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Abstract
To communicate with one another hand gesture is very important. The task of

using the hand gesture in technology is influenced by a very common way humans

communicate in the natural environment. In the early days of interaction with a com-

puter, the user uses a keyboard, mouse, pen. Similar type of communication can be

possible using hand gesture that replaces the hardware devices and reduces the cost

of hardware. Due to the advancement of technologies and the digital era the need of

human-computer interaction(HCI) techniques needs to grow. Hand gesture recogni-

tion is a one of the possible way that makes human interaction with the computers.

Hand gestures have numerous applications in daily life, ranging from controlling au-

tomatic vehicles to enhancing smart home development and human-robot interaction.

They are used in clinical operations where surgeons can handles MRI or X-ray scans

through hand gestures. In sign language recognition, hand gestures enable commu-

nication among the deaf community. In robotics, dynamic hand gestures control

robot movements, 3D hand gesture recognition facilitates real-time human-computer

interaction. Hand gestures also play a crucial role in home automation, controlling

appliances like lights, fans, and security systems. For computers and tablets, gestures

are used to drag, drop, and move files, improving human-computer interaction. The

recognizing and finding gesturing hand comes under the area of hand gesture analysis.

To find out the gesturing hand is very difficult than finding the another part of the

human body because the smaller size of the hand. The hand has greater complexity

and more challenges due to various factor such as hand occlusion, background clut-

ter, lighting illumination and inter and intra-class variation. These factors affect the

accuracy of dynamic hand gesture. Real-time recognition of dynamic hand gesture is

difficult because the algorithm can’t determine with accuracy where a gesture starts

and ends in a video feed.

Dynamic hand gesture recognition (DHGR), which involves understanding ges-

tures in motion over time, poses various challenges. These include variations in light-

ing, occlusions, complex backgrounds, and similarities between gestures, within the

vii



same category (Intra-class) and across different categories (Inter-class), making detec-

tion and recognition difficult. Traditional models often find it challenging to address

these issues, particularly when working with a small or limited dataset. Further, inte-

grating dual-modality and multi-modality where RGB data, skeletal data, and depth

information integrated in the model makes more challenging. The afford mentioned

challenges motivated us to work in the field of dynamic hand gesture recognition

addressing the various research gaps such as solving the problem of hand detection

and tracking, inter and intra-class variation, hand occlusion and efficient and genic

framework.

This thesis aims to develop efficient models that handle these issues, work well

with limited data, and perform reliably under diverse conditions. Initially, In first

framework, we solve the challenge of hand detection and tracking where RGB videos

are used to extract the features using CLIP model. The CLIP-BLSTM model is specif-

ically designed to address challenges associated with small hand sizes and changing

lighting conditions, proving to be efficient with fewer training samples and parame-

ters. Overall, it performs effectively in different lighting environments, establishing

it as an accurate hand gesture recognition system. Further, extraction of skeleton

data from RGB data and use of skeleton data in the proposed models overcome the

challenges of background clutter and gesturing hand tracking. Same gesture may

perform differently by different persons arises the concern on inter-class and intra-

class variation problem. To tackle inter-class and intra-class variation, DDA Loss

is employed to enhance within-class similarity gesture and reduce the between-class

similarity gesture. In this work, skeleton data is used to create skeleton point tra-

jectories, and DDA loss is used to enhance the feature learning so that intra-class

similarity increases and inter-class similarity decreases.

In the literature we analyze that use of multiple modalities compare to the single

modality performs well on the deep learning models and boost the performance.

Thus, we also work on dual-modality and multiple-modality. In the next model we

combined skeletal data with RGB data to recognize the dynamic hand gesture. Our

proposed model offers a bidirectional gated recurrent unit (Bi-GRU) model based
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hand gesture recognition system that is computationally effective than Bi-LSTM.

This method is designed to attain high-speed performance while being capable of

working successfully even with limited training samples. This dual-feature extraction

method allows the model to achieve a more robust understanding of hand gestures,

improving overall performance in diverse environment. However, limited research

has been conducted on multi-modal fusion as combination of multiple modalities can

boost the performance. In the next work we developed a hybrid framework that

integrates RGB, depth, and skeleton data to create an efficient system for dynamic

hand gesture recognition. An extensive experimental study conducted on various

standard datasets such as SKIG, DHG14/28, NWUHG, FPHA, LISA, 26-Gestures,

NTU, NTU120, and CHG illustrates the effectiveness of our all proposed frameworks.
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Chapter 1

Introduction

To communicate with one another hand gesture is very important. The task of

using the hand gesture in technology is influenced by a very common way humans

communicate in the natural environment [1]. In the early days of interaction with

a computer, the user uses a keyboard, mouse, pen. Similar type of communication

can be possible using hand gesture that replaces the hardware devices and reduces

the cost of hardware. Earlier gloves and sensors-based trackers were there that were

used to communicate with the computer but they were not successful due to the cost

of wearable devices. Moreover, user needs to wear these device’s that hinders the

naturalness of the hand gesture and very uncomfortable to wear such type of devices.

Then vision-based hand gesture recognition came into picture, where user performs

the hand gesture in front of the camera, and corresponding action is triggered. The

vision-based hand gesture is the way by which we give a signal to the computer

system. It is a non-contact technique for giving input. Hand gesture is of two types

(i) Static hand gesture which contains the shape of the hand, palm and fingers (ii)

Dynamic hand gesture which contains the movement of the hand with shape and

contains spatio-temporal information.

Hand gestures have numerous applications in daily life, ranging from controlling

automatic vehicles to enhancing smart home development and human-robot interac-

tion. They are used in clinical operations where surgeons can handles MRI or X-ray

scans through hand gestures. In sign language recognition, hand gestures enable com-
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munication among the deaf community. In robotics, dynamic hand gestures control

robot movements, 3D hand gesture recognition facilitates real-time human-computer

interaction. Hand gestures also play a crucial role in home automation, controlling

appliances like lights, fans, and security systems. For computers and tablets, gestures

are used to drag, drop, and move files, improving human-computer interaction. In

gaming, users engage with games through hand and body motions tracked by Kinect

sensors, while in automatic vehicles, gestures can control in-vehicle menus such as mu-

sic systems and navigation. Lastly, smart devices utilize hand gestures for functions

like capturing photos or opening doors in smart stores. From the various studies, we

witness that there are two methods used to interact between humans and comput-

ers using hand gestures, data glove-based, and vision-based approaches. In the data

glove-based approach, a sensor is attached to the gloves by electric signals and hand

postures are observed. This approach involves the physical connection of humans

and computers via cables. Data gloves have various advantages, like they obtain

hand joint data, and are suitable for small signal interference. The disadvantage of

data gloves is that the user needs to wear these devices, which hinders the naturalness

of the hand gesture and makes it very uncomfortable to wear such devices. Also, the

cost and maintenance of the data gloves are high. In contrast, the vision-based hand

gesture data is captured through the camera, and the gesture is performed in front

of the camera. Data captured through the camera can be in the form of RGB data,

depth data, and skeleton data. This technique is non-physical and does not require

the users to wear any device, and we get the natural and raw image of the hand. The

advantage of this technique is that it is computationally efficient, generic robust, and

easy to perform.

1.1 Vision-based Hand Gesture

In vision-based, data is captured through the camera or gesture is performed in front

of the camera. There are different sensors used to collect the data such as RGB

cameras, Kinect sensors, Infra red cameras, webcam etc. These cameras captures the
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RGB data, depth data, skeleton data, marker data and 3D data. Then that data

is processed and corresponding gesture is recognized. This technique is non-physical

and users do not need to wear any such device and we get the natural image of the

hand. Advantage of this technique is this is computationally efficient, generic robust,

and easy to perform. Moreover, vision-based hand gesture recognition systems can be

used in many real-time applications such as operating TV menus, gaming, navigation,

in medical imaging and sign language recognition etc. Following we have discussed

various modality based dynamic hand gesture recognition.

1.1.1 Color-based(RGB) Recognition

For feature extraction, RGB video data is passed through the model. RGB based

model has several benefits it gives color information about the gesturing hand, in-

cluding specifics like clothing, skin tone, and objects used in the gesture. RGB data

also provides spatial information that helps to interpret the shape of the gesturing

hand, its texture, and other relevant features of the hand. Overall, the RGB data

actual visualization of the hand gesture and gives textual and visual information.

RGB data may encounter challenges such as illumination variations, occlusion, and

background clutter, which can hinder hand gesture recognition. In contrast, skeleton

data overcome these challenges.

1.1.2 Skeleton-based Recognition

Skeleton data can be captured by the Kinect V2 camera and skeleton data gives the

21 land mark points of the hand gesture. The construction of a skeleton model of the

hand structure includes key joints including the wrist, palm, and finger joints such as

the knuckles and fingers. Based on the spatial configuration of the hand joints geo-

metric features can be extracted and helps in understanding the performed gestures.

Skeleton-based recognition is based on the features of the skeleton data. Skeleton

information gives the basic structure of the hand shape and hand articulation points

in a 2D or 3D space. It makes easier to precisely track hand gesture movements by
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giving information about the finger tip of the gesturing hand. Because skeleton data

is not dependent on background information, it overcomes the challenges of dynamic

hand gesture recognition such as occlusion, cluttered backgrounds, and changing il-

lumination.

1.1.3 Depth-based Recognition

A depth map gives a distance of the scene object from the camera viewpoint. The

depth map can be used to segment the hand or detect the hand by giving the depth

range. The depth information can also be used to reduce the noise in the data, remove

the shadow, and use for background subtraction. Each frame of the depth information

gives the model the ability to understand the gesture’s spatial configuration in three

dimensions. Depth data is more dependable under a range of lighting situations

because it is less affected by illumination than RGB data. Additionally, depth data

mitigates issues related to occlusion since it directly captures physical object distances

from the sensor, bypassing potential obstructions. Depth data also helpful in the

segmentation of the gesturing hand.

1.1.4 Multi-Modality Recognition

In the multi-modality based hand gesture recognition a combination of multiple

modalities is used to recognize the dynamic hand gesture. Multiple modality com-

binations can be, a combination of RGB and depth, depth and skeleton, skeleton

and RGB etc. When multiple modalities are used together, accuracy is frequently

increased as compared to a single modality. This is so that the model may use a

variety of information sources to help it make a better feature learning. Multi-modal

fusion enhances the model’s ability to generalize across different environments, light-

ing conditions, and hand orientations, leading to better performance in real-world

scenarios.

The various stages of gesture detection, include data acquisition, hand detection
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and tracking across frames, feature extraction, and classification. During the data

acquisition stage, hand gestures are performed in front of sensors, which can include

an infrared camera, RGB camera, depth camera, or skeleton camera. In hand gesture

classification, the traditional approach is set a milestone, that fails only when the

images are noisy and cluttered. In such scenario, the hand tracking of each frame is

a tough task and hand crafted features may not be good enough to propose a generic

and robust systems and degraded the accuracy of the model. In current state, deep

learning based methods shows good recognition accuracy in various gesture recogni-

tion system. Due to the advancement of computing devices and introduction of deep

neural networks, various deep learning framework has been proposed in the field of

dynamic hand gesture recognition and these framework gives tremendous accuracy on

the various bench mark datasets. In the deep learning based hand gesture recognition

system have only two stages that is data pre-processing and hand gesture classifica-

tion. In pre-processing image enhancement, noise removal, and image resizing and

data augmentation can be done. Then the particular images/videos passed to the

deep network in which automatic feature extraction and classification is done using

various deep learning networks.

1.2 Research Gaps, Challenges and Motivation

We surveyed the current state of the art methods for dynamic hand gesture recog-

nition, and enumerate some research gaps, challenges and motivation to work in the

field of dynamic hand gesture recognition. Though the research on vision-based hand

gesture recognition has been extensive and many valuable achievements have been

made, to date, the reliability and practicality of these hand gesture recognition sys-

tems are still a challenging.

• The main challenge in hand gesture recognition is accurately tracking hand

movements to recognize dynamic gestures under poor lighting and cluttered

backgrounds. Among the wide variety of vision based hand gesture recognition

methods, some can achieve very good recognition rates in certain restrictive
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environments, but may not be applicable yet to real world situations. Detecting

and tracking the hand is difficult due to its small size and complex structure

compared to the whole body.

• Background interference which occurs during the segmentation process, such as

lighting, brightness, similar colours, overlapping areas, or similar objects in the

background, can generate very divergent segmentation results. Human eyes are

able to differentiate between foreground and background easily while machine

can not.

• Inter-class variation refers to differences between different gestures that may

have similar patterns, making them hard to distinguish. An intra-class variation

involves differences within the same gesture. Both types of variation complicate

accurate gesture recognition.

• Camera viewpoints and gesture occlusion is also a problem due to the natural

motion of the hand, certain gestures inherently include partial occlusion which

affects the systems recognition accuracy. Moreover, motion blur and quiescent

camera conditions pose problems, the first occurs while tracking a dynamic

gesture in motion.

• Hand articulation and occlusion make hand gesture detection challenging, while

the hand tracking process faces challenges like complex background, dynamic

background, and illumination variation.

To make a robust gesture recognition system, hand detection, and tracking steps

must be performed flawlessly to propose a generic system. Segmenting the gesturing

hand in cluttered, complex, or dynamically changing backgrounds is challenging due

to issues like image resolution, clothing, and lighting variations. Finally, extracting

relevant features from the hand and accurately defining gestures is one of the biggest

challenges in hand gesture recognition. Due to the aforementioned challenge motivates

us to work in the area of dynamic hand gesture recognition. We have proposed deep
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learning based dynamic hand gesture recognition framework that uses single and

multiple modalities.

1.3 Problem Definition

Hand gestures give individuals a simple and intuitive way to communicate with tech-

nology, opening up opportunities in virtual reality, gaming, smart home automa-

tion, etc. Dynamic hand gesture recognition (DHGR), which involves understanding

gestures in motion over time, poses various challenges. These include variations in

lighting, occlusions, complex backgrounds, and similarities between gestures, within

the same category (Intra-class) and across different categories (Inter-class), making

detection and recognition difficult. Traditional models often find it challenging to

address these issues, particularly when working with a small or limited dataset, or

when integrating dual-modality models and multi-modal inputs, such as RGB images,

skeletal data, and depth information, is required. This thesis aims to develop efficient

models that handle these issues, work well with limited data, and perform reliably

under diverse conditions. Initially, we have proposed, the CLIP-BLSTM model to

overcome the problem of hand tracking and also efficient with fewer training sam-

ples and parameters. Further, extraction of skeleton data from RGB data and use

of skeleton data in the proposed models overcome the challenges of background clut-

ter and various lighting illumination. Further, same gesture may perform differently

by different persons arises the concern on inter-class and intra-class variation prob-

lem. To tackle inter-class and intra-class variation, DDA Loss is employed to enhance

within-class similarity gesture and reduce the between-class similarity gesture. In

this work, skeleton data is used to create skeleton point trajectories, and DDA loss is

used to enhance the feature learning so that intra-class similarity increases and inter-

class similarity decreases. In the literature we analyze that use of multiple modalities

compare to the single modality performs well on the deep learning models and boost

the performance. Thus, we also work on dual-modality and multiple-modality. In the

next model of the we combined skeletal data with RGB data to recognize the dynamic
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hand gesture. However, limited research has been conducted on multi-modal fusion

as combination of multiple modalities can boost the performance. In the next work

we developed a hybrid framework that integrates RGB, depth, and skeleton data to

create an efficient system for dynamic hand gesture recognition.

1.3.1 Research Objectives

OBJECTIVE 1: To develop a generic framework using RGB videos for dynamic

hand gesture recognition.

OBJECTIVE 2: To design a hand gesture recognition framework that handles

inter-class and intra-class variations.

OBJECTIVE 3: To investigate existing algorithm for extracting skeleton informa-

tion of moving hand and proposed a framework to overcome hand tracking problem.

OBJECTIVE 4: To develop an efficient hybrid framework that will use RGB, depth,

and skeleton data.

1.4 Contributions in the Thesis

In this thesis, we focus on dynamic hand gesture recognition and briefly address the

few research research gaps in the field of dynamic hand gesture recognition. In this

thesis four research objective were defined as mention in Section1.3.1 and we address

all these objective one by one discussed below as contribution of the thesis:

(I) OBJECTIVE 1:To develop a generic framework using RGB videos for dynamic

hand gesture recognition.

We proposed a method for dynamic hand gesture detection that uses the RGB

videos to extract the features using the CLIP model and BLSTM model is used

for sequence to sequence learning and recognize the hand gesture. Use of CLIP

for feature extraction from RGB video solve the problem of hand detection

and tracking. In the proposed model, the features extracted from CLIP are
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fed to the pipeline of a neural network that consists of two Conv1D layers, a

Bidirectional LSTM layer, and LSTM layer. The output of the Bidirectional

LSTM layer is then fed to another LSTM layer. The model recognizes the

dynamic hand gesture by adding a dense layer with a predetermined number of

output classes and a softmax activation function. The proposed CLIP-BLSTM

model is efficient with fewer training samples and parameters and experimental

results shows that the model performs well under different lighting conditions,

making it a rapid and accurate hand gesture recognition system.

(II) OBJECTIVE 2: To design a hand gesture recognition framework that handles

inter-class and intra-class variations.

To address the problem of inter-class and intra-class variation, DDA loss is

used that increases the with-in class similarity features and decreases the be-

tween class similarity features. In this work skeleton data is used to create a

skeleton point trajectory, which helps overcome challenge of background clut-

ter and illumination variations. However, the previous method performed well

on RGB data but data may encounter challenges such as occlusion, and back-

ground clutter, which can hinder hand gesture recognition. Thus, in the pro-

posed model skeleton data is used to create a skeleton point trajectory image,

which helps overcome challenges of illumination variations, and complex back-

grounds. Features are extracted from skeleton point trajectory image parallelly

using VGG16, Inception V3 and DenseNet121 and then feature vectors from

all models are then ensembled together and passed through the DDA loss func-

tion. The DDA loss combines center loss and compute the total loss and train

the feature learning. The DDA loss function encourages features to be close to

their respective class centers while being distinct from other class centers. The

proposed model is an ensemble of three pre-trained neural networks (VGG16,

InceptionV3, and DenseNet121) trained with DDA loss, which enhances within-

class similarity for gesture accuracy, thereby improving overall performance

(III) OBJECTIVE 3: To investigate existing algorithm for extracting skeleton in-
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formation of moving hand and proposed a framework to overcome hand tracking

problem.

As in previous objectives, both RGB and skeletal data are crucial for extracting

meaningful information necessary for reliable and accurate gesture recognition.

To boost the performance of the model, the third model of this thesis combined

skeletal data and RGB data. Skeleton data is extracted from RGB videos us-

ing Media-pipe. OpenPose Lib, Media Pipe, Hourglass network were available

in the literature and we found that media pipe extract skeleton data prop-

erly despite of occlusion, illumination and rotation invariant. The proposed

model is pipe-lined in two streams and carried out concurrently. In the first

pipeline, skeleton data is used to create the skeleton point trajectory video.

The advantage of using skeleton point video is that it overcomes the challenges

of illumination, and complex background. In the second pipeline from RG-

B/Depth data optical flow video is calculated. The advantage of calculating

the optical flow video is that it captures the hand motion and discards the

stationary background. After calculating the skeleton and optical flow, video

features are extracted using Xception-Net and represented in the form of Finger

motion features(FMF) and Global motion features(GMF) matrix. Then these

features are passed to the Bi-GRU unit for sequence-to-sequence learning. The

output of both Bi-GRU units is averagely fused and is flattened at a fully con-

nected layer. In the last SoftMax layer with cross-entropy loss is applied to get

the final probability score.

(IV) OBJECTIVE 4: To develop an efficient hybrid framework that will use RGB,

depth and skeleton data.

As we have seen in previous objective using dual modality features boost the

performance of the modal. RGB and skeleton data helps in to extract the vi-

sual and geometrical features respectively and combining these features boost

the performance of the model. Further, as depth data is less affected by the

illumination and occlusion gives a most discriminating features. Thus, combin-
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ing RGB, depth, and skeletal data creates a more robust and reliable gesture

recognition framework. Accordingly, in the fourth model, we propose a com-

putationally efficient ResCLIP-LSTM-based hand gesture recognition system.

This approach is designed to achieve high-speed performance and can operate

effectively with a smaller number of training samples. The proposed model be-

gins by taking RGB, Depth, and Skeleton data as an input. The CLIP model

is combined with the residual block for feature extraction of sequential data.

First, features are extracted using the CLIP model individually, and the fea-

tures are passed through the residual block. The sequential learning model

followed by the processing of each modality through two Conv1D layers and

an LSTM layer. After processing, the outputs from all modalities are concate-

nated into a single layer, set to 0.5 dropout regularization to avoid over-fitting.

Finally, a Dense layer with SoftMax activation predicts the class probabilities.

1.5 Outlines of the Thesis

This thesis is divided into Seven chapters and three appendices.

1. Chapter 1 Introduction

In this chapter, we present an introduction of thesis, including the problem

statement and the motivation. We briefly address the challenges in hand gesture

recognition. We also discuss our contributions and provide an outline of the

thesis in this chapter.

2. Chapter 2 Literature Survey

In this chapter, we present an overview of the state-of-the-art methods in dy-

namic hand gesture recognition. First, we have discussed the survey on tradi-

tional hand gesture and deep learning hand gesture recognition. Further, we

have discussed the dynamic hand gesture with single, double, and triple modal-

ities. We have also done detailed analysis of the state-of-the art methods and

represented statistically in the form of pie-chart and tabular.
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3. Chapter 3 Develop an Efficient and Generic Framework using RGB

Videos for Hand Gesture Recognition

This chapter introduces a novel framework called CLIP-LSTM model for dy-

namic hand gesture recognition using RGB videos. The CLIP-LSTM model

is designed to overcome the challenges of hand detection and tracking. The

proposed model used CLIP for feature extraction from RGB data. Addition-

ally, BLSTM is used for classification, it is efficient with fewer training samples

and parameters. The model performs well under different lighting conditions,

making it an accurate hand gesture recognition system.

4. Chapter 4 Develop a Hand Gesture Recognition Framework that will

Reduce the Inter and Intra-Class Variation

In this chapter, we have presented an ensemble learning with a unique loss

function called Discriminant Distribution-Agnostic(DDA) Loss. To address the

problem of inter-class and intra-class variation, DDA loss is used that increases

the with-in class similarity features and decreases the between class similarity

features. In the proposed model, the features are extracted individually via

VGG16, InceptionV3, and DenseNet121. Then ensemble of models, trained

with the advanced loss function, the DDALoss function encourages features

to be close to their respective class centers while being distinct from other

class centers. It improves classification accuracy by combining different models’

strengths in extracting features and using a strong loss calculation method to

ensure effective training.

5. Chapter 5 Motion Feature Estimation using Bi-Directional GRU for

Skeleton-based Dynamic Hand Gesture Recognition

This chapter presents a hybrid deep-learning model called motion feature es-

timation using bi-directional GRU for skeleton-based dynamic hand gesture

recognition. This method is designed to overcome challenges like illumina-

tion, cluttered background, and occlusions. The method improves hand gesture

recognition accuracy by using skeleton data and optical flow, which helps to
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overcome issues like occlusion and background clutter.

6. Chapter 6 Hybrid Framework for Dynamic Hand Gesture Recogni-

tion using Multiple Modalities

In this chapter, we present a fusion of multiple-modality concepts in our pro-

posed work, and each modality has its advantage. Fusion of multiple modal-

ity features boost the performance of the model. This approach is designed

to achieve high-speed performance and can operate effectively with a smaller

number of training samples.

7. Chapter 7 Conclusion

This chapter summarizes the key findings and main contributions of the thesis.

Along with that, future research directions are also discussed in this chapter.

8. Appendix A Long Short-Term Memory(LSTM)

In this appendix, we explain in detail about Long Short-Term Memory(LSTM).

9. Appendix B VGG16, Densenet121, Inception Net V3

In this appendix, we give a detailed explanation of VGG16, Densenet, and

Inception Net.

10. Appendix C Bi-GRU

In this appendix, we provide the details of the Bi-GRU model along with its

formulation and architecture.
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Chapter 2

Literature Survey

Reena Tripathi, and Bindu Verma. “Survey on vision-based dynamic hand ges-

ture recognition." The Visual Computer(2023): 1-29 (SCIE Indexed, IF: 3) DOI:

https://doi.org/10.1007/s00371-023-03160-x (Published)

In this chapter, we review the state-of-the-art methods in dynamic hand gesture

recognition on traditional and deep learning based dynamic hand gesture recognition.

Furthermore, we have shown the detailed analysis of the state-of-the-art-methods in

the form of pie-chart and tabular form.

In the literature hand gesture recognition systems proposed using traditional

methods as well using deep neural methods. In traditional methods the process of

hand gesture recognition method categories into the various stages such as data ac-

quisition, image pre-processing, hand detection and tracking, feature extraction and

classification. The input to the dynamic hand gesture is a videos which is a continuous

sequence of frames as input to the model. While in deep learning based approaches

pre-processing steps and deep neural network for automatic feature extraction and

classification. There are various traditional as well as deep learning based methods

has been proposed by research community to recognize the hand gesture.
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2.1 Literature Survey on Traditional Hand Gesture

Recognition Methods

Here, we have covered all the approaches used to recognize dynamic hand gestures

using traditional methods. After collecting the data, move to the pre-processing

stage, where it removes the noise and cleaning of data. Also, pre-processing steps

are required to prepare the data based on the model. Many algorithms such as

spatial filter [2], temporal median filter [3], Gaussian mixture model [4], and adaptive

background mixture model [5] are used to extract the noise from the data. After

pre-processing next step is hand segmentation and tracking of the gesturing hand

for extracting the features. Hand segmentation involves identifying the pixels in an

image that make up a hand and tracing the hand’s trajectory across a video is known

as hand tracking [6].

Due to the development of technologies and the digital era, the need for human-

computer interaction (HCI) techniques needs to grow. The dynamic hand gestures

movements are collected through optical flow [7], motion history images(MHI) [8] and

dynamic image network [9]. The motion of moving objects is captured by these meth-

ods without the need to segment moving objects. However, feature extraction plays

a vital role in recognizing hand gestures. Due to the image resolution and illumina-

tion variations, segmenting the gesturing hand from the background is challenging.

Author’s Verma et al. [10] segment the gesturing hand by using depth data and

calculating the model hand trajectories and geometrical features. Then Grassmann

discriminant analysis framework was used for gesture recognition. Similarly, Nguyen

et al. [11] and Zhou et al. [12] also used manifold learning to recognize the dynamic

hand gesture. In another work, Verma et al. [13] used a 3D histogram of oriented

gradient for extracting hand-crafted features and then used Grassman discriminant

analysis for gesture classification by substituting feature vector as a subspace on the

manifold. Oh-Bar et al. [14] extracted global features with different histogram-of-

Oriented Gradient (HOG) variations for automatic gesture recognition. Likewise, to

represent the hand pose, Smedt et al. [15] used a hand skeleton data descriptor and
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connected joint’s shape. The author Shotton et al. [16] introduces a fast and robust

method for predicting the human body poses. The researchers focus on the 3D tech-

nology without knowing about the preceding frame’s information. They performed an

experiment on a large dataset of image pairs, applied the machine learning technique,

and obtained high accuracy on synthetic and real test sets. Similarly, the author

Conseil et al. [17] worked on the shape of the hand; they used a Fourier descriptor to

perform the shape of the hand, and match patterns for hand pose recognition. The

SVM classifier is used for gesture recognition. The researcher aimed to combine two

algorithms to get better accuracy. The author also worked on multi-scale curvatures

and correlations of data. They include fingertip angles and the distance between two

desired points. The authors, Kollorz et al. [18] propose a new gesture recognition

classification technique, using Time of flight(TOF) sensors that are used for hand

segmentation. By using depth features and x-y projection coordinates of the image,

classify data quickly and simplistically. Lalit et al. [19] use depth matrix and adaptive

Bayes classifiers for finding dynamic gestures. The researchers use a depth matrix

and 1-nearest neighbor for recognition purposes. A Naïve Bayes classifier is used and

gesture is operated via two methods, state-level and sequence level. Tang et al. [20]

establish two new datasets for hand gesture purposes a) Hand gesture dataset and

b) Action 3D dataset. They used image entropy (feature extraction method) for fast

and better recognition with less chance of error. The author Chengjin et al [21] pro-

posed the DGS Subspace Pursuit algorithm and the dynamic group sparsity model,

which isolated the gesture features and reduced noise components. The experiment

used the support vector machine (SVM) classifier, with a sparsity level of 48. In

comparison to an OMPbased system, the testing findings revealed a 3.3% increase in

recognition rate, and in a small dataset, they outperformed a CNN-based method.

To replace dense optical flow estimation in multimodal techniques for hand gesture

recognition (HGR), the author Gibran et al. [22] proposed a more affordable solution

by combining hand segmentation masks and RGB frames. To increase the recogni-

tion rate of two real-time HGR method, named as Temporal Shift Modules (TSM)

and Temporal Segment Networks (TSN), the authors uses a lightweight semantic seg-
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mentation technique known as FASSDNet. The author Huiet al. [23] proposed vision

based marker less methods for hand gesture recognition method taking depth image

sequences as input . the proposed method include the extraction of temporal and

spatial features from the input sequences, and emphasis on hand parsing and 3d fin-

ger tip for localization for hand gesture recognition. The authors Huiyue et al. [24]

Initially decomposed a dynamic gesture and used hybrid model composed of hidden

Markov model for time-series modeling and fuzzy neural network for fuzzy inference.

Various classifiers and feature extraction techniques are used in the traditional

dynamic hand gesture recognition approach. In gesture representation and feature

extraction, researchers need to extract features that should be invariant to affine

transformation. The features can be geometric features, texture and pixel value,

2D and 3D model-based features, and motion trajectory features. We can use joint

angles, hand location, surface textures, and surface illumination for spatial features.

These features have limitations, such as hand occlusion, making hand representation

difficult. If there is a distortion in motion trajectory, extracted features may not be

distinguishable. The components extracted using a histogram of the oriented gradient

may be affected by various lighting conditions and illumination. Due to the above-

mentioned issues, the traditional method’s accuracy is not up to the mark. In hand

gesture classification, traditional methods have been effective but struggle with noisy

and cluttered images, making hand tracking difficult and reducing accuracy. Deep

learning-based methods have shown improved recognition accuracy in these scenarios,

offering more robust and reliable systems.
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2.2 Literature Survey on Deep Learning Based Meth-

ods

2.2.1 Dynamic Hand Gesture Recognition using Single Modal-

ity

In the literature, many authors have proposed deep learning-based frameworks using

single and multiple modalities. The author Chen et al. [25] used single modality RGB

data with short-term and long term features to classify the dynamic hand gesture.

Similarly, author [26] also focuses on a single RGB modality as an input and finds

the spatio-temporal features to classify the dynamic hand gesture using deep learning

model.

The author Salih et al. [27] use surface electromyography (sEMG) technique for

hand gesture recognition. They focused on the benefits of both EMG signals and

depth vision for real-time recognition by using MNN(Multiple Layer Neural Network)

as a classifier. According to the researcher, the experiment was done in two parts a)

HSOM clustering that automatically labels the data and b) MNN classifier as a result

MNN gives better accuracy as compared to others. The author(s) Hiroomi et al. [28]

uses gesture spotting for hand gesture recognition. The researchers converted the

input videos into feature vectors. Self-organizing Map(SOM)-Hebb was used as a

classifier. Sharma et al. [7] proposed 2D-CNN to extract features from optical flow

motion template and 3D-CNN to extract the features from RGB sequences. Then in

the last, before the classification layer, features are fused to boost the classification

accuracy. Mujahid et al. [29] proposed a lightweight model for gesture recognition

based on YOLO (You Only Look Once) V3 and DarkNet-53 convolutional neural

networks that do not require additional pre-processing, picture filtering, or image

enhancement.
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2.2.2 Dynamic Hand Gesture Recognition using multiple Modal-

ities

Using a deep learning framework, skeleton and depth-based hand gesture detection

also perform exceptionally well. To classify the performed hand gesture, authors Lai

et al. [30] and Chen et al. [31] both use skeleton data and bidirectional recurrent

neural networks (RNNs). In the literature, a different RNN and LSTM combina-

tion was proposed. Bi-directional LSTM is used by Li et al. [32] to identify the

gestures. For activity and hand gesture recognition, Juan et al. [33] use a Long

Short-Term Memory (LSTM) recurrent network along with a Convolutional Neural

Network (CNN). With the use of skeleton data, Chen et al. [34] proposed dynamic

graph-based spatial-temporal attention (DG-STA). The authors Devineau et al. [35]

uses skeletal data to classify the hand gestures with the help of a new convolutional

neural network. The author(s) Yangke et al. [36] proposed a novel approach for dy-

namic hand gesture recognition based on skeleton data. They focus on the global

enhancement model(GEM) and Motion perception module(MPM) for improving fea-

ture maps and x,y, and z coordinates axis. Researchers use DHG 14/28 dataset and

combine 2D-CNN and 3D-CNN to recognize hand gestures. Similarly, the author

Yong et al. [37] also work upon dynamic hand gestures and focus on the problems

that are created by hand gesture recognition like the joints connectivity. The pro-

posed model was a hand gesture graph convolutional network which is an advanced

version of spatial-temporal graph CNN of dynamic hand gesture recognition system.

However, the RGB data can be affected by lighting conditions, leading to inconsistent

results. To address this, some researchers used depth features, skeleton features and

a fusion of RGB and depth features [38] or RGB and skeleton [39] features in their

work.

In the literature multiple modality used to recognize the dynamic hand gesture. Au-

thor Zhang et al. [40], extract Spatio-temporal features using 3DCNN and ConvLSTM

to classify the gestures. The author Verma et al. [10] uses skeleton and depth data in-

formation for fingertips and creates trajectories and Grassmann Graph Discriminant
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Analysis(GGDA) is applied for gesture recognition. Similarly, author’s Tripathi et

al. [41] used skeleton trajectories extracted from the RGB data and optical flow infor-

mation for RGB video with GRU model to classify the dynamic hand gesture. Zhang

et al. [42] used Recurrent 3DCNN to classify the dynamic hand gesture, and Gibran

et al. [43] used 3DCNN to classify the dynamic hand gesture. Qing et al. [44] used

3DCNN plus ConvLSTM to recognize dynamic hand gestures using 3D hand pose,

depth, RGB, and skeleton data. The author Kankana et al. [45] used RGB and depth

data with sparse low-rank scores for hand action recognition, it includes four main

modules including CNN and RNN, that address frame level and video level classifi-

cation. The author Mucha et.al [46] proposed two novel 2D hand posture estimation

models for an egocentric view. These models aim to address challenges in dynamic

hand gesture recognition, such as overlapping hand occlusion. The author(s) Daniel

et al. [47] used hand gestures in the field of sign language and proposed framework

for various applications like human-computer interaction, robotics, health-care unit,

etc. In this paper, the researchers use thermal images as an input in the CNN model

to classify the gesture. The authors Muneer et al. [48] proposed multiple deep neural

network such as 3DCNN that learns a local and global features, sequence feature to

recognize the dynamic hand gesture. The author(s) Yangke et al. [49] proposed a

novel approach for dynamic hand gesture recognition based on skeleton data using

DHG 14/28 dataset. They focus on the global enhancement model(GEM) and Mo-

tion perception module(MPM) for improving feature maps and x, y, and z coordinates

axis by using 2D-CNN and 3D-CNN.

2.3 Review on Dynamic Hand Gesture Applications

Many Authors introduced a framework for different applications using dynamic hand

gestures. The author’s Bin et al. [50] use a hand gesture system for UAV (unmanned

aerial vehicles) flight control systems. The prominent component of the system is

based upon deep learning neural network. The leap motion devices are given as in-

put, and a deep network is used to recognize the hand gesture. Mishra et al. [51]
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focus on detecting the infant’s hand and tracking the infant’s hand using a recurrent

neural network. Daniel et al. [52] used hand gestures in sign language and proposed a

framework for various applications like human-computer interaction, robotics, health,

care unit, etc. Andrea et al. [53] introduce a natural user interface(NUIs) platform

based on dynamic hand gestures. The researchers aimed to develop a system that re-

duces driver distraction and works on the automotive condition using a convolutional

neural network. Noorkholis et al. [54] worked on the application of hand gestures

in the field of electronic gazettes like intelligent TV. By combining RGB and depth

data as input for deep learning models, the authors used 3DCNN and LSTM for ex-

tracting the Spatio-temporal features and Finite State Machine to control the class

decision for real-time applications. Nadia et al. [55] uses EMG sensors for gaming

purposes and introduces a new architecture conv-GRU architecture for gesture recog-

nition. The author Mohamed et al. [56] proposed a framework of GRU and 1DCNN

for real-time application for hearing-impaired persons. They use media-pipe to lo-

cate hand-skeleton important key points. In order to offer a reliable representation

of dynamic gestures, the author Rahul et al. [57] proposed an approach for encoding

a depth gesture’s videos into an encoded motion image (EMI), which is a single dy-

namic image. They use VGG16 and 2DCNN to classify the hand gestures. Author

verma et al. [13] explain the working of intelligent vehicles through hand gestures.

According to the authors, the hand gesture is utilized for controlling and monitoring

in-vehicle task such as operating music, navigation, answering phone calls, switching

the music menus, etc. Author Mahmud et al. [58] proposed a framework for English

Capital Alphabet (ECA) recognition drawn by index finger. Dynamic Time Warping

distances were determined between a template ECA and a test ECA for each ECA.

2.4 Detailed Analysis of the State-of-the-art-Methods

Due to the availability of the large size of the dataset and high-capacity hardware,

deep learning emerged rapidly and gave excellent results in the field of dynamic hand

gesture. After doing a literature review on detailed analysis we find that hand ges-
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tures are challenging in tracking, shape changes, illumination variation, and cluttered

background. A detailed description of the deep learning method of dynamic hand

gestures is given in Table 2.1. As we can see, around 50% research work on dynamic

hand gesture recognition is done using deep learning-based model and achieved a good

accuracy. Most of the deep learning model focused on the skeleton data as compared

to the RGB or depth data.

Table 2.1: The deep learning methods of dynamic hand gesture recognition

Paper Dataset Algorithm Description

Sharma et al. [7] Palm’s Graffiti

Digits and

&self-collected

in-house dataset

2DCNN

&3DCNN

Motion template guided by optical flow is encoded into a an

image for each video. C3D CNN model is used to process the

RGB videos and 2DCNN model is used to process the motion

template and in last both pipeline features are used to

classify the dynamic hand gesture.

Li et al. [59] SKIG, VIVA and

& NV Gesture

3DCNN& Spatial

attention

mechanism

Proposed 3D ConvNet model for effective feature extraction

and positive knowledge transfer framework from strong

modality to low modality to classify the dynamic hand

gesture.

Chuankun et

al. [60]

DHG-14/28 &

FPHA

SAGCN &

RBi-IndRNN

Main focus on extracting short-term and long-term temporal

information. Self-attention-based graph convolutional

network mainly focus on the hand joints.

Li et al. [32] ChaLearn LAP

2014 & SKIG

BLSTM Desnly connected BLSTM used to classify the dynamic hand

gesture.

Chunyong et

al. [61]

DHG-14/28 Kalman

filter-LSTM

Proposed a nested interval unscented Kalman filter (UKF)

with LSTM framework for noisy hand gesture data.

Ameur et al. [62] Leap gesture &

RIT dataset

HBU-LSTM Proposed Hybrid Bidirectional Unidirectional LSTM

(HBU-LSTM) that handles sequential data generated by leap

motion controller device.

Zhang et al. [63] SKIG & LSA 14 3D CNN &

ConvLSTM

Proposed alternate fusion of 3D CNN and ConvLSTM, which

is called as the Multiple extraction and Multiple prediction

(MEMP) network. MEMP network retains more

spatial-temporal feature information through multiple

information extraction and prediction of feature maps.

Chen et al. [31] DHG-14/28 LSTM Extract finger motion features that represent finger

movement and global motion features that represent hand

shape movement and in last features are fused and classified

using BLSTM. Proposed model suitable when skeleton data is

available.

Lai et al. [30] DHG-14/28 CNN&RNN The author used a combination of CNN and RNN where

CNN used to extract the features and RNN used for sequence

to sequence learning. This framework designed to handle

occlusion and illumination issues by considering skeleton and

depth data only.

Lei et al. [64] DHG-14/28,

SHREC17

De coupled

spatial-temporal

attention

network

(DSTA-Net)

Proposed a four de-coupled stream and trained separately

such as spatial-temporal stream (original data),spatial

stream, fast-temporal stream and slow-temporal stream. In

last classification scores are averaged to obtain the final

result.

Lui et al. [65] DHG-14/28,

SHREC17,

FPHA

HMM-Net &

HPEV-Net

Proposed two separate pipeline one for one for hand posture

variations and other one for hand movements trajectory.

Recognition results can be obtained by fusing the predictions

of the two networks.

Continued on next page
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Table 2.1 – continued from previous page

Paper Dataset Algorithm Description

Devineau et

al. [35]

DHG-14/28 CNN They focus on mainly hand-skeleton joints for hand gesture

classification where 2DCNN used to process sequences of

hand-skeletal joints by parallel convolution. A limitation of

the gesture recognition system is that it only functions on

complete sequences and only on skeleton data.

Yangke et al. [36] SHREC’17 &

DHG-14/28

TP stream & SP

stream

In SP-Stream proposed a novel compact joints encoding

method to represent the geometric shape characteristics of

the hand gesture and TP-Stream, proposed the motion

perception module to capture the significant motion features

of the hand gesture. Features are fused to get the final

prediction.

Li et al. [37] DHG-14/28&

SHREC’17

RNN proposed hand gesture graph convolutional networks

(HG-GCN) model, and focused on learning of more semantic

data.

Adam et al. [66] SHREC’17,

DHG-14/28,&

MMEGRN Proposed a new deep learning approach multi-model

ensemble gesture recognition network (MMEGRN) to

overcome the problem low recognition rate due to the noisy

and complex skeleton sequences.

Peng et al. [67] FPHA &

SHREC’17

ResGCN Authors designed an efficient and lightweight graph

convolutional network, named ResGCNeXt that overcome the

problem of high parameter and high computation cost.

ResGCNeXt learns rich features from skeleton information

and achieves high accuracy with less number of model

parameters

Okan et al. [3] EgoGesture &

NV Gesture

3DCNN Author’s proposed a novel two-model hierarchical architecture

for online dynamic hand gesture recognition systems. The

proposed architecture is designed considering resource

efficiency, early detections and single time activations, which

are critical for online gesture recognition applications

Gibran et al. [43] NVIDIA & IPN 3DCNN 3DCNN is used to classify the dynamic hand gesture in

real-world scenario. They generated a new new benchmark

dataset for continuous HGR that includes real-world issues.

Qing et al. [44] DHG-14/28 and

&SHREC’17

3DCNN +

ConvLSTM

Proposed 2D hand pose estimation using OpenPose and

3DCNN + ConvLSTM is used to classify the dynamic hand

gesture. Features of RGB, depth and 3D skeleton data is

fused for final prediction.

Noorkholis et

al. [54]

Self-defined

gestures dataset

3DCNN + LSTM Create a 24 dynamic hand gesture to control the real-time

smart TV environment using deep learning model.

Chen et al. [25] Ego gesture ConvLSTM applied an attention mechanism to extract features from a

collection of hand gestures. They proposed RPCNet, which is

made up of R2plus1D and ConvLSTM which are combined in

parallel.

Zhang et al. [68] DHG-14/28&

SHREC2017

Graph

Convolutional

Neural Network

Proposed two-stream graph attention convolutional network

with spatial–temporal attention for hand gesture recognition.

In one stream hand pose is processed and in another one

skeleton graph of current and previous frame is passed.

We have reviewed various research papers on different methods for hand ges-

ture recognition. These include papers focusing on color detection, appearance-based

methods, motion-based methods, skeleton-based approaches, depth-based techniques,

3D detection methods, and deep learning-based approaches. The details of few papers

are summarized in Table 2.1. The pie chart in Figure 2-1 illustrates the progress of
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research in the field of dynamic hand gesture recognition.

The pie chart shows that most research in dynamic hand gesture recognition

focuses on deep learning methods (42.11%) because they are very effective at under-

standing complex spatial and temporal patterns. Skeletal-based approaches (14.91%)

use joint locations to identify gestures, whereas depth-based approaches (14.04%)

use depth sensor data to increase accuracy. These methods have gained popularity

because they effectively address challenges and produce better results.

Figure 2-1: Pie chart depicting the development of research in the area of dynamic
hand gesture recognition

2.5 In Thesis Prospective:

This thesis proposed four frameworks for dynamic hand gesture recognition. We ad-

dress the difficulties of hand tracking in the first framework by using RGB videos for

hand gesture recognition. It is very challenging to detect the hand for tracking because

of its complex structure and smaller size as compared to the whole body. The CLIP-

LSTM model is designed to overcome the challenges that arise due to the small size of
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the hand and varying lighting conditions. A proposed model uses CLIP(Contrastive

Language-Image Pre Training) model to extract features from RGB data. We use

2D skeleton trajectories and skeletal data in the second framework. Which deals

with inter-class variation and intra-class variation both complicate accurate gesture

recognition. We discover that both the skeletal and RGB data are useful and have

benefits over one another. Therefore, in order to increase recognition accuracy, we

combine the skeletal data with optical flow data in our third framework. We use

skeleton data because the skeleton data does not contain background information.

Therefore, skeleton-based models will not be affected by complex background infor-

mation. Additionally, they are unaffected by occlusion and changes in illumination.

Similarly, the creation of an optical flow video contains the movement of the hand

irrespective of any background information. Thus, it filters out irrelevant data and

concentrates on the gesturing hand that helps in extracting temporal features. In

our fourth framework and each modality has its advantages. The first modality

utilizes RGB data. It gives spatial information that helps interpret the gesturing

hand’s shape, texture, and color information. The second modality employs depth

data, which records gesture motion. The third modality incorporates skeleton data.

The challenges of complex backgrounds and occlusion are resolved by using skeletal

data. In our pipeline, features are extracted individually from each modality using

the CLIP model and sequential learning model followed by the processing of each

modality through two Conv1D layers and an LSTM layer. This approach is designed

to achieve high-speed performance and can operate effectively with a smaller number

of parameters and also address the challenges of dynamic hand gesture recognition.
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Develop an Efficient and Generic

Framework using RGB Videos for

Hand Gesture Recognition

Reena Tripathi, and Bindu Verma. “CLIP-LSTM: Fused Model for Dy-

namic Hand Gesture Recognition." presented in In 2023 IEEE 20th India

Council International Conference (INDICON), pp. 926-931. IEEE, 2023.

(Published)

3.1 Introduction

In this chapter we present our work on dynamic hand gesture recognition using CLIP

as a feature extractor and BLSTM for sequence-to-sequence learning. We use hand

gestures in a variety of contexts every day, including automatic vehicles, intelligent

homes, controlling and monitoring home appliances, human-robot interaction, 3D

modeling, 3D space sensors, sign language, and, artificial intelligence. Dynamic hand

gesture recognition includes analyzing the hand motion and fingers, as well as the

overall shape and position of the hand, to identify specific gestures. In a dynamic

hand gesture, spatio-temporal information is required to recognize any particular

gesture. Automated hand gesture is a challenging due to the smaller size of the
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hand compare to the whole body. Furthermore, detection and segmentation of the

hand from the background, detecting the shape of the hand is challenging. Further,

robustly tracking the hand across frames and extracting important features so that

the gesture is well-defined is also challenging. Various illumination conditions also

make hand detection and tracking difficult. Thus, in the work we have used CLIP

model to extract the features that overcome the challenge of hand detection and

tracking.

In this chapter, we proposed the CLIP-BLSTM model, which uses a CLIP model

to extract features from RGB data. The obtained features are fed into the BLSTM

model for sequence-to-sequence learning and dynamic hand gesture is recognized.

The novelty of our work consists of the use of a CLIP model, through which RGB

video data is passed to extract the features. We test the proposed model on two

datasets CHG(Cambridge hand gesture dataset) and LISA. We compare our pro-

posed model with state-of-the-art methods and demonstrate that our proposed CLIP-

BLSTM model outperforms existing approaches, achieving an accuracy of 86.0%.

3.2 Literature Survey

In deep learning-based hand gesture recognition, the hand gesture recognition system

has only two stages that are data pre-processing and hand gesture classification. The

pre-processing stage consists of image enhancement, noise removal, and image resiz-

ing. The authors Yimin et al. [69] presented a novel technique for feature extraction.

The researchers use a weighted radial projection algorithm to detect each finger of

the hand. Researchers use two methods for gesture recognition in their studies a)

edge feature-based matching and b) gesture silhouette-based matching and angular

projection were used for obtaining wrist angles, finger length, and orientation. Lalit

et al. [19] used depth matrix and adaptive Bayes classifiers to recognize the dynamic

hand gestures. The researchers use a depth matrix and 1-nearest neighbor for recog-

nition purposes. In this paper, a Naïve Bayes classifier is used by the user and the

gesture is operated via two methods, a) state-level and b) sequence level. A spatio-
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temporal attention-based 3D-CNN was suggested by the authors Huang et al. [70]

to gather high-quality information for categorizing multi model dynamic gestures.

According to the author, the multi model had certain drawbacks, namely that the

data acquisition settings were not ideal. The Grassmann graph is used by the author

Verma et al. [13] to classify the gesture. The distance between classes and the test ges-

ture is calculated using k-nearest neighbor and embedding discriminant analysis the

gesture is then allocated to the class with which it has the smallest distance. Rubin

et al. [71] proposed Hybrid Single Stage Recognition (hybrid-SSR) based on CNN for

hand gesture recognition and enhanced Xception CNN model for feature extraction.

Ameur et al. [62] Proposed Hybrid Bidirectional Unidirectional LSTM (HBU-LSTM)

that handles sequential data generated by leap motion controller device. Due to the

availability of the large size of the dataset, and high-capacity hardware deep learning

emerged rapidly and gives excellent results. However, feature extraction plays a vital

role in recognizing hand gestures.

3.3 Proposed Architecture

The proposed architecture is depicted in Figure 3-1. In the proposed model, the

features extracted from CLIP are fed to the pipeline of a neural network that consists

of two Conv1D layers, a Bidirectional LSTM layer, and LSTM layer. The function

applies two Conv1D layers with the same number of filters, "row hidden," and a

kernel size of 3× 3. When the padding parameter is set to "same," the layers’ output

shape will have the same dimensions as their input. The output of the Bidirectional

LSTM layer is then fed to another LSTM layer. This LSTM produces a single vector.

The model recognizes the dynamic hand gesture by adding a dense layer with a

predetermined number of output classes and a softmax activation function.

3.3.1 Contrastive Language-Image Pre-training(CLIP)

A modern machine-learning model called CLIP has attracted a lot of attention in the

AI field because of its extraordinary capacity to comprehend the relationship between
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Figure 3-1: Proposed model(CLIP-BLSTM) architecture: Features extracted from
CLIP are processed through a neural network comprising two Conv1D layers, a Bidi-
rectional LSTM layer, and an LSTM layer. The Conv1D layers, configured with
identical filters and kernel size (3×3) and "same" padding, preserve input dimen-
sions. The Bidirectional LSTM output is passed to the LSTM layer, which generates
a single vector. Finally, a dense layer with a softmax activation function classifies
dynamic hand gestures into predefined classes.

images. We used CLIP image encoder to extract the features from each frame of a

video. The CLIP model is shown in Figure 3-2.

CLIP feature extractor extracts the feature of each video and stored it into a 1-D

vector of dimension 512. Let 𝑇𝑓 represent the feature vector of 1 video as shown in

Equation 3.1. If there are ‘n’ number of videos in one class, the size of the feature

vector matrix for one class will be in Equation 3.2. Like-wise next class feature vector

matrix will be appended. In last for a dataset having ‘C’ classes the feature vector

matrix will be (𝐶 × 𝑛) × 𝑇𝑓 . The total number of features for one video will be

represented by 𝑇𝑓 .

𝑇𝑓 = 𝑓0, 𝑓1, 𝑓2, 𝑓3.......𝑓511 (3.1)

𝐸𝐹 = 𝑃𝑖 × 𝑇𝑓 ∀𝑖 = 1, 2, 3...𝑚 (3.2)

Where, the features matrix for one class will be represented by ‘EF’. 𝑃𝑖 represented

gestures of class 𝐶𝑚.
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Figure 3-2: CLIP (Contrastive Language-Image Pre-training) Model

𝑂𝑢𝑡𝑝𝑢𝑡(𝐶×𝑛)×𝑇𝑓
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶1𝑃1{𝑓0 𝑓1 · · · 𝑓511}

𝐶1𝑃2{𝑓0 𝑓1 · · · 𝑓511}
...

... . . . ...

𝐶1𝑃𝑛{𝑓0 𝑓1 · · · 𝑓511}

𝐶2𝑃1{𝑓0 𝑓1 · · · 𝑓511}

𝐶2𝑃2{𝑓0 𝑓1 · · · 𝑓511}
...

... . . . ...

𝐶𝑚𝑃𝑛{𝑓0 𝑓1 · · · 𝑓511}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

The Feature matrix for one complete dataset is represented by the 𝑂𝑢𝑡𝑝𝑢𝑡(𝐶×𝑛)×𝑇𝑓
.

Where, 𝐶1 represents class 1, 𝑃1 represents gesture 1 of class 𝐶1, and {𝑓0, 𝑓1, . . . , 𝑓511}

is the feature matrix of video 1 of class 1, and so on.

3.3.2 Convolutional Network

The 1D-CNN stands for the 1-D convolutional neural network is made up of 3 layers.

The 3 layers, are the convolutional layer, the pooling layer, and the fully connected

layer. The fully connected layer has a number of neurons equivalent to the number

of output classes, while the input layer receives the 1D feature signal.

30



CHAPTER 3.

3.3.3 Bi-directional LSTM

Recurrent neural networks struggle with long-term reliance because of the vanishing

gradient problem in LSTM networks. Instead of analyzing each data point separately,

they can analyze entire data sequences and store pertinent information from prior

data in series to assist in processing new data points. Therefore, it is very adept at

processing sequential data.

The input gate, output gate, forget gate, and cell gate of an LSTM unit are

responsible for controlling the learning process as shown in Figure 3-3. To govern

the functioning of the gates throughout the learning process, sigmoid functions are

essential. The Cell state refers to the long-term memory in the LSTM. It regulates

the data that will be saved in an LSTM cell from the previous stage. The cell gate is

modified by the remembering vector, which is known as the forget gate. The forget

gate and output state instruct the cell gate whether to maintain the information in

the cell state if it is 1 or to forget if it is 0 [72]. Use of LSTM has the main benefit of

resolving the vanishing gradient issue. The following equations illustrate the working

of LSTM in our model [72].

𝑖𝑡 = 𝜎(𝐴𝑡𝑤𝑥𝑖 +𝐻𝑡−1𝑤𝐻𝑖 + 𝑏𝑡−1𝑤𝑏𝑖 + 𝑤𝑖𝑏𝑖𝑎𝑠) (3.4)

Where, “𝑖𝑡" represents the input gate at time step “t". ‘𝐴𝑡" is the input vector and

“𝑤𝑥𝑖" is its weight matrix. “ 𝐻𝑡−1" is the hidden state from the previous time step

with “𝑤𝐻𝑖". “𝑏𝑡−1" and “𝑤𝑏𝑖" are the bias term and its weight matrix, respectively.

“𝑤𝑖𝑏𝑖𝑎𝑠" is an additional bias term for the input gate.

𝑓𝑡 = 𝜎(𝐴𝑡𝑤𝑥𝑓 + ℎ𝑡−1𝑤𝐻𝑓 + 𝑏𝑡−1𝑤𝑏𝑓 + 𝑤𝑓𝑏𝑖𝑎𝑠) (3.5)

Where, “𝑓𝑡" represents the output gate. “ℎ𝑡−1", another notation for the hidden state

from the previous time step. “𝑤𝐻𝑓" is the weight matrix for the hidden state to the

forget gate, and “𝑤𝑏𝑓" is the weight matrix for the bias to the forget gate.
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𝐶𝑡 = 𝑡𝑎𝑛𝐻(𝐴𝑡𝑤𝐴𝐶 + ℎ𝑡−1𝑤𝐻𝐶 + 𝑤𝑧𝑏𝑖𝑎𝑠) (3.6)

Where, “𝐶𝑡" represents the candidate cell state. “𝑤𝐻𝐶" is the weight matrix for the

hidden state to the cell state and “𝑤𝑧𝑏𝑎𝑖𝑠" is the bias term. In Equation 3.7 the “𝑏𝑡"

represents the cell state.

𝑏𝑡 = 𝐶𝑡 ⊗ 𝑖𝑡 + 𝑏𝑡−1 ⊗ 𝑖𝑡 (3.7)

𝑜𝑡 = 𝜎(𝐴𝑡𝑤𝑥𝑜 +𝐻𝑡−1𝑤𝐻𝑜 + 𝑏𝑡−1𝑤𝑏𝑜 + 𝑤𝑜𝑏𝑎𝑖𝑠) (3.8)

Where, “𝑜𝑡" represents Output gate. Controls the output from the cell state.

𝐻𝑡 = 𝑜𝑡 + 𝑡𝑎𝑛𝐻(𝑏𝑡) (3.9)

Where,“𝐻𝑡" represents the hidden state.

Equations 3.7, 3.8, and 3.9 are the standard formulas for output, forget gates, and

hidden state. The "𝑏𝑡", "𝐻𝑡" represents output memory activation function at time

interval t.

Figure 3-3: LSTM model.

Bidirectional LSTM is frequently used for sequential data processing applica-

tions like voice and natural language processing. The primary characteristic of Bi-

directional LSTM is that it uses two different LSTM layers that are used to process
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Figure 3-4: Bidirectional LSTM block.

both the forward and backward directions of the input sequence as depicted in Fig-

ure 3-4. Concatenating the output of each layer results in the output feature vector,

which retains both the past and future context of input data. Bidirectional LSTM, in

contrast to LSTM, can comprehend movements captured before and after the present

point as it can utilize forward information and backward information both. Because

of the flow of information in both directions, the BLSTM Long-term dependencies

between signal patterns are captured. As compared to unidirectional networks, bi-

directional LSTM is much superior [73]. In our proposed model the output of the

second Conv1D is fed into this network.

3.3.4 Hand gesture classification

The extracted features using CLIP are fed into the proposed model. Then we combine

the outputs of two layers and add a dropout layer with a 0.3 dropout rate to prevent

overfitting. After that, the concatenated LSTM layer’s output is mapped using the

dense layer, and using the SoftMax layer class-wise probability is calculated below we

have discussed all the layers of the model.

The algorithm of the proposed model is shown in Agorithm 3.1.
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Algorithm 3.1 The proposed model’s algorithm
1: Input: RGB data
2: Feature Extraction:
3: Let the total number of features represented by 𝑇𝑓 = {𝑓0, 𝑓1, 𝑓2, 𝑓3, . . . , 𝑓511}
4: The feature size EF is defined as: 𝐸𝐹 = 𝑃𝑖 × 𝑇𝑓

5: Output matrix:

𝑂𝑢𝑡𝑝𝑢𝑡(𝐶×𝑛)×𝑇𝑓
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶1𝑃1{𝑓0, 𝑓1, . . . , 𝑓511}
𝐶1𝑃2{𝑓0, 𝑓1, . . . , 𝑓511}

...
𝐶1𝑃𝑛{𝑓0, 𝑓1, . . . , 𝑓511}
𝐶2𝑃1{𝑓0, 𝑓1, . . . , 𝑓511}
𝐶2𝑃2{𝑓0, 𝑓1, . . . , 𝑓511}

...
𝐶𝑚𝑃𝑛{𝑓0, 𝑓1, . . . , 𝑓511}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
6: Pipeline:
7: Step 1: Define Input Layers
8: 𝑖𝑛𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟_𝑟𝑔𝑏← 𝐼𝑛𝑝𝑢𝑡(𝑠ℎ𝑎𝑝𝑒 = 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒_𝑟𝑔𝑏)
9: Step 2: Process Modality

10: function process_modality(in_layer)
11: 𝑥← 𝐶𝑜𝑛𝑣1𝐷(𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 3, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 =′ 𝑠𝑎𝑚𝑒′)(𝑖𝑛_𝑙𝑎𝑦𝑒𝑟)
12: 𝑥← 𝐶𝑜𝑛𝑣1𝐷(𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 3, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 =′ 𝑠𝑎𝑚𝑒′)(𝑥)
13: return LSTM(col_hidden)(x)
14: end function
15: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑟𝑔𝑏← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦(𝑖𝑛𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟_𝑟𝑔𝑏)
16: Step 3: Concatenation and Output Layer
17: concatenate([first_read, trans_read])
18:19: 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑_𝑙𝑎𝑦𝑒𝑟𝑠← 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.5)(𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑_𝑙𝑎𝑦𝑒𝑟𝑠)
20: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟 ← 𝐷𝑒𝑛𝑠𝑒(𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠𝑒𝑠, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =′ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥′)(𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑_𝑙𝑎𝑦𝑒𝑟𝑠)
21: Step 4: Compile the Model
22: Step 5: Train the Model
23: Step 6: Evaluate the Model
24: Step 7: Plot Results
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Dropout Layer

Dropout is a regularization method used to stop deep learning models from overfitting.

It is frequently employed in LSTM networks to enhance the model’s performance. To

reduce overfitting, we use dropout 0.3 on each LSTM layer’s output. Dropout makes

LSTM units more durable and helps avoid overfitting.

Dense Layer

The dense layer, which has the ability to conduct nonlinear transformations on the

LSTM layer’s output, is frequently used after the LSTM layer in neural network

models. Each hidden state in the LSTM layer’s output represents the memory at a

particular step. These hidden states can be mapped to output using the dense layer.

In the proposed model, the concatenated LSTM layer’s output is mapped using the

dense layer to the final output of given classes, using softmax activation. In order to

avoid overfitting, the output of the concatenated LSTM layer is first passed through

a Dropout layer. Next, the Dense layer is applied to create the final output.

Softmax Function

In our proposed model, we employ LSTM for classification and a layer that is dense

and has a softmax activation function which generates the output probabilities for

each class. A typical loss function, especially for multi-class classification tasks, is

categorical cross-entropy. It calculates the difference between the actual labels and the

predicted probability distribution. Each class predicted probabilities, are calculated

using a Softmax activation function. In order to ensure that the projected values are

both non-negative and add up to 1, Softmax creates a probability distribution over

the classes.

𝑌𝐿 = −
𝐶∑︁
𝑖=1

(𝑥true(𝑗) · log(𝑥pred(𝑗))), for C classes (3.10)

In Equation 3.10 the summation is applied to all classes 𝐶 and 𝑌𝐿 is represented as a

cross-entropy loss. The true label is represented by the 𝑥true(𝑗), while the predicted

probabilities are represented by 𝑥pred(𝑗) for 𝑗th class. Elements of the expected prob-
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ability are applied individually to the logarithm. It calculates the difference between

actual class labels and expected probability. By adding the element-wise product of

the true labels and the logarithm of the predicted probabilities for each class, the loss

is determined. To reduce the loss during training, the negative sign is applied. The

calculated probability distribution tends to resemble the real distribution when the

cross entropy loss is kept to a minimum, which increases the classification accuracy

of the model.

3.4 Experimental Analysis

All the experiments were conducted on intel Core i7 processor with 8GB RAM, and

8GB NVIDIA GETFORCE GTX graphics card. Implementation is done in Ten-

sorflow 2.8 with PyTorch libraries. Adam is applied as an optimization function and

using the SoftMax layer class-wise probability is calculated. The proposed model uses

pre-trained CLIP to extract the features. Following that, the 1DCNN and BLSTM

network receive the extracted features and perform sequence-to-sequence learning.

The entire input sample is split into 90% for training and 10% for testing. For 200

epochs, we trained the proposed model using a batch size of 8 and a learning rate of

0.001.

3.4.1 Experiment on Various Hand Gesture Datasets

Cambridge Hand Gesture Dataset (CHG) [74]

CHG dataset performed by five persons with three different hand shapes and each

gesture performed 20 times.The CHG dataset includes 900 image sequences of 9 hand

gesture classes, each of which is represented by 3 basic hand shapes with 3 motions.

100 image sequences (5 various illuminations 10 arbitrary motions of 2 persons) are

provided in each class. The gesture inventory contains 9 classes i.e. ‘flat-contract’,‘

flat right’, ‘flat-left’, ‘spread-contract’ ‘spread-left’, ‘spread-right’, ‘V-shape-contract’,

‘V-shape-left’, ‘V-shape-right’. The Cambridge Hand Gesture dataset is shown in
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Figure 3-5. The Cambridge hand gesture dataset RGB videos are passed into the

Figure 3-5: Shows a few samples from the Cambridge Hand Gesture (CHG) dataset,
illustrating various hand gesture categories. Each row represents a distinct type
of gesture, highlighting the dynamic movements of the hand, which are useful for
evaluating gesture recognition systems. The red arrows indicate the direction of
motion, where applicable.

CLIP model for feature extraction. The features are further divided into 90% training

sets and 10% testing sets, and fed into the proposed model. The classwise accuracy

of a proposed model on CHG dataset is shown in Figure 3-6, the model achieved 97%

average accuracy.

Figure 3-7 displays a confusion matrix on the CHG dataset. The confusion matrix

shows that the following: classes ‘spread-right’ and ‘V-shape-left’ are mostly misclas-

sified with ‘spread-left and ‘V-shape-right’ due to the same motion movement and

same hand shape. The performance of our system for a particular set of test data, we

calculate the precision(P), recall(R), and F1-score(f1) values provided in Table 3.1.

Our experiments show that the F1-Score is greater than 94% for all classes, and

the macro average accuracy of our proposed model is 97%, proving that our pro-

posed model achieves a high level of balance and performs remarkably well across all

classes. We calculate the precision(P), recall(R), and F1-score(f1) values represented
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Figure 3-6: For the Cambridge Hand Gesture (CHG) dataset, the class accuracy is
greater than 94% for all classes, and the average accuracy of our proposed model is
97%.

Figure 3-7: Shows a confusion matrix on the CHG dataset. The confusion matrix
shows that the following: classes(5) spread-left’ and class (7) V-shape-left’ are mostly
misclassified with class(6) spread-right’ and class(8) V-shape-right’ due to the same
motion movement and same hand shape.
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Table 3.1: All performed classes Precision, Recall, and F1-Score on CHG dataset.

Class No. Class P R f1
0 ‘flat-contract’ 0.97 0.98 0.97
1 ‘flat right’ 0.99 0.96 0.97
2 ‘flat left’ 0.96 0.98 0.97
3 ‘spread-contract’ 0.99 0.99 0.99
4 ‘spread-left’ 0.98 0.91 0.95
5 ‘spread- right’ 0.96 0.98 0.95
6 ‘V-shape-contract’ 0.98 0.99 0.98
7 ‘V-shape-left’ 0.97 0.94 0.94
8 ‘V-shape-right’ 0.97 0.97 0.95

in Equations 3.11, 3.12, and 3.13.

Precision =
𝑡𝑝

𝑡𝑝+ 𝑓𝑝
(3.11)

where tp stands for "true positives," and fp for "false positives,"

Recall =
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
(3.12)

the number of false negatives is indicated by fn. The F1-Score is the harmonic mean

of recall and precision, with the most effective value being 1 and the poorest being 0.

Equation 3.13 is utilized to determine the F1-Score.

𝐹1-Score =
2× Precision× Recall

Precision + Recall
(3.13)

Experiments on LISA dataset [14]

LISA dataset contains 32 gesture sequences with three different hand shapes single-

finger, two-finger, and three-finger gestures. These gestures are ‘swipe left’, ‘swipe

right’, ‘scroll up’, ‘scroll down’, ‘single tap’, ‘double tap’, ‘zoom in’, ‘zoom out’,

‘swipe up shape change’, ‘swipe down shape change’, ‘expand’, and ‘pinch’ ‘clockwise

rotation’, ‘anticlockwise rotation’, ‘reverse Z’, ‘rotate’, ‘scroll left’, and ‘scroll right’.

The LISA dataset is shown in Figure 3-8.

First, we conducted an experiment using 32 different gestures and obtained 81%
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Figure 3-8: LISA Dataset

accuracy, since some movements such as scrolling left and shifting left, have similar

movement patterns. Similar confusion exists between the gestures scroll plus and

scroll right, shift right and scroll X, and one tap and two taps. The accuracy increased

to 86% after we combined a similar kind of gesture. The features extracted from the

CLIP are further divided into 90% training sets and 10% testing sets and fed into

LSTM for feature learning. The class-wise accuracy is shown in Figure 3-9.

Figure 3-10 displays a confusion matrix. From the confusion matrix, we can see

that class 5 performs a zigzag gesture using 2 fingers, class 7 performs a swipe X

gesture using two fingers, and class 21 is a merged class of three gestures like single

tap using one finger, single tap using two fingers, and double tap using 3 fingers have

less than 75% accuracy because of similar tracks and Similar confusion exists between

the gestures scroll right and shift right, scroll plus and scroll X, and one tap and two

taps.

The recall(R), precision(P), and F1-Score(f1) measures of the LISA dataset, are

provided in Table 3.2. Our experiments show that the F1-Score is greater than 76%
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Figure 3-9: For the LISA dataset, the class accuracy is greater than 73% for all
classes, and the average accuracy of our proposed model is 86%.

for all classes, and the macro average accuracy of our proposed model is 86%, proving

that our proposed model achieves a high level of balance and performs remarkably

well across all classes of challenging datasets.

Comparison with State-of-the-Art Methods

Comparison of CHG Dataset with State-of-the-Art Methods

We compare the experimental results with state-of-the-art on the CHG dataset. Ta-

ble 3.3 presents a comparison between the proposed model and existing approaches.

In this paper [75], the author presents a key frame extraction method for gesture

videos using high-level feature representation. They utilize a multi-channel gradi-

ent magnitude frequency histogram (HGMF-MC) descriptor based on VGG16. The

author [13] uses the Grassmann graph for gesture classification, employing k-nearest

neighbors and embedding discriminant analysis to assign gestures to the nearest class.

Similarly, the author [74] introduces tensor canonical correlation analysis (TCCA) to

capture joint space-time relationships in video data for action classification, combined

with feature selection and a nearest neighbor classifier. The author [20] focuses on

improving the speed of hand gesture recognition by using image details and cluster-

ing to pick keyframes in videos, thus speeding up data processing. The author [76]

enhances dense trajectory features by introducing a new hand segmentation tech-
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Figure 3-10: Confusion Matrix on LISA dataset. The matrix highlights that only
gestures like class 5 (zigzag gesture with two fingers), class 7 (swipe X gesture with
two fingers), and class 21 (a merged class of single and double taps) achieve less than
75% accuracy due to similar motion tracks. Confusions occur between gestures like
scroll right and shift right, scroll plus and scroll X, and one tap versus two taps. The
rest of the classes achieved more than 75% accuracy. The overall accuracy of the
proposed model is 86%.
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Table 3.2: All performed classes Precision, Recall, and F1-Score on LISA dataset.

Class No. Class P R f1
0 Pinch 0.90 0.93 0.92
1 Swipe right 0.90 0.92 0.91
2 Swipe left 0.92 0.83 0.87
3 Swipe down 0.85 0.84 0.84
4 Swipe up 0.87 0.83 0.85
5 Zig Zag 0.80 0.77 0.79
6 Swipe V 0.82 0.80 0.81
7 Swipe X 0.79 0.73 0.76
8 Swipe + 0.79 0.73 0.76
9 Clockwise rotation 0.86 0.80 0.83
10 counter clockwise 0.83 0.79 0.81
11 Reverse z 0.85 0.81 0.83
12 Rotate 0.78 0.84 0.81
13 Scroll left

Scroll left(3SCL)
0.79 0.80 0.79

14 Scroll right
Scroll right(3SCR)

0.82 0.85 0.83

15 Scroll down
Scroll down(3SCD)

0.80 0.85 0.82

16 Scroll up
Scroll up(3SCU)

0.81 0.90 0.85

17 Single Tap(1ST)
Single Tap(2ST)

Double tap(3ST)

0.86 0.85 0.85

18 Double Tap(1DT)
Double Tap(2DT)

Double Tap(3DT)

0.82 0.86 0.84

19 Zoom in 0.88 0.87 0.87
20 Zoom out 0.90 0.92 0.91
21 Swipe up shape change 0.93 0.87 0.90
22 Swipe down shape change 0.91 0.87 0.89
23 Expand 0.90 0.84 0.86
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nique that leverages superpixels and spatial-temporal coherence. The results, shown

in Table 3.3, demonstrate that the proposed CLIP-BLSTM model outperforms other

state-of-the-art methods on the CHG dataset, achieving 97.0% accuracy.

Table 3.3: Comparison of recognition accuracy on the CHG dataset with state-of-the-
art methods.

Methods Accuracy (%)
2D-DWT-PH [75] 90.0
3DHOG+GGDA [13] 89.7
TCCA+k-NN [74] 85.5
LBP-TOP [20] 60.8
Dense Trajectories + Hand Seg [76] 94.0
CLIP-BLSTM 97.0

Table 3.4: Comparison of classification accuracy on the LISA dataset with state-of-
the-art methods.

Methods Accuracy (%)
STG Embedding + Spline Modelling [77] 82.0
CNN with the HRN and LRN [78] 77.0
HOG3DVV + GGDA [13] 83.5
CNN-HMM Hybrid [79] 57.5
CLIP-BLSTM 86.0

Comparison of LISA Dataset with State-of-the-Art Methods

We compare our experimental results with state-of-the-art on the LISA dataset as

shown in Table 3.4. In the paper [77], the author presents a method for recognizing

actions in videos by creating graphs based on video data and matching them with

new video clips. In papers [79] and [78], the authors focus on improving traditional

dynamic hand gesture recognition methods by training HMMs with complex features

like HOG and CNN, while also exploring techniques such as dimensionality reduction

and data augmentation to prevent overfitting. The Grassmann graph is used by the

author in [13] to classify gestures, where the distance between classes and the test

gesture is calculated using k-nearest neighbor and embedding discriminant analysis.

For the LISA dataset, we compare our proposed model with state-of-the-art meth-

ods and demonstrate that our proposed CLIP-BLSTM model outperforms existing
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approaches, achieving an accuracy of 86.0% the result shows in Table 3.4.

3.5 Conclusion

To create a rapid and accurate hand gesture system, the chapter proposed a CLIP-

BLSTM model that is computationally effective on fewer training samples and uses

fewer parameters. Our experimental findings demonstrate that our model operates

well under various illuminations and is comparable to SOTA techniques on challenging

datasets from CHG and LISA. The experimental accuracy on the CHG dataset is 97%

and on the LISA dataset is 86% superior performance to cutting-edge techniques while

requiring fewer parameters.

The novelty of our work lies in utilizing the CLIP model to extract features from

RGB video data. The CLIP-BLSTM model is specifically designed to address chal-

lenges associated with small hand sizes and hand tracking, proving to be efficient

with fewer training samples and parameters. Overall, it performs effectively in dif-

ferent lighting environments, establishing it as an accurate hand gesture recognition

system.
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Develop a Hand Gesture Recognition

Framework that will Reduce the Inter

and Intra-Class Variation

Reena Tripathi, and Bindu Verma. “Ensemble Learning with DDALoss

for Inter and Intra Class Variation in Hand Gesture Recognition" is com-

municated in Signal, Image and Video Processing (SCIE Indexed, IF:2)

(Under Review)

4.1 Introduction

In this chapter, we have presented an ensemble learning with a Discriminant Distribution-

Agnostic(DDA) Loss. To address the problem of inter-class and intra-class variation,

DDA loss is used that increases the with in class similarity features and decreases

the between class similarity features. In this work skeleton data is used to create a

skeleton point trajectory, which helps to overcome challenges such as hand occlusion,

illumination variations, and complex backgrounds. However, the previous method of

chapter 3 performed well on RGB data but it data may encounter challenges such

as illumination variations, occlusion, and background clutter, which can hinder hand

gesture recognition. In contrast, skeleton data overcome these challenges because
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skeleton data is not dependent on background information and foreground informa-

tion. Further, plotting of skeleton trajectory and processing with DDA loss solve the

problem of inter and intra class variations. Inter-class variation is the variation in

performing the gestures of different classes. Intra-class variation, on the other hand,

describes variations within the same gesture class. This variation in gesture arises

from the fact that the same gesture might be performed in various ways by several

individuals or even by the same individual at different times. Thus, plotting of the

gesture trajectory that shows these variations and feature extraction with various

deep learning model then DDA loss feature learning solve the inter and intra-class

variation problem. The DDA loss function encourages features to be close to their

respective class centers while being distinct from other class centers. It improves clas-

sification accuracy by combining different models’ strengths in extracting features and

using a strong loss calculation method to ensure effective training.

The proposed model, utilizes three pipelines, each using skeleton data to create a

skeleton point trajectory, addressing challenges like hand occlusion and illumination

variations. For complex structure and to get the high discriminating features deeper

deep learning model required. Features are extracted individually using VGG16, In-

ceptionV3, and DenseNet121, and then ensembled. The DDA loss function combines

center loss and DDA loss to compute the total loss, encouraging features to be close

to class centers while distinct from others. DDA loss, increases the similarity within

class (Intra-class) and decreases the similarity in different classes (Inter-class), and

improves the performance of the hand gesture recognition system. This loss is used

for back-propagation, updating model weights iteratively with the Adam optimizer.

After training, the ensemble of models makes predictions by aggregating outputs, im-

proving classification accuracy by leveraging the strengths of each model and robust

loss calculation. This combination makes the model more robust to diverse hand ges-

tures and varying conditions. While keeping a significantly lower computational cost,

the proposed model outperformed with other state-of-the-art methods on benchmark

datasets.

47



CHAPTER 4.

4.2 Literature Survey

Hand detection is challenging due to inter-class and intra-class variations in gesture

performance, as well as moving backgrounds and illumination changes. Many authors

have used skeleton data with the deep learning model to classify the dynamic hand

gesture. The author Wenbin et al. [80] proposed a model for inter-class and intra-

class constraints in Novel class discovery (NCD) using symmetric Kullback-Leibler

divergence (SKLD). Similarly, other authors [81] work on inter and intra-class vari-

ation using central loss and triplet loss to reduce intra-class variation and increase

inter-class variation. The author Verma et al. [10] uses skeleton and depth data in-

formation for fingertips and creates trajectories and Grassmann Graph Discriminant

Analysis(GGDA) is applied for gesture recognition. Similarly, author Chen et al. [31]

proposed motion feature-augmented RNN for dynamic hand gesture recognition us-

ing skeleton data. In this paper, finger and global motion features are extracted, to

enhance the RNN performance. The author Smedt et al. [15] proposed a new skeleton-

based approach for 3D hand gesture recognition, utilizing the geometric shape of the

hand to extract descriptors from hand skeleton joints. Similarly, author’s Tripathi

et al. [41] used skeleton trajectories extracted from the RGB data and optical flow

information for RGB video with GRU model to classify the dynamic hand gesture. To

recognize hand gestures, the author Liu et al. [65]proposed a technique that divides

hand gestures into two categories, hand movements and hand posture variations. It

presents an end-to-end two-stream network that uses a 2D CNN for hand movement

features and a 3D CNN for hand posture development to learn from these compo-

nents. The author Caputo et al. [82] proposed a 3D gesture recognizer model based

on trajectory matching of a single hand. In another paper [83]authors used 3D tra-

jectory gestures, and few trajectory options were taken for comparison. The author

Sheng et al. [67] proposed an effective Graph Convolutional Network (GCN) model

for dynamic hand gesture recognition using skeleton data. Li et al. [84] proposed the

MVHANet method for single-hand gesture recognition by finding a suitable distribu-

tion of angles in skeleton data. The author Deng et al. [85] proposed a multistream
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network (MM-Net), utilizing skeleton data for action recognition.

4.3 Proposed Architecture

The architecture of the proposed model is shown in Figure 4-1. The model is organized

into three pipelines, each utilizing a different model. In all pipelines, skeleton data is

used to create a skeleton point trajectory, which helps in overcome the challenges such

as hand occlusion, illumination variations, and complex backgrounds. After calcu-

lating the skeleton points trajectory, features are extracted individually via VGG16,

InceptionV3, and DenseNet121. These models extract features from the trajectory

images plotted using skeleton data of the performed gesture. These feature vectors

from all models are then ensembled and passed through the DDA loss function, which

combines center loss and DDA loss to compute the total loss. The DDA loss function

encourages features to be close to their respective class centers while being distinct

from other class centers. This combined loss is used for back propagation to update

the model weights. Thus, DDA loss helps in to increase the with in class similarity

and decrease the between class similarity. The models are trained iteratively using

the Adam optimizer. After training, predictions are made by aggregating outputs

from all models in the ensemble, and the final predicted labels are produced. The

proposed model is an ensemble of three pre-trained neural network models (VGG16,

InceptionV3, and DenseNet121) for a multi-class classification task, enhanced by a

custom loss function, Discriminant Distribution-Agnostic Loss(DDA loss). The en-

semble approach aims to leverage the strengths of each model for better performance.

The ensemble of models, trained with this advanced loss function, works to improve

classification accuracy by combining different models’ strengths in extracting features

and using a strong loss calculation method to ensure effective training [86].

4.3.1 Ensemble Learning

In ensemble learning, we combine multiple models to improve the overall performance

and robustness of the system. Each model (VGG16, DenseNet121, and InceptionV3)
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Figure 4-1: For hand gesture recognition, the proposed architecture comprises three
deep learning architecture models: VGG16, InceptionV3, and DenseNet121. Through
the use of their individual layers, each model separately processes the input image
in order to extract features. After the features are collected, they are put together
in an ensemble layer and then processed with the DDA loss function that controls
class variations to increase recognition accuracy, predictions are made by aggregating
outputs from all models in the ensemble.
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will learn different features and patterns from the input data, and their predictions

will be aggregated to produce the final prediction. This approach can help in reducing

overfitting, especially when working with a small dataset, as the different models can

generalize better together.

• VGG16 [75]: In our proposed model we load the VGG16 model with pre-trained

weights for feature classification. The model’s layers are frozen to prevent their

weights from being updated during training. A flattened layer is added to

convert the 2D feature maps to 1D feature vectors. A Dense layer with 256

units and ReLU activation is then included. The output layer is a Dense layer

with the number of classes specified by num_classes and a softmax activation

for classification. The architecture of VGG16 is shown in Figure 4-1BLOCK 1.

VGG16 is a deep neural network with 16 layers, consisting of 13 convolutional

layers to detect patterns such as edges, and textures. With 3x3 filters and

5 max-pooling layers, extracting features from images will help in preserving

spatial information while reducing computational complexity. It ends with fully

connected layers for classification, where the final layer produces probabilities

for classes.

• InceptionV3 Model [87]: By using several convolutions of various sizes in par-

allel, InceptionV3 is able to capture multi-scale information. The pre-trained

weights are used by the model to load InceptionV3. The feature maps are

transformed into a single vector per picture by a GlobalAveragePooling2D layer,

which is followed by a Dense layer that contains the softmax activation and num-

ber of classes for classification. The architecture of inception V3 is shown in

Figure 4-1BLOCK 2. Inception V3 is a deep neural network that uses multiple

parallel convolution layers (1x1, 3x3, 5x5) and pooling operations to efficiently

capture features at different scales. It uses smaller, split-up convolutions to

make the model faster and more efficient. It also adds extra classifiers during

training to help the model learn better and prevent overfitting, making it very

good at recognizing images.
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• DenseNet Model [88]: DenseNet121 enhances the flow of information and gra-

dients by connecting each layer to every other layer in a feed-forward fashion.

Global Average Pooling2D is used to reduce the spatial dimensions of the fea-

ture maps before the fully connected layers. The architecture of DenseNet121

is shown in Figure 4-1BLOCK 3. DenseNet121 connects each layer to all pre-

vious layers, improving feature reuse and reducing the number of parameters.

It consists of 4 dense blocks, each separated by transition layers that downsam-

ple the feature maps. The output of each layer is ensembled with the output

from all previous layers in the same block, resulting in dense connectivity. This

architecture enhances model efficiency and performance in deep learning tasks.

Ensemble the outputs of the three models, we can integrate the predictions and

determine the final prediction for the class with the highest average probability. The

detailed algorithm of the proposed model is outlined in Algorithm 4.1.

Algorithm 4.1 The proposed model’s algorithm.
1: Input: 2D Skeleton trajectory plots data
2: Step 1: Split data into 𝑋train, 𝑋test, 𝑦train, 𝑦test

3: Step 2: Create DataLoaders
4: train_loader ← DataLoader(𝑋train, 𝑦train)
5: test_loader ← DataLoader(𝑋test, 𝑦test)
6: Step 3: Feature Extraction - Each model separately extracted the features of

an input images(VGG16, InceptionV3, DenseNet121)
7: Step 4: Define each Model individually
8: VGG16Model, InceptionV3Model, DenseNet 121Model
9: Step 5: Ensemble Layer and Output Layer

10: Ensembled Layer - Fuse the outputs from VGG16, InceptionV3, and
DenseNet 121 fully connected layers

11: Step 6: Define DDA loss
12: Initialize DDA loss with parameters
13: Forward pass: Compute center loss and DDA loss
14: Step 7: Apply DDA loss
15: Apply DDA Loss
16: Step 8: Compile the Model
17: Step 9: Train the Model
18: Step 10: Evaluate the Model
19: Step 11: Plot Results
20: Output the final classification result
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4.3.2 Discriminant Distribution-Agnostic Loss (DDA loss)

DDA loss is a loss function used in deep learning model’s specially when dealing with

unbalanced data or noisy labels. DDA loss maximises the class separability thus, solve

the problem of inter and intra-class variation. In DDA loss, the Euclidean distance is

used to measure how close a feature vector is to its true class center and how far it is

from other class centers. The loss minimizes this distance for the similar classes while

maximizing for different classes, thereby improving intra-class compactness and inter-

class separation. DDA loss is better at handling imbalanced data than traditional

losses like cross-entropy. Training with both softmax loss and center loss helps create

well-separated clusters of features. Softmax loss emphasizes the angular separation

between features of different classes, but it doesn’t work well when the dataset is

challenging. Center loss focuses only on reducing the distance between features and

their class centers, ignoring other classes. The center loss works very effectively on

challenging datasets and imbalanced datasets, especially in real-world scenarios. It

creates clearer boundaries between different gesture classes, which is helpful when

gestures look similar. These features make DDA loss more accurate and reliable for

recognizing dynamic hand gestures compared to traditional methods.

The Euclidean distance between deep feature vectors and class centers is used by

the DDA loss to overcome both intra-class and inter-class variances. How DDA loss

handles these variances is provided below:

Inter-Class and Intra-Class Variations

In dynamic hand gesture recognition, inter-class variations describes the distinctions

between different classes of gestures. To avoid miss-classification, effective loss func-

tions will ensure that features from various classes are well-separated. DDA loss [89]

can be calculated using Equation 4.1.

𝐿𝐷𝐷𝐴 = − 1

2𝑛

𝑛∑︁
𝑗=1

log
𝑒−‖𝑝𝑗−𝑐𝑞𝑗 ‖

2/2∑︀𝑅𝑣

𝑣=1 𝑒
−‖𝑝𝑗−𝑐𝑣‖2/2

(4.1)

where:
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• 𝑛 is the number of samples in the batch.

• 𝑝𝑗 is the deep feature of the 𝑖-th sample.

• 𝑐𝑞𝑗 is the center of the class to which 𝑝𝑗 belongs.

• 𝑅𝑣 is the number of classes.

• 𝑐𝑣 is the center of the 𝑣-th class.

The SoftMax function can be represented as:

𝑝𝐶(𝑝𝑗 ∈ 𝐶𝑣 | 𝑣) =
𝑒−‖𝑝𝑗−𝑐𝑣‖2/2∑︀𝑅𝑣

𝑣=1 𝑒
−‖𝑥𝑗−𝑐𝑣‖2/2

(4.2)

Where, In Equation 4.2. 𝑝𝑗 is the deep feature of the 𝑗-th sample. 𝑐𝑣 is the center

of the 𝑣-th class and 𝑅𝑣 is the number of classes. The network effectively separates

features of distinct classes by learning to maximize this probability for the correct

class by minimizing DDA loss.

On the other hand, In dynamic hand gesture recognition, intra-class variation

describes the variations that take place inside the same class of gestures. These

variations arise from the same gesture being performed differently by many people,

or even by the same person at various times. Different hand shapes, sizes, orientations,

speeds, and trajectories are among the factors that cause intra-class variations.

The Class Center Attraction(CCA) represents the distance between the data point

and its class center. The loss function makes sure that features belonging to the

same class are tightly packed around the center of that class by maximizing the log

probability as shown in Equation 4.3.

𝐶𝐶𝐴 = 𝑒−‖𝑥𝑖−𝑐𝑦𝑖‖
2/2 (4.3)

Total Loss = 𝜆 · Center Loss + 𝛾 ·DDA loss (4.4)

where “𝜆" is the weight for the center loss, and “𝛾" is a weight for the DDA loss.

This total loss is computed during the forward pass of the DDA loss function and
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used for backpropagation to update the model weights. Unlike center loss, which only

considers the distance to the correct class center, DDA loss considers the distances

to all class centers. DDA loss improves both inter-class separation and intra-class

compactness by considering Euclidean distances to all class centers. Combines center

loss and DDA loss using the weights as shown in the Equation 4.4, ensuring a balance

between intra-class compactness and inter-class separation.

4.4 Experimental Analysis

4.4.1 Training Details

An Intel Core i7 processor with 8GB of RAM and an 8GB NVIDIA GeForce GTX

graphics card was used to perform the experiments. TensorFlow 2.8 was used for

the implementation, along with Keras libraries. Adam served as the optimization

function, while the categorical cross-entropy is utilized as the loss function. The scores

from the three deep learning architectures are ensembled at the ensemble learning

layer and then passed to DDA loss layer to form the final prediction. Categorical

cross-entropy and DDA loss are used in the proposed model, The DDA loss is used

to find the final prediction. A model undergoes 150 epochs of training with 4 batch

sizes and a 0.0001 learning rate. Our experimentation encompassed various batch

sizes, loss functions, and optimizers, ultimately selecting a batch size of 4 and DDA

loss as the loss function based on experimental results. We Perform experiments on

the 26-Gesture Dataset [82], DHG14/28 [15], and a subset of NTU RGB+D3 [90] and

NTU RGB+D 120 [91] benchmark dataset.

4.4.2 Experimental Evaluation Across Different Datasets

26-Gestures Dataset

There are 26 different gesture trajectory 3D points in the 26-Gestures dataset 1 [82].

A set of 3D skeletal points captured using a Leap Motion controller by 14 dis-
1https://github.com/davidespano/3cent-dataset
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tinct people are included in the dataset. The gesture set consists of 3D symbols

(‘caret’, ‘check’, ‘curly-bracket-right‘, ‘delete’, ‘pigtail’, ‘curly bracket-left’, ‘square-

bracket-right’, ‘star’, ‘v’, ‘x’, ‘square-bracket-left’), semi-circular arcs ( ‘arc3Dright’,

‘arc3Dleft’), a ‘3D spiral’, simple geometric figures (‘zig-zag’, ‘circle’, ‘left-swipe’,

‘right-swipe’, ‘rectangle’), and 3D polygonal chains (‘poly3Dxyz’, ‘poly3Dyxz’, ‘poly3Dzxy’,

‘poly3Dxzy’, ‘poly3Dyzx’, ‘poly3Dzyx’). The 2D skeleton trajectories of few classes

of 26-Gestures dataset is show in Figure 4-2. Figure 4-3 presents the confusion

Figure 4-2: Shows samples from the 2D skeleton points trajectories of 26-Gestures
dataset [82], illustrating different hand gesture patterns such as Spiral, Circle, Trian-
gle, Zig-Zag, etc.

matrix of the proposed model on the 26-Gesture dataset. The model achieved 100%

accuracy in most of the classes, with an overall average accuracy of 99.8%. To assess

the classification accuracy of our system for a particular set of test data, precision(P),

recall(R), and F1-score for both datasets as shown in Table 4.1.

The class-wise accuracy of the 26-Gestures dataset, as shown in Figure 4-4, indi-

cates that the model performed exceptionally well across all classes, with only a few

misclassified. Most of the classes achieved 100% accuracy, demonstrating the model’s

excellent classification performance on the 26-Gestures dataset.

The Table 4.1 shows performance metrics (Precision, Recall, F1-score) for the 26-
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Figure 4-3: Confusion matrix of 26-Gestures dataset, the proposed model achieved
100 percent accuracy on most classes. The overall accuracy of the model is more than
99.80 percent.

Figure 4-4: For the 26-Gestures dataset, the class accuracy is greater than 99% for
all classes, and the average accuracy of our proposed model is 99.8%.
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Gestures dataset. It exhibits high classification accuracy across most classes, with a

few exceptions where performance dropped. In the 26-Gestures dataset, Class 4 has

marginally lower metrics (P: 0.82, R: 0.90, F1: 0.86). This indicates that the model

produces false positives and minimizes true positives, leading to less performance in

accurately identifying the target class 4.

Table 4.1: F1, Precision(P), and Recall(R) values for 26-Gestures dataset and
DHG14/28 dataset

Class 26G DHG Class 26G DHG
P R F1 P R F1 P R F1 P R F1

0 1.00 1.00 1.00 1.00 1.00 1.00 13 1.00 1.00 1.00 1.00 0.95 0.97
1 1.00 1.00 1.00 1.00 1.00 1.00 14 1.00 1.00 1.00 - - -
2 1.00 1.00 1.00 1.00 0.95 0.97 15 1.00 1.00 1.00 - - -
3 1.00 0.79 0.88 1.00 1.00 1.00 16 1.00 1.00 1.00 - - -
4 0.82 1.00 0.90 1.00 1.00 1.00 17 1.00 1.00 1.00 - - -
5 1.00 1.00 1.00 0.99 0.95 0.95 18 1.00 1.00 1.00 - - -
6 1.00 1.00 1.00 1.00 0.95 0.98 19 1.00 1.00 1.00 - - -
7 1.00 1.00 1.00 0.95 0.95 0.95 20 1.00 1.00 1.00 - - -
8 1.00 1.00 1.00 0.95 1.00 0.98 21 1.00 1.00 1.00 - - -
9 1.00 1.00 1.00 0.95 1.00 0.98 22 1.00 1.00 1.00 - - -
10 1.00 1.00 1.00 1.00 0.95 0.97 23 1.00 1.00 1.00 - - -
11 1.00 1.00 1.00 1.00 1.00 1.00 24 1.00 1.00 1.00 - - -
12 1.00 1.00 1.00 1.00 1.00 1.00 25 1.00 1.00 1.00 - - -

Figure 4-6 show how different model combinations perform with and without

DDA loss on 26-Gestures dataset. Each graph shows that incorporating DDA loss

consistently improves the accuracy across all model combinations, highlighting the

effectiveness of the DDA loss function in enhancing classification performance. The

biggest improvements are seen when combining multiple models, demonstrating that

DDA loss helps in making the models better at classifying the data correctly.

DHG14/28

The DHG14/282 [15] dataset comprises depth data and skeleton data of hand joints.

It includes 2800 gesture sequences across 14 different hand gesture classes. These

gestures are performed by 20 participants, using either a single finger or the whole

hand, with each gesture being performed 5 times. The skeleton data captures 22 hand
2http://www-rech.telecom-lille.fr/DHGdataset/
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Figure 4-5: Shows class-wise accuracy on the DHG14/28 dataset, the model’s per-
formed excellent with most classes achieving 100% accuracy. The average accuracy
of the model is 97.1%.

Figure 4-6: Accuracy comparison with or without DDA loss on 26-Gestures dataset.
DDA loss improves accuracy for all model combinations. The biggest improvements
are seen when combining multiple models.
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joint points, representing the hand’s shape, and is utilized for both 2D and 3D hand

shape analysis. The information is gathered via the Intel RealSense short-range depth

camera. There are two categories of gestures in the gesture inventory: ‘Coarse’ and

‘Fine’. The ‘Coarse’ gestures include ‘Tap’, ‘Swipe Up’, ‘Swipe Down’, ‘Swipe left’,

’Swipe Right’, ‘Swipe V’, ‘Shake’ ‘Swipe X‘, and ‘Swipe +’. The gestures like ‘Ro-

tation Clock Wise’, ‘Rotation anti-Clock Wise’, ‘Pinch’, ‘Expand’, and ‘Grab’ come

under ‘Fine’ gesture category. The class“0" represents as “Tap", class“1" represents

as “swipe Up", class“2" as “swipe Down" and so on.

The 2D trajectory using a single finger of the hand shape of the DHG 14/28

gesture dataset is fed as an input to the proposed model. Figure 4-7 presents the con-

fusion matrix of the proposed model on the DHG14/28 dataset. The model achieved

100% accuracy in most classes, with an overall accuracy of 97.1%. To assess the

classification accuracy of our system for a particular set of test data, we calculate

the precision(P), recall(R), and F1-score as shown in Table 4.1 shows performance

metrics (Precision, Recall, F1-score) for the DHG14/28 datasets. This indicates that

the model produces true positives and minimizes false positives, leading to good per-

formance in accurately identifying the target class with a few exceptions like Classes

4 and 6 have slightly lower Recall (0.95) and F1-scores (0.97 and 0.98, respectively).

The class-wise accuracy of the DHG14/28 dataset is shown in Figure 4-5. The model

performed exceptionally well across all classes, with only a few instances of misclas-

sification. Most classes achieved an accuracy of more than 94%, and several classes

attained 100% accuracy. This demonstrates that the model achieved excellent classi-

fication performance on the DHG14/28 dataset across all classes.

Our experiments show that the F1-Score is greater than 99% for all classes, and

the macro average accuracy of our proposed model is 97.1%, for some classes our

approach attains 100% accuracy, proving that our proposed model achieved better

results and performs remarkably well across all classes.

Figure 4-8 show how different model combinations perform with and without DDA

loss on DHG14/28 dataset. They clearly show that using DDA loss improves accuracy

for all model combinations. The biggest improvements are seen when combining
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Figure 4-7: Confusion matrix of DHG14/28 dataset, the proposed model achieved 100
percent accuracy on most classes. The overall accuracy of the model is more than
97.1 percent.

Figure 4-8: Accuracy comparison ensemble with DDA loss and ensemble without DDA
loss on DHG14/28 dataset. DDA loss improves accuracy for all model combinations.
The biggest improvements are seen when combining multiple models.
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multiple models, demonstrating that DDA loss helps in making the models better at

classifying the data correctly.

NTU RGB+D and NTU RGB+D 120

The NTU RGB+D3 [90] and NTU RGB+D 1204 [91] are the largest multi-modal

action recognition datasets, containing skeletal, RGB, depth, and infrared data. The

proposed model uses the 3D trajectory plots from both datasets as input. NTU

RGB+D contains 60 classes of different actions. However, we have selected only 7

classes where participation of hand gesture involved to perform the action. Such

classes are ‘drinking water’, ‘clapping’, ‘writing’, ‘hand waving’ ‘type on keyboard’,

‘rub two hands’, and ‘put palms together’. NTU RGB+D 120 contains 120 classes;

out of that we have selected 13 classes where hand gesture involved. Such classes

are ‘drinking water’, ‘clapping’, ‘writing’, ‘hand waving’ ‘type on keyboard’, ‘rub two

hands’, ‘put palms together’ ‘thumb up’, ‘thumb down’, ‘make OK sign’, ‘make a

victory sign’, ‘cutting nails’, and ‘snap fingers. The model achieved more than 90%

class-wise accuracy on the mentioned classes of NTU RGB+D dataset are shown

in Figure 4-9, the overall average accuracy on the proposed model is 98.71% The

Figure 4-10 illustrates the model’s classwise accuracy on mention classes of NTU

RGB+D 120 dataset with an average accuracy of 96.23%.

Impact of the Proposed Model on Real-World Scenario

Our proposed model improves class separability and feature robustness, ensuring

higher accuracy in gesture recognition. This is important in real-world settings where

gestures can change due to lighting, angle, or speed. Our method contributes to the

development of models that are capable of handling real-world problems by enhancing

the model’s performance in various scenarios. There are a wide range of possible

uses for hand gesture recognition in both industry and research. In industries like

healthcare or manufacturing, where minimising physical contact is essential, it can be
3https://rose1.ntu.edu.sg/dataset/actionRecognition/
4https://rose1.ntu.edu.sg/dataset/actionRecognition/
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Figure 4-9: Shows class-wise accuracy of NTU RGB+D dataset. The class accuracy
is greater than 95% for all classes, and the average accuracy of our proposed model
is 98.71%.

Figure 4-10: Shows class-wise accuracy of NTU RGB+D 120 dataset. The class
accuracy is greater than 90% for all classes, and the average accuracy of our proposed
model is 96.23%.
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utilised in human-computer interaction systems to enable touch less control. It can

also be used in games, virtual and augmented reality, and sign language recognition,

which makes technology more user-friendly and accessible.

4.4.3 Ablation Study

Detecting and tracking gesturing hands remains a challenging task. To address this

issue, an ensemble model with DDA loss is introduced which incorporates three modal-

ities (VGG16 + InceptionNet V3 + DenseNet121) that can be utilized to improve

gesture classification. The 26-Gestures dataset and the DHG14/28 dataset have skele-

ton information that helps in plotting 2D trajectory using a single finger to capture

the hand gesture trajectory. We have discussed impact of with DDA loss and without

DDA loss on various datasets.

• Ensemble without DDA Loss: Analyze the impact of ensemble learning using

categorical cross-entropy as the loss function, without incorporating DDA loss.

The result revealed that the final accuracy was 2.15% to 2.31% lower as compare

to the ensemble learning with DDA loss. Our experiments, conducted on the

2D skeleton data of the 26-Gestures dataset and DHG14/28 datasets, clearly

demonstrate that the Ensemble with DDA loss significantly outperforms its

counterpart. These findings are detailed in Table 4.2 for DHG14/28 dataset

and Table 4.3 for 26-Gestures dataset.

• Ensemble with DDA Loss: The effect of Ensemble learning with DDA loss was

analyzed. The results show the final accuracy being 2.15% to 2.31% greater

than that of the ensemble learning without DDA loss. Experimental results are

evaluated over the 2D skeleton data of the 26-Gesture dataset and DHG14/28

dataset. As a result, the Ensemble with DDA loss outperforms the Ensemble

without DDA loss as shown in Table 4.2 for DHG14/28 dataset and in Table 4.3

for 26 Gestures dataset and .

• Impact of Dataset split into 70-30, 80-20 and 90-10: The experiment was

performed on two benchmark datasets, splitting each dataset into 70 − 30%,
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80 − 20% and 90 − 10% and results are shown in Table 4.3 for 26-Gestures

dataset and Table 4.2 for DHG14/28 dataset. As we can see in the table in

both cases Ensemble with DDA loss and Ensemble without DDA loss, outper-

forms best in 90− 10% split as compared to the 70-30 split and 80-20 split.

Table 4.2: Ablation study with DDA loss and without DDA loss on DHG14/28 dataset

S.No. Models Without DDA Loss (A%) With DDA Loss (A%)
V I D 70-30 80-20 90-10 70-30 80-20 90-10

1 ✓ × × 89.9 91.9 93.3 94.2 95.1 96.6
2 × ✓ × 91.1 92.9 94.8 95.4 95.8 96.0
3 × × ✓ 87.9 89.9 90.3 91.6 92.7 93.2
4 ✓ ✓ × 92.4 93.2 94.9 95.8 96.1 96.9
5 ✓ × ✓ 92.6 93.0 94.2 95.6 95.8 96.1
6 × ✓ ✓ 91.1 92.7 93.0 94.1 95.7 96.7
7 ✓ ✓ ✓ 93.0 94.8 95.9 95.7 96.8 97.1

V=VGG16, I=InceptionNet V3, D=DenseNet121, A=Accuracy

Table 4.3: Ablation study with DDA loss and without DDA loss on 26-Gestures
dataset

S.No. Models Without DDA Loss (A%) With DDA Loss (A%)
V I D 70-30 80-20 90-10 70-30 80-20 90-10

1 ✓ × × 93.1 94.9 95.1 94.7 96.2 97.0
2 × ✓ × 93.1 93.9 94.9 94.1 96.3 97.9
3 × × ✓ 92.7 92.8 94.1 93.9 95.8 96.5
4 ✓ ✓ × 93.5 94.2 96.7 95.9 97.3 98.1
5 ✓ × ✓ 93.5 94.9 95.8 96.0 97.5 98.3
6 × ✓ ✓ 94.1 95.1 96.5 96.3 97.5 98.3
7 ✓ ✓ ✓ 95.1 96.0 97.3 96.8 98.6 99.8

V=VGG16, I=InceptionNet V3, D=DenseNet121, A=Accuracy

4.4.4 Comparison with Literature

We compare the experimental results with state-of-the-art on the 26- Gestures dataset

and DHG14/28 dataset. Table 4.4 presents a comparison between the proposed model

and current approaches. In this paper [10], the author uses fingertip skeleton informa-

tion to create trajectories for hand gesture recognition. Similarly, another author [82]
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also uses skeleton data and proposes a 3D gesture recognizer model based on tra-

jectory matching of a single hand. In this paper [31], the author proposed motion

feature-augmented RNN for dynamic hand gesture recognition using skeleton data.

Similarly, in this paper [15], the author uses the geometric shape of the hand to

extract descriptors from hand skeleton joints also uses skeleton data for 3D hand

gesture recognition, utilizing the geometric shape of the hand to extract descriptors

from hand skeleton joints. other authors [61] [65], uses LSTM and 3DCNN models

for dynamic hand gesture recognition while integrating RGB and skeleton modalities.

These models aim to address challenges in dynamic hand gesture recognition, such

as inter and intra-class variation. In a proposed model, we implemented an ensemble

model with DDA loss. The results shown in Table 4.4 demonstrate that the pro-

posed model surpasses other state-of-the-art methods on the 26-Gestures dataset and

DHG14/28 dataset, achieving an accuracy of 97.1% on DHG14/28 dataset and an

accuracy of 99.8% on 26-Gestures dataset.

Table 4.4: Results of comparing the 26-Gestures dataset and DHG14/28 Dataset’s
classification accuracy(%) with SOTA

Papers 26G D Acc(%)
Grassmann Manifold [10] ✓ × 99.3
3D algorithm [82] ✓ × 96.9
GGDA [10] × ✓ 88.4
RNN [31] × ✓ 84.6
SoCJ+HoHD [15] × ✓ 82.2
HoWR+SoCJ+HoHD [15] × ✓ 88.3
LSTM [61] × ✓ 84.5
3DCNN [65] × ✓ 94.8
CNN [92] × ✓ 94.6
Ensemble+DDA loss × ✓ 97.1
Ensemble+DDA loss ✓ × 99.8

26G=26 Gestures dataset,D=DHG14/28 dataset, Acc=Accuracy

4.5 Conclusion

In this chapter, we emphasize ensemble learning with the DDA loss model, a new

framework for dynamic hand gesture recognition that effectively addresses inter-class

and intra-class variations challenges. Hand gesture recognition has several uses in
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both industry and research. In manufacturing and healthcare, it can reduce physical

contact by enabling touch less control in human-computer interaction systems. Ad-

ditionally, it enhances user-friendliness in sign language recognition, automation and

gaming. The experiment is performed on the DHG 14/28 and 26-Gesture dataset.

The skeleton 2D trajectory images are fed as input to the proposed model. Each layer

of the CNN model’s VGG16, Inception V3, and DenseNet121 extracts the features

separately. The output from each model is combined in the ensemble layer. After

feature extraction, they are put together in an ensemble learning layer and processed

with the DDA loss function that controls class variations to increase recognition ac-

curacy and classify gestures. Our model performs competitively on the 26-Gestures

and DHG14/28 benchmark datasets, achieving more than 99% accuracy on the 26-

Gestures dataset and more than 97.0% accuracy on the DHG 14/28 dataset, matching

state-of-the-art methods.

The proposed hand gesture recognition framework increases gesture recognition

accuracy and efficiently handles intra and inter-class variability in hand gesture recog-

nition by integrating ensemble learning with a DDA loss. Use of skeleton data also

overcome the challenge of hand detection in occlusion and cluttered background.
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Chapter 5

Motion Feature Estimation using

Bi-Directional GRU for

Skeleton-based Dynamic Hand

Gesture Recognition

Reena Tripathi, and Bindu Verma. “Motion feature estimation using bi-

directional GRU for skeleton-based dynamic hand gesture recognition."

Signal, Image and Video Processing (2024): 1-10.. (SCIE Indexed, IF: 2)

DOI: https://doi.org/10.1007/s11760-024-03153-w (Published)

Reena Tripathi, and Bindu Verma. “Skeleton Data is all about: Dy-

namic Hand Gesture Recognition.". In 2023 Seventh International Con-

ference on Image Information Processing (ICIIP) (pp. 576-585) (2023,

November). IEEE. (Published)

5.1 Introduction

In this chapter, we introduce a hybrid deep-learning model called motion feature

estimation using bi-directional GRU for skeleton-based dynamic hand gesture recog-
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nition, with skeleton and optical flow data fusion. As demonstrated by our previous

frameworks discussed in Chapters 3 and 4, both RGB and skeleton data are essen-

tial for extracting meaningful information needed for reliable and accurate gesture

recognition. Therefore, in order to increase recognition accuracy, we combine the

skeleton data with optical flow data in the proposed model. Furthermore, the ge-

ometric features used in our work in Chapter 4 perform effectively when fingertips

are accurately detected, restricting the system to cases where the gesturing hand

does not self-occlude—unless skeleton data is also available. Similarly, while RGB

data performs well in Chapter 3, it falls short in scenarios with highly cluttered back-

grounds or significant variations in illumination makes hand tracking difficult. Due to

different lighting conditions, cluttered background, self co-articulation, noisy images,

and occlusion [93] [94] hand detection and tracking may not be accurate. Due to the

aforementioned issues, it is very difficult to detect and track the gesturing hand. To

make a robust gesture recognition system, hand detection, and tracking steps must

be performed flawlessly to propose a generic system.

The main motivation of this chapter is to propose a generic framework that does

not require detection and tracking of the gesturing hand and recognize the dynamic

hand gesture with high accuracy. We have created skeleton trajectory video using

skeleton data and optical flow video using RGB/Depth data. Skeleton data was

used because it does not contain background information. Therefore, skeleton-based

models will not be affected by complex background information. Similarly, the cre-

ation of an optical flow video contains the movement of the hand irrespective of any

background information. Thus, it filters out irrelevant data and concentrates on the

gesturing hand that helps in extracting temporal features. For each skeleton trajec-

tory video, features are extracted using Xception-Net [87] called as a finger motion

feature (FMF) and features extracted from optical flow videos are global motion fea-

tures (GMF). Features extracted from a single modality is not sufficient enough to

classify the dynamic hand gesture, thus we proposed a fusion of FMF and GMF that

gives better accuracy compared to the single modality. Recognizing the dynamic

hand gesture requires sequential learning of spatio-temporal features. Thus recurrent
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neural networks can be used for sequential learning but they suffered from vanishing

gradient problems due to back-propagation. Due to cell memories and gates to learn

the sequential data, Long Short Term Memory (LSTM) and Gated Recurrent Unit

(GRU) were introduced that solve the vanishing gradient problem. Thus, this paper

used a Bi-GRU network for sequential learning, and SoftMax function with crass en-

tropy loss is used to classify the dynamic hand gesture. Both FMF and GMF features

are passed for sequence-to-sequence learning.

5.2 Literature Survey

Due to the advancement in computing devices and an increasing amount of data deep

learning-based method performs tremendously in many fields such as image classifi-

cation, object detection, activity recognition, and dynamic hand gesture recognition.

The author Liu et al. [65] proposed a decoupled two-stream network where in one

stream 2DCNN is used to process the Hand Posture Evolution Volume (HPEV) and

in another stream, 3DCNN is used to process the Hand Movement Map (HMM) tech-

niques. The features of both streams are fused to predict the final accuracy. The

lightweight model for gesture detection put forth by Mujahid et al. [29] relies on

DarkNet-53 and YOLO (You Only Look Once) V3 convolutional neural networks.

The author Lie et al. [95] used AlexNet to extract features and SVM for the classifi-

cation. Similarly, the author Jimin et al. [96] proposed a dynamic gesture recognition

technique that addresses the problems of complexity, computational difficulty, and

sluggish training. Authors Zheng et al. [97] proposed a depth motion map (DMM)

to represent the hand shape and features are extracted using DLEH2 and dynamic

hand gesture are classified. The proposed DLEH2 is robust against illumination, and

cluttered background. The multiview hierarchical aggregation network, which was

proposed by the author Shaochen et al. [84], solves the issue of difficulties in locating

hand gestures because of the complex structure of the hand. The author used virtual

cameras to capture hand skeletons from different angles and CNN was used for feature

extraction.
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Skeleton-based recognition added a breakthrough in the field of dynamic hand

gesture recognition that overcome the challenges of occlusion, illumination, and back-

ground clutter. Skeleton information gives the basic structure of the hand shape and

hand articulation points and helps in creating a pseudo skeleton image. For the

recognition of dynamic hand gestures, authors Lei et al. [64, 65] used skeleton data

and proposed a 3DCNN model coupled with a Hidden Markov Model. The author

Xinghao et al. [98] uses skeletal data in motion feature augmented network (MFA-

Net) to recognize the dynamic hand gesture and used a variational autoencoder to

extract the features. In addition to a temporal encoding of the gesture dynamics, the

author Smedt et al. [99] developed a method using three gestural features to capture

the hand shape and motion information. Li et al. [36] included a spatial perception

stream (SP-Stream) that uses the convex hull of the hand to encode skeletal images

and a temporal perception stream (TP-stream) that records hand gestures. Other

authors Adam et al. [66] proposed a multi-model ensemble gesture recognition net-

work (MMEGRN), a sophisticated ensemble architecture for skeleton-based gesture

recognition. A bi-stream activity has recently caught researcher’s interest in the field

of computer vision, including hand gesture recognition [100]. The author Mehran et

al. [100] proposed DeepGRU a new deep network model for gesture and action recog-

nition. Instead of using LSTM, DeepGRU uses raw skeleton, posture, or vector data

with Bidirectional Gated Recurrent Units (Bi-GRU) to speed up computation and

perform well with sparse training data. A bidirectional gated recurrent unit (Bi-GRU)

model for hand gesture recognition was proposed by the authors Bindu et al. [101].

They proposed two stream model where optical flow video and RGB videos are in-

putted into GoogleNet to extract the feature and Bi-GRU for sequence to sequence

learning. Sharma et al. [7] used optical flow motion templates and used 2DCNN and

3DCNN to extract the features from RGB videos and in last features are fused to

classify the dynamic hand gesture. The two modules BE (Behaviour Encoder) and

FSTA (Fine-grained Spatio-temporal Attention) was proposed by the author Wenwei

et al. [102]. The BE module prioritizes behavioral inputs and minimizes unneces-

sary information, which improves hand gesture recognition accuracy. Authors Miki
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et al. [103] proposed low computational spiking neural networks (SNNs) that process

temporal information. A sequence of depth gestures is passed to the SNN model and

gestures are classified based on the firing frequency. The author Sataya et al. [92]

proposed a method for real-time hand gesture recognition using a skeleton-based ap-

proach. The proposed model uses an LSTM network and a multi-channel CNN to

record hand gestures in both space and time. Machine learning models struggle with

accuracy and complexity problems in dynamic hand gesture recognition to overcome

this issue the author Yun et al. [104] proposed a new method that integrates a CNN

and Transformer model using attention mechanisms, enhancing spatial and temporal

feature extraction.

5.3 Proposed Architecture

The architecture of the proposed model is shown in Figure 5-1. The proposed model

is pipe-lined in two streams and carried out concurrently. In the first pipeline if

skeleton data is available we directly used skeleton data to plot the skeleton point

trajectory video. If no skeleton data is available, the media pipe library discussed

in Section 5.3.2 is used to extract the skeleton point, and skeleton point videos are

generated. The advantage of using skeleton point video is that it overcomes the

challenges of hand occlusion, illumination, and complex background. In the second

pipeline from RGB/Depth data optical flow video is calculated as discussed in Sec-

tion 5.3.1. The advantage of calculating the optical flow video is that it captures the

hand motion and discards the stationary background. The detailed algorithm of the

proposed model is shown in Algorithm 5.1. After calculating the skeleton and flow

video features are extracted using 2DCNN Xception-Net as discussed in Section 5.3.3

and represented in the form of FMF and GMF matrix. Then these features are passed

to the Bi-GRU unit for sequence-to-sequence learning. The output of both Bi-GRU

units is averagely fused using Equation 5.13 and is flattened at a fully connected layer.

In the last SoftMax layer with cross-entropy loss is applied to get the final probability

score using Equation 5.14.
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Algorithm 5.1 Algorithm of the Proposed Model.
1: Input:
2: Feature Extraction
3: a) Finger Motion Feature(FMF):
4: (i) Generate skeleton points video either using skeleton data/ using media

pipe.
5: (ii) Extract features using Xception-Net

6: Sequence Matrix 𝐹𝑀𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑋11 𝑋12 𝑋13 𝑋14 . . . 𝑋1𝑛

𝑋21 𝑋22 𝑋23 𝑋14 . . . 𝑋2𝑛

. . . . . . . .
. . . . . . .
. . . . . . .

𝑋𝑚1 𝑋𝑚2 𝑋𝑚3 𝑋𝑚4 . . . 𝑋𝑚𝑛

⎤⎥⎥⎥⎥⎥⎥⎦
7: b) Global Motion Feature(GMF):
8: Generated optical flow video(OFV) using RGB/depth data
9: Extracted features using Xception-Net

10: Compute the output matrix as follows:

11: Sequence Matrix 𝐺𝑀𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑌11 𝑌12 𝑌13 𝑌14 . . . 𝑌1𝑛

𝑌21 𝑌22 𝑌23 𝑌14 . . . 𝑌2𝑛

. . . . . . . .
. . . . . . .
. . . . . . .

𝑌𝑚1 𝑌𝑚2 𝑌𝑚3 𝑌𝑚4 . . . 𝑌𝑚𝑛

⎤⎥⎥⎥⎥⎥⎥⎦
12: Pipeline: Input to Bi-GRU is both the matrix.
13: (i) FMF input to Bi-GRU for sequence learning.
14: (ii) GMF input to Bi-GRU for sequence learning.
15: Decision level fusion using eq.5.13
16: Flatten the output at the fully connected layer.
17: Classify using softmax represented in eq.5.14
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Figure 5-1: Shows a two-stream pipe-lined 2DCNN with a Bi-GRU for sequential
learning. In order to extract features from each video frame, first, the skeleton points
plot videos and dense optical flow sequences are input into two 2DCNN concurrently.
Second, for sequential learning input layer of Bi-GRU received the extracted FMF
and GMF features. Features are fused from both the pipe-line and flattened at FC
layer and Softmax with cross-entropy loss is used to obtain the final prediction.

5.3.1 Global Motion Feature

For each RGB/Depth video optical flow video is generated that captured the motion

of the moving hand and discards the unnecessary background. Thus, it captures

the hand shape, and movement of the hand along with finger movement, and features

extracted from these video frames are global motion features (GMF). For each optical

flow video, features are extracted using 2DCNN Xception-Net called global motion

feature and represented using the matrix 5.7.

Optical flow

The motion of each pixel in a video frame between any two frames is determined by

dense optical flow [105]. In our proposed work, we computed the dense optical flow

videos using well-known Gunnar Franeback’s approach. It determines the displace-

ment of each pixel between frames based on the presumption that adjacent pixels in

a picture have comparable motion patterns. An optical flow video is generated by
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using optical flow to record the hand gesture’s movements. For each RGB/Depth

video, we calculated the optical flow video as shown in Figure 5-2. The Figure 5-2 a)

displays a few RGB frames from a video clip, Figure 5-2 b) depicts a skeleton point

that depicts finger motion, and Figure 5-2 c) depicts corresponding optical flow video

that represents global motion. As we can see in Figure 5-2 c), the background portion

has been eliminated, leaving only the moving object to be recorded. The recognition

accuracy of the proposed model increases by incorporating both optical flow videos

and skeleton videos.

Assuming that at time T, pixel P(X, Y, T) represents a pixel in a picture with the

coordinates X and Y, and that pixel P moves to △𝑋,△𝑌 in the following frame after

△𝑇 time.

𝑃 (𝑋, 𝑌, 𝑇 ) = 𝑃 (𝑋 +△𝑋, 𝑌 +△𝑌, 𝑇 +△𝑇 ) (5.1)

The displacement Equation 5.1 can be written using the Taylor approximation as :

△𝑃

△𝑋
𝛿𝑋 +

△𝑃

△𝑌
𝛿𝑌 +

△𝑃

△𝑇
𝛿𝑇 = 0 (5.2)

after dividing Equation 5.2 by 𝛿𝑇 we obtained :

∆𝑃

∆𝑋
𝑊 +

∆𝑃

∆𝑌
𝑍 +

∆𝑃

∆𝑇
= 0 (5.3)

where 𝑊 , and 𝑍 are referred to as the flow vectors, 𝑊 = 𝛿𝑋
𝛿𝑇

and △𝑃
△𝑋

, known as

an image gradient along the horizontal axis, and 𝑍 = 𝛿𝑌
𝛿𝑇

and △𝑃
△𝑌

, known as an image

gradient along the vertical axis, and △𝑃
△𝑇

image gradient with time. Calculating the

flow vectors 𝑊 and 𝑍 are as follows:⎡⎣𝑊
𝑍

⎤⎦ =

⎡⎣ ∑︀
𝑎 𝑓

2
𝑋𝑎

∑︀
𝑎 𝑓𝑋𝑎𝑓𝑌𝑎∑︀

𝑎 𝑓𝑋𝑎𝑓𝑌𝑎

∑︀
𝑎 𝑓

2
𝑌𝑎

⎤⎦−1 ⎡⎣∑︀𝑎 𝑓𝑋𝑎𝑓𝑇𝑎∑︀
𝑎 𝑓𝑌𝑎𝑓𝑇𝑎

⎤⎦ (5.4)

where 𝑓𝑋 = △𝑃
△𝑋

and 𝑓𝑌 = △𝑃
△𝑌

are the image gradient of all the point in the image.

The intensity variations for each point in the image are represented in this Equation
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by the image gradients 𝑓𝑋 and 𝑓𝑌 . where,

𝑓𝑋 = ∆𝑃/∆𝑋 (5.5)

and

𝑓𝑌 = ∆𝑃/∆𝑌 (5.6)

which, respectively, show the variations in intensity along the horizontal and ver-

tical axes. The optical flow’s magnitude and direction are determined using the flow

vector. The image is color-coded to show the optical flow, with the hue value repre-

senting the direction and the value plane in the HSV image space representing the

magnitude. Each RGB video is also converted into a dense optical flow video, which

is then used by a 2DCNN to determine frame-level characteristics.

Figure 5-2: a) Shows RGB frames (b) Shows frames of skeleton point video and (c)
Shows frames of optical flow motion video.

5.3.2 Finger Motion Features

If skeleton data is available in the dataset, no need to extract the skeleton point using

the media pipe library. Skeleton data is directly used to plot the hand trajectory and

generation of skeleton video. If only RGB data is available then for each RGB video

we have to find the skeleton points using Media Pipe library [106] and track the finger

movement across the frames and a trajectory is plotted. All fingertips are tracked
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and the trajectory is plotted as shown in Figure 5-3. For each skeleton video features

are extracted using 2DCNN called a finger motion feature (FMF) and represented

using matrix 5.7.

Figure 5-3: Circle trajectory formation of fingertips using skeleton points.

Skeleton Point Extraction using Media Pipe

An open-source framework called Media Pipe [106] is created by Google. In our

proposed model for detecting the hand’s skeleton points, we used a media pipe, which

is a pre-trained model for detecting hand landmarks in real-time. The hand landmark

is a task that finds the locations of hands in still photos and video frames that have

been decoded. Several parameters are provided in the setup for locating the hand

landmark, including running mode, the number of hands that can be detected in

total, the minimum scores for hand detection, and the minimum tracking confidence.

For hand landmarks detection it is necessary to find out palm detection.

The hand landmark detection model locates 21 hand-landmark coordinates as

key points inside the identified hand regions. The general key points are named

as: ‘WRIST’,‘ THUMB_CMC’, ‘THUMB_MCP’, ‘THUMB_IP’, ‘THUMB_TIP’,

‘INDEX_FINGER_MCP’, ‘INDEX_FINGER_PIP’, ‘INDEX_FINGER_DIP’,

‘INDEX_FINGER_TIP’, ‘MIDDLE_FINGER_MCP’, ‘MIDDLE_FINGER_PIP’,

‘MIDDLE_FINGER_DIP’, ‘MIDDLE_FINGER_TIP’ , ‘RING_FINGER_MCP’,

‘RING_FINGER_PIP’, ‘RING_FINGER_DIP’, ‘RING_FINGER_TIP’ , ‘PINKY
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_MCP’, ‘PINKY_PIP’, ‘PINKY_DIP’, ‘PINKY_TIP’ is shown in Figure 5-5. The

media pipe’s operation is depicted in Figure 5-4. Two methods are used to recognize

hand gestures.

• The palm detector method: The image is processed using a palm detector model,

which creates an orientated boundary line surrounding the hand.

• The Hand landmark detection method: In order to identify 3D hand key points,

a hand landmark model analyses the cropped boundary line image.

• Skeleton Points Video: The fingertip of the obtained skeleton points are plotted

further to make a skeleton points video.

Figure 5-4: Shows working of media pipe, using palm detector and hand landmark
detection method.

The selection of skeleton key points detection model is based upon the require-

ment of the need of the dataset used. In this paper, we are using a large sequential

dataset. Whereas media pipe’s architecture is designed to handle scalability, making

it suitable for applications that may require processing multiple streams or handling

large amounts of data concurrently. Media pipe offers pre-trained models and a

user-friendly API, simplifying the integration process. The Media pipe framework’s

performance can not be affected by rotation, speed, and scale of input data. With

some little interference from motion blur, MediaPipe performed better in detecting

skeleton key points than other detection models like OpenPose. In comparison to
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Figure 5-5: Shows 21 skeleton points of hand (hand landmarks).

MediaPipe, using alternative detection techniques like open pose proved extremely

slow. Even on decent equipment, processing videos requires a lot of computing power

and time taking. As a result, we use MediaPipe for detecting skeleton key points in

our proposed work [107]. Media pipe detects skeleton points in low and varying illu-

mination conditions as shown in Figure 5-6. Media pipe also detects skeleton points

of occluded hand as shown in as shown in Figure 5-7.

Figure 5-6: Hand in low and varying illumination conditions and corresponding skele-
ton key points.

Figure 5-7: Skeleton key points detected in occluded hand.
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5.3.3 2D-Convolutional Neural Network

Xception-Net [87] is a deep convolutional neural network (CNN) architecture that

has faster training and a significantly improved version of the Inception-V3 model.

We used a pre-trained Xception-Net model to extract the finger motion and global

motion features. Each video frames run through the Xception-Net model as shown in

Figure 5-8, and the average pooling layer’s features are then retrieved and saved as a

feature vector. The features at the average pooling layer are kept in a features vector

𝑋𝑉 ={ 𝑋1, 𝑋2, 𝑋3, 𝑋4, . . . , 𝑋𝑛} for a given gesture sequence G with frames { 𝐹 1,

𝐹 2, 𝐹 3, 𝐹 4, . . . , 𝐹 𝑛}. The size of the feature vector 𝑋1 is 1024 and for each optical

flow video having 𝑛 frame is 1024 × 𝑛 matrix. Likewise, features of all the optical

flow videos are stacked (row-wise) and form a 3D matrix of size 𝑚×1024×𝑛. Where

𝑚 is the number of videos in the dataset. In addition, all of the gesture features are

gathered and saved in a sequence matrix, GMF/FMF as shown in the matrix 5.7,

and this matrix is passed to Bi-GRU for sequence-to-sequence learning.

𝐺𝑀𝐹/𝐹𝑀𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋11 𝑋12 𝑋13 𝑋14 . . . 𝑋1𝑛

𝑋21 𝑋22 𝑋23 𝑋14 . . . 𝑋2𝑛

. . . . . . . .

. . . . . . .

. . . . . . .

𝑋𝑚1 𝑋𝑚2 𝑋𝑚3 𝑋𝑚4 . . . 𝑋𝑚𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.7)

5.3.4 Sequential Learning: Bi-directional GRU(Bi-GRU)

Recurrent neural networks, Gated Recurrent Units (GRU) as shown in Figure 5-9,

and Bi-directional GRU (Bi-GRU) as shown in Figure 5-10 are frequently utilized

in applications involving sequential data processing and natural language processing.

Cho et al. [108] introduced the GRU (Gated Recurrent Unit), a form of recurrent

neural network, in 2014. The GRU cell is more computationally efficient since it

has fewer parameters comparable to the LSTM cell. The GRU selectively updates
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Figure 5-8: Xception-Net architecture [87]

the hidden state and memory cell using gating mechanisms as a result it solves the

problem of vanishing gradients that can happen in conventional recurrent neural

networks. The reset gate and the update gate are both components of the GRU cell.

The update gate regulates the amount of fresh candidate activation utilized in the

current time step, whereas the reset gate regulates the amount of the prior hidden

state used in the current time step. Based on the current input and prior hidden layer

output, the update gate utilizes a sigmoid neural layer to selectively add or delete

information from the input. Equation 5.8 is used to determine the update gate’s

function.

𝑈𝑇 = 𝜎((𝑤(𝑈)𝑋𝑇 +𝐵𝑈) + (𝑞(𝑈)𝐻𝑇−1 +𝐵𝑈)) (5.8)

Where 𝑈𝑇 represents as update gate, 𝐻𝑇−1 as the output of the hidden layer. 𝑋𝑇 is

a current input that has been inserted into a network unit and multiplied by its own

weight 𝑤(𝑈) and biases are included, 𝐻𝑇−1 is a prior time stamp information that has

been multiplied by its original weight 𝑞(𝑈) and biases.

𝑅𝑇 = 𝜎((𝑤(𝑅)𝑋𝑇 +𝐵𝑅) + (𝑞(𝑅)𝐻𝑇−1 +𝐵𝑅)) (5.9)

Similarly, in Equation 5.9, 𝑅𝑇 represents the reset gate, which selects the exact

amount of the prior information to forget.
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In Equation 5.10 the reset gate 𝑅𝑇 is used in the next steps to determine the

memory content 𝐻 ′
𝑇 in order to obtain the necessary information from the past.

𝐻 ′
𝑇 = 𝑡𝑎𝑛ℎ((𝑤𝑋𝑇 +𝐵) +𝑅𝑇 ⊙ (𝑞𝐻𝑇−1 +𝐵)) (5.10)

𝐻𝑇 = 𝑈𝑇 ⊙𝐻𝑇−1 + (1− 𝑈𝑇 )⊙ (𝐻 ′
𝑇 ) (5.11)

The combined findings from both steps are applied in the last stage, followed by tanh

activation and 𝐻𝑇 is finding out to keep the most recent information and transmit it

throughout the network. In Equation 5.11 𝑈𝑇 is multiplied with 𝐻𝑇−1 to determine

what information needs to collect from the previous step.

An extension of the GRU, known as the Bi-GRU (Bidirectional Gated Recurrent

Unit), is an additional set of hidden states that are generated in the opposite direction.

As a result, the model is able to include data from the input sequence’s past and

future. The Bi-GRU cell Equations are as follows:

−→
𝐻𝑇 = 𝐺𝑅𝑈𝑓𝑤𝑑(𝑋𝑇 ,

−−−→
𝐻𝑇−1)

←−
𝐻𝑇 = 𝐺𝑅𝑈𝑏𝑤𝑑(𝑋𝑇 ,

←−−−
𝐻𝑇+1)𝐻𝑇 =

−→
𝐻𝑇 ⊕

←−
𝐻𝑇 (5.12)

where ⊕ denotes the act of concatenating two vectors,
−→
𝐻𝑇 denotes the state of

the forward GRU, and
←−
𝐻𝑇 denotes the state of the backward GRU.

5.3.5 Classification

Spatio-Temporal Features Fusion

In finger motion, feature extraction features are extracted from the trajectory video

formed by detecting the fingertip and tracking the fingertip across the frames. Simi-

larly, in parallel Global motion features are extracted using the 2DCNN. In the global

motion pipeline input to the 2DCNN is an optical flow video and frame-wise features
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Figure 5-9: GRU architecture

Figure 5-10: Bidirectional-GRU architecture
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are calculated. Both pipeline features are passed in the Bi-directional GRU model for

sequence-to-sequence learning. After sequence learning, output from the max pooling

layer is averagely fused together followed by the fully connected layer and soft-max

layer for the final class prediction. We perform the fusion of the features after the

max pooling layer called feature level fusion where features from both the Bi-GRU

model are averagely fused. Average fusion at the max pooling layer is most frequent

and most widely used to fuse the high-level features [109].

𝐹𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑎𝑣𝑔(𝐹𝑀𝐹𝑏𝑔𝑟𝑢 +𝐺𝑀𝐹𝑏𝑔𝑟𝑢) (5.13)

𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐶(𝐹𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)) (5.14)

We also used decision-level fusion to evaluate the model’s precision. The FC layer

receives the outputs from the 𝐹𝑀𝐹𝑏𝑔𝑟𝑢 and 𝐺𝑀𝐹𝑏𝑔𝑟𝑢 separately and uses a softmax

classifier to produce the probability distribution of class labels.

𝑌 = 𝑎𝑣𝑔(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐶(𝐹𝑀𝐹𝑏𝑔𝑟𝑢)) + 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐶(𝐺𝑀𝐹𝑏𝑔𝑟𝑢))) (5.15)

Softmax layer output of both the network averagely fused together to get the final

prediction as shown in Equation 5.15. Feature level fusion strategy discussed in

Equation 5.13 and 5.14 gives better accuracy and followed the same to perform the

experiments on the various datasets.

Categorical Cross Entropy

A typical loss function, especially for multi-class classification tasks, is categorical

cross-entropy. It calculates the difference between the actual labels and the predicted

probability distribution. Each class predicted probabilities, are calculated using a

Softmax activation function. In order to ensure that the projected values are both

non-negative and add up to 1, Softmax creates a probability distribution over the

classes.
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𝑌𝐿 = −
𝐶∑︁
𝑖=1

(𝑥true(𝑗) · log(𝑥pred(𝑗))), for C classes (5.16)

In Equation 5.16 the summation is applied to all classes 𝐶 and 𝑌𝐿 is represented as a

cross-entropy loss. The true label is represented by the 𝑥true(𝑗), while the predicted

probabilities are represented by 𝑥pred(𝑗) for 𝑗th class. Elements of the expected prob-

ability are applied individually to the logarithm. It calculates the difference between

actual class labels and expected probability. By adding the element-wise product of

the true labels and the logarithm of the predicted probabilities for each class, the loss

is determined. To reduce the loss during training, the negative sign is applied. The

calculated probability distribution tends to resemble the real distribution when the

cross entropy loss is kept to a minimum, which increases the classification accuracy

of the model.

5.4 Experimental Analysis

5.4.1 Training Details

All the experiments are conducted on intel Core i7 processor with 8GB RAM, and 8GB

NVIDIA GETFORCE GTX graphics card. Implementation is done in Tensorflow 2.8

with PyTorch libraries. Adam is applied as an optimization function and categorical

cross entropy is used as a loss function. The score of both networks is fused to get

the final prediction. Categorical cross-entropy is used to calculate the final prediction

loss, and loss is back-propagated in both networks. The batch size is 8 and the model

is trained up to 200 epochs. Initially learning rate is 0.0001 and is reduced by a

factor of 10 once the learning starts. We perform our experiment on different batch

sizes and loss function and experimentally decided batch size 8 and categorical cross

entropy as a loss function. We choose the Adam optimizer for our proposed model,

it covers high-dimensional parameter spaces and works well with smaller datasets. It

adjusts learning rates for each parameter adaptively, making convergence faster and

more efficient. The hyper-parameters are shown in Table 5.1
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Table 5.1: Hyper parameters of the proposed model.

Name Details
Batch Size 8

Epochs 200
Learning rate 0.0001

Optimizer Adam
Loss Categorical Cross entropy

5.4.2 Experimental Analysis on Different Datasets

Experiments are performed on two different benchmark datasets such as North West-

ern University Hand Gesture (NWUHG) dataset and Dynamic Hand Gesture (DHG-

14/28) dataset. Input to our proposed model is an optical flow video and skeleton

trajectory plot video. Features extracted from optical flow video are called as global

motion features (GMF) that captures the shape of the moving hand. Further features

extracted from the skeleton video is called as a finger motion features (FMF) which

represent the movement of fingers along with change in the hand shape.

North Western University Hand Gesture Dataset(NWUHG)

NWUHG dataset [110] performed by 15 persons doing 10 dynamic hand gestures in 7

various poses. There are 7× 15 = 105 RGB video sequences available for each move.

RGB videos for gestures like ‘move right,’ ‘move left,’ ‘rotate up,’ ‘rotate down,’ ‘move

down-right,’ ‘move right-down,’ ‘clockwise circle,’ ‘counter-clockwise circle,’ ‘Z,’ and

‘cross’ are included in the gesture inventory. Few samples of ‘move right’ and ‘rotate

down’ gesture is shown in Figure 5-11. The NWUHG contains a total of 1050 samples.

In NWUHG dataset only RGB video is available thus, skeleton videos are calcu-

lated using the media pipe library, and optical flow videos are formed using the RGB

video only. If in the input data only RGB video is available then skeleton points

can be extracted by the media-pipe library and optical flow video can be formed by

RGB data. If the data skeleton points is available no need to use the media pipe

library to form the skeleton video. Both FMF and GMF features are extracted us-

ing pre-trained 2DCNN called as Xception-Net in two parallel pipelines. Then both
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Figure 5-11: North Western University Hand Gesture Dataset(NWUHG)

features are passed to Bi-GRU for sequence-to-sequence learning and just before thee

fully connected both pipeline features are averagely fused and then fused features are

passed to the FC layer and then SoftMax layer for the final prediction. Figure 5-12

Figure 5-12: Shows class-wise accuracy of Bi-GRU architecture NWUHG dataset.
The average accuracy of the proposed model is 99.2%.

show the class-wise accuracy on NWUHG dataset. As we can see that in most of

the classes we got 100% accuracy and in few classes less than 100%. This variation

is because due to the similar type of motion track we got in few classes and that’s
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why there is confusion between gesture classes. The average accuracy on NWUHG is

around 99.2%.

5.4.3 Experiments on DHG-14/28 Dataset

The DHG14/281 [15] contains the depth data and skeleton data of the hand joints

captured by Intel Real Sense Short-Range Depth Camera. It includes 2800 gesture

sequences having 14 classes of hand gestures. 20 people took part in making ges-

tures using full hand shape and using just one finger. Each participant repeated each

gesture five times. The few samples of the ‘expand’ gesture are shown in Figure 5-

13. The skeleton information contains 22 hand joint points which resemble the hand

Figure 5-13: Shows depth images of DHG-14/28 dataset.

skeleton. The gesture inventory contains two categories:‘Fine’ and ‘Coarse’ gestures.

The ‘Fine’ gestures are ‘Grab,’ ‘Expand,‘ ’Pinch,’ ‘Rotation Clock Wise,’ and ‘Ro-

tation Counter Wise,’ whereas the ‘Coarse’ gestures are ‘Tap’, ‘Swipe Right,’ ‘Swipe

Left,’ ‘Swipe Up’, ‘Swipe Down’, ‘Swipe X’, ‘Swipe V’, ‘Swipe +’, and ‘Shake’. In

DHG-14/28 depth and skeleton points are available. Therefore, the optical flow video

is calculated using the depth data, and the skeleton video is formed using the skele-

ton points. DHG-14/28 gesture contains depth and skeleton data having 14 gesture

classes performed by two hand shape: using the whole hand and using only one finger.

In DHG-14, gesture performed by the whole hand and a single finger is considered

as belonging to the same class, thus it has only 14 classes. Similarly, in DHG-28,

a gesture performed by whole hand and a single finger is considered as belongs to

the different classes, thus it has total 28 gesture classes. We have reported the class-

wise accuracy for 14-gesture classes and 28-gesture classes in the Figure 5-14 and
1http://www-rech.telecom-lille.fr/DHGdataset/
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Figure 5-14: Shows class-wise accuracy of Bi-GRU architecture on DHG14 dataset.
The average accuracy of the proposed model in 98.2%.

Figure 5-15. In DHG-14 gesture classes we got average accuracy of 98.2% and in

DHG-28 gesture classes average accuracy of 94.2%.

Figure 5-15: Shows class-wise accuracy of Bi-GRU architecture on DHG28 dataset.
The average accuracy of the proposed model is 94.2%.

5.4.4 Ablation Study

The success of the various model can’t be denied using only RGB data or using only

skeleton data but there is a scope to extract complimentary features from different

modalities and accuracy can be enhanced as well. Many approaches have shown

considerable improvements when using a fusion of features from multiple modalities

in dynamic gesture recognition. Specifically, depth maps, normal maps, IR images,
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and optical flow images have been used in various feature fusion techniques and have

shown varying degrees of improvement. The fusion of other modalities with the

skeleton features is still an unexplored area. Gesturing hand detection and tracking

is still a challenging task and to avoid this issue skeleton data can be used surpassing

hand detection and tracking. Moreover, additional modality creation of optical flow

video using RGB or depth data also reduces the challenge of hand detection and

capturing the motion of a moving hand. Both modalities helps in the extraction

of the spatio-temporal features. We evaluate the proposed two pipeline architecture

using the 2DCNN+Bi-LSTM model and the 2DCNN+Bi-GRU model for sequence-to-

sequence learning. Experimentally we witness that 2DCNN+Bi-GRU performs better

compare to the 2DCNN+Bi-LSTM. Bi-GRU has lesser tensor operation and efficiently

faster compare to the LSTM. Bi-GRU performs better when training samples are less.

Two deep architecture for sequence learning is trained on various input data such as

(i) using only finger motion features (FMF) (ii) using only global motion features

(GMF) and fusion of FMF and GMF at feature level fusion and decision level fusion.

The deep architecture as shown in Figure 5-1 is trained on the two fusion strategies.

Two score fusions are examined using Equation 5.13 and Equation 5.15 feature level

fusion and decision level fusion respectively. Both fusion strategies fuse the finger

motion and global motion features and results are shown in Table 5.2 and decision

level fusion is shown in Table 5.3. Equation 5.13 and Equation 5.15 show two fusion

Deep Architecture Modality Accuracy
Bi-LSTM Finger Motion Features (FMF) 93.5
Bi-LSTM Global Motion Feature (GMF) 95.2

Bi-LSTM (Feature) FMF + GMF 97.2
Bi-GRU Finger Motion Features (FMF) 96.4
Bi-GRU Global Motion Feature (GMF) 98.3

Bi-GRU(Feature) FMF + GMF 99.2

Table 5.2: Performance of two different architecture using different modality on
Northwestern University Hand Gesture dataset with feature level fusion.

strategies: feature-level fusion and decision-level fusion respectively. One is to fuse

the spatio-temporal feature fusion for the classification and the other one is to use

the prediction score fusion using average. The accuracy 97.2% and 99.2% shows the
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Deep Architecture Modality Accuracy
Bi-LSTM Finger Motion Features (FMF) 93.3
Bi-LSTM Global Motion Feature (GMF) 95.2

Bi-LSTM(Decision) FMF + GMF 96.7
Bi-GRU Finger Motion Features (FMF) 95.8
Bi-GRU Global Motion Feature (GMF) 96.2

Bi-GRU(Decision) FMF + GMF 98.4

Table 5.3: Performance of two different architecture using different modality on
Northwestern University Hand Gesture dataset with decision level fusion.

superiority of spatio-temporal feature fusion over decision-level fusion using Bi-LSTM

and Bi-GRU respectively. Apart from performance feature-level fusion also reduces

the computation cost of the fully connected layer compared to the twice computation

of the fully connected layer at the decision level. Thus, early fusion at the feature level

fusion is superior to the prediction level fusion. From the experiments, we observed

that feature-level fusion with Bi-GRU architecture performs best and followed the

same experimental analysis pattern on all the other datasets. Figure 5-16 shows the

Figure 5-16: Shows accuracy of Bi-LSTM and Bi-GRU architecture with different
features on NWUHG and DHG14 dataset.

accuracy of different architecture with different feature modality on various dataset.

As we can see that accuracy using 2DCNN + Bi-GRU on NWUHG dataset is superior

with feature fusion than a single modality i.e 99.2%. Similarly, accuracy using 2DCNN
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+ Bi-GRU on DHG14 dataset is superior with feature fusion than single modality

features i.e 98.1%

5.4.5 Comparison with State-of-the-art

On the DHG14/28 and NWUHG data sets, we compare experimental results to the

state-of-the-art. Discussion and analysis of the findings are given below:

Comparison with State-of-the-Art-Methods on DHG14/28 Dataset

The proposed model is compared in Table 5.4 with existing state-of-the-art meth-

ods. The accuracy rate for the spatial-temporal synchronous transformer(STST)

technique [111] are 97.6% and 95.8%. In this technique, a two-stage network fo-

cuses on employing transformers to capture spatial-temporal correlations in hand

gesture skeleton sequences (HGSSs). In paper [60] proposed self-attention graph

convolutional network (SAGCN) + residual bidirectional(RBi) - independently re-

current neural network(IndRNN) for extracting the temporal information over the

long and short term features. Similarly, in paper [64] the author proposes DSTA-Net

for skeleton-based gesture recognition. Some other papers [65], [100], [11], [34] use

deep learning approaches for hand gesture recognition and the implemented data type

is either skeleton, RGB, depth, or fusion of RGB and depth data, but in our proposed

model we used a fusion of optical flow and skeleton data types. Which overcomes

problems like occlusion, illumination, and complex background captures the hand

motion, and discards the stationary background. Thus as compared to other SOTA

methods we obtained a higher recognition rate except [111]. In this paper [111], the

author proposed a technique to encode hand gesture skeleton sequences by dividing

them into chunks. These chunks help capture joint relationships over time. The en-

coded features are processed by transformer modules to enhance the understanding

of both local and global spatial-temporal information in the sequences. The results

listed in Table 5.4 show that the proposed XceptionNet+Bi-GRU outperforms other

state-of-the-art methods on DHG-14/28 dataset achieved 98.1% accuracy, except in
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paper [111] for DHG-28 gesture and the reason behind this is our model get confused

on identical gestures made with two different hand shape.

Table 5.4: DHG14/28 dataset’s classification accuracy comparison(%) results.

Methods 14 G(%) 28 G(%)
DG-STA [34] 91.9 88.0
ST-TS-HGR-NET [11] 94.2 89.4
DeepGRU [100] 94.5 91.4
HPEV-Net+HMM-Net [65] 92.5 88.8
DSTA-Net [64] 93.8 90.9
CNN+BGRU+RGB+OFV [101] 97.8 92.1
SAGCN+RBi-IndRNN [60] 96.3 94.0
STST [111] 97.6 95.8
LSTSN [112] 95.6 92.2
XceptionNet+Bi-GRU 98.2 94.2

Comparison with State-of-the-Art-Methods on North Western University

Hand Gesture (NWUHG) Dataset

We conduct an experimental assessment with state-of-the-art on the NWUHG dataset,

and the findings are mentioned in Table 5.5. The accuracy rate for the key frames+feature

fusion [20] is 97.9%. In this paper, the author proposed a new approach for key

frame extraction combining image entropy and density clustering. In paper [96] the

author proposed Key-frames splicing + feature fusion techniques for the dynamic

method of hand gesture recognition and obtained a 97.6% recognition rate. Some

paper based on a traditional method of hand gesture like [113] uses a genetic algo-

rithm, to combine machine-learned spatio-temporal descriptors for gesture detection

and paper [110] worked on Motion divergence fields. While in paper [95] the author

proposed 𝐴𝑙𝑒𝑥𝑁𝑒𝑡2 features for transfer learning-based extraction of spatial-temporal

features. Similarly in a paper, [101] the author proposed CNN+BGRU+RGB+OFV

techniques for deep learning-based hand gesture recognition. The author find optical

videos from RGB and combine RGB and optical flow video capabilities for gesture

classification and obtained 98.6% accuracy on the northwestern hand gesture dataset.

In comparison with these papers [110], [20], [113], our proposed method performs

better because they used hand tracking and feature extraction which itself is a chal-

lenging due to various illumination condition and complex background. Similarly
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from [96], [101], and [95] papers our proposed method performed well and obtained

good accuracy due to the fusion of optical flow and skeleton features Which over-

comes problems like occlusion, illumination, and complex background captures the

hand motion, and discards the stationary background. For the NWUNG dataset,

we compare our proposed model with the state-of-the-art methods and show that

our proposed XceptionNet+Bi-GRU model outperforms the literature and achieved

99.2% accuracy.

Table 5.5: NWUHG dataset’s classification accuracy comparison(%) results.

Methods Accuracy(%)
Motion divergence fields [110] 95.8
Key frames + Feature fusion [20] 97.9
Key frames splicing + feature fusion [96] 97.6
CNN+BGRU+RGB+OFV [101] 98.6
AlexNet2 [95] 96.9
Genetic programming [113] 96.1
XceptionNet+Bi-GRU 99.2

5.5 Conclusion

Our proposed model offers a bidirectional gated recurrent unit (Bi-GRU) model-based

hand gesture recognition system that is computationally effective than Bi-LSTM. This

method is designed to attain high-speed performance while being capable of working

successfully even with limited training samples. The advantage of our proposed model

is that it overcomes the challenges of hand occlusion, illumination, and complex back-

ground and it captures the hand gestures and discards the stationary background.

The creation and integration of optical flow video and skeleton trajectory video fea-

tures increases the accuracy of the model and proposed framework can be used in

real-time applications. Experiments on two benchmark datasets having accuracy

more than 98% on the DHG-14 gesture and more than 94% on the DHG-28 gesture

and more than 99% accuracy on NWUHG dataset outperforming with state-of-art

methods.

Our proposed model offers a bidirectional gated recurrent unit (Bi-GRU) mod-
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elbased hand gesture recognition system that is computationally effective than Bi-

LSTM. This method is designed to attain high-speed performance while being ca-

pable of working successfully even with limited training samples. This dual-feature

extraction method allows the model to achieve a more robust understanding of hand

gestures, improving overall performance in diverse environments.
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Chapter 6

Hybrid Framework for Dynamic

Hand Gesture Recognition using

Multiple Modalities

Reena Tripathi, and Bindu Verma. “Tri-Modal Fusion for Dynamic Hand

Gesture Recognition: Integrating RGB, Depth, and Skeleton Data” is com-

municated in Journal of Visual Communication and Image Representation

(SCIE Indexed, IF: 2.6) (Communicated)

6.1 Introduction

In this chapter, we introduce a multimodal fusion approach in our proposed work,

leveraging the unique advantages of each modality. Multi-modal fusion enhances the

model’s ability to generalize across different environments, lighting conditions, and

hand orientations, leading to better performance in real-world scenarios. In previous

Chapter 5, we proposed a hybrid multi-modal fusion network that combined skeleton

and optical flow features. As we have seen in previous chapter using dual modality

features boost the performance of the modal. RGB and skeleton data helps in to

extract the visual and geometrical features respectively and combining these features

boost the performance of the model. Further, as depth data less affected by the
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illumination and occlusion gives a most discriminating features. Thus, using RGB,

depth, and skeletal data together creates a more reliable gesture recognition frame-

work. When multiple modalities are combined, accuracy often improves compared to

using a single modality. This is so that the model may use a variety of information

sources to help it make a better recognition.

The primary goal of this work is to present a general framework that can accu-

rately identify dynamic hand gestures without the need for hand gesture detection

and tracking. We proposed a fusion of three modalities (RGB, Depth, and Skeleton).

RGB data contributes various insights such as the color of the image and spatial char-

acteristics of hand gestures, encompassing hand shape, texture, and appearance. On

the other hand, depth data provides depth information that is crucial for understand-

ing the spatial configuration of hand gestures. Nevertheless, RGB data may encounter

challenges such as illumination variations, occlusion, and background clutter, which

can hinder hand gesture recognition. In contrast, skeleton data overcome these chal-

lenges. By integrating these modalities, we achieve more robust gesture recognition

system, that enhances model accuracy. The proposed algorithm starts with inputs

from RGB, Depth, and Skeleton data. Since it is a, sequential data, first, we extract

the features using the CLIP model individually, then pass these features through the

residual block. Input layers for each modality are processed through two Conv1D lay-

ers and LSTM layer. Outputs from all modalities are concatenated for hand gesture

classification. To classify the dynamic hand gesture, this paper used a LSTM network

for sequential learning using the Softmax function with entropy loss. The features of

all modalities RGB, depth, and skeleton are passed for sequence-to-sequence learning.

6.2 Literature Survey

In the literature many author proposed deep learning based framework using single

and multiple modalities. The author Chen et al. [25] used single modality RGB

data with short-term and long term features to classify the dynamic hand gesture.

Similarly, author [26] also focuses on a single RGB modality as an input and finds
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the spatio-temporal features to classify the dynamic hand gesture using deep learning

model.

The author Kankana et al. [45] used RGB and depth data with sparse low-rank

scores for hand action recognition, it includes four main modules including CNN

and RNN, that address frame level and video level classification. Similarly, Yang et

al. [114] and Yilin et al. [39] fused skeleton and RGB modalities, and used transformer

model to classify the dynamic hand gesture. Verma et al. [101] used RGB and depth

data where optical flow video is calculated for both modalities and 2DCNN with GRU

model for dynamic hand gesture recognition. Dexu et al. [32] proposed a multimodal

gesture recognition technique that merges densely connected convolutional networks

(DenseNet) with bidirectional long short-term memory (BLSTM) networks. This

approach combines RGB and depth features to classify the dynamic hand gesture.

The author Tang et al. [115] proposed an architecture that combines two networks,

the ResC3D network and Convolutional LSTM. They use RGB and depth data for

a dynamic selection method called Selective Spatio-temporal feature learning (SeST)

to classify the gesture. By overcoming the problem of occlusion different lighting

condition, and cluttered background, skeleton-based recognition has made significant

progress in the field of dynamic gesture detection [116]. To identify dynamic hand

gestures, the authors Zhou et al. [12], Nguyen et al. [11] and Alberto et al. [117]

recognize dynamic hand gesture recognition using manifold learning. Skeletal data is

used to represent hand joints, and a Gaussian aggregation network is used to encode

the spatial and temporal relationships between hand joints. The author Liu et al. [65]

proposed an end-to-end two-stream network that uses a 2D CNN for hand movement

features and a 3D CNN for hand posture development to learn from these components.

The author Sheng et al. [67] proposed an effective Graph Convolutional Network

(GCN) model for dynamic hand gesture recognition using skeleton data. Li et al. [84]

proposed the MVHANet method for single-hand gesture recognition by finding a

suitable distribution of angles in skeleton data, and Xuan et al. [11] proposed a

model that learns a dis-criminative SPD matrix encoding the first and second-order

statistics for skeleton-based hand gesture recognition. Liu et al. [65] proposed the
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Hand Posture Evolution Volume (HPEV) model that uses 2DCNN in one stream and

3DCNN for Hand Movement Map (HMM). Similarly, the author Satya et al. [92] uses

1DCNN and 2DCNN in a multi-scale model for feature extraction using skeleton data

for dynamic hand gesture recognition.

Inspired from the literature that combination of modalities shows a good perfor-

mance compare to the single modality. Thus, in our proposed model we have used

all three modalities together to classify the dynamic hand gesture that overcome the

challenge of illumination, occlusion, and background clutter.

6.3 Proposed Architecture

The proposed model architecture is shown in the Figure. 6-1. The proposed model

Figure 6-1: Shows a three-stream pipe-lined 1D CNN with LSTM for sequential
learning. First, using ResCLIP, the features are extracted from each video frame: the
RGB videos, depth videos, and the skeleton point plot video sequences. Second, for
sequential learning, the input layer of the extracted features is fed into two 1D CNNs
and LSTM. The features are fused from all three pipelines and Concatenated at the
FC layer, and SoftMax with cross-entropy loss is used to obtain the final prediction.

begins by taking RGB, Depth, and Skeleton data as an input. It then proceeds with

feature extraction, defining the total number of features and generating an output

matrix representing feature vectors for each sample. The CLIP model is combined

with the residual block for feature extraction of sequential data. First, features are

extracted using the CLIP model individually explained in Section 6.3.1, and the
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features are passed through the residual block. Residual blocks allows more effective

feature learning by mitigating the vanishing gradient problem and allowing networks

to converge faster by focusing on learning residuals.

In our pipeline, features are extracted individually from each modality using the

CLIP model. These features are then refined through a residual block before being

further processed for sequential learning, ensuring a robust and comprehensive feature

representation. The sequential learning model followed by the processing of each

modality through two Conv1D layers given in Section 6.3.2 and an LSTM layer.

The Conv1D layers apply a kernel size of 3x3 with the same number of filters, and

padding is set to “same” to maintain input shape. After processing, the outputs from

all modalities are concatenated into a single layer, set to 0.5 dropout regularization

to avoid over-fitting. Finally, a Dense layer with SoftMax activation predicts the

class probabilities. The detailed steps of the proposed model are outlined in the

Algorithm. 6.1.

6.3.1 Feature Extractor: ResCLIP

The CLIP (Contrastive Language-Image Pre-training) model [118] is a machine learn-

ing development that has attracted a lot of interest in the artificial intelligence commu-

nity because of its amazing capacity to understand the complex relationships within

images. We used CLIP image encoder to extract the features from each frame of a

video.The CLIP model is shown in Figure 6-2. CLIP feature extractor extracts the

feature of each video and stored it into a 1-D vector of dimension 512. Let 𝑇𝑓 repre-

sent the feature vector of 1 video as shown in Equation 6.1. If there are ‘n’ number

of videos in one class, the size of the feature vector matrix for one class will be in

Equation 6.2. Like-wise next class feature vector matrix will be appended. In last

for a dataset having ‘C’ classes the feature vector matrix will be (𝐶 × 𝑛)× 𝑇𝐹 . The

total no of features represented by 𝑇𝐹 will be

𝑇𝐹 = 𝐹0, 𝐹1, 𝐹2, 𝐹3.......𝐹511 (6.1)
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𝐸𝐹 = 𝐹𝑟𝑖 × 𝑇𝐹 ∀𝑖 = 1, 2, 3...𝑚 (6.2)

Where, the features matrix for one class will be represented by ‘EF’. 𝐹𝑟𝑖 represented

gestures of class 𝐶𝑚.

Figure 6-2: CLIP(Contrastive Language-Image Pre-training) model.

𝑂𝑢𝑡𝑝𝑢𝑡(𝐶×𝑛)×𝑇𝐹
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶1𝐹𝑟1{𝐹0 𝐹1 · · · 𝐹511}

𝐶1𝐹𝑟2{𝐹0 𝐹1 · · · 𝐹511}
...

... . . . ...

𝐶1𝐹𝑟𝑛{𝐹0 𝐹1 · · · 𝐹511}

𝐶2𝐹𝑟1{𝐹0 𝐹1 · · · 𝐹511}

𝐶2𝐹𝑟2{𝐹0 𝐹1 · · · 𝐹511}
...

... . . . ...

𝐶𝑚𝐹𝑟𝑛{𝐹0 𝐹1 · · · 𝐹511}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.3)

The Feature matrix for one complete dataset is represented by the 𝑂𝑢𝑡𝑝𝑢𝑡(𝐶×𝑛)×𝑇𝑓
.

Where, 𝐶1 represents class 1, 𝐹𝑟1 represents gesture 1 of class 𝐶1, and {𝐹0, 𝐹1, . . . , 𝐹511}

is the feature matrix of video 1 of class 1, and so on.
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RGB Features Extraction

In the proposed model the RGB features are extracted using the CLIP model and fed

into the proposed model via residual block, as shown in Figure 6-3. This modality

has several benefits it gives color information about the gesturing hand, including

specifics like clothing, skin tone, and objects used in the gesture. RGB data also

provides spatial information that helps interpret the shape of the gesturing hand, its

texture, and other relevant features of the hand. Overall, the RGB data helps the

model better understand the environment where hand gestures happen.

Figure 6-3: FPHA dataset: capturing hand gesture through RGB, depth, and skeleton
modalities for comprehensive gesture recognition

Depth Features Extraction

In the proposed model, the depth features are extracted using the CLIP model and fed

into the proposed model via residual block, as shown in Figure 6-3. There are distinct

benefits associated with the second modality, which is sequential depth data. Each

frame’s depth information gives the model the ability to understand the gesture’s

spatial configuration in three dimensions. Depth data is more dependable under a

range of lighting situations because it is less affected by illumination than RGB data.

Additionally, depth data mitigates issues related to occlusion since it directly captures

physical object distances from the sensor, bypassing potential obstructions.
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Skeleton Features Extraction

In the proposed model, the skeleton features are extracted using the CLIP model and

fed into the proposed model via residual block, as shown in Figure 6-3. It makes

it easier to precisely track hand gesture movements by giving information about the

numerous hand skeleton joints. Because skeleton data is not dependent on background

information, it overcomes the challenges of dynamic hand gesture recognition like

occlusion, cluttered backgrounds, and changing illumination.

The proposed model can take advantage of RGB, depth, and skeletal data, leading

to more reliable gesture recognition framework. When multiple modalities are used

together, accuracy is frequently increased as compared to a single modality. This

is so that the model may use a variety of information sources to help it make a

better selection. Multi-modal fusion enhances the model’s ability to generalize across

different environments, lighting conditions, and hand orientations, leading to better

performance in real-world scenarios.

Residual Block

In our proposed model, we combine the CLIP model with residual block [119] for fea-

ture extraction of sequential data. First, we extract features using the CLIP model,

and then we pass these features through the residual block. As a result, CLIP can

capture more information from video data. The residual block enables deeper net-

works and enhances and refines the extracted features from CLIP. It also learns more

robust features that are less sensitive to noise and variations in input data. Since we

use CLIP and residual block together, we call it ResCLIP.

6.3.2 Sequential Learning: LSTM

Since LSTM networks are designed to solve the vanishing gradient and exploding

gradient problem, recurrent neural networks have trouble being dependable over the

long term. An LSTM recurrent unit uses “gates” with different activation functions to

“remember” important past information and “forget” irrelevant data. It also maintains
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an Internal Cell State, which holds the information from previous LSTM units. The

framework of an LSTM unit is composed of the input gate, output gate, forget gate,

and cell gate, which are responsible for controlling the learning process, as shown in

Figure 6-4. Sigmoid functions are essential for control the functioning of the gates

throughout the learning process. The cell state represents the long-term memory in

the LSTM and regulates which data from earlier periods will be saved in an LSTM

cell. The cell gate is modified by the forget gate, whose output determines whether

the information in the cell state should be retained (if it is 1) or forgotten (if it is

0) [72]. The following equations illustrate how LSTM works in our model.

𝑢𝑡 = 𝜎(𝑃𝑡𝑤𝑥𝑢 +𝑄𝑡−1𝑤𝑄𝑢 + 𝑏𝑡−1𝑤𝑏𝑢 + 𝑤𝑢𝑏𝑖𝑎𝑠) (6.4)

Where, “𝑢𝑡" represents the input gate at time step “t". ‘𝑃𝑡" is the input vector and

“𝑤𝑥𝑢" is its weight matrix. “ 𝑄𝑡−1" is the hidden state from the previous time step

with “𝑤𝑄𝑢". “𝑏𝑡−1" and “𝑤𝑏𝑢" are the bias term and its weight matrix, respectively.

“𝑤𝑢𝑏𝑖𝑎𝑠" is an additional bias term for the input gate.

𝑟𝑡 = 𝜎(𝑃𝑡𝑤𝑥𝑟 + ℎ𝑡−1𝑤𝑄𝑟 + 𝑏𝑡−1𝑤𝑏𝑟 + 𝑤𝑟𝑏𝑖𝑎𝑠) (6.5)

Where, “𝑟𝑡" represents the output gate. “ℎ𝑡−1", another notation for the hidden state

from the previous time step, is similar to “𝑄𝑡−1".“𝑤𝑄𝑟" is the weight matrix for the

hidden state to the forget gate, and “𝑤𝑏𝑟" is the weight matrix for the bias to the

forget gate.

𝐵𝑡 = 𝑡𝑎𝑛𝐻(𝑃𝑡𝑤𝑃𝐵 + ℎ𝑡−1𝑤𝑄𝐵 + 𝑤𝑧𝑏𝑖𝑎𝑠) (6.6)

Where, “𝐵𝑡" represents the candidate cell state. “𝑤𝑄𝐵" is the weight matrix for the

hidden state to the cell state and “𝑤𝑧𝑏𝑖𝑎𝑠" is the bias term. In Equation 6.7 the “𝑏𝑡"

represents the cell state.

𝑏𝑡 = 𝐵𝑡 ⊗ 𝑖𝑡 + 𝑏𝑡−1 ⊗ 𝑖𝑡 (6.7)

𝑣𝑡 = 𝜎(𝑃𝑡𝑤𝑥𝑣 +𝑄𝑡−1𝑤𝑄𝑣 + 𝑏𝑡−1𝑤𝑏𝑣 + 𝑤𝑜𝑏𝑖𝑎𝑠) (6.8)
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Where, “𝑣𝑡" represents Output gate. Controls the output from the cell state.

𝑄𝑡 = 𝑣𝑡 + 𝑡𝑎𝑛𝐻(𝑏𝑡) (6.9)

Where,“𝑄𝑡" represents the hidden state.

Figure 6-4: Block diagram of the long shot term memory (LSTM) model architecture.

6.3.3 Concatenation of Spatio-Temporal Features and Classi-

fication

The features of all three modalities are passed to the proposed model for sequence-

to-sequence learning. The max pooling layer’s output is averaged for the final class

prediction after sequence learning, followed by the FC layer and softmax layer. Fea-

ture fusion is performed after the max pooling layer, a process known as feature-level

fusion, where features from all three modalities are concatenated averagely. The most

common and extensively utilized method for fusing the high-level features is average

fusion at the max pooling layer.

𝐹𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = avg(𝑅𝐺𝐵𝑅𝑒𝑠𝐶𝐿𝐼𝑃𝑟𝑛𝑛 +𝐷𝑒𝑝𝑡ℎ𝑅𝑒𝑠𝐶𝐿𝐼𝑃𝑟𝑛𝑛 + 𝑆𝑘𝑒𝑙𝑒𝑡𝑜𝑛𝑅𝑒𝑠𝐶𝐿𝐼𝑃𝑟𝑛𝑛) (6.10)
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𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐶(𝐹𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)) (6.11)

To assess the accuracy of the model, decision-level fusion was also employed. The

FC layer employs a softmax classifier to generate the probability distribution of class

labels after receiving the outputs from the 𝑅𝐺𝐵𝑅𝑒𝑠𝐶𝐿𝐼𝑃𝑟𝑛𝑛, 𝐷𝑒𝑝𝑡ℎ𝑅𝑒𝑠𝐶𝐿𝐼𝑃𝑟𝑛𝑛 and

𝑆𝑘𝑒𝑙𝑒𝑡𝑜𝑛𝑅𝑒𝑠𝐶𝐿𝐼𝑃𝑟𝑛𝑛 independently.

𝑌 = 𝑎𝑣𝑔(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐶(𝑅𝐺𝐵𝑅𝑒𝑠𝐶𝐿𝐼𝑃𝑟𝑛𝑛))+

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝑒𝑝𝑡ℎ𝑅𝑒𝑠𝐶𝐿𝐼𝑃𝑟𝑛𝑛)+

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑆𝑘𝑒𝑙𝑒𝑡𝑜𝑛𝑅𝑒𝑠𝐶𝐿𝐼𝑃𝑟𝑛𝑛)))

(6.12)

The softmax layer outputs of both networks are fused together by averaging to obtain

the final prediction, as depicted in Equation 6.12. The feature-level fusion strategy

discussed in Equations 6.10 and 6.11 yields improved accuracy, and we followed the

same approach in conducting experiments on FPHA datasets. The proposed model

employs a categorical cross-entropy loss function, as illustrated in Equation 6.13.

𝑌𝐿𝑜𝑠𝑠 = −
𝑞∑︁

𝐼=1

(𝑥true(𝐽) · log(𝑥pred(𝐽))), for “𝐶” classes (6.13)

In Equation 6.13, the summation is applied to all classes 𝐶 and 𝑌𝐿𝑜𝑠𝑠 denotes the

cross-entropy loss. Here, 𝑥true(𝐽) represents the true label for the 𝐽 th class, while

𝑥pred(𝐽) represents the predicted probabilities.

6.4 Experimental Analysis

6.4.1 Training Details

An Intel Core i7 processor with 8GB of RAM and an 8GB NVIDIA GeForce GTX

graphics card was used to perform the experiments. TensorFlow 2.8 was used for the

implementation, along with Keras libraries. Adam served as the optimization func-

tion, while the categorical cross-entropy was utilized as the loss function. The scores
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from the three modalities are concatenated to form the final prediction. Categorical

cross-entropy is employed to compute the loss for the final prediction, and this loss is

back-propagated across all modalities. With a batch size of 64, the model undergoes

training up to 750 epochs. We began with an initial learning rate of 0.0001 as shown in

Table 6.1. Our experimentation encompassed various batch sizes, loss functions, and

Adam as an optimizer, ultimately selecting a batch size of 64 and categorical cross-

entropy as the loss function based on experimental results. In the model we chose

the Adam optimizer because it is good at negotiating high-dimensional parameter

spaces, especially with fewer datasets. It increases overall efficiency by accelerating

convergence through adaptively adjusting the learning rates for each parameter.

Table 6.1: Training details of the proposed model.

S.no Training Details Values
1 Dropout 0.5
2 Optimizer Adam
3 NOP LSTM 1.3M
4 NOP GPU 1.0M
5 NOP RNN 0.95M
6 NOP Residual block 1.47
7 Learning rate 0.0001
8 Batch Size 64(FPHA) & 32(SKIG)
9 Loss Function Categorical Cross Entropy

Where, NOP = Number of Parameter

6.4.2 Experimental Analysis on Different Datasets

The experiments are performed on two benchmark datasets such as the First-Person

Hand Action (FPHA) [120] dataset and the Sheffield Kinect Gesture (SKIG) dataset [121].

Input to our proposed model is RGB videos, Depth videos, and skeleton trajectory

plot videos. The ResCLIP model is used to extract the features from RGB videos,

depth videos, and skeleton trajectory videos. If skeleton videos are not available, we

have extracted them using a media pipe as shown in Figure 6-5.
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Algorithm 6.1 The proposed model’s algorithm
1: Input: RGB data, Depth data, Skeleton data
2: Feature Extraction:
3: Let the total number of features represented by 𝑇𝐹 = 𝐹0, 𝐹1, 𝐹2, . . . , 𝐹511

4: The feature embedding size EF is defined as: 𝐸 × 𝐹 = 𝐹𝑟𝑖 × 𝑇𝐹

5: Output matrix:

𝑂𝑢𝑡𝑝𝑢𝑡(𝐶×𝑛)×𝑇𝑓
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶1𝐹𝑟1{𝐹0 𝐹1 · · · 𝐹511}
𝐶1𝐹𝑟2{𝐹0 𝐹1 · · · 𝐹511}

...
... . . . ...

𝐶1𝐹𝑟𝑛{𝐹0 𝐹1 · · · 𝐹511}
𝐶2𝐹𝑟1{𝐹0 𝐹1 · · · 𝐹511}
𝐶2𝐹𝑟2{𝐹0 𝐹1 · · · 𝐹511}

...
... . . . ...

𝐶𝑚𝐹𝑟𝑛{𝐹0 𝐹1 · · · 𝐹511}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
6: Pipeline:
7: Step 1: Define Input Layers
8: 𝑖𝑛𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟_𝑟𝑔𝑏← 𝐼𝑛𝑝𝑢𝑡(𝑠ℎ𝑎𝑝𝑒 = 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒_𝑟𝑔𝑏)
9: 𝑖𝑛𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟_𝑑𝑒𝑝𝑡ℎ← 𝐼𝑛𝑝𝑢𝑡(𝑠ℎ𝑎𝑝𝑒 = 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒_𝑑𝑒𝑝𝑡ℎ)

10: 𝑖𝑛𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟_𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛← 𝐼𝑛𝑝𝑢𝑡(𝑠ℎ𝑎𝑝𝑒 = 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒_𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛)
11: Step 2: Process Each Modality
12: function process_modality(in_layer)
13: 𝑥← 𝐶𝑜𝑛𝑣1𝐷(𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 3, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 =′ 𝑠𝑎𝑚𝑒′)(𝑖𝑛_𝑙𝑎𝑦𝑒𝑟)
14: 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙← 𝑥
15: 𝑥← 𝐶𝑜𝑛𝑣1𝐷(𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 3, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 =′ 𝑠𝑎𝑚𝑒′)(𝑥)
16: 𝑥← 𝐴𝑑𝑑()([𝑥, 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙])
17: return LSTM(col_hidden)(x)
18: end function
19: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑟𝑔𝑏← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦(𝑖𝑛𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟_𝑟𝑔𝑏)
20: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑒𝑝𝑡ℎ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦(𝑖𝑛𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟_𝑑𝑒𝑝𝑡ℎ)
21: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦(𝑖𝑛𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟_𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛)
22: Step 3: Concatenation and Output Layer
23: 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑_𝑙𝑎𝑦𝑒𝑟𝑠← 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒()([𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑟𝑔𝑏, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑒𝑝𝑡ℎ, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛])

24: 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑_𝑙𝑎𝑦𝑒𝑟𝑠← 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.5)(𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑_𝑙𝑎𝑦𝑒𝑟𝑠)
25: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟 ← 𝐷𝑒𝑛𝑠𝑒(𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠𝑒𝑠, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =′ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥′)(𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑_𝑙𝑎𝑦𝑒𝑟𝑠)
26: Step 4: Compile the Model
27: Step 5: Train the Model
28: Step 6: Evaluate the Model
29: Step 7: Plot Results
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Figure 6-5: This image shows the skeleton of a person performing a wave gesture
from the SKIG dataset. The skeletal structure is retrieved using Mediapipe. The red
dots indicate key joint positions, connected by black lines to illustrate the gesture of
the hand

Experiments on FPHA Dataset

FPHA1 (First-person hand action) [120] The dataset consists of 1175 action videos

with depth and RGB data and skeleton joints. There are forty-five action videos in

all, with six actors acting out three different scenarios. These hand actions encompass

activities in the kitchen, office, and social settings, involving various objects like book

pages, wallet, juice bottle, “liquid soap bottle", “pour milk" and more, as shown in

Figure 6-6. The lengths of the videos range from 7 to 1151 frames, with 21 skeletal

joints captured in each frame. More details about the data set are given in the

paper [120].

The FPHA dataset contains a total of 45 classes of gestures sequence, In this

paper 0 class represents “charge_cell_phone", 1 class represents “clean_glasses" and

so on. The names of all the classes are given below: “charge cell phone", “clean

glasses", “close juice bottle", “close liquid soap", “close milk", “close peanut butter",

“drink mug", “flip pages", “flip sponge", “give card", “give coin", “handshake", “high

five", “light candle", “open juice bottle", “open letter", “open liquid soap", “open

milk", “open peanut butter", “open soda can", “open wallet", “pour juice bottle",

“pour liquid soap", “pour milk", “pour wine", “prick", “put salt", “put sugar", “put

tea bag", “read letter", “receive coin", “scoop spoon", “scratch sponge", “sprinkle",

“squeeze paper", “squeeze sponge", “stir", “take letter from envelope", “tear paper",

“toast wine", “unfold glasses", “use calculator", “use flash", “wash sponge", “write".

Figure 6-7 displays a confusion matrix of the proposed model on the FPHA
1https://guiggh.github.io/publications/first-person-hands/
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Figure 6-6: First Person Hand Action(FPHA) Dataset

Figure 6-7: Confusion matrix of FPHA dataset, the proposed model achieved 100
percent accuracy on seven classes. The overall accuracy of the model is more than 98
percent.
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dataset. Our model achieved over 84% accuracy across all classes and reached 100%

accuracy in seven classes. Some gestures are misclassified because of similar gesture

patterns. For example, class 2 "close juice bottle" is misclassified with class 3 "close

liquid soap" because the skeleton trajectory is quite similar in both cases. Similarly,

class 8 “flip sponge" is misclassified with class 35 “squeeze sponge” having similar

type of trajectory and activity performed. To assess the classification accuracy of our

system for a particular set of test data, we calculate the ROC, precision(P), recall(R),

and F1-score as shown in Table 6.2 and the micro-average ROC curve (pink dotted

line) shown in Figure 6-9 on FPHA dataset, aggregates the contributions of all classes

to compute the average performance of the classifier. Our experiments show that the

F1-Score is greater than 85% for all classes, and the macro average accuracy of our

proposed model is 98.10%. Our proposed model achieved better results and performs

remarkably well across all classes as shown in Table 6.2. Figure 6-8 illustrates the

Table 6.2: F1, Precision, and Recall values for different classes using LSTM, GRU,
and RNN on FPHA dataset.

Class RNN GRU LSTM Class RNN GRU LSTM
F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R

0 0.99 0.99 0.99 0.99 0.98 0.99 1.00 0.99 1.00 23 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 24 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.92 0.97 0.98 0.95 0.91 0.99 0.95 0.93 0.96 25 0.99 0.98 1.00 0.99 0.99 0.99 1.00 1.00 0.99
3 0.96 0.97 0.96 0.96 0.95 0.97 0.99 0.98 0.99 26 0.99 1.00 0.99 0.99 1.00 0.99 1.00 1.00 1.00
4 0.96 0.94 0.97 0.94 0.93 0.96 0.95 0.96 0.95 27 0.93 0.91 0.96 0.97 0.96 0.98 0.88 0.84 0.93
5 0.94 0.89 0.99 0.95 0.93 0.98 0.95 0.99 0.92 28 0.98 0.99 0.98 0.98 0.97 0.99 0.98 1.00 0.96
6 0.99 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.99 29 0.93 0.93 0.93 0.94 0.92 0.96 0.94 0.95 0.94
7 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 30 0.94 0.93 0.93 0.93 0.96 0.90 0.94 0.92 0.96
8 0.84 0.90 0.78 0.83 0.88 0.79 0.86 0.91 0.82 31 1.00 1.00 0.99 0.99 0.98 1.00 0.96 0.99 0.94
9 0.93 0.96 0.89 0.95 0.95 0.95 0.93 0.92 0.95 32 0.94 0.92 0.97 0.93 0.92 0.95 0.95 0.94 0.97
10 0.94 0.96 0.92 0.93 0.95 0.92 0.94 0.96 0.92 33 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
11 0.96 0.92 1.00 0.97 0.96 0.98 0.96 0.97 0.95 34 0.91 0.94 0.88 0.92 0.97 0.98 0.93 0.91 0.96
12 0.98 0.98 0.98 0.99 0.99 0.98 0.99 0.99 0.98 35 0.97 1.00 0.94 0.95 0.97 0.94 0.97 1.00 0.95
13 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.00 36 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0,97 0.99
14 0.94 0.98 0.90 0.96 0.98 0.94 0.96 0.98 0.94 37 0.94 0.93 0.96 0.97 0.97 0.97 0.96 0.97 0.96
15 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 38 0.98 0.97 0.99 0.99 0.99 1.00 0.99 1.00 0.99
16 0.96 0.95 0.96 0.97 0.96 0.98 0.95 0.95 0.96 39 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00
17 0.96 0.96 0.95 0.94 0.93 0.95 0.95 0.93 0.97 40 0.98 0.98 0.98 0.97 0.96 0.98 0.95 0.95 0.96
18 0.92 0.97 0.87 0.93 0.96 0.90 0.94 0.97 0.92 41 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
19 0.97 0.96 0.98 1.00 1.00 1.00 0.98 0.99 0.96 42 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 1.00
20 0.90 0.89 0.90 0.93 0.88 0.98 0.92 0.92 0.92 43 0.95 0.94 0.96 0.95 0.96 0.94 0.97 0.95 0.98
21 0.99 1.00 0.98 0.99 0.99 1.00 0.99 0.98 1.00 44 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
22 0.99 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.98

class-wise accuracy on the FPHA dataset. We observe most of the classes achieve

more than 93% accuracy, some classes achieved 100% accuracy. This variability arises

from similarities in motion tracks among certain classes, leading to confusion between

gesture classes. The average accuracy on FPHA stands at approximately 98.10%.

111



CHAPTER 6.

Figure 6-8: The class-wise accuracy of the FPHA dataset using three modalities:
RGB, depth, and skeleton. The model achieves high accuracy for most of the classes,
with several reaching 100%. The overall accuracy of the proposed model is more than
98%.

Figure 6-9: For every class, the model exhibits remarkable performance with min-
imum mis-classification errors. This is shown by the area Under the Curve(AUC)
of 1.0 for all classes. This Receiver Operating Characteristics (ROC) curve analysis
demonstrates that the model used for the FPHA dataset achieves perfect classifica-
tion performance across all classes
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Experiments on SKIG Dataset

The SKIG (Sheffield Kinect Gesture)2 dataset comprises 1080 RGB sequences and

1080 depth sequences, totaling 2160 hand gesture sequences. This dataset comprises

10 distinct classes of hand gestures, which are performed by 6 distinct individuals

on 3 distinct backgrounds under 2 illumination circumstances using 3 distinct hand

shapes. Thus, a total 108 video sequences for each gesture classes. The few SKIG

gesture sequence such as “turn around”, “Wave”, “Come-here”, “Cross”, “Line”, “Circle”,

“Z”, “Triangle”, “Up-down”, and “Pat” shown in Figure 6-10.

Figure 6-10: Shows SKIG hand gestures dataset images in different lighting conditions
and backgrounds a) Up-Down and b) Right-Left c) Wave and d) Circle

Figure 6-11 displays a confusion matrix of the SKIG dataset. In most of the

classes we achieved 100% accuracy. some classes are misclassified due to performing

almost the same type of gesture, such as class 3 “cross" is misclassified with class

7 “triangle". The overall accuracy of the model is more than 99%. To assess the

classification accuracy of our system for a particular set of test data, we calculate

the ROC, precision(P), recall(R), and F1-score as shown in Table 6.3 and ROC on

the SKIG dataset shown in Figure 6-13. Our experiments shows that the F1-Score

is greater than 99% for all classes, and the macro average accuracy of our proposed

model is 99.83%, for some classes our approach attains 100% accuracy, proving that

our proposed model achieved better results and performs remarkably well across all

classes as shown in Table 6.3.

Figure 6-12 illustrates the class-wise accuracy on the SKIG dataset. We observe

that while most classes achieved 100% accuracy, and some classes achieved 99% accu-

racy. This variability arises from similarities in motion tracks among certain classes,
2http://lshao.staff.shef.ac.uk/data/SheffieldKinectGesture.htm
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Figure 6-11: The confusion matrix of the SKIG dataset shows that most classes in
the proposed model achieved 100% performance. The overall accuracy of the model
is more than 99%.

Table 6.3: F1, Precision, and Recall values for different classes using LSTM, GRU,
and RNN of SKIG dataset.

Class RNN GRU LSTM
F1 P R F1 P R F1 P R

0 0.99 0.99 1.00 0.99 0.98 1.00 0.99 0.98 1.00
1 0.99 1.00 0.98 0.99 0.99 0.98 0.99 0.99 0.99
2 0.99 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00
3 1.00 0.99 1.00 1.00 0.99 1.00 0.99 0.99 1.00
4 0.99 1.00 0.99 0.99 1.00 0.99 1.00 0.99 1.00
5 0.99 0.99 0.99 0.99 1.00 0.99 1.00 0.99 1.00
6 0.99 0.98 0.99 0.99 0.99 0.99 1.00 0.99 0.99
7 0.99 0.99 1.00 0.99 1.00 0.99 0.99 1.00 0.99
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 0.99
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leading to confusion between gesture classes. The average accuracy on SKIG stands

at approximately 99.83%.

Figure 6-12: Class-wise accuracy of SKIG dataset using three modalities: RGB,
depth, and skeleton. The model achieved higher accuracy for most of the classes with
several reaching 100%. The overall accuracy of the proposed model is more than 99%.

6.4.3 Ablation Study

In literature, mostly single modality is used. However, combining features from multi-

ple modalities can further improve accuracy. Detecting and tracking gesturing hands

remains a challenging task. To address this issue, a fused model incorporating three

modalities (RGB + depth + skeleton) can be utilized to improve gesture classifi-

cation. The FPHA and SKIG datasets already include RGB and depth frames of

the videos. Additionally, the skeleton trajectory videos are generated using the pro-

vided skeleton joint information from the FPHA dataset. In the case of the SKIG

dataset, we used MediaPipe to extract skeleton key points from the RGB frames. We

then plot the skeleton trajectory for each frame and make a skeleton video for the

SKIG dataset as shown in Figure 6-5. The proposed architecture, which integrates
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Figure 6-13: Area Under the Curve(AUC) of 1.00 for all classes shows that the model
performs exceptionally well across all classes with few mis-classification errors. ROC
curve analysis demonstrates that the model used for the SKIG dataset achieved ex-
cellent classification performance across all classes
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three modalities, using three different models for sequence-to-sequence learning is:

1DCNN+ResCLIP-LSTM, 1DCNN+ResCLIP-GRU, and 1DCNN+ResCLIP-RNN.

• Effect of ResCLIP+RNN model: We analyzed the effect of an RNN model on

the proposed work. The main drawback of RNNs is their vanishing gradient

problem due to which the accuracy of the model is decreased, which results in the

final accuracy being 1% to 2% less with GRU and LSTM. Experimental results

are evaluated over the SKIG and FPHA datasets, as depicted in Table 6.4.

• Effect of ResCLIP+GRU model: We analyzed the effect of a GRU model on

the proposed work. The results show the final accuracy being 0.5% to 1% less

than that of the LSTM. Experimental analysis are evaluated over the SKIG and

FPHA datasets, both of which are complex datasets. As a result, the LSTM

outperforms the GRU because the proposed model involves complex sequential

data, as depicted in Table 6.4.

• Effect of ResCLIP+LSTM model: Our experimental findings reveal that ResCLIP-

LSTM outperforms both ResCLIP-RNN and ResCLIP-GRU. ResCLIP-LSTM

exhibits advantages such as reduced tensor operations, it removes the vanishing

gradient problem and exploding gradients problem leading to faster efficiency

compared to RNN and GRU models. Particularly, ResCLIP+LSTM demon-

strates superior performance when training parameters are limited compared to

the other state-of-the-art methods. As we can see the accuracy using ResCLIP

+ LSTM on the FPHA and SKIG dataset is superior with feature fusion than

a single modality as shown in Table 6.4.

In our proposed model RNN has 0.95𝑀 parameters while GRU and LSTM have

1.03𝑀 and 1.17𝑀 parameters respectively. Additionally, it demands fewer computa-

tional resources, making it more suitable for tasks or environments with constrained

computing capabilities. RGB, depth, and skeleton information are input data for

sequence-to-sequence learning.

Equations 6.10 and 6.12 illustrate feature-level fusion and decision-level fusion,

respectively. By using Equation 6.12, the final gesture recognition accuracy of the
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proposed model is determined. Fusion strategies involving three modalities and the

corresponding results at the decision level are presented in Table 6.4.

Table 6.4: Comparison of recognition accuracy for ablation study on FPHA and SKIG
datasets on different strategies with varying modalities.

Strategy RGB Depth Skeleton Accuracy(FPHA) Accuracy(SKIG)

ResCLIP+RNN

✓ × × 96.38 97.24
× ✓ × 92.00 91.16
× × ✓ 91.14 89.90
✓ ✓ × 96.99 98.48
✓ × ✓ 96.00 98.15
× ✓ ✓ 92.00 92.23
✓ ✓ ✓ 96.42 98.80

ResCLIP+GRU

✓ × × 96.30 99.01
× ✓ × 91.33 92.37
× × ✓ 91.89 90.56
✓ ✓ × 97.19 99.53
✓ × ✓ 96.83 99.31
× ✓ ✓ 93.12 93.00
✓ ✓ ✓ 97.94 99.25

ResCLIP+LSTM

✓ × × 97.27 99.34
× ✓ × 92.43 92.85
× × ✓ 92.32 92.21
✓ ✓ × 97.29 99.52
✓ × ✓ 96.92 99.53
× ✓ ✓ 94.43 94.65
✓ ✓ ✓ 98.10 99.87

Figure 6-14: The graph shows that the accuracy of the ResCLIP+LSTM model is
generally increased when multiple data types are combined; the greatest improvement
is shown when all three data types—RGB, Depth, and Skeleton—are used together.
Across every methodology, the SKIG dataset consistently outperforms the FPHA
dataset
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This Figure 6-14 illustrates the accuracy of different modalities on the proposed

model for the FPHA and SKIG datasets. To gain a deep insight into the proposed

model (ResCLIP+LSTM), we evaluated two additional experiments for an ablation

study, as indexed in Table 6.5. This part focuses on validating the effectiveness of the

proposed model by examining the impact of different dropout layers and the effect of

adding one more Conv1D layer.

• Effect of the Dropout layer: To examine the impact of the dropout layer, we

evaluated the results by using two dropout rates: 0.3 and 0.5. From the results,

we observed that a dropout rate of 0.3 resulted in lower accuracy compared

to a dropout rate of 0.5, as shown in Table 6.5. A 0.5 dropout rate provides

stronger regularization than a 0.3 dropout rate, reducing the risk of overfitting.

By dropping out 50% of the neurons, the model becomes more robust as it

is forced to learn redundant representations. This redundancy can improve

the model’s ability to handle noise and variations in the input data. For our

proposed model, we prefer a 0.5 dropout rate for hand gesture recognition.

• Effect of adding one more Con1D layer: First, we analyzed the effect of three

Conv1D layers and found that it created overfitting during training. Then, we

experimented with two and three layers of Conv1D and observed that consid-

eration of two layers avoids overfitting, resulting in 2.21% higher accuracy on

the FPHA dataset, and 1.56% higher accuracy on the SKIG dataset, as shown

in Table 6.5.

Table 6.5: Comparison of recognition accuracy for ablation study on FPHA and SKIG
datasets using the proposed model (ResCLIP+LSTM).

R D S D(0.5) D(0.3) FPHA(CD2) FPHA(CD3) SKIG(CD2) SKIG(CD3)

✓ ✓ ✓ ✓ × 98.10 - 99.87 -

✓ ✓ ✓ × ✓ - 95.89 - 98.31
R=RGB, D=Depth, S=skeleton, D=Dropout, CD2=Two layers of Conv1D, CD3=Three layers of

Conv1D
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6.4.4 Comparison with Literature

Comparison of FPHA Dataset with State-of-the-Art Methods

We compare the experimental results with state-of-the-art on the FPHA dataset. Ta-

ble 6.6 presents a comparison between the proposed model and current approaches. In

the paper [45], the author employs CNN and RNN for video classification and presents

a novel method for hand action identification called sparse low-rank scores. Similar

to Yang et al. [114], [84] and Yilin et al. [39], these authors also used transformer

models for dynamic hand gesture recognition while integrating RGB and skeleton

modalities. The paper [46] proposed two novel 2D hand posture estimation models

for an egocentric view. These models aim to address challenges in dynamic hand

gesture recognition, such as overlapping hand occlusion.

We implemented a fusion of RGB, depth, and skeleton features in our proposed

model. While some other researchers have also used deep learning methods with

different modalities such as RGB, skeleton, or depth data only or combination of

these modalities [122], [45], [67]. The results shown in Table 6.6 demonstrate that

the proposed ResCLIP+LSTM model surpasses other state-of-the-art methods on the

FPHA dataset, achieving an accuracy of 98.10% except the paper [122] but having

1.17M parameters and computationally efficient model.

Table 6.6: FPHA dataset’s classification accuracy comparison(%) Results.

Methods R D S Acc Par B.S L.R
LSTM [122] ✓ × × 98.40 135M 32 0.00042
ResNet-152+RGB [45] ✓ × × 87.06 311.1M 64 0.005
ResNet-152+RGB [45] × ✓ × 84.31 311.1M 64 0.005
HMM + 2DCNN [65] × × ✓ 90.96 - 40 3e-4
GCN [67] × × ✓ 89.41 1.41M 10 0.001
TransformerCNN [84] × × ✓ 87.32 - 64 1e-3
Conv2D [11] × × ✓ 93.22 - 30 0.01
YOLOv7 [46] ✓ × ✓ 94.43 21.45M 64 0.001
RNN [45] ✓ ✓ × 91.59 341.1M 64 0.0005
Resnet [114] ✓ × ✓ 85.22 - 4 0.00001
Transformer [39] × ✓ ✓ 86.36 11.17M 2 0.00003
CNN [117] ✓ × ✓ 89.93 - 64 -
ResCLIP+LSTM ✓ ✓ ✓ 98.10 1.177M 64 0.0001

R=RGB, D=Depth, S=skeleton, Acc=Accuracy, Par=Parameter, B.S=Batch Size
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Comparison of SKIG dataset with State-of-the-Art Methods

We compare our experimental results with state-of-the-art on the SKIG dataset as

shown in Table 6.7. In the paper [25], the author employs 3DCNN and LSTM for

video classification and they use RGB data as input for their model. Similarly, the

author [26] focuses on a single RGB modality as an input and finds the spatio-temporal

features. The authors Dexu et al. [32] proposed a multimodal gesture recognition

technique that integrates DenseNet with BLSTM networks. This approach combines

RGB and depth data, similar to the work of other authors Verma et al. [123] and

Tang et al. [115], who have utilized these features for gesture recognition. In our

proposed model, we implemented a fusion of RGB, depth, and skeleton features. In

contrast, some researchers used either a single modality or a combination of RGB and

depth for hand gesture recognition [32], [115], [123]. The results shown in Table 6.7

demonstrate that the proposed ResCLIP+LSTM model surpasses other state-of-the-

art methods on the SKIG dataset, achieving an accuracy of 99.87% with a smaller

number of parameters, i.e., 0.77 million parameters.

Table 6.7: SKIG dataset’s classification accuracy comparison(%) results.

Methods R D S Acc Par B.S L.R
3DCNN+LSTM [25] ✓ × × 99.65 159M 8 0.000001
ResNet-18 [26] ✓ × × 98.70 3.35M 16 0.01
DensNet,BLSTM [32] ✓ ✓ × 99.07 - 8 -
3DCNN, LSTM. [115] ✓ ✓ × 99.63 4.73M 8 0.001
MHI+VGG16 [123] ✓ ✓ × 99.12 - - 0.01
ResCLIP+LSTM ✓ ✓ ✓ 99.87 0.77M 32 0.0001

R=RGB, D=Depth, S=skeleton, Acc=Accuracy, Par=Parameter, B.S=Batch Size

6.5 Conclusion

Our proposed model introduces a ResCLIP-LSTM-based hand gesture recognition

system that is computationally efficient. This approach is designed to achieve high-

speed performance and can operate effectively with a smaller number of training

samples. By utilizing a fusion of RGB video, depth video, and skeleton trajectory
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video, our model achieves high accuracy. Our proposed model uses a fusion of RGB,

depth, and skeleton data. Features are extracted using a pre-trained ResCLIP model,

and processed with LSTM units. Features from all three modalities are concatenated

and classified using a Softmax classifier. Our model performs competitively on the

FPHA and SKIG benchmark datasets and achieves more than 99% on the SKIG

dataset and more than 98% on the FPHA dataset, matching state-of-the-art methods.

The ResCLIP-LSTM model integrates CLIP with residual blocks to enhance fea-

ture extraction across these data types, optimizing performance with fewer training

samples and mitigating vanishing gradient issue.
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Conclusion

Due to the advancement of technologies and the digital era the need of human-

computer interaction(HCI) techniques needs to grow. Hand gesture recognition is

a one of the possible way that makes human interaction with the computers. How-

ever, challenges arise due to the small size and complexity of hands, making gesture

recognition and pose estimation difficult. Deep learning techniques address these is-

sues by capturing temporal information and complex hand dynamics. Researchers

also face challenges such as time-consuming data processing and difficulty in extract-

ing the region of interest. The growing need for hand gesture recognition has led

to various applications in robotics, smart homes, gaming, autonomous vehicles, and

healthcare, minimizing interference and reducing communication costs.

7.1 Summary and Contribution of the Thesis

In this thesis, we proposed four frameworks for vision-based dynamic hand gesture

recognition that address various challenges such as lighting variations, occlusion, and

complex backgrounds and inter and intra class variation. These models are designed

to efficiently handle the complexities of dynamic hand gestures, ensuring high-speed

performance and adaptability across different conditions. They are also optimized to

work effectively with a smaller number of training samples, making them suitable for

practical applications with limited data availability.
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• In first framework, we solve the challenge of hand detection and tracking where

RGB videos are used to extract the features using CLIP model. RGB video data

is useful for extracting features, as it provides the visual information about

the hand, as well as spatial information that helps identify the hand’s shape

and texture. This enhances the model’s understanding of the gesture context.

Further, we have used BLSTM model for sequence to sequence learning and

classify the dynamic hand gesture. Experimental results on CHG dataset with

an accuracy of 97% and LISA dataset with an average accuracy of 86% shows

the prominence of the proposed model.

The novelty of our work lies in utilizing the CLIP model to extract features

from RGB video data. The CLIP-BLSTM model is specifically designed to

address challenges associated with small hand sizes and hand tracking, proving

to be efficient with fewer training samples and parameters. Overall, it performs

effectively in different lighting environments, establishing it as an accurate hand

gesture recognition system.

However, during experiments we witnessed that RGB approach faces challenges

such as occlusion, and background clutter, which can impede recognition rate.

Thus, in next frameworks we have tried to solve these issues using the skeleton

data also solve the problem of inter-class and intra-class variation.

• In second frame work, we have used skeleton data to plot the hand gesture

trajectory. If skeleton data is available, trajectory can be plotted using skeleton

points without bothering about the hand occlusion, background clutter. Fur-

ther, inter and intra-class variation problem resolved using the DDA loss. We

extracted the features of the plotted trajectory using the VGG16, DenseNet121

and InceptionV3 and ensemble learning used to find the best suitable features.

Then DDA loss used to refine the extracted features by increasing the closeness

of with-in class similarity features and decreases the between class similarity

features. Further, gestures are classified using the SoftMax activation function.

The Experimental results demonstrate that the proposed model surpasses other
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state-of-the-art methods DHG14/28 dataset with an average accuracy of 97.1%,

and 99.8% average accuracy on 26-Gestures dataset.

The proposed hand gesture recognition framework increases gesture recognition

accuracy and efficiently handles intra and inter-class variability in hand gesture

recognition by integrating ensemble learning with a Discriminant Distribution-

Agnostic Loss. Use of skeleton data also overcome the challenge of hand detec-

tion in occlusion and cluttered background.

• In third framework, we have proposed a hybrid deep-learning model where skele-

ton and optical flow videos are calculated in two pipelines parallely and Bi-GRU

used for sequence to sequence learning. The advantage of using skeleton point

video is that it overcomes the challenges of hand occlusion and complex back-

ground. The advantage of calculating the optical flow video is that it captures

the hand motion and discards the irrelevant data and stationary background.

For each skeleton trajectory video, features are extracted using Xception-Net

called as a finger motion feature (FMF) and features extracted from optical

flow videos are global motion features(GMF). Features extracted from a single

modality is not sufficient enough to classify the dynamic hand gesture, thus,

we proposed a fusion of FMF and GMF that gives better accuracy compared

to the single modality. The proposed model achieved competitive results on

benchmark datasets such as on DHG14/28 dataset with an accuracy of 98.2%,

on NWUHG dataset with an accuracy of 99.2% with other state-of-the-art mod-

els while maintaining a considerably lower computational complexity.

Our proposed model offers a bidirectional gated recurrent unit (Bi-GRU) model-

based hand gesture recognition system that is computationally effective than

Bi-LSTM. This method is designed to attain high-speed performance while be-

ing capable of working successfully even with limited training samples. This

dual-feature extraction method allows the model to achieve a more robust un-

derstanding of hand gestures, improving overall performance in diverse environ-

ments.
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• In the fourth framework, we present a multimodal hybrid framework that uti-

lizes the different strength of each modality. Use of all three modalities RGB,

depth, and skeleton data boost the performance of the proposed model. Pro-

posed work introduced ResCLIP-LSTM-based hybrid method where CLIP is

used to extract the features from each modality individually and the features

are refined using the residual block and then LSTM used for sequence to se-

quence learning. Experimental results on FPHA dataset with an accuracy of

98.10% and SKIG dataset with an average accuracy of 99.87% shows the promi-

nence of the proposed model.

The ResCLIP-LSTM model integrates CLIP with residual blocks to enhance

feature extraction across these data types, optimizing performance with fewer

training samples and mitigating vanishing gradient issue.

7.2 Future Directions

• As skeleton data have shown a very promising form of dataset that can be used

in graph convolutional neural networks as a hand gesture recognition. Use of

skeleton data in graph convolutional neural network may boost the performance

and can solve many challenges encounter in the hand gesture recognition.

• Another future work can be to create a more robust framework that emphasizes

key frames in gesture sequences, which can enhance recognition accuracy and

efficiency by focusing on the most informative moments in a gesture.

• Another future work can be to propose a real-time applications for hand gesture

recognition, enabling instant feedback and interaction in various context using

the framework given in this thesis.

• Future work can be to integrate gesture recognition systems with artificial intel-

ligence and Internet of Things (IoT) devices, which can enhance user experiences

in smart home environments, allowing for intuitive control of devices through

hand gestures.
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• In order to enable more precise and natural gesture recognition for applications

such as virtual reality (VR), augmented reality (AR), and robots, 3D dynamic

hand gesture recognition can be developed.

• In the future, we can explore DDA loss with graph convolutional neural net-

works for dynamic hand gesture recognition. To enhance adaptability, we can

investigate the extension of our models for egocentric hand gesture for daily

hand action activities.

• In the future, as a prospective directional we want to create more accurate

feature extractions which can handle every kind of gesture data without relying

on the feature chosen for the specific kind of gestures.
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R. Maskeliūnas, and K. H. Abdulkareem, “Real-time hand gesture recognition

based on deep learning yolov3 model,” Applied Sciences, vol. 11, no. 9, p. 4164,

2021.

[30] K. Lai and S. N. Yanushkevich, “Cnn+ rnn depth and skeleton based dynamic

hand gesture recognition,” in 2018 24th international conference on pattern

recognition (ICPR). IEEE, 2018, pp. 3451–3456.

131



REFERENCES

[31] X. Chen, H. Guo, G. Wang, and L. Zhang, “Motion feature augmented recurrent

neural network for skeleton-based dynamic hand gesture recognition,” in 2017

IEEE International Conference on Image Processing (ICIP). IEEE, 2017, pp.

2881–2885.

[32] D. Li, Y. Chen, M. Gao, S. Jiang, and C. Huang, “Multimodal gesture recogni-

tion using densely connected convolution and blstm,” in 2018 24th International

Conference on Pattern Recognition (ICPR). IEEE, 2018, pp. 3365–3370.

[33] J. C. Nunez, R. Cabido, J. J. Pantrigo, A. S. Montemayor, and J. F. Velez,

“Convolutional neural networks and long short-term memory for skeleton-based

human activity and hand gesture recognition,” Pattern Recognition, vol. 76, pp.

80–94, 2018.

[34] Y. Chen, L. Zhao, X. Peng, J. Yuan, and D. N. Metaxas, “Construct dy-

namic graphs for hand gesture recognition via spatial-temporal attention,”

arXiv preprint arXiv:1907.08871, 2019.

[35] G. Devineau, F. Moutarde, W. Xi, and J. Yang, “Deep learning for hand gesture

recognition on skeletal data,” in 2018 13th IEEE International Conference on

Automatic Face & Gesture Recognition (FG 2018). IEEE, 2018, pp. 106–113.

[36] Y. Li, D. Ma, Y. Yu, G. Wei, and Y. Zhou, “Compact joints encoding for

skeleton-based dynamic hand gesture recognition,” Computers & Graphics,

vol. 97, pp. 191–199, 2021.

[37] Y. Li, Z. He, X. Ye, Z. He, and K. Han, “Spatial temporal graph convolutional

networks for skeleton-based dynamic hand gesture recognition,” EURASIP

Journal on Image and Video Processing, vol. 2019, no. 1, pp. 1–7, 2019.

[38] T. Do, K. Vuong, and H. S. Park, “Egocentric scene understanding via multi-

modal spatial rectifier,” in Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 2022, pp. 2832–2841.

132



REFERENCES

[39] Y. Wen, H. Pan, L. Yang, J. Pan, T. Komura, and W. Wang, “Hierarchical

temporal transformer for 3d hand pose estimation and action recognition from

egocentric rgb videos,” in Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 2023, pp. 21 243–21 253.

[40] G. Zhu, L. Zhang, P. Shen, J. Song, S. A. A. Shah, and M. Bennamoun, “Con-

tinuous gesture segmentation and recognition using 3dcnn and convolutional

lstm,” IEEE Transactions on Multimedia, vol. 21, no. 4, pp. 1011–1021, 2018.

[41] R. Tripathi and B. Verma, “Motion feature estimation using bi-directional gru

for skeleton-based dynamic hand gesture recognition,” Signal, Image and Video

Processing, pp. 1–10, 2024.

[42] Z. Zhang, Z. Tian, and M. Zhou, “Latern: Dynamic continuous hand gesture

recognition using fmcw radar sensor,” IEEE Sensors Journal, vol. 18, no. 8, pp.

3278–3289, 2018.

[43] G. Benitez-Garcia, J. Olivares-Mercado, G. Sanchez-Perez, and K. Yanai, “Ipn

hand: A video dataset and benchmark for real-time continuous hand gesture

recognition,” in 2020 25th International Conference on Pattern Recognition

(ICPR). IEEE, 2021, pp. 4340–4347.

[44] Q. Gao, Y. Chen, Z. Ju, and Y. Liang, “Dynamic hand gesture recognition

based on 3d hand pose estimation for human-robot interaction,” IEEE Sensors

Journal, 2021.

[45] K. Roy, “Multimodal score fusion with sparse low rank bilinear pooling for ego-

centric hand action recognition,” ACM Transactions on Multimedia Computing,

Communications and Applications, 2024.

[46] W. Mucha and M. Kampel, “In my perspective, in my hands: Accurate ego-

centric 2d hand pose and action recognition,” arXiv preprint arXiv:2404.09308,

2024.

133



REFERENCES

[47] D. S. Breland, S. B. Skriubakken, A. Dayal, A. Jha, P. K. Yalavarthy, and

L. R. Cenkeramaddi, “Deep learning-based sign language digits recognition from

thermal images with edge computing system,” IEEE Sensors Journal, vol. 21,

no. 9, pp. 10 445–10 453, 2021.

[48] M. Al-Hammadi, G. Muhammad, W. Abdul, M. Alsulaiman, M. A. Bencherif,

T. S. Alrayes, H. Mathkour, and M. A. Mekhtiche, “Deep learning-based ap-

proach for sign language gesture recognition with efficient hand gesture repre-

sentation,” IEEE Access, vol. 8, pp. 192 527–192 542, 2020.

[49] Y. Li, D. Ma, Y. Yu, G. Wei, and Y. Zhou, “Compact joints encoding for

skeleton-based dynamic hand gesture recognition,” Computers & Graphics,

vol. 97, pp. 191–199, 2021.

[50] B. Hu and J. Wang, “Deep learning based hand gesture recognition and uav

flight controls,” International Journal of Automation and Computing, vol. 17,

no. 1, pp. 17–29, 2020.

[51] S. Mishra, “Infant hand detection and tracking,” 2021.

[52] D. S. Breland, S. B. Skriubakken, A. Dayal, A. Jha, P. K. Yalavarthy, and

L. R. Cenkeramaddi, “Deep learning-based sign language digits recognition from

thermal images with edge computing system,” IEEE Sensors Journal, vol. 21,

no. 9, pp. 10 445–10 453, 2021.

[53] A. D’Eusanio, A. Simoni, S. Pini, G. Borghi, R. Vezzani, and R. Cucchiara,

“Multimodal hand gesture classification for the human–car interaction,” in In-

formatics, vol. 7, no. 3. Multidisciplinary Digital Publishing Institute, 2020,

p. 31.

[54] N. L. Hakim, T. K. Shih, S. P. Kasthuri Arachchi, W. Aditya, Y.-C. Chen, and

C.-Y. Lin, “Dynamic hand gesture recognition using 3dcnn and lstm with fsm

context-aware model,” Sensors, vol. 19, no. 24, p. 5429, 2019.

134



REFERENCES

[55] N. Nasri, S. Orts-Escolano, and M. Cazorla, “An semg-controlled 3d game for

rehabilitation therapies: Real-time time hand gesture recognition using deep

learning techniques,” Sensors, vol. 20, no. 22, p. 6451, 2020.

[56] M. S. Abdallah, G. H. Samaan, A. R. Wadie, F. Makhmudov, and Y.-I. Cho,

“Light-weight deep learning techniques with advanced processing for real-time

hand gesture recognition,” Sensors, vol. 23, no. 1, p. 2, 2022.

[57] R. Jain, R. K. Karsh, and A. A. Barbhuiya, “Encoded motion image-based

dynamic hand gesture recognition,” The visual computer, vol. 38, no. 6, pp.

1957–1974, 2022.

[58] H. Mahmud, R. Islam, and M. K. Hasan, “On-air english capital alphabet (eca)

recognition using depth information,” The Visual Computer, vol. 38, no. 3, pp.

1015–1025, 2022.

[59] J. Li, R. Liu, D. Kong, S. Wang, L. Wang, B. Yin, and R. Gao, “Attentive

3d-ghost module for dynamic hand gesture recognition with positive knowledge

transfer,” Computational Intelligence and Neuroscience, vol. 2021, pp. 1–12,

2021.

[60] C. Li, S. Li, Y. Gao, X. Zhang, and W. Li, “A two-stream neural network

for pose-based hand gesture recognition,” IEEE Transactions on Cognitive and

Developmental Systems, vol. 14, no. 4, pp. 1594–1603, 2021.

[61] C. Ma, A. Wang, G. Chen, and C. Xu, “Hand joints-based gesture recognition for

noisy dataset using nested interval unscented kalman filter with lstm network,”

The visual computer, vol. 34, pp. 1053–1063, 2018.

[62] S. Ameur, A. B. Khalifa, and M. S. Bouhlel, “A novel hybrid bidirectional

unidirectional lstm network for dynamic hand gesture recognition with leap

motion,” Entertainment Computing, vol. 35, p. 100373, 2020.

[63] X. Zhang and X. Li, “Dynamic gesture recognition based on memp network,”

Future Internet, vol. 11, no. 4, p. 91, 2019.

135



REFERENCES

[64] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Decoupled spatial-temporal attention

network for skeleton-based action-gesture recognition,” in Proceedings of the

Asian Conference on Computer Vision, 2020.

[65] J. Liu, Y. Liu, Y. Wang, V. Prinet, S. Xiang, and C. Pan, “Decoupled repre-

sentation learning for skeleton-based gesture recognition,” in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 2020, pp.

5751–5760.

[66] A. A. Mohammed, J. Lv, M. S. Islam, and Y. Sang, “Multi-model ensemble ges-

ture recognition network for high-accuracy dynamic hand gesture recognition,”

Journal of Ambient Intelligence and Humanized Computing, pp. 1–14, 2022.

[67] S.-H. Peng and P.-H. Tsai, “An efficient graph convolution network for skeleton-

based dynamic hand gesture recognition,” IEEE Transactions on Cognitive and

Developmental Systems, 2023.

[68] W. Zhang, Z. Lin, J. Cheng, C. Ma, X. Deng, and H. Wang, “Sta-gcn: two-

stream graph convolutional network with spatial–temporal attention for hand

gesture recognition,” The Visual Computer, vol. 36, pp. 2433–2444, 2020.

[69] Y. Zhou, G. Jiang, and Y. Lin, “A novel finger and hand pose estimation tech-

nique for real-time hand gesture recognition,” Pattern Recognition, vol. 49, pp.

102–114, 2016.

[70] J. Huang, W. Zhou, H. Li, and W. Li, “Attention-based 3d-cnns for large-

vocabulary sign language recognition,” IEEE Transactions on Circuits and Sys-

tems for Video Technology, vol. 29, no. 9, pp. 2822–2832, 2018.

[71] S. R. Bose and V. S. Kumar, “In-situ recognition of hand gesture via enhanced

xception based single-stage deep convolutional neural network,” Expert Systems

with Applications, p. 116427, 2021.

136



REFERENCES

[72] M. Ur Rehman, F. Ahmed, M. Attique Khan, U. Tariq, F. Abdulaziz Alfouzan,

N. M Alzahrani, and J. Ahmad, “Dynamic hand gesture recognition using 3d-

cnn and lstm networks,” Computers, Materials & Continua, vol. 70, no. 3, 2021.

[73] K. Nguyen-Trong, H. N. Vu, N. N. Trung, and C. Pham, “Gesture recognition

using wearable sensors with bi-long short-term memory convolutional neural

networks,” IEEE Sensors Journal, vol. 21, no. 13, pp. 15 065–15 079, 2021.

[74] T.-K. Kim, S.-F. Wong, and R. Cipolla, “Tensor canonical correlation analysis

for action classification,” in 2007 IEEE Conference on Computer Vision and

Pattern Recognition. IEEE, 2007, pp. 1–8.

[75] H. Yang, Q. Tian, Q. Zhuang, L. Li, and Q. Liang, “Fast and robust key frame

extraction method for gesture video based on high-level feature representation,”

Signal, Image and Video Processing, vol. 15, pp. 617–626, 2021.

[76] L. Baraldi, F. Paci, G. Serra, L. Benini, and R. Cucchiara, “Gesture recognition

in ego-centric videos using dense trajectories and hand segmentation,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, 2014, pp. 688–693.

[77] Y. Yuan, H. Zheng, Z. Li, and D. Zhang, “Video action recognition with spatio-

temporal graph embedding and spline modeling,” in 2010 IEEE International

Conference on Acoustics, Speech and Signal Processing. IEEE, 2010, pp. 2422–

2425.

[78] W. Wang, Y. Huang, Y. Wang, and L. Wang, “Proc. ieee conf. computer vision

and pattern recognition workshops,” 2014.

[79] N. Deo, A. Rangesh, and M. Trivedi, “In-vehicle hand gesture recognition us-

ing hidden markov models,” in 2016 IEEE 19th International Conference on

Intelligent Transportation Systems (ITSC). IEEE, 2016, pp. 2179–2184.

137



REFERENCES

[80] W. Li, Z. Fan, J. Huo, and Y. Gao, “Modeling inter-class and intra-class con-

straints in novel class discovery,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2023, pp. 3449–3458.

[81] C. Li, Z. Liu, J. Ren, W. Wang, and J. Xu, “A feature optimization approach

based on inter-class and intra-class distance for ship type classification,” Sen-

sors, vol. 20, no. 18, p. 5429, 2020.

[82] F. M. Caputo, P. Prebianca, A. Carcangiu, L. D. Spano, A. Giachetti et al.,

“A 3 cent recognizer: Simple and effective retrieval and classification of mid-air

gestures from single 3d traces.” in STAG, 2017, pp. 9–15.

[83] F. M. Caputo, P. Prebianca, A. Carcangiu, L. D. Spano, and A. Giachetti,

“Comparing 3d trajectories for simple mid-air gesture recognition,” Computers

& Graphics, vol. 73, pp. 17–25, 2018.

[84] S. Li, Z. Liu, G. Duan, and J. Tan, “Mvhanet: multi-view hierarchical aggre-

gation network for skeleton-based hand gesture recognition,” Signal, Image and

Video Processing, pp. 1–9, 2023.

[85] Z. Deng, Q. Gao, Z. Ju, and X. Yu, “Skeleton-based multifeatures and multi-

stream network for real-time action recognition,” IEEE Sensors Journal, vol. 23,

no. 7, pp. 7397–7409, 2023.

[86] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble learning,”

Frontiers of Computer Science, vol. 14, pp. 241–258, 2020.

[87] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in

Proceedings of the IEEE conference on computer vision and pattern recognition,

2017, pp. 1251–1258.

[88] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-

nected convolutional networks,” in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, 2017, pp. 4700–4708.

138



REFERENCES

[89] A. H. Farzaneh and X. Qi, “Discriminant distribution-agnostic loss for facial

expression recognition in the wild,” in Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition workshops, 2020, pp. 406–407.

[90] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+ d: A large scale

dataset for 3d human activity analysis,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 1010–1019.

[91] J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan, and A. C. Kot, “Ntu

rgb+ d 120: A large-scale benchmark for 3d human activity understanding,”

IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 10,

pp. 2684–2701, 2019.

[92] S. Narayan, A. P. Mazumdar, and S. K. Vipparthi, “Sbi-dhgr: Skeleton-based

intelligent dynamic hand gestures recognition,” Expert Systems with Applica-

tions, p. 120735, 2023.

[93] J. Singha, A. Roy, and R. H. Laskar, “Dynamic hand gesture recognition using

vision-based approach for human–computer interaction,” Neural Computing and

Applications, vol. 29, no. 4, pp. 1129–1141, 2018.

[94] K. S. Yadav, S. Misra, R. H. Laskar, T. Khan, M. Bhuyan et al., “Removal

of self co-articulation and recognition of dynamic hand gestures using deep

architectures,” Applied Soft Computing, vol. 114, p. 108122, 2022.

[95] Y. Liu, S. Song, L. Yang, G. Bian, and H. Yu, “A novel dynamic gesture un-

derstanding algorithm fusing convolutional neural networks with hand-crafted

features,” Journal of Visual Communication and Image Representation, vol. 83,

p. 103454, 2022.

[96] J. Yu, M. Qin, and S. Zhou, “Dynamic gesture recognition based on 2d convo-

lutional neural network and feature fusion,” Scientific Reports, vol. 12, no. 1, p.

4345, 2022.

139



REFERENCES

[97] J. Zheng, Z. Feng, C. Xu, J. Hu, and W. Ge, “Fusing shape and spatio-temporal

features for depth-based dynamic hand gesture recognition,” Multimedia Tools

and Applications, vol. 76, pp. 20 525–20 544, 2017.

[98] X. Chen, G. Wang, H. Guo, C. Zhang, H. Wang, and L. Zhang, “Mfa-net:

Motion feature augmented network for dynamic hand gesture recognition from

skeletal data,” Sensors, vol. 19, no. 2, p. 239, 2019.

[99] Q. De Smedt, H. Wannous, and J.-P. Vandeborre, “Heterogeneous hand ges-

ture recognition using 3d dynamic skeletal data,” Computer Vision and Image

Understanding, vol. 181, pp. 60–72, 2019.

[100] M. Maghoumi and J. J. LaViola, “Deepgru: Deep gesture recognition utility,”

in Advances in Visual Computing: 14th International Symposium on Visual

Computing, ISVC 2019, Lake Tahoe, NV, USA, October 7–9, 2019, Proceedings,

Part I 14. Springer, 2019, pp. 16–31.

[101] B. Verma, “A two stream convolutional neural network with bi-directional gru

model to classify dynamic hand gesture,” Journal of Visual Communication and

Image Representation, vol. 87, p. 103554, 2022.

[102] W. Song, W. Kang, and L. Lin, “Hand gesture authentication by discover-

ing fine-grained spatiotemporal identity characteristics,” IEEE Transactions on

Circuits and Systems for Video Technology, 2023.

[103] D. Miki, K. Kamitsuma, and T. Matsunaga, “Spike representation of depth

image sequences and its application to hand gesture recognition with spiking

neural network,” Signal, Image and Video Processing, pp. 1–9, 2023.

[104] Y. Zhang and F. Wang, “Handformer: A dynamic hand gesture recognition

method based on attention mechanism,” Applied Sciences, vol. 13, no. 7, p.

4558, 2023.

140



REFERENCES

[105] G. Farnebäck, “Two-frame motion estimation based on polynomial expansion,”

in Image Analysis: 13th Scandinavian Conference, SCIA 2003 Halmstad, Swe-

den, June 29–July 2, 2003 Proceedings 13. Springer, 2003, pp. 363–370.

[106] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, C.-L. Chang,

and M. Grundmann, “Mediapipe hands: On-device real-time hand tracking,”

arXiv preprint arXiv:2006.10214, 2020.

[107] P. Radzki, “Detection of human body landmarks-mediapipe and openpose com-

parison,” 2022.

[108] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation

of gated recurrent neural networks on sequence modeling,” arXiv preprint

arXiv:1412.3555, 2014.

[109] V. Veeriah, N. Zhuang, and G.-J. Qi, “Differential recurrent neural networks

for action recognition,” in Proceedings of the IEEE international conference on

computer vision, 2015, pp. 4041–4049.

[110] X. Shen, G. Hua, L. Williams, and Y. Wu, “Dynamic hand gesture recognition:

An exemplar-based approach from motion divergence fields,” Image and Vision

Computing, vol. 30, no. 3, pp. 227–235, 2012.

[111] D. Zhao, H. Li, and S. Yan, “Spatial-temporal synchronous transformer for

skeleton-based hand gesture recognition,” IEEE Transactions on Circuits and

Systems for Video Technology, 2023.

[112] D. Zhao, Q. Yang, X. Zhou, H. Li, and S. Yan, “A local spatial–temporal

synchronous network to dynamic gesture recognition,” IEEE Transactions on

Computational Social Systems, 2022.

[113] L. Liu and L. Shao, “Synthesis of spatio-temporal descriptors for dynamic hand

gesture recognition using genetic programming,” in 2013 10th IEEE Interna-

tional Conference and Workshops on Automatic Face and Gesture Recognition

(FG). IEEE, 2013, pp. 1–7.

141



REFERENCES

[114] S. Yang, J. Liu, S. Lu, M. H. Er, and A. C. Kot, “Collaborative learning of

gesture recognition and 3d hand pose estimation with multi-order feature anal-

ysis,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow,

UK, August 23–28, 2020, Proceedings, Part III 16. Springer, 2020, pp. 769–786.

[115] X. Tang, Z. Yan, J. Peng, B. Hao, H. Wang, and J. Li, “Selective spatiotem-

poral features learning for dynamic gesture recognition,” Expert Systems with

Applications, vol. 169, p. 114499, 2021.

[116] R. Tripathi and B. Verma, “Survey on vision-based dynamic hand gesture recog-

nition,” The Visual Computer, pp. 1–29, 2023.

[117] A. Sabater, I. Alonso, L. Montesano, and A. C. Murillo, “Domain and view-

point agnostic hand action recognition,” IEEE Robotics and Automation Let-

ters, vol. 6, no. 4, pp. 7823–7830, 2021.

[118] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,

A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from

natural language supervision,” in International conference on machine learning.

PMLR, 2021, pp. 8748–8763.

[119] M. Shafiq and Z. Gu, “Deep residual learning for image recognition: A survey,”

Applied Sciences, vol. 12, no. 18, p. 8972, 2022.

[120] G. Garcia-Hernando, S. Yuan, S. Baek, and T.-K. Kim, “First-person hand

action benchmark with rgb-d videos and 3d hand pose annotations,” in Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,

2018, pp. 409–419.

[121] L. Liu and L. Shao, “Learning discriminative representations from rgb-d video

data,” in Twenty-third international joint conference on artificial intelligence,

2013.

[122] H. Cho, C. Kim, J. Kim, S. Lee, E. Ismayilzada, and S. Baek, “Transformer-

based unified recognition of two hands manipulating objects,” in Proceedings

142



REFERENCES

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2023, pp. 4769–4778.

[123] B. Verma and A. Choudhary, “Dynamic hand gesture recognition using convo-

lutional neural network with rgb-d fusion,” in Proceedings of the 11th Indian

Conference on Computer Vision, Graphics and Image Processing, 2018, pp. 1–8.

[124] S. Mascarenhas and M. Agarwal, “A comparison between vgg16, vgg19 and

resnet50 architecture frameworks for image classification,” in 2021 International

conference on disruptive technologies for multi-disciplinary research and appli-

cations (CENTCON), vol. 1. IEEE, 2021, pp. 96–99.

143



Appendix A

Long Short-Term Memory(LSTM)

In this appendix, we explain the LSTM in detail.

A.1 Long Short-Term Memory(LSTM)

Recurrent neural networks struggle with long-term reliance because of the vanishing

gradient problem the LSTM networks are created. Instead of analyzing each data

point separately, they can analyze entire data sequences and store pertinent informa-

tion from prior data in series to assist in processing new data points. Therefore it is

very adept at processing sequential data.

The framework is composed of the input gate, output gate, forget gate, and cell

gate of an LSTM unit and are responsible for controlling the learning process as shown

in Fig. A-1. To govern the functioning of the gates throughout the learning process,

sigmoid functions are essential. The Cell state refers to the long-term memory in the

LSTM. It regulates the data that will be saved in an LSTM cell from earlier periods.

The cell gate is modified by the remembering vector, which is known as the forget

gate. The forget gate output state instructs the cell gate whether to maintain the

information in the cell state if it is 1 or to forget it if it is 0 [72]. Implementing LSTM

has the main benefit of resolving the vanishing gradient issue. The following given

below equations illustrates the working of LSTM [72].
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𝑖𝑡 = 𝜎(𝐴𝑡𝑤𝑥𝑖 +𝐻𝑡−1𝑤𝐻𝑖 + 𝑏𝑡−1𝑤𝑏𝑖 + 𝑤𝑖𝑏𝑎𝑖𝑠) (A.1)

Where, “𝑖𝑡" represents the input gate at time step “t". ‘𝐴𝑡" is the input vector and

“𝑤𝑥𝑖" is its weight matrix. “ 𝐻𝑡−1" is the hidden state from the previous time step

with “𝑤𝐻𝑖". “𝑏𝑡−1" and “𝑤𝑏𝑖" are the bias term and its weight matrix, respectively.

“𝑤𝑖𝑏𝑖𝑎𝑠" is an additional bias term for the input gate.

𝑓𝑡 = 𝜎(𝐴𝑡𝑤𝑥𝑓 + ℎ𝑡−1𝑤𝐻𝑓 + 𝑏𝑡−1𝑤𝑏𝑓 + 𝑤𝑓𝑏𝑎𝑖𝑠) (A.2)

Where, “𝑓𝑡" represents the output gate. “ℎ𝑡−1", another notation for the hidden state

from the previous time step, is similar to “𝐻𝑡−1".“𝑤𝑏𝑓" is the weight matrix for the

hidden state to the forget gate, and “𝑤𝑏𝑓" is the weight matrix for the bias to the

forget gate.

𝐶𝑡 = 𝑡𝑎𝑛𝐻(𝐴𝑡𝑤𝐴𝐶 + ℎ𝑡−1𝑤𝐻𝐶 + 𝑤𝑧𝑏𝑎𝑖𝑠) (A.3)

Where, “𝐶𝑡" represents the candidate cell state. “𝑤𝐻𝐶" is the weight matrix for the

hidden state to the cell state and “𝑤𝑧𝑏𝑎𝑖𝑠" is the bias term. In equation A.4 the “𝑏𝑡"

represents the cell state.

𝑏𝑡 = 𝐶𝑡 ⊗ 𝑖𝑡 + 𝑏𝑡−1 ⊗ 𝑖𝑡 (A.4)

𝑜𝑡 = 𝜎(𝐴𝑡𝑤𝑥𝑜 +𝐻𝑡−1𝑤𝐻𝑜 + 𝑏𝑡−1𝑤𝑏𝑜 + 𝑤𝑜𝑏𝑎𝑖𝑠) (A.5)

Where, “𝑜𝑡" represents Output gate. Controls the output from the cell state.

𝐻𝑡 = 𝑜𝑡 + 𝑡𝑎𝑛𝐻(𝑏𝑡) (A.6)

Where,“𝐻𝑡" represents the hidden state.

Equations A.3,A.5, and A.6 are the standard formulas for output, forget gates,

and hidden state. The "𝑏𝑡", "𝐻𝑡" represents output memory activation function at

time interval t.
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Figure A-1: LSTM Model.

A.2 Bidirectional-Long Short-Term Memory(Bi-LSTM)

Similarly, an example of a recurrent neural network is Bidirectional LSTM is fre-

quently employed for sequential data processing applications like voice and natural

language processing. The primary characteristic of Bi-directional LSTM is that it

uses two different LSTM layers are used to process both the forward and backward

directions of the input sequence as depicted in Fig. A-2. Concatenating the output

of each layer results in the output feature string, which retains the both past and

future context of each piece in the input pattern. Bidirectional LSTM, in contrast

to LSTM, can comprehend movements captured before and after the present point

as it can utilize forward information and backward information. Because of the flow

of information in both directions, the bidirectional LSTM Long-term dependencies

between signal patterns are captured. as compared to unidirectional networks, bi-

directional LSTM is much superior [73].
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Figure A-2: Bidirectional LSTM Block.
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VGG16, Densenet, Inception Net

This appendix explains the VGG16, DenseNet121, and Inception Net architectures

in detail.

B.1 VGG16

Convolutional neural networks like VGG Net are very good at visual identification

tasks since they were trained on the ImageNet dataset, which has over a million

labeled images in different categories. There are two main variations of the network,

however, VGG16 is one of the most widely used because of its simplicity and depth.

The model’s layers are frozen to prevent their weights from being updated during

training. A flattened layer is added to convert the 2D feature maps to 1D feature

vectors. A Dense layer with 256 units and ReLU activation is then included. The

output layer is a Dense layer with the number of classes specified by num_classes

and a softmax activation for classification.

VGG16 is a deep neural network with 16 layers, organized in a uniform struc-

ture with repeated blocks of convolutional and pooling layers, as shown in Figure ??.

It consists of 13 convolutional layers with 3x3 filters to capture patterns such as

edges and textures, interspersed with 5 max-pooling layers that reduce computa-

tional complexity while preserving spatial information. The network concludes with

fully connected layers that produce probabilities for class predictions, enabling strong
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performance in image classification.

Figure B-1: VGG16 [124]

B.2 DenseNet

CNNs of the DenseNet (Densely Connected Convolutional Network) architecture are

distinguished by their novel feed-forward connection strategy between each layer and

every other layer. Its unique structure makes it possible to employ parameters more

effectively and improves feature propagation, which makes it very successful for com-

puter vision applications like segmentation and picture classification.

Each layer in DenseNet builds dense connections by passing its own feature maps

to each succeeding layer and receiving inputs from all preceding layers. The network

may access a greater variety of data from earlier layers because to this connectivity

architecture, which removes the need to relearn redundant features. Because every

layer in DenseNet has direct access to the feature maps produced by every layer be-

fore it, the architecture encourages feature reuse. When compared to conventional

convolutional neural networks (CNNs), this feature reuse results in a significant re-

duction in the number of parameters. Furthermore, by improving gradient flow during

backpropagation, the dense connections successfully address the vanishing gradient

issue and facilitate the training of deeper networks. With substantially fewer parame-

ters, DenseNet achieves great performance by optimizing feature reuse and decreasing
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redundancy.

Figure B-2: DenseNet [88]

B.2.1 DenseNet121

A particular DenseNet setup with 121 layers is called DenseNet121. It is a popular

variation that is extensively utilized in applications where accuracy and efficiency are

crucial. DenseNet121 enhances the flow of information and gradients by connecting

each layer to every other layer in a feed-forward fashion. Global Average Pooling2D is

used to reduce the spatial dimensions of the fea- ture maps before the fully connected

layers. DenseNet121 connects each layer to all previous layers, improving feature reuse

and reducing the number of parameters. It consists of 4 dense blocks, each separated

by transition layers that down sample the feature maps. Dense connection is achieved

by concatenating each layer’s output with the output of every preceding layer in the

same block. In deep learning tasks, this design improves model performance and

efficiency.
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B.3 Inception Net

Google first unveiled the Inception network, commonly referred to as GoogLeNet, in

2014. It presented the idea of an Inception module, which enables the network to use

numerous filter sizes inside the same layer to capture various information levels. This

architecture is renowned for its great accuracy and computational efficiency on picture

classification tasks, such as the ImageNet Challenge. The Inception module, which

is the central component of the Inception network, uses several convolutional layers

with varied sizes of filters to acquire various facets of a source picture. The filters

are like 1x1, 3x3, 5x5. The network reduces dimensionality using 1x1 convolutions

before applying larger filters, which lowers the number of parameters and preserves

computational efficiency. It is feasible to employ deeper networks without using

excessive computer resources by using smaller filters, which lower the total number

of parameters and processing cost.

B.3.1 InceptionV3

An upgraded version of the original Inception architecture, Inception V3 added a

number of improvements to increase efficiency and performance. By using several

convolutions of various sizes in parallel, InceptionV3 is able to capture multi-scale

information. The pre-trained weights are used by the model to load InceptionV3. In

order to lessen overfitting and model size, it employs global average pooling rather

than fully connected layers. The feature maps are transformed into a single vector per

picture by a GlobalAveragePooling2D layer, which is followed by a Dense layer that

contains the softmax activation and number of classes for classification. Inception

V3 is a deep neural network that uses multiple parallel convolution layers (1x1, 3x3,

5x5) and pooling operations to efficiently capture features at different scales. It uses

smaller, split-up convolutions to make the model faster and more efficient. It also adds

extra classifiers during training to help the model learn better and prevent overfitting,

making it very good at recognizing images.
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Figure B-3: Inception V3 [87]
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Appendix C

Bidirectional Gated Recurrent

Unit(Bi-GRU)

In this appendix, we provide detailed information on the Bi-GRU model, including

its formulation and architecture.

C.1 Gated Recurrent Units (GRU)

Recurrent neural networks, Gated Recurrent Units (GRU), and Bi-directional GRU

(Bi-GRU) are frequently utilized in applications involving sequential data processing

and natural language processing. Cho et al. [108] introduced the GRU (Gated Re-

current Unit), a form of recurrent neural network, in 2014. The GRU cell is more

computationally efficient since it has fewer parameters comparable to the LSTM cell.

The GRU selectively updates the hidden state and memory cell using gating mech-

anisms as a result it solves the problem of vanishing gradients that can happen in

conventional recurrent neural networks. The reset gate and the update gate are both

components of the GRU cell. The update gate regulates the amount of fresh can-

didate activation utilized in the current time step, whereas the reset gate regulates

the amount of the prior hidden state used in the current time step. Based on the

current input and prior hidden layer output, the update gate utilizes a sigmoid neural

layer to selectively add or delete information from the input. Equation C.1 is used to
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determine the update gate’s function.

𝑈𝑇 = 𝜎((𝑤(𝑈)𝑋𝑇 +𝐵𝑈) + (𝑞(𝑈)𝐻𝑇−1 +𝐵𝑈)) (C.1)

Where 𝑈𝑇 represents as update gate, 𝐻𝑇−1 as the output of the hidden layer. 𝑋𝑇 is

a current input that has been inserted into a network unit and multiplied by its own

weight 𝑤(𝑈) and biases are included, 𝐻𝑇−1 is a prior time stamp information that has

been multiplied by its original weight 𝑞(𝑈) and biases.

𝑅𝑇 = 𝜎((𝑤(𝑅)𝑋𝑇 +𝐵𝑅) + (𝑞(𝑅)𝐻𝑇−1 +𝐵𝑅)) (C.2)

Similarly, in equation C.2, 𝑅𝑇 represents the reset gate, which selects the exact

amount of the prior information to forget.

In equation C.3 the reset gate 𝑅𝑇 is used in the next steps to determine the

memory content 𝐻 ′
𝑇 in order to obtain the necessary information from the past.

𝐻 ′
𝑇 = 𝑡𝑎𝑛ℎ((𝑤𝑋𝑇 +𝐵) +𝑅𝑇 ⊙ (𝑞𝐻𝑇−1 +𝐵)) (C.3)

𝐻𝑇 = 𝑈𝑇 ⊙𝐻𝑇−1 + (1− 𝑈𝑇 )⊙ (𝐻 ′
𝑇 ) (C.4)

The combined findings from both steps are applied in the last stage, followed by tanh

activation and 𝐻𝑇 is finding out to keep the most recent information and transmit it

throughout the network. In Equation C.4 𝑈𝑇 is multiplied with 𝐻𝑇−1 to determine

what information needs to collect from the previous step.

C.2 Bidirectional Gated Recurrent Unit(Bi-GRU)

An extension of the GRU, known as the Bi-GRU (Bidirectional Gated Recurrent

Unit), is an additional set of hidden states that are generated in the opposite direction.

As a result, the model is able to include data from the input sequence’s past and
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Figure C-1: GRU Architecture

future. The Bi-GRU cell equations are as follows:

−→
𝐻𝑇 = 𝐺𝑅𝑈𝑓𝑤𝑑(𝑋𝑇 ,

−−−→
𝐻𝑇−1)

←−
𝐻𝑇 = 𝐺𝑅𝑈𝑏𝑤𝑑(𝑋𝑇 ,

←−−−
𝐻𝑇+1)𝐻𝑇 =

−→
𝐻𝑇 ⊕

←−
𝐻𝑇 (C.5)

where ⊕ denotes the act of concatenating two vectors,
−→
𝐻𝑇 denotes the state of

the forward GRU, and
←−
𝐻𝑇 denotes the state of the backward GRU.

Figure C-2: Bidirectional-GRU Architecture
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