote 

sensing-based data (Landsat-8 satellite data) was processed using a supervised 

classification methodology (Figure 4.44c). The study area has bare land and rock, 
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cropland, vegetation area, settlements, water bodies, and marshland. Settlements 

lessen the impact of groundwater recharge, whereas areas covered in vegetation 

provide higher opportunities for groundwater recharge. The highest weights and 

rankings are assigned to farmland and barren land, whereas settlements receive the 

lowest weights and ranks. The LULC characteristic is given a weight of 12 as a 

consequence. 

  
  

  

Figure 4. 45 a Geology, b Geomorphology, c Land use and Land cover types, 

and d Soil types of the basin 

4.7.1.4 Soil,   

Soil is formed from rock fractures as a result of the deposition process. 

Since it is the principal medium for groundwater to be recharged through it, its 

characteristics are critical for determining groundwater recharge potential. Depending 

on the soil types, they affect groundwater recharge and storage due to their storage 

capacity and absorption rates. To outline the soil map, the needed data for an influential 

layer of soil was acquired from the "Afghanistan Soil Catalogue". The soil in the basin 

is classified as well-drained, moderately well-drained, and none types of soil, with the 

permeability variations representing the soil's dampness frequency. A well-drained 

soil class covers the majority of the research region (Figure 4.44d). Well-drained and 

type of none were given high and low ratings, respectively. A calculated grade of 7 is 

attributed to the soil feature. 
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Figure 4. 46 a Lineament density, b Drainage density, c Rainfall, and d Slope of 

the basin 

4.7.1.5 Lineament density 

Lineaments and curved or linear geological formations significantly 

influence groundwater recharge and transport. The primary lineaments and their 

intersection regions will contain potential high-yield groundwater areas. Its role in 

recharging groundwater is also undeniable. Utilizing PCI Geomatica Banff, Arc GIS 

10.7, and visual interpretations, a lineament density conceptual layer (Figure 4.45a) is 

developed from "Landsat-8 OLI data (Landsat Scene Identifier: LC08 L1TP 153036 

20200704 20200708 01 T1; Date of acquisition: 02-08-2020)". The density of 

lineament is correlated to groundwater potential and capacity. In the current research, 

the bulk of the lineament alignments are in the north-south direction, while there are 

also a few in the northwest-to-southeast, northeast-to-southwest, and east-to-west 

orientations. Substantial proportions of lineament are found in the basin's north, west, 

south, and southwest regions. Regions with higher lineament densities (0.52-1.48 

km/km2) were given a higher ranking, and as a result, areas with lower densities (0-

0.185 km/km2) were given a ranking with lower scale values. The influential factor 

weight of 12 was assigned to lineament density.  
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4.7.1.6 Drainage density,  

Surface runoff from rain, snow, and glacier melt generates drainage on a 

plain, which serves as a significant groundwater replenishment source in a particular 

location. Cracks, fissures, and gaps in a basin play a substantial role in groundwater 

recharge because they are viewed as a guiding element that may influence the drainage 

system of the basin. Thereby, the drainage systems in a specific region act as a 

transmission medium for surface runoff. The ratio of all stream segments to the surface 

area of a watershed is known as drainage density. Because of their increased 

conductivity, a modest runoff will occur in densely populated areas. The appropriate 

conceptual layer of drainage density for this investigation was created by interpreting 

SRTM-DEM in the arc GIS program (Figure 4.45b). The existence of groundwater 

and the relevance of drainage density are intimately connected. There are five 

subcategories in the drainage density thematic map. High rankings were provided for 

the obtained interval values of (2.9-5.5 km/km2) and low rankings for (0.0-0.4 

km/km2). A weight of 11 has been applied to the drainage density influencing layer. 

Table 4. 25 Weightage of numerous thematic layers utilizing the MIF approach 

(Achu, Reghunath, et al., 2020; Kolanuvada, 2019; Magesh et al., 2012; Thapa 

et al., 2017c; Zghibi et al., 2020). 

Factors Major effects (A) (1 

for each) 

Minor effects (B) 

(0.5 for each) 

Proposed 

relative 

rates 

(A+B) 

A proposed 

score for each 

factor 

Geology Geomorphology, 

Drainage Density, 

Slope, Lineament 

Soil 5.5 20.4 

Geomorpholog

y 

Lineament, Geology, 

Drainage Density, Soil 

LULC, Soil 5 18.5 

Lineament 

Density 

Geomorphology, 

Drainage Density, 

Geology 

Slope 3.5 13.0 

Slope Rainfall LULC, Rainfall, 

Drainage Density, 

Lineament Density, 

Soil 

3.5 13.0 

LULC Soil, Rainfall Lineament Density, 

Slope 

3 11.1 

Drainage 

Density 

Geology, 

Geomorphology 

Rainfall, Lineament 

Density 

3 11.1 

Soil LULC Rainfall, 

Geomorphology 

2 7.4 

Rainfall Slop Geology 1.5 5.6  
∑27 ∑100 
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4.7.1.7 Rainfall,  

Precipitation is the principal water source in the water cycle and the 

primary source of groundwater recharge. Surface runoff and rainfall-derived water 

penetrate the earth's subsurface via fractures and soil texture. The severity and intensity 

of rainfall impact both runoff and groundwater recharge capacity in a basin. NWARA 

Afghanistan provided daily precipitation data for ten years (2008–2018), and the 

geographical distribution was assembled in the Arc GIS platform using the IDW 

approach (Figure 4.45c). In the Kabul basin, the average annual precipitation is found 

to be around 330 mm. The study area is divided into three sections based on 

mean yearly precipitation. Data show more precipitation in the north and lower 

precipitation in the south, indicating an intermediate condition across the basin. The 

high rainfall area (342-365) mm is given a higher rank, whereas the low rainfall area 

(298-320) mm is given a lower rank. As a consequence, the precipitation characteristic 

gets a derived weight of 7. 

4.7.1.8 Slope 

Runoff is significantly impacted by slope, which measures the difference 

in elevation in a specific location. However, it does contribute significantly to 

groundwater availability and recharge. Sharper slopes are not regarded as suitable 

media for groundwater recharge since they hasten runoff, eroding, and water 

penetration into the soil. On the other hand, lower slopes and flat areas provide an ideal 

habitat for groundwater recharge because the water flows at a moderate speed in these 

areas, giving ample time for penetration and creating ideal circumstances for 

groundwater recharge. The slope map was created using the Arc GIS system after 

processing the SRTM-DEM input. Mountains encircled the basin's west, south, and 

east sides, with a decreasing slope towards the basin's centre. The basin's northern, 

central, and smaller portions in the south, east, southeast, and southwestern parts 

comprise a moderate slope with excellent potential for groundwater recharge. The 

categorization of the slope map in the basin's data shows five distinct slope subclasses 

(Figure 4.45d). Areas with slopes between 0 and 2% have been ranked highly, whereas 

those with slopes more than 40% have received the lowest rankings. A derived weight 

of 13 is applied to the slope characteristic. 
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Table 4. 26 Weights of themes and their influences 

Theme Ran

k 

Weigh

t 

Percentag

e of 

influence 

(%) 

Theme Ran

k 

Weight Percentag

e of 

influence 

(%) 

Geology 20   25.51 LULC 12.7   12.76 

Conglomerate 

and sandstone 
  9   Barren land   9   

Fan alluvium 

and colluvium 

8 Barren rock 6 

Loess 8 Cropland 5 

Gneiss 6 Snow 3 

Metamorphic 

rocks, 

undivided 

4 Settlement 2 

Limestone and 

dolomite 

3 Water body Restricte

d 

Sandstone and 

siltstone 

3 Marshland Restricte

d 

Gabbro and 

monzonite 

3 Drainage 

density 

10.9   12.76 

Marble and 

quartzite 

2 < 0.43   1   

Ultramafic 

intrusions 

2 0.43 - 1.09 3 

Basalt lava 1 1.09 - 1.87 5 

Granodiorite 1 1.87 - 2.92 7 

Geomorpholog

y 

18.2   12.24 > 2.92 9 

Holocene river 

valleys 
  9   Soil  7.3   7.14 

Mountain relief 6 Well 

drained 
  9   

Piedmont 

diluvial relief 

5 Moderately 

well drained 

4 

Intermountain 

basins 

4 None 1 

Lineament 

Density 

(km/sq.km) 

12.7   8.16 Rainfall 7.3   8.67 

< 0.18   2   < 320   3   
0.18 - 0.52 5 320-340 5 

> 0.52 9 >340 9 

Slope (%) 12.7   12.76   ∑ 196 ∑ 100.00 

< 2   9   
2 --- 7 7 

7--21 5 

21 -- 40 3 

> 40 1 
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4.7.2 Relative Importance of the Factors 

The MIF approach was utilized to calculate the suggested scores since 

diverse geo-environmental variables impact groundwater recharge at different scales 

(Table 4.25). Out of the eight influential factors, geology has the highest factor (20.4), 

followed by geomorphology (18.5), slope and lineament density (13 each), LULC, and 

drainage density (11.1 each). The lowest score is recorded for soil type (7.4) and 

precipitation (5.6). Thematic layers were ranked using the suggested scores for each 

variable (Table 4.25), with each subclass of the thematic layer receiving distinct 

weights (Table 4.26). 

The recommended scores were then used to calculate each component's 

influence proportion. Geology has the greatest effect on groundwater recharge 

potential in the current research region with 25.51 per cent, followed by LULC, slope, 

and drainage density (12.76 per cent each) and geomorphology (12.24 per cent). Other 

parameters, like rainfall, lineament density, and soil types, have far less impact on the 

basin's recharge potential (Table 4.26). 

 

 

Figure 4. 47 Potential groundwater recharge zones 

4.7.3 Delineation of groundwater recharge potential zones  

The geo-environmental characteristics were added to ArcGIS using 

weights generated by the MIF technique to determine the possible groundwater 

recharge areas in the Kabul basin. The resulting map was then divided into four 
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categories: places with the least, moderate, good, and very good potential for 

recharging (Figure 4.46). Around 20% of the basin's total area (462 km2) is covered 

by the least recharge potential zones, whereas the moderate recharge potential zones 

represent 831 km2. Roughly 36% of the study area was classified as good, and only 

9% as very good recharge potential zones. Artificial recharge areas are commonly 

found in the centre and northern regions of the basin, which have gentle slopes. The 

presence of hills and hilly terrain in the upper parts of the basin causes the lowest 

recharge potential areas (Figure 4.45). Comparing the findings of the study with 

similar studies (Achu, Reghunath, et al., 2020; Kolanuvada, 2019; Thapa et al., 2017; 

Zghibi et al., 2020) showed that factors such as geology, geomorphology, and slope 

play an important role in identifying groundwater recharge potential zones.  

In this study, the quantity of precipitation recharging groundwater is 

estimated using an empirical equation (Eq.3) from (UN, 1967), which is widely used 

in the literature (Achu, Reghunath, et al., 2020; Gosh et al., 2016; Souissi et al., 2018). 

Based on the (UN, 1967), the rechargeability of the various zones was estimated as 

follows: "Very good: 45–50% of precipitated water recharges the subsurface layers. 

Good = 30–35 % of precipitated water is recharged to the subsurface strata. Moderate 

= 10–20 % of precipitated water is recharged to the subsurface strata. Least = 5–10 % 

of precipitated water is recharged to the subsurface strata". 

𝑊 = 𝑃 × 𝑅 × 𝐴 .......... (4. 9) 

Where W indicates the recharge water quantity (m3/year), P is the amount 

of rainfall, R is the recharge ratio, and A is the percentage of the area. As the average 

rainfall in the basin is estimated at 330 mm/year (A. R. Noori & Singh, 2021b), the 

basin's volume of precipitated water might be around 778.8 x 106 m3 /year. It was 

utilized to determine the total quantity of recharge water (W) for all four zones based 

on (Equation 4.9): 

W = 778.8 × 106[(0.475 × 0.0846) + (0.325 × 0.3641) + (0.15 × 0.3543)

+ (0.075 × 0.197)] =  176.35 × 106 m3/year 

According to the observations above, only 22.64 per cent of precipitation 

in the Kabul basin infiltrates below to replenish groundwater reservoirs, while the rest 

evaporates or flows out as surface runoff. However, the volume of recharge water may 

be enhanced using artificial recharging technologies, which will aid in developing the 

basin's groundwater resources. 

Table 4. 27  Quantitative assessment of rechargeable categories 

Recharge potentiality Very good Good Moderate Least 

Proposed recharge rates 45-50 30-35 10-20 5-10 

Average (%) 47.5 32.5 15 7.5 

Occupying study area (km2) 198.32 853.82 831 462.1 

Area (%) 8.46 36.41 35.43 19.70 
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4.7.4 Discovering Appropriate Recharge Approaches for Groundwater  

Since groundwater recharge methods are highly site-specific, not all 

groundwater recharge measures are suitable for use in all basin locations. Therefore, a 

"rule-based" technique  (Achu, Reghunath, et al., 2020; Aju et al., 2021) was employed 

to identify the areas appropriate for implementing different recharge measures (i.e., 

check dams, contour trench, recharge wells, rooftop rainwater harvesting, added 

recharge wells) in the moderate, good, and very good recharge potential areas of the 

Kabul basin. 

Check dams are the most common structures found in (1-4) order streams 

with a slope of less than 15%. The appropriate sites of check dams throughout the 

basin region are highlighted in (Figure 4.46 a) to augment the surface water supply 

and improve subsurface infiltration. Check dams are well adapted to alluvial deposits 

and hard rock terrains. The weathering layer's depth and the substrate's conductivity 

affect groundwater recharge at check dam locations. 

Contour trenches can be used in places with complicated terrain. The 

regions covered by barren lands and haven streams in the sequence of (1-2) are counted 

as contour trench-worthy (Figure 4.46 b). For the contour trench site selection, a slope 

constraint of (10-20%) was used, along with a low drainage density. The density and 

order of the streams determine the locations of recharge wells (Figure 4.46c). The 

recharge wells are positioned in areas with high stream density and higher stream 

orders (3-5). 

Rooftop rainwater harvesting (Figure 4.47d) attached by recharge wells is 

suited for areas covered by built-up areas. The study area's LULC was used to identify 

ideal locations for rooftop rainwater harvesting added recharge wells. Figure 4.47 

depicts the basin's ideal locations for adopting various artificial recharge technologies. 

As a result, the current research might be useful in building basin-wide groundwater 

management plans. Furthermore, the current work highlights the effectiveness of 

employing the MIF approach to distinguish groundwater recharge potential regions by 

integrating remotely sensed data and geoinformation data in a GIS platform. 
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Figure 4. 48 Proposed locations for implementing different groundwater 

recharging structures in the basin 
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Figure 4. 49 Continued 
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CHAPTER 5  

CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT 

5.1 Conclusion 

5.1.1 Water quality analysis  

The research in Kabul comprises utilizing hydrogeochemical 

characterization, WQI, and GIS techniques to assess water quality in large parts of the 

city and most of its districts. According to WHO and ANSA guidelines, 

physicochemical characteristics such as EC, TDS, and TH are above acceptable levels 

in some samples. The number of anions in groundwater samples is in ascending order 

of F< NO3< SO4< Cl< HCO3 with percentages of 0.03% < 0.70% < 9.20% < 25.48% 

< 64.59%, respectively. And the quantity of cations is shown in ascending order of 

K+< Mg+2 < Ca+2< Na+ contributing 3.28% < 20% < 22% < 55% respectively. In 

observed samples of the basin, the primary ions are HCO3, Cl for anions, and Cs+2, 

Na+ for cations. In particular samples, major anions Cl, SO4, NO3, and cations Na, Ca, 

K in some samples and Mg in most samples have exceeded the permitted limit. As per 

the Piper diagram, the groundwater type is about 77% Mg-HCO3 type, 11% Na-Cl 

type, and about 7% each of Mixed Ca- Na-HCO3 and mixed Ca-Mg-Cl type. 

Bicarbonate leads the proportion in the anion’s triangle with 83%, followed by 

chloride with 11%, and 6% of samples had no dominance. For cations, no dominance 

is the most prominent ion with 48.5% dominance, magnesium with 34%, and 17% of 

samples with sodium type. As per Gibbs plot conclusions, the bulk of the samples 

belonged to the rock dominance and evaporation dominance clusters. The poor water 

quality might be associated with lowering groundwater levels and reaching various 

geological formations, notably in the north of the research region. Furthermore, 

deterioration in groundwater quality might be ascribed to anthropogenic factors in the 

center sections of the basin due to higher groundwater levels. As per the water quality 

index (WQI), excellent to good water is found in 88.57% of the basin, whereas poor 

to very poor water is found in 11.4%, indicating pollution concentrations.  

5.1.2 ANN Model 

The results of the ANN model for simulating sodium concentration in 

groundwater based on input data (EC, TDS, Salinity) have an average variance of 

11.53%. The average variance for chloride and sulphate is 3.83% and -3.41%, 

respectively. However, the average variance for potassium and total hardness is 

259.6% and 45.25%, respectively. These differences in mean percentage of variances 

show the accuracy of the models and their suitability. Based on these percentages one 

can conclude that the model is very suitable for simulating the concentrations of 

sodium, chloride and sulphate in groundwater with the suggested inputs (EC, TDS, 

and Salinity). Therefore, the model is not very suitable for the prediction of potassium 

and total hardness in groundwater with the same inputs.   
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5.1.3 Seasonal water quality analysis 

The statistical analysis indicates that most of the water quality parameters 

in the study area were not statistically significant; however, the concentrations of 

calcium, sodium, iron, manganese, chloride, and fluoride increased significantly from 

the dry to the wet period of the observation. Other parameters such as electrical 

conductivity, pH, total hardness, total dissolved solids, bicarbonate, sulfate, phosphate, 

potassium, copper, aluminium, cyanide, and nitrate are the parameters that are not 

significantly changed from the dry to the wet period of the study time, according to 

the statistical test. 

Variations in water quality parameters are correlated to recharge volume, 

hydraulic conductivity, and the geological formation of the region. The level of 

qualitative parameters, such as calcium, sodium, iron, manganese, chloride, and 

fluoride, has increased in the wet season, mainly in the wells close to river paths or in 

agricultural areas. The groundwater level in the study area's north and west has 

decreased in the last two decades. Also, groundwater recharge in these areas is much 

less due to changes in land use/land cover pattern. The recharge water is probably 

unable to reach the groundwater in a single season due to its tiny volume and weak 

hydraulic conductivity. As a result, there is less of a concentration of quality factors in 

the groundwater in these areas. 

5.1.4 Groundwater level analysis 

An extended period of seasonal and annual groundwater level trends has 

been assessed at 66 observational wells in Kabul City. Groundwater drought index 

(SGI) values were also calculated to measure the severity of drought in groundwater. 

Cluster classification was used to label the wells based on correlations with 

groundwater table variations. Evidence from the elbow approach indicated that 3 

clusters are necessary to classify the water level variability into distinct groups. Cluster 

1 consists of 32 wells with an average annual rate of groundwater decline of 1.38 

meters. Clusters 2 and 3 contain 15 and 8 monitoring wells, respectively, with 

significant negative average groundwater level trends of 0.31 m and 2.84 m per annum. 

A substantial increase in annual groundwater level was found in four observational 

wells, with an overall gain of 0.7 m/year. 

 Based on the trend analysis of wells in the various clusters, the water 

levels in 89 per cent of cluster 1 wells and 82 per cent of all study area wells 

consistently declined. The calculation of SGI values has indicated that most wells in 

the research region have been experiencing severe and ongoing drought since 2014. 

The drought conditions in most wells started in 2014 and have generally intensified to 

2020. Most of the wells experienced extreme drought conditions during 2019-2020. 

Additionally, some wells in different clusters have shown the effects of groundwater 

drought. For instance, well 50 has experienced several months of drought conditions 

during its operation. The SGI values for this well indicated that drought conditions 

appeared in this well alternatively from 2006 to 2011 and 2014 to 2020. The extreme 

drought in this well was recorded in 2008 with a magnitude of greater than 3 SGI.  
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Wells with positive water level trends show different behaviour. For 

instance, in well 14, drought conditions started in 2006 and ended in 2014. They 

reappeared in 2018 and continued to 2020, but the SGI values were generally low 

compared to many other wells. However, this well-experienced extreme drought 

condition was in 2014 when the SGI value was greater than 2. Only a few wells in the 

study area exhibited this type of water level behaviour. 

Land use and land cover (LULC) patterns for the Kabul area were 

investigated in 2005, 2010, 2015, and 2020. The built-up area, which has a significant 

negative impact on groundwater recharge, increased from about 15% in 2005 to 32% 

in 2020 in the study area. From 2005 to 2020, the area of agricultural land use 

decreased from about 17% to 15%. The area covered by bare land in the study area has 

decreased from 67 % in 2005 to 52% in 2020. Precipitation records, especially in the 

southern region of the study area, show a decline in the annual rainfall amount. 

Changes in LULC and a decrease in precipitation are the two influential factors in 

reducing groundwater levels. 

 Overexploitation of groundwater due to population increase, the dryness 

of the riverbeds, the extent of urban development, the reduction of rainfall, and the 

mismanagement of groundwater resources are likely to be the leading causes of 

groundwater level declines in the area. To avoid further deterioration of valuable 

groundwater resources, this report suggests artificial groundwater recharge and 

advanced groundwater resource management, as well as the parallel utilization of 

surface and groundwater. This study would help implement regional groundwater 

policies for long-term water supply development in the Kabul Basin. 

5.1.5 GWPZs 

This analysis examines the reconnaissance of groundwater potential 

zonation in the Kabul basin, Afghanistan. This research strongly indicates that the 

hybrid application of both GIS and remotely sensed data, in addition to the analytical 

hierarchy process, provides a powerful tool to assess the zones of groundwater 

potential and recharge. Ten different thematic variables were analyzed in the Arc GIS 

environment with various numerical weightage values in the basin.  These variables 

included geology, geomorphology, land-use land cover, lineament density, drainage 

density, soil, slope, rainfall, elevation, and water depth. Static groundwater level 

records have been utilized to acquire precision and reliability for discovering 

groundwater potential zones. According to the final output of the results, most parts of 

the study area are covered by a reasonable and very good capacity of groundwater 

potential zones. Based on the results, four categories of the GWPZs were eventually 

recognized. According to the statistics, the area is divided into a zone with a very poor 

potential (16%), poor (18%), good (35%), and very good (31%).  

5.1.6 Artificial recharge of groundwater in an urban area 

Kabul has inconsistent, seasonal, and intense precipitation. The average 

annual rainfall is 368 mm, and there are typically 80 wet days. Considering the LULC 

typology, Ic(eff) was calculated for the study area for both conditions of employing 
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RWHRS and without RWHRS. By using RWHRS, the average yearly infiltration 

might rise from 4.86 MCM to 11.33 MCM. Using the "US-NRCS" approach, a 

weighted CN value of 90.5 per cent is discovered, attributing to the supremacy of 

imperviousness. Additionally, it is revealed that the threshold for runoff formation is 

5.3 mm of rainfall. A return period of 3–4 years is predicted by the probability analysis 

using the Weibull approach for daily rainfall of less than 30 mm. 

Two techniques for collecting rainwater to replenish groundwater were 

described: (1) RWHRS for a residential house with an area of 300 m2, which will yield 

about 88 m3 of water for groundwater recharge, and (2) the RWHRS for a street 

sidewalk where the harvested water is being used to recharge the local aquifer.  

5.1.7 GWRPZs 

By integrating remotely sensed data and geoinformation inputs in a GIS 

environment and utilizing the MIF method, the potential recharge zones for artificial 

groundwater recharge mechanisms in a semi-arid area (the Kabul basin, Afghanistan) 

were determined. Eight different variables as thematic maps, viz., geology, 

geomorphology, slope, lineament density, land use and land cover, soil, rainfall, and 

drainage density, were integrated into the ArcGIS environment. Geology, lineament 

density, and slope are determined to considerably impact the basin's recharge potential 

among the eight relevant elements. 

The anticipated potential zones for groundwater recharge in the basin are 

split into four categories based on their propensity for groundwater recharge, viz., very 

good (areal extent 8.45%), good (36.4%), moderate (35.4%), and least (19.7%) 

recharge potential zones. Based on the estimated calculation, only around 23% of the 

total amount of precipitation infiltrates into the groundwater reservoirs in the research 

region. Conglomerate and sandstone, loess, fan alluvium, and colluvium with a 

moderate slope are connected with very good and good groundwater recharge potential 

zones. In contrast, crystalline rocks with steep slopes and lacking secondary porosity 

are correlated with the least recharge potential zones. To discover the best locations 

for various site-specific recharging processes (check dams, counter trenches, recharge 

wells, and rooftop rainwater harvesting added recharge wells), a rule-based approach 

has been employed. It was proposed in this study that check dams be built at various 

points and above streams in a variety of configurations. It has been recommended that 

check dams be built with locally accessible construction materials. Contour trenches 

are suggested in places with complicated terrain with low drainage density. The 

regions covered by barren lands and haven streams (1-2) sequence are counted as 

contour trench-worthy. The recharge wells are positioned in locations with high stream 

density and higher stream orders (3-5). The areas occupied by built-up areas are 

suitable for rooftop rainwater harvesting attached to recharge wells. The outputs of 

this investigation would be helpful for regional authorities to develop sustainable water 

resources management.  
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5.2 Recommendations  

1. Since groundwater is the most prevalent source of water supply, a continuous 

monitoring system will ascertain the drinking water quality for the residents' accessing 

to safe water, resulting improved management with sustainable groundwater 

development. 

2. A National water quality database must be developed in the ministry of Energy and 

Water of Afghanistan. 

3. Models developed by ANN should be well-trained, tested, and used in laboratories. 

4. The application of RWHRS for areas which have a regular sewage collection system 

must be compulsory.  

5. Application of GIS and RS with the approaches of MCDA (MIF, AHP) is beneficial 

for developing GWPZ and GWRPZ. Stakeholder can employ it. 

6. The developed maps can be utilized for sustainable water resources management.  

7. A regular system of wastewater collection and treatment (of any type) is an urgent 

need for the city and must be developed as soon as possible.  

5.3 Scope of future work 

1. Studying the quality of water in the whole country, especially the level of arsenic 

and heavy metals, and finding out their correlations with cancers. Since different types 

of cancer are increasing in the country for the groundwater supply. 

2. Isotope analysis of GW is used to determine the age of water that is currently used.  

3. Study and suggest appropriate recharge mechanisms (contour trench, check dams, 

recharge wells) from a structural point of view. 

4. Modelling groundwater quality and quantity for both scenarios (current condition 

and application of artificial recharge) 

5. Wastewater recycling should be considered and studied as an option for 

groundwater recharge. 
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