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ABSTRACT 

Sentiment analysis is a computational technique that analyses the subjective information 

conveyed within a given expression. This encompasses appraisals, opinions, attitudes or 

emotions towards a particular subject, individual, or entity. Conventional sentiment analysis 

solely considers the text modality and derives sentiment by identifying the semantic 

relationship between words within a sentence. Despite this, certain expressions, such 

as exaggeration, sarcasm and humour, pose a challenge for automated detection when 

conveyed only through text. Multimodal sentiment analysis incorporates various forms of data, 

such as visual and acoustic cues, in addition to text. By utilising fusion analysis, this approach 

can more precisely determine the implied sentiment polarity, which includes positive, neutral, 

and negative sentiments. Thus, the recent advancements in deep learning have boosted the 

domain of multimodal sentiment analysis to new heights. The research community has 

also shown significant interest in this topic due to its potential for both practical application 

and educational research. In light of this fact, this research aims to present a thorough analysis 

of recent ground-breaking research studies conducted in the field of sentiment analysis using 

diverse modalities. Furthermore, this thesis dives into a discussion of the multiple categories 

of multimodal data, diverse domains in which multimodal sentiment analysis can be applied, 

challenges associated with multimodal sentiment analysis, and suggests different frameworks 

for analysing sentiments using visual-caption pairs and videos. The ultimate goal of this 

investigation is to indicate the success of deep learning architectures in tackling the 

complexities associated with multimodal data analysis. 

People are becoming accustomed to posting images, captions and audios on social media 

platforms to express their opinions. For our subsequent strategy, we conducted a 

comprehensive assessment and examination of the performance of several multimodal 

sentiment analysis models across a range of modalities. However, most recent multimodal 

strategies concatenate features from the visual, caption & audio modalities with the help of pre-

trained deep learning models containing millions of trainable parameters without adding a 

dedicated attention module, ultimately leading to less desirable results. Motivated by this 

observation, we have proposed a novel model VABDC-Net, VyAnG-Net that integrates the 

attention module with the conventional state-of-the-art models to extract the most relevant 

contextual information from these diverse modalities. The experimental results show that our 

suggested approaches can generate ground-breaking outcomes when applied to publicly 

available multimodal datasets, specifically Twitter-2015, Twitter-2017, MUStARD, and 
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MUStARD++. The experimental results demonstrate that the proposed model attains much 

superior accuracy scores on all of these datasets and exhibits much higher efficiency compared 

to conventional approaches in predicting sentiment in multimodal data. 

Also, this investigation aims to employ Target-Dependent Multimodal Sentiment Analysis to 

identify the level of sentiment associated with every target (aspect) stated within a multimodal 

post consisting of a visual-caption pair. Despite the recent advancements in multimodal 

sentiment recognition, there has been a lack of explicit incorporation of emotional clues from 

the visual modality. The challenge at hand is to proficiently obtain visual and emotional clues 

and subsequently synchronize them with the textual content. In light of this fact, this thesis also 

presents a novel approach called the Visual-to-Emotional-Caption Translation Network 

(VECT-Net) technique to effectively acquire visual sentiment clues by analyzing facial 

expressions. Additionally, it effectively aligns and blends the obtained emotional clues with 

the target attribute of the caption mode. 

Additionally, a novel contrastive learning-based multimodal architecture have been introduced 

to predict emoticons using the Multimodal-Twitter Emoticon dataset acquired from Twitter. 

This proposed model employs the joint training of dual-branch encoder along with the 

contrastive learning to accurately map text and images into a common latent space. Our 

key finding is that by integrating the principle of contrastive learning with that of the other two 

branches yields superior results. The experimental results demonstrate that our suggested 

methodology surpasses existing multimodal approaches in terms of accuracy and robustness. 

In conclusion, this thesis presents substantial discoveries and identifies potential areas for 

future research on the subject of sentiment analysis utilizing multi-modal data. 
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Chapter 1: Introduction  

Sentiment analysis, also known as opinion mining, is the computational study of people's 

opinions, sentiments, emotions, and attitudes. Using deep learning techniques, sentiment 

analysis has made significant advancements, allowing for more accurate and nuanced 

understanding of text data. Deep learning models, particularly those based on neural networks 

like Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), 

including Long Short-Term Memory (LSTM) networks, have proven highly effective in 

capturing the complexities of human language. These models excel at understanding context, 

handling ambiguity, and recognizing patterns in large datasets. By leveraging vast amounts of 

labelled training data, deep learning models can learn to distinguish subtle differences in 

sentiment, enabling applications such as customer feedback analysis, social media monitoring, 

and market research. The power of deep learning in sentiment analysis lies in its ability to 

automatically extract features and representations from raw text, reducing the need for manual 

feature engineering and improving the overall accuracy and robustness of sentiment 

predictions. 

1.1 Growing Popularity of Social Media Platforms 

The last decade has witnessed a tremendous rise in social media platforms. An extensive online 

presence has become a normal part of daily human lives. The number of active users on social 

media has grown tremendously, from just over 2.5 million active users at the beginning of 2017 

to almost 5 billion active users by the end of 2024 [1] as illustrated from Figure 1.1. One of 

the most significant developments of this century is the data revolution. Furthermore, it is worth 

noting that over the past two decades, the volume of data has experienced exponential growth. 

With the widespread availability of affordable mobile devices and high-speed Internet access, 

the global community has effectively become a closely connected and accessible network. data 

on the Internet has led to the emergence of an entirely new field known as multimodal data 

analysis. The importance of social media is discussed as follows: 

• Social media platforms facilitate the connection and interaction between individuals. 

• Social media serves as a medium for disseminating information, exchanging ideas, and 

expressing opinions. 

• Social media also appeals to a significant percentage of individuals who passively 

consume information. Users generate and distribute multimedia content, as well as 
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access and investigate material shared by other members of the 

online community, organizations, groups, etc. 

• Social media exerts a significant influence on the mental state of individuals. 

 

Figure 1.1 The worldwide record of active users on social media platforms, quantified in 

billions. 

With the proliferation of social media platforms, e-commerce websites, video blogs, etc., 

individuals have the ability to engage in the buying and selling of various goods and services. 

Typically, individuals provide their feedback on a service, product, or any particular topic, in 

the form of textual reviews. Figure 1.2 illustrates the engagement rates on major social media 

platforms (Facebook, Instagram, Twitter, and TikTok) from 2017 to 2024. 

Key observations: 

• Facebook: Indicates a consistent yet marginal upward trend in engagement rates over 

the years. 

• Instagram: Illustrates a steady and substantial increase, indicating a progressive user 

engagement. 

• Twitter: Exhibits a progressive rise in engagement rates, though with a less pronounced 

slope compared to Instagram. 

• TikTok: Experiences a significant surge in user engagement beginning in 2019, 

indicating a rapid growth in its popularity. 
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Figure 1.2 Graph illustrating the engagement rates of users on prominent social media platforms 

in percentage. 

The availability of high-speed internet enabled the user to submit their reviews not only in 

textual form but also in acoustic and visual formats. The proliferation of multimedia data on 

the internet has led to the emergence of an entirely new field known as multimodal data 

analysis. As the engagement rate increases on different social media platforms, there is a 

corresponding increase in the use of multimodal data for reviewing or providing feedback on 

products. 

1.2 Sentiment Recognition 

Affective computing is an integrative field that traverses psychology, cognitive sciences, and 

computer science. For many years, sentiment analysis has become a vigorous domain of 

exploration in affective computing [2], [3], [4]. The achievement of any company or item 

straightforwardly relies upon its customer because if the customer likes the product, it is a 

success; if not, you certainly need to improve the product by making some changes. All in all, 

here the question emerges how might you know whether your item is successful or not? Well, 

for that, you want to investigate or analyse your clients. One of the critical qualities of analysing 

your clients is examining their feelings. Here, the concept of sentiment analysis comes to play. 

Thus, sentiment analysis can be defined as perceiving and identifying opinions from numerous 

information sources. Figure 1.3 shows multiple degree of sentiment analysis in text modality. 
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Customers and manufacturers seek to understand the "customer's opinion" regarding respective 

products or services, which is the primary motivation behind sentiment analysis.  

 

Figure 1.3 Different levels of sentiment analysis that rely on textual-based 

information. 

Consequently, sentiment analysis has enjoyed significant business and scholarly attention. 

However, some phrases, such as exaggeration, sarcasm, and humour, present a problem for 

automatic recognition when they are solely communicated via text. In such instances, the 

incorporation of multiple modalities, such as visual and acoustic signals, can more precisely 

determine the implied sentiment polarity. The focus of this discussion pertains to the primary 

goal of conducting multimodal sentiment analysis. 

1.3 Multimodal Sentiment Recognition 

In today's era, individuals are regularly bombarded with huge amounts of multimodal data 

across diverse social media platforms. Such data is often presented in the form of comments 

that incorporate images, text, audio, videos, and emoticons. In light of these facts, the 

categorization of various modalities might be grouped, as shown in Figure 1.4. The task of 

identifying implicit emotions from these comments is quite complex.  Although unimodal 

sentiment analysis has the capability to identify an individual's attitudes towards a particular 

subject, it can be challenging to distinguish between explicit sentiment and implicit emotions 

such as sarcasm, humour, or exaggeration. Hence, in order to achieve a more accurate 

prediction of the emotion, the utilisation of multimodal data processing would be a more 

advantageous approach. Hence, the ultimate goal of this study is to indicate the success of deep 
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learning architectures in tackling the complexities associated with multimodal sentiment 

recognition by discussing the diverse domains in which multimodal sentiment recognition can 

be applied, challenges associated with it, and suggests different frameworks for analysing 

sentiments using visual-caption pairs and videos. 

People are currently working on multimodal sentiment recognition, which is one of the most 

exciting and challenging active research areas. Pandey et al. [5], Gupta et al. [6], Pandey et al. 

[7], Aggarwal et al. [8] are a few recent publications that have established their relevance in 

this area. The model utilised in these research studies has integrated various modalities as input 

to estimate sentiment. A crisp idea of it is demonstrated in Figure 1.10. 

 

Figure 1.4 A taxonomy of all kinds of modalities. 

1.4 Fusion Strategies to Blend Multiple Modalities 

For integrating multiple data sources, there are eight fusion techniques that can be utilized, as 

depicted in Figure 1.5. Let us examine each one with greater depth. 

1.4.1 Early Fusion (EF) 
It is typically performed in three steps as outlined below: 

• Firstly, each modality's features are extracted using a different methodology, such as 

exploiting TF-IDF for text, using of OpenSmile toolkit for acoustic, and utilizing a 

neural network for visual features. 

• A vector is then created from the multiple modalities as a result of combining all the 

extracted features. 
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• The combined feature vector is subsequently fed into one of the classification models 

to make the prediction. 

Morency et al. [9] was the first attempt to implement tri-modal sentiment analysis by using a 

Hidden Markov model after the concatenation of the feature vectors. Perez et al. [10] developed 

a method that merges all multimodal features into a single feature matrix, and then the final 

obtained matrix is used by an SVM for classification. Similarly, Park et al. [11] makes use of 

radial basis function kernels along with SVM for prediction and classification. Zadeh et al. [12] 

aggregate the different modes of data into a unique feature matrix and transfer it to the Bi-

LSTM, while the authors of [13] after converting, transfer the final hidden state to the fully 

connected layers for sentiment analysis. However, both methods achieve almost similar results. 

Disadvantage- The implementation of this method is much more complex and tedious because 

it involves the unification of those features which are diverse in nature. 

 

Figure 1.5 Different Fusion strategies for MSR to integrate diverse modalities such as text, images, videos, 

and emoticons. 

1.4.2 Late Fusion (LF) 
This technique is again carried out in 3 phases, as drafted below: 

• The very first step is similar to the early fusion, namely, extracting features from 

different modalities. 

• Once the feature vectors from multiple modalities have been generated, three of the 

separate vectors are fed into the associated classification model. 
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• An ultimate output result is obtained by integrating the three results from the previous 

step. 

In [14] a neural network is trained for each of the separate multimodal data content, and then 

the decision is made based on performing majority voting on the result of each modality 

network for the final MSR. This study also utilizes the averaging method for the final sentiment 

scores. The method in [13] involves first training three different LSTMs for three multimedia 

pieces of information, then aggregating the last hidden layer of the three LSTMs. The 

aggregated hidden layers are transferred to two fully connected layers in the final step for 

obtaining the actual prediction score. The framework in [15] implemented both early and late 

fusion techniques, but better results were achieved using Late-RMNN. Both early and late 

fusion strategy are illustrated in Figure 1.6. 

Advantages-   

• It abolishes the need to combine diverse features. 

• For the final prediction, each modality can use a separate classification model 

independently. 

 

Figure 1.6 Early and Late fusion strategy. 
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1.4.3 Hybrid Fusion (HF) 
It is a process of fusing the features obtained from late and early fusion, as its name suggests. 

It is viewed as a two-step process, as illustrated below: 

• The fusion of two modalities is carried out at the EF first. 

• After that, LF is regulated on the previous results and the remaining modality. 

Kumar et al. [16] uses the VGG model to learn the feature representations of image-related 

data and the Glove word embedding approach for learning the text-based features. Finally, they 

use the hybrid fusion to predict emotions using BalanceNet (a neural network) classification 

model. Kumar et al. [17] also, make use of the hybrid fusion technique for fine-grained 

analysis. 

1.4.4 Temporal Fusion (TF) 
This fusion technique is particularly beneficial when dealing with view-specific and cross-view 

dynamics. The LSTM and attention blocks are the two critical components of TF's basic design. 

In the LSTM block, at each time step 𝑡 features from each modality are fed to separate LSTM 

blocks to model view-specific dynamics. The outputs from the several LSTMs are then passed 

to the attention block, which focuses on the relevant features while ignoring the less significant 

ones to model cross-view dynamics. All the research studies incorporating this fusion technique 

differ in how they employ the attention mechanism. Figure 1.7 depicts the overall structure of 

TF where 𝑦𝑙
𝑡𝑠, 𝑦𝑎

𝑡𝑠 and 𝑦𝑣
𝑡𝑠 are the features for textual, acoustic, and visual data at time step 𝑡𝑠. 

The architectures used in [18], [19], [20] make use of TF for merging multiple modalities. The 

[10] is a recent publication that employs TF for sentiment prediction and emotion recognition. 

This study proposes a new LSTM-based model named temporal convolution multimodal 

LSTM, including a gating mechanism for integrating the representation of all modalities and 

the temporal correlations between them for final prediction. 

 

Figure 1.7 General structure of temporal-based fusion approach. 
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1.4.5 Utterance-level Fusion (ULF) 
Unlike TF, this fusion method works on the entire utterance and employs view-specific and 

cross-view dynamics instead of working on each time step. This fusion model has two modules, 

namely embedding and fusion network. The output of the embedding module is the 

embeddings of all the modalities for an utterance. View-specific dynamics are employed in the 

embedding module. The embeddings of all modalities are then sent to the fusion module, which 

concatenates all of the embeddings into a single vector representation and thereby models 

cross-view dynamics. Figure 1.8 shows the general structure of ULF, where T, A, and V 

define textual, acoustic, and visual modalities. [21], [22], [23], [24], [25] are a few cutting-edge 

studies that employ ULF. 

 

Figure 1.8 General structure of utterance-level fusion strategy. 

1.4.6 Word-level Fusion (WLF) 
In WLF, every word in a sequence is merged with non-verbal modalities, i.e., acoustic and 

visual, to learn the variation vectors. In Zhang et al. [26] firstly, the correlation between the 

image and text is examined with the help of the attention network. A model named IDLSTM, 

a sentimental inner-class dependency enhancement model, is proposed in this study. The 

IDLSTM learns the inner dependent relationships between the query and words in the caption 

and achieves the final sentimental prediction using an image–text pair as the query. 

1.4.7 Sequence-to-Sequence Fusion (STSF) 
For the first time, Google released STS models for machine translation. Before it, the 

translation had been working in a pretty naïve fashion. Inspired by the notion behind these 

models, a multimodal cyclic translation network (MCTN) is proposed by [27] to learn the 

combined representation of multiple modalities by translation between them and utilizing only 

source modality as an input. The key benefit of this network is that it does not require all 

modalities to learn the composite representation for sentiment prediction during testing time. 

Because for final sentiment prediction, only the data from the source modality at test time is 

required after the translation model has been trained with paired multimodal data. This ensures 

that the model is unaffected by changes or missing data in the other modalities. The MCTN 

network is depicted in Figure 1.9 for better understanding and visualization. Similarly, Tsai et 

al. [28] uses the STSF strategy for sentiment prediction. 
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Figure 1.9 MCTN architecture which involves sequence-to-sequence fusion strategy to 

merge multiple modalities [27]. 

 

Figure 1.10 Multimodal sentiment analysis (MSA) involves the analysis of textual, visual, and auditory 

information in order to better understand the emotional content or sentiment being expressed by the speaker. 
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1.5 Motivation 

Currently, numerous social media channels, such as Facebook, are available for individuals to 

articulate their emotions. As of January 2023, a survey from the Statista research department 

revealed that Facebook had the highest number of active users globally, totaling 2.89 billion. 

Multiple research studies analyse user sentiments in order to gain a deeper understanding of a 

certain service or product. Sentiment analysis has various applications. Over 50% of the present 

research has not yet been applied practically. Therefore, let's explore the various domains 

where this field might be utilized effectively. Figure 1.11 depicts a comprehensive range of 

possible applications in this subject. Given the widespread usage of sentiment prediction in 

diverse sectors including several modalities, we were encouraged to explore the field of 

multimodal sentiment analysis. 

 
Figure 1.11 A diverse range of domains in which the application of sentiment analysis can prove to be 

efficacious. 
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➢ Enhanced Accuracy: By combining different types of data, multimodal sentiment 

analysis can provide a more comprehensive understanding of sentiment. For example, 

while text can convey the explicit content of a message, audio can reveal tone and pitch, 

and visual data can capture facial expressions and gestures. This leads to a more 

accurate and nuanced sentiment assessment. 

➢ Contextual Understanding: Multimodal sentiment analysis allows for a better grasp of 

the context in which sentiments are expressed. For instance, a sarcastic remark might 

be detected through a combination of the textual content and the speaker’s tone of voice 

or facial expression, something that might be missed if only one modality is considered. 

➢ Robustness to Ambiguity: Sentiment expressed in text alone can be ambiguous or lack 

clarity. Combining text with other modalities can help disambiguate such sentiments. 

For example, a statement that appears neutral in text might be understood as positive or 

negative when considering the speaker’s facial expressions or tone. 

➢ Applications in Real-world Scenarios: Multimodal sentiment analysis is particularly 

valuable in applications such as social media monitoring, customer service, and human-

computer interaction. It enables more effective sentiment detection in video content, 

live streams, and face-to-face communications, where relying on a single modality 

would be insufficient. 

➢ Improvement in Human-Computer Interaction: In areas like virtual assistants and 

chatbots, multimodal sentiment analysis allows for more empathetic and context-aware 

interactions. For instance, a virtual assistant can better understand and respond to user 

emotions by analysing voice tone and facial expressions in addition to the spoken 

words. 

➢ Rich Data Utilization: With the proliferation of multimedia content on platforms like 

YouTube, Instagram, and TikTok, there is a wealth of data available across different 

modalities. Multimodal sentiment analysis leverages this rich data to derive deeper 

insights that are not possible through unimodal analysis. 

In summary, the significance of multimodal sentiment analysis lies in its ability to provide a 

more holistic, accurate, and context-aware understanding of sentiments, making it an essential 



28 

 

 

tool in various fields such as social media analytics, customer service, and human-computer 

interaction. 

1.7 Sources of Research Works Studied 

In this thesis, we analysed the leading journals and conferences of recent years sourced from 

the following databases: 

• Elsevier 

• Association for Computing Machinery Digital Library 

• IEEE Xplore 

• Springer Link 

• Association for Computational Linguistics Anthology 

In addition to the above journals, IEEE, Springer, Elsevier, ACM, and ACL Anthology, we 

screened over 150 research papers on multimodal sentiment analysis, primarily focused on 

deep learning techniques. Furthermore, around 119 papers have been selected from the top 

journals and conferences based on the high impact factor. The research articles from these 

databases were searched using multiple keywords and synonyms such as, multimodal 

sentiment analysis, sentiment analysis across numerous modalities, multimodal opinion 

mining, sentiment analysis in videos, sentiment analysis in image and text pairs, and sentiment 

analysis in videos, audio, and text. A breakdown of the distribution of the articles across all top 

journals and conferences is displayed in Table 1.1. 

   

Table 1.1 Distribution of peer-reviewed articles for multimodal sentiment analysis. 

S. No Name of Journal/Conference 
Publisher 

Name 

Conference/Journal/

Workshop 
Count 

1 
IEEE Transactions of affective 

computing 
IEEE Journal 4 

2 Intelligent system IEEE Journal 3 

3 
IEEE Transactions on Audio, speech, 

and language processing 
IEEE Journal 3 

4 IEEE Transactions on Multimedia IEEE Journal 3 

5 IEEE Transactions on Games IEEE Journal 1 

6 Signal Processing Letters IEEE Journal 2 

7 
IEEE Transactions on Industrial 

Informatics 
IEEE Journal 1 

8 
IEEE Transactions on Computational 

Social Systems 
IEEE Journal 1 



29 

 

 

S. No Name of Journal/Conference 
Publisher 

Name 

Conference/Journal/

Workshop 
Count 

9 
CVPR (IEEE Conference on Computer 

Vision and Pattern Recognition) 
IEEE Conference 1 

10 
ICIP (IEEE International Conference on 

Image Processing) 
IEEE Conference 3 

11 
IJCNN (International Joint Conference 

on Neural Networks) 
IEEE Conference 4 

12 Big data IEEE Conference 2 

13 
ICBDA (IEEE International Conference 

on Big Data Analysis) 
IEEE Conference 1 

14 
ICME (IEEE International Conference 

on Multimedia and Expo) 
IEEE Conference 3 

15 

ICCVW (IEEE/CVF International 

Conference on Computer Vision 

Workshop) 

IEEE Workshop 2 

16 
ICDM (IEEE International Conference 

on Data Mining) 
IEEE Conference 4 

17 

ICCCNT (International Conference on 

Computing, Communication and 

Networking Technologies) 

IEEE Conference 1 

18 

ICASSP (IEEE International Conference 

on Acoustics, Speech and Signal 

Processing) 

IEEE Conference 3 

19 

BCD (IEEE International Conference on 

Big Data, Cloud Computing, Data 

Science & Engineering) 

IEEE Conference 1 

20 
IEEE Global Engineering Education 

Conference (EDUCON) 
IEEE Conference 1 

21 Neural Processing letters Springer Journal 1 

22 Applied Intelligence Springer Journal 1 

23 Journal of Big Data Springer Journal 1 

24 Cognitive Computation Springer Journal 1 

25 World wide web (WWW) Springer Journal 2 

26 
Advances in Intelligent Systems and 

Computing 
Springer Journal 1 

26 Multimedia tools and application Springer Journal 5 

27 
International Conference on Artificial 

Intelligence and Speech Technology 
Springer Conference 1 

28 CDSMLA Springer Conference 1 

29 Applied soft computing Elsevier Journal 1 

30 Neurocomputing Elsevier Journal 2 

31 Information processing and management Elsevier Journal 6 

32 Knowledge-based system Elsevier Journal 8 

33 Information and management Elsevier Journal 1 
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S. No Name of Journal/Conference 
Publisher 

Name 

Conference/Journal/

Workshop 
Count 

34 Expert systems with application Elsevier Journal 3 

35 Cognitive systems research Elsevier Journal 1 

36 Image and vision computing Elsevier Journal 1 

37 Decision support system Elsevier Journal 1 

38 Computers and geoscience Elsevier Journal 1 

39 Disaster risk reduction Elsevier Journal 2 

40 Information Fusion Elsevier Journal 3 

41 Theoretical Computer Science Elsevier Journal 1 

42 
Transactions on Interactive Intelligent 

Systems 
ACM Journal 1 

43 
Advances in Neural Information 

Processing Systems 
ACM Journal 2 

44 Conference on multimedia ACM Conference 5 

45 

ICIMCS (International Conference on 

Internet Multimedia Computing and 

Service) 

ACM Conference 1 

46 
IJCAI (International Joint Conference on 

Artificial Intelligence) 
ACM Conference 1 

47 
ACM International Conference on 

Multimodal Interaction 
ACM Conference 2 

48 
International Conference on Language 

Resources and Evaluation 
ACL Conference 1 

50 
Annual meeting of the Association for 

Computational Linguistics 
ACL Conference 7 

51 

Challenge-HML (Second Grand 

Challenge and Workshop on Multimodal 

Language) 

ACL Workshop 2 

52 
Conference on Empirical Methods in 

Natural Language Processing 
ACL Conference 1 

53 Arxiv - - 5 

54 IEEE Access IEEE Journal 1 

55 
International Journal of Information 

Systems and Management 

INDERS

CIENCE 
Journal 1 

55 Total   119 

 

This study examines multimodal sentiment analysis related research articles spanning 2018 to 

2024. Figure 1.12 shows the total number of papers corresponding to all these years. 
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Figure 1.12 Yearly distribution of cited papers. 

1.8 Overview of Chapters 

The remaining section of the document is structured in the following manner. 

❖ Chapter 2: Literature Review of the existing state-of-the-art methods for detecting 

sentiment analysis using unimodal and multimodal data.  

❖  Chapter 3: Elaborate on the proposed model for “sentiment analysis based on image-

text pairs”. 

❖  Chapter 4: Elaborate on the proposed model for Target-dependent or Entity based 

multimodal sentiment analysis. 

❖  Chapter 5: Elaborate on the proposed model for “emoticon prediction” based on 

image-text pairs. 

❖ Chapter 6: Present the proposed model for predicting “sentiment from videos” by 

utilizing its visual, audio and textual (subtitles) information.  

❖  Chapter 7: Present the conclusion of the research work done and possible future 

direction. 

The Figure 1.13 provides a detailed representation of how the different chapters of my PhD 

thesis are interconnected and aligned with the central research theme. It demonstrates the 

logical flow and relationship of each chapter to the overarching PhD title, highlighting how 

each section contributes to the broader research objective. This visual aids in understanding the 

cohesive structure of the thesis and the role of each chapter in addressing the research problem. 
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Figure 1.13 Relationships between the various chapters of my PhD thesis and their alignment with the central 

research title. 

 

 

 

 

 

 

 

 

Design of framework 

for sentiment analysis 

using Deep learning 

Introduction Literature Review 

  

 

Visual-Caption Sentiment Analysis 

 

Emoticon Prediction 

  

 

 

 

Contextual 

Understanding and 

interplay with sentiments 

E
m

o
tio

n
a

l A
m

p
lifiers fo

r 

E
n

h
a

n
ce

d
 S

en
tim

en
t A

n
a

ly
sis 

Capturing 

Nuances that 

Single-Modality 

Might Miss 



33 

 

 

Chapter 2: Literature Review 

Although there has been notable advancement in predicting sentiment from text and vision 

separately, there is a dearth of research on simultaneously predicting sentiment from 

multimodal input. We have surveyed a number of papers on sentiment analysis using multiple 

modalities and have chosen to contribute to this area. 

This section delves into the fundamental context of multimodal sentiment analysis, with a 

particular focus on combining visual and text modalities. This section also contains a 

compilation of pre-validated unimodal and multimodal techniques for sentiment identification. 

2.1 Unimodal Sentiment Recognition 

This section highlights prior studies on sentiment recognition that solely employed one 

modality. 

2.1.1 Text-Based Sentiment Recognition (TBSR) 

The method of predicting the sentiment polarity for any script-based data is known as Text-

Based Sentiment Recognition (TBSR). Based on script-based data, sentiment recognition may 

be divided into three categories: document, sentence, and aspect-based. The document-based 

method [29], [30] determines if the overall sentiment of an evaluation report appears to be 

positive, negative, or neutral. On the contrary, [31] sentence-based analysis determines the 

sentiment polarity at the phrase level. As the name implies, aspect-based study [32], [33], [34] 

focuses on the kind of aspect that relates to the attributes or features in a text-based evaluation. 

This type of sentiment recognition system is called "fine-grained," which denotes a 

comprehensive evaluation of text-based data. It tries to identify the category type before 

classifying sentiments for that particular category. Three approaches are often utilized for the 

TBSR task: lexicon, machine-learning, and deep-learning-based methods. Traditionally, 

lexicon-based techniques use sentimental terms and rules such as sentiment inversion to 

determine sentiment for script-based data. Vu et al. [35] used a lexicon-based approach named 

SentiWordNet to identify the opinion of the text. Pang et al. [36] used machine-learning 

algorithms such as Naïve Bayes for sentiment prediction. Barbosa et al. [37] introduced a two-

step sentiment categorization strategy for tweets, with internet labels serving as training data. 

Apart from these studies, ample research has recently been done, including a unique multi-task 

learning gating technique [38] and meta-based learning [39] for aspect-based sentiment 

analysis. Cambria et al. [40] uses the neuro-symbolic approach to create reliable symbolic 
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representations that transform natural language into a kind of protolanguage and, as a result, 

extract polarities from the text in a perfectly easily understandable and explainable form. 

Cambria et al. [41] provides a morphological-aware concept parser that efficiently extracts 

emotional multi-word phrases from the text. The same concept can be used for various 

languages and modalities. MetaPro [42] is the first metaphor processing technique, which 

identifies metaphors in a sentence on a token level, paraphrases the recognized metaphors into 

their literal equivalents, and explains metaphoric multi-word formulations to predict the 

sentiment polarity. Prompt-based classification is getting increasing attention nowadays. 

Concerning this, an empirical study [43] finds that pre-trained models are biased in sentiment 

analysis and emotion detection tasks regarding class labels, emotional tag choices, prompt 

templates, and combinations of words of affective lexicons. 

Excellent performance of deep learning models for script-based data motivated [44] to use 

ConvNet for TBSR. Tang et al. [45], ConvNet and LSTM were first utilized to generate tokens 

for the script-based data. Then a GRU was employed to encode phrase meanings and their 

underlying relationships for the final prediction. For more accurate analysis, [46] incorporates 

an attention module to consider the essential details and dismiss the rest. Both [45], [46] 

proposed document-based sentiment classification methods. Wang et al. [47] utilized attention 

mechanism along with LSTM architecture for aspect-based analysis.  

Pre-trained language models based on transformers have gained popularity due to their ease of 

construction, efficient language representation, and comprehension abilities. For example, Dai 

et al. [48] employed RoBERTa to predict sentiment on the aspect level. Recently, various pre-

trained BERT models have been utilized to extract relevant features from the textual content, 

such as [49] used the RoBERTa model to retrieve the most pertinent information from the 

textual modality to perform the task of news image captioning. In Tan et al. [50], a unique 

hybrid architecture combining a transformer-based and sequential-based model, RoBERTa-

LSTM, was designed to analyze sentiment. This study used the robustly tuned BERT model to 

transform phrases into meaningful word embedding, whereas the LSTM approach efficiently 

captures the long-term contextual semantics. In Revathy et al. [51], machine learning 

algorithms with transfer learning and the BERT model analyzed the lyrical aspects crucial for 

identifying four important human emotions - happy, angry, relaxed, and sad. Out of all, BERT 

outperforms and achieves an overall accuracy of 92%. The most effective technological 

advancements in computer vision and natural language processing architecture and training 

methodologies are identified in [52] by statistically analyzing appropriate state-of-the-art 

methods. 
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2.1.2 Vision-Based Sentiment Recognition (VBSR) 

Apart from writing, people are progressively eager to offer their thoughts with the help of 

images. As a result, VBSR is a critical field of study. Several studies have been undertaken to 

analyze sentiment using visual data. Images in VBSR are fed into a model to estimate emotion. 

Deep learning models have proved their superiority for visual data throughout the history of 

computer vision, and all research in VBSR has predominantly used deep learning models. In 

Joo et al. [53], a deep learning architecture has been utilized to understand the intent of the 

images. Jindal et al. [54] have used pre-trained ConvNet architecture [55] with the concept of 

transfer learning. The results of this study have been greatly enhanced by domain-specific fine-

tuning. Wu et al. [56] provided an approach to decrease noise from the dataset using ANP 

sentiments and picture tags. Then CaffeNet was trained using softmax and the Euclidean loss 

function on the improved dataset for VBSR. The attention mechanism [57] has recently gained 

popularity since it concentrates on the relevant aspects while ignoring the irrelevant ones. 

Motivated by this, [58] incorporated an attention module and proposed a model named 

CECCN, which learns the correlation between color and content for predicting sentiment from 

images. A deep neural network architecture RA‑DLNet has been designed in [59] to identify 

emotion in visual data. This strategy concentrates on sentiment-rich, locally relevant image 

regions by employing residual-based attention. To reduce the load of annotations, [60] solve 

the VBSR problem using a weakly supervised dual branch architecture. The first branch 

recognizes a sentiment-specific soft map, whereas the second examines comprehensive and 

regional information. The sentiment detection and classification branches are then combined 

and fed into a single deep framework to optimize the network from start to finish and, based 

on a similar strategy [61], proposed WSDEN model for the task of image sentiment analysis. 

Recently, Meena et al. [62] utilized different transfer learning models to recognize sentiment 

from the visual data on CK+, FER2013, and JAFFE datasets.  

2.1.3 Acoustic Sentiment Recognition (ASR) 

In addition to the script and vision-based data, researchers are increasingly interested in dealing 

with audio. Speech is preferable in some situations because it delivers more expressive signs 

of a speaker's feelings. Acoustic sentiment identification uses an audio dataset to estimate the 

speaker's sentiment, and the parameters employed to predict sentiment vary according to the 

level of utterances. In Negi et al. [63], depression was detected using audio samples. Luitel et 

al. [64] has utilized a multilingual dataset of audio to analyse sentiment. 
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TBSR, VBSR, and ASR use different approaches and achieve good results. However, while 

all the above methods process only a single modality, most social media platforms generate 

multi-modal content. 

2.2 Multimodal Sentiment Recognition (MSR) 

Sentiment analysis employing diverse modalities, commonly referred to as multimodal 

sentiment recognition, is a methodology that integrates information gathered from numerous 

sources to achieve a more precise understanding and interpretation of an individual's feelings 

and emotions. This approach captures a more extensive emotional context by employing the 

distinctive characteristics of each modality—acoustic for pitch and tone, text for explicit 

emotions, and visual information for body language and facial expressions. The various 

modalities in combination are displayed below: 

➢ Text and Audio Analysis 

Description: Combines textual data with audio data to enhance sentiment detection. 

Techniques: Joint modelling approaches using multi-task learning, feature fusion, and 

hybrid deep learning models that process both text and audio inputs. In the study 

referenced as [22], Bi-LSTM model have been employed to extract features from both 

textual and auditory input.  Furthermore, a transformer-based model is utilized as a 

classifier for the final sentiment prediction. 

➢ Text and Visual Analysis 

Description: Integrates textual and visual information for a more comprehensive 

sentiment analysis.  

Techniques: Multimodal embedding techniques, image-caption models, and cross-

modal attention mechanisms to jointly learn from text and images. Chen et al. [65] 

perform visual-caption sentiment recognition. In this proposed approach, the text data 

was encoded into a numeric representation using the word2vec algorithm. These vectors 

were then used as input to a text convolutional neural network (CNN). Similarly, visual 

features were extracted using an image CNN. Finally, an early fusion strategy was 

employed to combine the retrieved features for the purpose of making the final 

prediction. Similarly, Xu et al. [15] employed the Glove word embedding technique in 

conjunction with the text-CNN for textual modality and VGG-16 for visual feature 

extraction.  Both the early and late fusion strategies have been employed in [15] to 

obtain the results. 

➢ Audio and Visual Analysis 



37 

 

 

Description: Combines audio and visual data to capture sentiment expressed through 

speech and facial expressions simultaneously.  

Techniques: Multimodal feature extraction, synchronized processing of audio and 

visual streams using CNNs and RNNs, and attention mechanisms. Deshmukh et al. [66] 

performed facial emotion analysis by integrating images and acoustic information from 

the FER-2013 dataset. 

➢ Text, Audio, and Visual Analysis 

Description: Utilizes all three modalities to achieve the most comprehensive sentiment 

analysis.  

Techniques: Advanced multimodal deep learning frameworks, hierarchical fusion 

methods, and end-to-end models that learn from text, audio, and visual data 

simultaneously. Huddar et al. [23] utilized a text-CNN model for processing textual 

data and a 3D-CNN model for extracting visual features. Next, a Bidirectional Long 

Short-Term Memory (Bi-LSTM) model, combined with an utterance-level fusion 

strategy, was employed to make predictions. [67], [68], [69], [70] are several additional 

research studies conducted in the field of sentiment recognition using video datasets.  

Researchers have established that the combined influence of multi-modal content mainly 

determines sentiment scores more accurately [71]. The same image with different words might 

elicit conflicting emotions. Therefore, a single modality is insufficient to predict sentiment; 

hence, it is necessary to analyze multi-modal data. MSR takes advantage of features from 

multiple modalities to analyze the sentiment. In visual-caption sentiment recognition, visual 

and caption modalities are processed to extract the features, and then both features are merged 

for sentiment polarity categorization. Xu et al. [72] introduced a model called MultiSentiNet, 

highlighting crucial visual scene and object properties to emphasize essential language phrases 

based on attention. Taking into account two separate modalities can influence and augment one 

another. To categorize multi-modal sentiment, [73] created a co-memory network that models 

the joint impacts of visual and textual content. Zhao et al. [74] developed a visual-

textual consistency-driven strategy that employs visual cues, linguistic characteristics, social 

features, and visual-textual similarities. Poria et al. [68] utilized a framework based on LSTM 

to simulate the relationship among utterances of the videos for MSR. Wang et al. [75] used the 

Bag-Of-Words (BOW) model to predict the microblog’s sentiments containing visual and 

textual data. You et al. [76] suggested a cross-modality regression technique incorporating 

visual and textual information for joint sentiment prediction. Xu et al. [77] designed a network 
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based on an attention mechanism named HSAN, and visual captions were used as semantic 

information to analyse multi-modal sentiment. Motivated by aspect-level sentiment analysis 

employing textual content. Xu et al. [78] proposed a novel and challenging objective, aspect-

based MSR. To express MSR on an aspect level, a recent study [79] employed the BART model 

to get text and aspect embeddings while using faster R-CNN for visual feature extraction. In 

addition to the aforementioned research papers, Table 2.1 provides a summary of several more 

multimodal research studies based on various parameters. 

Table 2.1 Summarization of multimodal research studies for sentiment prediction based on various parameters. 

Ref. Year 

Techniques Used 

for Feature 

Extraction 

Fusion 

Approach 

Involved 

Dataset Modalities 

Results 

(Accuracy-A, F1 score-F1, Recall-R, 

Precision-P, Time-T, Loss-L, Macro 

F1 score-MF1, Mean absolute error-

MAE, Correlation-C) 

[15] 2017 

Text-Glove and 

CNN  

Visual-CNN 

(based on 

VGG16) 

EF & LF 

MSVA-

single 

MSVA-

multiple 

Image & 

text 

Accuracy On MSVA-single using 

Late RMNN: 74.85 (for 2-class), and 

67.09 (for 3-class) 

Accuracy On MSVA-multiple using 

Late RMNN for two classes: 90.38 

On MSVA-multiple using Early 

RMNN for three classes: 67.94 

 

[80] 
2017 

Text-Glove & 

CNN  

Visual-CNN 

(Select-Additive 

Learning (SAL)) 

TF 

MOSI, 

YouTube, 

MOUD 

videos 

(visual, 

text, and 

audio) 

Accuracy using SAL-CNN (with the 

datasets): 0.73 

On YouTube using SAL-CNN (across 

the datasets): 0.667 

On MOUD using SAL-CNN (across 

the datasets):  0.574 

 

[67] 
2017 

Text-word2vec 

and CNN 

Visual-3D-CNN 

Audio-OpenSmile 

ULF 
CMU-

MOSI 

Videos 

(text, 

audio, 

and 

visual) 

Accuracy features from AT fusion + 

CATF-LSTM: 81.30% 

[65] 2017 

Text-word2vec & 

CNN 

Visual-CNN 

EF 

VSO, 

MVSO-EN 

(English 

language) 

Image & 

text 

On VSO using Deep fusion: P-0.830, 

R-0.857, F1-0.844, A-0.847 

 

On MVSO-EN using Deep fusion: P-

0.740, R-0.730, F1-0.735, A-0.737 

[68] 2017 

Text-CNN, 

Visual-3D-CNN, 

Audio-OpenSmile 

ULF 
MOSI, 

MOUD, 

Videos 

(text, 

audio, 

On MOSI: A:80.3% 

On MOUD: A:68.1% 

On IEMOCAP: A: 76.1% 
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Ref. Year 

Techniques Used 

for Feature 

Extraction 

Fusion 

Approach 

Involved 

Dataset Modalities 

Results 

(Accuracy-A, F1 score-F1, Recall-R, 

Precision-P, Time-T, Loss-L, Macro 

F1 score-MF1, Mean absolute error-

MAE, Correlation-C) 

and 

IEMOCAP 

and 

visual) 

[81] 2018 

Text-Bag-Of-

Words 

Visual-

OpenFacetoolkit 

Audio- librosa and 

CNN 

EF & LF 

Movie 

review and 

Music 

review 

video 

dataset 

Text, 

audio, 

and 

visual 

On cross-domain 1 (BoAW & BoVW 

& BoNG) using Early fusion: 

Unweighted average recall-81.0% 

[82] 2018 

Text-CNN, 

Visual-3D-CNN, 

Audio-OpenSmile 

(Contextual 

LSTM for final 

classification) 

HF 

Collected 

tweets by 

crawling 

Sina 

Weibo 

Text, 

image, 

and 

emojis 

Overall accuracy using WS-MDL: A- 

0.695 

[83] 2018 

Adjective-Noun 

Pairs (ANPs) 

response-based 

method 

LF 

Twitter 

1269 and 

Twitter 

603 

Text and 

Image 

Without Late Fusion: P- 0.793, R- 

0.842, F1- 0.816, A- 0.751, T- 1.704 

With Late fusion: P- 0.804, R: 0.864, 

F1: 0.833, A- 0.772, T- 2.883 

[69] 2018 Bi-GRU ULF 

CMU-

MOSEI 

and CMU-

MOSI 

Videos 

(text, 

audio, 

and 

visual) 

On CMU-MOSEI: 79.80% 

On CMU-MOSI: A- 82.31% 

[70] 2019 

Text, audio, and 

visual features- 

(Different variants 

of RNN) GRNN, 

LRNN, LGRNN, 

and UGRNN 

EF 

(Attention 

Based) 

CMU-

MOSI 

Text, 

audio, 

and 

visual 

Using LRNN: A-78.05%, L- 0.015 

Using GLRNN: A-78.05%, L-0.016 

[84] 2019 

Text-GloVe & 

CNN  

Visual-CNN 

Audio-

COVAREP 

software 

HF 

CMU-

MOSI, 

CMU-

MOSEI 

Text and 

audio 

On CMU-MOSI: A-73.6%, F1-

73.5% 

On CMU-MOSI: A-71.2%, F1-

71.1% 
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Ref. Year 

Techniques Used 

for Feature 

Extraction 

Fusion 

Approach 

Involved 

Dataset Modalities 

Results 

(Accuracy-A, F1 score-F1, Recall-R, 

Precision-P, Time-T, Loss-L, Macro 

F1 score-MF1, Mean absolute error-

MAE, Correlation-C) 

[85] 2019 

Text-

SentiWordNet & 

Gradient Boosting 

(SWN + GB)  

Visual- SentiBank  

LF 

Flickr 8k 

dataset, 

STS-Gold 

dataset, 

Text and 

Image 

Image module: 77.63% 

Text module: 84.62% 

Multimodal (proposed): A- 91.32% 

[86] 2019 
Text-LSTM 

Visual-Deep CNN 

LF 

(Attention-

Based) 

Getty 

Images, 

Twitter, 

Flickr-w, 

and Flickr-

m 

Text and 

Image 

On Getty Images: P- 0.882, R- 0.851 

F1-0.866, A- 0.869 

On Twitter: P- 0.778, R- 0.760, F1- 

0.769, A- 0.763 

On Flickr-w:  P- 0.855, R- 0.845, F1- 

0.850, A- 0.859 

On Flickr-m:  P- 0.882, R- 0.870, F1- 

0.876, A- 0.880 

[87] 2019 
Text-LSTM 

Visual-Deep CNN 
HF 

Getty 

Images, 

Flickr 

Text and 

Image 

On Getty Images: 

P- 0.871, R-0.854, F1:0.862, A- 0.865 

On Flickr:  P- 0.847, R- 0.850, F1- 

0.848, A- 0.849 

On Flickr-ML: 

P- 0.880, R- 0.869, F1-0.874, A- 

0.878 

On Flickr-IML: 

P- 0.825, R- 0.833, F1- 0.829, A- 

0.831 

[88] 2020 
Text- LSTM 

Visual- ResNet 
HF 

Twitter-14, 

Twitter-15, 

and 

Twitter- 17 

Text and 

Image 

On Twitter-15: A-73.38%, MF1- 

67.37% 

On Twitter-17: A-67.83%,MF1- 

64.22% 

[89] 2020 
Cross-modal 

BERT 
TF 

CMU-

MOSEI, 

and CMU-

MOSI 

Videos 

(text, 

audio, 

and 

visual) 

CM-BERT (T+A): A7-44.9, A2-84.5, 

F1- 84.5, MAE-0.729, C- 0.791 

[22] 2020 

Bi-LSTM for 

feature extraction 

from each 

modality and 

ULF 

CMU-

MOSI, 

MELD, 

IEMOCAP 

Videos 

(text, 

audio, 

On CMU-MOSI: A-82.71 

On MELD: A- 67.04 (on text and 

audio) 

On MELD (Emotion prediction): A-  

61.95 (on text and audio) 
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Ref. Year 

Techniques Used 

for Feature 

Extraction 

Fusion 

Approach 

Involved 

Dataset Modalities 

Results 

(Accuracy-A, F1 score-F1, Recall-R, 

Precision-P, Time-T, Loss-L, Macro 

F1 score-MF1, Mean absolute error-

MAE, Correlation-C) 

Transformers for 

actual prediction 

and 

visual) 

 

On IEMOCAP (Emotion prediction): 

A-60.81 

[20] 2020 GRU TF 

CMU-

MOSI and 

CMU-

MOSEI 

 

Videos 

(text, 

audio, 

and 

visual) 

 

On CMU-MOSI: A2- 81.19, F1- 

80.10 

On CMU-MOSEI: A2- 82.10, F1- 

80.0, MAE- 0.59 

[90] 2020 

Bi-GRU feature 

extraction and  

Combination of 

contextual model, 

self-attention & 

cross interaction 

with a gated 

mechanism for 

final prediction 

TF 

CMU-

MOSI and 

CMU-

MOSEI 

Opiniona

ted 

Videos 

(text, 

audio, 

and 

visual) 

On CMU-MOSI: A-83.91, F1-81.17 

On CMU-MOSEI: A- 81.14, F1-

78.53 

[21] 2020 

Text-Glove & 

RNN 

Visual-3D-CNN 

Audio-librosa 

Library 

ULF 
CMU-

MOSEI 

Videos 

(text, 

audio, 

and 

visual) 

On CMU-MOSEI: A- 82.40% 

[91] 2021 

Text-Bi-GRU 

Visual-VGG-19 

Graph 

convolution 

network for 

sentiment 

classification 

LF 

Getty 

Images, 

Flickr 

Text and 

Image 

On Getty Images: F1- 0.875, A- 0.871 

On Flickr: F1- 0.884, A- 0.878 

[18] 2021 

Text-CNN  

Audio-LSTM 

Visual-CNN 

LSTM with 

Gating 

mechanism for 

TF 

CMU-

MOSI, 

IEMOCAP

, and 

CMU- 

MOSEI 

Videos 

(text, 

audio, 

and 

visual) 

On CMU-MOSI: A2 -81.7, A7-35.4, 

F1- 81.8, MAE- 0.903, C-0.672 

On CMU-MOSEI: A2- 81.4, A7- 

50.6, F1- 81.6, MAE- 0.606, C- 0.673 

On IEMOCAP for angry emotion got 

the cutting-edge result: 89.0, F1- 88.6 
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Ref. Year 

Techniques Used 

for Feature 

Extraction 

Fusion 

Approach 

Involved 

Dataset Modalities 

Results 

(Accuracy-A, F1 score-F1, Recall-R, 

Precision-P, Time-T, Loss-L, Macro 

F1 score-MF1, Mean absolute error-

MAE, Correlation-C) 

final sentiment 

prediction 

 

[92] 

 

2021 

Visual-VGG 

Text-Attention 

network  

EF 

MVSA-

single, 

MVSA-

multiple, 

and 

TumEmo 

Text and 

Image 

On MVSA-single: 0.7298, F1- 0.7298 

On MVSA-multiple:  A- 0.7236, F1- 

0.7230 

On TumEmo: 0.6646, F1- 0.6339 

[93] 2021 Transformer TF MOSEI 

Videos 

(text, 

audio, 

and 

visual) 

On MOSEI in an unaligned setting: 

A7- 51.5, A2- 81.8, F1- 81.8, MAE- 

0.597, C- 0.671 

On MOSEI in aligned setting: A7- 

51.0, A2- 82.2, F1- 82.4, MAE- 

0.603, C- 0.662 

[23] 2021 

Text-CNN  

Visual-3D-CNN  

Audio-OpenSmile  

and Bi-LSTM 

with attention for 

the final 

classification 

ULF 

IEMOCA,

CMU-

MOSI 

 

Videos 

(text, 

audio, 

and 

visual) 

On IEMOCAP using Bi-LSTM with 

attention for all three modalities: A- 

80.38% 

On CMU-MOSI using Bi-LSTM with 

attention for all the three modalities: 

A- 80.18% 

[26] 2021 

Text-Glove & 

CNN  

Visual-CNN  

 LSTM for 

polarity prediction 

WLF 

Flickr, 

Getty 

Images, 

and 

Twitter 

Text and 

Image 

On Flickr:  P-0.841, R- 0.836, F1- 

0.834, A- 0.842 

On Getty Images: P-0.832, R- 0.791, 

F1- 0.810, A- 0.806 

On Twitter at least 5-agree: P-0.880, 

R- 0.866, F1- 0.862, A- 0.863 

On Twitter at least 4-agree: P-0.831, 

R- 0.812, F1- 0.821, A- 0.771 

On Twitter at least 3-agree: P-0.793, 

R- 0.776, F1- 0.788, A- 0.742 

[94] 2021 

Visual-encoder 

(50-layer Residual 

network) 

Text-Bi-LSTM  

HF MASAD 
Text and 

Image 
On MASAD: A- 95.63, F1- 95.09 
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Ref. Year 

Techniques Used 

for Feature 

Extraction 

Fusion 

Approach 

Involved 

Dataset Modalities 

Results 

(Accuracy-A, F1 score-F1, Recall-R, 

Precision-P, Time-T, Loss-L, Macro 

F1 score-MF1, Mean absolute error-

MAE, Correlation-C) 

[95] 2021 

Visual- ResNet, 

DenseNet 

Text-CNN 

gradient Boosting 

machine learning 

for final sentiment 

prediction 

LF B-T4SA 
Text and 

Image 

On B-T4SA using AutoML-based 

Fusion: A- 95.19% 

[96] 2021 Transformer ULF 
CMU-

MOSI 

Videos 

(text, 

audio, 

and 

visual) 

On CMU-MOSI: MAE- 0.644, C-

0.842, A2- 89.33, F1- 89.31, A7- 

47.52 

Although previous research endeavours have made a significant impact in the integration of 

images, words, and audios, additional investigation is required to enhance the overall 

outcomes. This inspired us to develop a model integrating meaningful information from 

multiple modalities. 

2.3 Research Gaps 

❖ RG1: Prediction of Emoji using multiple modalities is less explored. 

❖ RG2: Recent multimodal strategies are computationally expensive. 

❖ RG3: There is a lack of effective sarcasm detection approaches using multimodal 

content.  

❖ RG4: Few research studies have been conducted for aspect-based multimodal 

sentiment analysis. 

❖ RG5: A limited number of application-based research studies have been conducted in 

multimodal sentiment analysis, such as box-office prediction, news focus detection, etc. 

❖ RG6: No multilingual datasets are available with multiple modalities and methods for 

handling such datasets. 
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2.4 Research Objectives 

The proposed objectives are based on identified research needs: 

❖ RO1: To propose a novel framework for predicting sentiment using images and captions. 

❖ RO2: To propose a novel framework for aspect-based multimodal sentiment analysis. 

❖ RO3: To propose an effective method for predicting "emoticons" in multimodal content. 

❖ RO4: To propose a novel framework for predicting sentiment from videos having visual, 

audio and textual (subtitles) information. 

❖ RO5: To propose a novel framework for the detection of sarcasm for multimodal data. 

2.5 Research Contributions 

The main objective of the thesis is to design and develop novel architectures capable of 

identifying sentiments in multimodal content. Hence, the following architectures and 

frameworks are proposed to accomplish this: 

❖ VABDC-Net Depending on the context, the same phrase may generate different 

sentiments in several scenarios. Hence, it is essential to use both visual and textual content 

for more accurate prediction. Motivated by this, we developed a novel Visual Attention 

and Bi-Directional Caption Processing network (VABDC-Net) for visual-caption 

sentiment recognition tasks. The proposed methodology more effectively analyses the 

interaction between visual and captions modalities than earlier innovative methods. The 

model is organized into three components: an attentional tokenizer-based bi-directional 

caption branch for extracting features from the captions, an attentional visual branch for 

visual feature extraction, and cross-modal feature fusion. 

❖ VECT-Net Proposed a novel approach called the Visual-to-Emotional-Caption 

Translation Network (VECT-Net) technique. The primary objective of this strategy is to 

effectively acquire visual sentiment clues by analysing facial expressions. Additionally, it 

effectively aligns and blends the obtained emotional clues with the target attribute of the 

caption mode. This study aims to employ Target-Dependent Multimodal Sentiment 

Recognition (TDMSR) to identify the level of sentiment associated with every target 

(aspect) stated within a multimodal post consisting of a visual-caption pair. 
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❖ Developed a multimodal architecture based on the principle of contrastive learning for the 

emoticon prediction task to effectively simulate the relationship and compatibility between 

image and text content. The proposed multimodal architecture comprises of three primary 

components: An Image encoder, a Text encoder, and a Contrastive learning component. 

The Image encoder is responsible for acquiring image embeddings, while the Text encoder 

acquires textual embeddings. The Contrastive learning element examines the pertinent 

attributes and similarities between the textual and image embeddings obtained in the 

preceding steps. The proposed model employs the joint training of dual-branch encoder 

along with the contrastive learning to accurately map text and images into a common latent 

space. Our key finding is that by integrating the principle of contrastive learning with that 

of the other two branches yields superior results. 

❖ Introduced a deep-learning-based model for Multimodal Sarcasm Detection, that combines 

DistilBERT and RegNet to efficiently capture meaningful information across text, visual, 

and acoustic modalities in a single task, To check the robustness of our model so that it 

can effectively and reliably imitate the multi-modal depiction of textual, visual & acoustic 

modalities and yield ground-breaking results for Multimodal Sarcasm Detection, we 

perform extensive analysis and test our proposed approach using one of the benchmark 

datasets, MUStARD. 

The following research works form the basis of this chapter: 

❖ A. Pandey and D. K. Vishwakarma, “Progress, achievements, and challenges in 

multimodal sentiment analysis using deep learning: A survey,” Applied Soft 

Computing, vol. 152, November. 2024, doi: 

https://doi.org/10.1016/j.asoc.2023.111206. 
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Chapter 3: Visual-Caption Sentiment Recognition 

3.1 Scope of this Chapter 

This chapter focuses on the area of VCSR (Visual Caption Sentiment Recognition) by 

proposing a novel approach which seeks to interpret a picture and text combination by 

integrating textual (spoken words) and visual modalities (facial expressions). A novel 

architecture named VABDC-Net (Visual Attention and Bi-Directional Caption Processing 

Network) have been proposed. The model's framework, comprised of three modules: an 

attentional tokenizer-based bidirectional caption expert branch to retrieve useful textual 

features, an attention visual expert branch to retrieve appropriate visual features, and a cross-

modal feature fusion module to merge features and predict sentiment. For convenience, image-

text sentiment polarity analysis is referred to as visual-caption sentiment recognition. Based on 

our findings, it is evident that our method VABDC-Net outperforms the other models, 

indicating that it is better able to learn the variety of different feature modalities and perform 

more robustly. Due to the attentional tokenizer-based bi-directional caption and spatial-depth 

visual attention modules, VABDC-Net outperforms the other models. The attention modules 

essentially improve the interactions between two categories of modality information; 

particularly, it enables caption information to aid in the acquisition of visual features (and vice 

versa) to achieve balanced learning of both sorts of modalities. 

3.2 VABDC-Net: A Framework for Visual-Caption Sentiment Recognition 

via Spatio-Depth Visual Attention and Bi-Directional Caption 

Processing 

3.2.1 Abstract 

People are becoming accustomed to posting images and captions on social media platforms to 

express their opinions. Hence, Visual-Caption Sentiment Recognition (VCSR) has been a 

subject of growing attention recently. Thus, the correlation between visual and caption 

modalities is crucial for VCSR. However, most recent VCSR strategies concatenate features 

from the visual and caption modalities with the help of pre-trained deep learning models 

containing millions of trainable parameters without adding a dedicated attention module, 

ultimately leading to less desirable results. Motivated by this observation, we have proposed a 

novel model VABDC-Net, that integrates an attention module with the convolutional neural 

network to focus on the most relevant information from the visual modality and attentional 



47 

 

 

tokenizer-based method to extract the most relevant contextual information from the caption 

modality. Demanding to this dire need, the following are the significant contributions of our 

experimentation: (1) an attentional tokenizer-based bi-directional caption branch to retrieve 

useful textual features from the captions, (2) an attentional visual branch to retrieve appropriate 

visual features, and (3) a cross-domain feature fusion to merge multi-modal features and predict 

sentiment. Thorough experimentation on two benchmark datasets, Twitter-15, with an 

accuracy of 83.80%, and Twitter-17, with an accuracy of 72.42%, indicates that our technique 

outperforms existing methods for VCSR. 

3.2.2 Proposed Methodology 

In this section, the proposed framework of VCSR is thoroughly discussed. The problem is 

defined in the first portion of this section. Then, we present the model's framework, comprised 

of three modules: an attentional tokenizer-based bidirectional caption expert branch to retrieve 

useful textual features, an attention visual expert branch to retrieve appropriate visual features, 

and a cross-modal feature fusion module to merge features and predict sentiment. For 

convenience, image-text sentiment polarity analysis is referred to as visual-caption sentiment 

recognition. 

Problem definition 

Visual-caption sentiment recognition problem is briefly summarized as follows. Assume that 

𝑺 and 𝑽 illustrate a caption and a visual sample space, respectively, where one string of caption 

and its accompanying visual information constitute an example. Each example belongs to a 

class label, 𝑪𝒋. In other words, each example is a triplet that includes a caption, a piece of visual 

information, and a class label. It can be expressed as follows: 

𝑬 = {(𝑺𝟎, 𝑽𝟎, 𝑪𝟎), (𝑺𝟏, 𝑽𝟏, 𝑪𝟏), … … , (𝑺𝒋, 𝑽𝒋, 𝑪𝒋), … … , (𝑺𝒏−𝟏, 𝑽𝒏−𝟏, 𝑪𝒏−𝟏)},                           (𝟏)                           

where 𝑬 is a collection of example triplets, 𝑺𝒋 denotes caption information, 𝑽𝒋 denotes visual 

information, 𝑪𝒋 is a class label of the caption-visual pair in the 𝒋𝒕𝒉 example, and 𝒏 is the count 

of the number of samples in a dataset. VCSR aims to learn a mapping function 𝑭: (𝑺, 𝑽) ⟶ 𝑪 

from the multi-modal training examples {(𝑺𝒋, 𝑽𝒋, 𝑪𝒋)|𝟎 ≤ 𝒊 ≤ 𝒏 − 𝟏}. For a sentiment polarity 

categorization task, 𝑪𝒋 ∈ {𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆, 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆, 𝒂𝒏𝒅 𝒏𝒆𝒖𝒕𝒓𝒂𝒍}.  

Visual Attention and Bi-Directional Caption Processing Network (VABDC-Net) 
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We proposed VABDC-Net for the visual-textual sentiment recognition task to simulate the 

interaction between caption and visual information and to examine the compatibility between 

caption and visual content. Figure 3.1 depicts the VABDC-Net framework. The model is 

organized into three components: an attentional tokenizer-based bi-directional caption branch 

for extracting features from the captions, an attentional visual branch for visual feature 

extraction, and cross-modal feature fusion. The details of the proposed framework have been 

discussed below. The proposed framework is presented in algorithmic form as   

Table 3.3. 

Attentional Tokenizer-Based Bidirectional Caption Branch 

This section thoroughly explains the proposed approach for extracting crucial information from 

caption modality. 

Attentional Tokenization 

Inputs for NLP models like [97] must be numeric vectors, which often require transforming 

attributes like vocabulary into numbers. The BERT model, released by Google [98] in 2019, is 

a member of the group of NLP-based language models known as transformers and includes 

tokenizers to convert phrases into a numeric representation. It is superior to previous word-

embedding approaches, such as TF-IDF, Word2Vec, Glove, etc., because it has been pre-

trained on vast text datasets. Hence, the BERT model's tokenizer produces superior word 

embeddings. For generating embeddings of words, the BERT model uses the attention 

mechanism. As a result, it captures associations for each word depending on the words on both 

sides of the phrase. Positionally encoded word embeddings keep track of the sequence and 

arrangement of each word in a phrase. As a result, it delivers high-quality context-aware or 

contextualized word embeddings by traversing each BERT encoder layer. Hence, the proposed 

framework BERT-base version (110 million parameters) with 12 blocks of the transformer, 

768 hidden layer sizes, and 12 attention heads have been employed for pre-processing and 

converting the captions into a sequence of vectors. For a given caption, 𝑺𝒋 the caption with m 

words can be denoted as 𝑺𝒋 = {𝒘𝒋𝟏,𝒘𝒋𝟐, … … … . , 𝒘𝒋}. Each word 𝒘𝒋𝒌 is embedded in a vector 

representation where 𝒗𝒋 ∈  𝕽𝓭 is the 𝒹-dimension vector for 𝒌𝒕𝒉 word. The final tokenization 

is denoted as 𝕍𝒋 = {𝒗𝒋𝟏,𝒗𝒋𝟐, … … … . , 𝒗𝒋𝒏}. Illustration of word to a vector representation using 

a BERT-base encoder is depicted in Figure 3.2. 
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Figure 3.1 Proposed visual attention and bi-directional caption processing network (VABDC-Net) for the visual-

caption sentiment recognition. 

Bi-Directional Caption Branch 

Various sequential models can be used to extract features from script-based information. 

Traditionally, conventional RNNs (Recurrent neural networks) were used to tackle the 

sequential data. The main advantage of using RNN instead of a standard neural network is that 

the weights were not shared in conventional neural networks. There are other advantages, too, 
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such as this type of network can recall their previous inputs. Apart from several benefits, 

standard RNNs, aren’t very good at capturing long-term dependencies. This is fundamentally 

correlated to the issue of vanishing gradients, which means that while training an intense 

network, gradients drop off exponentially as they move down the layers.  

To overcome this problem, [97] was introduced. This network can recall previous inputs for 

the longest period and provide a wide range of hyperparameters such as learning rate, weights, 

and biases for input and output. Hence, there is no need for fine adjustment. Apart from this, 

the complexity of updating the weights is reduced to O(1), which is also an advantage. 

Although these became popular because they could overcome the problem of diminishing 

gradients. However, they fail to eradicate it. The issue is that the data must still be sent from 

cell to cell for analysis. Furthermore, the cell has grown rather complicated with new features 

(such as forget gates). These models can’t maintain the details from the past and future because, 

in such networks, data can flow either in a forward or backward direction.  

To overcome these drawbacks, [99] were developed. In these networks, information flows in 

both directions. Hence it can model sequential dependencies between words in both directions 

of the sequence, and as a result, the past and future details are preserved. Due to this reason, 

such architectures produce a more meaningful output. Motivated by these advancements, [99] 

have been utilized in the proposed framework to extract features from the caption modality. 

For caption feature extraction, the embedding vector 𝕍𝒋 = {𝒗𝒋𝟏,𝒗𝒋𝟐, … … … . , 𝒗𝒋𝒏}, obtained 

from an attentional tokenization module, is fed to the three consecutive layers of convolution 

1D to reduce the number of features. 

𝑻𝒋 = 𝑪𝒐𝒏𝒗𝟏𝑫(𝕍𝒋)                                                                                                                            (𝟑. 𝟐)                                                                                                                  

The acquired feature vector 𝑻𝒋 is then processed through three consecutive layers of [99], 

indicated as ∂, as well as one dense layer and batch normalization, to extract the final feature 

vector 𝑭𝒋 from the caption modality. The caption feature of 𝑺𝒋 was obtained as 𝑭𝒔
𝒋
 in Eqn.(𝟑. 𝟒) 

𝑭𝒋 = 𝛛(𝑻𝒋), 𝒋 ∈ [𝟏, 𝒏]                                                                                                                       (𝟑. 𝟑) 

𝑭𝒔
𝒋

= {𝒇𝒔
𝟏, 𝒇𝒔

𝟐, 𝒇𝒔
𝟑, … … … … … … … , 𝒇𝒔

𝒏}                                                                                          (𝟑. 𝟒) 

Spatial dropout of 1-dimensional was also utilized to prevent overfitting. Table 3.1 shows the 

architectural details of the proposed model for caption feature extraction. 
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Table 3.1 Architectural details of the proposed framework for caption feature extraction. 

Components of the proposed framework for 

caption feature extraction 

Hyperparameters 

Embedding size 512 

Three consecutive layers of convolution 1D 128, 64, and 32 units 

Max-pooling 1D with pool size 2 

Stride 1 

Layer 1 of 𝛛 64 units 

Layer 2 of 𝛛 128 units 

Layer 3 of 𝛛 256 units 

Activation function except for the dense layer Leaky ReLu 

Dense layer 128 units 

Spatial dropout 0.4 

Optimizer Adam 

Learning rate 0.001 

Loss function Categorical cross-entropy 

Activation function for a dense layer Softmax 

 

 

Figure 3.2 Illustration of phrase to a vector representation using BERT tokenizer. 
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This section will thoroughly explain the proposed method for extracting crucial information 

from visual modality for recognizing sentiment. 

Spatio-Depth Attention 

Excellent representational capabilities of ConvNets have substantially improved their 

performance on visual tasks. To enhance ConvNet performance, recent research has 
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these aspects, we look into another factor of architectural design called attention. The 
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importance of attention has been well investigated in earlier research [100], [101]. By 

leveraging attention mechanisms, such as focusing on crucial attributes and suppressing 

irrelevant ones, we hope to boost the strength of representation. In the proposed framework, 

the spatio-depth attention module [102] is integrated with the layers of ConvNet to emphasize 

meaningful information along the depth and spatial axes. To do this, we implemented depth 

and spatio attention modules, which enable our model to learn "what" and "where" to pay 

attention along the depth and spatial axes, respectively. This improves network information 

flow by determining which aspect to emphasize or ignore. 

The term "depth" often refers to the number of channels, which are effectively the feature maps 

layered in a tensor, in which each cross-sectional slice is simply a feature map with 

depth (𝓗 × 𝓦). The depth attention simply assigns a value to each channel; as a result, the 

channels that contribute the most to learning are prioritized for refinement, thereby improving 

the model's overall performance. And the term “spatio” refers to the overall domain space 

enclosed by each feature map. By enhancing the feature maps using the spatio attention 

module, we feed the refined input to the consecutive convolutional layers, boosting the model's 

effectiveness. Therefore, the attention module used to extract the most relevant features from 

the visual modality is collectively referred to as “spatio-depth attention.” 

 

Figure 3.3 Depth attention module. 

In the depth attention module (Figure 3.3), the average and max-pooling operations are 

employed to aggregate the spatial information of a feature, yielding two distinct spatial context 

attributes: 𝓕𝒂𝒗𝒆𝒓𝒂𝒈𝒆
𝓭 and 𝓕𝒎𝒂𝒙

𝓭 , which stand for average and max-pooled features explicitly. 

Following that, the depth attention feature map, 𝓜𝓭 𝝐 𝓡𝓒×𝟏×𝟏 is created using a multi-layer 
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perceptron. After applying the multi-layer perceptron to each feature, the resultant feature 

vectors are element-wise summed and passed to a sigmoid activation function. In brief, the 

depth attention is calculated as follows: 

  𝓜𝓭(𝓕) = 𝒔𝒊𝒈𝒎𝒐𝒊𝒅 (𝒘𝟏 (𝒘𝟎(𝓕𝒂𝒗𝒆𝒓𝒂𝒈𝒆
𝓭 )) + 𝒘𝟏 (𝒘𝟎(𝓕𝒎𝒂𝒙

𝓭 )))                                      (𝟑. 𝟓) 

where, 𝒘𝟏 and 𝒘𝟎 are the shared input weights of the multi-layer perceptron.  

 

Figure 3.4 Spatio attention module. 

Meanwhile, the spatio attention module (Figure 3.4) comprises three successive operations. 

The first portion is called the depth Pool, and it divides the input matrix of dimensions 

(𝓒 × 𝓗 × 𝓦) into (𝟐 × 𝓗 × 𝓦), with each channel illustrating max and average pooling 

across the depth. The obtained matrix of size (𝟐 × 𝓗 × 𝓦) is fed as an input to the ConvNet 

layer, which generates a 1-depth feature vector with a dimension of (𝟏 × 𝓗 × 𝓦). Hence, this 

results in two distinct features 𝓕𝒂𝒗𝒆𝒓𝒂𝒈𝒆 
𝒔  𝝐 𝓡𝟏×𝓗×𝓦 and 𝓕𝒎𝒂𝒙

𝒔  𝝐 𝓡𝟏×𝓗×𝓦 . As a result, this 

ConvNet layer ℂ𝟕×𝟕 is a spatial dimension preserving convolution. The obtained result is then 

delivered to a sigmoid activation function, which converts all values to a range between 0 and 

1. The obtained resultant spatio attention mask, 𝓜𝒔 𝝐 𝓡𝟏×𝓗×𝓦 is then applied to all the input 

tensor feature maps using element-wise multiplication. In summary, the spatio attention is 

determined as follows: 

𝓜𝒔(𝓕) = 𝒔𝒊𝒈𝒎𝒐𝒊𝒅(ℂ𝟕×𝟕([𝒂𝒗𝒆𝒓𝒂𝒈𝒆 − 𝒑𝒐𝒐𝒍𝒊𝒏𝒈(𝓕); 𝒎𝒂𝒙 − 𝒑𝒐𝒐𝒍𝒊𝒏𝒈(𝓕)]))                          

𝓜𝒔(𝓕) = 𝒔𝒊𝒈𝒎𝒐𝒊𝒅([𝓕𝒂𝒗𝒆𝒓𝒂𝒈𝒆 
𝒔 ; 𝓕𝒎𝒂𝒙 

𝒔 ])                                                                                   (𝟑. 𝟔)   

Baseline Architecture for Visual Feature Extraction  

Deep learning-based architectures outperform traditional handcrafted-based classification 

algorithms in visual, textual, and acoustic recognition. The key to this achievement is the 
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utilization of massive datasets, the extensive usage of GPU cards, and the evolution of deep 

architectures. ConvNet-based deep learning approaches have surpassed other deep learning 

models in image categorization because, in these approaches, features from visual data have 

been extracted using the localization principle in the convolution layer, and the image is scaled 

down to fewer dimensions with more defining characteristics in the pooling layer. However, 

training massive deep models, on the other hand, takes time and requires expensive GPU 

resources. Considering these factors, we have designed a customized lightweight ConvNet of 

5 layers incorporating a spatio-depth attention module to reduce computational cost. We have 

defined the visual-caption pair as (𝑺, 𝑽), where 𝑺 and 𝑽 denote caption and visual modality 

explicitly. The 𝒏 is the number of visual-caption pairs in the corpus. We utilized Eqn. (𝟑. 𝟕) 

to extract features from a given 𝑽𝒋. The visual feature of 𝑽𝒋 was obtained as 𝑭𝒗
𝒋
 in Eqn. (𝟑. 𝟖). 

This architecture has a total of 246265 trainable parameters, which is relatively low, making it 

lightweight. Table 3.2 shows the architectural details of the proposed model used for visual 

feature extraction. 

𝑭𝑪𝒐𝒏𝒗𝑵𝒆𝒕+𝒔𝒑𝒂𝒕𝒊𝒐−𝒅𝒆𝒑𝒕𝒉 𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏
𝒋

= 𝑪𝒐𝒏𝒗𝑵𝒆𝒕 + 𝒔𝒑𝒂𝒕𝒊𝒐 − 𝒅𝒆𝒑𝒕𝒉 𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑽𝒋), 𝒋

∈ [𝟏, 𝒏]                                                                                                                      (𝟑. 𝟕) 

𝑭𝒗
𝒋

= {𝒇𝒗
𝟏, 𝒇𝒗

𝟐, 𝒇𝒗
𝟑, … … … … … . , 𝒇𝒗

𝒏}                                                                                                 (𝟑. 𝟖)            

Table 3.2 Architectural details of the proposed framework for visual feature extraction. 

Components of the proposed framework for visual 

feature extraction 
Hyperparameters 

Image shape 128×128×3 

5 Layers of Conv2D 32, 64, 128, 64, and 64 units 

Kernel size 3×3 

Max-pooling 2D pool size 2×2 

Stride 1 

Activation function except for the dense layer ReLu 

Dense layer 128 units 

Spatial dropout 0.1 

Optimizer Adam 

Learning rate 0.001 

Loss function Categorical cross-entropy 

Activation function for a dense layer Softmax 

Feature Fusion  

Multi-modal data in a social media post communicate a user's opinion. In visual-caption 

sentiment identification, the correct expression of the post's meaning is ensured by 

appropriately constructing the link between modalities. In several studies, remarkable results 

were reached utilizing early fusion, whereas, in others, high performance was obtained using 
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late fusion. In this research study, we conducted feature-level fusion. The merging of 

information from distinct layers or branches, known as feature fusion, is an essential 

component of current network architectures. It is typically accomplished through fundamental 

operations such as summation or concatenation. The visual-caption pair characteristics were 

defined as (𝑺, 𝑽). Eqn.  (𝟑. 𝟒) and  (𝟑. 𝟖) showed that 𝑭𝒔
𝒋
 and 𝑭𝒗

𝒋
 reflected the visual and 

caption attributes of the 𝒋 visual and caption pairs, respectively. Eqn.  (𝟑. 𝟗) integrates the 

characteristics extracted from the visual and the caption modality, where 𝒏 represents the 

collection's sample count and ⨁  denotes the concatenation operation for implementing feature 

fusion. The obtained vector, after fusion, is then sent into a softmax layer for sentiment 

recognition. 

𝑭𝒋 = 𝑭𝒔
𝒋
⨁𝑭𝒗

𝒋
∈ [𝟏, 𝒏]                                                                                                                       (𝟑. 𝟗)   

Table 3.3 Algorithm for the proposed framework. 

Algorithm 1: Visual-Caption Sentiment Recognition based on visual attention and bi-directional caption 

processing network (VABDC-Net) 

Aim: To learn a mapping function 𝑭: (𝑺𝒋, 𝑽𝒋, 𝑪𝒋) ⟶ from the multi-modal training examples 

{(𝑺𝒋, 𝑽𝒋, 𝑪𝒋)|𝟎 ≤ 𝒊 ≤ 𝒏 − 𝟏}. 

Input: Caption set 𝑺𝒋 = {𝒘𝒋𝟏,𝒘𝒋𝟐, … … … . , 𝒘𝒋} and visual set 𝑽𝒋 

Output: Sentiment polarity categorization task, 𝑪𝒋 ∈ {𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆, 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆, 𝒂𝒏𝒅 𝒏𝒆𝒖𝒕𝒓𝒂𝒍} 

1. Tokenization of words for the entire caption set 𝕍𝒋; 

2. Extract features from the caption content 𝑭𝒔
𝒋
; 

3. Extract features from the visual content  𝑭𝒗
𝒋

; 
4. for 𝜠 ← 𝟏 to Epochs do 

𝕍𝒋 = {𝒗𝒋𝟏,𝒗𝒋𝟐, … … … . , 𝒗𝒋𝒏} ← 𝑺𝒋 = {𝒘𝒋𝟏,𝒘𝒋𝟐, … … … . , 𝒘𝒋} words to vector representation; 

𝑭𝒔
𝒋

= {𝒇𝒔
𝟏, 𝒇𝒔

𝟐, 𝒇𝒔
𝟑, … … … … … … … , 𝒇𝒔

𝒏}  ← 𝕍𝒋 = {𝒗𝒋𝟏,𝒗𝒋𝟐, … … … . , 𝒗𝒋𝒏} caption feature 

extraction by Eqn. (𝟑. 𝟐), Eqn. (𝟑. 𝟑), 𝐚𝐧𝐝 𝐄𝐪𝐧. (𝟑. 𝟒); 
𝓜𝓭(𝓕) and 𝓜𝒔(𝓕)  refined feature map from the visual modality by Eqn. 

(𝟑. 𝟓), 𝐄𝐪. (𝟑. 𝟔);  

𝑭𝒗
𝒋

= {𝒇𝒗
𝟏, 𝒇𝒗

𝟐, 𝒇𝒗
𝟑, … … … … … . , 𝒇𝒗

𝒏} ← 𝓜𝓭(𝓕) and 𝓜𝒔(𝓕) by Eqn. (𝟑. 𝟕), 𝐄𝐪𝐧. (𝟑. 𝟖); 

𝑭𝒋 = 𝑭𝒔
𝒋
⨁𝑭𝒗

𝒋
∈ [𝟏, 𝒏] concatenation of the features by 𝐄𝐪𝐧. (𝟑. 𝟗); 

𝑪𝒋 ∈ {𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆, 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆, 𝒂𝒏𝒅 𝒏𝒆𝒖𝒕𝒓𝒂𝒍} ← 𝑭𝒋 by fully connected and softmax; 
Calculate the loss and perform backpropagation; 

5. end 

 

3.2.3 Experimental Results and Discussion 

This section contains detailed information regarding the dataset utilized during the research, 

the experimental settings of the proposed framework, and performance assessments. 

Dataset Description 

Two separate datasets acquired from Twitter were utilized in this study to validate the 

performance of our proposed framework. Twitter-15 and Twitter-17 [71] are the datasets used 



56 

 

 

to evaluate our model. In both datasets, each tweet was composed of visual-caption pair. The 

Twitter-15 dataset has 5347 tweets, and the Twitter-17 dataset contains 5972 tweets. Each 

visual-caption pair in these datasets was categorized as positive, negative, or neutral based on 

its caption and visual modality. In both datasets, “0” refers to the negative, “1” refers to the 

neutral, and “2” refers to the positive class samples. We utilize a random split of the data in the 

ratio of 8:1:1 and compare accuracy, macro-precision, macro-recall, and macro-F1scores as 

metrics to the baseline approaches. 

Table 3.4 Statistics of the Twitter-15 and Twitter-17 dataset. 

Dataset Positive Negative Neutral Total 

Twitter-15 1548 630 3169 5347 

Twitter-17 2516 728 2728 5972 

Implementation Details 

To compare with prior cutting-edge approaches, datasets were randomly divided into 80% 

train, 10% validation, and 10% test sets. The training and validation sets were used to train 

both dataset’s attentional tokenizer-based bidirectional caption and visual attentional branch 

models to extract deep features. The proposed framework has been run for 50 epochs with a 

batch size of 32 while categorizing the sentiments to evaluate the results. We examined 

multiple values for each hyperparameter randomly and then freeze those values that generated 

the best results for our proposed framework. Table 3.1 and Table 3.2 provide the 

hyperparameters of the proposed methodology used in the study. Accuracy(𝓐), macro-

precision(𝑴𝓟), macro-recall(𝑴𝓡), and macro-F1(𝑴𝓕𝟏)  are the performance metrics used 

for evaluating our proposed model.  The proposed model used in the study was trained and 

evaluated using Google COLAB pro plus with NVIDIA V100 GPU, 40GB of graphics 

memory, driver version 460.32.03, CUDA version 11.2, 80GB of RAM, and 100GB of hard 

disc space. For our experiment, we used up 20.1 GB of RAM, 12.2 GB of graphics memory, 

and 30.3 GB of disc space. Models were generated using the TensorFlow and Keras 

frameworks to extract meaningful information from visual-caption pairings.  

Experimental Results and Analysis 

We evaluate our proposed framework on two benchmark datasets. Note that we have used 

Twitter-15 and Twitter-17 datasets for visual-caption polarity categorization. Table 3.5 depicts 

the results of our VABDC-Net model, which is based on the visual attention and bi-directional 

caption processing network.  
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Table 3.5 Experimental results of our proposed framework VABDC-Net on Twitter-15 and Twitter-17. 

Datasets 
VABDC-Net (Ours) 

𝓐 𝑴𝓟 𝑴𝓡 𝑴𝓕𝟏 

Twitter-15 

(visual + caption) 
83.80 83.55 83.78 83.58 

Twitter-17 

(visual + caption) 
72.42 72.38 73.26 72.50 

 

Figure 3.5 Graphical representation of the experimental results on Twitter-15 and Twitter-17 datasets using 

VABDC-Net. 

From the results following observations can be made. First, regarding accuracy and macro-F1-

score, VABDC-Net surpasses the other models, implying that it can better learn the variety of 

the multiple feature modalities and perform more robustly. We find that VABDC-Net 

outperforms the other models due to the attentional tokenizer-based bi-directional caption and 

spatio-depth visual attention modules. The functionality of these two modules has been 

thoroughly detailed in earlier sections. The attention modules primarily increase the 

interactions of two categories of modality information; mainly, it enables caption information 

to help in the acquisition of visual characteristics (and vice versa) to attain balanced learning 

of both types of modality details, which improves visual-caption sentiment recognition. Our 

model either outperforms or is competitive with the baseline approaches for various 

evaluation measures. As a result, we believe our method is effective.  

To further analyze the effectiveness of our proposed VABDC-Net for each sentiment category, 

we use the confusion matrix to demonstrate our methods' prediction accuracy on the Twitter-

15 and Twitter-17 datasets for three sentiment categories, as shown in Figure 3.6. According 

to Figure 3.6, our technique has the best prediction accuracy for the positive category, 

Accuracy Macro-Precision Macro-Recall Macro-F1

Twitter-15 83.8 83.55 83.78 83.58

Twitter-17 72.42 72.38 73.26 72.5

83.8 83.55 83.78 83.58

72.42 72.38
73.26

72.5
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demonstrating the usefulness of the proposed model for VCSR. The fundamental cause for 

misclassified samples might be that the visual and caption aspect in both datasets is so similar 

that they are easily confused in multi-modal sentiment identification. 

 

Figure 3.6 Confusion Matrix for twitter-15 and Twitter-17 datasets where 0, 1 and 2 belongs to 

negative, neutral and positive class labels. 

Table 3.6 Analysis of VABDC-Net prediction on multiple test samples of Twitter-15 dataset where ✔ and  

represents right and wrong predictions. 

Visual modality Caption 
Ground 

truth 
Prediction by VABDC-Net 

 

RT @ donnabrazile:  Congratulations 

to @ Oprah and @ GloriaSteinem. 

$T$. Presidential Medal of Freedom 

Positive Positive ✔ 

 

RT @ JordanStrack: $T$ presented 

the check for winning the 2015 

Marathon Classic. Chella Choi 

Positive Positive ✔ 

 

RT @ NiallOfficial:  another shot 

from $T$! @ CalAurand Santiago 
Positive Neutral  

 

$T$ moved back to Chicago to care 

for her mom: And it ' s been terrible 

# NextDayChi 17: Harriette 

Neutral Negative  

 

55 80 
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Visual modality Caption 
Ground 

truth 
Prediction by VABDC-Net 

 

Speaking of the Galbuts, commission 

just honored memory of matriarch 

$T$, who passed away a few weeks 

ago. Bessie Galbut 

Negative Negative ✔ 

 

Table 3.7 Analysis of VABDC-Net prediction on multiple test samples of Twitter-17 dataset where ✔ and  

represents right and wrong predictions. 

Visual modality Caption 
Ground 

truth 
Prediction by VABDC-Net 

 

#ThrowBackThursdayBackstage with 

$T$ and the family. # TBT Lady Gaga 
Positive Negative  

 

$T$ Finals: LeBron James’s Record Has 

Improved with Age NBA 
Positive Positive ✔ 

 

Just go ahead: 64 % of likely $T$ voters 

say Paul Ryan should endorse Donald 

Trump Republican 

Neutral Neutral ✔ 

 

$T$ ' illness could affect Rock on the 

Range festival Anthony Kiedis 
Negative Negative ✔ 

 

$T$ Crowned 2016 La Liga Champions, 

Suarez Sink . . . Barcelona 
Positive Neutral  

Baselines for Comparison 

Our model is compared to the baseline approaches discussed below. TomBERT [103]adopts 

ResNet-152   and BERT to obtain visual and caption features. Then elements of both modalities 

are combined and passed to the BERT encoder layers to modal the interaction across both 
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modes. Finally, the final hidden state of the “[CLS]” token is used to categorize the sentiment. 

ESAFN [88] utilized LSTM and ResNet architectures to learn the features from text and image-

based information. Then a multi-modal fusion layer is applied, followed by a softmax layer for 

sentiment prediction from multi-modal tweets. EF-Net [94] employs Bi-GRU and ResNet-152 

to extract visual and textual features and then passes the fused vector of the two modalities to 

the dense layer for final sentiment categorization. ModalNet [104] suggested an attentional 

fusion network by extracting features with bi-LSTM and ResNet-50 for sentiment prediction. 

HIMT [105] developed a transformer-based model consisting of a BERT module for textual 

and an F-RCNN module for visual feature extraction. CapBERT [106] suggested a framework 

that first converts existing images in the dataset to captions. The generated and previously 

available captions are then given to the BERT encoder layers for sentiment prediction. Before 

integrating the features for prediction, [79] use F-RCNN and BART for feature extraction. 

VAuLT [107] utilizes a pre-trained vision-language transformer for multi-modal sentiment 

recognition. The performance comparison of VABDC-Net with all the baseline methods is 

demonstrated in Table 3.8. Figure 3.7 and Figure 3.8 show a graphical illustration of the year-

wise comparison of accuracy and macro-F1 scores for all baseline approaches with our 

proposed VABDC-Net. 

Table 3.8 Comparison of different baseline methods on Twitter-15 and Twitter-17 datasets. 

Methods for  

(visual + caption) 

Twitter-15 Twitter-17 

𝓐 𝑴𝓟 𝑴𝓡 𝑴𝓕𝟏 𝓐 𝑴𝓟 𝑴𝓡 𝑴𝓕𝟏 

TomBERT [103] 77.15 - - 71.75 70.50 - - 68.04 

ESAFN [88]  73.38 - - 67.37 67.83 - - 64.22 

EF-Net [94] 73.65 - - - 67.77 - - - 

ModalNet [104] 79.03 - - 72.50 72.36 - - 69.19 

HIMT [105] 78.14 - - 73.68 71.14 - - 69.16 

CapBERT [106] 77.92 - - 73.90 72.30 - - 70.20 

VAuLT [107] 75.60 - - 70.0 70.20 - - 67.80 

VABDC-Net (Ours) 83.80 83.55 83.78 83.58 72.42 72.38 73.26 72.50 
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Figure 3.7 Comparison of accuracy and macro-F1 of all the baseline methods and our proposed framework for 

the Twitter-15 dataset. 

 

Figure 3.8 Comparison of accuracy and macro-F1 of all the baseline methods and our proposed framework for 

the Twitter-17 dataset. 

On Twitter-15, our approach beats the best baseline model ModalNet [104] by 4.77% and 

11.08%, respectively, in terms of 𝓐 and 𝑴𝓕𝟏 scores. When applied to the Twitter-17 dataset, 

our model significantly achieves the competition with ModalNet [104] by 0.06% and 3.31% 

in terms of 𝓐  and 𝑴𝓕𝟏 along with various other methods such as TomBERT [103], ESAFN 

[88], EF-Net [94], HIMT [105], and VAuLT [107]. Altogether, these findings show the 

benefit of the proposed VABDC-Net for VCSR. The proposed attentional tokenizer-based bi-

direction caption module and visual-attention module capture the interactions between visual 

and caption modalities at a deeper level. Apart from these benefits, the proposed model is 

lightly weighted since the total number of trainable parameters in the caption branch is 

1658275, and the total number of trainable parameters in the visual branch is 246265. 
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Ablation Study 

In this section, we perform numerous ablation experiments on two Twitter datasets to further 

test the performance of each suggested module. Based on the VABDC-Net model, we remove 

the attentional tokenizer from the bi-directional caption branch module and the spatio-depth 

attention module from the attentional visual branch, denoted as "VABDC-Net w/o attentional 

tokenizer" and "VABDC-Net w/o spatio-depth attention" in Table 3.9. The results of these 

ablation trials are summarised in Table 3.9. 

Table 3.9 Ablation study result on Twitter-15 and Twitter-17 datasets. 

Methods 
Twitter-15 Twitter-17 

𝓐 𝑴𝓟 𝑴𝓡 𝑴𝓕𝟏 𝓐 𝑴𝓟 𝑴𝓡 𝑴𝓕𝟏 

VABDC-Net w/o 

attentional tokenizer 
79.42 76.23 75.36 78.36 63.28 62.43 62.21 64.13 

VABDC-Net w/o 

spatio-depth attention 
80.05 79.93 80.18 80.00 65.10 64.75 65.68 65.11 

VABDC-Net 83.80 83.55 83.78 83.58 72.42 72.38 73.26 72.50 

These observations lead us to the following conclusions: (a) the proposed VABDC-Net, which 

includes all modules, achieves the best performance on both Twitter datasets. (b) The 

elimination of any one module would result in inferior prediction results. From the above 

observations, we may conclude that each suggested module is essential and contributes to 

overall performance.  

Generalization Study 

Despite exceptional performance on VCSR datasets, most emerging recent VCSR methods 

primarily rely on thorough in-dataset architectural engineering while ignoring generalization 

ability, which is essential when algorithms are required to analyze examples from other 

datasets or domains. As a result, rather than assessing the quality of VABDC-Net exclusively 

on one dataset, we present a cross-dataset assessment in which a model trained on one dataset 

is tested on another dataset. 

Hence, to evaluate the robustness of VABDC-Net, we perform a generalization study by 

conducting a cross-dataset analysis in addition to the previously described experiment. For this 

experimental analysis, we train our proposed approach VABDC-Net on the Twitter-17 dataset, 

then evaluate it using test samples of the Twitter-15 dataset.  
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Table 3.10 Cross-dataset analysis to test the robustness of VABDC-Net where Twitter-17 is used for training 

and Twitter-15 is used for testing. 

Datasets 
VABDC-Net (Ours) 

𝓐 𝑴𝓟 𝑴𝓡 𝑴𝓕𝟏 

Twitter-17 (for training) & 

Twitter-15 (for testing) 
72.22 67.62 78.08 70.33 

During the training phase of the cross-dataset analysis, out of a total of 5972 samples from the 

Twitter-17 dataset, 80% of the samples were randomly utilized for training, and 10% were used 

for validation. And during the testing phase, out of 5347 image-text pairings from the Twitter-

15 dataset, 10% of the samples were picked at random to evaluate the effectiveness of the 

proposed model based on several parameters such as accuracy  

(𝓐), macro-precision (𝑴𝓟), macro-recall (𝑴𝓡), and macro-F1(𝑴𝓕𝟏). Table 3.10 depicts 

the results of the cross-dataset analysis to test the robustness of VABDC-Net, which is based 

on visual attention and bi-directional caption processing modules. The results show that our 

proposed model, VABDC-Net, is accurate and generalizable, implying that our method 

potentially recognizes instances from datasets other than the ones it was trained on. As a result, 

we conclude that our technique is more reliable and robust than previous cutting-edge 

alternatives. 

Discussion 

The prevalence of social media and digital platforms has encouraged users to express 

themselves through the use of multimodal content, such as photos and text. Utilizing machine  

learning algorithms to interpret the psychological orientation inherent in this multimedia 

information, we can efficiently capture people's views about specific occurrences, necessitating 

a focus on multimodal sentiment analysis in our research. Our objective differs from the 

conventional sentiment analysis of determining if a text reflects a positive or negative 

sentiment; rather, we seek to deduce the user's latent sentiment. We demonstrate that our 

multimodal model, which combines caption and visual data, outperforms previous cutting-edge 

models which are solely based on either text or images. We have contributed to the area of 

VCSR (Visual Caption Sentiment Recognition) by proposing a novel approach which seeks to 

interpret a picture and text combination by integrating textual (spoken words) and visual 

modalities (facial expressions). Based on our findings, it is evident that our method VABDC-

Net outperforms the other models, indicating that it is better able to learn the variety of different 

feature modalities and perform more robustly. Due to the attentional tokenizer-based bi-

directional caption and spatial-depth visual attention modules, VABDC-Net outperforms the 
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other models. The attention modules essentially improve the interactions between two 

categories of modality information; particularly, it enables caption information to aid in the 

acquisition of visual features (and vice versa) to achieve balanced learning of both sorts of 

modalities. 

3.2.4 Conclusion 

This paper proposes a novel Visual Attention and Bi-Directional Caption Processing network 

(VABDC-Net) for visual-caption sentiment recognition. Our proposed methodology more 

effectively analyses the interaction between visual and captions modalities than earlier 

innovative methods. Depending on the context, the same phrase may generate different 

sentiment in several scenarios. Hence, it is essential to use both visual and textual content for 

more accurate prediction. Motivated by this, we developed a novel visual attention branch for 

extracting relevant information from the images and a bi-directional caption processing 

network for extracting crucial features from the caption modality. The extensive experiments 

on two publicly accessible datasets revealed that our proposed model beats highly competitive 

baseline models. Although promising results have been obtained, there are still many avenues 

open for further study. These include incorporating adversarial learning into the multi-modal 

feature fusion module, improving feature extraction techniques, expanding our model to 

incorporate aspect-based multi-modal sentiment recognition, and exploring a wider variety of 

multimedia data, including video and audio. Furthermore, considering that most existing multi-

modal approaches concentrate on sentiment analysis, we intend to examine multi-modal 

continuous emotion intensity in future research, which might offer a deeper semantic 

relationship. 

3.3 Significant Outcomes of this Chapter 

The significant outcomes of this chapter are as follows: 

• To predict sentiment by employing visual-caption pairs using a framework named as 

“VABDC-Net (Visual Attention and Bi-Directional Caption Processing Network)”. The 

proposed model comprised of three modules: an attentional tokenizer-based 

bidirectional caption expert branch to retrieve useful textual features, an attention visual 

expert branch to retrieve appropriate visual features, and a cross-modal feature fusion 

module to merge features and predict sentiment. 
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• Performed an ablation and generalization study to evaluate the resilience of the proposed 

model. 

The following research studies serve as the foundation for this chapter: 

❖ A. Pandey and D. Kumar Vishwakarma, “VABDC-Net: A framework for Visual-

Caption Sentiment Recognition via spatio-depth visual attention and bi-directional 

caption processing,” Knowledge-Based Systems, vol. 269, June. 2023, doi: 

https://doi.org/10.1016/j.knosys.2023.110515. 

❖ A. Pandey and D. K. Vishwakarma, “Attention-based Model for Multi-modal 

sentiment recognition using Text-Image Pairs,” in 2023 4th International Conference 

on Innovative Trends in Information Technology (ICITIIT), Institute of Electrical 

and Electronics Engineers (IEEE), March. 2023, pp. 1–5. doi: 

10.1109/ICITIIT57246.2023.10068626. 
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Chapter 4: Target-Dependent Multimodal Sentiment 

Recognition 

4.1 Scope of this Chapter 

Target-Dependent Sentiment Recognition (TDSR) determines the sentiment polarity towards 

specific attributes that are explicitly mentioned within a given input text. For example, 

“𝑇ℎ𝑒 𝑟𝑖𝑣𝑒𝑟 𝑔𝑖𝑣𝑒𝑠 𝑎 𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡 𝑣𝑖𝑒𝑤, ℎ𝑜𝑤𝑒𝑣𝑒𝑟, 𝑡ℎ𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑙𝑙 𝑤𝑎𝑠 𝑑𝑖𝑠𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔”. 

The user conveys a positive opinion regarding the 𝑟𝑖𝑣𝑒𝑟′𝑠 location while expressing 

dissatisfaction or negative sentiment for the target aspect ′𝑟𝑜𝑙𝑙′. With the growing popularity 

of multimodal information across social media, it has become inadequate to rely just on written 

text for the purpose of aspect-based sentiment categorisation. Multimodal postings often 

include visual elements, such as photos and emoji, which may frequently provide a significant 

understanding of people's emotions. The opinion towards a target aspect, expressed by a user, 

is often influenced by the accompanying image. This is because the textual information in 

such posts is typically unstructured, informal and brief.  Hence, motivated by the recent 

advancements [108], [109], [110], and [111] made in understanding facial emotion within the 

domain of computer vision, we provide an effective and simple approach, i.e., visual-to-

emotional-caption translation network (VECT-Net) for target-dependent multimodal sentiment 

recognition. This technique aims to convert the sentiment conveyed in the image into a textual 

representation by generating descriptions of facial expressions. 

4.2 Target-Dependent Multimodal Sentiment Analysis Via Employing 

Visual-to-Emotional-Caption Translation Network using Visual-

Caption Pairs 

4.2.1 Abstract 

Target-dependent sentiment recognition is a highly intriguing and significant domain within 

affective computing. Substantial advancements have been achieved in this field, with notable 

contributions such as those presented in [112]. The natural language processing and multimedia 

field has seen a notable surge in interest in multimodal sentiment recognition. Hence, this study 

aims to employ Target-Dependent Multimodal Sentiment Recognition (TDMSR) to identify 

the level of sentiment associated with every target (aspect) stated within a multimodal post 

consisting of a visual-caption pair. Despite the recent advancements in multimodal sentiment 

recognition, there has been a lack of explicit incorporation of emotional clues from the visual 
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modality, specifically those pertaining to facial expressions. The challenge at hand is to 

proficiently obtain visual and emotional clues and subsequently synchronise them with the 

textual content. In light of this fact, this study presents a novel approach called the Visual-to-

Emotional-Caption Translation Network (VECT-Net) technique. The primary objective of this 

strategy is to effectively acquire visual sentiment clues by analysing facial expressions. 

Additionally, it effectively aligns and blends the obtained emotional clues with the target 

attribute of the caption mode. The experimental findings demonstrate that our methodology is 

capable of producing ground-breaking outcomes when applied to two publicly accessible 

multimodal Twitter datasets, namely, Twitter-2015 and Twitter-2017. The experimental results 

show that the suggested model achieves an accuracy of 81.23% and a macro-F1 of 80.61% on 

the Twitter-15 dataset, while 77.42% and 75.19% on the Twitter-17 dataset, respectively. The 

observed improvement in performance reveals that our model is better than others when it 

comes to collecting target-level sentiment in multimodal data using the expressions of the face. 

4.2.2 Proposed Methodology 

In this section, the proposed framework of VECT-Net is thoroughly discussed. The problem is 

defined in the first portion of this section. Then, we present the model's framework, comprised 

of four distinct components: Facial emotion description module, Target alignment and 

refinement of the face descriptions module, Image captioning module, and Fusion module.  

Problem Formulation 

The TDMSR can be precisely described as outlined below: Consider a collection of visual-

caption pair examples denoted as 𝛭 =  {𝐸1, 𝐸2, 𝐸3, … … … , 𝐸𝛭}, where |Μ| represents the 

total number of instances. For each given example, an image 𝛪 ∈  𝑅3×𝐻×𝒲 is provided where 

3, ℋ and 𝒲 indicate the number of channels, height and width. Every visual sample in this 

study is associated with textual content represented by a set of 𝐾- words provided by the 

captions 𝐶 =  {𝓌1, 𝓌2, 𝓌3, … … … , 𝓌𝐾  }, which comprises a subsequence of 𝑁-word that 

represents the target entity, defined as 𝑇 =  {𝓌1, 𝓌2, 𝓌3, … … … , 𝓌𝑁 }. Our study aims to 

develop a sentiment classifier to predict a sentiment label 𝑌 from multimodal examples 

accurately. A combination of variables 𝐸 = {𝛪, 𝐶, 𝑇} represents each sample in 𝐸. The 

sentiment labels are categorised into three classes: 𝑌 ∈ {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙}.  

Consider Figure 4.1 as an example. When omitting the accompanying image, the anticipated 

sentiments towards the targets "Justin," "America," and "Lydia" seem to be neutral, positive, 

and neutral, respectively. However, this prediction is inaccurate. In the instances mentioned 
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above (Figure 4.1), users convey their sentiments towards "Justin," "America," and "Lydia" 

by utilising distinct visual representations. Specifically, a crying face is employed to express 

negative sentiment towards Justin, a neutral image is used to convey a neutral feeling towards 

America, and a happy look is employed to denote a positive view towards Lydia.   

Visual Textual Target Sentiment 

 

RT @ irauhlcarlyrae : Justin tweeted # 

mybeliebers so Beliebers trended # ourJustin 
Justin Negative 

 

Randy from America knows how to wear a good 

sock. Hide it under your boot for extra warmth. # 

tweetusyoursocks 

America Neutral 

 

Crazy hair day! Lydia is a contender. :) 

 
Lydia Positive 

Figure 4.1 A few instances of Target-Dependent multimodal sentiment recognition are provided, 

including the identified targets and their corresponding sentiments. 

Visual-to-Emotional-Caption Translation Network (VECT-Net) 

The proposed framework Visual-to-Emotional-Caption-Translation Network (VECT-Net) 

illustrated in Figure 4.2 has three distinct components: Facial emotion description module, 

Target alignment and refinement of the face descriptions, and Fusion module. For a given tweet 

consisting of a visual-caption pair, denoted as 𝐸 = {𝛪, 𝐶, 𝑇}, we first take the input image ′𝛪′  

and feed it into a facial emotion description unit to generate face description 𝐷 =

{𝐷1, 𝐷2, 𝐷3, … … … , 𝐷ℱ  } comprises of different features such as age, gender, emotion, etc., 

where ℱ is the number of faces present in an input image and 𝐷𝑖 = {𝐷1, 𝐷2, 𝐷3, … … … , 𝐷𝐿 } 

represents a phrase consisting of 𝐿-word. The extraction and textualisation of facial expressions 

within an image, which represents an immense amount of information on the individual's 

sentiments, is the primary emphasis of this module. Since the input image ′𝛪′ may include 

several facial expressions, it is necessary to match or align the facial description 𝐷𝑇  with the 

target entity 𝑇. The target alignment and refinement of the face descriptions module estimates 

cosine similarity between visual input 𝛪 and face descriptions with target 𝐷𝑇. The facial 

description 𝐷𝑇 is selected and rewritten based on similarity scores. Since the visual scenes may 
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provide extra semantic details, we employ the image-to-text transformer (Wang et al. [113], 

2022) to produce image captions for the scene 𝐼𝐶 = {𝐼𝐶1, 𝐼𝐶2, 𝐼𝐶1, … … … , 𝐼𝐶𝐺}, where 

𝐺 represents caption length. At last, in the fusion component, we employ two robustly 

optimised pre-trained language models based on BERT to simulate image captions and face 

descriptions, followed by a gating mechanism for feature fusion and noise reduction. For target-

dependent sentiment recognition, the gated unit output flows via a linear layer. The pseudocode 

for the proposed algorithm is presented in Table 4.2. The following subsections will provide 

detailed insights for every module. Table 4.1 presents a comprehensive collection of 

significant symbols along with their respective meanings, aiming for a better understanding of 

the proposed strategy.  

Table 4.1 Listed below are some important symbols and their respective 

meanings. 

Symbols Meaning 

𝐸 Multimodal example 

𝛪 Visual modality available in the dataset 

𝐶 Caption modality available in the dataset 

𝑇 Target entity available in the dataset 

𝑌 Output sentiment labels  

ℱ 
Total number of faces extracted from the visual 

modality 

𝐷 The set represents the face description obtained from ℱ. 

𝐷𝑇  
Refined face descriptions concatenated with the target 

entity 

𝐼𝐶  
Set of captions generated by using visual modality  
𝛪 of the dataset 

𝑂𝐷&𝑇  and 

𝑂𝐼  
Embedding of visual and textual content  

𝑉 and 𝑏 Trainable parameters (Weights & Bias) 

⨁ Denotes concatenation 

⨀ Denotes gated fusion 

 

Table 4.2 Pseudocode for the proposed algorithm. 

Algorithm 1: Target-Dependent Sentiment Recognition based on visual-to-emotional-caption translation 

network (VECT-Net) 

Aim: To learn a mapping function 𝑭: (𝑰, 𝑪, 𝑻, 𝒀) ⟶ from the multi-modal training examples 𝑬. 

Input: visual set 𝜤 ∈  𝓡𝟑×𝓗×𝓦;  

Caption set 𝑪 =  {𝔀𝟏, 𝔀𝟐, 𝔀𝟑, … … … , 𝔀𝑲 } where 𝑲 ∈ set of words provided by a caption 

corresponding to a visual sample; 

Target entity set 𝑻 =  {𝔀𝟏, 𝔀𝟐, 𝔀𝟑, … … … , 𝔀𝑵 } where caption with a subsequence of 𝑵-word 

represents the target entity and;  

Output: Categorization of sentiment label 𝒀 ∈ {𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆, 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆, 𝒏𝒆𝒖𝒕𝒓𝒂𝒍} based on target 𝑻 

1. for 𝜠 ← 𝟏 to Epochs do 

𝓕 = {𝓕𝟏, 𝓕𝟐, 𝓕𝟑, … … … , 𝓕𝑱} ←  𝜤 extraction of faces from the visual set using Eqn. (4.1); 

𝑫 = {𝑫𝟏, 𝑫𝟐, 𝑫𝟑, … … … , 𝑫𝓕 }  ← 𝓕 generation of fluent linguistic emotional face descriptions using 

extracted faces obtained from the previous step; 

𝑫𝑻 ← 𝑫 refined face descriptions are obtained concatenated with the target entity using Eqn. (4.2) to 

Eqn. (4.6); 
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Algorithm 1: Target-Dependent Sentiment Recognition based on visual-to-emotional-caption translation 

network (VECT-Net) 

𝑰𝑪 = {𝑰𝑪𝟏, 𝑰𝑪𝟐 , 𝑰𝑪𝟏, … … … , 𝑰𝑪𝑮} ← 𝜤 generate captions from the visual modality using Eqn. (4.7); 

[𝑪𝑳𝑺]𝔀𝟏
𝑪, … , 𝔀𝑲

𝑪 [𝑺𝑬𝑷]𝔀𝟏
𝑻, … , 𝔀𝑵

𝑻 [𝑺𝑬𝑷]𝔀𝟏
𝑫𝑻 , … , 𝔀𝑳

𝑫𝑻[𝑺𝑬𝑷] fine-tune the combination of 

available text, target and refined facial descriptions using robustly optimised language model using 

Eqn. (4.8); 

[𝑪𝑳𝑺]𝔀𝟏
𝑪, … , 𝔀𝑲

𝑪 [𝑺𝑬𝑷]𝔀𝟏
𝑻, … , 𝔀𝑵

𝑻 [𝑺𝑬𝑷]𝔀𝟏
𝑰𝑪 , … , 𝔀𝑮

𝑰𝑪[𝑺𝑬𝑷] fine-tune the combination of available 

text, target and generated captions using robustly optimised language model using Eqn. (4.9); 

Eqn. (4.8) ⨀ Eqn. (4.9) gated fusion of the result obtained from the previous two steps; 

𝒀 ∈ {𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆, 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆, 𝒏𝒆𝒖𝒕𝒓𝒂𝒍} by passing Eqn. (4.8) ⨀ Eqn. (4.9) by a fully connected layer 

and softmax layer; 

Calculate the loss 𝕃 = −
𝟏

|𝑫|
∑ 𝐥𝐨𝐠 𝓟{𝒀𝓵|𝑶𝓵} 

|𝑫|
𝓵=𝟎 and perform backpropagation; Eqn. (4.10) 

2. end 

 

 

Figure 4.2 Proposed Methodology (‘⨁’ denotes concatenation and ‘⨀’ denotes gated fusion). 
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Facial Emotion Description Module 

The proposed module addresses two fundamental difficulties in TDMSR. First, the complex 

images in multimodal tweets might make it challenging to extract object-level emotional 

indicators. Another issue is translating emotional signals obtained from visual modality into a 

sequence of words. 

To address the first challenge, as previously stated, leveraging the wide range of facial 

expressions in images proves to be an efficient method for extracting emotional cues from 

visual mode. The first step involves using a tool represented as ∮ developed by Serengil et 

al.[114] to recognise multiple faces within an image of the dataset as stated in Eqn. (𝟒. 𝟏). Let 

ℱ represent the set of faces, denoted as ℱ = {ℱ1, ℱ2, ℱ3, … … … , ℱ𝐽}, where 𝐽 represents the 

total number of faces and ℱ𝐽 ∈ ℛ3×ℋℱ×𝒲ℱ  represents a face area with 𝑡ℎ𝑟𝑒𝑒 channels, ℋℱ 

height, and 𝒲ℱ width. The obtained faces ℱ are then fed into a pre-trained classification 

model (Serengil et al. [115]) for facial attribute analysis, which involves gender, age, race 

(Indian, Black, Asian, White,  Latino, and Middle Eastern,) and facial expression to predict 

sentiments. 

𝓕 = ∮ (𝑰)                                                                                                                                             (𝟒. 𝟏) 

For the second challenge, facial attributes obtained from the previous step are transformed into 

the textual representation without training an additional visual-caption model. The prediction 

confidence score 𝛼 is used to pick out facial attributes. The face attributes that have a score 

below the threshold 𝛼 = 0.5 are filtered out. We manually develop a visual feature pattern to 

create fluent linguistic emotional face descriptions 𝐷 = {𝐷1, 𝐷2, 𝐷3, … … … , 𝐷ℱ  }. An example 

of facial description generation is shown in Table 4.3. 

Table 4.3 A fluent face description, for example, 1 of  Figure 21, may be generated via a template. 

Template Instances Visual features 

Fluent linguistic 

emotional 

face descriptions 

A [Race] [Gender] with [Age]-

year-of-age exhibits [Sentiment] 

expression 

 Age Gender Race Sentiment A Black man with 

43 years of age 

exhibits a 

negative 

expression 

Example 1 43 man Black negative 

Prediction 

confidence 

score 

1.00 1.00 0.879 0.9467 

 

Target Alignment and Refinement of the Face Descriptions 

Sometimes, a multi-face image sample with varied facial expressions fails to estimate the 

correct emotion of the target entity. On the other hand, the inclusion of redundant facial 

emotions produces noise and diminishes the overall effectiveness. Therefore, it is essential to 

https://ieeexplore.ieee.org/author/37088633170
https://ieeexplore.ieee.org/author/37088633170
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effectively synchronise the facial emotions shown in the visual sample with the desired target 

entity. In our proposed framework, VECT-Net, this component focuses on aligning facial 

expressions with the target object, resulting in more detailed facial descriptions. The TDMSR 

challenge needs external visual-caption alignment information for more fine-grained 

alignments due to restricted dataset size and the absence of direct visual-caption alignment 

supervision. Hence, to achieve fine-grained alignment, we use caption and visual encoders of 

a recently developed contrastive visual-caption pre-training architecture trained on a variety of 

visual-caption pairs [116] denoted as ‘𝝉’ to encode the face descriptors 𝐷 associated with target 

𝑇 and the visual 𝐼. The resulting embeddings for images and descriptions of faces are shown 

in Eqn. (4.2) and Eqn. (4.3), where ‘⊕’ denotes concatenation. 

𝑶𝑫𝑻
= 𝑪𝒂𝒑𝒕𝒊𝒐𝒏_𝑬𝒏𝒄𝒐𝒅𝒆𝒓 (𝝉)(𝑫 ⊕ 𝑻)                                                                                    (𝟒. 𝟐) 

𝑶𝑰 = 𝑽𝒊𝒔𝒖𝒂𝒍_𝑬𝒏𝒄𝒐𝒅𝒆𝒓(𝝉)(𝑰)                                                                                                      (𝟒. 𝟑) 

Subsequently, the obtained feature embeddings are projected into the same feature space. Then, 

we compute the Levenshtein distance 𝐿 for these feature embeddings using L2-normalization 

′𝛾′. Next, we choose and regenerate the face description that best fits the current image as the 

visual, emotional clue for the current target based on the similarity score using 𝐿. The 

refined face description only contains the target object and expressions based on predicted 

facial traits. 

𝑶𝑫𝑻

′ = 𝜸(𝑶𝑫&𝑻 ∙ 𝑽𝑫&𝑻)                                                                                                                    (𝟒. 𝟒) 

𝑶𝑰
′ = 𝜸(𝑶𝑰 ∙ 𝑽𝑰)                                                                                                                                 (𝟒. 𝟓) 

𝑳 =  𝑶𝑰
′ ∙ (𝑶𝑫𝑻

′ 𝕋
) ∗ 𝒆𝒕                                                                                                                        (𝟒. 𝟔) 

𝑉𝐷&𝑇 and 𝑉𝐼 are trainable weights, and 𝑡 is the scaling factor of the generative visual-to-caption 

transformer model [113]. This module is only used for multi-face visual samples. The target is 

concatenated directly with the acquired face description in this module. Subsequently, the 

newly concatenated phrases are used as input for the textual encoder of ‘𝝉’, while the picture 

is employed as input for the visual encoder of ‘𝝉’. The cosine similarities between the visual 

and textual features are then computed using Eqn. (4.5), (4.6) and (4.7). Then, we choose the 

facial description with the highest score and modify it to get a more refined description. 

Furthermore, considering the effect of image scene details on multimodal semantics, we use a 

recently developed, more effective generative transformer [113] for visual-to-caption 
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translation ‘𝜹’ to provide an overall comprehensive description of all the image samples of the 

dataset using Eqn. (4.8).  

𝑰𝑪 = 𝜹(𝑰)                                                                                                                                             (𝟒. 𝟖)  

Ultimately, we achieve the accurate alignment of face descriptions and visual captions, which 

are then used as input for the succeeding module. 

Fusion Module 

This module aims to combine already available caption(𝐶), target entity (𝑇), refined facial 

description (𝐷𝑇), and the generated caption (𝐼𝐶). To leverage the pre-trained language model's 

robust textual context analysis, we concatenate the refined face descriptions and image caption 

with available text and target to create two new phrases as shown in Eqn. (4.9) and (4.10) 

below: 

[𝑪𝑳𝑺]𝔀𝟏
𝑪, … , 𝔀𝑲

𝑪 [𝑺𝑬𝑷]𝔀𝟏
𝑻, … , 𝔀𝑵

𝑻 [𝑺𝑬𝑷]𝔀𝟏
𝑫𝑻 , … , 𝔀𝑳

𝑫𝑻[𝑺𝑬𝑷]                                            (𝟒. 𝟗) 

[𝑪𝑳𝑺]𝔀𝟏
𝑪, … , 𝔀𝑲

𝑪 [𝑺𝑬𝑷]𝔀𝟏
𝑻, … , 𝔀𝑵

𝑻 [𝑺𝑬𝑷]𝔀𝟏
𝑰𝑪 , … , 𝔀𝑮

𝑰𝑪[𝑺𝑬𝑷]                                            (𝟒. 𝟏𝟎) 

Fine-tuning two robustly optimised per-trained language models [117] with these new phrases 

yields [𝐶𝐿𝑆] token 𝑂𝐷𝑇

[𝐶𝐿𝑆]
∈ 𝑅768 and 𝑂𝐼𝐶

[𝐶𝐿𝑆]
∈ 𝑅768 pooler outputs. The gate mechanism is 

used to reduce noise in feature representations of 𝑂𝐷𝑇

[𝐶𝐿𝑆]
 and 𝑂𝐼𝐶

[𝐶𝐿𝑆]
. At last, to predict sentiment, 

fused feature representations (Eqn. (4.11) and (4.12)) are sent via a linear classifier using Eqn. 

(4.13), where 𝑉𝐷𝑇
, 𝑉𝐼𝐶

 and 𝑉 are trainable weights of dimensions 𝑅768×768, 𝑅768×768, and 

𝑅768×3. In contrast, 𝑏𝑗 and 𝑏 are learnable biases with dimensions 𝑅768 and 𝑅3.  

𝒋𝒕 = 𝒕𝒂𝒏𝒉 (𝑽𝑫𝑻
𝑶𝑫𝑻

[𝑪𝑳𝑺]
+ 𝑽𝑰𝑪

𝑶𝑰𝑪

[𝑪𝑳𝑺]
+ 𝒃𝒋)                                                                               (𝟒. 𝟏𝟏) 

𝑶 = 𝒋𝒕 ∗ 𝑶𝑫𝑻

[𝑪𝑳𝑺]
+ 𝒋𝒕 ∗ 𝑶𝑰𝑪

[𝑪𝑳𝑺]
                                                                                                       (𝟒. 𝟏𝟐) 

𝓟(𝒀|𝑶) = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙((𝑽 ∗ 𝑶) + 𝒃)                                                                                          (𝟒. 𝟏𝟑) 

All module parameters are optimised using conventional cross-entropy loss defined in Eqn. 

(4.14). 

𝕃 = −
𝟏

|𝑫|
∑ 𝐥𝐨𝐠 𝓟{𝒀𝓵|𝑶𝓵}                                                                                                        (𝟒. 𝟏𝟒)

|𝑫|

𝓵=𝟎

 

4.2.3 Experimental Setup and Results 

This section includes comprehensive details about the dataset used in the study, the 

experimental configuration of the proposed framework, and the evaluations of its performance. 
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Experimental Details and Dataset Description 

Our model was trained and evaluated using two publically accessible benchmark datasets, 

Twitter-2015 and Twitter-2017. Both datasets include tweets consisting of visual-caption pairs.  

Each caption has been tagged with some target entity and its associated sentiment polarity. Our 

approach primarily emphasises cases that include facial images. Therefore, we extract samples 

with facial images from the aforementioned two datasets to create the Tweet1517-Face dataset. 

Subsequently, we evaluate the effectiveness of our proposed model on these samples to prove 

its superiority over the others. The comprehensive statistical information for the three datasets 

can be seen in Table 4.4. 

Additionally, the model's learning rate has been configured to be 2e-5. The batch size has been 

set to 32, and a dropout rate of 0.4 has been employed. The proposed approach has undergone 

fine-tuning for a total of 15 epochs. This work was implemented using the PyTorch 

framework and is executed on a high-end NVIDIA TITAN RTX (48GB) GPU system with an 

Intel Xeon Silver 4116 CPU, 10TB storage, and 128 GB RAM. The final result has been 

determined by calculating the mean of five independent training iterations. 

Table 4.4 Statistical information that describes all the datasets utilised in the evaluation of our proposed 

model. 

Name of 

the Dataset 

Positive Samples Negative Samples Neutral Samples 
Average Number 

of Targets 
Train Valid Test Train Valid Test Train Valid Test Train Valid Test 

Twitter-15 928 303 317 368 149 113 1883 679 607 1.34 1.33 1.35 

Twitter-17 1508 515 493 1638 517 573 416 144 168 1.41 1.43 1.45 

Tweet1517-

Face 
1285 449 442 408 137 156 1531 514 494 1.37 1.37 1.39 

Baselines for Comparison 

This section compares our proposed model with several cutting-edge baseline approaches for 

the task of TDMSR for both unimodal and multimodal networks. Table 4.5 demonstrates that 

the experimental results of our proposed model are more accurate than those of the other 

baseline methodologies in terms of Accuracy (A) and macro − F1 score, thus proving our 

model's superiority. 

Table 4.5 Experimental results of our proposed model compared with the multimodal baseline approaches. 

Methods 

(visual + captions) 

Twitter-2015 Twitter-2017 

𝐀 𝐦𝐚𝐜𝐫𝐨 − 𝐅𝟏 𝐀 𝐦𝐚𝐜𝐫𝐨 − 𝐅𝟏 

TomBERT [118] 76.18 71.27 70.50 68.04 

ESAFN [119] 73.38 67.37 67.83 64.22 

EF-Net [120] 73.65 67.90 67.77 65.32 

ModelNet [121] 79.03 72.50 72.36 69.19 

R-GCN [122] - 75.00 - 87.11 

HIMT [123] 78.14 73.68 71.14 69.16 
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Methods 

(visual + captions) 

Twitter-2015 Twitter-2017 

𝐀 𝐦𝐚𝐜𝐫𝐨 − 𝐅𝟏 𝐀 𝐦𝐚𝐜𝐫𝐨 − 𝐅𝟏 

FGSN [124] 74.61 65.84 - - 

[6] - 72.97 - 71.76 

EF-CaTrBERT [125] 77.92 73.90 72.30 70.20 

Our Proposed (VECT-

Net) 
81.23 80.61 77.42 75.19 

Figure 4.3 gives a year-by-year visual representation to compare our model with the techniques 

that are considered to be state-of-the-art in terms of Accuracy (A) and macro − F1 score for 

the Twitter-2015 and Twitter-2017 datasets, respectively. 

Analysis of Our Experimental Results 

This section presents experimental results and analysis of our proposed framework for all three 

datasets.  Table 4.6, Table 4.7 and Table 4.8 highlight the best scores on each 

performance measure for all three datasets. Our method demonstrates superior performance 

when compared to all other multimodal baselines. This serves as evidence of the efficacy of 

the proposed VECT-Net framework. In the fusion module, we conducted fine-tuning using 

RoBERTa-base and RoBERTa-Large language models [117] and found that RoBERTa-Large 

yielded superior results. The model we developed indicates higher accuracy when using a more 

robust language model. This observation highlights the significant impact of the language 

model's contextual modelling capacity during the fusion step. However, this observation is not 

evident in the comparison of the base version model. We believe the inadequate text context 

modelling by the pre-trained language model in the base version is the cause of this issue. 

  
Figure 4.3 Year-wise comparison of our proposed model with already existing cutting-edge multimodal 

networks in   terms of accuracy and macro-f1 scores. 
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Table 4.6 Experimental results of our proposed approach for Twitter-2015. 

Methods 

 

Twitter-2015 

Unimodal Multimodal 

Caption visual Caption + Visual 

𝐀 𝐦𝐚𝐜𝐫𝐨 − 𝐅𝟏 𝐀 𝐦𝐚𝐜𝐫𝐨 − 𝐅𝟏 𝐀 𝐦𝐚𝐜𝐫𝐨 − 𝐅𝟏 

VECT-Net-

Roberta-base 
73.19 71.74 75.20 72.51 79.63 77.21 

VECT-Net-

Roberta-Large 
75.83 75.20 77.59 76.86 81.23 80.61 

 

Table 4.7 Experimental results of our proposed approach for Twitter-2017. 

Methods 

 

Twitter-2017 

Unimodal Multimodal 

Caption visual Caption + Visual 

𝐀 𝐦𝐚𝐜𝐫𝐨 − 𝐅𝟏 𝐀 𝐦𝐚𝐜𝐫𝐨 − 𝐅𝟏 𝐀 𝐦𝐚𝐜𝐫𝐨 − 𝐅𝟏 

VECT-Net-

Roberta-base 
67.42 64.35 68.54 67.40 72.37 70.84 

VECT-Net-

Roberta-Large 
72.11 70.65 74.48 71.79 77.42 75.19 

Figure 4.4 shows that combining visual and textual modes enhances performance. Therefore, 

this demonstrates that our proposed framework has the capability to accurately represent facial 

expressions shown in images. Additionally, it emphasises the need to explicitly integrate 

emotional cues in visual analysis. 

 

Figure 4.4 Graphical representation to show the performance of the proposed 

model on all three datasets for multimodal (Image + Caption) configuration. 

Table 4.8 Experimental results of our proposed approach for Tweet1517-Face. 

Methods 

Tweet1517-Face Dataset 

Unimodal Multimodal 

Caption visual Caption + Visual 

𝐀 𝐦𝐚𝐜𝐫𝐨 − 𝐅𝟏 𝐀 𝐦𝐚𝐜𝐫𝐨 − 𝐅𝟏 𝐀 𝐦𝐚𝐜𝐫𝐨 − 𝐅𝟏 

VECT-Net-

Roberta-base 
64.32 62.67 65.22 63.80 74.02 71.28 

VECT-Net-

Roberta-Large 
70.15 67.46 74.57 72.30 79.65 78.16 
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Ablation Study 

To understand the influence of each component of our technique, we performed an extensive 

ablation study utilising the VECT-Net-RoBERTa-Large version. The results for the same are 

depicted in Table 4.9. Initially, the sentiment label of the target is predicted by combining the 

results of linguistic models. These outcomes are then used as input to a linear classification 

layer without the inclusion of a gating mechanism. The overall performance of the architecture 

experiences a significant decrease as a result of the presence of noise during the facial emotion 

description module. On Twitter 2015, A and macro − F1 scores dropped 1.83% and 1.96%, 

respectively. On the Twitter-2017 dataset, A drops 2.15%, and the macro − F1 score drops 

2.88%. This suggests that the gating technique is responsible for reducing noise and extracting 

more useful features. Additionally, it is seen from Table 4.9 that the exclusion of the target 

alignment module also results in a decrease in performance. This result suggests that the 

alignment between the visual and emotional cues and the target entity is crucial. At last, we 

analyse the impact of excluding the visual caption from the scene, which results in a significant 

decrease in the model's performance. This finding provides evidence that the utilisation of 

visual-to-caption translation contributes to the advancement of visual-caption fusion. 

 

Table 4.9 Ablation study conducted on Twitter-2015, Twitter-2017 and Tweet1517-Face. 

Methods 

Twitter-2015 Twitter-2017 Tweet1517-Face 

Multimodal 

(Caption + visual) 

Multimodal 

(Caption + visual) 

Multimodal 

(Caption + visual) 

𝐀 
𝐦𝐚𝐜𝐫𝐨
− 𝐅𝟏 

𝐀 
𝐦𝐚𝐜𝐫𝐨
− 𝐅𝟏 

𝐀 
𝐦𝐚𝐜𝐫𝐨
− 𝐅𝟏 

VECT-Net-Roberta-

Large 
81.23 80.61 77.42 75.19 79.65 78.16 

VECT-Net without 

gating mechanism 
79.40 78.65 75.27 72.31 77.29 76.08 

VECT-Net without 

Target Alignment 
79.11 79.20 76.44 73.60 78.31 76.82 

VECT-Net without visual 

caption of the scene 
78.89 78.50 75.23 72.56 77.48 75.27 

 

Predictive Analysis of Few Samples 

To provide a more comprehensive demonstration to highlight the benefits of the proposed 

method, this section of the manuscript will include the actual predictions made by our model 

on a few samples gathered from Twitter-15 and Twitter-17. As shown in Table 4.10, the 

VECT-Net model accurately forecasts positive sentiments for the target terms [𝐿𝑒𝐵𝑟𝑜𝑛 

𝐽𝑎𝑚𝑒𝑠’𝑠], [𝐽𝑜𝑟𝑑𝑎𝑛𝑆𝑡𝑟𝑎𝑐𝑘], negative sentiments for aspect words [𝐻𝑎𝑟𝑟𝑖𝑒𝑡𝑡𝑒], 

[𝐴𝑛𝑡ℎ𝑜𝑛𝑦 𝐾𝑖𝑒𝑑𝑖𝑠], while the neutral sense of emotion for [𝐷𝑜𝑛𝑎𝑙𝑑 𝑇𝑟𝑢𝑚𝑝 𝑅𝑒𝑝𝑢𝑏𝑙𝑐𝑖𝑎𝑛]. As 
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a result, this study demonstrates that the proposed approach efficiently focuses on multimodal 

sentimental regions to leverage the interaction between the image and the target phrase more 

extensively than existing methods. Hence, the VECT-Net model can deeply examine the local 

semantic relationship between image and text in contrast with baseline models. In simple 

terms, the proposed model exhibits a higher degree of advantage. 

Table 4.10 Sentiment prediction by employing the proposed model "VECT-Net" on a few multimodal samples 

of Twitter-15 and Twitter-17. 

Modalities 

VECT-Net Prediction 
Text Image 

𝑭𝒊𝒏𝒂𝒍𝒔:  [𝑳𝒆𝑩𝒓𝒐𝒏 𝑱𝒂𝒎𝒆𝒔’𝒔]𝓟𝓸𝓼𝓲𝓽𝓲𝓿𝓮 

𝑹𝒆𝒄𝒐𝒓𝒅 𝑯𝒂𝒔 𝑰𝒎𝒑𝒓𝒐𝒗𝒆𝒅 𝒘𝒊𝒕𝒉 𝑨𝒈𝒆 

𝑵𝑩𝑨 

 

𝐿𝑒𝐵𝑟𝑜𝑛 𝐽𝑎𝑚𝑒′𝑠
− 𝓟𝓸𝓼𝓲𝓽𝓲𝓿𝓮 

[𝑱𝒐𝒓𝒅𝒂𝒏𝑺𝒕𝒓𝒂𝒄𝒌]𝓟𝓸𝓼𝓲𝓽𝓲𝓿𝓮: 𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒆𝒅 𝒕𝒉𝒆 𝒄𝒉𝒆𝒄𝒌 

𝒇𝒐𝒓 𝒘𝒊𝒏𝒏𝒊𝒏𝒈 𝒕𝒉𝒆 𝟐𝟎𝟏𝟓 𝑴𝒂𝒓𝒂𝒕𝒉𝒐𝒏 𝑪𝒍𝒂𝒔𝒔𝒊𝒄. 
𝑪𝒉𝒆𝒍𝒍𝒂 𝑪𝒉𝒐𝒊 

 

𝐽𝑜𝑟𝑑𝑎𝑛𝑆𝑡𝑟𝑎𝑐𝑘
− 𝓟𝓸𝓼𝓲𝓽𝓲𝓿𝓮 

𝑱𝒖𝒔𝒕 𝒈𝒐 𝒂𝒉𝒆𝒂𝒅: 𝟔𝟒 % 𝒐𝒇 𝒍𝒊𝒌𝒆𝒍𝒚 

[𝑫𝒐𝒏𝒂𝒍𝒅 𝑻𝒓𝒖𝒎𝒑 𝑹𝒆𝒑𝒖𝒃𝒍𝒊𝒄𝒂𝒏]𝓝𝓮𝓾𝓽𝓻𝓪𝓵 𝒗𝒐𝒕𝒆𝒓𝒔 

𝒔𝒂𝒚 𝑷𝒂𝒖𝒍 𝑹𝒚𝒂𝒏 𝒔𝒉𝒐𝒖𝒍𝒅 𝒆𝒏𝒅𝒐𝒓𝒔𝒆 

 

𝐷𝑜𝑛𝑎𝑙𝑑 𝑇𝑟𝑢𝑚𝑝 

𝑅𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛
− 𝒩ℯ𝓊𝓉𝓇𝒶ℓ 

[𝐇𝐚𝐫𝐫𝐢𝐞𝐭𝐭𝐞𝓝𝓮𝓰𝓪𝓽𝓲𝓿𝓮] 

𝒎𝒐𝒗𝒆𝒅 𝒃𝒂𝒄𝒌 𝒕𝒐 𝑪𝒉𝒊𝒄𝒂𝒈𝒐 𝒕𝒐 

𝒄𝒂𝒓𝒆 𝒇𝒐𝒓 𝒉𝒆𝒓 𝒎𝒐𝒎: 𝑨𝒏𝒅 𝒊𝒕 ′ 𝒔 𝒃𝒆𝒆𝒏 𝒕𝒆𝒓𝒓𝒊𝒃𝒍𝒆 

 

Harriette
− 𝒩ℯℊ𝒶𝓉𝒾𝓋ℯ 

[𝑨𝒏𝒕𝒉𝒐𝒏𝒚 𝑲𝒊𝒆𝒅𝒊𝒔𝓝𝓮𝓰𝓪𝓽𝓲𝓿𝓮] 𝒊𝒍𝒍𝒏𝒆𝒔𝒔 𝒄𝒐𝒖𝒍𝒅 

𝒂𝒇𝒇𝒆𝒄𝒕 𝑹𝒐𝒄𝒌 𝒐𝒏 𝒕𝒉𝒆 𝑹𝒂𝒏𝒈𝒆 𝒇𝒆𝒔𝒕𝒊𝒗𝒂𝒍 

 

Anthony Kiedis
− 𝒩ℯℊ𝒶𝓉𝒾𝓋ℯ 

 

4.2.4 Conclusion and Future Direction 

This paper presents a target-dependent multimodal sentiment recognition strategy called a 

visual-to-emotional-caption translation network. The idea put forward utilises facial emotions 

depicted in images as visual indicators of emotions. In this study, we propose a novel and 
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efficient approach to establish a correlation between the target entity in textual information and 

the facial expressions depicted in visual media. Our approach has successfully achieved 

ground-breaking results on the Twitter2015 and Twitter-2017 datasets. The results indicate that 

our proposed solution surpasses a set of baseline models. This showcases the strength of our 

method in gathering emotional clues from the visual modality and achieving cross-modal 

alignment on visual-caption sentimental information. In the future, we would like to extend our 

proposed method for other multimodal tasks, such as the identification of hate speech, sarcasm, 

fake news, etc. The analysis of emotions conveyed by video is another exciting field of study 

with promising future prospects. 

4.3 Significant Outcomes of this Chapter 

The significant outcomes of this chapter are as follows: 

• Developed a novel framework called the Visual-to-Emotional-Caption Translation 

Network (VECTN) to perform Target-Dependent Multimodal Sentiment Analysis 

(TDMSA). This network is composed of three main modules: the facial emotion 

description module, the target alignment and refinement module for face description, 

and the fusion module.   

•  The facial emotion description unit is responsible for generating a face description that 

includes various features such as age, gender, and emotion. The target alignment and 

refinement module estimates the cosine similarity between the visual input and the face 

descriptions with the target. In the fusion component, two robustly optimized pre-trained 

language models are utilized to simulate images, captions and face descriptions by a 

gating mechanism for feature fusion and noise reduction. 

• We perform extensive studies and experiments utilizing standard datasets, namely 

Twitter-2015 and Twitter-2017, to demonstrate the effectiveness and reliability of our 

approach in simulating multimodal representations. Through our research, we aim to 

achieve remarkable cutting-edge results. 

The following research works form the basis of this chapter: 

❖ A. Pandey and D. Kumar Vishwakarma, “Target-Dependent Multimodal Sentiment 

Recognition Via a Visual-to-Emotional-Caption Translation Network using Visual-

Caption Pairs.” Under Minor Revision in Signal, Image and Video Processing (Pub: 

Springer). https://doi.org/10.48550/arXiv.2408.10248.  

https://doi.org/10.48550/arXiv.2408.10248
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Chapter 5: Emoticon Prediction using Multimodal 

Content 

5.1 Scope of this Chapter 

In the digital age of social media platforms and the internet, an exciting new way of human 

interaction has emerged. It involves the combination of concise, readable text messages and 

imagery ideograms known as emoticons. Emoticons are tiny symbols that represent 

individuals, settings, and objects. These symbolic expressions have gained widespread 

acceptance as a standard for communication on the web. It is commonly used not just on 

Twitter but also on other well-known platforms like YouTube, WhatsApp, Telegram, 

Facebook, Instagram, and LinkedIn. According to Google Trends, the popularity of emoticons 

has been on the rise over the last decade. Emoticon prediction based solely on text has garnered 

attention and has been studied extensively from the perspective of Natural Language 

Processing. However, there is a dire need for further research on predicting emoticons based 

on multiple modalities. Hence, this research demonstrates the importance of integrating visual 

information with texts in the realm of multimodal communication. Specifically, we highlight 

how combining texts and images in online communities can lead to more precise emoticon 

prediction models. We examine the utilization of emoticons within the popular social media 

platform Twitter. We propose a multimodal strategy based on contrastive learning to forecast 

the emoticons associated with a Twitter post, considering both its textual content and 

accompanying image. We rely on visual modality to enhance the process of selecting the most 

suitable emoticons for a post. Our research demonstrates that incorporating both text and 

images in posts enhances the precision of emoticon prediction in comparison to relying solely 

on textual information. It may be inferred that textual and visual content incorporate distinct 

yet complementary aspects of using emoticons. 

5.2 Contrastive Learning-based Multi-Modal Architecture for Emoticon 

Prediction by Employing Image-Text Pairs 

5.2.1 Abstract 

The emoticons are symbolic representations that generally accompany the textual content to 

visually enhance or summarize the true intention of a written message. Although widely 

utilized in the realm of social media, the core semantics of these emoticons have not been 

extensively explored based on multiple modalities. Incorporating textual and visual 
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information within a single message develops an advanced way of conveying information. 

Hence, this research aims to analyze the relationship among sentences, visuals, and emoticons.   

For an orderly exposition, this paper initially provides a detailed examination of the various 

techniques for extracting multimodal features, emphasizing the pros and cons of each method. 

Through conducting a comprehensive examination of several multimodal algorithms, with 

specific emphasis on the fusion approaches, we have proposed a novel contrastive learning-

based multimodal architecture. The proposed model employs the joint training of dual-branch 

encoder along with the contrastive learning to accurately map text and images into a common 

latent space. Our key finding is that by integrating the principle of contrastive learning with 

that of the other two branches yields superior results. The experimental results demonstrate that 

our suggested methodology surpasses existing multimodal approaches in terms of accuracy and 

robustness. The proposed model attained an accuracy of 91% and an MCC-score of 90% while 

assessing emoticons using the Multimodal-Twitter Emoticon dataset acquired from Twitter. 

We provide evidence that deep features acquired by contrastive learning are more efficient, 

suggesting that the proposed fusion technique also possesses strong generalisation capabilities 

for recognising emoticons across several modes. 

5.2.2 Proposed Methodology 

This section contains an in-depth analysis of the proposed paradigm for multimodal emoticon 

predictions. The problem is outlined in the first subsection. Then, a Contrastive Learning based 

Multimodal Architecture depicted in Figure 5.1 consists mainly of 3 components is introduced. 

The proposed model employs a dual-branch encoder design to accurately map text and images 

into a common latent space. This functionality is achieved through the joint training of both 

the encoders. Transformer-based visual encoder, Transformer-based textual encoder and an 

additional component involves the use of contrastive learning to uncover the hidden 

relationships within the text and pictures.  It has been demonstrated that by integrating the 

principle of contrastive learning with that of the other two branches yields superior results. For 

simplicity, emoticon prediction based on text-image analysis is referred to multimodal 

emoticon prediction. 

Task Definition 

The task of multimodal emoticon prediction is defined as follows: Let 𝐼 and 𝑇 denote the 

sample spaces for an image and text, respectively. An example is comprised of a singular text 

string accompanied by supplementary visual data. Hence, each example consists of three 
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elements: an image, a piece of text, and an emoticon as a class label. The expression for it is 

shown below: 

𝔼 = {(𝑰𝟎, 𝑻𝟎, 𝑳𝟎), (𝑰𝟏, 𝑻𝟏, 𝑳𝟏), … … , (𝑰𝒊, 𝑻𝒊, 𝑳𝒊), … … , (𝑰𝒎−𝟏, 𝑻𝒎−𝟏, 𝑳𝒎−𝟏)}                         (𝟓. 𝟏) 

where,  𝔼 denotes the entire set of instance triplets, 𝐼𝑗 symbolizes the images information, 𝑇𝑗 

represents the text-based data, 𝐿𝑗 denotes emoticons numbered from 0 − 9 as a class label for 

the 𝑖𝑡ℎ sample, and 𝑚 is the count of the total number of examples in the entire dataset. 

Multimodal emoticon prediction aims to learn a mapping function 𝔽: (𝐼𝑖, 𝑇𝑖) → 𝐿𝑖 predict most 

suitable emoticon for a multimodal tweet {(𝐼𝑖 , 𝑇𝑖, 𝐿𝑖|0 ≤ 𝑖 ≤ 𝑚 − 1)}. For multimodal 

emoticon prediction task, 𝐿𝑖 ∈ {0,1,2,3,4,5,6,7,8,9}, where 0 represents  while 9 denotes 

. Table 5.1 displays few samples of the dataset to represent multimodal Twitter posts for 

emoticon prediction. 

Table 5.1 Few samples from the dataset to show emoticon prediction based on text-image pairs. 

 

Contrastive Learning-based Multimodal Architecture 

We have proposed a multimodal architecture based on the principle of contrastive learning for 

the emoticon prediction task to effectively simulate the relationship and compatibility between 

image and text content. Figure 5.1 illustrates the proposed architecture. The proposed 

multimodal architecture comprises of three primary components: An Image encoder, a Text 

encoder, and a Contrastive learning component. The Image encoder is responsible for acquiring 

Number I II III IV 

Textual 

modality 

RT @lovsickgirls : 

lisa’s reaction after 

she was told about 

her solo 

achievements 

She is sooooo 

beautiful 

#MehndiHaiRachn

eWaali 

RT 

@offl_Lawrence : 
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dancer boys 

RT @AldrineEsther : 

My mother is no 

morehow am I going 

to survive oh God 

Visual 

modality 

    

Predicted 

Emoticon 
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image embeddings, while the Text encoder acquires textual embeddings. The Contrastive 

learning element examines the pertinent attributes and similarities between the textual and 

image embeddings obtained in the preceding steps. The proposed model is demonstrated in the 

form of pseudocode in Table 5.2. 

Table 5.2 Pseudocode for the proposed Contrastive Learning-Based Multimodal Architecture. 

Pseudocode: Emoticon prediction using Contrastive Learning-Based Multimodal Architecture 

Objective: To acquire knowledge of a mapping function 𝔽: (𝑰𝒊, 𝑻𝒊) → 𝑳𝒊 from a set of multimodal 

tweets {(𝑰𝒊, 𝑻𝒊, 𝑳𝒊|𝟎 ≤ 𝒊 ≤ 𝒎 − 𝟏)}. 

Input: Image set 𝑰 = {𝑰𝟎, 𝑰𝟏, … , 𝑰𝒊, … , 𝑰𝒎−𝟏} and Text set 𝑻 = {𝑻𝟎, 𝑻𝟏, … , 𝑻𝒊, … , 𝑻𝒎−𝟏}, 𝒎 is the count of the 

total number of examples in the entire dataset. 

Output: Multimodal emoticon prediction task, 𝑳𝒊 ∈ {𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕, 𝟖, 𝟗}, where 𝟎 represents  while 

𝟗 denotes . 

1. Extract image features “𝐞𝐡” of size “𝔻 − 𝟕𝟔𝟖” from the visual samples using Transformer-based visual 

encoder by Eqn. (5.2), Eqn. (5.3), and Eqn. (5.4) ; 

2. Extract text features “𝕋” of size “𝔻 − 𝟕𝟔𝟖” from the caption samples using Transformer-based textual 

encoder.   

3. for 𝐄𝐞𝐩𝐨𝐜𝐡𝐬←1 to Epochs do; 

  #identify and extract modality-specific feature representations 

𝒆𝒉 = visual _encoder(𝑰) 𝐄𝐪𝐧. (𝟓. 𝟐), 𝐄𝐪𝐧. (𝟓. 𝟑), 𝐚𝐧𝐝 𝐄𝐪𝐧. (𝟓. 𝟒); 
𝕋 = textual _encoder(𝑻); 

# joint multimodal embedding where 𝐖𝐈 and 𝐖𝐓 are weights which are learned projection of image and text 

to embedding 

𝕐 =  𝕃𝟐_𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏(𝒏𝒑. 𝒅𝒐𝒕(𝒆𝒉, 𝑾𝑰), 𝒂𝒙𝒊𝒔 = 𝟏) 

ℤ =  𝕃𝟐_𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏(𝒏𝒑. 𝒅𝒐𝒕(𝕋, 𝑾𝑻), 𝒂𝒙𝒊𝒔 = 𝟏) 

# cosine similarity between pairs of vectors 

 𝒍𝒐𝒈𝒊𝒕𝒔 =  𝒏𝒑. 𝒅𝒐𝒕(𝕐, ℤ. 𝑻)  ∗  𝒏𝒑. 𝒆𝒙𝒑(𝝉) 

# calculating contrastive loss function to optimize the cosine similarity between the text and image 

embedding for 𝑵 real pairs in the batch 

𝒍𝒂𝒃𝒆𝒍𝒔 =  𝒏𝒑. 𝒂𝒓𝒂𝒏𝒈𝒆(𝒎) 
𝒍𝒐𝒔𝒔_𝑰 =  𝒄𝒓𝒐𝒔𝒔_𝒆𝒏𝒕𝒓𝒐𝒑𝒚_𝒍𝒐𝒔𝒔(𝒍𝒐𝒈𝒊𝒕𝒔, 𝒍𝒂𝒃𝒆𝒍𝒔, 𝒂𝒙𝒊𝒔 = 𝟎)  
𝒍𝒐𝒔𝒔_𝑻 =  𝒄𝒓𝒐𝒔𝒔_𝒆𝒏𝒕𝒓𝒐𝒑𝒚_𝒍𝒐𝒔𝒔(𝒍𝒐𝒈𝒊𝒕𝒔, 𝒍𝒂𝒃𝒆𝒍𝒔, 𝒂𝒙𝒊𝒔 = 𝟏)  
𝒍𝒐𝒔𝒔 =  (𝒍𝒐𝒔𝒔_𝑰 +  𝒍𝒐𝒔𝒔_𝑻)/𝟐 using 𝑬𝒒𝒏. (𝟓. 𝟔), 𝑬𝒒𝒏. (𝟓. 𝟕), 𝒂𝒏𝒅 𝑬𝒒𝒏. (𝟓. 𝟖) 

# At last The pair with the maximum cosine similarity scores are then fed into the simple artificial neural 

network to provide probabilities for each label. 

𝑳𝒊 = 𝑨𝒓𝒕𝒊𝒇𝒊𝒄𝒊𝒂𝒍 𝒏𝒆𝒖𝒓𝒂𝒍 𝒏𝒆𝒕𝒘𝒐𝒓𝒌((𝕐, ℤ)𝑴𝒂𝒙𝒊𝒎𝒖𝒎_𝒄𝒐𝒔𝒊𝒏𝒆) find the loss and execute the backpropagation; 

end 

Transformer-based Visual Encoder 

This sub-section will provide a comprehensive explanation of the proposed methodology for 

extracting pertinent details from visual cues. In the realms of image, audio and text analysis, 

the performance of deep neural network-based architectural designs succeeds over 

the conventional hand-crafted approaches for classification [71], [126], [127], [128]. The 

primary reason for their effectiveness lies in their capacity to enhance end-to-end relationships, 
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facilitate autonomous feature learning, ensure efficient scalability, establish semantic 

representations, and offer flexibility. Furthermore, several researchers have been working to 

enhance the performance of pre-trained and custom-built ConvNets over the last few years by 

including attention [5], [129], [130] an additional architectural design component. The 

utilization of ConvNets is not deemed essential in modern times. This is because a standalone 

transformer model [131] can effectively handle visual classification tasks by directly 

processing sequences of patches of images. Each patch is then converted into a vector via a 

Large Language Model referred as LLMs and processed using a transformer architecture. 

Hence, Dosovitskiy et al. [131] is capable of gathering and analysing global information in 

images, unlike ConvNets, which can only extract local aspects. 

 

 

Figure 5.1 Proposed Contrastive learning based multi-modal architecture for emoticon prediction. 

𝕐1. ℤ1 𝕐1. ℤ2 … 𝕐1. ℤ𝑚 
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… … … … 
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Figure 5.2 Image encoder to obtain the embeddings for all the image samples present in the dataset. 

Taking these considerations into account, a transformer-based model Vit-base-patch32 

depicted in Figure 5.2 is utilized to retrieve the most prominent features from the 

image samples of Multimodal-TwitterEmoticon dataset. Firstly, the initial step involves the 

scaling of image samples denoted as 𝐼 ∈ ℝℍ×𝕎×ℂ from the entire collection of the dataset to a 

resolution of 224 × 224. This scaling is done to prepare the samples for subsequent processing. 

Typically, transformers take a 1-dimensional series of token embeddings as input. We address 

this by transforming the two-dimensional input image into a sequence of flattened patches 𝐼𝑝 ∈

ℝ(ℙ2∙ℂ)×ℕof size (ℙ × ℙ) ∈ 32 × 32. A trainable linear projection is used to transform the 

acquired patches into 𝔻 −dimensional space using Eqn. (𝟓. 𝟐). This allows the uniform latent 

vector size 𝔻 of the transformer to be employed throughout all the layers. The projection's end 

product is called patch embedding. Additionally, to preserve positional information, position 

embeddings 𝐸𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 are appended to the patch embeddings. Analogous to BERT's [𝑐𝑙𝑎𝑠𝑠] 

token [57], we augment the patches with a learnable embedding (𝑒0
0 = 𝐼𝐶𝑙𝑎𝑠𝑠). The final 

obtained patches are then pass through a visual encoder layer which is nothing but the ℎ number 

of self-attention operations, called “heads”, which will run in parallel. The final outcome of the 

Transformer-based visual encoder is used as the representation for the images denoted as 𝑒ℎ  

of 𝔻 − 768 in Eqn. (𝟓. 𝟑) and Eqn. (𝟓. 𝟒). The GELU non-linearity is used on two 

consecutive layers to build the multilayer perceptron. 

Finally, we need to translate the image and text embeddings into the same vector space so that 

we may process this acquired vector together with the textual embedding. This is why the 

obtained vector of 𝔻 − 768 goes through a linear projection head, basically just an artificial 
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neural network with a linear activation function to get the desired result. Thus, the final vector 

𝕐 will be 𝔻 − 256, as stated in Eqn. (5.5), and will be used for further operations. 

𝒆𝟎 = [𝑰𝑪𝒍𝒂𝒔𝒔;  𝑰𝒑
𝟏𝑬; 𝑰𝒑

𝟏𝑬; … … ; 𝑰𝒑
𝟏𝑬] + 𝑬𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏                                                                           (𝟓. 𝟐) 

𝒆𝒉
′ = 𝑴𝒖𝒍𝒕𝒊 − 𝒉𝒆𝒂𝒅𝒆𝒅 𝒔𝒆𝒍𝒇 𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑳𝒂𝒚𝒆𝒓 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒕𝒊𝒐𝒏(𝒆𝒉−𝟏)) + 𝒆𝒉−𝟏       (𝟓. 𝟑) 

𝒆𝒉 = 𝑴𝒖𝒍𝒕𝒊 − 𝒍𝒂𝒚𝒆𝒓 𝒑𝒆𝒓𝒄𝒆𝒑𝒕𝒓𝒐𝒏((𝒆𝒉
′ ))+ 𝒆𝒉

′                                                                        (𝟓. 𝟒)  

𝕐 = 𝑳𝒊𝒏𝒆𝒂𝒓 𝒑𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏 𝒉𝒆𝒂𝒅(𝒆𝒉
𝟎)                                                                                           (𝟓. 𝟓) 

where, ℍ × 𝕎 denotes the height and width of the original image sample 𝐼, ℂ symbolizes the 

depth of an image, ℙ × ℙ denotes the resolution for each transformed patch 𝐼𝑝 of an image, 

ℎ = {1,2, … , 𝐻} denotes number of attention heads, 𝐸 ∈ ℝ𝔻×(ℙ2∙ℂ) and 𝐸𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ ℝ𝔻×(ℕ+1). 

Transformer-based Textual Encoder 

The latest advancements in transformer-based models incorporate a self-attention mechanism 

to prioritise relevant information while disregarding irrelevant information. Recent studies 

primarily utilised these architectures [57] exclusively for text processing. Although there are 

different variants of BERT that aim to extract text features, but they differ from the [132] 

architecture design due to their reliance on absolute position encoding rather than relative 

position codification [133]. Raffel et al. [132] utilises relative positional encoding to 

incorporate information between pairwise positions, whereas absolute positional encoding does 

not take this into consideration. In absolute positional encoding, the embeddings for each 

location are initialised at random. As a result, the relationship between different positions is 

unknown. Instead of random embedding initialization, relative positional encoding generates a 

pairwise vector of size (𝑉, 2 ∗  𝑉 −  1), with the row index representing the desired word and 

the column index representing its position distance from previous and subsequent words. This 

information regarding relative positioning is dynamically integrated into the keys and values 

as part of the computation process in attention modules. Therefore, it is advantageous to use a 

transformer-based model that supports relative positional encoding. This feature provides 

greater flexibility to the model and leads to more accurate result. 

Considering these factors, we have employed the encoder of [132] to transform the text into 

their respective embedding’s. During the first step, the sentence 𝑇 provided as input to the 

Transformer-based text encoder is partitioned into tokens 𝑇 = {𝑡1, 𝑡2, … … , 𝑡𝑛}, and each token 

is subsequently transformed into a vector representation 𝑇𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = {𝑡1
𝑣, 𝑡2

𝑣 , … … , 𝑡𝑛
𝑣}. 

Next, the acquired vectors are sent for relative position encoding. The results achieved through 
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relative position encoding are then fed into the transformer-based text encoder component, 

which produces a text embedding vector 𝕋 of size 𝔻 − 768. In order to ensure that the image 

and text embedding’s are aligned in the identical vector space, the𝔻 − 768 is sent to a linear 

projection head to compress the text embedding  to a vector ℤ  of size 𝔻 − 256. 

 

Figure 5.3 Text encoder to obtain the embeddings for all the text samples present in the dataset. 

Contrastive Learning 

The primary goal of multi-modal learning is to understand the relationships between images 

and text in a given batch 𝐵 = {𝐼𝑖, 𝑇𝑖}𝑖=1
𝑚  which consists of 𝑚 examples represented as (𝑇𝑖, 𝑇𝑖).  

Motivated by the architectural design of Contrastive visual-textual pre-training, we applied the 

concept of a similarity matrix to examine the relevant features and similarities between the 

embeddings of image-text pairs acquired by the transformer-based encoder in previous stages. 

In order to do this, firstly contrastive visual-textual pre-training model [134] trains an image 

encoder 𝑓(𝐼𝑖, 𝐿𝑖) and a text encoder 𝑔(𝑇𝑖, 𝐿𝑖) , such that the embeddings of image-text pairings 

{𝐼𝑖, 𝑇𝑖}𝑖=1
𝑚 = {𝑓(𝐼𝑖 , 𝐿𝑖), 𝑔(𝑇𝑖, 𝐿𝑖) }𝑖=1

𝑀  become more similar to each other. It is important to 

mention that 𝕐  and ℤ  are unit vectors of size 𝔻 − 256 that have been normalised using the 𝕃2 

norm in the encoding phase. These vectors are then located on the similar hypersphere. 

Contrastive visual-textual pre-training model employs the loss function 𝐶 (·,·) as specified in 

the cited approach [13] with the goal of ensuring that pairs (𝕐, ℤ) possess both similarity and 

distance. The formulation is represented by the Eqn. (5.6) and Eqn. (5.7): 
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𝑪 (𝑰, 𝑻) =
𝟏

𝒎
∑ −𝒍𝒐𝒈𝒎

𝒊=𝟏
𝐞𝐱𝐩 (𝒔𝒊𝒎(𝕐𝒊,ℤ𝒊 )/𝝉

𝒚 ∑ 𝐞𝐱𝐩 (𝒔𝒊𝒎(𝕐𝒊,ℤ𝒊)/𝝉
𝒎

𝒊=𝟏

                                                                             (𝟓. 𝟔)

  

𝓛𝐂𝐨𝐧𝐭𝐫𝐚𝐬𝐭𝐢𝐯𝐞 𝐯𝐢𝐬𝐮𝐚𝐥−𝐭𝐞𝐱𝐭𝐮𝐚𝐥 =
𝟏

𝟐
(𝑪 (𝕐𝒊, ℤ𝒊) +  𝑪 𝕐𝒊, ℤ𝒊)                                                                 (𝟓. 𝟕)        

Similar to other approaches in computational linguistics, [134] uses a dot product to calculate 

similarity (𝑠𝑖𝑚(. , . )) between two vectors. It also employs a learnable temperature parameter 

(𝝉) to adjust the magnitude of the observed similarity and ℒContrastive visual−textual is the mean 

loss of combined image and text pairs. In general, the model learns a multi-modal embedding 

space by training its encoders to maximize the cosine similarity between the picture and text 

embeddings of the 𝑁 correct pairs in the batch, while minimizing the cosine similarity between 

the embeddings of the 𝑁² −  𝑁 incorrect pairings. Hence, by representing both images and 

texts using the coherent embedding space, our proposed contrastive learning-based model  is 

capable of doing two essential tasks: (𝑎) Optimize the cosine similarity between the image and 

text embeddings for 𝑁 real pairs in the batch, aiming to maximize it. (𝑏) Additionally, 

minimize the cosine similarity between the embeddings of 𝑁(𝑁 − 1) erroneous pairings. 

During the pre-training phase of [134], the model is trained using a contrastive loss function, 

as depicted in Eqn. (𝟓. 𝟕). The main objective of this loss function is to promote the 

aggregation of embeddings for related or positive pairings (text and picture that match) while 

simultaneously driving apart the embeddings for unrelated or negative pairs (text and image 

that do not match). The purpose of the model is to minimise the loss for positive pairs and 

maximise the loss for negative pairs. The pair with the maximum cosine similarity scores, as 

indicated by Eqn. (𝟓. 𝟖), is between two  𝔻-𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 vectors, referred to as 𝕐  and ℤ  . 

These obtained vectors are then fed into the simple artificial neural network and processed 

using softmax as an activation function to provide probabilities for each label. 

    𝑺𝒊𝒎(𝑰, 𝑻) = 𝜹 =
𝕐 · ℤ 

||𝕐|| · ||ℤ || 
=

𝜮𝒊=𝟏
𝒎 𝕐𝒊×ℤ 𝒊

√∑ (𝕐𝒊)𝟐𝒎

𝒊=𝟏
 ×√∑ (ℤ 𝒊)𝟐𝒎

𝒊=𝟏

                                                           (𝟓. 𝟖)

     

5.2.3 Experimental Setup and Results 

The following section of the research article will present a detailed description of the optimal 

experimental configurations, the dataset utilised, and the experimental results obtained using 

our proposed approach. 

Experimental Configuration 
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It is crucial to determine an appropriate range for hyper-parameters in a learning algorithm, as 

they play a significant role in controlling the learning process. The hyper-parameters underwent 

a random testing process using various values. As a result, the values that yielded the most 

optimal outcomes for our proposed framework were subsequently set as fixed. Since, the joint 

embedding from both modalities was obtained using the concept of contrastive learning. 

Therefore, the hyper-parameter values used were almost similar to those in [134]. The encoders 

utilised for both images and text in our proposed model referred as Contrastive Learning based 

Multimodal Architecture are equipped with 12 number of attention heads. The image samples 

denoted as 𝐼 ∈ ℝℍ×𝕎×ℂ from the dataset are scaled to a resolution of 224 × 224 before being 

passed to a visual encoder. Adam is used as an optimizer with the default learning rate of 0.001. 

The values of 𝛽1 and 𝛽2 for using Adam are set to 0.9 and 0.99. A dropout rate of 0.2 has been 

implemented. The contrastive loss function is also used (shown in Eqn. (𝟓. 𝟕)) with a 

temperature scaling factor 𝜏 = 0.1 and  margin 𝑀 = 0.7 to combine the embeddings of images 

and text with the highest similarity score. The proposed architecture is fine-tuned for 20 epochs 

with a batch size of 32. By the 20th epoch, it becomes evident that there has been no noticeable 

rise in accuracy, as the results reach a point of saturation. From a total of 21k samples, 16k 

were allocated for training purposes, while the remaining 5k samples were dedicated to testing 

our proposed model. 

Hardware Configuration 

An Azure virtual machine with premium specifications was used for training and evaluation of 

the proposed model. This machine provides 100 GB of hard drive space, NVIDIA-A100 GPU 

with 80 GB of graphics memory, CUDA version 12.4, and 384 GB of RAM. We utilised an 

8 × 𝐴100 GPU cluster for 41 days, which is roughly comparable to 1000 GPU hours, and a 

pool memory of 640 GB to train the entire model from end to end. To derive useful information 

from text-image pairings, models were constructed using the Pytorch frameworks. 

Dataset Description 

We have employed the Multimodal-TwitterEmoticon dataset, provided by Ebrahimian et al. 

[135], to evaluate our suggested approach for emoticon prediction. Multimodal-

TwitterEmoticon dataset consists of 21k English tweets, each containing an image, the 

accompanying text, and a single emoticon. Emoticons used in tweets varies based on their 

popularity. Figure 5.4 (A) illustrates the frequency in percentage for most widely used 

emoticons. These ten most prevalent and often used emoticons have been taken into account 
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for analyses. Figure 5.4 (B) also depicts the statistical information regarding the number of 

samples associated with each 10 emoticons across the entire dataset where 0 represents  

while 9 denotes  . The experiment focuses on predicting emoticons based on image-text 

pairs. From a total of 21k samples, 16k were allocated for training purposes, while the 

remaining 5k samples were dedicated to testing our proposed model. 

 

(A) 

 

(B) 

Figure 5.4 (A) provides information about how often multiple emoticons are 

utilized on web, while (B) indicates the number of samples corresponds to each 

emoticon in Multimodal-TwitterEmoticon dataset. 

Experimental Results, Baseline Comparison and Analysis 

We evaluate our proposed Contrastive Learning-Based Multimodal Architecture on 

Multimodal-TwitterEmoticon dataset provided by provided by Ebrahimian et al. [135]. The 

experimental results of our model are presented in Table 5.3. In addition to calculating the 

overall accuracy, macro-average and weighted-average, we have computed the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 

𝑅𝑒𝑐𝑎𝑙𝑙, and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 for each class separately to better analyse the results. By taking into 
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consideration every aspect of the confusion matrix represented in Figure 5.7, Matthews 

Correlation Coefficient (𝑀𝐶𝐶 − 𝑆𝑐𝑜𝑟𝑒) provides a more fair evaluation. Also, when the 

repercussions of false positives and false negatives differ, MCC becomes more relevant than 

F1. Hence, we have also calculated MCC-Score. Figure 5.5 shows the training and validation 

loss curves, which can be used to better rely on the results. Receiver operating characteristic 

(ROC) curve is considered to be more significant when evaluating model's performance. 

Unlike 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, which solely evaluates the number of right predictions, this statistic takes 

into account the trade-offs between 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. It reveals the degree to which the 

model can differentiate across categories. A higher AUC indicates that the model is effective 

at making accurate predictions. Figure 5.6 displays the ROC curve, which has an area under 

the curve (AUC) of 0.82. 

Table 5.3 Experimental Results on Multimodal-TwitterEmoticon dataset for 

emoticon prediction. 

𝑪𝒍𝒂𝒔𝒔 𝑳𝒂𝒃𝒆𝒍𝒔 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 

0 0.85 0.83 0.84 

1 0.92 0.94 0.93 

2 0.89 0.91 0.90 

3 0.93 0.92 0.92 

4 0.90 0.93 0.91 

5 0.88 0.90 0.89 

6 0.91 0.89 0.90 

7 0.94 0.95 0.94 

8 0.95 0.93 0.94 

9 0.93 0.91 0.92 

𝑴𝒂𝒄𝒓𝒐 − 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 0.910 0.911 0.909 

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 − 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 0.91 0.91 0.91 

𝑶𝒗𝒆𝒓𝒂𝒍𝒍 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 0.91 

𝑴𝑪𝑪 − 𝑺𝒄𝒐𝒓𝒆 0.90 

After examining several recent cutting-edge research articles in the field of emoticon 

prediction, it becomes clear that there is a scarcity of studies that have effectively combined 

visual and textual data to predict emoticons. As a result, to assess the strength of our proposed 

model, we have identified only two baseline methods that incorporate both text as well as 

images to predict emoticons. In baseline 1 Francesco et al. [136] scraped Instagram posts to 

collect multimodal content for emoticon prediction. This dataset is not publicly accessible. In 

this work, a Bi-LSTM model [99] as well as FastText [137] was utilised to extract the most 

significant features from the text samples present in the dataset. Additionally, a ResNet-101 

model was employed to obtain features from the picture samples of the dataset. 
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Figure 5.5 Training and validation loss curves for the proposed architecture. 

 
Figure 5.6 Receiver operating characteristic curve for the proposed approach. 

 

Baseline 1 also includes a comparison of the FastText model with the character and word based 

B-LSTMs proposed by Barbieri et al. [138]. The FastText model proves to be highly effective, 

even outperforming the character-based B-LSTM in emoticon forecasting task. The findings 

of this research demonstrate that FastText works well for representing brief text from social 

networking platforms like Instagram or Twitter.  Due to the unavailability of the dataset for 

this study, we have utilised the Multimodal-TwitterEmoticon dataset provided by Ebrahimian 

et al. [135] to evaluate our approach and compare it with the method proposed by Francesco et 

al. [136]. The results for the evidence are presented in Table 5.4.  
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Figure 5.7 Confusion matrix obtained for the test samples for the ten class labels by using our proposed     

method. 

 

Table 5.4 Experimental Results on Multimodal-TwitterEmoticon dataset by using 

the method of baseline 1 (Francesco et al. [32]). 

𝑪𝒍𝒂𝒔𝒔 𝑳𝒂𝒃𝒆𝒍𝒔 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 

0 0.75 0.72 0.73 

1 0.72 0.73 0.72 

2 0.69 0.70 0.69 

3 0.73 0.72 0.72 

4 0.70 0.73 0.71 

5 0.78 0.69 0.73 

6 0.71 0.70 0.70 

7 0.73 0.74 0.73 

8 0.74 0.73 0.73 

9 0.74 0.71 0.72 

𝑴𝒂𝒄𝒓𝒐 − 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 0.73 0.72 0.72 

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 − 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 0.73 0.72 0.72 

𝑶𝒗𝒆𝒓𝒂𝒍𝒍 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 73.00% 

𝑴𝑪𝑪 − 𝑺𝒄𝒐𝒓𝒆 0.71 

In baseline 2, Ebrahimian et al. [135] also scrapped multimodal post from the Twitter platform. 

In this research EfficientNet-B7 has been utilized to obtain visual features. In addition, a topic 

modelling technique named Latent Dirichlet Allocation is also employed to discover embedded 

topics within the text. The extracted topics are then combined with the transformer-

based network to enhance the efficacy of the proposed model. As compared to Ebrahimian et 



94 

 

 

al. [135] our proposed Contrastive Learning-Based Multimodal Architecture performs far 

better in terms of multiple performance metrics. Table 5.5 highlights the comparison of our 

results with both the baseline approaches discussed above. A comparative evaluation of the 

baseline methods in terms of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 with our 

suggested framework on Multimodal-TwitterEmoticon dataset is illustrated in graphical form 

in Figure 5.8. 

 
Figure 5.8 Graphical representation to represent that our proposed model surpasses existing 

cutting-edge baselines. 

 

Table 5.5 Comparison of our proposed method with baseline methods on 

Multimodal-TwitterEmoticon dataset. 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 

Francesco et al. [136] 0.73 0.73 0.72 0.72 

Ebrahimian et al. [135] 0.362 - - 0.354 

Ours (Proposed) 0.91 0.91 0.91 0.91 

Additionally, we have evaluated the predictions in the absence of contrastive learning to further 

test the robustness of our suggested model. In brief, we have combined the information 

retrieved from the image and text encoders and then passed them through a basic artificial 

neural network without depending on contrastive learning approach. However, it significantly 

diminishes the outcomes. Furthermore, we have evaluated the efficacy of our suggested model 

by means of t-Distributed Stochastic Neighbour Embedding (t-SNE). Figure 5.9 shows that 

the model can create distinct clusters for different classes. Accordingly, it is able to glean 

valuable insights from the data.  
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Figure 5.9 t-Distributed Stochastic Neighbour Embedding representation to test the strength of the 

proposed    architecture. 

Hence, based on the obtained results, the following conclusion can be deduced. The proposed 

architecture demonstrates superior results compared to the baseline approaches, as it 

outperforms them in terms of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, P𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒. Thus it is 

reasonable to conclude that our contrastive-based multimodal architecture works effectively by 

uncovering the hidden relationships within the text and images. In general, the model learns a 

multi-modal embedding space by the joint training of two encoders to maximize the cosine 

similarity between the picture and text embedding of the correct pairs in the batch, while 

minimizing the cosine similarity between the embedding of the incorrect pairings.  

Ablation Study 

 To evaluate the efficacy of each individual element in the proposed architecture, we have 

performed an ablation study. In the ablation experiment, the text encoder proposed in the study 

is substituted with BERT-base, BERT-large[98] , Roberta[117] and T5  models, while the 

image encoder is replaced with the ResNet-101[139], EfficientNet-B7[140], ResNext[141], 

RegNet[142] and Vit-base-patch32 models. The results have undergone analysis using both 

unimodal and multimodal configurations. 



96 

 

 

 

Table 5.6 Ablation study to assess the robustness of the text branch for unimodal 

configuration. 

Text Encoder 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 

BERT-base [98] 70.06 71.64 71.42 71.53 

BERT-large [98] 75.98 75.66 74.90 75.28 

Roberta[117] 77.63 77.34 77.15 77.24 

T5 [132] 81.42 81.83 80.97 81.40 

 
Figure 5.10 A graphical representation  for an ablation study that aims to evaluate the 

resilience of the text branch in a unimodal configuration. 

Based on the results of the ablation study presented in Table 5.6 and Figure 5.10 it is clear that 

the architecture used for the text encoder in the proposed framework is more efficient. The 

reason behind this is that the model such as BERT-base [98], BERT-large[98], and 

Roberta[117] supports absolute positional encoding instead of relative positional encoding. As 

a result, the relationship between different positions is unknown. Since, T5 [132] utilises 

relative positional encoding to incorporate information between pairwise positions. This 

information regarding relative positioning is dynamically integrated into the keys and values 

as part of the computation process in attention modules. Therefore, it is advantageous to use a 

transformer-based model that supports relative positional encoding. This feature provides 

greater flexibility to the model and leads to more accurate result. 

Table 5.7 Ablation study to assess the robustness of the image branch for unimodal 

configuration. 

Image Encoder 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 

ResNet-101[139] 72.10 72.34 72.30 72.31 

EfficientNet-B7[140] 72.24 71.60 71.97 71.68 

ResNext[141] 69.82 68.97 68.64 68.70 

RegNet[142] 67.63 68.41 68.36 68.39 

Vit-base-patch32 [131] 84.75 84.61 84.43 84.52 

BERT-base BERT-large Roberta T5

Accuracy 70.06 75.98 77.63 81.42

Precision 71.64 75.66 77.34 81.83

Recall 71.42 74.9 77.15 80.97

F1-score 71.53 75.28 77.24 81.4
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For the visual encoder branch of the proposed architecture, similar to the textual branch, 

various types of image encoder have been tested. Furthermore, from the experimentation of the 

ablation study depicted in Table 5.7 and Figure 5.11 it has been discovered that [41] 

outperforms at extracting the most salient elements from visual data. This is because a 

standalone transformer model [131] can effectively handle visual classification tasks by 

directly processing sequences of patches of images. Each patch is then converted into a vector 

via a Large Language Model referred as LLMs and processed using a transformer architecture. 

Hence, Dosovitskiy et al. [131] is capable of gathering and analysing global information in 

images, unlike ConvNets, which can only extract local aspects. Also, Dosovitskiy et al. [131] 

can be regarded as superior to different variants of ConvNet architectures, particularly in terms 

of scalability and the attention mechanism. 

 
Figure 5.11 A graphical representation for an ablation study that aims to evaluate the resilience of 

the image branch in a unimodal configuration. 

Based on the experimental results of the ablation study, it has been determined that the 

configurations [132] and [131] yield the most optimal outcomes for the unimodal setup. 

Therefore, we have employed the fusion of these encoders in the proposed contrastive-based 

architecture for the ultimate prediction.  

5.2.4 Conclusion and Future Directions 
The main aim of this research is to introduce an innovative and novel framework called 

Contrastive Learning-Based Multimodal Architecture for the prediction of emoticons. This 

architecture is designed to work effectively with image-text pairs. Our suggested approach 

surpasses existing cutting-edge techniques in analysing the interplay between caption and 

visual modalities. The sentiment elicited by a phrase can exhibit variability in various 
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scenarios, depending upon the context. Thus, it is essential to employ a blend of textual and 

visual information to attain more accurate prediction. Motivated by this, we developed a novel 

dual-branch architecture comprises of three primary components: Transformer-based visual 

encoder, Transformer-based textual encoder and an additional component involves the use of 

contrastive learning to uncover the hidden relationships within the text and images. In general, 

the model learns a multi-modal embedding space by the joint training of two encoders to 

maximize the cosine similarity between the picture and text embeddings of the 𝑁 correct pairs 

in the batch, while minimizing the cosine similarity between the embeddings of the 𝑁² −  𝑁 

incorrect pairings. A thorough analysis on one of the standard datasets referred as Multimodal-

TwitterEmoticon shown that our suggested strategy outperforms strong baseline models. 

Despite the excellent outcomes that have been achieved, there remain numerous opportunities 

for research. These includes creation of publically accessible dataset with an objective of mutli-

label emoticon prediction, enhancing feature extraction methods, integrating adversarial 

learning capabilities to the fusion module, investigating a broader range of multimedia data, 

encompassing both video and acoustic formats, in order to potentially uncover more detailed 

semantic relations. 

5.3 Significant Outcomes of this Chapter 

The significant outcomes of this chapter are as follows: 

• Introduced an innovative dual-branch Contrastive Learning-Based Multimodal 

Architecture to deal with the challenge of multimodal emoticon prediction.  

• The proposed multimodal architecture comprises of three primary components: 

Transformer-based visual encoder, Transformer-based textual encoder and an additional 

component involves the use of contrastive learning to uncover the hidden relationships 

within the text and images. It has been demonstrated that by integrating the principle of 

contrastive learning with that of the other two branches yields superior results. 

• We conduct thorough analyses and experimentation with Multimodal-TwitterEmoticon 

standard dataset to illustrate our model's ability to accurately and consistently model the 

multimodal representations of images and descriptive text. Moreover, we highlight how 

our model delivers ground-breaking outcomes in the realm of multimodal emoticon 

prediction. 

The following research works form the basis of this chapter: 
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Chapter 6: Sarcasm Detection by Employing Videos 

6.1 Scope of this Chapter 

This chapter specifically addresses the issue of identifying sarcasm, criticism, and symbolic 

information that is concealed inside regular conversations. Prior to this, the primary focus of 

sarcasm recognition was largely on written material. However, it is crucial to take into account 

all written material, audio stream, facial expression, and body position in order to accurately 

identify sarcasm. Therefore, we present a new method that integrates a low-complexity depth 

attention module with a self-regulated ConvNet to focus on the most important characteristics 

of visual data. Additionally, we employ an attentional tokenizer-based technique to extract the 

most significant context-specific information from the textual data obtained from subtitles. 

Thorough testing conducted on the MUStARD benchmark video datasets showed that the 

proposed approach for Multi-modal Sarcasm Recognition achieved the highest accuracy for 

both speaker-dependent and speaker-independent configurations. This indicates that the 

proposed approach is superior to existing methods. As part of a generalization study, we have 

performed a cross-dataset investigation to evaluate the adaptability of the proposed model 

using unseen samples from another dataset called MUStARD++. 

6.2 VyAnG-Net: A Novel Multi-Modal Sarcasm Recognition Model by 

Uncovering Visual, Acoustic and Glossary Features 

6.2.1 Abstract 

Various linguistic and non-linguistic clues, such as excessive emphasis on a word, a shift in 

the tone of voice, or an awkward expression, frequently convey sarcasm. The computer vision 

problem of sarcasm recognition in conversation aims to identify hidden sarcastic, criticizing, 

and metaphorical information embedded in everyday dialogue. Prior, sarcasm recognition has 

focused mainly on text. Still, it is critical to consider all textual information, audio stream, 

facial expression, and body position for reliable sarcasm identification. Hence, we propose a 

novel approach that combines a lightweight depth attention module with a self-regulated 

ConvNet to concentrate on the most crucial features of visual data and an attentional tokenizer-

based strategy to extract the most critical context-specific information from the textual data 

provided by subtitles. The following is a list of the key contributions that our experimentation 

has made in response to performing the task of Multi-modal Sarcasm Recognition: (1) an 

attentional tokenizer branch to get beneficial features from the glossary content provided by 
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the subtitles of the utterances; (2) a visual branch for acquiring the most prominent features 

from the video frames; (3) an utterance-level feature extraction from acoustic content and (4) 

a multi-headed attention based feature fusion branch to blend features obtained from multiple 

modalities and predict class label as sarcasm or non-sarcasm. Extensive testing on one of 

the benchmark video datasets, MUStARD, yielded an accuracy of 79.86% for 

speaker dependent and 76.94% for speaker independent configuration demonstrating that 

our approach is superior to the existing methods for Multi-modal Sarcasm Recognition. We 

have also conducted a cross-dataset analysis as part of a generalization study to test the 

adaptability of VyAnG-Net with unseen samples of another dataset MUStARD++. 

6.2.2 Proposed Approach 

This section provides a comprehensive discussion of the proposed framework VyAnG-Net. 

The main objective is outlined in the first part of this section. Then, the model's framework is 

introduced, which consists of three modules: a glossary branch that uses the attention-based 

tokenization approach to acquire the most significant contextual features from the textual 

content provided by the subtitles of the video utterances, a visual branch with dedicated 

attention module to acquire the most prominent features from the video frames and lastly multi-

headed attention based feature fusion to blend features acquired from each of the separate 

modalities. The term “multi-modal sarcasm recognition” is typically used in our study to 

denote the process of analysing sarcasm in video utterances for the sake of convenience. The 

proposed model has been named "VyAnG," which draws inspiration from the use of sarcasm 

in the Hindi language. The acronyms V, A, and G correspond to visual, acoustic, and glossary 

(textual) content, respectively. 

Problem Definition 

The problem of recognising sarcasm in video utterances can be thoroughly summed up as 

follows: 

Let "𝒱" denote the sample space comprising video utterances. A sample of the dataset consists 

of the textual content conveyed through video subtitles "𝔾", visual frames "𝕍", and 

accompanying acoustic content "𝔸". Each of the samples is assigned to a class label denoted 

as "ℂ". In more technical terms, each sample can be defined as a quartet consisting of a subtitle, 

visual frames, acoustic information, and a class label. The following expression can be 

formulated as: 

𝕀 = {(𝔾𝟎, 𝕍𝟎, 𝔸𝟎, ℂ𝟎), . . , (𝔾𝓲, 𝕍𝓲, 𝔸𝓲, ℂ𝓲), . . , (𝔾𝒎−𝟏, 𝕍𝒎−𝟏, 𝔸𝓶−𝟏, ℂ𝒎−𝟏)}                         (𝟔. 𝟏)  
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where, 𝕀 is the collection of sample quartets, 𝔾𝒾 denotes subtitle information, 𝕍𝑖 denotes visual 

frame information, 𝔸𝒾 defines the acoustic content, ℂ𝒾 is the class label that corresponds to a 

specific utterance for the 𝒾𝑡ℎ sample and the variable 𝑚 represents the cardinality of the sample 

space, which denotes the total number of samples in a given dataset. VyAnG-Net aims to learn 

a mapping function 𝔽: (𝔾, 𝕍, 𝔸) ⟶ ℂ from the multi-modal training examples 

{(𝔾𝓲, 𝕍𝓲, 𝔸𝓲)|𝟎 ≤ 𝓲 ≤ 𝓶 − 𝟏}. For a sarcasm recognition task, ℂ𝓲 ∈

{𝒔𝒂𝒓𝒄𝒂𝒔𝒎 𝒂𝒏𝒅 𝒏𝒐𝒕 𝒔𝒂𝒓𝒄𝒂𝒔𝒎}. Consider the cheering statement in Figure 6.1: 

“𝑖𝑓 𝑦𝑜𝑢′𝑟𝑒 𝑐𝑜𝑚𝑝𝑖𝑙𝑖𝑛𝑔 𝑎 𝑚𝑖𝑥 𝐶𝐷 𝑓𝑜𝑟 𝑎 𝑑𝑜𝑢𝑏𝑙𝑒 𝑠𝑢𝑖𝑐𝑖𝑑𝑒. 𝑂ℎ, 𝐼 ℎ𝑜𝑝𝑒 𝑡ℎ𝑎𝑡 𝑠𝑐𝑟𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑝𝑜𝑠𝑡 𝑖𝑠 𝑓𝑜𝑟 𝑦𝑜𝑢. " 

becomes sarcastic when spoken with an awkward face and a saucy tone, and in general, has a 

negative meaning. Naturally, humans can process this massive amount of simultaneous data. 

However, developing an approach that can possibly accomplish the same task requires a 

suitable representation of all of these different sources of information. It thus results in a 

significant increase in research interest. 

 

Figure 6.1 A perfect illustration of a sarcastic statement from the dataset, accompanied by its context and a 

transcript of the utterance. 

VyAnG-Net: A Novel Multi-Modal Sarcasm Recognition Model 

The VyAnG-Net was proposed for the purpose of performing multi-modal sarcasm 

recognition to generate the relationship among visual, acoustic, and glossary (textual) 

Leonard: "𝐺𝑜𝑑, 𝑡ℎ𝑎𝑡′𝑠 𝑎 𝑔𝑜𝑜𝑑 𝑠𝑜𝑛𝑔. " 

 

Sheldon: "𝑂ℎ, 𝑔𝑜𝑜𝑑 𝐿𝑜𝑟𝑑. " 
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information and to explore the compatibility between these three modalities. Figure 6.2 

illustrates the VyAnG-Net framework.  

 

Figure 6.2 Proposed VyAnG-Net Framework where, 𝔾, 𝕍, 𝔸 corresponds to glossary (textual), 

visual, and acoustic content. The notations 𝔾𝕦⨁𝕊𝕘𝕦, 𝕍𝕦⨁𝕊𝕧𝕦, and 𝔸𝕦⨁𝕊𝕒𝕦 refers to the utterance level 

features for all the three modalities. Additionally, 𝔾𝕔⨁𝕊𝕘𝕔,  𝕍𝕦𝕔⨁𝕊𝕧𝕔 represents the context level feature for 

glossary and visual content. Lastly, [ ] denotes the empty list. 

 

Input 
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The model comprises of three distinct components. Firstly, a textual branch that employs an 

attention-based tokenization approach to extract the most salient contextual features from the 

glossary content presented in the video utterances' subtitles. Secondly, a visual branch that 

incorporates a dedicated attention module to capture the most prominent features from the 

video frames. Lastly, a multi-headed attention-based feature fusion mechanism is utilised to 

integrate the features obtained from each of the individual modalities. Table 6.1 presents the 

proposed framework in algorithmic format. 

Table 6.1 Pseudocode for the proposed VyAnG-Net. 

Algorithm 1: VyAnG-Net: A Novel Multi-Modal Sarcasm Recognition Model by Uncovering Visual, 

Acoustic and Glossary Features. 
Aim: To learn a mapping function 𝔽: (𝔾, 𝕍, 𝔸) ⟶ ℂ from the multi-modal training examples 

{(𝔾𝒾 , 𝕍𝒾 , 𝔸𝒾)|0 ≤ 𝒾 ≤ 𝓂 − 1}. 

Input: Glossary (textual) set 𝔾 = {𝔾1, 𝔾2, … … , 𝔾𝒾}, visual set 𝕍 = {𝕍1, 𝕍2, … … , 𝕍𝒾}, and acoustic set 𝔸 =
{𝔸1, 𝔸2, … … , 𝔸𝒾}. 

Output: sarcasm recognition task, ℂ𝓲 ∈ {𝑠𝑎𝑟𝑐𝑎𝑠𝑚 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑠𝑎𝑟𝑐𝑎𝑠𝑚}.  

1. Word-to-vector representation from the entire Glossary content set ℝ; 
2. Extract features at the level of utterance and context from vector representation of the glossary content 

𝔾𝕦⨁𝕊𝕘𝕦, and 𝔾𝕔⨁𝕊𝕘𝕔 

3. Extract features at the level of utterance and context from the visual frame 𝕍𝕦⨁𝕊𝕧𝕦, and  𝕍𝕦𝕔⨁𝕊𝕧𝕔; 
4. Extract features at the level of utterance and context from acoustic content 𝔸𝕦⨁𝕊𝕒𝕦, and [ ] 
5. for 𝔼 ← 1 to 𝔼𝕡𝕠𝕔𝕙𝕤 do 

ℝ𝕦 ← 𝕎1:𝕘 = {𝕎1, 𝕎2, … … , 𝕎𝕘} word to vector representation by Eqn. (𝟔. 𝟐); 

ℝ𝕔 ← 𝕎1:𝕘𝕔
𝕚 = {𝕎1

𝕚 , 𝕎2
𝕚 , … … , 𝕎𝕘𝕔

𝕚 } word to vector representation by Eqn.(𝟔. 𝟐) ; 

𝔾𝕦⨁𝕊𝕘𝕦 ← (𝔾𝕦 ← 𝝁(ℝ𝕦) ⨁𝕊𝕘𝕦) obtain utterance-level text-based features using 

Eqn.(𝟔. 𝟒); 

𝔾𝕔⨁𝕊𝕘𝕔 ← (𝔾𝕔
𝕚  ⨁ 𝕊𝕘𝕔

𝕚 ) obtain context-level text-based features using Eqn.  and (𝟔. 𝟔); 

𝕍𝕦⨁𝕊𝕧𝕦 ←  𝕍𝕊𝕦 obtain utterance-level visual features using Eqn. (𝟔. 𝟏𝟎) and (𝟔. 𝟏𝟏); 
 𝕍𝕦𝕔⨁𝕊𝕧𝕔 ←  𝕍𝕊𝕔 obtain context-level visual features using Eqn. (𝟔. 𝟏𝟐) and (𝟔. 𝟏𝟑); 

 𝔸𝕦⨁𝕊𝕒𝕦 ← 𝐋𝐢𝐛𝐫𝐨𝐬𝐚 𝐭𝐨𝐨𝐥(𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒊𝒐𝒏(𝔸𝕦, 𝕊𝕒𝕦)) obtain utterance-level acoustic 

features using Eqn. (𝟔. 𝟏𝟒); 
𝔾𝑐𝑎𝑡 ← 𝔾𝕦⨁𝕊𝕘𝕦 ⨁ 𝔾𝕔⨁𝕊𝕘𝕔 final text-based features obtained by concatenating utterance 

and context-based features;  
𝕍𝑐𝑎𝑡 ← 𝕍𝕦⨁𝕊𝕧𝕦 ⨁ 𝕍𝕦𝕔⨁𝕊𝕧𝕔 final vision-based features obtained by concatenating 

utterance and context-based features; 
𝔸𝑐𝑎𝑡 ←  𝔸𝕦⨁𝕊𝕒𝕦  ⨁  [ ] final audio-based features obtained by concatenating utterance and 

context-based features; 
𝕃𝔾 ←  𝔾𝑐𝑎𝑡 obtain the most prominent textual features by applying multi-headed attention 

using Eqn. (𝟔. 𝟏𝟔); 
𝕃𝕍 ←  𝕍𝑐𝑎𝑡  obtain the most prominent visual features by applying multi-headed attention 

using Eqn. (𝟔. 𝟏𝟔); 
𝕃𝔸 ←  𝔸𝑐𝑎𝑡  obtain the most prominent acoustic features by applying multi-headed attention 

using Eqn.(𝟔. 𝟏𝟔) 

𝔾𝕍𝔸 ← 𝕃𝔾⨁𝕃𝕍⨁𝕃𝔸 concatenate all the features obtained from multiple modalities to get 

multi-modal feature representation using Eqn.(𝟔. 𝟏𝟕) 

ℂ ← 𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝔾𝕍𝔸) pass the multi-modal features to the softmax layer to get the final 

prediction using 𝐄𝐪𝐧. (𝟔. 𝟏𝟖); 
calculate loss and perform backpropagation; 

6. 𝐸𝑛𝑑  
‘⨁’ denotes concatenation & ‘[ ]’denotes the empty list 

Input Features 
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The dataset comprises of individual samples that include an utterance, its corresponding 

context, and associated labels. The utterance's context encompasses a series of prior utterances, 

typically ℕ in number, that lead up to the given utterance within the dialogue. Each utterance 

is linked to its respective context and speaker, with the speaker of the utterance and the speaker 

of the context being distinct entities. Our study provides an extensive explanation of the 

utterance and its contextual factors across all modalities in the following subsections. 

Textual Feature Extraction using Glossary Content 

Assuming a given utterance consisting of 𝕘 words, denoted as 𝕎1:𝕘 = {𝕎1, 𝕎2, … … , 𝕎𝕘}, 

where each word 𝕎𝒾 belongs to the set of real numbers ℜ300. Each term is denoted as 𝕎𝑖, 

corresponds to a vector that is generated through the utilization of [143] attention-based 

tokenization (𝝉) represented in Eqn.(𝟔. 𝟐). The acquisition of the contextual relationship 

among words is accomplished by means of employing a [144] model denoted as 𝝁 using 

Eqn. (𝟔. 𝟑). Subsequently, utterance level features are obtained through the utilization of the 

final word embedding, represented as 𝔾𝕦. 

ℝ𝕦 = 𝝉({𝕎1, 𝕎2, … … , 𝕎𝕘})                                                                                                        (𝟔. 𝟐) 

𝔾𝕦 = 𝝁(ℝ𝕦)                                                                                                                                       (𝟔. 𝟑) 

In cases where speaker information 𝕊𝕘𝕦is accessible, it is possible to combine it using 

Eqn.(𝟔. 𝟒) with  𝔾𝕦 to form a speaker-aware textual utterance, which is represented 𝔾𝕦⨁𝕊𝕘𝕦. 

𝔾𝕦⨁𝕊𝕘𝕦 = 𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒊𝒐𝒏(𝔾𝕦, 𝕊𝕘𝕦)                                                                                      (𝟔. 𝟒) 

Assuming there is a set of utterances in the given context, each comprising 𝕘𝕔 words, the 

utterance-level representations for such a set of contextual videos are obtained by subjecting 

the words of each utterance to [144], using Eqn. (𝟔. 𝟓)  following which the embedding of the 

last word of the glossary provided by the subtitle is utilized. The 𝕚𝕥𝕙 utterance in the context is 

denoted by 𝔾𝕔
𝕚 . 

𝔾𝕔
𝕚 = 𝝁 (𝝉 ({𝕎𝟏:𝕘𝕔

𝕚 = {𝕎𝟏
𝕚 , 𝕎𝟐

𝕚 , … … , 𝕎𝕘𝕔
𝕚 }}))                                                                        (𝟔. 𝟓) 

When speaker information 𝕊𝕘𝕔
𝕚  is available, it is appended to every contextual utterance 𝔾𝕔

𝕚  too. 

In the end, the features at the context level are also obtained by concatenating all textual 

utterances that are influenced by the speaker, as represented in Eqn.(𝟔. 𝟓). 
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𝔾𝕔⨁𝕊𝕘𝕔 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 ((𝔾𝕔
1⨁𝕊𝕘𝕔

1 ), (𝔾𝕔
2⨁𝕊𝕔

2), … … … , (𝔾𝕔
𝕚 ⨁𝕊𝕘𝕔

𝕚 ))                           (𝟔. 𝟔)  

Visual Feature Extraction from the Video Frames of the Utterances 

To obtain visual features from the video frames [145] is integrated with the depth attention 

module [146], discussed in the following section.  

Lightweight Attention Module 

The Convolutional Neural Networks (ConvNets) have demonstrated remarkable 

representational abilities, leading to significant enhancements in their efficacy for visual tasks. 

In addition, we explore another aspect of architectural design that has become increasingly 

prevalent in modern times, namely, attention. Through the utilization of attention mechanisms, 

which involve prioritising significant attributes while inhibiting irrelevant ones, it is anticipated 

that the efficacy of representation will be enhanced. Considering this information, a framework 

known as the "light weighted attention framework" [146], illustrated in Figure 6.3, has been 

developed and integrated into [145] to concentrate on the most salient characteristics from the 

visual frames while disregarding the others. In order to accomplish this task, we have 

implemented four different modules, namely, feature grouping, depth attention, spatial 

attention and aggregation, which constitute [146]. 

The word "spatial" refers to the encompassing spatial domain of each feature map. By including 

the spatial attention module to enhance the feature maps, the superior input is then sent to the 

subsequent levels of convolution, hence increasing the efficacy of the model. On the other 

hand, the phrase "depth" denotes the total number of channels, which are simply a set of feature 

maps arranged in a tensor. Each and every multidimensional layer inside this tensor represents 

a feature map with a depth of ℍ × 𝕎. The depth attention mechanism provides a numerical 

value associated with every channel, therefore prioritising those channels that have the most 

impact on the learning process. This prioritisation leads to the optimisation of the 

most important features, ultimately enhancing the overall performance of the model. The 

property of feature grouping is characterised by a hierarchical structure consisting of two 

levels. Suppose that the attention module's input tensor is 𝕏 ∈ ℝ𝔻×ℍ×𝕎, where 

𝔻, ℍ 𝑎𝑛𝑑 𝕎 denote the depth, height and width of the feature map, respectively. Initially, 𝕏  

is partitioned into ℙ distinct groups, resulting in 𝕏′ ∈ ℝ
𝔻

ℙ
×ℍ×𝕎

 for each group across the depth 

of the feature maps. The obtained feature groups are then transmitted to the attention 

components, where they are subsequently segregated into two distinct groups based on the 

depth dimension. One group is allocated to the spatial attention branch, while the other is 
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assigned to the depth attention branch. And these sub-feature groups that are transmitted across 

both the spatial or depth attention branches can be represented as 𝕏" ∈ ℝ
𝔻

2ℙ
×ℍ×𝕎

. The 

depth attention branch involves reducing the feature maps obtained from the feature grouping 

phase to 𝕏" ∈ ℝ
𝔻

2ℙ
×𝟏×𝟏. This is achieved through the use of a global average pooling operation 

and gating mechanism, which enables more accurate and versatile decisions. The resulting 

output is then subjected to a sigmoid activation function which is represented as follows: 

𝑿𝕜𝟏
^ = 𝝈(𝔽𝕔(𝕥)) ∙ 𝕏" =  𝝈(𝕍𝟏𝕥⨁𝕓𝟏) ∙ 𝕏"                                                                                    (𝟔. 𝟕) 

The Group Norm technique is employed to reduce the input 𝕏′ in spatial attention, resulting in 

spatial features. The function 𝔽(. ) is subsequently employed to improve the depiction of the 

diminished tensor. This concept can be expressed through a simple mathematical formula: 

𝑋𝕜2
^ = 𝜎(𝕍2 ∙ 𝐺𝑟𝑜𝑢𝑝𝑁𝑜𝑟𝑚(𝕏")⨁𝕓2) ∙ 𝕏"                                                                                  (𝟔. 𝟖) 

The concatenation of the outputs obtained from the Spatial Attention and depth attention is 

performed initially. Then a depth shuffle technique is implemented, similar to the approach 

used in ShuffleNet, to facilitate interaction among groups along the depth. Consequently, the 

resulting output possesses identical dimensions to those of the input tensor that underwent 

processing in the shuffle attention layer. 

𝑋𝕜
^ = [𝑋𝕜1

^ ⨁𝑋𝕜2
^ ] ∈ ℝ

𝔻
ℙ

×ℍ×𝕎                                                                                                          (𝟔. 𝟗) 

 

Figure 6.3 Light weighted depth attention module where GAP represents global average pooling operation, 

GN represents group normalization, “C represents concatenation and “S” represents depth shuffle operation. 
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Utterance and Context-Level Feature Extraction from Video Frames 

In this, utterance-level features are initially extracted, followed by the extraction of context-

level features. These two sets of features are then subsequently concatenated to yield the final 

feature representation. Suppose there is a set of  ℕ𝕦 visual frames at utterance level denoted as 

𝕍1:ℕ𝕦
= {𝕍1, 𝕍2, … … , 𝕍ℕ𝕦

}. Each visual frame is sent to a self-regulatory ConvNet model 

[145] depicted in Figure 6.4 that makes use of a light-weighted depth attention module [146] 

to extract the most prominent features, which has already been explained in detail above. To 

obtain information pertaining to the level of utterance, the mean value is computed for all 

frames 𝕍𝕦. In cases where speaker information is present, the utterance 𝕍𝕦 is concatenated 

with the corresponding speaker information 𝕊𝕧𝕦  given by Eqn. (𝟔. 𝟏𝟎) and Eqn.(𝟔. 𝟏𝟏). The 

notation 𝕍𝕦⨁𝕊𝕧𝕦 used is where 𝕍𝕦 belongs to the set of real numbers ℜ and has a cardinality 

of 2048. 

𝕍𝕊𝕦 = ((𝕍𝕦1⨁𝕊𝕧𝕦1), (𝕍𝕦2⨁𝕊𝕧𝕦2), … … . . , (𝕍𝕦ℕ⨁𝕊𝕧𝕦ℕ))                                                  (𝟔. 𝟏𝟎) 

𝕍𝕦⨁𝕊𝕧𝕦 = 𝑺𝒆𝒍𝒇 −

𝒓𝒆𝒈𝒖𝒍𝒂𝒕𝒆𝒅 𝑪𝒐𝒏𝒗𝑵𝒆𝒕⨁𝑳𝒊𝒈𝒉𝒕𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝒅𝒆𝒑𝒕𝒉 𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝕍𝕊𝕦)                             (𝟔. 𝟏𝟏)  

Similarly, to obtain context-level features from the set of ℕ𝕦𝕔 contextual utterances, the mean 

value is computed for all frames denoted as 𝕍𝕦𝕔. In cases where speaker information is present, 

the utterance 𝕍𝕦𝕔 is concatenated with the corresponding speaker information 𝕊𝕧𝕔 defined by 

Eqn.(𝟔. 𝟏𝟐) and Eqn.(𝟔. 𝟏𝟑). 

𝕍𝕊𝕔 = ((𝕍𝕦𝕔𝟏⨁𝕊𝕧𝕔𝟏), (𝕍𝕦𝕔𝟐⨁𝕊𝕧𝕔𝟐), … … . . , (𝕍𝕦𝕔ℕ⨁𝕊𝕧𝕔ℕ))                                               (𝟔. 𝟏𝟐) 

 𝕍𝕦𝕔⨁𝕊𝕧𝕔

= 𝑺𝒆𝒍𝒇 − 𝒓𝒆𝒈𝒖𝒍𝒂𝒕𝒆𝒅 𝑪𝒐𝒏𝒗𝑵𝒆𝒕⨁𝑳𝒊𝒈𝒉𝒕𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝒅𝒆𝒑𝒕𝒉 𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝕍𝕊)            (𝟔. 𝟏𝟑) 

Utterance-Level Feature Extraction from Acoustic Content 

Suppose there is a set of  ℕ𝕒 acoustic frames at utterance level denoted as 𝔸1:ℕ𝕒
=

{𝔸1, 𝔸2, … … , 𝔸ℕ𝕒
}. Librosa library has been utilized to extract acoustic information. Similar 

to the process of extracting visual features, the methodology utilised here also involves the 

computation of the average value of all frames to extract information pertaining to utterances 

denoted as 𝔸𝕦. In cases where speaker information is present, the utterance 𝔸𝕦 is concatenated 

with the corresponding speaker information 𝕊𝕒𝕦  given by Eqn.(𝟔. 𝟏𝟒). The notation 

𝔸𝕦⨁𝕊𝕒𝕦 used is where 𝔸𝕦 belongs to the set of real numbers ℜ and has a cardinality of 283. 
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Also, it is important to keep in mind that audio recordings often consist of a variety of speakers, 

ambient noise, cues for laughter, and other sounds in the background. As a result, the 

consideration of contextual factors is not integrated into acoustic analysis, as it might cause 

challenges in distinguishing it from the laughter portion of the conversation. Therefore, an 

empty list [ ] is employed within the context of acoustic content. 

𝔸𝕦⨁𝕊𝕒𝕦 = 𝐋𝐢𝐛𝐫𝐨𝐬𝐚 𝐭𝐨𝐨𝐥(𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒊𝒐𝒏(𝔸𝕦, 𝕊𝕒𝕦))                                                      (𝟔. 𝟏𝟒) 

Multi-Headed Attention-Based Feature Fusion 

In the very first step, all the utterance and context-level features of all the modalities are 

concatenated together, as represented in Eqn.(𝟔. 𝟏𝟓). 

𝔾𝑐𝑎𝑡 = 𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒊𝒐𝒏 ((𝔾𝕦⨁𝕊𝕘𝕦), (𝔾𝕔⨁𝕊𝕘𝕔))  

𝕍𝑐𝑎𝑡 = 𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒊𝒐𝒏((𝕍𝕦⨁𝕊𝕧𝕦), ( 𝕍𝕦𝕔⨁𝕊𝕧𝕔))                                                               

𝔸𝑐𝑎𝑡 = 𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒊𝒐𝒏((𝔸𝕦⨁𝕊𝕒𝕦), ([ ]))                                                                            (𝟔. 𝟏𝟓) 

Subsequently, 𝔾𝑐𝑎𝑡, 𝕍𝑐𝑎𝑡, and 𝔸𝑐𝑎𝑡 are individually fed into the linear layer followed by the 

multi-headed attention layer as defined by Eqn. (𝟔. 𝟏𝟔) 

𝕃𝔾 = 𝑴𝒖𝒍𝒕𝒊 − 𝒉𝒆𝒂𝒅𝒆𝒅 𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑳𝒊𝒏𝒆𝒂𝒓(𝔾𝑐𝑎𝑡))                                                                                     

𝕃𝕍 = 𝑴𝒖𝒍𝒕𝒊 − 𝒉𝒆𝒂𝒅𝒆𝒅 𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑳𝒊𝒏𝒆𝒂𝒓(𝕍𝑐𝑎𝑡))                                                                      

𝕃𝔸 = 𝑴𝒖𝒍𝒕𝒊 − 𝒉𝒆𝒂𝒅𝒆𝒅 𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑳𝒊𝒏𝒆𝒂𝒓(𝔸𝑐𝑎𝑡))                                                         (𝟔. 𝟏𝟔) 

The features derived from various modalities are concatenated and subsequently fed into a 

linear layer, which is succeeded by a multi-headed attention layer. This process yields a highly 

significant multi-modal feature vector, as outlined in Eqn.(𝟔. 𝟏𝟕).  

𝔾𝕍𝔸 = 𝑴𝒖𝒍𝒕𝒊 −

𝒉𝒆𝒂𝒅𝒆𝒅 𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 (𝑳𝒊𝒏𝒆𝒂𝒓(𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒊𝒐𝒏(𝕃𝔾, 𝕃𝕍, 𝕃𝔸)))                                   (𝟔. 𝟏𝟕)                            

Finally, the softmax layer is utilized to forecast the classification label as either sarcastic or 

non-sarcastic, as illustrated in Eqn.(𝟔. 𝟏𝟖). 

ℂ = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝔾𝕍𝔸)                                                                                                                   (𝟔. 𝟏𝟖)      
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Figure 6.4 Self-regulated ConvNet in which ℋ refers to the hidden states, 𝒳 refers to the input feature map, 

and 𝓉 denotes the number of building blocks 

 

6.2.3 Experiment Setup and Result 
The following subsection covers comprehensive details related to the dataset used throughout 

the study, the experimental configurations of the proposed methodology, and evaluations of its 

performance. 

Dataset Used 

The MUStARD dataset, as provided by [147], is utilized for the purpose of multimodal sarcasm 

recognition. This dataset comprises a total of 690 utterances, with 345 being sarcastic and 345 

being non-sarcastic. The data was gathered from various well-known television series, 

including Sarcasmaholics Anonymous, Friends, and The Golden Girls. Similar to previous 

research, we analyse our proposed framework in two distinct experimental setups.  

One of the scenarios is the "speaker  independent" configuration. The present study employs 

utterances obtained from the Friends Series as testing data, while the remaining utterances are 

utilized as training data. The alternative setup is the "speaker dependent", wherein the dataset 

is partitioned into five folds. During each of the five iterations, the ith fold is designated as the 
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testing set, while the rest of the sample folds are utilized for training purposes. Subsequently, 

five datasets can be acquired.  

In addition to the MUStARD dataset, we have also used the extended version MUStARD++ 

[36] to execute a cross-dataset study as part of a generalization research to test the resilience 

of VyAnG-Net. Our proposed approach, VyAnG-Net, was trained using the MUStARD dataset 

for this experimental investigation, and its performance was evaluated using an unseen 

MUStARD++ dataset. Consistent with prior research, we utilize 

𝔸𝕔𝕔𝕦𝕣𝕒𝕔𝕪(A), ℙ𝕣𝕖𝕔𝕚𝕤𝕚𝕠𝕟(P), ℝ𝕖𝕔𝕒𝕝𝕝(R), and 𝔽1 𝕊𝕔𝕠𝕣𝕖(F1) as the metrics for evaluation. 

Regarding the "speaker dependent" configuration, the outcomes are presented by computing 

the mean of the results obtained from five distinct evaluation sets. 

Experimental Setup 

The proposed method was executed by utilising the Keras and PyTorch framework. The 

evaluation metrics employed for recognising sarcasm are 𝔸𝕔𝕔𝕦𝕣𝕒𝕔𝕪(𝐴), ℙ𝕣𝕖𝕔𝕚𝕤𝕚𝕠𝕟(𝑃), 

ℝ𝕖𝕔𝕒𝕝𝕝(𝑅), an 𝔽1 𝕊𝕔𝕠𝕣𝕖(𝐹1). Concerning all experimental procedures, the architectures 

employed in this study incorporate, Rectified Linear Unit (ReLU) as an activation function, a 

dropout rate of 0.4, the Adam optimisation algorithm with a learning rate of 0.001, and a batch 

size of 32. The training process of the model was conducted for a total of 200 epochs because 

the results were not satisfactory beyond this limit i.e., we pertain to a limit of 200 epochs. The 

Adam optimizer is employed in conjunction with Softmax as a classifier to identify sarcasm. 

Furthermore, the implementation of the sigmoid activation function and the optimisation of 

binary cross-entropy as the loss function were utilized. The model we have proposed is 

evaluated using the MUStARD [147] dataset. The results of the grid search were used to obtain 

the optimal hyper-parameters. Our study aims to utilize a consistent hyper-parameter setup 

across all experimental trials.  

Also, it is worth noting that all the experimental procedures were conducted using high-end 

GPU systems featuring the following specifications: NVIDIA Titan RTX (48 GB), 256 GB of 

RAM, 10 TB of storage space, and an Intel Xeon Silver 4116 processor. The computational 

model being analysed demonstrates a relatively low requirement for GPU memory, utilizing 

approximately 2 gigabytes. Typically, on an average, each epoch requires a duration of 

approximately 3 to 4 seconds.  

To ensure a rigorous evaluation in accordance with current cutting-edge frameworks, we 

conducted comprehensive experiments encompassing unimodal, bimodal, and trimodal 

approaches for both "speaker dependent" and "speaker independent" setups. 
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Results and Discussion 

The proposed architecture was assessed through a comprehensive analysis of all potential 

combinations of input. These include unimodal inputs such as 𝔾, 𝕍, and 𝔸, bimodal inputs such 

as 𝔾⨁ 𝕍, 𝕍⨁ 𝔸, and 𝔾⨁𝔸, as well as trimodal input 𝔾⨁ 𝕍⨁𝔸. In the context of 

speaker dependent configuration, our proposed VyAnG-Net (for trimodal) proved its 

superior performance (Table 6.2) with a ℙ𝕣𝕖𝕔𝕚𝕤𝕚𝕠𝕟(𝑃) of 78.83% (an increase of 6.93 [147], 

3.63[148], and 4.63[149] points), ℝ𝕖𝕔𝕒𝕝𝕝(𝑅) of 78.21% (an increase of 6.81 [147], 3.61[148], 

and 4.01[149] points), and 𝔽1 − 𝕊𝕔𝕠𝕣𝕖(𝐹1) of 78.52% (an increase of 7.02 [147], 4.02[148], and 

4.32[149] points). Experimental evidence indicates that the trimodal approach outperforms both 

the unimodal and bimodal approaches.  

In addition, for speaker − independent configuration, the proposed model VyAnG-Net (for 

trimodal) exhibited exceptional performance (Table 6.3) with ℙ𝕣𝕖𝕔𝕚𝕤𝕚𝕠𝕟(𝑃) of 75.69% (an 

increase of 11.39 [147], 4.39[148], and 3.59[149] points), ℝ𝕖𝕔𝕒𝕝𝕝(𝑅) of 75.52% (an increase of 

12.92 [147], 4.22[148], and 3.52[149] points), and 𝔽1 𝕊𝕔𝕠𝕣𝕖(𝐹1) of 75.6% (an increase of 

12.8[147], 5.6[148], and 3.6[149] points). Figure 6.5 and Figure 6.6 illustrate the curves 

pertaining to testing loss, accuracy, precision, recall, and F1 scores for speaker −

dependent and speaker − independent configurations. 

 

Table 6.2 Experimental results for speaker-dependent setup using VyAnG-Net. 

Modalities 
𝐒𝐩𝐞𝐚𝐤𝐞𝐫 𝐝𝐞𝐩𝐞𝐧𝐝𝐞𝐧𝐭 

𝔸𝕔𝕔𝕦𝕣𝕒𝕔𝕪(𝐀) ℙ𝕣𝕖𝕔𝕚𝕤𝕚𝕠𝕟(𝐏) ℝ𝕖𝕔𝕒𝕝𝕝(𝐑) 𝔽𝟏 𝕊𝕔𝕠𝕣𝕖(𝐅𝟏) 

𝔾 (𝐮𝐧𝐢𝐦𝐨𝐝𝐚𝐥) 73.16 72.53 72.4 72.45 

𝕍 (𝐮𝐧𝐢𝐦𝐨𝐝𝐚𝐥) 73.81 72.93 71.86 72.4 

𝔸 (𝐮𝐧𝐢𝐦𝐨𝐝𝐚𝐥) 74.42 72.7 72.69 72.7 

𝔾⨁ 𝕍 (𝐛𝐢𝐦𝐨𝐝𝐚𝐥) 75.68 74.94 74.26 74.61 

𝕍⨁ 𝔸 (𝐛𝐢𝐦𝐨𝐝𝐚𝐥) 77.37 77.53 77.45 77.49 

𝔾⨁𝔸 (𝐛𝐢𝐦𝐨𝐝𝐚𝐥) 77.14 76.84 76.92 76.87 

𝔾⨁ 𝕍⨁𝔸 (𝐭𝐫𝐢𝐦𝐨𝐝𝐚𝐥) 79.86 78.83 78.21 78.52 

 
Table 6.3 Experimental results for speaker-independent setup using VyAnG-Net. 

Modalities 
𝐒𝐩𝐞𝐚𝐤𝐞𝐫 𝐈𝐧𝐝𝐞𝐩𝐞𝐧𝐝𝐞𝐧𝐭 

𝔸𝕔𝕔𝕦𝕣𝕒𝕔𝕪(𝐀) ℙ𝕣𝕖𝕔𝕚𝕤𝕚𝕠𝕟(𝐏) ℝ𝕖𝕔𝕒𝕝𝕝(𝐑) 𝔽𝟏 𝕊𝕔𝕠𝕣𝕖(𝐅𝟏) 

𝔾 (𝐮𝐧𝐢𝐦𝐨𝐝𝐚𝐥) 69.47 68.36 68.24 68.29 

𝕍 (𝐮𝐧𝐢𝐦𝐨𝐝𝐚𝐥) 70.15 70.89 70.16 70.52 

𝔸 (𝐮𝐧𝐢𝐦𝐨𝐝𝐚𝐥) 70.92 71.12 71.23 71.17 

𝔾⨁ 𝕍 (𝐛𝐢𝐦𝐨𝐝𝐚𝐥) 72.42 72.64 72.61 72.61 

𝕍⨁ 𝔸 (𝐛𝐢𝐦𝐨𝐝𝐚𝐥) 74.74 74.51 74.32 74.41 
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Modalities 
𝐒𝐩𝐞𝐚𝐤𝐞𝐫 𝐈𝐧𝐝𝐞𝐩𝐞𝐧𝐝𝐞𝐧𝐭 

𝔸𝕔𝕔𝕦𝕣𝕒𝕔𝕪(𝐀) ℙ𝕣𝕖𝕔𝕚𝕤𝕚𝕠𝕟(𝐏) ℝ𝕖𝕔𝕒𝕝𝕝(𝐑) 𝔽𝟏 𝕊𝕔𝕠𝕣𝕖(𝐅𝟏) 

𝔾⨁𝔸 (𝐛𝐢𝐦𝐨𝐝𝐚𝐥) 74.64 73.96 73.48 73.72 

𝔾⨁ 𝕍⨁𝔸 (𝐭𝐫𝐢𝐦𝐨𝐝𝐚𝐥) 76.94 75.69 75.52 75.6 

 

  

  

 

Figure 6.5 Testing curve for loss, accuracy, precision, recall, and F1 scores for 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 − 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡. 
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Figure 6.6 Testing curve for loss, accuracy, precision, recall, and F1 scores for 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 − 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡. 

Comparative Analysis with the Baselines 

In this study, we conducted a comparative analysis using consistent experimental conditions 

with the pre-existing models, namely Baseline − 1 [147], Baseline − 2 [148], Baseline −

3 [149], Baseline − 4 [150], and Baseline − 5 [151], which were developed using a similar 

MUStARD [147] dataset. Baseline − 1 [147] was the first to release and work on the video 

dataset MUStARD in the field of MSR. This study employed ResNet-152 for the purpose of 

extracting visual features, BERT-based uncased architecture for extracting textual features, and 

the librosa library for extracting auditory features. Finally, a Support Vector Machine (SVM) 

was employed as a classifier to distinguish between instances of sarcasm and non-sarcasm. 
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Later, the IWAN framework was proposed in Baseline − 2 [148], which incorporates attention 

mechanisms and employs similar architectures as employed in [147]  for extracting visual and 

textual features. However, for the extraction of auditory features, the OpenSmile tool was 

utilized. The authors in Baseline − 3 [149] proposed a novel methodology for MSR that 

integrates ResNet-152, BART, and librosa for the purpose of feature extraction across various 

modalities. This research study has undertaken the task of emotion recognition in addition to 

implicit sentiment, specifically sarcasm. The study conducted by Baseline − 5 [151] employed 

comparable architectures as those utilised in the previous research [147], in conjunction with a 

late fusion strategy, to detect instances of sarcasm in utterances. In addition to the 

aforementioned research studies, it is noteworthy to mention that Baseline − 4 [150] was the 

pioneer in utilising fuzzy logic and quantum theory to detect sarcasm in video utterances.  

Our methodology outperforms all of the baseline models that have been addressed in Table 6.4 

and Table 6.5. The results indicate that the VyAnG-Net model is advantageous for MSR due 

to its ability to comprehensively stimulate the relationship between all the modalities at a more 

profound level.  This is achieved through the use of a glossary branch that employs an 

attention-based tokenization approach and a dedicated attention module to identify the most 

salient features from the video frames, along with a multi-headed attention-based feature fusion 

technique. The visualisation of VyAnG-Net on MUStARD dataset versus the cutting-edge 

baseline approaches in terms of Accuracy, Precision, Recall, and F1 scores for  

speaker dependent and speaker independent configuration are presented in Figure 6.7 and 

Figure 6.8. 

 
Table 6.4 Comparison with baseline models for 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 − 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 setup. 
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Figure 6.7 Evaluation of our proposed framework VyAnG-Net on MUStARD dataset versus the cutting-edge 

baseline approaches in terms of Accuracy, Precision, Recall, and F1 scores for  𝑠𝑝𝑒𝑎𝑘𝑒𝑟 − 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

configuration. 

Table 6.5 Comparison with baseline models for 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 − 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 setup. 
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Figure 6.8 Evaluation of our proposed framework VyAnG-Net on MUStARD dataset versus the cutting-edge 

baseline approaches in terms of Accuracy, Precision, Recall, and F1 scores for 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 − 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

configuration. 

Ablation Study 

In this section, a series of ablation trials were carried out on the MUStARD dataset to more 

accurately evaluate the effectiveness of each proposed module specifically for  
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trimodal (𝔾⨁ 𝕍⨁𝔸). The VyAnG-Net framework was employed to generate three distinct 

variants, namely “VyAnG-Net w/o attention-seeking tokenizer”, “VyAnG-Net w/o lightweight 

depth attention”, and “VyAnG-Net w/o multi-headed attention” as illustrated in Table 6.6 and 

Table 6.7. The aforementioned modifications entail the extraction of features from the textual 

content of video utterance’s subtitles by eliminating the attention-seeking tokenizer in the 

glossary branch module, removal of the lightweight depth attention module in the visual 

branch, and instead of utilising multi-headed attention for fusion, a method of directly 

concatenating the obtained feature representation from multiple branches was employed. Table 

6.6 and Table 6.7 summarise the outcomes obtained from the ablation experiments. 

Based on these observations, the following conclusions can be drawn: The VyAnG-Net, as the 

proposed model, encompasses all modules and exhibits superior performance on the 

MUStARD dataset. The removal of a single module would lead to inadequate predictive 

outcomes. Based on these observations, it can be inferred that every proposed module is crucial 

and plays a significant role in the overall performance. Also, it can be observed that in the 

speaker-dependent configuration, the proposed model is performing better because of the 

intermixing of a variety of videos in the training set as compared to the speaker-independent 

configuration, resulting in enhanced generalizability of speaker-dependent configuration. 

Table 6.6 The results of the ablation trials carried out on the MUStARD dataset for a 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 − 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

configuration. 

Methods 
MUStARD 

𝔸𝕔𝕔𝕦𝕣𝕒𝕔𝕪(𝑨) ℙ𝕣𝕖𝕔𝕚𝕤𝕚𝕠𝕟(𝑷) ℝ𝕖𝕔𝕒𝕝𝕝(𝑹) 𝔽𝟏 𝕊𝕔𝕠𝕣𝕖(𝑭𝟏) 

VyAnG-Net w/o 

attention-

seeking 

tokenizer 

76.49 75.87 75.62 75.74 

VyAnG-Net w/o 

lightweight 

depth attention 

75.24 75.53 74.97 75.47 

VyAnG-Net w/o 

multi-headed 

attention 

73.86 72.63 72.2 72.41 

VyAnG-Net 79.86 78.83 78.21 78.52 

 

Table 6.7 The results of the ablation trials carried out on the MUStARD dataset for a 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 − 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

configuration. 

Methods 
MUStARD 

𝔸𝕔𝕔𝕦𝕣𝕒𝕔𝕪(𝑨) ℙ𝕣𝕖𝕔𝕚𝕤𝕚𝕠𝕟(𝑷) ℝ𝕖𝕔𝕒𝕝𝕝(𝑹) 𝔽𝟏 𝕊𝕔𝕠𝕣𝕖(𝑭𝟏) 

VyAnG-Net w/o 

attention-

seeking 

tokenizer 

73.96 73.32 72.84 73.08 
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Methods 
MUStARD 

𝔸𝕔𝕔𝕦𝕣𝕒𝕔𝕪(𝑨) ℙ𝕣𝕖𝕔𝕚𝕤𝕚𝕠𝕟(𝑷) ℝ𝕖𝕔𝕒𝕝𝕝(𝑹) 𝔽𝟏 𝕊𝕔𝕠𝕣𝕖(𝑭𝟏) 

VyAnG-Net w/o 

lightweight 

depth attention 

71.42 72.03 71.99 72.00 

VyAnG-Net w/o 

multi-headed 

attention 

73.85 72.74 72.62 72.68 

VyAnG-Net 76.94 75.69 75.52 75.6 

Generalization study  

In the recent years the MUStARD dataset has shown remarkable results for various emerging 

multimodal sarcasm recognition frameworks; however, these approaches do not possess the 

generalizability that algorithms need to examine samples from other domains or datasets. They 

are more concerned in conducting thorough architectural in-dataset analyses. Consequently, 

rather than limiting ourselves to assessing VyAnG-Net on a single dataset, we provide a cross-

dataset evaluation that puts a model trained on one dataset to the test on another. Therefore, in 

addition to the experiment discussed in the above sections, we undertake a cross-dataset study 

as part of a generalization research to test the resilience of VyAnG-Net. Our proposed 

approach, VyAnG-Net, was trained using the MUStARD dataset for this experimental 

investigation, and its performance was evaluated using the MUStARD++ dataset. Throughout 

the training stage of the cross-dataset study, 80% of the samples from the MUStARD dataset 

were chosen at random for training, while 10% were allocated for validation. For the testing 

phase, 10% of the samples had been picked at random from the MUStARD++ dataset to assess 

the predictive power of the proposed method using various parameters including 

𝔸𝕔𝕔𝕦𝕣𝕒𝕔𝕪(𝑨), ℙ𝕣𝕖𝕔𝕚𝕤𝕚𝕠𝕟(𝑷), ℝ𝕖𝕔𝕒𝕝𝕝(𝑹), 𝔽𝟏 𝕊𝕔𝕠𝕣𝕖(𝑭𝟏). The efficiency of VyAnG-Net, 

which is based on lightweight depth attention module and the attention-based tokenization 

approach, was tested through cross-dataset study. From Table 6.8 It is evident that our 

technique could identify instances from datasets other than the ones it was trained on. Hence, 

it can be proved that our suggested model, VyAnG-Net, is effective, generalizable and more 

reliable than earlier state-of-the-art solutions. 

Table 6.8 Evaluating the resilience of VyAnG-Net using cross-dataset study that uses MUStARD dataset for 

training and validation, whereas MUStARD++ is employed for testing purposes. 

Dataset utilized 
VyAnG-Net 

𝔸𝕔𝕔𝕦𝕣𝕒𝕔𝕪(𝑨) ℙ𝕣𝕖𝕔𝕚𝕤𝕚𝕠𝕟(𝑷) ℝ𝕖𝕔𝕒𝕝𝕝(𝑹) 𝔽𝟏 𝕊𝕔𝕠𝕣𝕖(𝑭𝟏) 

MUStARD (for training and 

validation) and MUStARD 

++ 

(for testing) 

73.93 72.41 72.05 72.23 
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6.2.4 Conclusion & Future Scope 

This paper proposes a novel VyAnG-Net for multi-modal sarcasm recognition by uncovering 

visual, acoustic and glossary features. Our proposed methodology analyses the interaction 

between all three modalities more effectively than earlier innovative methods. The sentiment 

evoked by a particular phrase may vary across different contexts. Therefore, it is vital to utilise 

auditory and visual cues to boost prediction accuracy. Motivated by this, we have introduced 

an innovative visual branch incorporating a lightweight depth attention module to extract the 

most salient features from video frames. Additionally, a glossary branch utilises an attention-

based tokenization approach to capture the most critical contextual features from the textual 

content provided by video subtitles. Furthermore, an utterance-level feature extraction method 

for acoustic content has been implemented along with a multi-headed attention-based feature 

fusion technique to combine features obtained from each of the distinct modalities. Our 

extensive experiments on the publicly available dataset MUStARD indicate that our proposed 

model outperforms other competitive baseline models.  

6.3 Significant Outcomes of this Chapter 

The significant outcomes of this chapter are as follows: 

• We proposed VyAnG-Net, a novel multi-modal sarcasm recognition framework, by 

uncovering visual, acoustic and glossary (textual) features. This framework includes the 

glossary branch that uses the attention-based tokenization approach to acquire the most 

significant contextual features from the textual content provided by the subtitles of the 

video utterances, a visual unit with a dedicated lightweight depth attention module to 

acquire the most prominent features from the video frames, an utterance-level feature 

extraction from acoustic content and lastly multi-headed attention based feature fusion 

has been employed to blend features acquired from each of the separate modalities.  

• In recent years, remarkable advancements have been made in sarcasm identification 

frameworks on the MUStARD dataset, but there are concerns about their 

generalizability. Consequently, rather than limiting ourselves to assessing VyAnG-Net 

on a single dataset, we undertake a cross-dataset study as part of generalization research 

to test the resilience of VyAnG-Net. Our proposed approach, VyAnG-Net, was trained 

using the MUStARD dataset for this experimental investigation, and its performance 

was evaluated using an unseen MUStARD++ dataset. 

 

The following research works form the basis of this chapter: 
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❖ A. Pandey and D. K. Vishwakarma, “VyAnG-Net: A Novel Multi-Modal Sarcasm 

Recognition Model by Uncovering Visual, Acoustic and Glossary Features.” Under 

Minor Revisiom in Intelligent Data Analysis (Pub: IOS Press). 

https://doi.org/10.48550/arXiv.2408.10246. 

❖ A. Pandey and D. K. Vishwakarma, “Multimodal Sarcasm Detection (MSD) in Videos 

using Deep Learning Models,” in 2023 IEEE International Conference in Advances 
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Chapter 7: Conclusion & Future Scope 

7.1 Conclusion 

This chapter serves as the finalization of the research conducted in this thesis. In summary, we 

conduct four research contributions dealing with different aspects of identifying sentiments in 

multimedia data. These approaches are summarized as follows: 

✓ In the first research work, the proposed VABDC-Net, integrates an attention module 

with the convolutional neural network to focus on the most relevant information from 

the visual modality and attentional tokenizer-based method to extract the most relevant 

contextual information from the caption modality. Thorough experimentation on two 

benchmark datasets, Twitter-15, with an accuracy of 83.80%, and Twitter-17, with an 

accuracy of 72.42%, indicates that our technique outperforms existing methods for 

Visual-Caption Sentiment Recognition. 

✓ In the second approach, the proposed model VECT-Net includes: the facial emotion 

description module, the target alignment and refinement module for face description, 

and the fusion module.  The facial emotion description unit is responsible for generating 

a face description that includes various features such as age, gender, and emotion. The 

target alignment and refinement module estimates the cosine similarity between the 

visual input and the face descriptions with the target. In the fusion component, two 

robustly optimised pre-trained language models are utilised to simulate images, captions 

and face descriptions by a gating mechanism for feature fusion and noise reduction. The 

experimental results show that the suggested model achieves an accuracy of 81.23% and 

a macro-F1 of 80.61% on the Twitter-15 dataset, while 77.42% and 75.19% on the 

Twitter-17 dataset, respectively. 

✓ In the third approach, Contrastive Learning-based Multi-Modal Architecture has been 

developed to predict emoticons by Employing Image-Text Pairs. The proposed model 

employs the joint training of dual-branch encoder along with the contrastive learning to 

accurately map text and images into a common latent space. Our key finding is that by 

integrating the principle of contrastive learning with that of the other two branches 

yields superior results. The experimental results demonstrate that our suggested 

methodology surpasses existing multimodal approaches in terms of accuracy and 
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robustness. The proposed model attained an accuracy of 91% and an MCC-score of 90% 

while assessing emoticons using the Multimodal-Twitter Emoticon dataset acquired 

from Twitter. 

✓ Lastly, a novel approach has been proposed to detect sarcasm in videos that combines a 

self-regulated Convolutional neural network to concentrate on the most crucial features 

of visual data and an attentional tokenizer-based strategy to extract the most critical 

context-specific information from the textual data. Extensive testing on one of 

the benchmark video datasets, MUStARD, yielded an accuracy of 78.52% for speaker-

dependent configuration. 

7.2 Future Scope 

Despite attaining promising results, there are still numerous avenues open for further research 

as highlighted below:  

✓ Fusion Strategy: Our research has focused on the feature fusion approach by utilising 

a multi-headed attention mechanism for MSR. Subsequent research endeavours may 

explore advanced spatiotemporal fusion techniques to effectively capture the 

correlation between different modalities, such as tensor-based fusion. A potential 

alternative strategy entails formulating more fusion methodologies that can better 

encapsulate the discrepancies among diverse modalities to identify occurrences of 

sarcasm with greater efficacy. 

✓ Neural Baseline: Further research studies should aim to implement transfer learning, 

pre-training, low-parameter, or domain adaptation models as potential solutions. Also, 

the architectures with fewer trainable parameters are more advantageous for facilitating 

real-time deployment. 

✓ Visual sarcasm recognition:  So far, there has been a lack of research in the domain 

of sarcasm detection utilising solely visual cues that include the embedded text, 

primarily due to the absence of an appropriate dataset. Therefore, developing a visual 

sample corpus centred on memes is essential to work effectively in this field. 

✓ Integration of Attention-based strategies: In the modern era, there has been an 

explosion of attention modules that need further study for their potential integration 

with diverse forms of Convolutional Neural Networks (ConvNets) and Recurrent 

Neural Networks (RNNs). This integration could facilitate the efficient extraction of 

pertinent information from both textual and visual inputs. 
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