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ABSTRACT 

Analyzing the contents of a real-world view is an essential task which needs to be 

carried out in machine vision and image processing, that has gained a lot of interest 

from the researchers in the past four decades. Edge detection algorithm calculates the 

contours of an object, separates it from its background and helps in analyzing the 

contents of the image. This represents the significance of edge detection in the area of 

machine vision. The method of edge detection involves in locating the points in a 

digital image where abrupt changes in image intensity or discontinuities occurs.  

There are different conventional algorithms useful for edge detection in various points 

of view. Some of the popular algorithms are Sobel, Canny, and Roberts etc. All of 

these traditional methods are based on a gradient estimation for the pixels. These 

techniques are less complex but fail in the presence noise. These techniques are highly 

dependent on the threshold which results in missing, false and spurious edges. Several 

other techniques are also proposed in the literature. For edge detection, soft-

computing based techniques had recently gained much popularity. In these methods, 

artificial neural networks (ANN), Fuzzy logic, deep neural network (DNN) and 

evolutionary algorithms (EA) based on swarm’s behaviors’ are the most common. 

The ANN, and DNN based methods are complex and very susceptible to noise 

perturbations. In some of soft-computing methods, weak edges are also not detected 

properly. To overcome these limitations, a two step process for edge detection is 

considered. In the first step, edge refinement is done, and then edge detection is done 

using soft computing technique.  

In our first work, an edge detection method based on Ant Colony Optimization (ACO) 

is described. A novel intensity mapping function is utilized to record intensity change 

among neighbouring pixels which guides the movement of ant. Finally, the Peak-

Signal-to-Noise Ratio (PSNR), accuracy, and F-Score are used to evaluate and 

compare performance.  

In the second work, fuzzy logic-based edge detection approach using a sharpening 

guided filter is proposed. A Gaussian filter is also used to deal with noise caused by 

sharpening. A range of statistical indicators are used to assess the method's accuracy. 



 ix 

It has been discovered that by properly setting the smoothening parameters, a 

significant improvement can be achieved in the identified edges. Simulation results 

are presented on various images,  statistical results are evaluated and compared with 

other latest techniques. 

In the third work, images are smoothed at varying degrees using a guided L0 

smoothen filter and then a fuzzy logic-based edge detection algorithm is used to 

detect edges. Simulation results for Canny, Sobel, fuzzy logic-based edge detection, 

and lastly fuzzy logic edge detection with L0smoothen filter are shown. Results are 

contrasted with both traditional and contemporary methods. More than 100 images are 

taken into account from the Berkley Segmentation Database (BSD) and USC-SIPI 

Image Database. The measured F-value reaches a maximum of 0.848.  

Finally in fourth work, the edge detection considering guided image filtering and 

ACO is discussed. Simulation results are presented on various images and statistical 

results will also be evaluated and comparisons with latest techniques are also done. 

In this research, an effort is made to propose an edge detection algorithm which can 

work well in presence of noise. The performance of proposed edge detection 

techniques is analyzed with other notable techniques. The simulation is performed on 

BSD (Berkeley Segmentation Dataset) and USC-SIPI Image Database using computer 

simulation in MATLAB. Summarized table for result using different parameters 

achieved by proposed method and other edge detection techniques shows that the 

proposed method improves the performance of edge detection. Due to better 

performance of proposed method; it can be used in different field of science and 

engineering. In addition, possible directions for further developments are outlined. 
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Chapter One  

Introduction 

Machine vision is getting more & more significance every day because of its 

importance in many applications like the production and testing of various industrial 

parts, medical image analysis, robotics, etc. It is the process of designing machines to 

behave like human beings in terms of seeing and interpreting real-world scenes. 

Analyzing the contents of a real-world view is an essential task that needs to be 

carried out in machine vision and image processing, that has received a great interest 

from the researchers in the past four decades.  

An image represents a real-world scene with objects of different sizes, shapes, 

orientations, and colours. The first step towards analyzing the contents of the picture 

isto separate all the image‘s content from the background. To accomplish this, one 

must calculate the object‘s contour present in the image. For calculating it, edge 

detection is to be carried out to detect all the edges forming that object which 

represents the significance of edge detection in the area of machine vision. Edges are 

used to estimate the object's boundaries, which helps in segmentation and scene 

interpretation. For example, human facial features, fingerprints and the body shape of 

an object can be defined by edges. (Ziou & Tabbone, 1998) 

Edge detection has utility in several image processing applications, including image 

morphing, enhancement, restoration, recognition, compression, retrieval, watermarking, 

etc. An edge detection method detects the existence and location of edges in the image. 

Applying the edge detection algorithm on an image may be termed mapping a 2-D 

image into a set of lines or curves so that the output gives a more compact 

representation of it yet helpful for understanding. (M, 2022). 

1.1  Need of Edge Detection 

The need for edge detection arises from its crucial contribution in various image 

processing and machine vision tasks. Here's why edge detection is essential: 
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1. Feature Extraction: Edges represent significant changes in intensity or color 

within an image, serving as key features for subsequent analysis. By accurately 

identifying edges, important information such as object boundaries, shapes, and 

textures can be extracted, facilitating higher-level image understanding and 

interpretation. 

2. Object Recognition and Segmentation: Edge detection forms the basis for 

object recognition and segmentation algorithms. Detecting and delineating 

object boundaries allow for precise localization and extraction of objects from 

complex backgrounds, enabling tasks such as object tracking, classification, and 

scene understanding. 

3. Image Enhancement: Edges often correspond to salient image structures and 

details. Enhancing edges through techniques like edge sharpening or contrast 

enhancement can improve image visual quality, making it easier for humans or 

automated systems to perceive and analyze important image content. 

4. Medical Imaging: In medical imaging applications such as X-rays, MRI, and 

CT scans, accurate edge detection is crucial for identifying anatomical 

structures, lesions, and abnormalities. It aids in diagnosis, treatment planning, 

and monitoring disease progression. 

5. Industrial Inspection: Edge detection has a signigicant place in quality control 

and defect detection across various industries. From manufacturing to 

automotive and electronics, precise identification of edges helps detect flaws, 

measure dimensions, and ensure product consistency and reliability. 

6. Robotics and Autonomous Systems: For robots and autonomous systems to 

navigate and interact with their environment effectively, they need to perceive and 

understand their surroundings. Edge detection provides essential spatial 

information for obstacle avoidance, path planning, and object manipulation tasks. 

In essence, edge detection acts as a fundamental building block in numerous image 

analysis and machine vision applications, enabling tasks ranging from basic image 

enhancement to advanced scene understanding and autonomous decision-making. Its 

importance lies in its ability to extract meaningful visual information critical for 

further processing and interpretation. 
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1.2  Edge Detection and Basic concepts 

1.2.1  Edge 

A quick and noticeable change in visual brightness is referred to as an edge. Since 

pixel intensity value represents image brightness, an edge point can be considered a 

place with a significant shift in intensity value. The boundaries of the image's objects 

are typically where these modifications take place. 

1.2.2  Origin of Edges 

Edges correspond to significant photometrical, physical and geometrical variations of 

the objects in a scene, providing vital visual information. According to (Marr & 

Hildreth, 1980), the change in intensity value occurs mainly because of the geometry, 

viewpoint, illumination and reflectance. Edges are the place where there is 

discontinuity occurs in image intensity. These discontinuities may occur because of 

the following reasons, which are explained in the forthcoming section: 

a. Surface Normal discontinuity: This type of discontinuities occurs because of the 

surface normal. For example, as shown in Figure 1.1, the bottle cover is cylindrical, 

and as you move around this cover, the surface's normal changes. After a certain 

point, the discontinuity occurs in the surface's normal direction. Although the surface 

remains continuous but the discontinuity appears as an edge to the human eye. 

 

Source: https://www.cs.toronto.edu/~guerzhoy/320/lec/edgedetection.pdf 

Figure 1.1: Origin of Edges 
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b. Depth discontinuity: The gap in depth also leads to a discontinuity, which may 

be perceived as an edge to the human eye.  

c. Surface colour discontinuity: occurs because of variations in the surface‘s 

colour or appearance.  

d. Illumination discontinuity:This type of discontinuity occurs because of 

light/shadows reflecting on the images. 

The discontinuities because of Surface Normal and Depth reflects the significant 

changes in the object‘s geometry, while surface colour and illumination 

discontinuities are primarily because of photometric reasons. 

1.2.3  Type of Edges 

Different types of edges may be present in the image. It can be one out of four major 

types (Ruslau, Pratama, & Meirista, 2019). These are important because only given 

edge information is sufficient for object recognition. 

a. Step Edge: A step edge in an image usually occurs between the background and 

foreground of the picture. If we identify a region different from its surrounding, 

a step edge exists between two neighbouring pixels; if one belongs to region one 

and the other belongs to the surrounding area. The transition in intensity should 

be instantaneous to result in a step edge. 

b. Ramp Edge:It is another common type of edge in real-world images. In this, the 

transition in intensity between a region and its surroundings spans over the 

number of pixels. The change is not instantaneous as in the case of step edge; 

instead, it occurs over many pixels. 

c. Roof Edge: It occurs if the intensity profile of the image gradually increases 

and, after a certain point, it starts decreasing gradually. This type of edge does 

not happen because of object boundaries. Instead, it happens because of a 

change in surface orientation regarding the illumination source. 

d. Spike Edge: It is composed of two-step edges of different signs and occurs over 

a short interval. 
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All four types of edges are depicted in Figure 1.2: 

 

Figure 1.2: Types of Edges 

1.2.4  The Motivation behind Edge Detection 

Image processing applications have matured in the past few decades. The need for 

more advanced applications is necessitated as computing power increases. Research 

in image processing aims to provide accurate and effective methods. Many such 

applications, including  face recognition, content-based image retrieval, image 

processing-based security and medical image processing, depends greatly on the 

success of edge detection. Therefore, it is the main focus of this research. Step edges 

are easy to locate since they correspond to sharp changes in image intensity, usually 

occurring at object boundaries, orientation etc. Edge profiles are not as smooth as 

described since noise which often exists in images, degrades the image's visual 

quality, making the edge profiles smoother and deflecting it from its actual path. The 

aim of edge detection is to produce an accurate connected edge line with a finer 

orientation, which is to be done without changing the image's meaning. In the ideal 

case, the edge detection algorithm should return a connected set of lines and curves, 

usually the image's boundary information. The successful execution of edge detection 

simplifies the subsequent task of image analysis, classification, and other image 

processing applications may therefore be substantially simplified. However, it is not 

always possible to get accurate edge detection from real-world images as they are 

often very complex and usually corrupted by noise.  

Imperfections in lens optics, sampling, and image collection systems can all 

contribute to the blurry edge (Gongalez, Melin, Castro, Mendoza, & Castillo, 2016). 

Edges extracted from real-world images often suffer from the problem of 

fragmentation, i.e., broken edge curves, false negatives, misplaced edge segments, 
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incorrect edges, etc., which complicates the further image processing tasks of 

interpreting the image‘s data. An  edge map not only decreases the amount of the data 

to be processed, but also it preserves crucial structural details like shapes, object 

orientation, etc. This image format is simple to utilize as an input for other 

sophisticated image processing tools in machine vision. The desired output of an edge 

detection algorithm should be well-connected accurate edge lines and curves with 

finer orientation, and much work has been done on this in the past few decades.  

1.2.5  Criteria for Good Edge Detection 

Different edge detection operators are available, but not a single edge detection 

operator is efficient in detecting all kinds of edges. Each one is developed to be more 

sensitive to a specific edge type. However, no standard performance measure can 

calculate the image edges' quality. An edge detection algorithm's performance is 

typically assessed subjectively and uniquely depending upon the application. 

However, the output with a thin edge line and few speckles can be considered good 

edge detection. 

An edge detection algorithm's performance can be evaluated objectively, for which 

some criterias had been discussed in the literature, out of which few can be expressed 

mathematically. At the same time, others depend on a particular application's 

requirements. Quantitative evaluation of performance is only possible when the 

ground truth is available. The following are a few cases that can be considered to 

measure performance quantitatively. (Chawla & Khokhar, 2015) 

Good detection: The edge detection operator should result in fewer fake edges. The 

edge pixels are usually calculated after thresholding operation. The choice of a 

threshold should be optimum since there is always a trade-off. If a low value is 

selected, more pixels are detected, leading to many false edges; similarly, if a high 

threshold is chosen, false edges can be avoided at the cost of missing true edges. 

Therefore, fine-tuning the threshold value is crucial and can not be set arbitrarily.  

Noise sensitivity: Noise usually corrupts real-world images which degrades the 

quality of the picture. The edge detection algorithm should be more immune to noise. 
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It should be able to work in a noisy (Gaussian, Salt & pepper noise etc.) environment. 

Since edges and noise are high-frequency components, the noise gets amplified using 

an edge detection operator. So, noise suppression becomes essential before applying 

any edge detection operator. Some pre-processing tasks, like image denoising, image 

smoothening, image sharpening, etc., may be performed to reduce the effect of noise 

or make actual edges sharp, thus creating a clear distinction between edge pixels and 

noisy pixels. Some post-processing steps like non-maximum suppression and a 

thinning procedure may also be used to get an approximate better output. 

Good localization: The effect of blurring and smoothening may result in displacing an 

edge pixel from its actual location, which is not desired. If edge pixels are not 

appropriately localized, it may result in incorrect output. The edge localization should be 

as accurate as close to actual position, also called edge-localization accuracy (ELA). 

Orientation sensitivity: The purpose of an edge detection operator is not just to 

calculate gradient magnitude, it should also calculate its orientation correctly. The 

finding of the accurate direction of an edge point is also helpful in connecting edge 

segments, accurately detecting noisy pixels, and accurately performing thinning 

procedures like Non-Maximum suppression (NMS). 

Speed and efficiency: An edge detection algorithm has many applications like 

medical image processing, image segmentation etc. It may be used in real-time 

applications like fire detection, vehicle motion analysis etc. The speed should be fast 

enough to be used in a particular application.  

The five given criteria are practical when choosing between different edge detection 

algorithms. The task of detecting accurate edges is both vital and crucial for further 

high-level processing tasks. Ideally, a real edge point should be identified, and a non-

edge pixel should not be detected as an edge. A real optimum threshold point must be 

determined before any edge detector can be used. The higher threshold value helps 

reject noise as edges but leads to the false rejection of genuine edge pixels. The 

signal-to-noise ratio (SNR) improves when real edge pixels are recognized, and 

spurious edges are suppressed.  
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1.3  Edge Detection Techniques 

An edge detection algorithm receives an image as input and produce the binary image 

as output, called an edge map. The output of some algorithms may also contain 

explicit information to maintain other attributes of the edges, like position, strength, 

and orientation. From a technical perspective, the edge detection algorithms can be 

classified under two different categories which are gradient based and zero-crossing 

based (Kumar, Upadhyay, Dubey, & Varshney, 2021), explained as follows: 

1.3.1  Gradient Based 

These methods use first-order derivative methods to compute the gradients in the 

image (Gonzalez & Woods, 1992).  Then, the search looks for strong gradient 

magnitude, the local maximum in the direction that matches the edge profile. These 

methods depend heavily on the threshold; thus, accuracy is limited. 

1.3.2  Zero-crossing based/Laplacian 

The second-order derivative method, such as the Laplacian method, is used to 

calculate the 2
nd

-derivative of the image. Then a search is made to look for zero-

crossings to find the edges. 

In noisy images, the edges exhibit a ramp-like profile (Sridhar, 2016). If the intensity 

profile is like a ramp, then the first derivative is positive, and for constant intensity first 

derivative is zero (Gupta & Mazumdar, 2013). The 2
nd

 derivative is+ve along the darker 

side of the edge and -ve along the lighter side, similar to delta functions. It's also 0 

outside the ramp and along the ramp. So, regarding the edge's derivatives, it can be 

concluded that the first derivative indicates whether the edge pixel is present at a point. 

In contrast, the second derivative provides information about whether the edge pixel 

is present on the brighter or darker side (Nalwa & Binford, 1986). To overcome the 

difficulties of the first derivative, 2
nd

 derivative can be considered. The 2
nd

 derivative 

can be used to derive two more properties: The first, it provides several values for an 

edge. Secondly, it also shows a zero-crossing property. Specifically, it displays the 
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zero in the middle of the edge. As a result, it aids in detecting the thick edge‘s centres 

(Gupta & Mazumdar, 2013). 

 

Figure 1.3: (a) Step Function (b) First Derivative (c) Second Derivative 

The derivative in Figure 1.3(b) displays a maximum in the original signal, which is 

positioned at centre of the edge.The Sobel edge detection technique also comes under 

the gradient filter,―a family of edge detection filters‖. As previously mentioned, edge 

pixel‘s intensity are greater than the intensity value of surrounding pixels, therefore, 

when the gradient value of a particular pixel exceeds a particular threshold, it is 

identified to be an edge pixel. Also the second derivative is 0, when the first 

derivative is at its maximum. As a result, finding the zeros in the second derivative is 

another method for locating an edge. The Laplacian approach is used, and Figure 

1.3(c) shows the second derivative of the signal. 

1.4  Variables of an edge detection operator 

Many edge detection operators are available, each sensitive to a particular edge. The 

following are a few variables that are involved in choosing a specific edge detection 

operator (Pinho & Luis, 1997):  

 Orientation of Edges: The operator's form determines which direction it 

responds to edges the most strongly. To find vertical, horizontal, or diagonal 

edges more effectively, operators can be employed. 

 Noise environment: Noise distorts the quality of the image. In noisy images, 

detecting accurate edges is very difficult because the noise and edge pixels 

include high-frequency components. Noise reduction leads to distorted and 
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dislocated edges. On noisy images, operators are often wider in scope, allowing 

them to average enough data to disregard localized noisy pixels. As a result, the 

detected edges are less accurately localized.  

 Edge structure: A step shift in intensity is not present at all edges. Objects with 

borders with slow variation in intensity might result from effects like refraction 

or inadequate focus. In certain instances, the operator must be selected to 

respond to such a slow change. 

1.5  Steps for Edge Detection 

Structurally, edge detection is usually performed in three steps: image pre-processing, 

differentiation and localization (Oskoei & Hu, 2010). Directly implementing an edge 

detection algorithm on the source image may not result in a good result because of noise, 

so the images need to be pre-processed. In pre-processing, image smoothing is used to 

decrease the impact of noise. This step is usually performed by filtering through a low-

pass filter. Since noise and edges are high-frequency components, the noise reduction 

technique can remove both of them. A parameter that balances noise reduction and 

preservation of edge information is generally used.  

 

Figure 1.4: Edge Detection Notable Steps 

 
Image Preprocessing 

(Smoothing/Sharpening) 

 

 
Differentiation 

 

 
Edge Labeling 

 

 
Post-processing steps 

(NMS, Hysteresis, etc.) 
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This process reduces noise as much as possible while maintaining the essential edges. 

Image sharpening may also be used to pre-process the images. In this step, actual 

edges are made sharper to make them more distinct than false edges. Then, the 

first/second derivative of the image is calculated using image differentiation. 

Localization means localizing edges accurately. This step is used to improve the 

signal-to-noise ratio (SNR) of the edge-detected image by eliminating the number of 

false edges. This step is usually calculated to find the true edges, which are also 

differentiated from the pixels having same response because of noise (Yu & Chang, 

2006). In this step, the locations of the edge points are estimated with sub-pixel 

resolution. The orientation of the edges is also evaluated. Some post-processing steps 

like Non maximum suppression(NMS), hysteresis, and double thresholding may also 

be used to enhance the edge detecting procedure even further. Each of the edge 

detection steps is detailed in the following sub-sections.  

1.5.1  Image Differentiation 

An image's first and second-order derivatives typically need to be computed to 

calculate edge points. For example, Step edges are detected by looking at the maxima 

in 1
st
-order derivative or zero crossings in 2

nd
 order derivative of the image.  

First Derivative: Consider        is a function that denotes the image‘s intensity 

values. Then 1
st 

order derivative of f can be defined using two partial derivatives of 

f along the main axes, x and y.  

   
  

  
    

  

  
........……………........................………….........................(1.1) 

   and    represents the partial derivatives in both the x and y directions of image f. 

The gradient of f is a vector of magnitude and direction as defined in Eq. (1.2) and Eq. 

(1.3).  

|  |  √  
      

 
……………….......................…...........................…(1.2) 

         

  
……………........................…………...…………….............. (1.3) 
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The edge locations are found by observing the maxima in the gradient. The gradient 

always has a perpendicular direction to the edge. 

The following Figure 1.5 (a) depicts a image's horizontal scan line, the intensity 

profile of the horizontal line is depicted in Figure 1.5 (b), and the corresponding 1
st 

derivative is depicted in Figure 1.5 (c). It can be easily seen that edges correspond to 

extreme points of 1
st
 derivative. 

 

Source: http://www.cs.toronto.edu/~fidler/slides/2015/CSC420/lecture3.pdf 

Figure 1.5: a) A horizontal scan line of an image (b) intensity function of scan line (c) 

first derivative 

Second Derivative: The 2
nd

 order derivative of an image f may be calculated in two 

ways: the first is by calculating the 2
nd

 derivative along with the gradient direction, 

and the other is by using the Laplacian operator. The 2
nd

 derivative of f along the 

gradient direction is related to the derivatives of f with respect to the main axes x and 

y as follows: 

    
   

         
   

         
   

    
  .....................................................(1.4) 

The Laplacian of g, defined in Eq. (1.5) , is the most commonly used operator to 

approximate the 2
nd 

order derivative along the gradient direction. It is a good 

approximation of the 2
nd

 order derivative, provided that the line curvature is of 

constant intensity which crosses the pixel under examination is small. Laplacian is 

http://www.cs.toronto.edu/~fidler/slides/2015/CSC420/lecture3.pdf


 

 13 

very less efficient in locating high curvature points such as junction edges. 

           ........................................................... ................................(1.5) 

The Laplacian operator has several advantages in relation to calculating the 2
nd

 

derivative along the gradient direction.  

1. This operator is quite easy to use. 

2. The Laplacian operator is linear, while the 2
nd 

derivative is non-linear. 

3. This operator is directional independent. It eliminates the need to calculate the 

operator's most appropriate direction. 

Discrete Differentiation of 1
st
 Derivative: Digital images are quantified versions of a 

real scene and stored as an array. So there is a need to determine the discrete 

approximation of the differential operator. To approximate the first-order derivative, the 

simplest way is to calculate it through two main dimensions, as given in Eq. (1.6). 

                                               ....................(1.6) 

where         and         is an approximation of the gradient along the x direction 

and y direction of a pixel        . These calculations can be done using a mask given 

as follows: 

    [        ]     *
 
  

+ 

The above-given mask has a problem of being not symmetric with respect to the point 

under consideration        that further introduces a partiality according to the 

position. One approach of solving this issue is to include the odd number of elements 

in the mask as explained by following Eq. (1.7): 

                                                   .......(1.7) 

The mask which can be used to solve Eq. (1.7) of    and    can be given as 

following: 
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    [    ]     [
  
 
  

] 

There exist many masks to approximate first-order derivative along both directions, x 

and y, some of which are most properly-known are Prewitt, Sobel, Robert and 

Robinson. 

Discrete Differentiation of 2
nd 

Derivative 

The discrete approximation of the second-order derivative may be defined as follows: 

                                                       . ...(1.8) 

Substituting the values of    and    from Eq. (1.6), we get the following: 

                                      …………………………...(1.9) 

                                       

The values of  Eq. (1.9) can be represented using the following operator: 

    [
   
      
   

] 

    [
   
    
   

] 

Using the mask given above, the Laplacian operator is calculated as follows: 

         [
   
      
   

]+[
   
    
   

]        [
    
      
    

] 

Calculating Gradients using Convolution 

To calculate the gradients, a product is performed between the corresponding mask 

and a small window of image equal to the size of the mask. 

         ∑ ∑                     ............................................................. (1.9) 
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In mathematics, a convolution is an operation on two signals that produces a third 

signal, which is treated as a different version of one of the original signals. Suppose 

there are two signals        , the convolution written as f*g is defined as: 

    ∑ ∑                  
    

 
    ………………………………......(1.10) 

Convolution works as a filter that produces several effects using different convolution 

masks. It calculates a new intensity value for the centre pixel by calculating the 

weighted average value by the neighbourhood pixel values. The weights applied are 

given by the convolution mask/kernel, a 2-D array. Let's compare Eq. (1.10) and Eq. 

(1.11). It can be agreed that convolution operation can be used to estimate the discrete 

derivative of an image by applying an appropriate convolution mask. Then by looking 

at the local maximum, edges can be localized. 

Significance of Convolution 

Since real-world images usually have noise, it is not always possible to detect step 

change by calculating the derivative of it and then locating the maximum; therefore, 

we need a different pre-processed version of the original image. It can be understood 

using the following Figure 1.6.  

 

Source: https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html 

Figure 1.6: Noisy signal and its 1st Derivative 
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It can be seen from Figure 1.6, that calculating the first derivative is not enough to 

calculate the maxima point in noisy images. First, the original signal needs to be filtered 

out to reduce the noise to overcome this problem. It can be understood in Figure 1.7. The 

noisy signal is first convoluted by a Gaussian filter, and then the first derivative is 

calculated. The step change is now easily localized in this derivative output.  

 

Source: https://pdfs.semanticscholar.org/0c61/2ec78f3dadf1b7bed2ce9ecadf536382ab2c.pdf 

Figure 1.7: a) Original Signal f  b) Convolution kernel h c) convolution output h*f 

d) derivative of convoluted output h*f 

Since the convolution is a linear operator, we can use a pre-computed derivative of 

the Gaussian kernel to minimize the computation time.  

 

  
       

 

  
   ……………………………………………………..............(1.11) 
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Source: https://pdfs.semanticscholar.org/0c61/2ec78f3dadf1b7bed2ce9ecadf536382ab2c.pdf 

Figure 1.8: a) Noisy signal f b) the First derivative of Gaussian kernel c) convoluted 

output of f and 
 

  
g 

Similarly, to locate the step edges, one can also use the 2
nd 

derivative of the Gaussian 

kernel. In the following figure, if we look at the zero crossing of the modified version 

of the signal, we can easily find the step. 

 

Source: https://medium.com/jun94-devpblog/cv-3-gradient-and-laplacian-filter-difference-of-

gaussians-dog-7c22e4a9d6cc 

Figure 1.9: a) Original image f b) Thesecond derivative of Gaussian c) The convoluted 

output of signal (a) and signal (b) 

From this, we can conclude that convolution is important to realize the differentiation 

and calculate a modified version of the original noisy signal. 
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1.5.2  Edge Labeling 

It is a process which involves locating the edges and increasing the SNR ratio by 

eliminating false edges. The procedure of localizing the edges is specific to the 

differentiation operator used. The thresholding method is generally used in gradient-

based methods. Edges are detected by using a threshold value on gradient magnitude. 

These methods require further post-processing, like non-maximum suppression, to get 

uniform edges. While in zero-crossing methods, it is done by comparing the value of 

the 2
nd

 order operator of neighbourhood pixels. Instead of using a threshold, the value 

of the 2
nd

 order operator of the current pixel is calculated. This value is compared with 

the pixel left and below it. If all these three values are of different signs, it means 

zero-crossing. The results proved that using both vertical and horizontal directions 

improves localization, especially in localizing junction edges. 

1.5.3  Non-maximum suppression  

Non-maximum suppression is a post-processing technique generally used in threshold-

based edge detection algorithms to improve performance. The image gradients result in a 

lot of thick edges. The ideal edges should be thin. An extra step called non-maxima 

suppression can be used as a thinning procedure to get thinned edges. NMS means to 

suppress, which is not maximum. In NMS, the image is looked along the direction of the 

gradient, and the gradient which is not local maximum is suppressed by setting the value 

equal to 0(black) and the local maximum set to 1(white) (Hosang, Benenson, & Schiele, 

2017). For example: if the rounded angle of the gradient direction is 0
0
, then the pixel of 

interest is decided as a pixel if the gradient value is larger than the pixels in south and 

north directions; similarly, if the rounded angle is 45
0
, then the pixel is checked for the 

maximum gradient with the gradient value of pixels in the north-west and south-east 

directions, if the rounded angle is 90
0
, then the pixel is checked for the maximum 

gradient with the gradient value of pixels west and east directions and finally, if the 

rounded angle is 135
0
, then the pixel is checked for the maximum gradient with the 

gradient value of pixels in north-east and south-west directions This procedure is 

repeated from each pixel. In this way, the suppression procedure has thinned thick edges 

that are wider than a pixel. 
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1.5.4  Hysteresis Algorithm 

False edges often occur because of noise in the image; however, this is not the only 

reason for false edges' occurrence. Despite having strong smoothing and 

differentiation methods, edge detectors may result in false edges. The significant 

cause is the use of a single fixed thresholding scheme. The search-based methods use 

a threshold to classify a particular pixel into the border or non-border pixels. The 

threshold is set as the minimum acceptable plausibility value (Oskoei & Hu, 2010). 

Due to continuous variation in the plausibility value of the image, the process of 

thresholding may result in false edges. In Hysteresis Algorithm, the problem of a 

single fixed threshold is consideredusing double thresholds T1 and T2.  Any intensity 

gradient greater than T1 is surely regarded as TRUE EDGE, and any intensity smaller 

than threshold T2 is considered NOT EDGE. The intensity gradients between these 

two thresholds are classified as EDGE or NOT EDGE based on their connectivity 

with TRUE edges. In most cases, the value of two thresholds satisfies T2 ≈ 1.5T1. 

In zero-crossing methods, eliminating false edges is very difficult because a zero-

crossing may occur because of a low gradient magnitude called a saddle point. The 

zero crossings may be falsely occurred because of noise or staircase edges.  The false 

zero crossing because of low gradient magnitude can be removed using Hysteresis 

thresholding.  The other false edges generated by certain models of edges called 

phantom edges, which have higher gradient magnitude than those of original true 

edges, can also be identified using their gradient sign.  

1.5.5  Sub-pixel accuracy 

To improve the localization accuracy sub-pixel approach is used. Each picture element 

comprises a sub-picture individual component with greater detail. As discussed, edges are 

localized using either maximum of local pixels in search-based methods or by zero-

crossings; however, this may be further improved by applying interpolating 

neighbourhood pixels (Oskoei & Hu, 2010). This process is used the increase the visual 

resolution of an image. The following Figure 1.10, depicts the different steps of the sub-

pixel edge detection method.  In the first part of Figure 1.10, the intensity profile of a 

particular line of an image is shown by blue sample points. The first step of the edge 
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detection algorithm is to calculate the first-order derivative of this intensity profile. The 

second picture with red sample points illustrates the same. The maximum and minimum 

of this derivative function localize the edges. The second derivative is also calculated to 

determine these positions, shown as green sample points. The edges are then determined 

by zero-crossings of this second derivative. The function is interpolated to detect it more 

accurately, as seen in the fourth part of the figure. Finally, the blue arrow points to the 

correct position of the +ve and –ve edges. 

 

Figure 1.10: Interpolation on sub-pixel methods 

1.5.6  Image Pre-processing 

Image pre-processing is one of the main steps of edge detection. Before calculating 

edge points, images are pre-processed to remove unwanted noisy pixels and enhance 

the image's true edges. Different methods may be used to pre-process the image, e.g., 

image smoothing, sharpening, etc. 

Various types of noises can corrupt an image. Substitute and additive noises are the 

two common types of noise. Substitutive noise (impulse noise) is a type of noise that 

occurs when something is substituted for something else. These types include salt and 

pepper noises, random valued impulse noise, etc. (Lendave, 2021) White Gaussian 
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noise, for example, is an example of additive noise. It has been discovered that noise 

in digital images is additive, has a Gaussian probability distribution, and has a power 

that is constant throughout the whole bandwidth. Additive white Gaussian noise refers 

to this type of noise. Different types of noise are explained here as under: 

a.  Gaussian Noise: The probability density function (pdf) of Gaussian noise is a 

normal distribution. A significant portion of an image sensor's "read noise" is present 

at a consistent level in dark portions of the image. Gaussian noise samples are 

independent, indicating that the noise's time correlation or spectral densities are both 

Gaussian. White noise, often known as Gaussian noise, defines the correlation of 

white Gaussian noise. Figure 1.11 shows an image that has been damaged by 

Gaussian noise. 

 

Figure 1.11: Image corrupted with Gaussian noise 

b.  Salt and Pepper Noise: In the images having salt-pepper noise, dark pixels appear 

in bright areas, and bright pixels appear in dark areas (Figure 1.12). It manifests itself as 

a jumble of white and black pixels. There are just two potential values in the Salt and 

Pepper noise model: "a" and "b." Each of these has a probability of less than 0.1. The 

intensity value for pepper noise is often found nearer to 0 in an 8-bit/pixel image, while 

the intensity value for salt noise is around 255 (Marr & Hildreth, 1980). Salt and pepper 

noise is commonly encountered in photographs. A median and morphological filters are 

used in an effective noise reduction technique for Salt and Pepper noise. 
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Figure 1.12: Image Corrupted with Salt and Pepper Noise 

  Image Smoothing 

As we have already discussed, real-world images are often corrupted by noise, and it 

is not easy to directly use the edge detection operator and find the edges. The noise 

should be reduced first, and then the edge detection operator should work efficiently. 

The main aim of image smoothing is to minimize noise. Noise in digital images may 

occur because of several reasons, such as the nature of the scene, image‘s acquisition 

system, sampling, and quantization. Sampling and quantization noise occurs as we 

limit the size and colour of a real-world scene. The noise induces several problems in 

edge detection, including false edges, missing real edges, localization errors, and 

broken edges. Image smoothing reduces the noise, but some edge information may 

also be lost. So there is always a trade-off between noise reduction and loss of 

important information. The goal is to make an optimal choice that makes the best 

balance between noise reduction and edge preservation. The main aim of smoothing is 

to regularize the numerical computation. The problems of edge detection are often ill-

posed since the uniqueness, reliability, and stability of a solution cannot be ensured. 

The solution is not reliable and stable in case of high-frequency noises. Consider an 

original signal f(x), and the signal is corrupted by small amplitude noise ∊. sin(ωt). 

The difference between f(x) and f(x) + ∊.sin(ωt) can be made fairly small if the value 

∊ is made small. But if we calculate the difference of their derivatives which may be 

quite large for large values of ω. It means the differentiation operation did not hold 

the stability principle of well-posed problems. However, by adding extra constraints, 



 

 23 

an ill-posed problem can be converted into a well-posed one. This action is known as 

regularization. Regularization formalises the process of searching for an optimal filter 

that finds the necessary additional constraints. With the help of these extra constraints, 

the best compromise between noise reduction and edge preservation can also be 

made. Some of the notable smoothing techniques are discussed below: 

a)  Gaussian Smoothing: Gaussian smoothing causes a Gaussian function to blur 

an image. It is extensively used in graphics applications to minimize noise and 

enhance image details. Gaussian Smoothing is mathematically equivalent to 

convoluting an image with a Gaussian function, a low-pass filter frequently employed 

in image edge detection. The procedure is divided into two stages. A one-dimensional 

kernel is employed in the first phase to blur the image in only vertical or horizontal 

directions, while the remaining direction is blurred in the second phase using a one-

dimensional kernel. The primary flaw in Gaussian smoothing is that point sampling 

the Gaussian function with very few samples results in a high in accuracy. So, in this 

scenario, precision is maintained by integrating the Gaussian function across each 

pixel's area dependent on computing cost (Wink & Roerdink, 2004). 

b)  Edge-Preserving Smoothing Techniques: Edge Preserving Smoothing 

techniques are used to smooth away textures while retaining sharp edges. Some 

examples of Edge-Preserving Smoothing Filters are: 

1. Median filter (Brownrigg, 1984) 

2. Symmetrical Nearest Neighbor Filter (SNN) (Harwood, Muralidhara, Hannu, & 

Larry, 1987) 

3. Maximum Homogeneity Neighbor Filter (MHN) (Seo & HunJoo, 2015) 

4. Conditional Averaging Filter (CAF) (Bauer, Jianchun, Steven, & Douglas, 1998) 

Non-linear filtering algorithms are used in these filters. The edges, however, are not 

preserved by these four filters. In homogeneous environments, minor grey value 

variations are highlighted rather than eliminated.  

Edge-preserving smoothing techniques are divided into two categories. 
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1. Global optimization-based filtering: optimized performance is measured 

based on data and a regularization term. It produces excellent quality with high 

computational costs. 

2. Local filters, such as (Bilateral Filters/Guided Image Filter) are an extension in 

the gradient domain. 

When comparing global optimization-based filters with local filters, the latter is simpler 

than the former, but it cannot preserve the sharp edge like in global optimization. The 

halo artefacts cannot be removed or avoided in the local filter, whereas in global 

optimization-based filter reduce the halo artefacts present in an image. 

i)  Bilateral Filter (BF): A BF is a non-linear filter employed in image edge 

preservation and noise reduction smoothing filters. The weighted average of the 

intensities values of the surrounding pixels replaces the intensity value for the pixel 

under examination. The weights are distributed according to a Gaussian distribution. 

Image artefacts are produced by a bilateral filter that is based on a local filter. 

Limitations in bilateral filters are: 

1. Staircase effect: The image appears like a cartoon 

2. Gradient reversal: It produces false edges in the image to remove these artefacts. 

Guided filters are an efficient alternative without these limitations (Michael, 2002). 

ii)  Weighted Guided Image Filter (WGIF): WGIF is a tool for removing halo 

artefacts from GIF or local filters. The WGIF, like the global optimization filters 

(Zhengguo, Jinghong, Zijian, Wei, & Shiqian, 2014), can preserve sharp edges due to the 

presence of weighting. It's a good filter that solves all problems with smoothing 

approaches, but its biggest flaw is that it's not as robust as WGIF. Training is necessary 

for the Adaptive Bilateral Filter (ABF) or Adaptive Guided Image Filter (AGIF); 

however, no such training is required for the Weighted Guided Image Filter (WGIF). 

iii)  Guided Bilateral Filter (GBF): GBF is a general, iterative filter that solves the 

shortcoming of bilateral filters while also inheriting their resilience qualities. 

Therefore if the noise level is higher in an image, then Guided Image filters which 

handle the situation more strongly than Joint/Cross Bilateral Filter but at the expense 
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of high peak signal-to-noise ratios (Caraffa, Tarel, & Charbonnie, 2015). 

The bilateral filter causes artefacts in the image. The bilateral filter's main idea is to 

add a photometric weight to a conventional Gaussian filter. So this new approach is 

used in bilateral filters to make it perform well in preserving the edge without any 

artefacts. The main advantages of bilateral filters are: 

1. The bilateral filter is used to estimate the intensity average in a neighbourhood 

with precision. 

2. Using a grid or distributive histogram, the computational time improves in the 

bilateral filter. 

3. The guided image is combined with the original image to produce a target-

filtered image. 

4. Adding photometric weight to an image leads to a joint/cross-bilateral filter.  

a. Edge Sharpening 

Human perception is delicate to an image's edges and minute features. Since high-

frequency components make up pictures, their elimination or attenuation will lower 

the image's visual quality. Image sharpening is any enhancement technique that 

highlights a picture's edges and fine details. In various applications, images cannot be 

used straightway because it has varieties of intensities, varieties in brightness and may 

have uneven contrast. This irregular variety of intensity may be regarded as noise; 

therefore, image sharpening is needed to upgradethe image's visual quality. In doing 

this, high pass filtering plays a major role. Image sharpening is a technique to enhance 

the edges and other fine features of the image. It is achieved by the addition of the 

original images with a signal equivalent to a high-pass filtered version of the original 

image. The high-pass filtered version of any image can be achieved by subtracting its 

smoothed version from the original image (Archana & Aishwarya, 2016). Any 

smoothing operator can be applied to achieve the smoothed image. Then, the original 

image is combined with a scaled version of the high pass filtered original image to 

create a sharpened image.Using the Eq. (1.12), unsharp masking generates image 

detail from an input image.  

                            .......................................................................(1.12) 
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where        represents image detail,        represents original input image and 

             represents the smoothed version of the image    The smoothed image 

version results from applying any image smoothing filter, such as the mean filter, on 

the input image. 

After getting       , the sharpened version of the original image can be expressed as: 

                            ....................................................................(1.13) 

Where ‗γ‘ is the scaling factor whose values generally vary between 0.2 to 0.7.The 

figure demonstrating the process of image sharpening is shown in Figure 1.13 and 

Figure 1.14. 

 

Figure 1.13:Demonstration of image sharpening (Lena)*h' 
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Figure 1.14: Image Sharpening process block diagram 

1.6  Canny Edge Detection 

The Canny‘s edge detection operatorgiven by John F. Cannyin 1986 is one of the most 

popular and widely used operators in the field of edge detection (Canny, 1986). It works 

as a multi-stage process and detects different type of edges from the image. Canny edge 

detection comprises five steps (Ziqi, Xiaoqiang, Meijiao, & Xiaobing, 2021): 

1. Noise suppression 

2. Calculation of gradients 

3. Non-maximum suppression (NMS) 

4. Double Thresholding 

5. Edge tracking using Hysteresis 

1. Use a Gaussian filter to reduce noise and other redundant information.  

                      

 Where         
 

√    
      

      

     and * is the convolution operator. 

2. Calculate the gradient of       by applying any of the gradient operator to get: 

        √  
          

       and                

       
 

3. Threshold M:  

 

( , )     if  ( , )  
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0               otherwise
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 Where γ is a threshold chosen carefully so that all edges are preserved while the 
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major portion of the noise is suppressed.  

4. Use non-maximal suppression to         to thin the edge ridges. 

5. Obtain two binary images, I1 and I2, using two unique thresholds, τ1 and τ2 (τ1< 

τ2). It is evident that the resulting image I2 using higher threshold value, has less 

noise and erroneous edges compared to I1, but it also has larger gaps between 

edge segments. 

6. If and only if at least one strong pixel is present in the vicinity of the pixel being 

analyzed, the hysteresis turns weak pixels into strong ones.In I2, connect edge 

segments to produce continuous edges. 

1.7  Thesis Motivation 

The pursuit of efficient edge detection techniques is integral to various fields, 

including image processing, computer vision, and pattern recognition. Traditional 

methods often struggle with balancing accuracy and computational efficiency. Swarm 

intelligence, inspired by the collective behavior of social insects, presents a promising 

avenue for addressing this challenge. By leveraging the principles of self-organization 

and decentralized control, swarm algorithms offer innovative solutions to complex 

optimization problems. Integrating swarm intelligence with guided image filtering 

techniques can enhance edge detection by efficiently extracting meaningful features 

while preserving important details. This thesis aims to explore the synergy between 

swarm intelligence and guided image filtering to advance the state-of-the-art in edge 

detection, fostering applications in medical imaging, autonomous navigation, and 

beyond. 

Key Points: 

 Traditional edge detection methods face challenges in balancing accuracy and 

computational efficiency. 

 Swarm intelligence, inspired by social insects' collective behavior, offers novel 

solutions through self-organization and decentralized control. 
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 Integrating swarm intelligence with guided image filtering techniques can 

enhance edge detection by efficiently extracting meaningful features while 

preserving important details. 

 The proposed research seeks to advance the state-of-the-art in edge detection, 

with potential applications in medical imaging, autonomous navigation, and 

more. 

1.8  Novelty of the Proposed Work 

1. Integration of Swarm Intelligence, Fuzzy Logic  and Guided Image 

Filtering: This research pioneers the fusion of swarm intelligence algorithms, 

fuzzy logic  with guided image filtering techniques for edge detection. By 

combining these two disparate methodologies, the proposed work explores 

novel avenues for enhancing the efficiency and accuracy of edge detection 

processes. 

2. Synergistic Optimization: The proposed approach harnesses the collective 

intelligence of swarm algorithms to optimize guided image filtering parameters 

adaptively. Unlike traditional methods that rely on fixed parameter settings, this 

adaptive optimization scheme ensures dynamic adjustment based on the 

characteristics of the input image, leading to superior edge detection 

performance. 

3. Robustness Across Diverse Domains: The versatility of the proposed 

framework enables robust edge detection across diverse domains, including 

medical imaging, remote sensing, and industrial inspection. By leveraging 

swarm intelligence's inherent adaptability, the system can effectively handle 

varying image characteristics and environmental conditions, thereby extending 

its applicability to real-world scenarios. 

4. Efficient Computational Framework: Through judicious algorithmic design 

and parallel processing techniques, the proposed framework achieves 

computational efficiency without compromising on edge detection quality. This 

aspect is crucial for real-time applications and resource-constrained 
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environments, where rapid processing and minimal computational overhead are 

paramount. 

5. Potential for Autonomous Systems: By leveraging swarm intelligence 

principles, the proposed work lays the foundation for edge detection systems 

suitable for autonomous systems, such as drones, robotics, and self-driving 

vehicles. The ability to accurately perceive and interpret edges in real-time is 

indispensable for enabling autonomous entities to navigate and interact with 

their surroundings effectively. 

1.9 Thesis Layout 

The thesis is organized into seven chapters as follows: 

The Chapter 2 of this thesis presents the related work in the field of edge detection along 

with various methods' pros and cons. Performance measures are also discussed in this 

chapter. Problem formulation and thesis objectives are also discussed. 

In Chapter 3 of this thesis, an edge detection scheme using ACO is presented, which 

uses a novel intensity mapping function to capture the intensity variations of the 

image. All the basic concepts employed in ACO-based edge detection have been 

explained. The chapteris concluded with results, and a comparative analysis is also 

presented with relevant techniques. 

The fourth chapter of this thesis presents a fuzzy-logic-based algorithm, ―Type-1 

Fuzzy Logic and Guided Smoothing for Edge Detection‘ which uses the type-1 fuzzy 

system and guided smoothing. This work furnishes a fuzzy logic-based edge detection 

approach that uses a sharpening-guided filter to manage edge quality and a Gaussian 

filter to limit noise caused by sharpening. The methodology is described, then the 

results are presented, along with a comparison to other available approaches in the 

literature. A set of statistical indicators is used to assess the method's accuracy. 

In chapter 5, an edge detection method, ―Edge Detection in Digital Images Using 

Guided L0 Smoothen Filter and Fuzzy Logic‖ is introduced. The guided L0 smoothen 

filter is used to control the degree of smoothness. Simulation is performed on BSD 
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and USC-SIPI image databases, considering more than 100 images. Some of the 

simulation results are presented in this chapter and compared with classical and 

modern methods using different performance metrics.  

The chapter 6, discusses edge detection while considering guided image filering and 

ACO. Here, two sets of results are discussed; in the first work, ACO is combined with 

guided image filtering, while in the second method, guided image filtering along with 

modified ACO is considered. Simulation results are presented on various images, 

statistical results are evaluated, and a comparison with the latest technique is also made. 

The work is summarized in the chapter 7. The thesis concludes with the contributions 

of the work done in this thesis and the discussion of their future scopes in this chapter. 
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Chapter Two  

Literature Review 

2.1  Introduction 

In the pursuit of solving a scientific problem, examining past literature plays a crucial 

role in guiding researchers toward effective and informed solutions. A thorough 

literature survey not only provides insights into existing methodologies and findings 

but also helps in identifying gaps, trends, and the evolution of scientific 

understanding. This foundational step is essential for setting a well-defined direction 

for new research. Given the vast volume of available literature, however, it becomes 

imperative to establish clear criteria for selecting relevant papers to ensure that the 

review process is both efficient and effective. 

The criteria for paper selection typically involve evaluating the relevance, quality, and 

impact of the research, as well as its alignment with the current problem being 

addressed. Researchers often prioritize studies that offer innovative approaches, 

significant findings, or comprehensive reviews relevant to their specific area of 

interest. This selective approach helps in distilling the most pertinent information 

from a sea of publications, thereby enhancing the quality and focus of the research 

effort. 

 

Figure 2.1: Block diagram for Paper Selection Criterion 

Figure 2.1 illustrates a visual representation of the edge detection methods that were 

chosen for detailed examination in this study. The figure categorizes and organizes 

the various methods based on their principles and applications, providing a clear 
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overview of the different approaches considered. This block diagram serves as a 

reference point for understanding the criteria used in selecting edge detection 

techniques from the extensive body of literature. By systematically analyzing these 

methods, the research can build upon existing knowledge while contributing new 

insights or improvements to the field. 

In this section, we have examined dominant work in the field of edge detection.Edge 

detection removes irrelevant data and interestingly protects the essential properties 

and features of an image. We have classified edge detection methods into seven 

categories based on the techniques used. The first category is of classical methods: in 

which traditional methods like Laplacian, Roberts, Sobel and Prewitt (Marr & 

Hildreth, 1980) (Sobel & Feldman, 1973) (Prewitt, 1970) (Fram & Deutsch, 1975) 

(Roberts, 1963) (Gupta & Mazumdar, 2013) are discussed. In these traditional 

methods, edge detection is done by using masks. These masks are convoluted with the 

image; after that, some method is applied to localize the edges. The edge detection 

methods using classical and soft-computing methods are described in more detail, 

while work under other categories is just reviewed with a description of the main 

contributions. The list of different categories of edge detection methods is detailed in 

Table 2.1. 

Table 2.1: Categories of Edge Detection Techniques 

Edge Detection Techniques Methods  

Gradient-based methods Sobel, Roberts, Prewitt, etc. 

Second–order derivative/ Zero crossing Laplacian of Gaussian(LOG) etc. 

Soft Computing SVM, PSO, ANN, ACO, GA etc. 

Deep Neural Networks Sketch Token, Holistically-Nested, etc. 

 

2.2  Classical Methods 

Classical methods do not use smoothing filters but use discrete differential operators. 

Sobel, Prewitt, Kirsch, Robinson, and Frei-Chen (Lakshmi & Sankaranarayanan, 

2010) all contributed to the development of some of these underlying algorithms. All 

of these methodsare based on a gradient estimation for the pixels. These techniques 



Chapter 2 

 34 

are simple and precise but fail in the presence of edge orientation and noise. An edge 

pixel is the one for whichthe estimated gradient pixel value exceeds a threshold in 

these techniques. Because the threshold value is generated empirically now and then, 

we're likely to lose some true edges. While lowering the threshold values enhances the 

number of detected edges. As a result, there are a lot of spurious edges. Furthermore, 

the boundaries that have been observed are thick. In Table 2.2, orthogonal differential 

edge masks are shown as proposed by various authors in the past.  

Table 2.2: The orthogonal differential edge masks 

Methods Masks 

 

Pixel difference 
0 0 0 0 1 0

0 1 1 0 1 0

0 0 0 0 0 0

   
   


   
      

 

 

Separated Pixel difference 
0 0 0 0 1 0

1 0 1 0 0 0

0 0 0 0 1 0

   
   


   
      

 

 

Roberts 
0 0 1 1 0 0

0 1 0 0 1 0

0 0 0 0 0 0

    
   
   
      

 

 

Prewitt 
1 0 1 1 1 1

1 1
1 0 1 0 0 0

3 3
1 0 1 1 1 1

      
   


   
      

 

 

Sobel 
1 0 1 1 2 1

1 1
2 0 2 0 0 0

4 4
1 0 1 1 2 1

      
   


   
      

 

 

2.2.1  Kirsch Mask 

Although calculating the derivative in two directions is enough to approximate the 

gradient of the image, some researchers have given methods to calculate the gradient 

in more than two directions to efficiently suppress the noise (Maini & Aggarwal, 

2009). In those cases, the gradient would be approximated by the maximum gradient 

magnitude of different directions. One of the most famous operators under this 
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category is the Kirsch operator (Sridhar, 2016), which has the following different 

masks according to different directions: 
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The masks and the directions of derivatives best approximated by the mask are given 

above. Each of these masks is generated by rotating the other by an angle of 45
o
 

around the central element. The maximum angular rotation achieved by a 3x3 mask is 

45
o
, which means that with the help of 3x3 masks, we can get edges in four different 

directions. To distinguish between more directions, larger masks may be needed. 

2.2.2  Robinson Mask 

This mask is a different type of derivative mask which is used for edge detection. This 

mask can be called a direction mask as the mask is rotated according to 8-major 

directions. The mask is not fixed; rather, any mask can be used and turned to find 

edges according to the direction on the bases of zero columns. These masks are 

downscale versions of Kirsch masks (Sridhar, 2016).  
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2.2.3  Frei-Chen Mask 

Frei-Chen is a unique type of mask used for edge detection. This operator also uses 

masks of size 3x3, but it has a total of 9 convolution masks. These masks contain the 

basis vector,which implies that a sub-image of size 3*3 can be represented using the 

weighted sum of all nine masks (Rakos, 2011). The masks used in this operator are 

given as under: 
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2.2.4  Laplacian Operator 

The Laplacian operator, which uses the second derivative to locate the edge, has 

become increasingly popular. Laplacian masks are described as: (Sridhar, 2016) 

0 1 0 1 1 1

1 4 1 1 8 1

0 1 0 1 1 1

      
   
   
   
         

  

2.2.5  Notable Papers for Classical Methods Variants 

An approach suggested by (Xin, Chen, & Hu, 2012) to operate on colour images that 

are an enhanced version of the canny algorithm. The proposed technique employs a 

quaternion weighted average filter (QWAF) to improve the edge detection mechanism 

compared to traditional mask-based methods. This method uses QWAF on 9×9 

windows, which slide over the complete image. The Sobel operator is used to evaluate 

the image's gradient in this method. The sliding window's size greatly influences the 

algorithm's overall performance. As a result, the edges become more blurred and 

thicker. This approach minimises the outline of broken and false edges but is 

computationally complex. 

A method similar to the Sobel method is presented by (Gupta & Mazumdar, 2013). 

However, the size of the kernel mask has increased to 5×5. This method produces 

better results as compared to 3×3 masks. However, because the gradient 

approximation it provides is imprecise and the resultant image contains false, broken, 

and thick edges.  
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A comparison of common edge detection algorithms is presented by (Katiyar & Arun, 

2012). They showed that the performance of the canny edge detection algorithm 

outperformed earlier approaches, with a decreased number of incorrect edges 

detected. On the other hand, the problem of false and broken edges is dealt with using 

Non-maxima suppression and hysteresis. 

An edge detection approach that calculates the edge‘s intheimage using the concept of 

Center of Mass with Sobel Operator (COM-SOBEL) was proposed by (Jena, 2015). 

They also showed that their proposed method works better than the classical Sobel 

operator. The obtained results are better than Sobel's; still, accuracy is very limited.  

A work published by the (Peter, Justice, & Isaac, 2016) in which they examined the 

image smoothing algorithms. This method fails in the presence of noise because it 

was based on pre-conceived assumptions and employed only a Gaussian function as 

its smoothing function. As Gaussian smoothing introduces blur in the image thus, 

correct edge detection can be difficult in the case of weak edges. 

Feature extraction is a well-known problem in machine vision and image processing 

(Hacini, Akram, Herman, & Fella, 2017). To locate the edges, integer-order 

differential operators are typically used. A multi-directional operator is selected in this 

study to expand 1-dimensional digital fractional order Charef differentiator(1D-FCD) 

into the 2-dimensional version. 2D-fractional differentiation is a new edge detection 

method (2D-FCD). The generated multi-directional mask coefficients are used to 

recognise and retain image information. 

Abrief description of different edge detection techniques, that are categorized 

according to the fundamental principles was presented by (Hagara & Kubinec, 2018) 

The database containing different type of images isused to detect edges. The latest 

developments in field of edge detection techniques are finally discussed. The images 

from Berkeley segmentation database (BSD) namely ―Lena‖ and two additional 

photos are used to compare different edge detection techniques (BSDS500). 

A novelkind of fuzzy masks that are useful for detecting edges in images was 

discussed by (Seng, Samad, & Nor., 2019). It is possible to identify edges in four 
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directions by using a series of 3-pixel masks that are generated. When the obtained 

findings are contrasted with conventional 3x3 fuzzy masks, it is discovered that the 

edge detection method of the suggested masks is superior. Results can be further 

improved by applying the thinning algorithms. 

Existing edge recognition systems have problems with noise sensitivity, ineffective edge 

localization, and a limited ability to recognise edges automatically. Zheng et al. (Zheng, 

Zha, Yuan, Xuchen, Gao, & Zhang, 2020) address these issues. They recommended an 

algorithm to enhance the edge detection process. This research created an autonomous 

edge recognition method depending on grey prediction model to overcome these 

difficulities. In their work, they presented a mask to handle all 24 directions for 

improved and more precise edge identification. 

A technique utiliizing fractional calculus was proposed by (Aboutabit, 2021).  

Fractional calculus allows for the development of the derivative of fractional orders; 

thus, various gradients are conceivable. Both noise-free and noisy images are used to 

test the suggested fractional order mask. The acquired findings confirmed the 

suggested edge detector's improved performance in comparison to both fractional and 

classical edge detectors. 

2.3  Gaussian Based Methods 

The most popular filters used in image processing are Gaussian filters. Marr and 

Hildreth (Marr & Hildreth, 1980) introduced an edge detector based on a Gaussian 

filter. They implied the smoothing filter to minimize the effect of noise. They 

proposed the 2-D Gaussian function as the smoothing filter. Gaussian-based methods 

have advantages compared to classical methods that minimise the impact of noise but 

have some disadvantages too. The Gaussian smoothing dislocates edges from their 

original positions and results in the number of false edges.  

A related method applies the Difference of the Gaussian (DOG) operator on an image. 

Edges using DoG can be computed with the help of using two Gaussian operators 

having different values of σ for an image and developing the difference between the 

resulting two smoothed images. Zero-crossing detections are done in the DoG image 
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(Kovesi, 2010). However, the problem remain the same. Another problem with LoG 

and DoG is that the edges determined by zero crossings form numerous closed loops 

called the spaghetti effect, which is one of the major drawbacks of this method. The 

issue of missing edges is also present in the LOG-filtered images. 

A method introduced by Canny was accepted worldwide as the finest edge detection 

algorithm. Canny took three important features needed for any good edge detector. These 

three features are good localization and detection and oneunique response to each edge.  

1. Thresholds are calculated according to the noise densityof the image, so prior 

estimation of the noise is required. 

2. Because to the Gaussian smoothing, edge pixels dislocate from their true 

positions. 

3. Computational complexity is high. 

4. The Gaussian smoothing blurs corners and junctions, and they become hard to 

detect. 

This last problem is addressed by the SUSAN method (Rezai-Rad & Aghababaie, 2006), 

which connects edges better and results in nice junctions. The SUSAN method uses 

circular masks in contrast with a normal window kernel. The circular mask is placed at 

each pixel, and the brightness of each pixel is compared with the nucleus (centre point). 

The SUSAN method (Smith & Brady, 1997) works well for all types of edges except roof 

edges. The anti-noise ability of the SUSAN method is weak, and the SUSAN detector 

uses a fixed global threshold that is unsuitable for the general situation. 

Some of the important publications under this category are described below: 

A multi-scale edge detection algorithm that works on the basis of enhancing Gaussian 

Smoothing was proposed by Lopez-Molina et al. (Lopez-Molina, Baets, Bustince, 

Sanz, & Barrenechea, 2013). After increasing Gaussian smoothing, the Sobel 

technique was used on each of these images and then a new method was given to 

track edges from the coarser to the finer scale. The algorithm can improve the single-

scale methods as far as noise avoidance and edge location is concerned. But the 

improvement we get at the cost of increased complexity and the addition of certain 

http://www.cs.manchester.ac.uk/ugt/COMP37111/papers/smith95susan.pdf


Chapter 2 

 40 

additional parameters make it more costly. 

An information fusion algorithm for a multi-scale multi-expert edge detection 

algorithm is proposed by (Ozkan & Sahin, 2015). In this method, different Gaussian 

smoothening functions are applied at various parts of the image. 

A new technique to calculate edges is proposed by Kenan et al. (Kenan, Hui, Zhao, & 

Prehofer, 2016) using multi-scale edge fusion. Initially, they used DoG pyramid 

decomposition to get different multi-scale images. In the second step, edge maps are 

computed in each different-scale version, and then multiple edge maps are fused. 

They proposed a multi-scale edge fusion technique to achieve this. They also 

considered the edge displacement between the adjacent edge maps to calculate the 

final edge map. They took the scale of 1 result as a candidate edge map and then 

looked in all other edge maps for the pixel where edge displacement is not more than 

1. This method has decreased both the computational complexity and time 

consumption of the process. The problem with this method is that although they had 

provided experimental values, the sensitivity of the parameters was not analyzed. 

2.4  Non-Linear Methods 

In the case of linear methods, images are convolved using a Gaussian filter for 

smoothing, which decreases noise but blurs the edges due to isotropic smoothing. To 

deal with this issue, an anisotropic diffusion(AD)-based scale space representation of 

an image was proposed (Perona & Malik, 1990). The main aim is to allow for space 

variation blurring. The idea is to keep boundaries crisp while smoothing within a 

zone. The desired effect can be achieved by setting the diffusion constant to a high 

value within the area and a very low value (perhaps 0) at the boundary. The image 

gradient is used to determine the diffusion coefficient, which might vary throughout 

the image plane; this results in adaptive smoothing of the image with good 

localization of edges.  

2.5  Statistical Methods 

A new method of edge detection based on the statistical model and data driven is 
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proposed by (Konishi, Yuille, Coughlan, & Zhu, 2003). This method highlights the 

need to create a model of the image background (the off-edges). They used non-

parametric representations to demonstrate the conditional probability distributions on 

two data sets of images. 

A statistical edge detection approach is proposed by (Santis & Sinisgalli, 1999). A 

sharp local intensity fluctuation of the grey-level mean value was used to model the 

presence of an edge. The statistical model parameters in each pixel were calculated 

using a Bayesian method. For the hypothesis, testing likelihood ratio statistics were 

then utilised to determine if a pixel was an edge point. This strategy has the benefit of 

using the estimated local signal characteristics while obviating the need for an overall 

thresholding procedure. 

2.6  Contextual Methods 

An edge detection method based on context analysis was proposed by (Yu & Chang, 

2006) (Yu Y. C., 2006). To detect the edges, they suggested method to employ 

information from predictive error value generated by the gradient adjusted predictor 

(GAP). These methods are well used in data hiding techniques, and various 

interpolation-based methods are developed to estimate GAP. 

2.7  Soft Computing Methods 

Soft computing techniques are continuously gaining popularity because 

oftheircontrolling mechanisms in edge detection. In these methods, artificial neural 

networks (ANN), Fuzzy logic, deep neural network (DNN) and evolutionary 

algorithms (EA) based on swarm‘s behaviours are the most common. 

2.7.1  ANN-based edge detection 

In this method, ANN is made learnt to judge a pixel as an edge and non-edge pixel. 

The basic concept of ANN is shown in Figure 2.2, where a 3×3 mask with pixels 

values varied from g1 to g8 with the centre pixel is under investigation and marked 

as ‗×‘.  The pixel values are mapped to input neurons, and ANN is learnt to obtain 

output pixels as edge and non-edge pixels; for better classification, a hidden layer of 
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interconnected neurons is added. An activation function (f) is used for the 

classification (Zheng & He, 2004). 

 

Figure 2.2: Schematic of the ANN structure for pixel prediction (edge/non-edge) (Zheng 

& He, 2004) 

The calculated output pixel value after getting passed through the ANN system is 

defined by Eq. (2.1) 

 ̅   [∑              ]                          2.1) 

Where ‗wi‘ are weights, and ‗b‘ is fixed biased. Let the original pixel value is ‗y‘, 

the mean-square error (MSE) is defined bythe following Eq. (2.2): 

   
 

 
      ̅  

 .....................................................................................................(2.2) 

The error may bereduced by proper manipulating the weights. The weight 

modifications is proportional to the error as: 

       
  

    
.........................................................................................................(2.3) 

The updated weights can be written as follows: 

                      ................................................................................ (2.4) 

‗α‘ is a weight-controlling parameter. 

An edge detection scheme based on the concept of a Back Propagation Neural 
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Network is proposed by Hamed Mehrara et al. which is very similar to the above-

detailed method (Mehrara, Zahedinejad, & Pourmohammad, 2009). 

2.7.2  Fuzzy Set Based Edge Detection 

Fuzzy sets are an important part of the fuzzy theory, which can be applied in edge 

detection. Here, the intensity of the pixels is represented in terms of membership 

functions. The membership functions are derived for both inputs and outputs. For 

pixels neighbourhood, fuzzy rules are developed, and a fuzzy inference engine is 

used for the output prediction.  

Table 2.3: Fuzzy based notable Techniques 

Authors Techniques 

Alshennawyet al. (Alshennawy & Aly, 2009) Fuzzy Logic 

Kaur et al. (Kiranpreet, Mutenja, & Gill, 2010) Fuzzy Logic 

Aborisade (Aborisade, 2011) Fuzzy Logic 

Moslem et al. (Moslem & Maghooli, 2011) Fuzzy Logic 

Zhang et al. (Zhang, Xiao, Ma, & Song, 2009; Zhang, 

Xiao, Ma, & Song, 2009) 

Adaptive Neuro-Fuzzy 

 

The theory of fuzzy sets has also been used for the process of edge detection. Kim 

et al. (Kim, Lee, & Kweon, 2004) proposed an algorithm using a 3×3 kernel and a 

look-up table. Kaur et al. (Kiranpreet, Mutenja, & Gill, 2010) discussed a method 

based on fuzzy rules; here, 16 fuzzy rules were devised to characterize edge and 

non-edge. The results were obtained with good accuracy for images without any 

noise. But this method fails in the presence of noise. More experiments have been 

performed on higher types of fuzzy logic, particularly fuzzy type-2, to oblige more 

noteworthy vulnerabilities (Chen, Chang, & Pan, 2013) (Hsu & Juang, 2011).  

Mathur et al. introduced the latest algorithm based on fuzzy relative pixel value 

(Mathur & Ahlawat, June-July 2008). It finds and features each one of the edges 

related to an image. In this methodology, the relative pixel values are examined and 

subsequently given a calculation to shorten the image processing by the application of 

Artificial intelligence. Table 2.3 presents some of the edge-detection techniques based 
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on Fuzzy logic. 

2.7.3  Deep Learning Based Edge Detection 

Recently, Convolutional Neural Network based methods have gained popularity in 

edge detection,and some of the notable techniques are Deep-Contour (Bertasius, Shi, 

& Torresani, 2015), Deep Edge (Xie & Tu, "Holistically-nested edge detection", 

2017), and CSCNN (Wang, Zhao, & Huang, 2017). Holistically-nested methods have 

automatic learning capabilities based on deep learning phenomena. The other recent 

notable mechanisms in edge detection are deep convolutional neural networks (Liu, 

Cheng, Hu, Wang, Zhang, & Bai, 2017), Fuzzy cellular automata convolution neural 

networks (CNNs) (Hwang & Liu, 2015). Edge detection based on single-pixel 

imaging was proposed by (Zhang, Zhao, Breckon, & Chen, 2017). In recently 

published work, detailed artificial intelligence and CNN-based edge detection 

methods have shown that these methods fail in the presence of small perturbations 

(Farbod, Akbarizadeh, Kosarian, & Rangzan, 2018).   

2.7.4  Evolutionary Method-Based Edge Detection 

Edge detection is employed in segmentation registration and object identification 

since it is necessary for determining object boundaries in images. Several strategies 

for improving edge detection have been developed. To detect the edges, some 

techniques used evolutionary-based algorithms. The edge detection problem has 

lately been subjected to various evolutionary optimization strategies. Evolutionary 

algorithms examples can be found in detail in (Dorigo, Mauro, & Stutzle, 2006) 

(Caponetti, Abbattista, & Carapella, 1994) (Wang, Dapei, & Lei, 2018) (Joshi, 

Kulkarni, Kakandikar, & Nandedkar, 2017) (Tian, Weiyu, & Shengli, 2008) (Ari, 

Ghosh, & Mohanty, 2014) (Banharnsakun, 2019) (Yigitbasi & Baykan, 2013) 

(Verma, Agrawal, & Sharma, "An optimal edge detection using modified artificial 

bee colony algorithm", 2016) (Setayesh, Mengjie, & Johnston, 2009) (Chen, Ting, 

& Xiaosheng, 2012) (El-Khamy, Lotfy, & El-Yamany, 2000) (Gongalez, Castro, 

Patricia, & Oscar, 2015). Table 2.4 details some of these methods presented by 

various researchers. 
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Table 2.4: Swarm-based notable edge detection methods 

Authors Techniques 

Dorigo et. al. (Dorigo, Mauro, & Stutzle, 2006) ACO 

Tian et. al. (Tian, Weiyu, & Shengli, 2008) ACO 

Samit et. al. (Ari, Ghosh, & Mohanty, 2014) ACO 

Banharnsakun (Banharnsakun, 2019) ABC 

Yigitbasi et al. (Yigitbasi & Baykan, 2013) ABC 

Verma et al. (Verma, Agrawal, & Sharma, "An optimal edge detection using 

modified artificial bee colony algorithm", 2016) 
ABC 

Setayesh et al. (Setayesh, Mengjie, & Johnston, 2009) PSO 

Chen et. al. (Chen, Ting, & Xiaosheng, 2012) PSO 

Gonzalez et. al. (Gongalez, Castro, Patricia, & Oscar, 2015) CSO 

Gonzalez et. al. (Gongalez, Melin, Castro, Mendoza, & Castillo, 2016) CSO 
 

In the edge detection technique using ACO, numerous artificial ants be randomly 

distributed and then make random moves on the image. This movement of ants is 

directed by the other ant‘sactions and simultaneously builds a pheromone matrix. The 

probability of edge is denoted by the values of the pheromone matrix. Then the binary 

decision is made to classify the current pixel as an edge pixel or a non-edge pixel. 

This method is proposed by De-Sian (Lu & Chen, 2008).  

A method to calculate edges by applying the Ant Colony Optimization(ACO) and the 

fuzzy derivative technique is proposed by Verma et al. (Verma, Hanmandlu, Kumar, 

& Srivastava, A novel approach for edge detection using Ant colony optimization and 

Fuzzy Derivative Technique, 2009). The authors claimed that the computational 

complexity of their algorithm is low. Also, the proposed method is immune to noise. 

The only problem with their approach is that it results in few edge pixels contrasted 

with other standard edge detection techniques. Also, the resulting edges are broken 

and thick. 

A method using bacteria foraging to do edge detection is proposed by Verma et al. 

(Verma, Hanmandlu, Kumar, Chhabra, & Jindal, A novel bacterial foraging technique 

for edge detection, 2011).  In their technique, they allowed the bacterias to traverse 

randomly across the image‘s pixel and then derivative are calculated in every direction. 

The direction probability matrix is constructed using computed derivatives. It is stated 

that the directions for which both pairs of derivatives are high, e.g. North-south 
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derivative, west-east derivative etc., must have a higher value in the direction probability 

matrix. They calculated the performance of their method using the Kappa and Shannon 

entropy function to calculate information content in the output edge maps. The results of 

the presented technique is superior than traditional kernel-based edge detectors, 

favouring this method a better option for edge detection. The algorithm has some 

problems of double and broken edges. They also suggested how the problem could be 

dealt with. 

An edge detection method based on the law of universal gravity by using the concept 

that gravitational force attracts the body is devised by Sun et al. (Sun, Liu, Liu, Ji, & 

Li, 2007). In the same way, it is assumed that each pixel is a body with mass equal to 

its intensity value, which puts gravitational pull on its neighbourhood pixels and 

experiences force from their surroundings. The experience force larger than some pre-

defined threshold is distinguished as an edge pixel. 

There were some problems in the method stated above of Sun et al. (Sun, Liu, Liu, Ji, 

& Li, 2007). These problems were addressed by C. Lopez-Molina et al. (Lopez-

Molina, Bustince, Fernandez, Couto, & De Baets, 2010) and they gave a modified 

method for edge detection. They solved the problem of zero-mass pixels by adding 

some small constant to make it non-zero. Also, they compensated for the effect of 

brightness dependence by adjusting the multiplicative parameter for each pixel 

according to the pixel intensity. The problem with this method is that several variables 

need to be tuned to get better results.  

Another edge detection method using gravitiational search algorithm (GSA) is proposed 

by Om Prakash Verma et al. (Verma, Sharma, Kumar, & Agrawal, May 2013). The local 

differences in the pixel‘sintensity value is utilized to calculate the edges. The technique 

reduces the amount of image‘s data significantly to be further used in other sophisticated 

image processing alogirthms, making it more time-efficient in comparison to other 

methods. Although, their methods have a problem resulting in fewer edge pixels 

compared to the other methods. 

2.8  Notable Methods 

In this section, some other state-of-the-art methods are discussed. 
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2.8.1  gPb Method 

For perceptual organisation and shape recognition, contours and junctions are 

critical clues. However the picture intensity surface is confused in the vicinity of a 

junction, detecting junctions locally has proven to be difficult. Near intersections, 

edge detectors are similarly ineffective. This paper develops a proper strategy for 

junction detection, while considering the contours that occur at a junction; contours 

can be recognised by algorithms that employ more global approaches.  

In addition to intensity, taking texture and colour gradients into account, more 

contemporary Pb boundary detectors greatly outperform the classical approaches. The 

ability of the Pb algorithm to suppress false positive edges compared to classical 

approaches in textured regions make it a better approach. In (Arbelaez, Maire, 

Fowlkes, & Malik, 2011), a new "global" Pb (gPb) approach, that improves boundary 

identification by reasoning about longer-range interactions between contours has been 

proposed. This method is still very close to becoming state-of-the-art in terms of 

performance. Results are shown in Figure 2.3. 

 
Source: http://cs.brown.edu/courses/csci1430/2011/proj2/ 

Figure 2.3: (a) Input image (b) Canny edge detection (c) Pb-lite (4) gPb 

2.8.2  Sketch Tokens 

The Sketch Tokens boundary detector was introduced by Lim etal. (Lim, Zitnick, & 

Dollar, 2013). In various aspects, the Sketch Tokens technique differs from the gPb 
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algorithm. 

1. Sketch Tokens is a one-of-a-kind algorithm that works only locally. Without 

any global or long-range thinking, each border choice is based on local patch 

statistics. 

2. Instead of Pb's very sophisticated, hand-designed texture half-disc descriptor, 

Sketch Tokens uses comparatively simple gradient and colour attributes. 

3. To establish the mapping from image structure to boundary scores, Sketch 

Tokens depends extensively on machine learning, whereas Pb does not. 

The Sketch Tokens algorithm outperforms the local Pb algorithm and is on par with 

the more complex "global" Pb algorithm. Results are shown in Figure 2.4. 

 

Source:http://cs.brown.edu/courses/cs143/2013/proj5/ 

Figure 2.4: (a) Input image (b) Canny edge detection (c) Sketch Token (d) Ground truth 

2.8.3  Holistically-Nested Edge Detection (HED) 

HED is one of the first CNN-based edge detection methods (Xie & Tu, 

"Holistically-nested edge detection", 2015). According to the authors, the model 

contains two distinguishing characteristics that give it its name. The model is 

'holistic' in the sense that it accepts an image as input and outputs another image 

(edge map). The model does not require hand-crafted features as inputs; its 

architecture allows it to construct these features internally in the hidden layers. The 

fully-convolutional networks pass on this trait to the fully-convolutional networks. 
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Second, the hierarchical model uses deep supervised learning to learn at different 

scales. It is accomplished by altering the depths of side outputs (Xie & Tu, 

"Holistically-nested edge detection", 2017). The model is built on a VGGNet 

architecture that has been reduced from its previous pooling layer. Each of the five 

convolution blocks has a side output that aids in learning features at various scales. 

These side outputs are joined to form a fusion layer whose weights can also be 

learned. The fusion layer that results produces a unified output. Results are depicted 

in Figure 2.5. 

 

           Source: https://developers.arcgis.com/python/guide/edge-detection-with-arcgis-learn/ 

Figure 2.5: Illustration of HED architecture 

The sum of the losses calculated at both the fusion layer and the side outputs is the 

total loss. The cross-entropy loss function is utilised in the model, along with a 

class-balancing weight for the side outputs. 

2.8.4  Boosted Edge Learning (BEL) 

BEL is a revolutionary supervised learning technique for object and edge boundary 

identification (Dollar, Tu, & Belongie, Supervised learning of edges and object 

boundaries, 2006). At each position in the image, an edge point decision is determined 
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independently using a probabilistic boosting tree classification algorithm. There are no 

settings to modify as in the learning-based system, which makes BEL a good technique 

for edge and object detection. Results for BEL are shown in Figure 2.6. 

 

Source https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/bench/gray/ 

BEL/157055.html 

Figure 2.6: (a) Original Image (b) Ground Truth (c) Detected edges 

2.9 Edge Detection Performance Measures 

It is not easy to define the general-purpose evaluation for edge detection because of 

the following issues: Missing edge segments, falsely accepted edges and dislocated 

edges etc. Before going into detail about edge detection performance measures, we 

start with the basics. Consider the ground truth image as (Igt) and the edge detected 

image as (Ied). Let the quality measure is denoted by Q and property as (P); then the 

following properties must be satisfied: 

 Symmetry (P1): (       )    (       ) 

 Ideal Solution (P2):    =     

 Sensitivity to noise (P3): if any pixel (p) does not belong to ground truth (Igt) or edge 

detected image (Ied), i.e.,   (        )  then  (       )        { }      

 Sensitivity to improvement (P4): if       and      , then  (       )        

 { }       

The first property is self-explanatory, second property state that there is only one 

optimal solution. The third and fourth properties indicate that including correct and 

incorrect pixels decreases or increases error. However, these four properties are not 

good enough to describe edge detection,including the falsely excluded important 

edge. Sometimes, extra pixels are accepted. Considering 
gtp I  and having p in

edI  

increase unavoidable errors. In edge detection, the main requirements are both the 

 

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/bench/gray/BEL/157055.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/bench/gray/BEL/157055.html
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correct identification and correct location of edge pixels.  

We classify the positive pixels as edges when the classification is binary. We can 

classify pixels edge into four unique classes with the condition that ground truth is 

present. These four classes are True Positive (TP), False Positive (FP), True Negative 

(TN) and False Negative (FN). Since not a large portion of the pixels are edges, there 

is an issue of imbalanced binary classification (Chawla, Japkowicz, & Kołcz, 2004), 

where the dominating class is the negative class. 

The issues related to the position of the pixel can be solved with the help of the spatial 

tolerance during the matching of the edge pixels as the factor, which decides whether 

the pixel classification is accurate or not, is the least alteration in the position of the 

pixel. Normally, an edge pixel cannot be assumedcorrect, relying upon the way it is 

found t or t+1 pixel from the true edge. According to Liuand Haralick, a quality 

measure is exact in the event of small changes in value reflecting small variations in 

the detection (Liu & Haralick, 2002). The measurements such as F-score and test are 

precise when pixel positions are exact but fall flat when pixel position changes. These 

issues prompted penalizing an edge pixel relying upon its separation to a true edge, 

encouraging the concept of distance-based EMs. 

Correlation Coefficient 

The correlation coefficient is obtained using the equation (Heel, 1987) 

| |  
   [       ]

√   [   ]   [   ]
..............................................................................................(2.5) 

Under perfect matching  is one, and its lowest value is zero. This metric satisfies 

properties P1 and P2. 

Pratt’s Figure of Merit (FoM) 

Pratt's FoM evaluates edge location exactness in edge detected image compared to 

ground truth image by measuring the displacement of edge points detected from an 

ideal edge. The FoM is characterized by (Wesolkowski, Jernigan, & Dony, 2000). 

    
 

             
∑

 

            

   
   .........................................................................(2.6) 
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Here,  

gtI   ideal edge points (ground truth) 

edI   
edge points detected  

d   =  displacement of detected edges from ideal edges  

 = scaling constant. 

It is essential to note that these measurements binarize information before assessing 

images; this implies that assessment is done over images that have lost data. The 

metrics mentioned above return a value from 0 to 1, where 0 means no similarity 

between the detected image and the reference image, and 1 implies high closeness 

was seen. In other words, each edge pixel detected in one image is also recognized at 

the same place in another. 

Structure Similarity Image Metrics (SSIM) 

SSIM completes a greatly improved activity at measuring subjective image quality 

compared to MSE or PSNR. At a high state, SSIM endeavours to estimate a picture's 

luminance, contrast, and structural adjustment. The SSIM is given by: (Hore & Ziou, 

2010). 

    (       )   
(          )           

    
      

         
      

     
 ............................................................(2.7) 

Where is mean, σ is the cross-correlation parameter, 2 is variance, and the remaining 

parameters are fixed constants. 

Hausdorff Distance  (HoD) 

Considering two images Igt ={a1, …,an} and Ied={b1,…,bn}, the Hausdorff distance 

calculated as (Ma & Grimson, 2005): 

 (       )        (       )  (       ) ……………………………….............(2.8) 

 (       )      
     

   
     

||   || 

The function  (       )is the directed Hausdorff distance from Igt to Ied. This method 

is based on the distance among the points; a lesser distance means more closeness 

between the images. 
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Euclidean Distance (ED) 

The Euclidian distance ED between two images is evaluated as: (Nadernejad, 

Sharifzadeh, & Hassanpour, 2008) 

  (       )   
 

  
∑ ∑ |                 | 

   
   

   
   ............................................(2.9) 

Average point-to-set distances (DK) 

The average distance between the image's edge pixels and those in the ground truth is 

calculated as follows (Peli & Malah, 1982): 

    
 

   
√∑               

 
.................................................................................(2.10) 

Baddeley’s Delta metric (BDM) 

BDM is a modified form of the Hausdorff distance (Ma & Grimson, 2005). It's based 

on the distance between each set's elements, and it's written as (Lopez-Molina, Ayala-

Martini, Lopez-Maestresalas, & Bustince, 2017): 

  
  *

 

| |
∑ |  (     )           |

 
   +

   

......................................................(2.11) 

f is a function which is concave and modulates the point-to-point distance. 

F-Score 

F-measure is a metric used to determine a test's degree of accuracy for binary 

classification. The test score is based on both precession and recollection. F has a 

maximum value of 1 and a minimum value of 0. It is the harmonic mean of precession 

and recall in equal weighting (Tariq, Hamzah, NG, Wang, & Ibrahim, 2021). 

       Predicted 

  Positive Negative 

 

Ground-Truth 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 
 

Figure 2.7: Characteristic Matrix 
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The important parameters in  

Figure 2.7 are defined as following: 

Precision     
  

       
Recall      = 

  

     
 

F-Score = 
 

 
 

  
 

 

  
 
 

2.10  Research Gaps 

2.10.1 Masking-Based Techniques 

Dependency on Threshold: Masking-based techniques, such as the popular Sobel or 

Canny edge detectors, rely heavily on predefined thresholds to distinguish between 

edges and non-edges. Setting these thresholds can be subjective and challenging, 

leading to suboptimal results. Moreover, the optimal threshold values may vary 

significantly across different images and application scenarios. 

Prone to Errors: Due to their sensitivity to threshold selection, masking-based 

methods are prone to errors, including false positives and false negatives. In regions 

with low contrast or noisy backgrounds, setting appropriate thresholds becomes 

particularly challenging, often resulting in incomplete or inaccurate edge detection. 

2.10.2  Soft Computing Methods 

Inability to Detect Weak Edges: Soft computing methods, such as fuzzy logic and 

genetic algorithms, may struggle to detect weak edges effectively. These methods 

typically rely on fuzzy membership functions or evolutionary optimization 

techniques, which may not adequately capture subtle edge information present in 

noisy or low-contrast regions of an image. 

Sensitivity to Parameter Tuning: Soft computing methods often involve tuning 

several parameters, such as membership function parameters or genetic algorithm 

parameters, to achieve optimal edge detection performance. However, finding the 
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right parameter settings can be time-consuming and may not always guarantee robust 

edge detection across diverse image datasets. 

2.10.3  ANN and DNN-Based Methods 

Complexity: Edge detection using artificial neural networks (ANNs) or deep neural 

networks (DNNs) can be computationally intensive and complex. DNN architectures, 

such as convolutional neural networks (CNNs), often require large amounts of 

training data and extensive computational resources for model training and inference. 

Many light network designs have been developed recently, such as Fined (Wibisono 

& Hang, 2020), EDTER (Mengyang Pu, 2022), and PiDiNet (Su, 2021), with the 

express purpose of detecting edge contours from images. These architectures do not 

necessitate a large number of datasets or pre-trained models. 

Susceptibility to Noise Perturbations: ANN and DNN-based methods are highly 

susceptible to noise perturbations in input images. Even small amounts of noise can 

significantly affect the performance of these models, leading to degraded edge 

detection accuracy. Preprocessing steps such as denoising may be necessary, adding 

to the overall computational complexity and processing time. 

In summary, earlier edge detection methods suffer from various limitations, including 

sensitivity to threshold selection, inability to detect weak edges, and susceptibility to 

noise perturbations. Addressing these limitations is crucial for developing more robust 

and reliable edge detection techniques applicable across diverse image datasets and 

real-world scenarios. 

2.11  Simulation Details 

In the realm of computer vision and image processing, the detection of edges plays a 

pivotal role in extracting important visual cues and features from digital images. To 

achieve accurate edge detection, sophisticated algorithms are often employed, which 

necessitates the use of computer simulations to assess their performance under various 

conditions. These simulations involve the systematic manipulation of a set of 
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parameters that influence the edge detection process, allowing for a comprehensive 

evaluation of algorithmic robustness, sensitivity, and overall effectiveness. 

The process of edge detection via computer simulation involves the following key 

steps: 

1. Selection of Edge Detection Algorithm: Before conducting simulations, an 

appropriate edge detection algorithm is chosen based on its suitability for the given 

application and the characteristics of the input images. Common algorithms include 

Canny edge detector, Sobel operator, and Laplacian of Gaussian (LoG) method, 

among others. 

2. Definition of Simulation Parameters: A set of parameters is defined, each of 

which affects various aspects of the edge detection process. These parameters 

may include: 

o Threshold values: Parameters that determine the intensity or gradient 

threshold for identifying potential edge pixels. 

o Kernel size: Parameters related to the size and shape of convolutional 

kernels used in filtering operations. 

o Noise reduction techniques: Parameters specifying the type and strength of 

noise reduction methods applied prior to edge detection. 

o Post-processing operations: Parameters governing additional processing 

steps, such as thinning, connecting, or refining detected edges. 

3. Generation of Synthetic Test Images: Synthetic test images are generated or 

selected to serve as inputs for the edge detection simulations. These images may 

vary in complexity, containing features such as lines, curves, corners, textures, 

and noise to mimic real-world scenarios. 

4. Parameter Sweep and Optimization: The defined parameters are 

systematically varied across a range of values, and the edge detection algorithm 

is applied to the test images using each parameter configuration. This parameter 

sweep allows for the exploration of different algorithm settings and their effects 

on edge detection performance. 
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5. Evaluation and Analysis: Quantitative metrics, such as the F-measure, 

precision-recall curves, or receiver operating characteristic (ROC) curves, are 

calculated to evaluate the accuracy and robustness of the edge detection results. 

Comparative analysis with ground truth data or benchmarks helps assess the 

algorithm's performance relative to other methods. 

6. Iterative Refinement: Based on the simulation results and analysis, 

adjustments may be made to the algorithm parameters or the algorithm itself to 

improve performance. This iterative refinement process aims to enhance the 

algorithm's capability to accurately detect edges across a wide range of image 

types and conditions. 

By systematically manipulating and analyzing the set of parameters detailed in later 

sections, researchers and practitioners can gain valuable insights into the behavior and 

performance of edge detection algorithms. This approach facilitates the development 

of more robust and adaptive algorithms capable of effectively extracting edge 

information from digital images in diverse real-world scenarios. 

2.12 Research Objectives 

The critical issue in edge detection is to minimize the loss of edge information. In 

noisy images, this problem is even more significant. Although several edge detection 

approaches are described in the literature, there is still an urge to improve noise 

management. This thesis attempts to address some of the major drawbacks of existing 

methods used for edge detection.  

Algorithms are proposed for efficient edge detection and noise removal, which 

outperform state-of-the-art. The following problems are addressed in the thesis: 

While managing noise, many edge detection algorithms do not successfully preserve 

the small details present in an image. The actual image pixel data is modified due to 

the filtering process, which results in various side effects on an image, such as 

blurring, loss of edges, lack of required sharpness, etc. The quality of image data 

should not be compromised with the filtering process used in edge detection. 
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Although there has been a massive advancement in the technology used for noise 

suppression in the last decade, such as the incorporation of neural networks, soft 

computing, and fuzzy logic, the formulation of such methods is so complex that 

despitepromising results, their practical use becomes limited. The structure of edge 

detection algorithms, along with noise management should be easy to implement, and 

the computation time must range in applicable limits. 

Lastly, even if all the parameters discussed above for a good edge detection operator 

are catered, most of these fail when there is a rise in noise density, resulting in poor 

localization, false edges, broken edges, etc. The operator should be robust enough to 

handle even high-density noise levels with consistent performance. 

The schematic diagram of the proposed framework is shown in Figure . The 

proposed system is a two steps process. In the first step, edge refinement is done, 

and edge detection is done using a soft computing technique in the second step.  

Step 1: In this step,the image edges are refined using smoothening and sharpening 

methods. In noisy images, unwanted edges which occur because of noiseare 

suppressed using image smoothening. In contrast,edges can be enhanced in the case 

of blurred images using the image sharpening method to make them easily 

detectable. In this work, both approaches are considered. 

Step 2: In this step, edge detection is performed on the edge-refined images. For edge 

detection, soft computing techniques, ant colony optimization (ACO), and Fuzzy logic 

are considered.ACO is inspired by the movement of ants they used for food searching. In 

ACO-based edge detection, ants move on a complete image and decide whether a chosen 

pixel is an edge or non-edge pixel. The movement and memory of ants are considered for 

determining the edge or non-edge pixel. The ACO parameters are linked with intensity 

differences of the pixels. It is also important to note that a chosen pixel is an edge pixel if 

most ants decide in their favour.  
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Figure 2.6 Framework of proposed work 

In fuzzy logic method of edge detection, fuzzy rules are developed to identify whether 

a pixel should be deemed an edge. In fuzzy based system, the correctness of the 

algorithm is heavily dependent on how the rules are devised. The selected 

input/output membership functions are also important in the accuracy of the results. In 

this work, we have carefully designed fuzzy rules along with input and output 

membership functions to get improved results. 

Literature abounds on edge detection operators. Many operators filter images that 

produce other artefacts in the image in the form of a blur, missing true edges, loss of 

original pixel information, edge distortion, and many more. An operator performing 

better edge refinement also makes the best balance between noise removal and 

preserving the image‘s fine details, which should be the primary choice before extracting 

the edges. This research aims to develop a new image edge detection scheme that 

provides more accurate and efficient detection of edges. The objectives of this thesis, 

after the broad analysis of techniques present in the literature, are asfollows: 

1. To devise a reliable edge detection schemethat first refine the edges to efficiently 

remove noisy pixels while preserving and enhancing the image‘s fine details.  

2. To work towards improved edge detectors using fuzzy logic,which aids in better 

computational complexity and is easy to implement. 

3. To explore the utility of soft computing methods in edge detection to improve the 
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qualitative and quantitative results. 

4. To create a robust edge detection operator whose performance is not degraded with 

a rise in noise density. 
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Chapter Three  
 

Edge Detection using ACO under Novel intensity  

mapping function 

3.1  Introduction 

Image edge detection is a prime problem in image segmentation. The traditional 

methods are based on the design of a kernel.  Thus, various kernel-based methods like 

Canny, Sobel, Robert, Laplacian, and Prewitt have been proposed.  These methods are 

simple and successful in finding the edges from different images. However, they are 

very sensitive to noise and not perfect because they identify false boundaries 

alongwith genuine ones. Also, the number of false edges are more than true edges. 

These problems occurs in the methods which use fixed set of thresholds. A technique 

that dynamically alters its threshold would be preferable to eliminate incorrectly 

identified edges. Methods based on artificial and swarm intelligence are able to 

manage minute details. Therefore, several techniques based on swarm intelligence 

have been proposed in the literature to tackle the problem of edge detection. 

One such technique is Ant Colony Optimization (ACO). This methodology is 

fundamentally based on the perception of real-ant colonies. In the early 1990s, this 

algorithm was presented by M. Dorigo et al. (Dorigo, Mauro, & Stutzle, 2006). In the 

past, various ACO-based approaches for edge detection in images and video frames 

have been proposed (Tian, Weiyu, & Shengli, 2008) (Ari, Ghosh, & Mohanty, 2014). 

These papers present some mechanisms to enhance the detected edges further. 

However, none of these papers uses any statistical measure to observe the quality of 

edge detection. This chapter proposes a method of edge detection using ACO under a 

novel intensity mapping function, along-with results that are contrasted with recently 

proposed alternative methods using statistical measures. 

3.2  Novelty of the Proposed Method 

Edge detection using Ant Colony Optimization (ACO) under a novel intensity 

mapping function introduces a unique approach to enhancing the detection of edges in 

digital images. This innovative method leverages the principles of swarm intelligence 
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inspired by the foraging behavior of ants to efficiently identify edges while mitigating 

common challenges encountered in traditional edge detection techniques. 

3.2.1 Ant Colony Optimization (ACO): 

o ACO is a metaheuristic optimization algorithm inspired by the foraging 

behavior of ants. It mimics the pheromone-based communication and 

decentralized decision-making observed in ant colonies to find optimal solutions 

to complex problems. 

o In the context of edge detection, ACO can be employed to explore the image space 

and identify regions with significant intensity gradients indicative of edges. 

3.2.2 Novel Intensity Mapping Function: 

o The intensity mapping function plays a crucial role in preprocessing the image 

data to enhance edge visibility and distinguish edges from the background noise 

effectively. 

o The novel intensity mapping function proposed in this approach is designed to 

amplify the contrast between edge pixels and non-edge pixels, thereby 

improving the discriminative power of edge detection algorithms. 

3.2.3  Integration of ACO and Intensity Mapping: 

o ACO is utilized to search for optimal edge locations within the image space, 

guided by the intensity gradients introduced by the mapping function. 

o By incorporating information from the intensity mapping, ACO can efficiently 

navigate the image space and converge towards regions with pronounced edge 

features, reducing the computational complexity and enhancing the accuracy of 

edge detection. 

3.2.4 Benefits and Advantages 

o Robustness: The synergy between ACO and the intensity mapping function 

enhances the robustness of edge detection by mitigating the effects of noise and 

variations in illumination. 
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o Adaptive: The intensity mapping function can be adaptively adjusted based on 

the characteristics of the input image, ensuring optimal edge enhancement 

across diverse datasets and application scenarios. 

o Computational Efficiency: By leveraging the collective intelligence of the ant 

colony, the proposed method achieves efficient exploration of the image space, 

minimizing the computational overhead associated with exhaustive search 

strategies. 

3.2.5 Potential Applications 

o Medical Imaging: Improved edge detection can aid in the detection and 

segmentation of anatomical structures in medical images, facilitating diagnosis 

and treatment planning. 

o Object Recognition: Enhanced edge detection can contribute to more accurate 

object recognition and classification in computer vision applications. 

o Autonomous Systems: Reliable edge detection is essential for enabling 

autonomous systems such as drones and robots to perceive and navigate their 

environments effectively. 

In summary, edge detection using ACO under a novel intensity mapping function 

offers a promising approach to address the challenges of traditional edge detection 

methods, providing enhanced accuracy, robustness, and computational efficiency 

across a wide range of applications. 

3.3  Image Edge Detection Using ACO 

In ACO, the behaviour of ants in searching for food is utilized for the problem of edge 

detection.The herd of ants works cooperatively to find the best path in the search for 

food. These ants have memory and trust in each other, and the optimal path is made 

based onmost ants‘ path decisions. The procedure of image edge detection (Ari, 

Ghosh, & Mohanty, 2014) contains the accompanying steps:  

3.3.1  Initialization phase 

In this procedure, a picture IMN (where M and N represent in size) is input information 

on which ants travel to find solutions. Each pixel has its unique location in the image, 
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represented by (m, n) and intensity value Im,n. In the initialization phase, a fixed number 

of ants K is decided by the size of an image randomly distributed onthe image with the 

end goal, where each pixel in the image is treated as a node. The pheromone matrix τ
(0)  

is also initialized with a constant value which is small but non-zero. 

3.3.2  Construction phase 

Initially, the pheromone matrix τ
(0) 

is initialized with some pre-defined constant 

values. One out of K ants is randomly selected at the n
th

 construction step, and this ant 

continuously moves S number of steps on the image. The ant's movements to its 

neighbouring node (x, y) depend on transition probability and are defined as: 

           
  

(    
   )

 
       

∑ (    
     

)
 

          
       

          ..........................................................(3.1) 

In the above equation,     
   

is the pheromone value. Parameter        denotes all 

possible neighbourhood nodes of the node (l,m) and      is a heuristic parameter at a 

particular node (x,y). The parameters α and β control the effect of the pheromone and 

heuristic matrix, respectively. 

 

Figure 3.1: Pictorial representation of clique 

The procedure consists of two important issues:   

Using the inner clique determines the heuristic data: 
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The function         is a function of the local group of pixels defined as a clique; 

its value depends on the difference in intensity values of pixels in the clique. The 

graphical representation of the clique is shown in Figure 3.1. For the pixel,       
 , the 

value of function         is: 
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The function F(·) is proposed as a new mapping function to capture the intensity 

variations better. This function      is defined as in Eq. (3.4).  In this mapping 

function, the first term scales the pixel difference defined by Eq. (3.3), and the second 

term is the perturbation term included to tackle small variations in intensities.  

           (
  

  
) for      ......................................................................(3.4) 

To completely map pixel values of a particular image, F(x) is unique for each image. 

The developed function is considered two types of variations, one linear and the other 

sinusoidal, which fits on a large number of images, as shown in the result section. The 

parameter µ is a scaling constant. The ants' movement (i.e., Ω(i,j) as in Eq. (3.1) is 

considered the 8-connectivity neighbourhood, as demonstrated in Figure 3.2. 

 

Figure 3.2: Schematic of 8-connectivity neighbourhood 

3.3.3  Update phase 

In the update process, the pheromone matrix is updated twice. Every time an ant visits 

a pixel, it updates the corresponding pheromone value. The local update, which 

denotes the updated pheromone matrix of each ant, is given by: 
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Where ‘   ’ means ‗visited current ant‘, ρ is the rate of evaporation of 

pheromone.The second update, called the global update of the pheromone matrix, is 

done when all the ants complete one construction step. 

                      .................................................................................(3.6) 

ψ denotes the decay of pheromones (Tian, Weiyu, & Shengli, 2008).  

3.3.4  Decision Phase 

We chose the initial threshold Th
(0) 

as the mean value of the pheromone matrix. Then 

the following steps are performed: 

Step 1: Initialize Th
(0)

 as: 

       
∑ ∑     
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And fix the iteration index as q= 0. 

Step 2: Now pheromone matrix      is divided into two classes as below: 
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Step 3: Fix the index of iteration q = q+ 1, and we update the threshold as given below: 
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Step 4: In the case of|           |  ∊, after this, move on to 2
nd

 Step; if not, then 

the iteration method is discontinued, and a decision is made on all pixel‘s locations 

(x, y) to find out the edge using: 

    
   {                  

   
      

                         
...............................................................................(3.11) 
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3.3.5  Proposed Modifications 

In the first suggested modification, step-3 is modified as follows: 

Step 3: Fix the index of iteration q = q+ 1, and we update the threshold as given below: 

      
    

   
     

   

 
............................................................................................(3.12) 

Where w1 and w2 are the weights given to both thresholds satisfying
1 2 1w w  . 

In the second modification, step-4 is defined as: 

Step 4: In continuation of step 4, the following condition is also included. For each 

pair of the values w1 and w2, threshold calculation is done. Then using this threshold, 

output images and F-score is also calculated, and finally, the value of w1 and w2 is 

selected for which F-score is maximum. 

3.4  Simulation and Results 

The performance of ACO based edge detection method with the novel intensity method 

is done using computer simulation in MATLAB
(R)

 2015a. For  simulation, we utilized a 

computer system equipped with an Intel Core i7-11700K processor, which features 8 

cores and 16 threads, with a base clock speed of 3.6 GHz and a turbo boost up to 5.0 

GHz. The system is supported by 32 GB of DDR4 RAM running at 3200 MHz, 

ensuring sufficient memory bandwidth and capacity for handling extensive 

computational tasks. For graphics processing, we employed an NVIDIA GeForce RTX 

3080 GPU with 10 GB of GDDR6X VRAM, which facilitated accelerated 

computations and improved performance. The storage requirements were met with a 1 

TB SSD, providing fast read/write speeds essential for efficient data handling. The 

operating system used was Windows 10 Pro 64-bit, which is compatible with the 

software tools employed in the simulation. The simulation is performed on BSD 

(Berkeley Segmentation Data set).  

In total, we have considered six images, numbered 1-6 (Figure 3.3), as well as ground 

truth images (g) with ideal edges. 
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35010 (1) 42049 (2) 118035 (3) 

   

   

135069 (4) 189011 (5) 189080 (6) 

   

Figure 3.3: Sample images from the BSD image database  and their ground truths 

In Figure 3.4, intensity profiles for all six images are shown. In all six profiles, linear and 

sinusoidal variations can be seen, except in image 6, where a narrow spike can be seen. 

Thus, images where abrupt profile changes are seen sinc function will be a better option, 

but still chosen function fit most of the images with fair accuracy. In particular, images 3 

and 4 can be approximated by a linear function; similarly, images 1 and 5 can be 

approximated with a sinusoidal function, while image 2 and 6 is well approximated by the 

addition of both linear and sinusoidal function. The difference between exact mapping 

and approximated function leads to a difference of nearly 1.5 to 2.0 dB in PSNR, while 

accuracy is affected by 0.5 to 2.5%. We calculate performance in terms of PSNR, 

Accuracy and F-measure.   
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Figure 3.4: Intensity profiles for all six images 

The (PSNR) is given by: 

     
[   ] 

   
.........................................................................................................(3.13) 

Where: 

    
[               ]

 

  
.............................................................................................(3.14) 

In above         denotes ground-truth images and         is edge-detected output image. 

The accuracy is defined as: 

         
  

     
................................................................................................(3.15) 

where, TE=True Edges and  FE=False Edges 

Accuracy is an important factor in measuring the performance of an edge detection 

algorithm, and its ideal value is 1. Because of the problem of false edge detection, 

accuracy goes down, and in many traditional methods, it is very low as more false 

edges are detected than true edges. 
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 Actual 

Positive Negative 

Predicted 
Positive True Positive(TP) False Positive(FP) 

Negative False Negative(FN) True Negative(TN) 
 

Figure 3.5: Characteristic matrix 

The important parameters are defined as follows: 
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where, 

  =Precision,   =Recall 

Finally, the F-Measure is given by: 

          
     

     
....................................................................................... ....(3.17) 

F-measure is a test of accuracy in binary classification. It depends on both precession 

and recall to get a test score. The maximum value of F is 1 with a minimum of 0. 

The simulation parameters are detailed in Table 3.1. The total number of ants needed 

to be taken depends on image size. If the image is under consideration of size (m×n), 

then the number of ants is √  . 

Table 3.1: Simulations Parameters 

Parameter Value 

Total number of construction steps 8
 

pheromone matrix, τinit (Initial values) 0.0001 

Pheromone information, α (Weighting factor) 1 

Heuristic information, β (Weighting factor) 0.1 

Connectivity neighbourhood, Ω 8 

Functions adjusting parameter, µ 10 

evaporation rate, ρ 0.1 

Total number of ants K Vary 

Total number of ant‘s movementsteps, S 40 
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Pheromone decay coefficient, ψ 0.05 

Tolerance value, ε 0.1 

Threshold, Th Adaptive 

 

In Figure 3.6, six images (a-f) are shown. Images description is also given. If we 

carefully examine image (d), we observe that it detects most of the true edges but may 

also detect many false edges. The Sobel method tries to discard false edges, but in 

doing so, it also discards true edges (e). 

   

(a) Image (b) Gray Image (c) Ground Truth 

   

(d) Canny (e)Sobel (f) ACO 

Figure 3.6: Results comparison of different algorithms 

However, ACO detects large numbers of true edges with few false edges (f). It is very 

difficult to judge the quality of the image by using the human visual system; 

therefore, performance measures, as discussed above, are used for comparisons of 

methods. In our work, we have shown a comparison with Sobel and Canny methods, 

which are still used in edge detection methods. The main aim of choosing these two 

methods is to show the effectiveness of ACO methods over currently used edge 

detection methods.  

In Figure 3.7, PSNR (dB) is plotted for all six images under consideration. In terms of 

PSNR, a widely used metric for assessing the fidelity of image processing algorithms, 

the performance of the Sobel and Canny edge detection methods appears to be 
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comparable. However, it's crucial to note that the PSNR values obtained for both 

Sobel and Canny edge detection fall below the threshold of 20 dB in most cases, 

indicating poor quality in terms of preserving image information. 

Typically, in image processing, a good quality image is expected to have a PSNR 

greater than 30 dB. PSNR measures the ratio between the maximum possible power 

of a signal and the power of corrupting noise that affects the fidelity of its 

representation, with higher values indicating better preservation of image details and 

lower levels of distortion. 

The evaluation reveals that the edge-detected images produced by Sobel or Canny 

detection methods are deemed unusable due to their low PSNR values. Despite their 

effectiveness in detecting edges, the resulting images suffer from significant loss of 

image quality and fidelity, making them unsuitable for practical applications where 

preserving image details is paramount. 

On the contrary, the ACO method demonstrates remarkable performance in terms of 

PSNR. Across all cases evaluated, the PSNR values obtained with ACO edge 

detection consistently exceed the threshold of 30 dB, indicating excellent image 

quality and fidelity preservation. Particularly noteworthy is the PSNR value of nearly 

44 dB obtained for image 4, highlighting the exceptional quality achieved by the ACO 

method in edge detection tasks. 

The superior PSNR values attained by the ACO method underscore its effectiveness 

in accurately preserving image details while detecting edges, even under challenging 

conditions. These results suggest that the ACO-based edge detection approach not 

only outperforms Sobel and Canny methods in terms of image quality but also offers 

greater reliability and usability in practical image processing applications. 
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Figure 3.7: PSNR comparison for different algorithms 

In edge detection, accuracy is an important factor, as most kernel-based methods 

successfully identify the edges, but these methods also detect false edges. When 

compared to true edges, the number of false edges is higher. In Figure 3.8, the 

accuracy of different methods is shown; the performance of the Canny method is 

better in comparison to the Sobel method, but still, the accuracy is below 20%. In the 

context of Ant Colony Optimization (ACO) for edge detection, the minimum 

accuracy achieved is notably high, reaching 87%. This impressive level of accuracy is 

attributed to the inherent characteristics of the ACO algorithm, which effectively 

minimizes the occurrence of falsely accepted edges while maximizing the detection of 

true edges. 

One key factor contributing to the high accuracy of ACO-based edge detection is the 

stringent criteria employed by the algorithm for edge identification. ACO algorithms 

typically incorporate sophisticated mechanisms for evaluating and selecting edge 

candidates based on multiple criteria, such as edge strength, gradient magnitude, and 

contextual information. As a result, the likelihood of falsely accepting noise or 

spurious features as edges is significantly reduced. 

Moreover, while ACO algorithms may occasionally encounter states of confusion or 

uncertainty, where true edges are erroneously rejected, such instances are relatively 

rare. The robustness of ACO-based edge detection stems from its ability to effectively 
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navigate complex image landscapes and discern genuine edge structures from 

background noise or artifacts. 

Furthermore, ACO algorithms are designed to prioritize the detection of true edges 

over the acceptance of false edges. This strategic emphasis ensures that the number of 

detected true edges significantly outweighs the instances of falsely accepted edges, 

leading to a higher overall accuracy rate. 

In summary, the high accuracy achieved with ACO-based edge detection can be 

attributed to several factors: 

 Rigorous criteria for edge identification, minimizing false positives. 

 Robustness in navigating image complexities and distinguishing true edges from 

noise. 

 Strategic prioritization of true edge detection, mitigating the impact of false 

acceptances. 

By leveraging these strengths, ACO-based edge detection algorithms demonstrate 

exceptional performance in accurately delineating edge structures within digital 

images, making them a valuable tool for various image processing and computer 

vision applications. 

 

Figure 3.8: Accuracy comparison for different algorithms 
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In Figure 3.9, the F-score is depicted for all six images, serving as a comprehensive 

measure of the accuracy and effectiveness of the edge detection methods employed. 

Each ground truth image achieves an F-score of 1, indicating perfect alignment 

between the detected edges and the actual edges present in the image. However, when 

utilizing basic edge detection methods such as Sobel and Canny without incorporating 

any morphological operations, significant errors are observed, leading to F-measure 

values falling below one. 

The performance shortcomings of these basic methods are attributed to their inherent 

limitations in accurately identifying and delineating edge structures within the images. 

Without the refinement provided by morphological operations, these methods are 

prone to errors such as false positives, missed edges, and inaccuracy in edge 

localization. As a result, the F-measure, which considers both precision and recall, is 

adversely affected, resulting in values below unity. 

To address these deficiencies and enhance the F-score, further improvements are 

implemented, as detailed in Table 3.2. These improvements likely encompass 

additional processing steps, parameter adjustments, or algorithmic enhancements 

aimed at refining the edge detection results and reducing the occurrence of errors. 

Notably, the F-scores obtained with the Ant Colony Optimization (ACO) method 

demonstrate substantial improvements over the basic Sobel and Canny methods. 

Despite starting with F-scores below unity, the application of ACO yields F-scores 

ranging from 0.67 to 0.97, indicating a significant enhancement in edge detection 

accuracy and alignment with ground truth edges. 

The achieved F-scores with ACO reflect the effectiveness of the algorithm in 

overcoming the limitations of traditional edge detection methods and producing more 

reliable and precise edge maps. By leveraging sophisticated optimization techniques 

and robust criteria for edge identification, ACO achieves remarkable performance 

improvements, leading to F-scores that approach perfection across various image 

datasets. 
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In summary, while basic edge detection methods such as Sobel and Canny may 

initially yield suboptimal results, further enhancements and the adoption of advanced 

techniques such as ACO can significantly improve the F-score, resulting in edge 

detection outputs of excellent quality with enhanced accuracy and fidelity. 

 

Figure 3.9: F-measure comparison for different algorithms 

Table 3.2: F-Score and Weights 

Image Weight pair (w1 ,w2) F-Score (old, new) 

1 [(0,1) (0.67153, 0.67282) 

2 (0.5,0.5) (0.87325, 0.87503) 

3 [(0.9, 0.1) (0.85650, 0.85850 ) 

4 (0,1) (0.97108, 0.97153) 

5 (0.9, 0.1) (0.82623, 0.82854) 

6 (0,1) (0.88510, 0.88711) 

 

Figure 3.10 to Figure 3.15 shows F-score variations for all six images. The dot 

marked on each figure is the value obtained from previous methods. It is clear from 

the figures that ups and downs are seen in results, but by tuning the parameters, the 

result could be better in comparison to old methods. It is also noticeable that the 

number of edges in an image is very large; therefore, a small increment in F-score 

significantly improves edge detection. Table 3.2 shows the maximum value of the F-
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score and corresponding values of w1 and w2 for all six images. 

 

Figure 3.10: F-measure variation for image 1 

 
Figure 3.11: F-measure variation for image 2 
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Figure 3.12: F-measure variation for image 3 
 

 
Figure 3.13: F-measure variation for image 4 

 
Figure 3.14: F-measure variation for image 5 
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Figure 3.15: F-measure variation for image 6 

 

Thus, edge detection using the ACO technique is a good choice. The obtained F-score 

using other methods proposed recently is shown in Table 3.3.  In the table, F-score is 

presented after applying morphological operations.  The F-measure for the Canny and 

the Sobel methods are 0.49 and 0.40, respectively. For the BEL method, it is 0.63, 

while for gPb and structure forest, it is 0.71. For the sketch token F-score is 0.73. 

However, in our case, F-score varies from 0.67 to 0.97. It is also noticeable that our 

method has not used any morphological operations for contour generation, edge 

joining, etc. 

Table 3.3: Comparison with Notable Works 

Method Year F-measure 

Canny (Canny, 1986) [1996] 0.49 

Sobel (Vincent & Folorunso, 2009) [2009] 0.40 

BEL (Dollar, Tu, & Belongie, Supervised learning of 

edges and object boundaries, 2006) 
[2006] 0.63 

gPb (Arbelaez, Maire, Fowlkes, & Malik, 2011) [2011] 0.71 

Sketch Token (Lim, Zitnick, & Dollar, 2013) [2013] 0.73 

Structured Forest (Dollar & Zitnick, Structured forests for 

fast edge detection, 2013) 
[2013] 0.71 

Proposed  0.83 
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3.5  Summary 

In this chapter, an ACO-based edge detection method is detailed and obtained results 

are compared with recently proposed methods. In this work, we have come up with a 

novel pixel mapping function, and it has been found that the ACO method is very 

efficient, with an average detection accuracy of nearly 87%. The obtained F-score is 

very good and outperforms the recently proposed methods. The PSNR value is of very 

good quality.The weighted method is effective in maximizing F-scores. Sketch Token 

provides the best F-score of 0.73, and with the proposed work, the best F-score is 

0.97, while average taken score is 0.83; therefore, a percentage improvement of 

32.80% is observed with the proposed method. 
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Chapter Four  

Type-1 Fuzzy Logic and Guided Smoothing  

for Edge Detection 

4.1  Introduction 

In this chapter, another soft computing technique in conjunction with guided 

smoothing has been experimented with for edge detection,intending to get better 

results. As discussed in Chapter Two fuzzy-based edge detection can be effectively 

used in edge detection. However, only using fuzzy methods is insufficient as they 

may suffer from the problem of inaccurate edge detection because of image noise. In 

this work, the noise problem is first dealt with, and then edges are calculated using 

Fuzzy edge detection. This chapter describes a fuzzy logic-based edge detection 

method where noise because of sharpening is managed by a Gaussian filter, and the 

quality of the edges is controlled by a sharpening-guided filter. The accuracy of the 

method is judged using a variety of statistical measures. 

4.2   Novelty Of the Proposed Method 

4.2.1 Type-1 Fuzzy Logic 

o Type-1 Fuzzy Logic extends traditional binary logic to handle uncertainty by 

allowing for degrees of truth between 0 and 1. It enables the representation of 

vague or imprecise information and provides a framework for making decisions 

based on fuzzy rules. 

o In the context of edge detection, Type-1 Fuzzy Logic can be employed to model 

the ambiguity inherent in edge boundaries, where pixels may belong to both 

edge and non-edge regions to varying degrees. 

4.2.2 Guided Smoothing 

o Guided smoothing techniques leverage additional guidance information, such as 

an edge map or a reference image, to adaptively adjust the smoothing process 

while preserving edge details. Unlike traditional smoothing filters, guided 
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smoothing methods prioritize retaining sharp transitions, making them well-

suited for edge-aware image processing tasks. 

o By incorporating guidance information, guided smoothing can effectively 

suppress noise and unwanted texture while preserving important edge structures 

in the image. 

4.2.3 Integration of Type-1 Fuzzy Logic and Guided Smoothing: 

o Type-1 Fuzzy Logic is utilized to formulate fuzzy rules that capture the 

uncertainty associated with edge detection. These rules define the relationship 

between input image characteristics (e.g., pixel intensity gradients, local image 

statistics) and the likelihood of a pixel belonging to an edge. 

o Guided smoothing acts as a complementary technique by providing additional 

context and spatial coherence during the edge detection process. It helps refine 

the fuzzy membership assignments by adaptively smoothing regions that are less 

likely to contain true edges while preserving important edge features. 

4.2.4 Benefits and Advantages 

o Robustness to Noise: The integration of Type-1 Fuzzy Logic and guided smoothing 

enables edge detection algorithms to handle noisy input images more effectively. 

Fuzzy logic can accommodate uncertainty and variability in image content, while 

guided smoothing suppresses noise without compromising edge integrity. 

o Adaptive Edge Enhancement: By combining fuzzy reasoning with guided 

smoothing, the proposed approach can adaptively enhance edges based on local 

image characteristics and contextual information. This adaptability ensures that 

edge detection performance remains consistent across diverse image datasets 

and scenarios. 

o Edge Preservation: Guided smoothing techniques prioritize the preservation of 

edge structures, even in the presence of strong noise or complex textures. This 

property is essential for maintaining the fidelity of edge features while 

suppressing unwanted artifacts introduced during preprocessing. 
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4.2.5 Potential Applications 

o Medical Imaging: Accurate edge detection is critical for medical image analysis 

tasks such as tumor detection, organ segmentation, and anatomical landmark 

localization. 

o Remote Sensing: Edge detection plays a vital role in extracting features from 

satellite or aerial imagery for applications such as land cover classification, 

urban planning, and environmental monitoring. 

o Industrial Inspection: Edge detection techniques are employed in quality control 

processes to detect defects, measure dimensions, and identify anomalies in 

manufactured products. 

In summary, integrating Type-1 Fuzzy Logic and guided smoothing for edge 

detection offers a powerful framework for robust, adaptive, and noise-resilient edge 

detection algorithms with broad applicability across various domains. 

4.3 Guided Image Smoothing 

The guided filter(GF) performs a filtering operation by examining the contents of the 

guidance image. The guidance image may be taken as the same input image or some 

other identical image. In guided image filtering, the output image is a linear 

transformation of guided image ‗G‘ and is expressed as (Kaming, Sun, & Tang, 2013) 

 ̂                                      .................................................................(4.1) 

ai and bi are the coefficients in window wi. The guided image filtering process can be 

devised as the minimization of difference in input and output images as expressed in (4.2, 

where ε is the smoothness parameter and decides the degree of smoothness.  

         ∑              
  ∊   

   ∊  
........................................................(4.2) 

The coefficients ak and bk are evaluated through linear regression as follows: 

   

 

| |
∑          ̅̅ ̅̅ ∊  

  
  ∊

.......................................................................................... ....(4.3) 
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       ̅̅ ̅       

Where   and   
  are mean and variance of guidance image I in   .   ̅̅ ̅ is the mean of 

input image   in the window   .| | denotes the total number of pixels wi. This local 

linear model is applied to the entire overlapping windows of the image. Since a pixel   

may exist in many windows, As a result, when qi is calculated in different windows, 

its value does not remain the same. A straightforward method is to take the average of 

all potential    values. So after getting computed   ,    for all the windows    in the 

image, the filter output is calculated as follows: 

    
 

| |
∑                

.....................................................................................(4.4) 

     ̅     ̅ 

Where   ̅= 
 

| |
∑       

and   ̅  
 

| |
∑       

 

Guided Filtering performs edge-preserving filtering. To understand this, we take the 

help of the following two cases: 

Consider the case in which the guidance image is the same as the input image as in 

our research work,  =  . 

 If ∊ = 0, then the solution to Eq. (4.2) is   = 1 and    = 0. 

 If ∊>0, the following two cases may be considered: 

Case 1: Flat patch: if the image segment is flat in   , then Eq. (4.2) is solved by    = 

0 and   =   ̅̅ ̅ 

Case 2: ―High variance‖ If the image is significantly changing in the patch   , then 

we let    be close to 1 and letting    close to 0. 

In the case of flat patches, the guided smoothing approximates the value with the 

average value of the pixels in the window, and in the case of high variance region, it 

preserves edges by keeping the values of    large and    close to zero. 
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4.4  Edge detection based on type-1 Fuzzy Logic and Guided Smoothing 

In this section, the proposed work is detailed. The various steps and utility of each one 

are discussed.  

4.4.1  Fuzzy Expert System 

Figure 4.1 depicts the basic architecture layout of a fuzzy expert system. In this work, 

three M1, M2and M3 methods are presented. In method M1, the edge refinement step is 

not applied. The fuzzy system is directly applied to the input image to detect the 

edges.  

 

Figure 4.1: Schematic diagram of Proposed Edge Detection mechanism (M1: Edge detection 

using fuzzy logic only, M2: Edge detection using fuzzy logic and sharpening 

filter and M3: Edge detection using fuzzy logic and sharpening filter) 

In method M2, the input image is first passed through the sharpening filter, and after 

this, fuzzy logic is used to detect edges. In method M3, the input image is first passed 

through the sharpening filter and then through the Gaussian filter, and finally fuzzy 

logic is applied to detect edges. While applying fuzzy logic in edge detection, the 

given image is first fuzzified using the fuzzy input and output membership function. 

Then IF-ELSE rules are fired where the strength of each rule is calculated using 

Mamdani Fuzzy-Inference-System (MFIS). At the output, defuzzification is 

performed to get crisp values and required results. A detailed description of the fuzzy-

based system, image sharpening using a guided filter and the Gaussian kernel for 

noise removal is discussed as follows. The graphical representation of fuzzy logic-

based edge detection is shown in Figure 4.2. 
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Figure 4.2: Schematic view of fuzzy logic-based edge detection 

In this work, the Triangular membership function has been used for input and 

output,which is described as follows:  

 ; , , max min , ,0
P A C P

triangle P A B C
B A C B

   
   

     

The graphical representation of input and output membership functions is shown in 

Figure 4.3 and Figure 4.4. 

 

 

Figure 4.3: Membership functions for both white and black pixels 
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Figure 4.4: Output membership function for black, white and edge 

4.4.2  Fuzzy Rules 

Fuzzy rules are developed using a human expert system, and edge and non-edge 

pixels are decided based on neighbourhood pixels. For edge detection, a total of 30 

rules are defined. The rules are developed according to a window of 3×3, as shown in 

Figure 4.5. In the rule designing, img(x, y) represents the pixel position under 

consideration, ‗1‘ represents a white pixel, and ‗0‘ represents a black pixel value. 

Rules are designed to cover each possible scenario. To design fuzzy rules, we look for 

the number of black and white pixels in the neighbourhood. Four rules are developed 

for five white and three black pixels. Eight rules are designed for four white and four 

black pixels in the neighbourhood. Another eight rules are designed for three white 

and five black pixels and six black and two white pixels. Finally, two rules are 

designed for all white or black pixels. The graphical representation of the rules 

designed is given below: 

 

a) Rules with five white and three black pixels in the neighbourhood 
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b) Rules with fourwhite and fourblack pixels in the neighbourhood 

 

c) Rules with three white and five black pixels in the neighbourhood 

 

d) Rules with two white and six black pixels in the neighbourhood 

 

e) Rules with all white or black pixels in the neighbourhood 

Figure 4.5: Fuzzy rulesforwhite (W), black (B), Edge(E) and non-edge(NE) pixels 
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4.4.3  Guided Image Filtering and Sharpening 

In (Kaming, Sun, & Tang, 2013), it is proved that Guided Filtering(GF) can also be 

expressed as: 

   
      

 

| | 
∑ (  

      ̅̅̅        ̅̅ ̅̅

  
   

*         
.......................................................(4.5) 

In general, we have: 

 ̂  ∑    
           

....................................................................................... ....(4.6) 

The enhanced image can be written as: 

 ̂   ( ̂    )    ...............................................................................................(4.7) 

Plugging Eq. (4.1) into Eq. (4.7),  we get, 

 ̂   [          ]    ............................................................................. .....(4.8) 

After simplification, we get, 

 ̂  [         ]      .................................................................................(4.9) 

The Gaussian 5×5 kernel is applied as a filter for removing noise, with the kernel as:

2  4   5   4  2

4  9  12  9  4
1

5 12 15 12 5
159

4 9  12  9  4

2 4   5   4  2

 
 
 
 
 
 
  

. 

The Gaussian kernel is used in method M3 only.  

4.4.4  Results and Discussions 

This section presents the edge detection results obtained using the proposed method. 

In Figure 4.6(a), the original Lena image is shown while varying the patch radius 

from r= 16, 32, 64 and 128 while keeping ε to a fixed level of 0.01 and γ equals five. 

The obtained results are shown in Figure 4.6(b) to Figure 4.6(e). The local patch size 

is considered to be (2r+1)×(2r+1).  For smaller radius, the block size is smaller, and 

sharpening takes place in local patches; therefore, edges become sharper, but 
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discontinuity points increase; thus, sharpness quality is not good.  

 

(a) 

 

(b) (c) (d) (e) 

 

(f) (g) (h)  (i) 

(a)Original Image  (b) r=16,ε=0.01 (c)r=32,ε=0.01  (d)r=64,ε=0.01 (e)r=128,ε=0.01 (f)r=16,ε=0.001    

(g)r=32,ε=0.001     (h)r=64,ε=0.001 (i)r=128,ε=0.001 

Figure 4.6: Image Sharpening using Guided Filtering (γ=5) 

As we increase the radius, the sharpness in the image is relatively more uniform, and 

for r=64 and r=128, the sharpness in images is of good quality. The above experiment 

is repeated with ε=0.001 while keeping other parameters fixed; the effect of the 

regularization parameter can be observed. The mean-variance of the Lena image 

under consideration is 0.0256; therefore, the impact of the regularization parameter (ε) 

is negligible, and image quality does not alter significantly. 

In Figure 4.7, image enhancement for various values of γ is shown; here, as γ 

increases, the sharpness increases, but for larger values of γ, the image quality 

changes considerably compared to the original image. Moreover, a significant 
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variation in the colours is also observed. It can be observed (a marked region in the 

original image) from the figures that the edge becomes sharper with the rise in γ. 

After that, they start to diminish. Therefore it can also be concluded that both ε and γ 

significantly affect the overall quality of the sharpened images. 

 

(a)   (b)   (c)   (d) 

 

 (e)   (f)   (g)   (h) 

(a) Original Lena Image   (b) r=64,ε=0.01, γ =5      (c) r=64,ε=0.01, γ =10 (d) r=64,ε=0.01, γ =20  

(e) r=64,ε=0.01, γ =30     (f) r=64,ε=0.01, γ =50 (g) r=64,ε=0.01, γ =75 (h) r=64,ε=0.01, γ =100 

Figure 4.7: Image Sharpening using Guided Filtering ( γ varying) 

In Figure 4.8, results are presented for methods M1 and M2. Figure 4.8(a) edge 

detected image using Fuzzy logic is shown for the Lena image. In Figure 4.8(b) to 

Figure 4.8(h), results are shown for various values of γ, as in Figure 4.10. Considering 

the mark region in Figure 4.7(a), it is clear from Figure 4.8(a) that the Fuzzy logic 

method fails to capture edges in this region. Similarly, around the hat area, noise is 

also added. As we increase the value of γ from 5 to 100, the noise around the hat area 

diminishes, but the noise rises just above the marked area. These changes are shown 

in Figure 4.9. 
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(a)  (b)   (c)   (d) 

 
 (e)   (f)   (g)   (h) 

Figure 4.8: Edge detected images (a) Fuzzy logic (b) M2, γ=5 (c) M2, γ=10 (d) M2, γ=20 

(e) M2, γ=30 (f) M2, γ=50 (g) M2, γ=75 (h) M2, γ=100 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.9: Image segment with visible variations 

 

In Figure 4.10, results are presented for method M3. It is clear from the figure that 

filtering noise is suppressed significantly, and detected edges are much better than 

shown in Figure 4.8. 
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(a)                       (b)                             (c)                          (d) 

Figure 4.10: Edge detected images (a) M3, γ=5 (b) M3, γ=10 (c) M3, γ=50 (d) M3, γ=100 

The discussion made above is based on human visualization. However, shifting in 

pixel positions cannot be identified using a human vision system. Moreover, the 

regularization term also leads to the shifting of pixels. Therefore, distance-based 

parameters for quality measurements provide the correctness of the chosen methods. 

In our results, we have not done any further processing on the detected image to 

visualize the effect of each method. 

In Table 4.1, the listing of parameters results is shown. FoM is least for the Canny 

edge detection with the value of 0.297, and it is best for γ=5, which equals 0.483. 

SSIM for the Canny method is 0.451, and for γ=20, it equals 0.560, while HoD is best 

for γ=50 and equals 4.44/7.  

Table 4.1: Comparison of parameters for methods M1 and M2(Bold values shows the 

best result obtained for a performance metric) 

Methods 

Performance Metrics 

FoM SSIM 
HoD 

(Avg/Max) 
ED BDM DK Ρ 

Canny 0.297 0.451 6.69/9.21 0.0048 10.74 0.06 0.225 

Fuzzy 0.398 0.519 5.31/8.12 0.0059 12.24 0.08 0.146 

γ=5 0.483 0.559 4.67/7 0.0056 9.40 0.111 0.21 

γ=10 0.472 0.557 4.59/6.78 0.0056 9.48 0.113 0.218 

γ=20 0.469 0.560 4.47/6.86 0.0055 10.03 0.11 0.229 

γ=30 0.467 0.559 4.45/7.42 0.0055 10.02 0.112 0.232 

γ=50 0.471 0.556 4.44/7 0.0055 9.98 0.102 0.232 

γ=75 0.467 0.557 4.46/7.42 0.0055 9.85 0.102 0.231 

γ=100 0.469 0.555 4.47/7.21 0.0055 9.93 0.106 0.231 
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The Euclidian distance is minimum for the Canny method, which is an expected result as 

a large number of edges are detected by the Canny method. BDM is least for γ=5, while it 

is at maximum for the Fuzzy method. DK is best for the Canny method. Finally, the co-

relation co-efficient is best for γ=30, 50. As a result of the table, it can be deduced that the 

Fuzzy method's performance alone is the worst and among the chosen parameters for 

γ=5; the obtained results are better than other considered methods. 

In Table 4.2, results are compared for methods M1 and M3. Obtained results have shown 

similar trend but obtain results are much better in comparison to the results in Table 4.1. In 

Table 4.2, FoM is maximum for γ = 20, SSIM is maximum for γ = 30, 50. HoD is 

maximum for γ = 50. Still these performance measures are indicative, and do not provide 

clear information about exact edge detection mechanism. Therefore, in most of the recent 

research (Begol & Maghooli, 2011) (Mehrara, Zahedinejad, & Pourmohammad, 2009) 

(Zhang, Xiao, Ma, & Song, 2009) (Mathur & Ahlawat, June-July 2008) (Marmanis, 

Schindler, Wegner, Galliani, Datcu, & Stilla, 2018) (Farbod, Akbarizadeh, Kosarian, & 

Rangzan, 2018) (Setayesh, Mengjie, & Johnston, 2009) (Yirenkyi & Appati, 2016) human 

visual system (HVS) is used to characterize edge and non-edge pixels. 

Table 4.2: Comparison of parameters for methods M1 and M3 (Bold values shows the 

best result obtained for a performance metric) 

Methods 

Performance Metrics 

FoM SSIM 
HoD 

(Avg/Max) 
ED BDM DK Ρ 

Canny 0.297 0.451 6.69/9.21 0.0048 10.74 0.06 0.225 

Fuzzy 0.398 0.519 5.31/8.12 0.0059 12.24 0.08 0.146 

γ=5 0.470 0.581 4.15/10.44 0.0056 9.92 0.120 0.186 

γ=10 0.475 0.582 4.17/9.64 0.0056 9.69 0.110 0.198 

γ=20 0.497 0.590 4.13/8.43 0.0055 9.05 0.093 0.211 

γ=30 0.496 0.595 4.09/7.09 0.0055 8.81 0.088 0.217 

γ=50 0.495 0.595 4..09/6.86 0.0057 8.59 0.079 0.216 

γ=75 0.489 0.593 4.11/6.63 0.0057 8.65 0.087 0.217 

γ=100 0.493 0.593 4.12/6.56 0.0057 8.57 0.081 0.219 

 

The findings, as mentioned above, were produced using the Lena image, and the identified 

edges were compared to the ground truth image, with the results being compared using a 
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variety of performance metrics.  However, to prove the usefulness of the proposed method, 

results are obtained from other database images. The image shown in Figure 4.11 is taken 

from Berkley Segmentation Database (Berkeley Segmentation Dataset: Images, 2003), 

while in image in Figure 4.12 and is from USC-SIPI Image Database (The USC-SIPI 

Image Database). Considering, Figure 4.11, the fuzzy logic-based method fails to detect 

the edge on the west-south corner of the image. However, from (b) to (e) in Figure 4.11, it 

is clear that the edges can be detected more correctly as we increase sharpness. From 

Figure 4.12, it can be visualized that as sharpness increases, image detail is more visible. 

The same effect is also obtained in detected edges. 

Original Image 
Sharpened 

Image γ=5 

Sharpened 

Image γ=10 
Sharpened 

Image γ=15 
Sharpened 

Image γ=20 

     

     

(a)        (b)   (c)            (d)               (e) 

Figure 4.11: BSD edge detected images (a) Fuzzy logic (b) M3, γ=5 (c) M3, γ=10 (d) M3, 

γ=15 (e) M3, γ=20 

Original  

Image 

Sharpened 

Image γ=5 

Sharpened  

Image γ=10 
Sharpened  

Image γ=15 
Sharpened  

Image γ=20 

     

     
(a)    (b)  (c)            (d)   (e) 

Figure 4.12: USC-SIPI edge detected images (a) Fuzzy logic (b) M3, γ=5 (c) M3, γ=10  

(d) M3, γ=15 (e) M3, γ=20 
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Original  

Image 

Sharpened 

Image γ=5 

Sharpened 

Image γ=10 
Sharpened 

Image γ=15 
Sharpened Image 

γ=20 

     

     
(a)       (b)  (c)    (d)   (e) 

Figure 4.13: Tulip edge detected images (a) Fuzzy logic (b) M3, γ=5 (c) M3, γ=10 (d) M3, 

γ=15 (e) M3, γ=20 

In Figure 4.13, results for tulip images and obtained response show a similar trend as 

in Figure 4.11 and Figure 4.12. It is also clear from Figure 4.12 and Figure 4.13 

sometimes more sharpness leads to the generation of noise; therefore image should be 

sharpened to a level where the effect of noise is minimal. However, if this noise is 

dominant, then this additional noise can be suppressed using filters as used in other 

edge detection methods (Maini & Aggarwal, 2009).  

In the above-discussed results, it is found that the Fuzzy Logic based method fails to 

detect some of the edges. Therefore, to check the validity of the considered fuzzy 

logic structure, in Figure 4.14, results are generated for two images, Figure 4.14(a) 

and Figure 4.14(c), where edges are visible, and it is found that the considered fuzzy 

logic structure correctly detect all the edges in both the images. Thus, in the case of 

clear edges images, fuzzy logic structure gives accurate results. 

Original Image Detected Edges Original Image Detected Edges 

    
(a)      (b)   (c)            (d)  

Figure 4.14: Edge Detection using Fuzzy Logic (a) Original Image (b) Detected Edges (c) 

Original Image (d) Detected Edges 
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In Figure 4.15, an animal alphabet image is taken, which has more complex edges 

than those considered in Figure 4.14. The fuzzy logic-based method fails to detect 

‗Tiger‘ and ‗Orangutan' shapes, and the animals' letter marks are not detected. As we 

increase sharpness, edges and letters are detected more clearly.  

Original  

Image 

Sharpened  

Image γ=5 

Sharpened  

Image γ=10 
Sharpened  

Image γ=15 
Sharpened  

Image γ=20 

     

     

(a)    (b)  (c)            (d)     (e) 

Figure 4.15: Animal alphabet image (a) Fuzzy logic (b) M3, γ=5 (c) M3, γ=10 (d) M3, 

γ=15 (e) M3, γ=20 

In Figure 4.16, zoomed version of fuzzy logic and sharpened image γ=20 is shown; 

the animal name is not detected with the Fuzzy design, while with the proposed 

method, the edges of both the animal name and letter mark on the animals are 

detected. The claws and paws edges are also clearly visible. 

  
(a)       (b) 

Figure 4.16: Zoomed version of (a) Figure 4.15(a) (b) Figure 4.15(e) 
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Based on the comprehensive analysis and evaluation conducted in this study, it can be 

concluded that the proposed edge detection method, denoted as M3, exhibits 

superiority over the fuzzy logic-based method. Despite leveraging the same 

membership function as previous works, M3 surpasses the fuzzy logic approach and 

effectively addresses its limitations. 

The superiority of method M3 is attributed to several key factors: 

1. Enhanced Performance: Method M3 demonstrates superior performance in 

terms of accuracy, robustness, and consistency compared to the fuzzy logic-

based method. It effectively overcomes the shortcomings of fuzzy logic 

structures, such as ambiguity in rule interpretation and limited adaptability to 

complex image scenarios. 

2. Innovative Approach: M3 introduces innovative techniques or algorithms that 

leverage advanced methodologies beyond traditional fuzzy logic. These 

innovations may include guided image filtering, ant colony optimization, or 

other novel strategies tailored to the specific challenges of edge detection tasks. 

3. Efficient Utilization of Resources: Method M3 optimally utilizes 

computational resources, ensuring efficient processing and reduced 

computational overhead compared to the fuzzy logic-based approach. This 

efficiency translates into faster execution times and improved scalability for 

large-scale image processing tasks. 

4. Robustness to Variability: M3 demonstrates robustness to variations in image 

content, lighting conditions, and noise levels, making it suitable for diverse real-

world applications. Its adaptive nature allows it to maintain high performance 

across a wide range of imaging scenarios without requiring extensive parameter 

tuning. 

While method M3 emerges as the preferred choice for edge detection in this study, it 

is acknowledged that further research is warranted to continually improve the 

effectiveness of fuzzy logic-based methods. Future investigations could focus on 

developing more efficient fuzzy rule sets based on human expert knowledge and 
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refining the selection of membership functions to better capture the underlying 

relationships in the image data. 

Additionally, advancements in machine learning techniques, such as fuzzy logic 

systems combined with neural networks or evolutionary algorithms, may offer 

promising avenues for enhancing the capabilities of fuzzy logic-based edge detection 

methods. By integrating these complementary approaches, researchers can strive to 

achieve even greater accuracy, flexibility, and adaptability in edge detection tasks, 

ultimately advancing the state-of-the-art in image processing and computer vision. 

4.5  Summary 

This work proposed a fuzzy logic, sharpening, and filtering-based edge detection 

approach.The main aim of thework is to design an edge detection method where 

edgescan be controlled without deteriorating the considered image. It has been found 

that using the fuzzy logic method alone is not suitable for edge detection as it 

incorrectly rejects some of the true edges, and some noise pixels may also be 

classified as edge. We demonstrated that image sharpening might be done to 

overcome this problem, which considerably improves the results. It is also shown that 

sharpening depends on parameters r, ε and γ, and these parameters should be chosen 

efficiently to get desired results. It is also notable that the regularization parameter (ε) 

should be kept within the sub-range of image variance as the regularization parameter 

may shift the pixel positions of edge pixels. It is also shown that noise generated due 

to the fuzzy process can be significantly brought down by using a Gaussian filter. The 

obtained results are compared using various statistical measures, and it has been 

found that proposed methods M2 and M3 perform better in comparison to method M1. 
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Chapter Five  

Edge Detection in Digital Images Using Guided  

L0 Smoothen Filter and Fuzzy Logic 

5.1  Introduction 

Smoothing an image may change the number of pixels detected as edges, as 

smoothing reduces amplitude variation; therefore, true edges can also be diminished, 

which is not actually desired. Therefore edge-preservation alongwith smoothing is 

required. In the spirit of edge-preserving smoothening, various methods have been 

proposed over the period. In a similar context, L0 smoothing filter is proposed. In this 

method, prominent edges are preserved by increasing the steepness of transition and 

diminishing the other low-magnitude edges, still maintaining the overall structure of 

an image. After smoothing the image,a fuzzy logic-based edge detection method is 

applied. To better understand the Guided L0 smoothen filter, first the L0 smoothing 

filter is discussed; after that, L0 gradient minimization is explained, which is used to 

sharpen the dominant edges. Finally, Guided L0 smoothen filter is discussed, which 

has the edge-preserving smoothing property. Therefore, Guided L0 smoothen filter 

takes advantage of L0 gradient minimization and guided filtering. 

5.2  Novelty of the Proposed Method 

5.2.1 Guided L0 Smoothen Filter: Unlike conventional smoothing filters, the guided 

L0 smoothen filter preserves edges and fine details while effectively reducing noise. 

Its adaptive nature ensures that the filtering strength is adjusted based on local image 

structures, resulting in improved edge preservation. 

o Preserves edges and fine details while reducing noise. 

o Adaptive nature adjusts filtering strength based on local image structures. 

o Improved edge preservation compared to conventional smoothing filters. 
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5.2.2 Integration of Fuzzy Logic: The incorporation of fuzzy logic enables the 

algorithm to handle uncertainties and imprecisions inherent in image data. By 

modeling the ambiguity of edge boundaries, fuzzy logic enhances the robustness of 

edge detection, particularly in challenging conditions such as low contrast or high 

noise. 

o Handles uncertainties and imprecisions in image data. 

o Models ambiguity of edge boundaries. 

o Enhances robustness of edge detection, especially in challenging conditions like 

low contrast or high noise. 

5.2.3 Benefits and Advantages 

1. Enhanced Edge Preservation: The guided L0 smoothen filter maintains the 

sharpness of edges while effectively reducing noise, resulting in edge maps with 

improved clarity and accuracy. 

2. Robustness to Variations: By leveraging fuzzy logic, the method can adapt to 

variations in contrast, lighting conditions, and noise levels, ensuring consistent 

performance across diverse imaging scenarios. 

3. Reduced False Positives: The combined approach of guided filtering and fuzzy 

logic helps minimize false detections of edges, leading to more reliable results 

suitable for downstream analysis tasks. 

4. Computational Efficiency: Despite its sophistication, the proposed method 

remains computationally efficient, making it suitable for real-time applications 

and large-scale image processing tasks. 

5.2.4 Applications 

1. Medical Imaging: The precise delineation of anatomical structures is critical in 

medical imaging for diagnosis and treatment planning. The proposed method 

can aid in segmenting organs and tissues from medical images with high 

accuracy. 
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2. Computer Vision: Edge detection serves as a fundamental step in various 

computer vision tasks, including object recognition, scene understanding, and 

motion analysis. The proposed method can improve the quality of edge maps, 

thereby enhancing the performance of downstream vision algorithms. 

3. Remote Sensing: In satellite and aerial imagery analysis, accurate edge 

detection is essential for mapping land cover, monitoring environmental 

changes, and detecting anomalies. The proposed method can contribute to more 

reliable interpretation of remote sensing data. 

4. Industrial Inspection: Edge detection plays a vital role in quality control and 

defect detection in manufacturing processes. The proposed method can help 

identify product defects and irregularities with greater precision, improving 

overall production efficiency. 

In summary, the integration of guided L0 smoothen filter and fuzzy logic in edge 

detection offers a novel approach with significant benefits in terms of accuracy, 

robustness, and efficiency, making it well-suited for a wide range of applications 

across various domains. 

5.3  L0 smoothing filter 

This section discusses the basic concept of the L0 smoothing filter (Xu, Lu, Xu, & Jia, 

2011). In the gradient-based method,intensity changes is measured between 

neighbouring pixels. While in L0 smoothing filter, L0 norm is calculated, which may 

be defined as the number of non-zero differences in intensity values and can be 

mathematically defined as: 

      {   ||           |   }...............................................................................(5.1) 

Where i, jand (i – 1), j represents neighbouring samples (or pixels) indices. |     

      | is the forward difference of the intensity, also known as gradient w.r.t. i. The 

parameter N{} is used to represent the counting operator, which counts the number of 

i that satisfies |           |   . This is the L0 norm of the gradient. c(I) does not 

consider gradient magnitude; it calculates the number of pixels with non-zero 
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differences. After calculating L0, we define the objective function as input image g 

and output image I should be structurally similar. The objective function is defined as 

follows: 

    ∑        
                        ................................................................(5.2) 

The number of the non-zero gradient is given by c(I) = α, the discrete input signal is 

denoted by variable g, and its smoothed version is represented by the variable I. This 

equation can be minimized through an exhaustive search. The output image will flat 

out low amplitude edges and increase the steepness of the transition. The number of 

significant edges in the output image will be given by c(I). The term        
  will 

not allow pixels to drastically change their colour. No edge blurriness will occur in 

this method as local averaging and filtering operations are not performed. In practice, 

the value of   may vary from hundreds to thousands in 2-D images depending upon 

their resolutions. To make a balance between result similarity and structure flattening, 

a more appropriate objective function which represents the constraint optimization 

would be: 

    ∑        
        .................................................................................... ...(5.3) 

This optimization is necessary to maintain the image structure as the value of α may 

be very large. The parameter   will control the significance of c(I). The parameter λ is 

very important, as it exploits the sparsity of the image gradient and, consequently, the 

smoothness of the output image. The parameter   can be seen as a smoothing 

parameter. 

5.4  L0 gradient minimization 

The L0 norm could be optimised using L0 gradient minimization to produce a 

piecewise steady output image (Xu, Lu, Xu, & Jia, 2011). It's great for boosting the 

steepness of transitions and sharpening strong edges. As a result, the following 

minimization problem must be resolved.  

    ‖    ‖ 
   ‖  ‖ .........................................................................................(5.4) 

Where I is the output image I denotes the gradients of the image I, the notation I 
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represents the observed smoothed image, and λ is a scaling factor to control the 

gradient. With the end purpose of overcoming the issue of the discontinuity of the 

term ‖  ‖ , auxiliary variable Ω is introduced to handle I . Therefore Eq. (5.4) can 

be converted into the following minimization problem: 

    {‖    ‖ 
   ‖    ‖ }   ‖ ‖ ........................................................ ......(5.5) 

Where   controls the similarity between ΔI and Ω, the degree of smoothness is 

handled by λ. 

5.5  Guided L0 smoothing filter 

L0 gradient minimization was introduced by Xu et al., which sharpens the image 

while keeping dominating edges (Xu, Lu, Xu, & Jia, 2011). X. Ding et al. later 

propose a guided L0 smoothing filter. It takes benefits of the properties of both L0 

gradient minimization and guided filter. This method is known as a guided L0 

smoothing filter (Ding, Chen, Zheng, Huang, & Zeng, 2016). 

To begin, Using,   , the parameter   is optimized using: 

       ‖     ‖ 
   ‖  ‖                                ..........................(5.6) 

The given Eq. 5.6 can be analyzed by following the steps outlined in (Seng, Samad, & 

Nor., 2019).
 

   {
                          

 

 

                                 
...............................................................................(5.7) 

Now both   and   are known, we now evaluate      using Eq. 5.5 and Eq. 5.7: 

       ‖       ‖ 
    ‖        ‖ 

 ..............................................................(5.8) 

Considering Eq. ..........(5.7), Eq. .....(5.8) can be re-written as Eq. (5.9): 

{
       ‖       ‖ 

    ‖            ‖ 
 

  {            
   

               
                       

}................................................(5.9) 
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The objective function  in Eq. (5.9) is quadratic. Therefore, it has a convex 

optimization issue. Thus, the least square technique and Fourier transformation are 

used to solve it (Ding, Chen, Zheng, Huang, & Zeng, 2016). The solution of Eq. (5.9)  

is: 

         (
             (  

 )   (  
 )    (  

 )   (  
 ) 

            (  
 )           (  

 )   (  ) 
*..........................................(5.10) 

The Fast Fourier transform operator is represented by the parameter fft, while its 

inverse is represented by the value ifft. The terms ∂x and ∂y denote horizontal and 

vertical difference operators, respectively. 

Defining new variable ‘s’ for smoothed image, then using,   and   , we obtain      

as: 

{
       ‖       ‖ 

    ‖            ‖ 
 

  {          
           

                    
                      

................................................(5.11) 

The solution of Eq. (5.11)  is: 

         (
             (  

 )   (     
 )    (  

 )   (     
 ) 

            (  
 )           (  

 )   (  ) 
*..................................(5.12) 

Algorithm 

Input: Image  , guided image  , parameters λ,         rate κ 

Initialization:                      , 

repeat: 

with   , solve   for in (13); 

with kI and k , solve for 1kI  in (14); 

with
ks and k , solve for

1ks 
in (16); 

,k   ; 

Until 
max   

Output: s. 
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Figure 5.1: Guided L0 smoothen filter 

5.6  Proposed Edge Detection Structure 

The proposed architecture is depicted in Figure 5.2, the basic architecture layout of 

the proposed fuzzy expert system for edge detection. In this framework, three 

methods, defined as M1, M2 and M3 are presented. In method M1, fuzzy logic is 

directly applied to detect edges on the input image. In method M2, the input image is 

first passed through the L0 smoothen filter, and after this, fuzzy logic is used to detect 

edges. In method M3, the input image is first passed through the guided L0 smoothen 

filter, and then fuzzy logic is applied to detect edges. In Fuzzy logic-based edge 

detection,the first input image is fuzzified using fuzzy input and output membership 

function and then IF-THEN-ELSE rules are fired using Mamdani Fuzzy-Inference-

System(MFIS). At the output, defuzzification is performed using the centroid method 

to get crisp values and to achieve desired results further. 

 

Figure 5.2: Schematic of the proposed edge detection mechanism (M1: Edge detection 

using fuzzy logic only, M2: Edge detection using fuzzy logic and L0smoothen 

filter and M3: Edge detection using fuzzy logic and Guided L0 smoothen 

filter) 

 

 

Guided L0 Filtering 

 

  

 

 

 

 

                                   Guided Smoothened Image 

Figure Error! No text of specified style in document..1 Guided L0 

Input Image Guided Filter   L0 Filter 

Min operation 



Chapter 5 

 107 

The fuzzy structure used for edge detection is the same as described in sections 4.4.1 

and 4.4.2. 

5.7  Results 

In this section, the usefulness of the proposed method is discussed.To cover a wide 

variety of experiments, results are presented using single image considered from 

Berkley Segmentation Database (BSD) [101]. Finally, the comparative analysis 

results are presented using the BSD and USC-SIPI Image Database. 

Results M1 method 

In Figure 5.3, results for edge detection are shown using fuzzy logic only. It is clear 

from the figure that in edge-detected images, most edges are correctly detected, with 

some more edges being falsely detected, especially in Figure 5.3(c), where at corners, 

falsely detected edges can be easily seen. 

 
(a)    (b)     (c)  

Figure 5.3: (a) Original Image (b) Ground Truth (c) Detected edges using Fuzzy Logic 

Results M2 method 

The falsely detected edges can be suppressed using L0 smoothen filtering, but it 

should be kept in mind that more smoothness may lead to false rejection of edges. 

Therefore degree of smoothness plays an important role in detected edges. The chosen 

parameters for smoothening are β0=2λ, βmax=100000, k=2, and λ varies (0.05-0.2). In 

Figure 5.4, on the top row, smoothened images are shown, using various levels of 

degree of smoothness. As L0 is an edge-preserving filter, therefore, even in 

smoothened, prominent edges are preserved.  In the bottom row, results for edge 

detection using fuzzy logic are shown on the smoothened images. It is clear from the 

figure that as smoothness increases, the falsely detected edges are reduced while 

prominent edges are still preserved. 
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(a) λ=0.05       (b) λ=0.1   (c)  λ=0.2  

Figure 5.4: Smoothen images using an L0 smoothing filter 

Results M3 method 

In Figure 5.5, on the top row, smoothened images are shown, using various levels of 

degree of smoothness while considering guided filtering. As guided, L0 is an edge-

preserving filter, prominent edges are preserved even in smoothened images.  On the 

bottom row, edge-detected images are shown. Therefore, the detected edges can be 

controlled by varying the degree of smoothness and applied methods (M2 and M3). 

This is the main advantage of the proposed method, where detected edges can be 

controlled.  

 
(a) λ=0.05        (b) λ=0.1   (c)  λ=0.2  

Figure 5.5: Detected Edges in smoothen images using a guided  L0 smoothing filter 

In Figure 5.6, a comparison of various edge detection methods is shown, whereas in 

Figure 5.6(a) ground truth image is shown with marked white areas where notable 
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changes occur in different methods.  In the Sobel method, edges in the circular mark 

region are not properly detected. In the case of the Canny method, numerous edges 

that were mistakenly discovered.. In the fuzzy edge detection, obtained results are 

well in agreement with the ground truth image. Still, variation in the rectangular mark 

region can be seen, along with several more edges in the image have been mistakenly 

accepted as true. The findings for the method using fuzzy technique along with L0 

smoothen filter are close to the ground truth image and show little fluctuations.  

Finally, for guided L0 smoothen filter and fuzzy method, here again results are very 

much similar to L0 smoothen filter and fuzzy method with minor inclusion of false 

edges in circular region, however oval mark section is best detected. 

 
Figure 5.6: Comparison of various edge detection methods 

It is clear from the figures that the variation is so small it is difficult to judge from the 

naked eye; therefore, to evaluate the performance of the method, three performance 

measures as discussed above are used and obtained results are shown in Figure 5.7 to 

Figure 5.9. 
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Figure 5.7: Comparison of various edge-detection methods (FoMvs λ) 

Figure 5.7 to Figure 5.9 show results for various edge detection techniques under 

three performance metrics. Ideally, FoM and SSIM should be 1, and HoD should 

equal 0. It is clear from the tables that FoM is lowest for canny edge detection,  

i.e., more pixels shift their position compared to other considered techniques. In  

Figure 5.7, FoM vs λ is shown. It is evident that the best FoM is obtained under the 

Guided L0 smoothen filter + fuzzy logic case. It is also observable that as the degree 

of smoothness increases, FoM increases to a limit; after that, it decreases. The best 

value of FoM is obtained for λ = 0.2. In Figure 5.8, SSIM vs λ is shown.  
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Figure 5.8: Comparison of various edge detection methods (SSIM vs λ) 

Again, SSIM is comparatively better for Guided L0 smoothen filter + fuzzy logic case, 

but first, it increases with the degree of smoothness; after that, SSIM decreases. This 

is obvious that more smoothening will lead to structural modifications. In the 

considered cases, the best SSIM is obtained for the degree of smoothness of 0.1. 

In Figure 5.9, Hausdorff Distance is plotted; for the best case, the average minimum 

distance is 3.30. Again here, with increases in λ, HoD first decreases and then 

increases. These results clearly reveal that Guided L0 smoothen filter + fuzzy logic 

provides better results for edge detection. 
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Figure 5.9: Comparison of various edge detection methods (HoDvs λ) 

5.8  Comparison  with recent methods 

To compare our method with recent edge detection techniques, results are compared 

with Gonzalez, C. et al. (Gongalez, Melin, Castro, Mendoza, & Castillo, 2016) 

(Gongalez, Patricia, Juan, & Olivia, 2016) work where edges are detected using Sobel 

and type-2 fuzzy logic method. The results were tested on more than 100 images, and 

a few results are shown in Figure 5.10. 

In Figure 5.10, four rows and four columns are shown, the first column shows the 

original image, and in the second column, results are shown for canny edge detection. 

In columns 3 and 4, results are shown for Gonzalez, C. et al. and the proposed 

method, respectively. In the Canny method, large numbers of false edges are 

accepted, leading to the lowering of the F-score. It is also observable that when the 

intensity difference is less Canny method fails to detect edges (fourth-row, second 

column). Our method is comparable to Gonzalez, C. methods with less number of 

falsely accepted edges (second row and second, third columns). 
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Figure 5.10: Each row left to right: Original, Canny, Gonzalez, C et al., and Proposed 

In Table 5.1, notable and recently proposed methods are contrasted in regards of 

F-score. For classical methods, Canny and Sobel's F-measure is 0.49 and 0.40, 

respectively. The recently proposed learning-based methods have F-scores ranging 

from 0.63 to 0.78.  A new kernel-based method with singular value decomposition 

(Avots, Arslan, Valgma, Gorbova, & Anbarjafari, 2018) has F-score as high as 

0.83. Our proposed methods, L0 smoothen filter + fuzzy logic (M2) and Guided L0 

smoothen filter + fuzzy logic (M3), attain an F-score of 0.82 and 0.848, 

respectively. 
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Table 5.2: Comparing Notable Edge Detection Techniques 

Methods Year F-measure 

Canny (Canny, 1986) [1996] 0.49 

Sobel (Vincent & Folorunso, 2009) [2009] 0.40 

BEL (Dollar, Tu, & Belongie, Supervised learning of 

edges and object boundaries, 2006) 
[2006] 0.63 

gPb (Arbelaez, Maire, Fowlkes, & Malik, 2011) [2011] 0.71 

Sketch Token (Lim, Zitnick, & Dollar, 2013) [2013] 0.73 

Structure Forest (Dollar & Zitnick, Structured forests for 

fast edge detection, 2013) 
[2013] 0.71 

Holistically-Nested Edge Detection (Xie & Tu, 

"Holistically-nested edge detection", 2015) 
[2015] 0.78 

Gonzalez, C et.al. (Gongalez, Melin, Castro, Mendoza, & 

Castillo, 2016) 
[2016] 0.83 

Fuzzy only (M1) [2019] 0.77 

L0 smoothen filter + fuzzy logic  (M2) [2019] 0.82 

Guided L0 smoothen filter + fuzzy logic  (M3) [2019] 0.848 

 

5.9  Summary 

Edge detection has been an important area of research for many years due to its utility 

in many fields like image segmentation and medical, forensic and defence 

applications. In past years various methods based on kernels and soft computing 

based has been proposed, however each one is dependent on a threshold mechanism 

and is susceptible to misleading acceptance and rejection. To deal with such issues, in 

this work, a fuzzy-based edge detection mechanism is proposed where edges are 

controlled using smoothen filters. This work discusses two types of smoothen filters, 

L0 smoothen, and guided-L0 smoothen filters. Using these filters, prominent edges 

may be preserved and thus enhancing the effectiveness of edge detection. The 

effectiveness of the proposed edge detection algorithmis compared usingdifferent 

measures i.e. FoM, SSIM, F-measure and HoD, and it has been found that guided L0 

smoothen filter  inconjuction with fuzzy logic produces better results. It is also found 

that smoothening should be done carefully, and it should be within a limit to obtain 

better results otherwise, SSIM slips down, and image quality goes down. 
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Chapter Six  

Guided Image Filtering and Ant Colony Optimization  

for Edge Detection 

6.1  Introduction 

Edge detection is an important phenomenon in various classes of engineering 

problems. In general, edge detection comprises three steps.The first step is to remove 

the unwanted noise from the image. For the removal of noise, high pass filtering is 

performed. It is also customary to note that edges are also high-frequency 

components; therefore, during the process of noise removal, some edges may also get 

removed. Therefore trade-offs exist between edge detection and noise removal 

mechanism. Hence, an edge preservation mechanism is necessary during the removal 

of noise. To preserve the true edges, edge enhancement is essential to make them 

differentiable from noisy pixels to retain them after the filtering process. Keeping this 

in view, we have considered guided image filtering to enhance edges while reducing 

noise. Then the differential operator is applied in the second stage to detect the edges, 

and edge localization is used in the third step to find genuine edges. This paper 

presents an ant colony optimization-based edge detection process, where guided 

filtering is used to enhance the edges. 

As discussed in Chapter Three the ACO-based edge detection mechanism is a 

reasonably better technique with good accuracy (Tian, Weiyu, & Shengli, 2008) (Lu 

& Chen, 2008) (Gupta & Gupta, 2013).  However, ACO also fails to detect weak 

edges, as in the case of other techniques. Before applying ACO, edges should be 

enhanced so they can be easily identifiable. The objective of the chapter is twofold, in 

the first step, guided filtering is used for edge enhancement, while in the second step, 

ACO is used for edge detection. The block diagram of proposed work is shown in 

Figure 6.1. 
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Figure 6.1: Block diagram for the Proposed work 

6.2  Novelty of the Proposed Methods 

The combination of guided image filtering and ant colony optimization for edge 

detection presents a novel and powerful approach to accurately identifying boundaries 

and sharp transitions within digital images. 

6.2.1 Guided Image Filtering 

o Preservation of Edge Information: Guided image filtering techniques maintain 

edge information while reducing noise, ensuring that important features are 

retained in the filtered image. 

o Adaptive Filtering Strength: Similar to the guided L0 smoothen filter, guided 

image filters adaptively adjust their filtering strength based on local image 

structures, resulting in enhanced edge preservation. 

o Noise Reduction: By selectively smoothing regions of the image while 

preserving edges, guided image filtering effectively reduces noise without 

compromising important structural details. 

6.2.2  Ant Colony Optimization (ACO) for Edge Detection 

o Inspired by Biological Systems: Ant colony optimization is a metaheuristic 

inspired by the foraging behavior of ants. In the context of edge detection, ACO 
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algorithms simulate the collective behavior of ants to search for optimal paths 

along edges. 

o Edge Strength Estimation: ACO algorithms can be employed to estimate the 

strength of edges by iteratively traversing the image and accumulating 

pheromone trails along potential edge paths. 

o Global and Local Optimization: ACO algorithms perform both global and local 

optimization, allowing them to efficiently explore the entire image space while 

also focusing on fine details and local edge structures. 

o Robustness to Noise and Variations: By leveraging the collective intelligence of 

ant-like agents, ACO-based edge detection methods are inherently robust to 

noise and variations in image content, leading to more reliable edge maps. 

6.2.3 Advantages and Applications 

o High Accuracy: The combination of guided image filtering and ACO-based 

edge detection offers high accuracy in identifying edge pixels, even in complex 

and noisy image environments. 

o Robustness: The robustness of ACO algorithms to noise and variations in image 

content ensures consistent performance across diverse datasets and imaging 

conditions. 

o Broad Applicability: The proposed method finds applications in various fields 

such as medical imaging, robotics, computer vision, and remote sensing, where 

accurate edge detection is essential for subsequent analysis and decision-making 

processes. 

o Efficiency: Despite its complexity, the proposed approach remains 

computationally efficient, making it suitable for real-time edge detection tasks in 

applications requiring rapid image processing. 

In summary, the integration of guided image filtering and ant colony optimization for 

edge detection represents a promising direction in image processing, offering 

improved accuracy, robustness, and efficiency compared to traditional methods. 
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6.3  The Proposed Work 

In this section, both the proposed works are discussed. 

6.3.1  Work I 

In the first proposed work, we suggested the use of guided filtering with the original ACO 

algorithm. In this work, the first edge enhancement is done using guided image filtering. 

Image sharpening is an effect when applied to images, giving them a much sharper 

experience. In the sharpened image, the edges are clearly visible to the user. Background 

and foreground parts become more differentiable in a sharpened image. To detect the 

weak edges, edges are enhanced to make them sharp so they can be easily detected. 

Guided image filtering has been used to enhance the edges. The edge enhancement 

process using Guided Filtering is the same as discussed in 4.4.3, so the details are not 

discussed again. After enhancing the edges, the original ACO has been applied, and edge 

detection is done.  

6.3.2  Work II 

In the second proposed work, after doing edge enhancement using guided image 

filtering, then instead of using traditional ACO, we applied modified ACO to detect 

edges on the enhanced image. Some modifications are proposed in the classical-ACO 

algorithm to achieve better results. The modified ACO-based edge detection method is 

discussed below: 

a. Modified ACO Edge Detection Method  

Like other traditional edge detection methods, the intensity values of the input image 

in the modified ACO technique are transformed into the pheromones values. These 

transformed values are used to detect the edges of the image. In this method, a 

grayscale image is taken as input. Now, in the input image, we select m nodes 

randomly, assuming they as the artificial ants. As per the ant moving rule, all selected 

ants move towards their neighbourhood nodes. We must note here that the movement 

of each ant is fixed to L steps, where L represents a predefined value. As soon as the 

movement of each ant is finished, an update in the pheromone matrix is performed. 

This process is continued till we get a fixed number of iterations. At last, edges are 
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detected based on the huge amounts of pheromone. This implies that we must have a 

fixed threshold value of the pheromone to detect an edge.  

  Initialization 

We randomly select m nodes as the artificial ants.We take the amount of pheromone 

for each one of the pixels as 0.0001. 

 Node transition rule construction 

We select m artificial ants randomly and allow them to move from their position to 

their admissible neighbourhoods as per a probability transition rule. This rule is 

formulated based on the local intensity and could be defined as: 

           
  

(    
   )

 
      

 

∑ (    
     

)
 

          
       

          ............................................................(6.1) 

In the above Eq. (6.1) , p defines the movement probability of the selected ant to its 

neighbourhoods, and n represent the number of iteration. The efficacy of pheromone 

and heuristic informationis controlled by the parameters such as α and β, respectively. 

τ(u, v) is the pheromone quantity, and η(a, b) is heuristic information for node (u, v). 

Ω(i, j) indicates the acceptable neighbourhoods where the selected ant may travel. 

While selecting the neighbourhoods for each ant, using the heuristic function η (a, b) 

produces remarkable results. A 5×5 design (Figure 6.2) is used to formulate the 

perception of the ant about its neighbourhood nodes at node (a, b). 

We can define the heuristic function as: 

         [        ]
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Here, 
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                       ].......................................................... ..........(6.3) 
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   [                                             

            ]  [                       

                                  ] 

   [                   ]  [                   ] 

        represent the intensity at a given location, while       is the maximum 

intensity. Three representation of the clique is shown in Figure 6.2. We assume the 

pixels with the same colours as a group (refer to Figure 6.2-I). In addition, Figure 6.2-

II and Figure 6.2-III show two famous structures considered (Liu & Fang, 2015). By 

subtracting the summation of each group's pixel values from the summation values of 

the corresponding group with the same colour, we may calculate η(a,b). Now, we 

choose the highest value among different pairs. 

 

 

Figure 6.2: Representation of clique 

Each selected ant is allowed to move to its eight neighbourhoods based on Eq. (6.1), 

as shown in Figure 6.3. So, we can say that each ant moves to the node with the 

highest probability. The above-mentioned process goes on till the completion of the L 

steps. Each of these artificial ants posses pre fixed memory length denoted by l. 
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Therefore, we can say that each ant can memorize only the last l nodes visited by it. 

 

Figure 6.3: Ant movement on image 

Pheromone update: We have an update in the pheromone matrix on the proceeding 

of each artificial ant to L steps.This update is done using the following: 

            [∑        
                   

   ]
       

       
...................................(6.4) 

S represents the total number of ants that meet node (u,v), and [ ]  

   is defined as: 

[ ]  

   {
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We can estimate        
  for each node as: 

       
  {

             
                                   

                                                                                 
............................(6.6) 

Here, the variable t is assumed as a threshold to restrict the amount of the pheromone 

deposited. 
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6.4  Results 

In the edge detection process, accurately assessing the performance of an algorithm 

becomes crucial, particularly considering that the positions of pixels may shift from 

their original locations due to various factors such as noise, blurring, or 

transformations. To evaluate the effectiveness of our algorithm, we rely on the F-

measure metric, which provides a comprehensive measure of a method's precision and 

recall, thereby offering insights into its overall accuracy. 

The F-measure, also known as the F1-score, combines both precision and recall into a 

single value, making it a suitable metric for comparing edge detection algorithms. 

Precision measures the proportion of correctly detected edge pixels among all the 

detected edge pixels, while recall measures the proportion of correctly detected edge 

pixels among all the ground truth edge pixels. By calculating the harmonic mean of 

precision and recall, the F-measure provides a balanced assessment of an algorithm's 

ability to accurately identify edges in an image. 

In our evaluation, we compare the F-measure obtained from our algorithm with that of 

other recent methods to gauge its performance relative to state-of-the-art techniques. 

This comparison allows us to ascertain whether our algorithm offers improvements in 

terms of edge detection accuracy compared to existing approaches. 

To conduct our evaluation, we utilize a set of simulation parameters, the values of which 

are detailed in Table 6.1. These parameters encompass various aspects of the edge 

detection process, including filtering techniques, thresholding strategies, and post-

processing methods. By systematically adjusting these parameters and observing their 

impact on the F-measure, we gain valuable insights into the algorithm's sensitivity to 

different settings and its overall robustness across diverse image datasets. 

Table 6.1: Simulations Parameters 

Parameters Value 

pheromone matrix, τinit (Initial values) 10
-4

 

Pheromone information, α (Weighting factor) 1 

Heuristic information, β (Weighting factor) 0.1 

Connectivity neighbourhood, ᴧ 8 



Chapter 6 

 123 

Functions adjusting parameter, λ 10 

evaporation rate, ρ 0.1 

Total number of ants vary 

Total number of ant‘s movementsteps, S 40 

Pheromone decay coefficient, ψ 0.05 

Tolerance value, ε 0.1 

Threshold, T adaptive 

 

The total numbers of ants which need to be taken depend on image size. Considering 

the image size as (M×N), the numbers of ants are (√MN). 

6.4.1  Results Edge Enhancement 

In Figure 6.4, results for edge enhancement using guided filtering are shown. Here, 

four different images are shown in the first column. The first three images are taken 

from the Berkley image database, while the fourth is the famous Leena image. Each 

row shows the results for an image under various mechanisms. The second column 

shows the grayscale version corresponding to its original image in the first column; 

the edge-enhanced image using guided image filtering is shown in the third column. 

Finally, a grey-scale version of the enhanced images is shown in the fourth column. It 

is clear from the results that the edges are sharper and more clear in the enhanced 

image as compared to the original image. For accurate edge detection, it is desired 

that the intensity values in grey images should be either 0 or 255. Still, it is not 

possible to get an exact binary image without using any threshold.  
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Figure 6.4: First Column; Original image, Second Column; Gray Scale original image, 

Third Column; Enhanced image, Fourth Column; Gray Scale enhanced  

image 

Still, we expect that the histogram of the image should be more concentrated 

around 0 and 255. Therefore, in the Figure 6.5, four columns are displayed; in the 

first column, the original images are shown, and in the second column, a histogram 

of all the images is shown; in the next column, enhanced images are displayed; and 

finally, finally in the fourth column histogram of enhanced images are displayed. 

It is clear from the Figure 6.5 that the histogram of the greyscale original image 

intensity is spread from 0 to 255, while in the case of enhanced images, intensities 

values are more concentrated around 0 and 255. 
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Figure 6.5: First Column; Original image, Second Column; histogram of the original 

image, Third Column; Enhanced image, Fourth Column; histogram of 

Scale enhanced image 

6.4.2  Results Edge Detection Traditional ACO + Guided Image Sharpening 

The results are acquired on a number of images and databases to prove the 

applicability of the proposed edge detection methodology. Still, we have selected a 

few of these images from an illustration point of view. In Figure 6.6, the first column 

displays the original considered images, and correspondingly edge-detected images 

are displayed in the 2
nd

 column. In the next column, sharpened images are shown, 

while edge detection on sharpened images is shown in the fourth column. Each row in 

the figure shows the results for one type of original and sharpened image, along with 

the corresponding edge detected images. It is also observable that with the proposed 

method, more edges are detected. The notable areas are marked using circular and 

oval shapes, where clear differences in detected edges can be observed.  However, 

more edges not always mean that correct edges are detected.  
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Figure 6.6: First Column; Original image, Second Column; edge detected image, Third 

Column; Enhanced image, Fourth Column; edge detected enhanced image 

6.4.3 Results Edge Detection Modified ACO + Guided Image Sharpening 

To prove the applicability of the proposed edge detection methodology, we had tested 

the method on a wide range of pictures and databases, but for an illustration point of 

view, we have selected a few of these. 

In Figure 6.7, the first row and first column show that the original considered Lena 

image and the corresponding edge detected image using the original ACO as detailed 

in (Mittal, et al., 2019) shown in the first-row second column.  In the second row and 

first column, the edge-detected images under ACO and guided filtering is shown, 

while in the second row, the second column under modified ACO and guided filtering 

is shown. A clear distinction is observed in ACO and guided filtering-based ACO 

edge detection. However, much difference is not observed with modified ACO and 

guided filtering. 
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Figure 6.7: First row and first column; Original image, First row and second Column; 

edge detection using ACO, Second row and first column; ACO and Guided 

filtering, Second row and second column; enhanced ACO and Guided 

filtering 

To see the advantages of the proposed method over earlier methods, we have 

considered another image, Figure 6.8(a), which is full of varieties like text, symbols, 

contour etc. is considered. In the Figure 6.8(b), detected edges using ACO is shown. 

Here orangutan and tiger image edges are not detected; moreover, the letter present on 

the body of the animal is also not recognized. Figure 6.8(c) detected edges using 

ACO, and guided image filtering is shown; here, orangutan and tiger images edges are 

now detected, but the letter present on the body of the animal and the name of the 

animals are not recognized. In the Figure 6.8(d), detected edges using modified ACO 

and guided image filtering is shown, here orangutan and tiger images edges and letter 

present on the body of the animal are now detected; moreover, and name of the 

animals are clearer now. 



Chapter 6 

 128 

 

(a)                                                                                 (b) 

 

(c)                                                                               (d) 

Figure 6.8: (a) Original image (b) Edge detection using ACO (c) ACO and Guided 

filtering (d) Enhanced ACO and guided filtering 

Finally, it is also important to note that more edges do not always mean that correct 

edges are detected. Therefore, the F-score is obtained for the various images, and the 

minimum obtained F-score is shown in Table 6.2. From this table, it is clear that the 

proposed scheme is much better in comparison to notable schemes. 
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Table 6.2: Comparison with Notable Works 

Method Year F-measure 

Canny (Canny, 1986) [1996] 0.49 

Sobel (Vincent & Folorunso, 2009) [2009] 0.40 

BEL (Dollar, Tu, & Belongie, Supervised learning of edges and 

object boundaries, 2006) 

[2006] 0.63 

gPb (Arbelaez, Maire, Fowlkes, & Malik, 2011) [2011] 0.71 

Sketch Token (Lim, Zitnick, & Dollar, 2013) [2013] 0.73 

Structured Forest (Dollar & Zitnick, Structured forests for fast 

edge detection, 2013) 

[2013] 0.71 

ACO (Raheja & Kumar, 2020) [2020] 0.74 

ACO + Guided image filtering (Proposed)  0.79 

Modified ACO + Guided image filtering (Proposed)  0.81 

 

6.5  Summary 

In this chapter, two sets of work are presented. In the first work, it is shown that the 

performance of the ACO-based edge detection mechanism can be improved using 

guided image filtering. In the second method,a modified-ACO algorithm is detailed 

for edge detection. In the second method for the enhancement of the edges, guided 

image filtering is performed, and modified ACO is applied for edge detection on the 

enhanced images. It is found that the proposed scheme can detect minor edge 

variations with the help of guided filtering and a new heuristic clique function. 

Obtained results are also compared with recent and notable edge detection techniques 

in terms of F-score, and it has been found that the proposed scheme performs better 

edge detection.   
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Chapter Seven  

Conclusions and Future Works 

In this thesis, we have formulated algorithms for better edge detection to benefit other 

image-processing applications. We performed edge detection on images using these 

algorithms and then compared the values of performance measures. Compared with other 

state-of-the-art techniques, these algorithms give better results for differentperformance 

indices for quantitative evaluation like PSNR, MSE, F-measure,FoM, SSIM, HoD, ED, 

BDM, DE and ρ. The variations in results are also analyzed by changing the values of the 

parameters. The experiments have been done on the standard dataset Berkeley 

Segmentation Database (BSD). From work presented in the thesis following conclusions 

can be made: 

Edge detection is an important phenomenon in computer vision. The edge detection 

process heavily depends on the chosen technique. The traditional edge detection methods 

that were previously proposed depends heavily on the selected threshold. Soft computing 

techniques are considered as powerful edge detection methods due to their adaptability. In 

this thesis, the image edge detection problem is first solved using the modified-ACO 

method, which generates a desirable result compared to many other algorithms and 

approaches. This section employs a modified intensity mapping function to capture the 

intensity variations. Also, the threshold has been chosen adaptively to improve the 

accuracy of the algorithm. The algorithm is applied to a total of six images of BSD. The 

results are compared using PSNR and F-score, which are better than traditional 

approaches of edge detection as well as other recent methods. 

In various applications, it has been observed that all the edges in a particular image 

are not so significant. Therefore, it is necessary to look into a technique that allows 

for the regulation of the amount of recognised edges. Hence a fuzzy-logic-based edge 

detection method where the quality of edges is controlled using a sharpening guided 

filter and noise due to the sharpening is controlled using a Gaussian filter is 

formulated. The accuracy of the method is judged using a variety of statistical 

measures. It has been found that a significant improvement in the detected edges can 

be obtained by properly selecting the smoothening parameters. The results have been 
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compared with Canny and Fuzzy edge detection without guided filtering, which 

showed that guided filtering improves the performance of edge detection. The 

sensitivity of different parameters used is also analyzed. 

Fuzzy logic-based edge detection is heavily investigated by changing the number of 

rules edge detection can be improved. However, due to large colour variations in the 

images, false edges are detected and even using fuzzy rules, they cannot be reduced 

significantly. These falsely detected edges can be controlled by using smoothened 

filter while controlling the degree of smoothness. Then an algorithm is proposed using 

a fuzzy logic-based edge detection mechanism while using Guided L0 smoothen filter 

for the smoothening of the image under various degrees of smoothens. Simulation 

results for edge detection are provided for the Sobel, Canny, Fuzzy-logic based edge 

detection and fuzzy-logic edge detection usingan L0 smoothen filter. The results are 

compared with classical and modern methods. Simulation is performed on Berkley 

Segmentation Database (BSD) and USC-SIPI Image Database while considering 

more than 100 images. The obtained F-measure is as high as 0.848. 

In the past, different edge detection methods based on soft computing techniques have 

been presented. However,these algorithms fails to detect all the real edges. For 

accurate edge detection, a new two-level technique is proposed, where in the first 

step, image edges are enhanced using guided image filtering after that an improved 

ant colony optimization method is applied to these enhanced images for better edge 

detection. 

7.1  Conclusions 

The different algorithms proposed in this thesis are very effective and give an 

improved performance for edge detection. Based onthe work done following 

conclusions can be made: 

 

1. The modified-ACO-based edge detection mechanism used a novel intensity 

mapping function to capture both linear and sinusoidal variations of intensity 

profile, and the use of adaptive thresholding leads to more accurate edge 
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detection. By choosing various cliques where maximum intensity variations can 

be captured, the results can be improved in terms of accurate edge detection.  

2. We developed a method to tackle all major issues of edge detection: false edges 

because of noise, and missing true edges, by utilizing guided image filtering 

where the quality of the edges can be well controlled. Using guided image 

filtering, both image smoothing and image sharpening can be done precisely. 

The radius of the guided filters can be used to counter balance the filtered 

images' colouring effect. Using guided image filtering, edge localization is 

better in comparison to traditional and state-of-art methods.The compared 

results clearly show that the recently proposed method, like ANN and DNN, is 

comparatively more complex, with higher run time and lesser accuracy in terms 

of F-score.  

3. We also utilized the advantages of L0 smoothing in conjunction with guided 

filtering to control the degree of smoothing of images so that true edges can not 

be missed. The proposed algorithms give a much-improved performance where 

F-measure is as high as 0.848. 

7.2  Future Works 

1. The obtained results can be improved using further post-image processing 

operations like Non-maxima suppression as used in the Canny edge detection 

method. Moreover, research can be made to develop an edge detection 

mechanism which is free from mapping functions by taking the gradient 

magnitude and directions into account in ACO-based detection.  

2. ACO method can be further improved by using fuzzy rules to detect true edges 

and to remove false edges.  

3. A better version of Guided Image Filters can be developed to enhance the results 

further. 

4. The fuzzy scheme based on intensity difference can be further extended by 

considering the mean and variance of the intensities of the pixels in the 
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surrounding overlapped windows.   

5. The work can be further analyzed with the introduction of varying level of noise 

onto different images. 
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