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ABSTRACT 

In recent years, the development of deep learning methods, particularly Generative Adversarial 

Networks (GANs) and Variational Auto-encoders (VAEs), has resulted in fabricated content 

that is more realistic and credible to the human eye. Deepfake is an emergent deep learning 

technology that enables the production of synthetic content that is both highly realistic and 

credible. On the one hand, Deepfake has facilitated the development of cutting-edge 

applications in a variety of industries, including advertising, creative arts, and film productions. 

Conversely, it presents a threat to a variety of Multimedia Information Retrieval Systems 

(MIPR), including speech and face recognition systems and has more significant societal 

implications in the dissemination of misleading information. This thesis highlights the 

importance of developing strong systems that can identify potentially harmful changes in 

deepfake multimedia content by harnessing the capabilities of deep learning algorithms. The 

objective of this study is to employ the potential of deep learning to effectively identify and 

mitigate several types of deepfake manipulations, which pose a significant threat to individuals, 

society, nations, and enterprises together. The proposed detection methods, which utilize deep 

learning, aim to guarantee the dependability and precision of deepfake manipulation content, 

considering that social media platforms are the primary means of exchanging information. 

Consequently, this will improve the development of a digital ecosystem characterized by 

greater dependability and trustworthiness. This thesis addresses the difficulty of detecting 

deepfake manipulation by introducing four innovative deep-learning architectures and a unique 

collection of diverse manipulation videos that facilitates the training of deepfake detection 

models. 

The first two models, namely Tex-ViT and Tex-Net focuses on the issue of deepfake 

manipulation detection. Deepfake manipulations can be misused in a variety of ways, pose a 

significant threat to individuals, society, nations, and enterprises together. Both Tex-ViT and 

Tex-Net uses texture as a feature and cross-attention mechanism to learn powerful 

representation of features. Tex-ViT uses gram matrices for texture feature representation while 

Tex-Net uses combination of Gram matrices and Local Binary Patterns for texture feature 

representation. Rest of the architecture is same in both the model, where the model combines 

traditional ResNet characteristics with a texture module that operates concurrently on ResNet 

segments before each down sampling process. This module serves as an input to the dual branch 

of the cross-attention vision transformer which uses them for final classification. The model's 

generalizability is illustrated through experimentation on a variety of categories of FF++ and 
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GAN dataset images in cross-domain contexts. The investigations were conducted using the 

Celeb-DF, FF++, and DFDCPreview datasets, which were subjected to a variety of post-

processing techniques, including compression, noise addition, and blurring. The experimental 

results demonstrate that the proposed models outperform the current state-of-the-art 

approaches. 

Next, proposed a diverse manipulation deepfake video dataset named Div-DF in assisting the 

training of various detection methods. The dataset consists of 150 authentic videos featuring 

various celebrities from different fields, as well as 250 deepfake videos. The deepfake videos 

include 100 face-swap videos, 100 facial reenactment videos, and 50 lip-sync videos. Deepfake 

video are created by combining the Face-Swap GAN (FSGAN) and the Wav2Lip approach, 

which are advanced techniques. Third models for deepfake video detection approach integrates 

Xception and LSTM pretrained models with channel and spatial attention mechanisms 

(CBAM). The Xception model employs depthwise separable convolution to capture latent 

spatial artifacts, while the LSTM model captures the distinctions between the modified 

sequences. The hybrid model assembly enables the acquisition of knowledge on spatial and 

temporal distortions across multiple dimensions, making it a powerful tool for identifying 

deepfake content. The model was tested on the proposed dataset, demonstrating its improved 

extraction capabilities. 

Lastly, proposed a deepfake manipulation localization method is proposed. It is a dual-branch 

model that is propelled by the attention mechanism and combines handcrafted feature noise 

and CNNs as an encoder-decoder (ED). This dual-branch model employs noise features on one 

branch and RGB on the other before feeding to an ED architecture for semantic learning and 

skip connection deployment to retain spatial information. Additionally, this architecture 

employs channel spatial attention to enhance and refine the representation of the features. 

Extensive experimentation was conducted on the shallowfakes dataset (CASIA, COVERAGE, 

COLUMBIA, NIST16) and the deepfake dataset Faceforensics++ (FF++) to showcase the 

superior feature extraction capabilities and performance compared to a variety of baseline 

models, with an AUC score that exceeded 99%. The model is comparatively lighter, with 38 

million parameters, and significantly surpasses existing State-of-the-Art (SoTA) models. 
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Chapter 1: Introduction  

Multimedia data refers to the transmission of the data in one or more medium like text, image, 

video and audio. Recently, due to the progress in deep learning techniques, particularly 

Generative Adversarial Networks (GANs) and Variational Auto-encoders (VAEs), artificially 

created content has become highly realistic and convincing to human observers. Multimedia 

data refers to the transmission of the data in one or more medium. Deepfake is an emerging 

technology that enables the production of extremely realistic content. Deepfake technology has 

facilitated the development of sophisticated applications in diverse domains like as advertising, 

creative arts, and film production. However, it presents a danger to other Multimedia 

Information Retrieval Systems (MIPR) including facial identification and speech recognition 

systems, and has more substantial societal consequences in disseminating deceptive 

information. The initial investigation of identifying malicious tampering in multimedia content. 

The progress of the technology requires the development of effective methods to detect and 

mitigate the deepfake manipulation of multimedia data in order to minimize the negative 

impact on society’s perception of truth and reality. This chapter presents the introductory study 

of deepfake manipulation of multimedia data. 

1.1 Growing Popularity of Social Media Platforms over the years 

The Each year, there has been a significant rise in the number of active users on social media 

platforms(Figure 1.1), This is mostly due to the widespread availability and affordability of 

smartphones, which has made it easier for people to access and share material on social 

networking platforms. Social media serves as a medium for disseminating information, 

exchanging thoughts, and articulating viewpoints etc. 

In contemporary times, there is a prevailing inclination to often disseminate information in the 

form of images, videos, and audio, as these channels of communication are more captivating 

than static information conveyed by text.  
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Figure 1.1 Active users on social media platforms over the years [1]. 

In the past ten years, there has been a substantial surge in the availability of multimedia editing 

software and smartphone applications. Social media also appeals to a significant percentage of 

individuals who passively receive information. Users engage in the creation and dissemination 

of multimedia content, as well as the consumption and exploration of content contributed by 

other members of the community, including individuals, groups, and organizations. 

 As these technologies become more prevalent, it is clear that individuals are increasingly using 

them for their everyday tasks, whether they are related to work or personal matters. Figure 1.2 

represents the active users that has increase over the years on various social media platforms. 

 

Figure 1.2 Active users on various social media platforms as of Dec 2023 [2]. 

The Sharing modified content using filters or editing software has become a popular trend to 

increase visibility and views, leading to more likes and follows. A notable instance of early 

manipulation in the profession may be dated back to 1865, when a renowned photograph of the 

2.078 2.307
2.796

3.196 3.484
3.96

4.48 4.628
4.95

2015 2016 2017 2018 2019 2020 2021 2022 2023

Active Users on Social media platforms over the years(in billions)

175

465

571

599

666

673

743

750

800

1,036

1,218

1,327

2,000

2,000

2,491

3,030

0 500 1,000 1,500 2,000 2,500 3,000 3,500

Thread

Pinterest

QQ

Sina Weibo

X (Twitter)

Kuaishou

Douyin

Snapchat

Telegram

FB Messenger

TikTok

WeChat

WhatsApp

Instagram

YouTube

Facebook

Active users on social media (in millions)



3 

 

 

former U.S. president Abraham Lincoln had a face swap [3].  Deepfake is the current state of 

the art of image, video, and audio manipulation. 

 

Figure 1.3 Example of Deepfake [4] 

Deepfake word is composed of two words, “Deep” and “fake”, which means the fake 

media that has been created using a deep neural network, a branch of machine learning. Fake 

media created by this technology appear so realistic and believable that it is difficult to identify 

as fake to the naked eye(Figure 1.3). This word became famous when, in 2017, a Reddit user 

with the name “deepfakes” created pornographic content with a swapped face of a celebrity 

and posed it online. Since then, it has become one of the hot topics, and there is a lot of research 

going on in recent times. 

1.2 Brief overview of the application of Deepfakes 

Deepfake has useful for various applications be it in creative field like innovation, education 

or using with malicious intent like for harassing someone. Application has been divided into 

categories(Figure 1.4): 

“Deepfake is a synthetic; realistic-appearing media created by 

deep learning technology”. 
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Figure 1.4: Application of Deepfake 

1.2.1 Beneficial use of Technology 

This technology offers many benefits if used with the right intention and it may include 

followings fields:  

Education: Deepfake gives a multitude of opportunities for educators with the way they can 

impart education. For example, videos of historical personalities like Mahatma Gandhi or 

Nelson Mandela teaching about themselves and their work. 

Entertainment: Deepfake has also contributed to entertainment purposes in video dubbing in 

other languages, memes, GIFs, animating dead or cartoonist characters, special effects in the 

movies [5].  

Expression: Deepfake technology allows people suffering from the disability, such as ALS 

(Amyotrophic Lateral Sclerosis, the patient has difficulty speaking and communicating) to 

express through their deepfake video. Deepfake also allows one to have an avatar experience 

through virtual engagement that might be impossible to have physically, e.g. video games [6]. 

During the campaign, it is also helpful for a message of some famous personality to be reached 

in a different language; a deepfake can be created for the same [7]. 

Innovation: Deepfake has been used a great deal to attract customers for a brand. For example, 

Reuters demonstrated to have used AI generated presenter-led sports news feed. In the fashion 

retail industry, deepfake allows customers to turn into models (virtually) to try out new 
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apparels. A Japanese company named Data Grid is already using an AI-generated virtual model 

for advertising [7]. 

1.2.2 Malicious use of Technology 

The real danger of this technology lies in the different ways it can be misused and the large-

scale impact it can have, courtesy of being misused. Here are the some of the threats that it may 

create: 

Threat to individual/organization: Deepfake holds great potential for inflicting tangible harm, 

psychological stress, physical pain and sabotaging the reputation of an individual and 

organization. For inflicting harm, a fraudster may use deepfake to extract something of value. 

To prevent the release of such deepfake, the victim provides money, personal banking details 

and business secrets [6]. The most common form of exploitation is in the form of deepfake 

pornographic videos. One can victimize the individual to any form of violent or humiliating 

act to gratify their wants. 

Threat to society: Deepfake can have a huge societal impact considering its realism and fast 

propagation through different social media networks. Prejudices in society are prevalent and 

are further aggravated by this technology when the lies are shared through different channels. 

Societies that are already divided based on caste, creed, religion, color and language, deepfake 

can further add fuel to the existing fire [6].  

Threat to democracy: Deepfake can affect national and international relations; it can sour 

bilateral ties whose impact may last up to generations. Deepfake can prove to be very lethal, 

as it gives the option to external entities to influence the democratic process of a nation [6]. 

Deepfake can sway the results of an election, when a fake video about a political candidate is 

circulated just on time, such that it has enough time to spread but narrow time to prove it faked 

and reverse its effect(e.g. on the eve of an election) [6].  

Threat to the Business: People are losing money every year in businesses, be it the stock market 

or business deals; because of the disinformation. Deepfake technology allows anyone to 

impersonate voices of different identities like the Business leader and CEO to incur fraud. A 

corporate workplace that is so strict about harassment, sexual abuse, molestation, racist remark, 

gender discrimination, where evidence in the form of audio or video is hardly questioned. In 

such an environment, deepfake audio or video can be a lethal weapon that can ruin someone's 
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career and future aspirations. When deepfake media back a rumor, then such rumors can 

manipulate the market in such a short time and someone's may lose or make a huge profit [8]. 

1.3 Types of deepfake for different multimedia 

Deepfakes are generated for three kinds of media that are image, video, and audio. Each 

medium has its own process of generation and hence requires a different type of architecture. 

Figure 1.5 presents the categorization of deepfake generation methods for three media. 

 

Figure 1.5: Types of deepfake for different multimedia 

1.3.1   Type of image deepfake 

In the case of images, either the entire synthetic image is generated, or there is partial 

manipulation, be it expression, identity, or some attributes like hair, skin, gender etc.are 

changed in the image. 

Identity Swap (IS): In this type of manipulation, the identity/face of the source of the image is 

transferred to the target image. FaceSwap [9] and FakeApp [10] are the most common open-

source tools available for the identity swap. With the advent of deep learning techniques, they 

appear real to such an extent that even sophisticated algorithms have difficulty detecting them. 

Entire Image syntheisis(EIS): Entire non-existent images with high realism created by the 

powerful GANs. ProGAN [11], StyleGAN1 [12], and have leveraged the power of GANs to 

create highly realistic synthetic high-resolution images. 

Lip-Syncing (LS): This category of video manipulation involves synthesizing the mouth region 

of a target identity consistent with the arbitrary input audio. To convey the information more 

effectively, lip movement and the corresponding expression are the key elements. 

Body-puppetry (BP): Body puppetry means transferring the body movement from the source 

to the target; it can be facial gestures, eye and head movements, or different body poses. Face 

enactment is the subset of it, where the facial expression is transferred. 

1.4 Motivation for deepfake detection 

DeepFake Type

Entire Image Synthesis Face-swapping Body Puppetry Lip-sync
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 The impetus behind the development and enhancement of deepfake detection technologies is 

propelled by certain crucial factors: 

 Prevention of spreading hatred in the society: The technology of deepfake has the capacity 

to disseminate falsehoods and misinformation among the general public, thereby inciting 

negative sentiments and promoting hatred. Therefore, it is crucial to detect and identify 

deepfake videos or images at an early stage in order to prevent the widespread influence of 

such bad emotions. 

 Identity theft prevention: Deepfake detection is crucial in preventing theft which usually 

occurs when an identity of an individual is faked or taken for fraud purposes. 

 Prevention of Incuring financial fraud: The primary purpose of forgery detection systems 

in the financial sector is to prevent fraudulent activities. This involves the detection of 

forged checks, counterfeit currency, and deceptive credit card transactions. 

 Protection of Individual: Deepfakes are used to specifically target the individuals for 

blackmailing, harassment or with the intention of victimizing them. Exposing and detecting 

deepfakes from these malicious acts, is one of the foremost priority to preserve their 

personal rights and privacy. 

 Protection of social Media scam and reputation damage: Deepfake allows someone to fake 

their identity which would give them power to fraud somebody on their behalf which would 

eventually damage their reputation. 

 For building trust in Online transactions: Deepfake detection systems primarily aim to 

identify fraudulent activity in the financial sector on the internet, such as fraudulent 

transactions, counterfeit credit/debit card transactions, and other manipulative operations. 

 Ensuring trust in public institutions: Public institutions such as the judiciary, government, 

police, and other public services are established to ensure the efficient operation of society 

and the nation as a whole. The emergence of deepfake technology would jeopardize their 

trustworthiness. Robust detection mechanisms are implemented to maintain the 

trustworthiness of these institutions. 

 Integrity of journalism and media: Journalism and media organizations should implement 

robust detection mechanisms to verify the validity of news and prevent the dissemination 

of misleading information. This ultimately contributes to maintaining integrity and 

protecting people from the spread of fake news and misinformation. 
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 Enhancing cybersecurity: Cybersecurity is enhanced by the utilization of deepfake forgery 

detection techniques, which are employed to identify and thwart various types of assaults, 

including email spoofing, phishing, and malware that aim to deceive or imitate individuals. 

 Ensuring the safeguarding of trademark rights and reputation: Deepfake technology 

empowers individuals to assume the identity of a brand and promote their goods, hence 

diminishing the market value of their competitors' products. Implementing a detecting 

technique would aid in safeguarding the company's name and brand value. 

 Ensuring the political and social stability in the nation: The utilization of deepfake 

technology allows external actors to exercise influence on a nation's political process, 

potentially resulting in substantial public upheaval. This has the potential to intensify 

demonstrations and present a risk to the security of the nation. The deliberate distribution 

of deepfake content has the capacity to sway the results of elections in a democratic country. 

Hence, it is imperative to establish effective detection algorithms to accurately identify and 

classify manipulative information. 

1.5 Sources of Studied Research Works 

This section outlines the methodology employed in the preparation of this thesis. This thesis 

incorporates research papers sourced from reputable publications, conferences, and workshops 

available in prominent sources such as IEEE Xplore, Science Direct, Springer, ACM, and 

Google Scholar. In order to incorporate relevant papers, keyword searches were conducted for 

terms such as "forgery detection", "manipulation detection", "images", "videos", "deep", 

"review", "survey", and so on. Research contributions were prioritized by including high-

quality journals such as ACM Transactions and IEEE Transactions, as well as top computer 

vision conferences such as the European Conference on Computer Vision (ECCV), Conference 

on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), and International Conference on 

Computer Vision (ICCV). 



9 

 

 

 

Figure 1.6: Year-wise distribution of Deepfake Manipulation Literature 

  

Figure 1.7: The first graph gives a comparison between Journal and conference being cited. The second graph 

gives the publisher-wise distribution of papers 

Figure 1.6 illustrates the distribution of contributions by year, indicating that the majority of 

contributions come from years 2021-2022. Figure 1.7 illustrates the dissemination of articles 

referenced in this thesis. The initial graph displays the quantity of conference and journal 

publications that have been referenced in this thesis. The following graph displays the 

distribution of publications based on the publishers. 

1.6 Thesis Overview 
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Chapter 2 focuses on reviewing the literature that discusses the current advanced methods for 

detecting manipulation in multimedia information. More precisely, the presentation showcases 

research efforts that are classified based on the specific types of alterations they can detect. It 

also highlights any gaps in the existing research, the specific objectives that the study aims to 

achieve, and the contributions that the research has made. 

Chapter 3 focuses on the issue of detecting deepfake alteration in images. Two innovative 

deep-learning methodologies utilizing the texture and cross-attention mechanism of vision 

transformers have been put forward. The initial model use Gram matrices to generate texture 

features, but the second technique combines Gram matrices with Local Binary patterns to 

describe texture features. The remaining architecture remains similar between both models. 

Chapter 4 focuses on the issue of deepfake video datasets and their identification. The Div-

DF dataset is a comprehensive collection of deepfake videos that covers several video alteration 

techniques, such as lip-sync, facial reenactment, and face swap. The deepfake detection model 

comprises an Xception model enhanced with spatial and channel attention, as well as an LSTM 

component to capture artifacts. The suggested model and several state-of-the-art 

methodologies are used to benchmark the score on the dataset. 

Chapter 5 discusses the issue of localizing deepfake manipulation. The proposed framework 

utilizes a dual-branch approach, where one branch incorporates noise characteristics and the 

other branch incorporates RGB information. These branches are then combined and fed into 

an ED architecture for the purpose of semantic learning. Multiple tests are conducted on the 

shallowfakes and deepfakes dataset to identify the specific locations of the modifications. 

Chapter 6 provides the final findings and conclusions of the study conducted in this 

dissertation as well as potential avenues for future research. 

Chapter 7 contains the sources that are mentioned in this thesis. 
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Chapter 2: Literature Review 

This chapter explores the existing literature on the problem of Deepfake manipulation 

generation and detection in multimedia content. The overall literature review can be divided 

into two categories: namely known as Deepfake generation and deepfake detection(Figure 2.1). 

 

Figure 2.1 Classification of Deepfake Techniques 

2.1 Deepfake Generation Techniques 

Based on the generation process of different media, the generation mechanism has been divided 

into two categories: visual deepfake, including image and video media, and audio deepfake 

generation. Figure 2.2 presents the further categorization of deepfake generation methods. 

 

Figure 2.2: Classification of Deepfake generation techniques 

Deepfake generation involves the generation mechanism for image and video media. This 

section will cover various categories under which manipulation can take place. 

2.1.1 Identity Swap (IS) 

In this type of manipulation, the identity/face of the source/frame is transferred to the target 

image/frame. Face-swap is the other name for it. The face-swap [9] and fake app [13] software 

made it easier for anyone to generate face-swap. Their typical approach for IS based on a pair 

of auto-encoder and decoder architecture. For this process, encoder-decoder pairs are required, 

where the encoder converts the images into their latent representation while the decoder 

reconstructs the image back from the latent representation. During the training, encoder-

DeepFake 
Techniques
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decoder pair is required for each image for the model to learn its embedding, where encoder 

weights are shared. Once training is complete, the decoder is interchanged during the 

generation stage, the decoder of the target image and encoder of the source image are used to 

generate the target (Figure 2.3). 

The researcher proposed various sophisticated algorithms over the years. The first well-known 

Identity swap is FaceSwap [14], which has also been used to develop Faceforensics++ dataset 

[15]. The traditional method uses 3D morphable models, and facial textures are replaced with 

the estimated 3D model's geometry with the target image. Dale et al. [16] model has been one 

of the old approaches that use the multi-linear model to track the facial performance in both 

videos and then use 3D geometry to warp the faces. Now a days, IS architecture uses DNN that 

usually uses two modules, one uses latent space for disentanglement of identity from other 

attributes and then the other module transfer and refine the identity from source to target. 

Faceshifter [17] wherein the first stage, the method generates the swapped on the target images 

thoroughly and adaptively and in the second stage, network recover anomalies region in a self-

supervised manner. Most of the recent IS methods are subject agnostic, where once model get 

trained, it can be applied to any new faces without requiring re-training on subject specific 

target.   

 

Figure 2.3: Identity Swap generation model using auto-encoder & decoder 
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2.1.2 Body puppetry (BP, aka reenactment) 

Body puppetry (aka reenactment) deepfake is where source derives the content of target; it can 

be facial gestures, eye and head movements, or different body poses. Face reenactment is its 

subset, where the facial attributes are derived. It is used greatly for post-production editing of 

movies or short videos [18]. Most of the time, the target content is derived either from some 

source media in the form of images/frames using landmark key points, 3D morphable models, 

skelton or any other mapping method. Chan et al. [18] proposed a method to transfer dance 

moves from the source to the target using intermediate pose Skelton transfer and predict the 

two consecutive frames to produce coherent results. However, the samples cannot generate 

realistic poses, especially at the joints of the body. Thies et al. [19] proposed the famous 

Face2Face approach that allows for the real-time reenactment of facial expression, where 

source facial expressions are tracked using a dense photometric consistency measure, and then 

a transfer function exploits the deformation transfer in semantic space. Many techniques [20] 

[21] [22] require multiple input images of the source samples, while few methods require few 

samples [23] [24] or even single sample [25] to generate results Many methods have the 

limitation that they can synthesize one attribute and apply it to only low-resolution images; 

FaceSwapNet [26] resolves this issue using two modules: landmark swapper and landmark-

guided generator to generate the face expression enacted photo-realistic image. Some other 

methods [27] [28] [29] [30] [31] have also been proposed over the years. Most of the 

reenactment has been done on dance poses and facial expressions. There has been a 

considerable improvement in the quality of dance poses generated samples, but still, they are 

far from appearing realistic. 

2.1.3 Lip-syncing(LS) 

This category of video manipulation involves synthesizing the mouth region of a target identity 

consistent with the arbitrary input audio. To convey the information more effectively, lip 

movement and the corresponding expression are the key elements. Usually, Influential leader’s 

deepfakes are developed, as their audio, video, and images are readily available and their 

generated samples creates more impact. Suwajanakorn et al. [32] created one of the first well-

known lip-sync of ex-President Obama from the audio using a recurrent neural network to map 

raw audio features to different mouth textures, new identity requires the model to be trained 

again. Earlier lip-sync methods [33] [32] construct 3D talking face models for a specific by 

animating 3D face meshes of the specific chosen subject, and such methods are hard to scale 

to arbitrary identities. However, as the technology evolves, they start to disentangle audio-
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visual representation, allowing methods [34] [35] to use few subject samples to generate 

results. Real-time reenactment of audio has also become possible nowadays. Jamaluddin et al. 

[36] proposed a real-time cross-modal self-supervision model for synthesizing talking heads 

that employs encoder-decoder multi-stream CNN, which uses a joint embedding of still images 

and audio to generate lip-synched video frames in real-time. However, the model lacks the 

synthesis of real-time emotional facial expressions. There has been significantly less work for 

lip-sync manipulation, and also, methods have difficulties being generalized to any arbitrary 

identity. 

2.1.4 Attribute Manipulation(AM) 

Attributes like expressions, hair, eyes, the color of skin, age, gender, mustache, etc. that are 

manipulated in an image fall into manipulation category.  

Generally, attribute manipulation methods employ either Encoder-decoder(ED) or a 

combination of ED and GANs with a conditioned attribute. ED-based decodes the latent 

representation of attribute in a latent representation. A relationship is established between latent 

representation and attribute independent editing, which allows the independent attribute 

manipulation without the identity information loss that may lead to a distorted or over-smooth 

generation of the results. 

StarGAN and STGAN are classic examples. Earlier domains used to do the image-to-image 

translation between two domains, which was time-consuming, but StarGAN [37] approach 

uses multi-domain image-to-image translation using a single model. This allows the training 

of multiple datasets of different domains within the same network. However, the model can 

only produce a limited number of expressions despite such flexibility. To address this 

limitation, Albert et al. [38] novel GAN based model named ganimation uses a weakly 

supervised attention mechanism that takes annotated facial action units (AU) as input and 

generates a wider range of expressions. Encoder-decoder and GAN architecture has bottleneck 

layers, which results in blurry and low-quality results and adding skip connection to overcome 

these, results in weakened attribute manipulation. For this, Ming et al. [39] proposed STGAN 

using selective transfer manipulation that incorporates specific target units into the encoder-

decoder model, changing target face attributes. While manipulating, Guim et al. [24] use latent 

space and conditional attribute representation, which helps regenerate the image by modifying 

the required attribute. Some other methods [40] [41] which has been proposed recently which 

manipulates the style of an image using StyleGAN [12]  latent space. 

2.1.5 Entire Image Synthesis(EIS) 
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Original Age Eyeglasses Gender Pose 

Entire non-existent images with high realism created by the powerful GANs. ProGAN [11], 

StyleGAN1 [12], and have leveraged the power of GANs to create highly realistic synthetic 

high-resolution images. Terro et al. [11] proposed the ProGAN methodology, which allows 

generating high-resolution images progressively by adding the number of layers gradually with 

the training. They started with a low-resolution image and started growing the layers of 

generator and discriminator with a resolution of the image. The image generated is of high –

quality, but at times, the image generated is far from being real. Another method, StyleGAN1 

[12] which interpolates the various features such as pose and human identity by disentangling 

the high-level attributes from the stochastic variation(like freckles, hair) of the generated image 

in an unsupervised setting. The method enables intuitive, scale-specific control of the synthesis. 

However, they found several typical artifacts of StyleGAN. To improve the model, they 

proposed StyleGAN2 [42] in which they redesigned the architecture with the normalization 

used in the generator and adapted the progressive GAN approach by regularizing the mapping 

of the generator from the latent code to images. Most methods have a hard time finding the 

trade-off between fidelity and the variety of generated samples (Figure 2.4). 

F
u

ll
 I

m
ag

e 

S
y

n
th

es
is

 [
4
2

] 

 

A
tt

ri
b

u
te

 

M
an

ip
u

la
ti

o
n

 [
4

3
]  

Id
en

ti
ty

 S
w

ap
 [

4
4

] 

 

L
ip

-s
y
n

ci
n
g

 [
4
5

] 

 

Source Target Result Source    Target Result 

Input Video Input Audio Output video(synced) 



16 

 

 

B
o

d
y
 P

u
p

p
et

ry
 

(R
ee

n
ac

tm
en

t)
 

 

Figure 2.4 Types of visual deepfake manipulation 

2.2 Deepfake Detection 

There is an armed race going on between manipulators and the detector; the detector used some 

clue to find the detection, the manipulator would try to diffuse it next time to make it detection-

proof; and the race goes on and on between them. Generalization of the deepfake technique, 

robustness against various post-processing operations and interpretability of the detection 

results are three main critical factors for a detector to be deployed in the wild [46].  

Visual deepfake and audio deepfake these are the two different media for which different 

detection algorithm has been designed. Based on the clues/traces of feature representation, 

these two categories has been divided further, which is shown in the Figure 2.5. 

 

Figure 2.5: Classification of deepfake detection methods based on feature representation 

2.2.1  Deepfake Visual detection 

Manipulated or manufactured samples have certain peculiarity in spatial, temporal or frequency 

domain representation, which the different detection algorithm exploits. The subsequent 

sections will discuss the various detection techniques along different domains. 
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2.2.2 Spatial domain based detection 

For manipulated samples, the corresponding pixel distribution gets changed, which is reflected 

in the spatial domain properties. This section will discuss various types of spatial domain-based 

detection methods. 

2.2.2.1 Forensics based detection 

Generation methods leave certain clues or traces that change the distribution of the samples, 

which is exploited by the detection methods by analyzing latent features and patterns. Li et al. 

[47] analyses the subtle distribution of the image statistics in the chrominance components of 

YCbCr and HSV color spaces, especially in the residual domain for the unseen DNG images. 

Chen et al. [48] use a multi-domain architecture where the features from the RGB domain and 

the noise vectors(gets added by the external mechanism) are fused to obtain richer robust 

features. 

There are various variants of Forensics features, which are mentioned below: 

 GAN-Artifacts based artifacts: The imperfect design of the GANs leaves some 

traceable clues, which various researchers use for fake detection investigations[1]. 

McCloskey et al. [49] utilized the prior knowledge about how the color is treated in 

GAN and camera models and used this knowledge as a cue to design the network. 

Methods perform greatly for the existing GAN model; however, the model's 

performance is unclear for new advanced GANs. Yu et al. [50] identify a unique GAN 

stable fingerprint that persists across different frequencies and patches of the generated 

image, extracted by a neural network. However, the method fails for post-processing 

operations like compression, blur etc. 

 PRNU Noise based detection: Photo response non-uniformity (PRNU) is a noise-like 

pattern in the digital image caused by the camera's light sensor. Koopman et al. [51] 

proposed a method where Co-relation scores are computed between every eight groups 

of PRNU pattern frames, which serve for deepfake video detection. However, their 

evaluation is limited to the small dataset. PRNU based are generally low-cost based 

methods and have a high generalization capability. 

2.2.2.2 Visual-Artifact based Detection 

The synthesized or manipulated faces would reveal inconsistencies in the appearance, 

especially the blending boundaries, landmarks points or the shape of the manipulated facial 

attributes. Even sometimes, the content of the face also seems anomalous to the rest of the 
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background. Li et al. [52] use the face warping artifact as a clue which is caused due to blending 

operation to match the configuration of the source face. Unfortunately, this affine warping 

operation leaves the artifact due to resolution inconsistency between the face and the 

surrounding area. The method is more robust than other existing methods, but there is still room 

for improvement. 

Visual-Artifact based methods can achieve better generalization as they pay more attention 

directed to the specific artifacts. Li et al. [53] propose a generalized detector that uses face X-

ray, which also uses blending boundaries for detection purposes. However, such a method fails 

for entirely synthetic images, indicating the blending operation's absence. Also, adversarial 

samples can be designed to bypass the detection mechanism by curbing such manipulation 

detection. Matern et al. [54]  also exploited the visual artifacts like the difference in eye color, 

inconsistent illumination, missing teeth areas, etc.; once the algorithm extracts the artifacts, 

they are further used for classification. These methods can localize the manipulation easily, as 

their detection is based on specific localized artifacts. Some other methods ( [55] [56] [57] 

[58]) also have been proposed which looks for visual clues for deepfake detection. 

2.2.3 Temporal domain based detection 

Temporal information is the sequential info that is relatable, coherent and changes with time. 

Manipulated artifacts or traces could be revealed in the temporal domain in the form of 

flickering/jittering. The subsequent sections will discuss various methods that investigated the 

temporal domain to find such clues. 

2.2.3.1 Audio-Visual Inconsistency based detection 

For lip-sync methods, inconsistency between the mouth region (visual) and audio is one 

distinguishing factor for deepfake detection. Agarwal et al. [59] use a CNN to detect 

inconsistent mouth features, i.e. shape of the mouth (visemes) are not aligned with spoken 

words (phenomes) in a manipulated video. They focused on the visemes related to the words 

M, B and P, in which the mouth almost gets completely closed. However, their method is 

specific to the videos of Barack Obama. Mittal et al. [60] simultaneously exploited visual and 

audio modalities and perceived the affective cues from these two modalities to detect any 

alteration. This exploration between these two modalities uses the Siamese network, where 

triplet loss is used to measure the similarity. Sometimes, this method cannot detect any 

manipulation if there is a similarity between these perceived affective cues. Moreover, this 

method is limited to a single person in a video. Chugh et al. [61] proposed a method to calculate 

disharmony score between visual and audio modality and termed it Modality Dissonance 
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Score(MDS). This dissimilarity score is calculated chunk-wise per video segment, and 

contrastive loss is employed to calculate such inter-frame modality similarity. However, these 

methods rarely look into visual consistencies, which could also be faked. That is why it remains 

unclear whether such methods can be deployed in real-world scenarios where one may 

encounter any manipulation and undergo different post-processing operations. 

2.2.3.2 Temporal Inconsistency based methods (TI) 

In the manipulation of video frames, correlation structures between the frames are sometimes 

destroyed, reflecting in various forms like video flickering or shifting of the facial content 

[62][2], [3], [4]. Usually, sequence models like RNNs and their variants get employed to find 

such inconsistencies between the frames. Hosier et al. [63] use video speed manipulation as a 

temporal feature for detection, the encoding used for each frame gives an idea about the number 

of deleted and added frames. Methods that use frame-level artifacts and temporal features for 

detection perform better than those that focus on either of the two. Guera et al. [3] propose a 

temporal-aware CNN-LSTM framework, which exploits the frame-level features along with 

temporal inconsistency between frames. Temporal inconsistency is introduced by the auto-

encoder (used for face swapping), which focuses on the face-swapping process unaware of 

inconsistency introduced by the process, which results in anomaly serving as crucial evidence 

for detection.  

An optical flow mechanism has been used to estimate the per-pixel motion behavior of the 

adjacent frames. Amerini et al. [64] used a pre-trained model (trained on RGB images) with an 

optical flow mechanism to capture the dissimilarity between frames. Although the methods 

have reported very few results. Caldelli et al. [65] also proposed optical flow-based CNNs that 

exploits the motion dissimilarities in the temporal nature of the video sequences using optical 

flow fields. Again the approach is limited to the specific dataset. These techniques tend to 

perform better as they are independent of the specific type of manipulation. However, when 

these methods are used in conjunction with spatial methods, the overall performance improves. 

2.2.3.3 Physiological/Biological Signals based methods (PBS) 

In deepfake videos, inconsistencies are exhibited either at the physiological level (like 

inconsistencies in eye blinking pattern, head poses, blending boundaries) or biological level 

(inconsistencies in a heartbeat), which is exploited for deepfake video detection. Methods can 

generate deepfakes with high realism, but they cannot replicate every reasonable behavior, 

which leads to their inconsistencies. Such inconsistencies at the physical level may or may not 

be visible from the eyes, hence needs some landmark detector that captures the coordinates of 
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the desired location to be used further for classification. Yang et al. [66] use a landmark detector 

for 3D head poses to calculate their estimated positions, exploited by the SVM classifier. Their 

performance degrades to blurry images. Li et al. [67] proposed a method based on eye blinking 

patterns, which is not well preserved in the synthesized videos. Synthesized videos usually 

have less frequency of eye blinking, which leads to their detection. The technique can exploit 

abnormalities in the normal functioning of an organ for deepfake video detection. These signals 

are preserved neither spatially nor temporally, and different architecture exploited them for 

detection. Qi et al. [68] use heartbeat rhythms as a clue for the detection of deepfake videos. 

Visual photo plethysmography (PPG) monitors the heartbeat rhythms and captures the 

abnormalities of the deepfake videos. However, the model does not generalize well to the 

unseen dataset. Ciftci et al. [69] proposed FakeCatcher methods that use biological signals such 

as heart rate to exploit the authenticity of a video. They have extracted signals on a pairwise 

basis and transform them to a different domain (like frequency, time, etc.) and use this 

transformation further for classification.  

Although the methods based on these features perform well on the various datasets, such 

signals get seriously affected by the video's quality and a limited application for detection 

mechanism based on such signals [62]. [70] [71] some other methods that looks for biological 

methods. 

2.2.4 Spatial and/or Temporal domain based detection 

Few detection methods could leverage both the spatial and the temporal domain or either of 

the two. However, features fetched along both domains capture the broader range of 

manipulation traces which would eventually help in a better detection mechanism. The next 

section will discuss such detection methods. 

2.2.4.1 General DNN based detection 

Instead of focusing on the specific artifacts, some researchers let the network decide which 

latent features to analyze and learn the mapping accordingly. Deep neural networks drive such 

methods. Khalid et al. [72] uses variational autoencoder (VAE) to train real images, classify 

real images, and treat others as anomalies. Generalization on the unseen dataset has been a 

bigger issue for such methods, as they learn the specific type of manipulation on the data they 

are trained upon and hence, tend to overfit and perform poorly on the other type of manipulation 

in the wild. Although, few authors can develop a generalizable detector. Xuan et al. [73] also 

proposed a generalized GAN images forensics detector that preprocesses the images with 
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Gaussian blur and noise operation to enhance the high-frequency pixel noise to allow the CNN 

model to learn intrinsic discriminative features. 

Nowadays, pre-trained models are used heavily to use the learned weights of similar problems 

to reduce the time complexity of the network. ResNet, XceptionNet, Densenet, AlexNet, 

Inception model is the recent state-of-the-art models generally used as a pre-trained model. 

Zhou et al. [74] used GoogleNet Inception V3 pre-trained model in one of the branches of the 

architecture to detect the tampered artifacts evidence and noise inconsistency. Jeon et al. [75] 

proposed a framework for neural talking head detection using a pre-trained AlexNet model to 

extract features even from a highly unbalanced dataset and then classify them further using 

Siamese network-based classifier.  

DNN models could also be used for sequence-based problems where data in audio or video 

frames pass through the model to analyze and learn the intrinsic pattern. Recurrent Neural 

Networks and their variants LSTM and GRU are generally used for this purpose. Wu et al. [76] 

exploited temporal, spatial, and steganalysis features for deepfake video detection. The deep 

neural network extracts spatial features for the tampering artifacts like unregular shapes, color, 

etc. Steganalysis features are extracted by putting constraints on the Convolution filter for 

underlying abnormal statistics of the pixels. The temporal inconsistencies are extracted using 

RNNs.This method beats the current state of the art methods on the FF++ dataset.  

DNN based methods are very good at learning and extracting the intrinsic characteristics along 

several domains. Such methods tend to overfit the specific datasets they are trained upon, but 

they lack generalizability to other datasets. Also, the existing methods fail in proving their 

effectiveness against the adversarial noise attacks [46]. Also, the models do not have the 

interpretation of why their method has proved something fake due to the black-box nature of 

the model. Some other methods[5], [6] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] 

[88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [73] have extracted 

discriminative features using DNN either implicitly or explicitly to perform deepfake detection.  

Several researchers have worked on the crucial problem of generalization for the deepfake 

detector [103] [104] [105] [106] [107][7], but it is still far away from the desired solution. The 

generalization model aims to identify commonalities between different types of manipulation. 

That was the focus of research [108] [109][8], [9]. Yan et al. [108] provide a disentanglement 

structure of architecture into three categories: method-specific forgery, forgery irrelevant and 

common forgery features and then a multi-task approach is followed for the disentanglement 

of method -specific and common forgery traits that allow for the binary classification of the 

results. Yu et al. [109] assess the authenticity of a module by using U-Net architecture and an 
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independently trained particular forgery feature extractor. However, the technique presupposes 

the existence of comparable forging traces, which the adversary may have hidden or covered 

up. A code identification method was created by Li et al. [110] that captures the accurate space 

distribution of real and fake images using a codebook. The model works well with various 

compressed and cross-dataset images, but its performance with additional and wild datasets is 

still unknown. For a detector to function in various adversarial circumstances, one significant 

difficulty that needs to be investigated is the detector's generalizability. 

2.2.5 Frequency domain based detection 

The frequency-domain represents the change of pixel distributions along the different axis[10]. 

Real images have a certain frequency distribution; when some generative model does the 

manipulation, such difference could be revealed in the frequency domain. Frank et al. [111] 

explored the frequency spectrum of the GAN-generated images and found that images exhibit 

severe artifacts consistent across different resolution images, which is mostly caused by the up-

sampling process of the GANs. Furthermore, the model is robust against various kinds of image 

perturbation like blurring, cropping, compression and noise addition. Durall et al. [112] observe 

the behavior of the real and fake images in the classical frequency domain, use such behavior 

to be detected by the classifier. However, the model has low accuracy on the low-resolution 

images. Masi et al. [113] used a two-stream network to exploit frequency domain information 

in one of the streams using the Laplacian of Gaussian(LoG) operator. The LoG acts as a band-

pass filter to suppress the image content and amplify the artifacts. Nevertheless, the method 

struggles to detect real-world data samples. 

2.3 Research Gaps 

Based on the literature presented in above section, various research gaps has been identified: 

 Existing methods perform well on the same type of manipulation (seen during the 

training and testing phase) but their performance degrades on the other kinds of 

manipulations, which affects their generalization capabilities. 

 The detection capabilities of the methods are satisfactory, but they do not localize the 

manipulation very well. 

 Several deepfake datasets lack the diversity of video manipulation, such as lip-sync 

face reenactment. 

 Detection algorithms uses discriminative features for classification which are either 

learned by hand-engineered mechanism or deep learning methods. Each has some 
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limitation for learning discriminative features, which could be overcome, if they are 

used in conjunction in a model to learn features which may give better performance. 

2.4 Research Objectives 

Based on the identified research gaps, the following objectives have been proposed: 

1) To develop a novel and effective generalized framework which can detect and perform 

well over unseen and different kinds of deepfake manipulations. 

2) To propose a novel deepfake dataset with a large variety of video manipulation types 

and a comparative analysis of several state-of-the-art methods on the proposed dataset. 

3) To develop a new framework for the localization of deepfake manipulation. 

2.5 Research Contributions 

This research thesis has made the following scientific contributions: 

 Proposed a novel deepfake detection model called Tex-ViT utilizes gram-matrices as 

texture feature descriptors and incorporates a cross-attention mechanism from the vision 

transformer. The model integrates conventional ResNet characteristics with a texture 

module that functions simultaneously on segments of ResNet prior to each down-sampling 

process. This module functions as an input to the dual branch of the cross-attention vision 

transformer. The model's generalizability is demonstrated by experimentation conducted 

on several categories of FF++ and GAN dataset images in cross-domain contexts. The 

Celeb-DF, FF++, and DFDCPreview datasets were utilized for conducting experiments, 

employing several post-processing techniques like blurring, noise addition, and 

compression. The results highlighted the robustness of the models in many scenarios.  

 Proposed Tex-Net is an alternative approach to detect deepfakes. It uses a combination of 

Gram matrices and Local Binary patterns to represent texture information. The rest of the 

architecture of Tex-Net is similar to that of Tex-ViT. The global texture is calculated 

during each down sampling operation of ResNet, and then, layer attributes are merged at 

many semantic levels. These properties consistently combine before being input into the 

dual-branch cross-attention-based vision transformer for classification. The model's 

ability to generalize was proved by conducting experiments on several categories of FF++ 

and GAN dataset images in a cross-manipulation context. Experiments were conducted on 

data samples from FF++, DFDCPreview, and Celeb-Df, which underwent different post-

processing techniques such as blurring, noise addition, and compression. These 

experiments demonstrated the model's resilience. 
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 Additionally, a Div-DF dataset was introduced, which includes a wide range of video 

modifications such as face swapping, facial reenactment, and lip-syncing. The dataset has 

150 genuine videos showcasing a diverse range of celebrities from various domains, along 

with 250 deepfake videos. The collection of deepfake videos comprises 100 videos 

featuring face-swapping, 100 videos showcasing facial reenactment, and 50 videos 

demonstrating lip-syncing. Deepfake videos are produced by employing sophisticated 

methods like the Face-Swap GAN (FSGAN) and the Wav2Lip approach. 

 A novel deepfake video recognition model is provided, leveraging the pretrained Xception 

and LSTM models to enhance its sophistication. Xception utilizes depthwise separable 

convolution to capture the underlying spatial anomalies, while LSTM captures the 

variations among the altered sequences. The hybrid model assembly allows for the 

gathering of information regarding spatial and temporal distortions in several dimensions, 

making it a potent tool for detecting deepfakes. An assessment of the effectiveness of the 

suggested model and other advanced models on our Div-Df dataset demonstrates the 

superiority of the proposed model.  

 A unique model is developed for localizing deepfake manipulation. The model has a dual-

branch architecture that combines manually crafted feature noise with Convolutional 

Neural Networks (CNNs) as an Encoder-decoder (ED) system, bolstered by the attention 

mechanism. This model employs a dual-branch methodology, where one branch integrates 

noise characteristics and the other branch integrates RGB features. These characteristics 

are subsequently inputted into an ED architecture for the purpose of semantic learning. In 

addition, skip links are incorporated to maintain spatial information. A comprehensive 

investigation was carried out on the shallowfakes dataset, encompassing CASIA, 

COVERAGE, COLUMBIA, and NIST16, along with the deepfake dataset 

Faceforensics++ (FF++). The evaluation results demonstrate the model's excellent feature 

extraction capabilities.  

The subsequent research studies serve as the foundation for this chapter. 

1. D. Dagar and D. K. Vishwakarma, “A literature review and perspectives in deepfakes: 

generation, detection and applications” International Journal of Multimedia 

Information Retrieval, vol. 11, June. 2022, doi: https://doi.org/10.1007/s13735-022-

00241-w.  

https://doi.org/10.1007/s13735-022-00241-w
https://doi.org/10.1007/s13735-022-00241-w
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Chapter 3: Deepfake Detection in Images 

3.1 Scope of this Chapter 

This chapter focuses on the issue of deepfake detection in cross-domain settings where training 

and testing comes from different distribution. In order to achieve this objective, two innovative 

deep-learning architectures based on the texture feature and cross-attention mechanism are 

proposed. The two models differ only in the way texture computation is done. First architecture 

known as Tex-ViT, model collaborates conventional ResNet features with a texture module 

that runs parallel acts on parts of ResNet before every down-sampling operation and serves as 

an input to the dual branch of the cross-attention vision transformer. The architecture uses 

Gram matrices, which calculates the correlation between the features maps, for the computation 

of the texture features. The second architecture, Tex-Net uses the combination of Gram 

matrices and Local binary patterns as a texture descriptor and the rest of the architecture is 

same as of the first architecture. Experimentation done on the public deepfake dataset and GAN 

dataset images in the cross-domain settings and hence the model beat the score of various state-

of-the-art models, proving texture as a feature that persist in various kinds of manipulations. 

Experimentation also done on the in-domain settings for post-processing operation like 

blurring, addition of noise and compression and once again the model established superiority 

over other models.  

3.2 Tex-ViT: A Generalizable, Robust, Texture-based dual-branch cross-

attention deepfake detector 

3.2.1 Abstract 

Deepfakes, which employ Generative Adversarial Networks (GANs) to produce highly 

realistic facial modification, are widely regarded as the prevailing method. Traditional 

Convolutional Neural Networks (CNNs) have been able to identify bogus media, but they 

struggle to perform well on different datasets and are vulnerable to adversarial attacks due to 

their lack of robustness. Vision transformers have demonstrated potential in the realm of image 

classification problems, but they require enough training data. Motivated by these limitations, 

this publication introduces Tex-ViT (Texture-Vision Transformer), which enhances CNN 

features by combining ResNet (Residual Networks) with a vision transformer. The model 

combines traditional ResNet features with a texture module that operates in parallel on sections 

of ResNet before each down-sampling operation. The texture module then serves as an input 

to the dual branch of the cross-attention vision transformer. It specifically focuses on improving 
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the global texture module, which extracts feature map correlation. Empirical analysis reveals 

that fake images exhibit smooth textures that do not remain consistent over long distances in 

manipulations. Experiments were performed on different categories of FaceForensics++ 

(FF++), such as Deepfakes (DF), Face2Face (f2f), Faceswap (FS), and Neural Texture (NT), 

together with other types of GAN datasets in cross-domain scenarios. Furthermore,  

experiments also conducted on FF++, DFDCPreview, and Celeb-DF dataset underwent several 

post-processing situations, such as blurring, compression, and noise. The model surpassed the 

most advanced models in terms of generalization, achieving a 98% accuracy in cross-domain 

scenarios. This demonstrates its ability to learn the shared distinguishing textural 

characteristics in the manipulated samples. These experiments provide evidence that the 

proposed model is capable of being applied to various situations and is resistant to many post-

processing procedures. 

3.2.2  Empirical Investigation for texture as a feature 

Texture refers to the appearance of the surface characterized by the shape, size, density, and 

proportionate arrangement of its elementary parts. In computer vision terminology, it is the 

repeated occurrence of the grey pixel level in the space [114]. An empirical analysis of the fake 

and real images is done to reveal the differences between textural characteristics. Texturized 

images are generated for accurate and fake images using a texturized generating algorithm, and 

it can be seen from that fake images lack texturized details compared to authentic images. This 

could be because forming fake tampered data samples usually involves three steps, i.e., pre-

processing, face generation, and post-processing operation. Post-processing operations are 

generally done to hide such texture defects; as a result, counterfeit images tend to have a 

smoother surface and fewer texture characteristics [13]. Also, looking more closely at Figure 

3.2, one finds that manipulated images come from smoother surfaces. Hence, the lack of a 

texturized surface would be a potential clue for fake image detection. 
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Figure 3.1 Real and fake Images are shown with their texturized images. Texturized images are generated from 

the images using the texture-based algorithm. 

 
Figure 3.2 Fake images on a closer look showing that fake images tend to have smoother surfaces 

3.2.3 Proposed Methodology 

The model comprises two components(Figure 3.3): texture Architecture and dual-branches 

cross-attention vision transformer. Texture architecture consists of two branches which serve 

as inputs to the parallel branches of the cross-attention vision transformer. 
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Figure 3.3: Proposed model consisting of texture module and ResNet serving as an input to dual-branch vision 

transformer with cross-attention mechanism 

3.2.3.1 Texture Architecture 

Texture architecture constitutes resnet-18 architecture as a backbone, and the texture block is 

computed at the input and before every down-sampling operation incorporating global texture 

at various levels. The texture block consists of convolutional layers and gram matrices. Gram 

matrices are used to extract texture correlation, while convolution layers is then applied to 
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enhance the representation, and pooling layers are used to align the computed features with the 

ResNet backbone features for the next level. The global Texture module is computed at 

multiple semantic levels before to each ResNet down sampling operation to model long-range 

texture features [115]. The main backbone of ResNet-18 learns the conventional features 

representation of the input images at various levels with a skip connection. It improves the 

gradient flow between the layers of the multi-scale features while the Texture block learns the 

global textures' semantic information at various scales. 

Gram matrices as Texture features: Within a model, the texture is represented by the 

correlations among the features map responses in various model layers [116]. The Gram matrix 

quantifies the correlation between different feature map responses over different layers. These 

correlations, which are determined up to a constant factor, are represented by the gram 

matrices. Gram matrices 𝐺𝑙𝜖 𝑅𝑁𝑙×𝑁𝑙 computes linear dependence between the layers: 

𝐺𝑖𝑗
𝑙 = ∑ 𝐹𝑖𝑘

𝑙 𝐹𝑗𝑘
𝑙  

𝑘

 (3.1) 

Above equation represents the gram matrix 𝐺𝑖𝑗
𝑙  which is the inner product between the ith and 

jth feature of layer l, where 𝐹𝑙 represents the lth feature map vectorized representation and 𝐹𝑖𝑘
𝑙  

represents the kth activation of the ith filter at position k in layer l. A texturized model, as 

defined, does not consider spatial information and is distinguished by the correlations among 

the feature maps. The texture is generated by computing gram matrices, which are calculated 

in the model prior to each downsampling operation of the ResNet. These matrices are then 

concatenated and used as input to the cross-attention mechanism of the vision transformer. 

3.2.3.2 Dual branch Cross-Attention Vision Transformer 

The vision transformer, free of inductive biases, is known for capturing long-range, global 

relationships between the pixels, courtesy of their self-attention mechanism and capacity for 

holding semantic information. The proposed architecture uses two parallel branches, and 

patches input into these branches are comparable in scale. The model takes the texture 

architecture's input, and then positional embedding is added into each patch, including the CLS 

token, to embed positional information into the model. Then, these tokens are passed through 

the stacked transformer encoder. Each transformer encoder contains a dual branch and is 

composed of Multi-headed self-attention(MSA) followed by the feed-forward Network(FFN) 

[117]. FFN includes two layers of the multi-layer perceptron, and the GELU non-linear layer 

is applied at the end of the first layers. Layer-Norm (LN) is used at the end of every block, with 
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residual skip-connection applied after every block. The input to the ӿ0 ViT and lth processing 

of the transformer encoder can be written as: 

ӿ0 = [ӿclass||ӿpatchE] + Epos       𝐸 ∈  𝑅𝑃2.𝐶 𝑥 𝐷 , 𝐸𝑝𝑜𝑠  ∈ 𝑅(𝑁+1) 𝑥 𝐷 (3.2) 

ẓ𝑙 =  ẓ𝑙−1 + 𝑀𝑆𝐴(𝐿𝑁(ӿ𝑙−1)),                    𝑙 = 1. … . . 𝐿 
(3.3) 

ӿ𝑙 =  ẓ𝑙 + 𝐹𝐹𝑁(𝐿𝑁(ẓ𝑙)),                           𝑙 =  1 … … . 𝐿        (3.4) 

where  is ӿ𝑐𝑙𝑠𝑒𝑚𝑏 ∈  R1×C , ӿ𝑝𝑎𝑡𝑐ℎ𝑒𝑚𝑏 ∈ RN×C ӿ𝑝𝑜𝑠𝑒𝑚𝑏 ∈ R(N+1)×C and 𝐸 are the cls, patch 

positional and embedding tokens, respectively(C, N and D are the embedding's dimension, the 

number of the tokens and the dimensions of the flattened tokens respectively). Afterwards, the 

CLS token of one branch, which has learned the abstract information, acts as a token query to 

interact with the patch tokens of the other branch through an attention mechanism resulting in 

multi-scale features. Similarly, the CLS token interacts with the patch tokens of the other 

branch. The cross-attention mechanism is represented in the subsequent equations where ӿ is 

the input to MSA(Multi-headed self-attention module: 

ӽ1 = [ӿ𝑐𝑙𝑠
1 ||ӿ𝑝𝑎𝑡𝑐ℎ

2 ]       ӿ1  ∈ 𝑡𝑜𝑘𝑒𝑛 𝐼𝑠𝑡𝑏𝑟𝑎𝑛𝑐ℎ,      ӿ2 ∈ 𝑡𝑜𝑘𝑒𝑛𝑠 𝐼𝐼𝑛𝑑  𝑏𝑟𝑎𝑛𝑐ℎ  (3.5) 

𝑞 = ӽ𝑐𝑙𝑠
1 𝑊𝑞 ,        [𝑘, 𝑣] =  ӽ1𝑊𝑘𝑣         𝑊𝑞, 𝑊𝑘𝑣 ∈  RD x 3Dh    (3.6) 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑞𝑘𝑇

√𝐷ℎ

  )                           𝐴 ∈  𝑅𝑁𝑥𝑁 
(3.7) 

𝑆𝐴(ӽ1) = 𝐴𝑣 (3.8) 

𝑀𝑆𝐴(ӽ1) = [𝑆𝐴1(ӽ1); 𝑆𝐴2(ӽ1); … . . ; 𝑆𝐴𝑘(ӽ1)]𝑊𝑚𝑠𝑎            𝑊𝑚𝑠𝑎 ∈  𝑅𝑘.𝐷ℎ𝑥𝐷 (3.9) 

ý𝑐𝑙𝑠
1 =  ӿ𝑐𝑙𝑠

1 + 𝑀𝑆𝐴(𝐿𝑁([ӿ𝑐𝑙𝑠
1 ||ӿ𝑝𝑎𝑡𝑐ℎ

2 ])) (3.10) 

Where q, k, and v are the query, key, and value, respectively, n+1 is the number of patches, d 

is the model dimension, k is the number of heads, and Dh(d/k) is the head dimension. Wq, Wkv, 

and Wmsa are the learnable parameters for the query, key, value, and MSA, respectively. 

Following fusion with other branch tokens, the CLS token at the next transformer encoder 

engages with its patch tokens once more. Here, it imparts knowledge from the other branch to 

its patch tokens, enhancing each patch token's representation. Then, these tokens are passed 

through the Layer Norm to MLP(Multi-Layer Perceptron) for parameter learning: 

ÿ1 =  ý𝑐𝑙𝑠
1 + ӿ𝑝𝑎𝑡𝑐ℎ

1  (3.11) 
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ž = 𝑀𝐿𝑃(𝐿𝑁(ÿ1)) (3.12) 

Finally, these classification tokens are concatenated for the final predictions. 

Algorithms 1: Tex-ViT for Deepfake classification 

Parameter Initialisation: 

 Input: I = {I1, I2,…..In} be the set of images, and L = {0, 1} be the set of  labels, 0 

being the real and 1 being the deepfake image 

 n is the size of the dataset 

 Split I into three subsets for 70% training, 15% validation, and 15% testing. 

1: For 1 to 100 epochs, do 

2:  Input image I into ResNet for feature extraction. 

3:  Compute the texture using texture block before every down sampling operation in 

ResNet and keep concatenating them. 

4:  ResNet CNNs and texture features calculated at step 1 and step 2 are fed into the 

dual branch of the vision transformer. 

5:  Split the features into patches (fixed sizes) and flatten them at each branch. 

6:  With these image patches flattened, create linear embeddings in lower dimensions. 

7:  Include positional embeddings with CLS token. 

8:  Feed the sequence into the transformer encoder at each branch. 

9:  Create tokens by querying the CLS token of the Ist branch with patch tokens of 

another branch and vice-versa. 

10:  Concatenate the tokens of both branches for classification. 

11:  Train the model end-to-end and update weights using the Adam optimizer. 

12:  Evaluate the validation set and save the weights of the model that performs well. 

13: end for 

14: Load the weights of the model saved at step 11. 

15: Evaluate the performance on the test set 

3.2.4 Experiments 

This section will detail the choice of training hyper-parameters, different datasets, the choice 

of face extractor, and the different experiment scenarios conducted. 
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3.2.4.1 Experimental Settings 

The starting learning rate is set to 0.01. Adam optimizer is used to update the model's 

parameters, as it is being widely used and took less time for parameter updation in my case. 

The batch size is taken as 64, due to the memory constraints at my computer systems. Each 

experiment is run for 100 epochs, as the model performance hits the saturation point after this 

specific number of epochs. The experiments are run for 24GB NVIDIA TITAN RTX GPUs. 

3.2.4.2 Dataset Pre-Processing 

Three deepfake datasets are used to evaluate the models: Celeb-DF, DFDC-Preview, and 

Faceforensics++, as these are being widely used and also the state-of-the-art dataset in the 

current scenarios. These datasets consist of short facial videos from which the frames are 

extracted utilizing the RetinaFaceResNet50 face extractor, as the RetinaFaceResNet50 face 

extractor has a lesser failure rate than MTCNN. One hundred frames are extracted from each 

video. For a DFDC and Celeb-DF dataset, most faces have aspect ratios of [1, 1.5] and heights 

between [151, 200] pixels. Lastly, an FF++ has a size of [151, 200] and an aspect ratio of 

[1,1.5](Table 3.1). Different GAN images are also used to evaluate the model. Fake images: 

ProGAN and StyleGAN images and real image datasets: CelebA-HQ, CelebA, and FFHQ are 

downloaded from their respective repositories. StarGAN and STGAN images are generated by 

executing the code from their GitHub repositories. 

 Table 3.1 Details for the training, validation, and testing dataset with their resolutions 

Dataset Training Set Validation set Testing set 
Image 

Resolution 

FF++(DeepFakes) 
8k real, 8k fake 

image frames. 

2k real, 2k fake 

image frames. 

2k real, 2k fake 

image frames. 
128x128 

FF++(face2face) 
8k real, 8k fake 

image frames. 

2k real, 2k fake 

image frames. 

2k real, 2k fake 

image frames. 
128x128 

FF++(Faceswap) 
8k real, 8k fake 

image frames. 

2k real, 2k fake 

image frames. 

2k real, 2k fake 

image frames. 
128x128 

FF++(Neural 

Texture) 

8k real, 8k fake 

image frames. 

2k real, 2k fake 

image frames. 

2k real, 2k fake 

image frames. 
128x128 

DFDCPreview 
10k real, 10k fake 

image frames. 

1.5k real, 1.5k fake 

image frames. 

1.5k real, 1.5k fake 

image frames. 
128x128 

Celeb-DF 
10k real, 10k fake 

image frames. 

8k real, 8k fake 

image frames. 

8k real, 8k fake 

image frames. 
128x128 

CelebA-HQ & 

ProGAN 

10k(CelebA-HQ) 

& 10k(ProGAN) 

1.5k(CelebA-HQ) 

& 1.5k(ProGAN) 

1.5k(CelebA-HQ) 

& 1.5k(ProGAN) 
1024x1024 
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CelebA-HQ& 

StyleGAN 

10k(CelebA-HQ) 

& 10k(StyleGAN) 

1.5k(CelebA-HQ) 

& 1.5k(StyleGAN) 

1.5k(CelebA-HQ) 

& 1.5k(StyleGAN) 
1024x1024 

FFHQ and StyleGAN 
10k(FFHQ) & 

10k(StyleGAN) 

1.5k(FFHQ) & 

1.5k(StyleGAN) 

1.5k(FFHQ) & 

1.5k(StyleGAN) 
1024x1024 

CelebA & StarGAN 
10k(CelebA) & 

10k(StarGAN) 

1.5k(CelebA) & 

1.5k(StarGAN) 

1.5k(CelebA) & 

1.5k(StarGAN) 
128x128 

CelebA & STGAN 
10k(CelebA) & 

10k(StarGAN) 

1.5k(CelebA) & 

1.5k(StarGAN) 

1.5k(CelebA) & 

1.5k(StarGAN) 
128x128 

3.2.4.3 Data Augmentation and Scaling 

Usually, a vision transformer needs a lot of data for training to perform at par with the CNN 

model, as shown by the original ViT model [118]. However, with the rich set of careful data-

augmentation techniques, DeiT [119] has shown promising results with fewer data and 

comparable performance with the CNN model. For the proposed model, various data-

augmentation techniques have been used, which include rand augmentation [120], cut mix 

[121], and mixup [122], along with the random-erasing [123] and drop path regularisation 

model techniques to improve the overall results of the classifications. 

3.2.4.4 Experiments on the cross-manipulation settings for the 

Faceforensics++ dataset 

Experimentation has been performed on the various categories of Faceforensics++ [124]. The 

model is trained on one class of FF++ and tested on the same as on other varieties of FF++. 

Weights of the models that perform well on the validation are saved for evaluation on the test 

dataset. Even though many state-of-the-art models have been introduced recently, it is still 

difficult to compare them fairly. This is partially because there is a dearth of publicly available 

codes for the models and training procedures that are unavailable to the research community. 

Consequently, we advocate for the community to embrace open-source software and for the 

generation strategies of large-scale datasets to be evaluated independently of the model's 

success. These kinds of actions are essential to maintaining equity and encouraging further 

developments in this area. For the comparison, four models are taken into consideration:  

a) MesoInception-4 model [125]. 

b) Capsule Network [97]. 

c) Combining Vision Transformers and Efficient Net(E-ViT) [126]. 

d) UCF [127]. 

e) IID [128]. 

f) SIA[21]. 
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g) UIA[22]. 

Code for these models has been taken from their GitHub repository and customized according 

to the dataset, and more evaluation metrics have been added for comprehensive evaluation. 

These models have been trained on one category of manipulation and tested on other categories 

of manipulation of FF++. These experiments are necessary to test the performance of the 

models against various manipulations, which is necessary to validate the detector's 

generalization abilities. 

Table 3.2 represents the score of the various models when trained on the DeepFakes category 

and tested on the various categories of the FF++. Various models score very well for the same 

type of manipulation, and few even score perfectly, or it can be said that they are overfitting. 

These overfitted models' performance degraded heavily when asked to classify other categories 

of FF++. MesoNet and CapsuleNet, which are considered the most advanced models for 

detecting forgery, get an accuracy score of approximately 50% when it comes to identifying 

manipulated images in the FF++ dataset. This is due to their limited ability to learn just 

traditional features from convolutional neural networks (CNN), which is insufficient for 

effectively detecting cross-manipulation scenarios. Among the latest techniques, the Uia and 

Ucf approaches, which are renowned for identifying shared characteristics among different 

types of manipulation, do not meet the necessary criteria for an effective deepfake detector that 

can be applied universally. Our model outperforms the other models, with an accuracy of 72%, 

specifically for the DF category of the dataset. The majority of models struggle to accurately 

categorize the face-swap category in FF++, and a small number of models performed below 

50% accuracy. Our model's performance demonstrates that texture is a consistent characteristic 

that remains present across different types of facial alterations. 

Table 3.3 represents the scores for the models trained on the face2face categories and tested on 

the other categories of the FF++ dataset. Once again, the different models excessively suit the 

face2face category, and their effectiveness significantly declines when applied to other 

categories of manipulation. The CapsuleNet approach exhibits the poorest performance among 

all methods for cross-manipulation. When trained on the face2face category, all models 

perform significantly better than in the previous scenarios in cross-manipulation settings. This 

is likely because face2face involves facial re-enactment techniques that use video frames to 

create a highly detailed reconstruction of the face, taking into account different lighting 

conditions and facial emotions. These inherent characteristics enable the models to learn the 

implicit features of the manipulation, which in turn aids in cross-manipulation scenarios. Uia 

is a highly effective model with an accuracy score of approximately 70%. This model utilizes 
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an unsupervised technique and incorporates an inconsistency-aware module to detect 

discrepancies among the patch-level data. The Sia approach has poor performance due to its 

heavy reliance on the attention mechanism, which can occasionally miss tiny abnormalities in 

the manipulations. Furthermore, several models exhibited subpar performance without any 

notable improvements. 

Conversely, Tex-ViT maintains the general characteristics, avoids overfitting when the training 

and testing data are from the same distribution, and generalizes well to alternative distribution 

categories. The manipulation achieved scores of 73% and 71% for the DF and NT categories, 

respectively. The FS category score for the manipulation has increased compared to the score 

in the preceding table. 

Table 3.4 represents the performance of the model when trained in the FS category and tested 

on additional variations of FF++. All of the models exhibit overfitting for the same category 

and demonstrate inadequate performance for the other manipulation categories. This is mostly 

attributed to the Faceswap construction technique, which utilizes facial landmark points to 

generate a 3D template. This template is then projected onto the target shape in order to 

minimize the disparity between the projected shape and the landmark points. The meticulous 

process, which involves precise shape mixing and color correction, poses a greater challenge 

for the detector to identify accurately. The Ucf and Uia model exhibits poor performance, with 

an accuracy score of approximately 50% when trained on the face swap manipulation. This 

highlights the fragility of the model under different circumstances. Sia has poor performance, 

although IID demonstrates slightly higher performance compared to previous models. This 

improvement can be attributed to the model's capability to learn both implicit and explicit 

characteristics. However, the overall performance still falls well short of the desired score. 

MesoNet and CapsuleNet exhibit substandard performance; however, the transformer-based 

model E-ViT demonstrates significantly superior performance owing to its hybrid model 

structure, which combines CNN and ViT to capture long-range dependencies. Our model 

encounters difficulty in accurately identifying this category of manipulation, with an accuracy 

score ranging from 62-67%. This is because the face swap-generating mechanism incorporates 

intricate generation techniques that our model finds challenging to detect. 

 Table 3.5 represents the final category of manipulation, wherein the model is trained using the 

NT category of manipulation and subsequently tested on the remaining categories. The models 

trained in this specific category of manipulation exhibit a commendable level of performance 

when compared to other categories of manipulation. The NT generation mechanism utilizes the 

texturing technique to understand the inherent characteristics of the data sample, enabling it to 
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excel in the categories of manipulation. All the models exhibit comparable performance when 

trained on the NT category of manipulation, indicating that texture is one of the invariant 

properties that assist in their ability to perform in diverse types of manipulation. The majority 

of the models achieved a score above 70% when tested on the DF category of manipulation. 

With the exception of Ucf and IID, all models in the face2face category perform well and even 

outperform the former category. However, the manipulation category (FS) consistently shows 

poor performance. Furthermore, the issue of overfitting persists in the NT category. Once 

again, our model outperforms the other models. The state-of-the-art (SoTA) model achieves an 

accuracy score of 77% in face-to-face manipulation and 76% in Deepfake manipulation 

categories, demonstrating higher performance compared to other models. 

So, other models score almost perfectly when training and testing come from the same 

distribution but fail to generalize well for other distributions. In contrast, based on the texture 

module and cross-attention mechanism, our model performs well in almost various 

manipulations, effectively proving that texture is a potential feature that persists among 

different manipulations. However, every performance suffers from the FS category of 

manipulation of FF++. Figure 3.4 represents the ROC curves of various models for images 

trained on face2face and testing on different types. 

3.2.4.5 Experiments on the cross-domain settings for GAN dataset images 

Extensive testing has been done on various GAN-generated images. Complete image synthesis, 

such as StyleGAN, ProGAN, and Attribute manipulation images of StarGAN and STGAN, has 

been considered for analysis. High-resolution authentic images are taken from the FFHQ, 

CelebA-HQ, while low-resolution images are taken from the CelebA. Five real and fake image 

datasets have been designed for the fair and comprehensive evaluation: CelebA-HQ ProGAN, 

CelebA-HQ StyleGAN, FFHQ StyleGAN, CelebA StarGAN, and CelebA STGAN. To 

compare the results of these datasets, four state-of-the-art models have been considered: 

a) Xception with depth-wise separable convolution(Xception-Net) [129]. 

b) CNN's generated images are easy to spot now(CNN-Net) [130]. 

c) Efficient-Net [131]. 

d) UCF [127]. 

e) IID [128]. 

f) SIA[21] 

g) UIA[22] 
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Once again, code has been extracted from the GitHub source and tailored to suit the dataset 

used for these models. Additionally, additional evaluation criteria have been incorporated to 

facilitate comparison evaluation. The model exhibits exceptional performance and surpasses 

the scores achieved by several state-of-the-art methodologies. Similarly, when it comes to 

FF++ models designed for cross-forgery, their current level of performance is still rather distant 

from the optimal score required for their practical implementation in real-world situations. 

Table 3.6 represents the score of these models on various datasets. It is evident that the scores 

of different models vary between datasets; they excel in one dataset but do poorly in another. 

It is evident that when the testing dataset contains both fake and actual images, models can 

promptly recognize them due to their training on these types of images, but they face difficulty 

in identifying the other class. For instance, in the initial row, a model that was trained on 

CelebA-HQ ProGAN and tested on CelebA-HQ StyleGAN, most models can accurately 

recognize the CelebA-HQ category, as indicated by the precision value. However, they struggle 

to correctly classify the other category, as indicated by their recall value. ProGAN and 

StyleGAN employ distinct modification techniques, leading to disparate feature spaces. 

Consequently, models trained in one category exhibit suboptimal performance on the other. 

There is a noticeable similarity between the CelebA-HQ and FFHQ real datasets in terms of 

their characteristics, as a model trained on one dataset can achieve good performance on the 

other. For instance, a model that has been trained using the CelebAHQ StyleGAN has strong 

performance when combined with the FFHQ StyleGAN. Among these scenarios, the IID model 

has performed exceptionally well. This is because the datasets used are completely synthetic, 

and the IID model is particularly adept at identifying implicit inconsistencies within the feature 

space. Tex-ViT consistently beats other models across a range of settings. The evidence 

indicates that the model acquires the typical distinguishing characteristics, including the overall 

texture that remains consistent despite different types of modification, whether it is generating 

a full image or altering various qualities. The recall metric score indicates that all the models 

struggle to identify the ProGAN images accurately.  Remarkably, nearly all the models 

awarded a flawless rating to the photos that were trained using StarGAN and assessed using 

STGAN, and vice versa. This could potentially elucidate the rationale behind the utilization of 

comparable counterfeiting techniques in their production. Figure 3.5 represents the ROC curves 

of various models for images trained and tested on different GAN image datasets. 
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3.2.4.6  Experiments on the in-domain settings for various post-processing 

operations of FF++, Celeb-DF, and DFDCPreview dataset 

One of the limitations of the different models is that they are not robust enough for various 

post-processing operations like blurring, compression, the addition of noise, scaling, 

translation, etc. [132]. To demonstrate the model's robustness, the primary post-processing 

operations on the test dataset are blurring, compression, and addition of noise. For blurring the 

images, Gaussian blur PyTorch transformation has been used with a kernel size of 7x7 and 

sigma 25; for the addition of noise, zero mean and standard deviation of 0.2 have been 

designed, and finally, for the compression, quality of the images has been degraded by 3x 

times(Figure 3.6). Models have been trained on the regular images but tested on the images 

undergoing various post-processing operations. Three primary deepfake datasets have been 

considered for evaluation. Again, four models have been used for the comparative assessment: 

a) MesoInception-4 model [125]. 

b) Capsule Network [97]. 

c) CNN's generated images are easy to spot now(CNN-Net) [130]. 

d) UCF [127]. 

e) IID [128]. 

f) SIA[21] 

g) UIA[22] 

Testing dataset does not undergo any post-processing operations. The first row of the table 

represents the results when the image has not undergone any processing operations; in that 

case, all the models have performed perfectly(Table 3.7). Without undergoing post-processing 

operations, every model in the FF++ dataset overfits and ultimately performs poorly for various 

post-processing activities. When comparing FF++ to DFDCPreview and Celeb-DF, FF++ 

models perform better. However, the score for the Celeb-DF dataset is lower, possibly because 

this dataset contains high-quality images that closely resemble genuine images, with constant 

lighting and texture, making it slightly more challenging. MesoNet has gotten the lowest 

amount compared to other competitive approaches, mostly due to its poor capacity to capture 

the traditional CNN features. The IID approach outperforms the other model, achieving a near-

perfect score for the DFDCPreview dataset. The model's capacity to concentrate on the 

inconsistent characteristics connected to identity makes it particularly useful for face-swapping 

manipulations. 

Testing dataset undergoes blurring operations: Here, the second row for each dataset 

represents the score for blurring operations. The performance has not degraded significantly 
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for the blurring operation, showing that the blurry images retain the manipulated artifacts of 

the non-blurry images. However, the images have been blurred to a significant extent. The 

performance of the models in the case of FF++ decreased by at least 12% when exposed to blur 

operations. For the DFDCPreview and Celeb-Df datasets, the performance showed a slight 

decline, around 3-6%, with a few exceptions for certain models. MesoNet exhibits a more 

pronounced decrease in performance for Celeb-DF and DFDCPreview because of their heavy 

reliance on traditional CNN capabilities. The IID model has seen a decline in performance, 

specifically for the FF++ dataset, but there is a slight reduction in performance for the other 

dataset. Sia and Uia exhibit superior resilience compared to other models when exposed to 

blurring operations. Other models are significantly impacted. Our model has improved its 

ability to withstand and recover from challenges, as indicated by a mere 1-2% decrease in 

performance for the DFDCPreview and Celeb-Df datasets. Moreover, almost 12% of the data 

samples continue to display discriminatory artifacts even after undergoing substantial blurring.  

Testing dataset undergoes compression: The quality of the photographs was reduced by treble 

as a consequence of the compression. Compressing samples for the DFDCPreview and Celeb-

DF datasets has a minimal effect on the models' performance, suggesting that the altered 

artifacts are not significantly affected by the reduction in size. The performance of models such 

as UCF, CNN-Net, Sia, and IID in the FF++ dataset has been significantly impacted, indicating 

that these models are not specifically designed for compression circumstances. Additionally, 

the dataset contains a variety of manipulations, which exacerbates the model's complication in 

comprehending the extensive distribution of features. The models' efficacy was minimally 

affected by the Celeb-DF dataset, while the DFDCPreview dataset had a slightly greater 

impact. Compression typically entails a reduction in the resolution of data sampling, which 

affects the smaller details and leads to distortions such as ringing, banding, blocking, and halo. 

The gradients in the smooth portions are significantly impaired by these distortions. Models 

that concentrate on specific artifacts encounter difficulties when confronted with a diverse 

array of intricate properties. Models that concentrate on a variety of artifacts at differing levels 

of detail are more likely to accurately classify intricate feature patterns. Our model prioritizes 

intricate attributes, commencing with the integration of conventional CNN features at multiple 

levels and texturing. It employs a cross-attention method to comprehend both global and local 

details by utilizing the capabilities of transformers. This enables the model to acquire nuanced, 

intricate characteristics at multiple levels with greater efficacy. 

Addition of Noise to the testing dataset: The PyTorch transformation modifies the data samples 

with noise, which has a mean of zero and a standard deviation of 0.2. The results revealed a 
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substantial decrease in the scores of all models, with IID, MesoNet CNN-Net, Sia, and Uia 

scoring as low as 50%. This underscores the susceptibility of these detection methods to the 

presence of noise. The IID model, which is intended to detect face-swap, has been significantly 

impacted by the introduction of noise in the FF++ and DFDC Preview datasets. This has 

resulted in erroneous classification and has rendered the model susceptible to adversarial 

perturbations. MesoNet is susceptible to a variety of adversarial strategies as a result of a 

significant decrease in its classification score. The quality of images is reduced by the presence 

of noise, which masks anomalies or inconsistencies and introduces random variations and 

patterns. Consequently, accurate or complete feature extraction is impeded. In order to achieve 

optimal performance on a noisy dataset, a model must either employ the attention mechanism 

to leverage multi-scale features that can effectively capture both local and global features that 

are resilient to noise, or employ sophisticated data augmentation techniques that introduce 

noise to aid in the model's classification learning. By utilizing the latter approach, our model 

has been able to acquire intricate and resilient features that can withstand a variety of 

adversarial techniques. When the accuracy of the other model in the DFDCPreview dataset is 

less than 80%, the Tex_ViT model consistently outperforms it with an accuracy score of 98%. 

Nevertheless, the model remains susceptible to the introduction of disturbance to a certain 

extent.
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Table 3.2 Models trained on deepfake dataset of FF++ and tested on its different categories. Here, bold values represent the highest score among competitive methods. 

Test 

 

 

Ucf IID MesoNet CapsuleNet E-ViT Sia Uia Tex-ViT(ours) 

Pr Re F1 AUC Acc Pr Re F1 
AU

C 
Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc 

Df 0.9989 0.9985 0.9987 0.9987 0.9987 1.0 1.0 1.0 1.0 1.0 1.0 0.999 0.9994 1.0 0.9995 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.999 1.0 0.9995 1.0 0.9995 1.0 1.0 1.0 1.0 1.0 0.9829 0.982 0.9824 0.9985 0.9825 

F2F 0.791 0.263 0.263 0.697 0.6023 0.7790 0.2715 0.4026 0.7218 0.5972 0.6667 0.1455 0.2389 0.6345 0.5365 0.6239 0.151 0.2431 0.6159 0.53 0.755 0.165 0.2708 0.6479 0.5557 0.6464 0.3455 0.4503 0.6345 0.5783 0.7286 0.192 0.3039 0.6508 0.5602 0.7242 0.6126 0.6637 0.7048 0.6948 

FS 0.224 0.018 0.033 0.711 0.5396 0.4637 0.016 0.0309 0.5621 0.4987 0.2168 0.0155 0.0289 0.2962 0.4797 0.3764 0.0335 0.0615 0.4207 0.489 0.392 0.265 0.4964 0.4700 0.4927 0.3245 0.0865 0.1365 0.3999 0.4532 0.4652 0.0435 0.0709 0.5062 
0.4962

5 
0.6952 0.040 

0.0756

4 
0.6547 0.6291 

NT 0.8164 0.238 0.368 0.6693 0.5923 0.8765 0.245 0.3829 0.7263 0.6025 0.7703 0.208 0.3275 0.6972 0.573 0.7132 0.25 0.3702 0.6639 0.5747 0.789 0.257 0.3877 0.6829 0.5942 0.6616 0.5025 0.5711 0.6707 0.6227 0.7794 0.304 0.4374 0.7097 0.609 0.7248 0.6989 0.6541 0.7958 0.7028 

Table 3.3: Models trained on the face2face dataset of FF++ and tested on its different categories. Here, bold values represent the highest score among competitive methods. 

Test 

Ucf IID MesoNet CapsuleNet E-ViT Sia Uia Tex-ViT(ours) 

Pr Re F1 AUC Acc Pr Re F1 
AU

C 
Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc 

Df 0.8531 0.3165 0.4617 0.7533 0.631 0.8638 0.387 0.5345 0.8117 0.663 0.7459 0.367 0.4919 0.7085 0.621 0.8161 0.253 0.3862 0.6304 0.598 0.6751 0.2775 0.3933 0.6733 0.572 0.6217 0.544 0.5802 0.6560 0.6065 0.7305 0.6305 0.6768 0.777 0.6989 0.7365 0.664 0.6983 0.7958 0.7133 

F2F 0.9975 0.9985 0.9980 0.9986 0.998 0.9995 1.0 0.9997 1.0 0.9997 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9960 0.9995 0.9977 0.9999 0.9977 1.0 1.0 1.0 1.0 1.0 0.9714 0.9875 0.9794 0.9986 0.9793 

FS 0.644 0.124 0.2079 0.5282 0.5277 0.5780 0.1315 0.2143 0.6605 0.5177 0.5871 0.266 0.3662 0.6064 0.5395 0.6371 0.151 0.2441 0.566 0.5325 0.6399 0.2390 0.3480 0.5922 0.552 0.5676 0.5015 0.5325 0.6079 0.5597 0.7120 0.4315 0.5373 0.6473 0.6284 0.6952 0.5982 0.6433 0.6987 0.6593 

NT 0.8092 0.314 0.4524 0.6827 0.62 0.7891 0.378 0.5111 0.7877 0.6384 0.6937 0.3375 0.4541 0.6843 0.5942 0.8122 0.2855 0.4224 0.6666 0.6097 0.7209 0.4855 0.5802 0.7106 0.649 0.6741 0.694 0.6839 0.7217 0.6792 0.7523 0.638 0.6904 0.7949 0.7139 0.7604 0.689 0.7229 0.8152 0.7360 
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Table 3.4: Models trained on the face swap dataset of FF++ and tested on its different categories. Here, bold values represent the highest score among competitive methods. 

Test 

Ucf IID MesoNet CapsuleNet E-ViT Sia Uia Tex-ViT(ours) 

Pr Re F1 AUC Acc Pr Re F1 
AU

C 
Acc Pr Re F1 AUC Acc Pr. Re. F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc 

Df 0.371 0.0305 0.0564 0.4577 0.4894 0.7414 0.3885 0.5098 0.7262 0.6226 0.5892 0.522 0.5535 0.6321 0.579 0.5375 0.0895 0.1534 0.5415 0.5065 0.6872 0.311 0.4282 0.6712 0.5847 0.6432 0.274 0.3843 0.6093 0.5610 0.5309 0.253 0.3427 0.5789 0.5147 0.7746 0.2486 0.3764 0.6847 0.6248 

F2F 0.7403 0.1625 0.2665 0.5369 0.5527 0.6943 0.4315 0.5322 0.6964 0.6207 0.6216 0.5455 0.5811 0.6354 0.6067 0.6383 0.1985 0.3028 0.5568 0.5430 0.6700 0.3005 0.4149 0.573 0.5762 0.7391 0.35 0.4751 0.6554 0.6132 0.6722 0.4605 0.5465 0.6516 0.618 0.7546 0.2283 0.3505 0.6446 0.6078 

FS 0.9969 0.9949 0.9949 0.9949 0.995 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9853 0.9755 0.9804 0.9982 0.9805 

NT 0.6137 0.058 0.105 0.4929 0.5107 0.6113 0.2855 0.3892 0.5926 0.552 0.5903 0.539 0.5635 0.6205 0.5825 0.5342 0.1365 0.2174 0.5350 0.5087 0.6246 0.2355 0.3420 0.5574 0.547 0.5770 0.219 0.3175 0.5467 0.5292 0.5275 0.2585 0.3469 0.5181 0.5135 0.7589 0.6378 0.6931 0.7088 0.6728 

Table 3.5: Models trained on NT dataset of FF++ and tested on its different categories. Here, bold values represent the highest score among competitive methods. 

Test 

Ucf IID MesoNet CapsuleNet E-ViT Sia Uia Tex-ViT(Ours) 

Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re F1 AUC Acc Pr. Re F1 AUC Acc Pr. Re F1 AUC Acc Pr. Re. F1 AUC Acc 

Df 0.8814 0.613 0.7231 0.7860 0.7652 0.7941 0.729 0.7601 0.8542 0.77 0.7347 0.8145 0.7725 0.8287 0.7602 0.7619 0.616 0.6812 0.7801 0.7117 0.7894 0.6505 0.7133 0.8325 0.7385 0.7236 0.6335 0.6755 0.7699 0.6957 0.6966 0.6395 0.6668 0.7383 0.6805 0.7405 0.8045 0.7714 0.8394 0.7612 

F2F 0.7989 0.379 0.5146 0.6384 0.642 0.7169 0.6245 0.6675 0.7843 0.6899 0.7276 0.8615 0.7889 0.8342 0.7695 0.7100 0.5045 0.5898 0.7265 0.6492 0.7583 0.739 0.7485 0.8374 0.7517 0.7369 0.7565 0.7466 0.8053 0.7432 0.7532 0.748 0.7506 0.8183 07514 0.7672 0.7995 0.7830 0.8558 0.7785 

FS 0.2403 0.0465 0.078 0.4005 0.4497 0.3039 0.1295 0.1816 0.4045 0.4156 0.5013 0.3745 0.4287 0.5296 0.501 0.4557 0.1675 0.2449 0.4886 0.4837 0.4966 0.2235 0.3082 0.5057 0.4985 0.4798 0.304 0.3722 0.5189 0.4872 0.5543 0.429 0.4836 0.5606 0.542 0.7072 0.5844 0.6399 0.8148 0.6408 

NT 0.9954 0.993 0.9945 0.9972 0.9945 0.9494 0.9955 0.9719 0.9999 0.9712 0.9985 1.0 0.9992 1.0 0.9992 1.0 0.9925 0.9959 0.9978 0.996 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9645 0.9795 0.9719 0.9971 0.9718 
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Table 3.6: Models trained and tested on the GAN datasets. Here, bold values represent the highest score among competitive methods. 

Train Test 

Xception Ucf IID CNN-Net Efficient-Net Sia Uia Tex-ViT(ours) 

Pr. Re. F1 AUC Acc. Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re F1 AUC Acc Pr. Re. F1 AUC Acc 

CelebA-

HQ_ProGA

N 

CelebAH

Q_ 

StyleGA

N 

1.0 0.06 0.113 
0.789

9 
0.53 0.9 0.006 

0.011

9 
.4645 

0.502

66 
1.0 

0.003

3 

0.006

6 

0.684

2 

0.501

66 

0.971

4 

0.191

3 

0.321

2 

0.970

8 

0.595

7 
1.0 0.008 

0.015

8 

0.846

6 
0.504 1.0 0.165 

0.283

7 

0.937

8 

0.582

6 
0.8 

0.005

3 

0.010

5 

0.865

4 
0.502 

0.880

7 
0.64 

0.741

3 

0.892

5 

0.776

7 

FFHQ_ 

StyleGA

N 

0.904 
0.050

6 

0.095

9 

0.754

6 

0.522

6 
0.652 0.997 

0.788

4 

0.777

7 

0.716

9 
0.8 

0.002

6 

0.005

3 

0.604

8 
0.501 

0.609

8 

0.346

6 

0.446

5 

0.653

3 

0.570

3 

0.721

5 
0.038 

0.072

1 

0.720

5 

0.511

6 

0.778

5 

0.154

6 

0.258

1 

0.725

4 

0.555

3 

0.966

6 

0.019

3 

0.037

9 

0.728

5 

0.509

3 

0.769

5 

0.638

6 

0.698

0 

0.809

1 

0.723

7 

CelebA-

HQ_StyleG

AN 

CelebAH

Q_ 

ProGAN 

1.0 0.024 
0.046

8 

0.687

2 
51.2 0.471 0.005 

0.010

5 

0.416

1 

0.496

6 
0.5 0.5 0.5 

0.546

8 
0.5 

0.788

9 

0.003

3 

0.006

6 

0.836

3 

0.501

3 
1.0 0.006 

0.001

3 

0.809

3 

0.503

3 
1.0 

0.005

3 

0.010

6 

0.845

0 

0.502

6 
0.5 0.5 0.5 

0.470

8 
0.5 

0.713

4 

0.544

5 

0.617

6 

0.681

8 

0.606

5 

FFHQ_ 

StyleGA

N 

0.862

5 
1.0 

0.926

2 

0.988

6 

0.920

3 
0.732 0.999 

0.845

2 

0.773

5 

0.816

9 

0.863

1 
1.0 

0.926

5 

0.999

8 

0.920

6 

0.993

1 

0.998

6 

0.861

9 

0.994

3 
0.84 

0.742

0 

0.999

3 

0.851

7 

0.997

2 

0.826

0 

0.610

5 
1.0 

0.758

1 

0.978

3 

0.681

0 

0.702

2 
1.0 

0.825

1 

0.996

5 
0.788 

0.840

9 
0.948 

0.891

2 
0.945 

0.884

3 

FFHQ_Styl

eGAN 

CelebAH

Q_ 

ProGAN 

0.980

6 

0.236

6 

0.381

3 

0.811

8 
0.616 0.5 0.5 0.5 0.5 0.5 

0.666

6 

0.001

3 

0.002

6 

0.602

7 

0.503

3 

0.772

7 
0.012 0.023 

0.779

9 
0.506 

0.903

2 

0.018

6 

0.036

5 

0.795

2 

0.508

3 

0.636

3 

0.004

6 

0.009

2 

0.577

3 
0.501 

0.964

3 
0.036 

0.069

4 

0.786

2 

0.517

33 

0.842

1 

0.362

6 
0.506 

0.745

4 

0.647

3 

CelebAH

Q_ 

StyleGA

N 

0.994

6 

0.999

3 

0.997

0 

0.999

8 

0.997

0 
0.996 0.99 

0.993

3 

0.997

9 

0.993

3 
1.0 

0.999

3 

0.999

6 

0.999

9 

0.999

6 

0.999

8 

0.996

3 

0.996

3 

0.999

9 

0.996

3 

0.996

3 

0.999

3 

0.999

3 

0.999

9 

0.999

3 

0.998

6 

0.997

3 

0.997

9 

0.999

9 
0.998 

0.998

6 
0.998 

0.998

3 

0.999

9 

0.998

3 

0.981

9 

0.979

3 

0.980

6 

0.996

8 

0.980

7 

CelebA 

StarGAN 

CelebA 

STGAN 

0.999

3 
1.0 

0.999

6 
1.0 

0.999

6 
0.999 1.0 

0.999

6 
1.0 

0.999

6 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0.977

5 
0.927 

0.951

7 

0.988

2 

0.953

0 

CelebA 

STGAN 

CelebA 

StarGAN 

0.998

6 
1.0 

0.999

3 

0.999

9 

0.999

3 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0.995

8 

0.949

3 

0.972

0 

0.996

1 

0.972

7 
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Table 3.7: Models trained on various datasets and tested under various conditions. Here, bold values represent the highest score among competitive methods. 

ti 
Testing 

Dataset 

Ucf IID MesoNet CapsuleNet CNN-Net Sia Uia Tex-ViT(ours) 

Pr. Re. F1 AUC Acc. Pr. Re. F1 AUC Acc. Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc 

FF++ FF++ 0.988 
0.991

5 

0.989

8 

0.996

8 

0.989

7 

0.989

7 

0.995

1 

0.992

3 

0.999

6 

0.992

3 

0.832

2 

0.999

8 

0.908

4 

0.996

8 

0.899

1 

0.992

5 

0.999

3 

0.999

3 

0.999

7 

0.999

3 

0.999

8 

0.999

6 

0.996

8 

0.999

9 

0.996

8 

0.997

3 

0.998

5 

0.997

9 

0.999

9 

0.997

9 

0.998

2 

0.999

2 

0.998

6 

0.999

9 

0.998

7 

0.936

8 

0.942

4 

0.939

6 

0.988

2 

0.939

5 

FF++ 
FF++ 

Blurry 
0.673 

0.928

2 

0.780

3 

0.829

7 

0.738

6 
0.575 

0.997

5 

0.729

9 

0.869

9 

0.630

4 

0.530

5 
1.0 

0.693

3 

0.981

9 

0.557

5 
0.628 

0.997

5 

0.771

5 

0.878

8 

0.703

9 

0.980

7 

0.998

2 

0.832

9 

0.983

1 

0.799

8 

0.754

0 
0.958 

0.843

8 

0.933

6 

0.822

7 

0.715

1 
1.0 

0.833

8 

0.985

4 

0.800

7 

0.772

0 

0.989

4 

0.867

3 

0.964

4 

0.848

6 

FF++ 
FF++ 

Noisy 
0.642 

0.644

5 

0.643

3 

0.647

9 

0.641

5 
0.5 0.5 0.5 

0.590

3 
0.5 

0.523

5 

0.992

8 

0.685

4 

0.707

9 

0.544

5 

0.698

1 
0.046 

0.009

2 

0.561

2 

0.501

3 
0.5 0.5 0.5 0.5 0.5 0.5 

0.009

5 

0.018

6 

0.497

9 
0.50 

0.748

9 

0.110

3 

0.192

3 

0.654

6 

0.536

6 

0.642

5 

0.783

9 

0.706

1 

0.740

9 
0.673 

FF++ 

FF++ 

Compressi

on 

1.0 
0.002

5 

0.004

4 

0.578

4 

0.501

1 
1.0 

0.009

4 

0.018

6 
0.912 

0.504

7 

0.926

2 

0.986

8 

0.955

5 

0.994

0 

0.954

1 
1.0 

0.003

2 

0.006

4 

0.693

9 

0.501

6 

0.937

6 

0.076

4 

0.141

9 

0.930

0 

0.538

1 

0.997

3 
0.231 

0.375

1 

0.900

2 

0.615

1 

0.999

2 

0.694

7 

0.819

6 

0.991

4 

0.847

1 

0.971

3 

0.865

1 

0.915

9 

0.983

9 

0.920

6 

DFDCPre

view 

DFDCPrev

iew 
1.0 

0.999

6 

0.999

7 

0.999

7 

0.999

8 
1.0 1.0 1.0 1.0 1.0 

0.990

0 

0.999

3 

0.994

7 

0.999

9 

0.994

6 
1.0 

0.999

3 

0.999

6 

0.999

9 

0.999

6 

0.999

9 

0.998

6 

0.998

9 

0.999

9 
0.999 1.0 

0.998

6 

0.999

3 
1.0 

0.999

3 
1.0 

0.999

3 

0.999

6 

0.999

9 

0.999

6 

0.992

6 

0.989

3 

0.990

9 

0.999

5 

0.991

0 

DFDCPre

view 

DFDCPrev

iewBlurry 
0.998 

0.792

6 

0.883

8 

0.928

7 

0.895

6 
1.0 

0.849

3 

0.918

5 

0.994

0 

0.924

6 

0.998

5 

0.891

3 

0.941

8 

0.998

1 
0.945 1.0 0.748 

0.855

8 

0.988

1 
0.874 

0.996

7 
0.72 

0.837

2 

0.996

5 
0.86 1.0 

0.827

3 

0.905

5 

0.995

7 

0.913

6 
1.0 

0.943

3 

0.970

8 

0.999

9 

0.971

6 

0.993

3 

0.989

3 

0.991

3 

0.999

2 

0.991

3 

DFDCPrev

iew 

DFDCPrev

iew Noisy 
0.5 1.0 

0.666

6 

0.544

7 
0.5 0.5 1.0 

0.666

6 
0.50 0.5 0.5 1.0 

0.666

6 
0.5 0.5 

0.499

9 

0.998

6 

0.666

2 

0.717

9 

0.499

6 

0.559

8 
1.0 

0.666

6 

0.601

5 
0.5 

0.272

7 
0.01 0.019 

0.438

8 

0.491

6 

0.497

8 
0.99 

0.662

5 

0.684

1 

0.495

6 

0.978

8 
0.986 

0.982

4 

0.998

5 
0.982 

DFDCPre

view 

DFDCPrev

iew 

Compressi

on 

0.757 
0.999

9 

0.861

9 

0.794

0 
0.84 

0.937

5 
1.0 

0.967

7 

0.999

9 

0.966

6 

0.969

5 

0.998

6 

0.983

9 

0.999

4 

0.983

6 

0.546

8 
1.0 

0.707

0 

0.930

4 

0.585

6 

0.994

3 
1.0 

0.758

7 

0.993

8 

0.993

9 

0.924

7 

0.998

6 

0.960

2 

0.998

9 

0.958

6 

0.962

1 

0.999

3 

0.980

3 

0.999

8 
0.98 

0.998

0 

0.998

6 

0.998

3 

0.999

9 

0.999

8 

Celeb-DF Celeb-DF 0.954 
0.954

3 

0.954

4 

0.960

5 

0.954

4 

0.922

7 

0.945

1 

0.933

8 

0.977

3 

0.933

0 

0.822

2 

0.907

5 

0.862

8 

0.925

9 

0.855

6 

0.941

8 

0.946

2 

0.944

1 

0.974

1 

0.943

9 

0.984

8 

0.937

6 

0.940

6 

0.981

4 

0.940

8 

0.848

3 

0.900

8 

0.873

8 

0.943

1 

0.869

8 

0.923

5 

0.929

8 

0.926

6 

0.982

3 

0.926

4 

 

0.976 
0.944

2 

0.960

3 

0.992

8 

0.961

0 

Celeb-Df 
Celeb-DF 

Blurry 
0.830 

0.951

1 

0.886

5 

0.893

7 

0.878

2 

0.748

3 

0.939

7 

0.833

2 

0.917

4 

0.811

8 

0.629

1 

0.975

7 

0.764

9 

0.882

2 

0.700

2 

0.879

3 
0.756 

0.813

0 

0.897

9 

0.826

1 

0.960

0 

0.942

1 

0.891

2 

0.957

4 
0.885 

0.819

1 

0.879

2 

0.848

1 

0.918

9 

0.842

5 

0.871

7 

0.934

5 

0.902

0 

0.963

1 

0.898

5 
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2 
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8 
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9 

0.981

2 

0.938

7 
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6 

0.508
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0.542
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0.50 0.5 0.5 0.5 

0.569
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0.5 0.5 0.5 0.5 0.513 0.50 

0.476

6 

0.093

12 

0.155

58 

0.494

7 

0.495

4 

0.692

4 

0.151

3 

0.248

4 

0.621

8 

0.542

1 

0.664

9 

0.758

1 

0.708

4 

0.736

5 

0.672

1 
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Compressi

on 

0.973 
0.524

8 

0.681

9 

0.912

4 

0.755

1 

0.904

8 

0.752

4 

0.821

6 

0.932

1 

0.836

6 

0.946
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0.334 

0.493

8 

0.919

3 

0.657

6 

0.927

8 

0.514

6 

0.662

0 

0.895

1 

0.737

3 

0.934
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0.534 

0.688

1 

0.932
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0.758 

0.751

2 

0.908

6 

0.822

8 

0.909

3 

0.804

4 

0.919

2 
0.778 

0.842

7 

0.948

1 

0.854

8 

0.920

3 

0.925

2 

0.922

7 

0.979

3 

0.922
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Figure 3.4 ROC curve for the model trained on Face2face dataset and tested on the other categories of  FF++ 
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Figure 3.5 ROC curve for the model trained and tested on the different types of GAN images 
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Original Image Blurred Image Noisy Image Compressed Image 

Figure 3.6 Image undergoes different post-processing operations 

Table 3.8 : Tex-ViT's computational complexity is compared to well-known computer vision models. The 

parameter column indicates the accuracy score, number of trainable parameters, and GPU-CPU times taken for 

each input batch size. 

Model Accuracy 
Parameter 

(millions) 

CPU 

time(sec) 

GPU 

time(sec) 

Efficient_b7 75.49 66.34 4.07s 0.35s 

ResNet152 79.3 58 3.03s 0.309s 

ResNext 79.55 81.41 4.61s 0.338s 

ConvNext 83.39 88.57 3.62 0.37s 

Swin Transformer 75.4 59.96 4.92s 0.41s 

XceptionNet 71.6 20.81 2.45s 0.66s 

MesoInception 62.3 0.028 2.1s 0.72s 

CNN-Net 52.47 23.51 1.99s 0.379s 

EfficientNetV2 80.5 118.51 3.93s 0.40s 

CapsuleNet 60.56 1.5 2.49s 0.154 

Tex-ViT(Our Model) 84.85 43 3.06s 1.02s 

3.2.5 Complexity Analysis of Tex-ViT 

This section compares the computational complexity of the proposed Tex-ViT architecture to 

well-known computer vision models. The computational considerations are the number of 

trainable parameters, the accuracy attained on the DF (FF++) dataset, and the CPU and GPU 

inference times. 

Table 3.8 presents the tabular view of the complexity analysis of Tex-ViT against the various 

standard model of computer vision models. It can be easily seen that Tex-ViT is a reasonably 

lightweight model compared to various computer vision models, including EfficientNetv1, and 

has also achieved more excellent performance in diverse scenarios. Figure 3.7 represents the 

accuracy score on the y-axis and the number of trainable parameters on the x-axis. Regarding 

the number of trainable parameters, Efficientv2 and ConvNext are on the higher sides and have 

an accuracy score of around 80%; owning a higher number of parameters tends to learn more 

discriminative information about the manipulation. Deepfake Detection models like 

MesoInceptionNet, Capsule Net, and CNN-Net are relatively lightweight, but their 

performance suffers in diverse scenarios. The execution time is measured in seconds for a batch 
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size of 32 during inference time. Heavy models take more execution time than lightweight 

models due to their number of parameters. Xception is a lightweight model with 20 million 

parameters and an accuracy score of 70%. 

 

Figure 3.7: Tex-ViT's complexity analysis in comparison to well-known computer vision models. The number of 

millions of trainable parameters in each model is indicated on the horizontal axis. The accuracy of the DF(FF++) 

dataset is indicated on the vertical axis. 

3.2.1 Conclusion 

In this paper, empirical analysis has been done on the human visual and CNN results to 

demonstrate that human vision is based on the shapes and CNN layers that use texture to 

identify objects. This finding indicates that texture is one crucial indicator for deepfake 

detection. Furthermore, it has been seen that texture correlation is not preserved in the case of 

fake images and that images tend to have smoother surfaces. Inspired by that, the proposed 

Tex-ViT uses the conventional CNN features using ResNet and texture modules using the 

features of ResNet. Then, the output of these two parallel branches serves as an input to the 

dual-branch vision transformers operating on patches with the cross-attention mechanism. 

Experimental results show that the model performs well in the cross-manipulation categories 

of FF++ datasets. The evaluation shows that texture is an invariant feature that persists among 

various manipulation methods, and learning such a feature would eventually result in a good 

performance for the model. However, the model has a low score in the FS category of FF++. 

Experimentation is also done on the different types of GAN image datasets and outperforms 
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the other state-of-the-art models. It again shows the model's superior learning abilities for 

different feature spaces. Experimentation is done on various post-processing image scenarios, 

and it was found that the model is robust enough for different adversarial operations. However, 

the model needs to improve its score for compressed scenarios, but its score is still better than 

the other SoTA models. These experiments show that the model learns the common 

discriminative features that persist along several fake images. 

Future work would involve improving the model’s accuracy for the FS manipulation category 

of FF++, which could incorporate additional modules to enhance the learning of features. Also, 

improving the model's robustness against the compressed data samples would be one of the 

futuristic works. 

3.3 Tex-Net: Texture-based parallel branch cross-attention generalized 

robust deepfake detector 

3.3.1 Abstract 

In recent years, artificial faces generated using Generative Adversarial Networks (GANs) and 

Variational Auto-encoders(VAEs) have become more lifelike and difficult for humans to 

distinguish. Deepfake refers to highly realistic and impressive media generated using deep 

learning technology. Convolutional Neural Networks (CNNs) have demonstrated significant 

potential in computer vision applications, particularly identifying fraudulent faces. However, 

if these networks are trained on insufficient data, they cannot effectively apply their knowledge 

to unfamiliar datasets, as they are susceptible to inherent biases in their learning process, such 

as translation, equivariance, and localization. The attention mechanism of vision transformers 

has effectively resolved these limits, leading to their growing popularity in recent years. This 

work introduces a novel module for extracting global texture information and a model that 

combines data from CNN (ResNet-18) and cross-attention vision transformers. The model 

takes in input and generates the global texture by utilizing Gram matrices and local binary 

patterns at each down sampling step of the ResNet-18 architecture. The ResNet-18 main branch 

and global texture module operate simultaneously before inputting into the visual transformer's 

dual branch's cross-attention mechanism. Initially, the empirical investigation demonstrates 

that counterfeit images typically display more uniform textures that are inconsistent across long 

distances. The model's performance on the cross-forgery dataset is demonstrated by 

experiments conducted on various types of GAN images and Faceforensics++ categories. The 

results show that the model outperforms the scores of many state-of-the-art techniques, 

achieving an accuracy score of up to 85%. Furthermore, multiple tests are performed on 
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different data samples (FF++, DFDCPreview, Celeb-Df) that undergo post-processing 

techniques, including compression, noise addition, and blurring. These studies validate that the 

model acquires the shared distinguishing characteristics (global texture) that persist across 

different types of fake picture distributions, and the outcomes of these trials demonstrate that 

the model is resilient and can be used in many scenarios. 

3.3.2 Model framework 

This section will describe the proposed model and various components of the architecture. The 

proposed model comprises two major components:  the Global texture block architecture and 

the dual branch cross-attention-based vision transformer (Figure 3.9). 

3.3.2.1 Global Texture Module 

This model component utilizes ResNet-18 as its foundational architecture. The texture block is 

calculated before each down-sampling process, integrating the texture information from the 

input samples into the architecture. Two branches run simultaneously, with one network 

component utilizing ResNet-18 layers to compute the traditional feature representation, while 

the other branches focus on computing the texture information. The texture block consists of 

convolutional layers to align the dimensions of the layers. Gram-matrices and LBP layers 

extract the texture correlation and the binary features, followed by the convolution to refine the 

representation and pooling layers to align the computed features with the ResNet backbone 

features to be forwarded to the next level. The global Texture module is computed at various 

semantic levels (before every down-sampling operation of the ResNet) for long-range 

modelling of the texture features. Texture feature extraction is done at two layers, i.e. using 

Gram matrices and LBP. 

Gram matrices as a descriptor of textural characteristics: The texture is represented by the 

correlation among the features map of the layers; such texturized information remains 

independent of the spatial information and is represented by the correlation [116]. Gram 

matrices 𝐺𝑙𝜖 𝑅𝑁𝑙×𝑁𝑙 represent the correlation or linear dependence between the layers and are 

computed to the constant of proportionality, given by the formula:                                                                                                                          

𝒢𝑖𝑗
𝑙 = ∑ ℱ𝑖𝑘

𝑙 ℱ𝑗𝑘
𝑙  

𝑘

 (3.13) 

 Above equation represents the gram matrix. 𝐺𝑖𝑗
𝑙  which is the inner product between the ith and 

jth feature of layer l, where 𝐹𝑙 represents the lth feature map vectorized representation and 𝐹𝑖𝑘
𝑙  

represents the kth activation of the ith filter at position k in layer l. 
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Local Binary Patterns as a Texture Feature Descriptor: Local binary patterns typically serve 

as feature descriptors in computer vision for face recognition. Varying the methods to choose 

neighboring pixels leads to distinct texture patterns in Local Binary Patterns (LBP). Typically, 

it requires two parameters: the quantity of dots and the radius of the receptive field. This is a 

textural feature descriptor that compares the value of the center pixel with the values of its 

neighboring pixels, creating a binary feature. The central pixel is compared to its neighbouring 

pixel values. If the central value is less than the neighbouring values, it is assigned a value of 

"0". If the central value exceeds the neighboring values, it is assigned a value of "1". A binary 

integer is generated and assigned to the center pixel value, forming a grid of binary vectors. 

The mathematical representation of LBP is as follows: 

𝐿𝐵𝑃 =  ∑ 𝑝(𝑛𝑖 − 𝐺𝑐) 2𝑗
𝑁−1

𝑗=0
 , 𝑝(𝑥) =  {

1,   𝑖𝑓 𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.14) 

Where c is the centre pixel, ni denotes the ith surrounding pixel, and N is the total number of n

eighbourhood pixels. Figure 3.8 demonstrates how an image is transformed into an LBP 

matrix. neighbourhood pixels.  

3 
1 

4 1 5 

 9 
2 6 5 3 

5 8 9 7 9 

3 2 3 8 4 

Figure 3.8: Example of how an image is converted to an LBP 

matrix. 

 

4 31 12 31 2 

0 191 14 47 71 

80 144 0 21 0 

100 255 252 160 195 

The architecture of this model involves calculating the LBP matrix for each layer of the Gram 

Matrix. Convolutional and pooling layers then refine the output of the LBP matrix to enhance 

the representation before being transferred to the next level. Using LBP layers provides a more 

abstract depiction of the overall texture features representation. 

3.3.2.2 Cross-Attention Vision Transformer with parallel branches 

The parallel-branches vision consists of two branches that receive patches of different sizes as 

input. The first branch turns feature maps into a sequence of token patches. In addition, a 

classification (CLS) token is included in the group of tokens for categorization. As the self-

attention mechanism does not consider positional information, the vision transformer 
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incorporates positional embedding into the token patches, which includes CLS tokens. Next, 

the token embedding is processed by the transformer encoder, which comprises a series of 

blocks. Each block contains Multi-headed self-attention (MSA) and a feed-forward network. 

The feed-forward network comprises two layers of multi-layer perceptron with hidden layers. 

The GELU non-linearity is applied after the first layer, and Layer Norm (LN) is applied before 

every block. There is a residual block skip link between the blocks. The input to the vision 

transformer and processing of the kth transformer encoder can be written as: 

𝓍0 = [𝔛𝑐𝑙𝑠𝑒𝑚𝑏||𝔛𝑝𝑎𝑡𝑐ℎ𝑒𝑚𝑏 ℰ] + 𝔈𝑝𝑜𝑠       ℰ ∈  ℛ𝒫2.𝒞 × 𝒟, 𝔈𝑝𝑜𝑠  ∈ ℛ(𝒩+1) × 𝒟 (3.15) 

𝓏𝑘 =  𝓏𝑘−1 + ℳ𝒮𝒜(ℒ𝒩(𝓍𝑘−1))             𝑘 = 1 … … … ℒ (3.16) 

𝓍𝑘 =  𝓏𝑘 + 𝐹𝐹𝑁 (𝐿𝑁(𝓏𝑘−1 + ℳ𝒮𝒜(ℒ𝒩(𝓍𝑘−1)) ))    𝑘 = 1 … … … ℒ (3.17) 

where  is 𝔛𝑐𝑙𝑠𝑒𝑚𝑏 ∈  ℛ1×𝒞 , 𝔛𝑝𝑎𝑡𝑐ℎ𝑒𝑚𝑏 ∈ ℛ𝒩×𝒞  and 𝔛𝑝𝑜𝑠𝑒𝑚𝑏 ∈ ℛ(𝒩+1)×𝒞 are the CLS, patch 

and positional embedding tokens, respectively(𝒞 and 𝒩 are the embedding's dimension and 

the number of the tokens). In order to enhance efficiency and effectiveness in fusing multi-

scale characteristics, a CLS token at each branch is used as an agent to share information among 

the patch tokens from the other branch before projecting the information back to the branch. 

Finally, the CLS token, which has learned the abstract information of tokens, interacts or serves 

as a query to the patch to another branch, enabling the fusion of multi-scale information. The 

CLS token interacts with its patch tokens upon merging with other branch tokens at the 

subsequent transformer encoder. Here, it can transfer the acquired knowledge from the other 

branch to its patch tokens, enhancing the patch token representations(Figure 3.10). Similarly, 

the CLS of another branch interacts with patch tokens of the first branch, enabling the fuse of 

multi-scale information into the model. 
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Figure 3.9: The proposed model consists of a global texture module and ResNet serving as inputs to a dual-

branch vision transformer with a cross-attention mechanism. 
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Figure 3.10: Cross attention mechanism where the CLS toke of the Ist branch acts as a query token and 

communicates with the patch token of the IInd branch 

Mathematical equations at the transformer encoder can be written as: 

𝔛1 = ⟦𝔗𝑐𝑙𝑠
1 ||𝔗𝑝𝑡𝑐ℎ

2 ⟧       𝔗1  ∈ 𝔱𝔬𝓀𝔢𝔫𝔰 𝔩𝔰𝔱 𝔟𝔯𝔞𝔫𝔠𝔥, 𝔗2 ∈ 𝔱𝔬𝓀𝔢𝔫𝔰 𝔩𝔩𝔫𝔡 𝔟𝔯𝔞𝔫𝔠𝔥 (3.18) 

𝔛′1 = [𝔣1(𝔛𝑐𝑙𝑠
1 )||𝔛𝑝𝑎𝑡𝑐ℎ

2 ] (3.19) 

𝔔 = 𝔛𝔠𝔩𝔰
′1 𝒲𝔮,        𝔎 =  𝔛′1𝒲𝓀    𝒱 =  𝔛′1𝒲𝑣      𝒲𝓆 , 𝒲𝓀, 𝒲𝑣 ∈  ℜ𝒞 x (𝒞/𝒽)  (3.20) 

𝔄 = 𝕊𝔬𝔣𝔱𝔪𝔞𝔵 (
𝔔𝓀𝒯

√𝔇𝔥

  )                           𝔄 ∈  ℜℕ×ℕ (3.21) 

𝒞𝒜(𝔛1) = 𝔄𝔳 
(3.22) 

𝔐𝐶𝒜(𝔛1) = [𝐶𝒜1(𝔛1); 𝐶𝒜2(𝔛1); … . . ; 𝐶𝐴𝓀(𝔛1)]𝒲𝔪𝔰𝔞            𝒲𝔪𝔰𝔞 ∈  ℜ𝓀.𝔇𝔥×𝔇 (3.23) 

𝔶𝑐𝑙𝑠
1 =  𝔗𝑐𝑙𝑠

1 + 𝔐𝐶𝒜〈ℒ𝒩{⟦𝔗𝑐𝑙𝑠
1 ||𝔗𝑝𝑡𝑐ℎ

2 ⟧ }〉 (3.24) 

𝖋𝒍(. ) 

𝔛𝑐𝑙𝑠
′1  

𝔛𝑐𝑙𝑠
′1  

𝓦𝐪 𝓦𝒌 𝓦𝒗 

Softmax 

q k 
v 

𝓰𝐥(. ) 

𝔛𝑐𝑙𝑠
1  

𝔶𝑐𝑙𝑠
1  

𝔛patch
2  IInd  branch 

𝔛patch
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Concat 

Used for 
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Where the number of patches is 𝔫 + 1, the model dimension is 𝒟, the number of heads is 𝓀, 

and the head dimension is 𝔇ℎ(𝑑/𝓀) and 𝔣𝑙(. ) is a dimension alignment operator. The query, 

key, and value are represented by the variables 𝓆, 𝓀, and 𝓋, respectively. As for the query, 

key, value, and MSA, respectively, the learnable parameters are 𝒲𝓆, 𝒲𝓀𝓋, and 𝒲𝔪𝔰𝔞. At the 

subsequent transformer encoder, the CLS token interacts with its patch tokens again after 

merging with other branch tokens. This improves the representation of each patch token by 

transferring knowledge from the other branch to its own. Afterwards, these inputs are sent to 

an MLP (Multi-Layer Perceptron) for parameter learning after passing via the Layer Norm: 

ℤ = ℳℒ𝒫{ℒ𝒩〈𝔶𝔠𝔩𝔰
1 + 𝔛𝔭𝔞𝔱𝔠𝔥

1 〉} (3.25) 

 These embedding’s from the two branches are finally concatenated for the final prediction. 

Algorithms 1: LBP-ViT for Deepfake Detection 

Setting the initial parameter: 

 Input: 𝕀 = {Ι1, Ι2, Ι3, … … . , Ι𝓃} represents the set of data image samples, 

  𝕃 =  {0, 1} represent the set of labels, with 0 denoting the real image and 1 the 

deepfake one. 

 𝓃 is the dataset's size. 

 Divide 𝕀 into three subsets: 70% for training, 15% for validation, and 15%  for 

testing. 

1: Perform for 1 to 100 epochs: 

2:  Input set of images ℐ ⊆ 𝕀  to ResNet module for feature extraction. 

3:  Compute the texture features using the Global texture block before each 

ResNet down sampling operation and continue concatenating them. 

4:  ResNet computed and texture features at steps 1 and 2 are fed into the parallel 

branches of the vision transformer. 

5:  At each branch, flatten the features into patches of fixed sizes. 

6:  Create linear embedding’s in smaller dimensions with flattened image patches 

𝔗𝑝𝑐ℎ
1||2

 using linear projection module. 

7:  Add positional embedding together with the CLS token. 

8:  Input the sequence into each branch's transformer encoder. 

9:  Query the CLS token of the Ist branch with patch tokens of another branch to 

create tokens and vice versa for the cross-attention mechanism. 10: 
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Sophisticated features are further passed to Multi-Layer Perceptron(MLP) for 

latent feature learning. 

11:  Concatenate the features of both branches for classification. 

12:  Update the weights using the Adam optimizer and train the model end-to-end. 

13:  Evaluate the validation set and save the weights of the well-performing model. 

14: end for 

15: Load the model's weights saved at step 13. 

16: Evaluate the model on the test dataset. 

3.3.3 Experimentation 

This section of the study will analyze the selection of training parameters, various datasets, the 

choice of face extractor, and the diverse tests undertaken for the model. 

3.3.3.1 Experimental Settings 

The studies employ NVIDIA TITAN RTX GPUs equipped with 24GB of RAM. The initial 

learning rate is established as 0.01, while the batch size is defined as 64. The Adam optimizer 

is used to update the parameters of the model. Each experiment consists of running one hundred 

epochs, as it has been determined that the system's performance reaches a saturation point after 

this number of epochs. 

3.3.3.2 Dataset and its pre-processing 

The Faceforensics++ dataset was utilized to assess the performance of the model. The 

Faceforensics++ dataset is divided into four categories: Deepfakes, Face2face, Face swap, and 

Neural Textures. This dataset comprises brief facial videos from which various frames have 

been extracted using the RetinaFaceResNet50 face extractor, chosen for its lower failure rates 

than MTCNN. FF++ frames have a size of [151, 200] and an aspect ratio of [1, 1.5]. In addition, 

various GAN images are employed to assess the model. Artificial images generated by 

ProGAN, StyleGAN, STGAN, and StarGAN, as well as authentic image datasets such as 

CelebA-HQ, CelebA, and FFHQ, are obtained from their respective online sources(Table 3.9).  

Table 3.9: Details for the training, validation and testing dataset with their resolutions 

Dataset Training Set Validation set Testing set 
Image 

Resolution 

FF++(DeepFakes) 
8k real & 8k fake 

image frames. 

2k real & 2k fake 

image frames. 

2k real & 2k fake 

image frames. 
128x128 
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FF++(face2face) 
8k real & 8k fake 

image frames. 

2k real & 2k fake 

image frames. 

2k real & 2k fake 

image frames. 
128x128 

FF++(Faceswap) 
8k real & 8k fake 

image frames. 

2k real & 2k fake 

image frames. 

2k real & 2k fake 

image frames. 
128x128 

FF++(Neural 

Texture) 

8k real & 8k fake 

image frames. 

2k real & 2k fake 

image frames. 

2k real & 2k fake 

image frames. 
128x128 

CelebA-HQ & 

ProGAN 

10k(CelebA-HQ) 

& 10k(ProGAN) 

1.5k(CelebA-HQ) 

& 1.5k(ProGAN) 

1.5k(CelebA-HQ) 

& 1.5k(ProGAN) 
1024x1024 

CelebA-HQ& 

StyleGAN 

10k(CelebA-HQ) 

& 10k(StyleGAN) 

1.5k(CelebA-HQ) 

& 1.5k(StyleGAN) 

1.5k(CelebA-HQ) 

& 1.5k(StyleGAN) 
1024x1024 

FFHQ and 

StyleGAN 

10k(FFHQ) & 

10k(StyleGAN) 

1.5k(FFHQ) & 

1.5k(StyleGAN) 

1.5k(FFHQ) & 

1.5k(StyleGAN) 
1024x1024 

CelebA & StarGAN 
10k(CelebA) & 

10k(StarGAN) 

1.5k(CelebA) & 

1.5k(StarGAN) 

1.5k(CelebA) & 

1.5k(StarGAN) 
128x128 

CelebA & STGAN 
10k(CelebA) & 

10k(StarGAN) 

1.5k(CelebA) & 

1.5k(StarGAN) 

1.5k(CelebA) & 

1.5k(StarGAN) 
128x128 

3.3.3.3 Data Augmentation 

Vision transformers are data-hungry; hence, they need data to train them before making good 

predictions, as shown by the initial ViT model [118]. However, the DeIT model [119], with 

careful and rich data-augmentation techniques, can perform better and beat the scores of 

various state-of-the-art models. Different data-augmentation techniques of the DeIT model, 

like cut mix [121], mixup [122], and rand augmentation [120], along with the drop path 

regularization model, have been used to improve the results. 

3.3.3.4 Experimentation on various categories of FF++ in cross-domain 

settings 

The Faceforensics++ [15] dataset consists of four distinct categories: Deepfakes (DF), 

Face2face (f2f), Face swap (FS), and Neural Textures (NT). The model is trained on a single 

category of FF++ and then evaluated on both the same category and other categories of FF++. 

The model undergoes training and subsequent validation on the validation set. 

Despite establishing multiple SoTA models in recent studies, comparing them equally remains 

challenging. This is partly because there are no publicly accessible codes for the models and 

training techniques the broader research community may use. Hence, the models with 

accessible codes online have been selected for comparison, totaling seven models. 

1) Capsule Network [97]. 

2) MesoInception-4 model [125]. 
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3) Combining Efficient Net and Vision Transformers for Video Deepfake Detection(E-

ViT) [126]. 

4) Recce [133]. 

5) IID [128]. 

6) SBI [134]. 

7) UCF [108]. 

The code for these models has been sourced from their respective GitHub repositories and 

tailored to suit the dataset. Additionally, additional evaluation metrics have been incorporated 

to provide a more comprehensive assessment of the model. The models are trained on a specific 

category of manipulation in the FF++ dataset and then evaluated on the remaining categories 

of the same dataset.  

The results of the several models tested on the remaining FF++ categories after being trained 

on the DeepFakes category are shown in Table 3.10. Except for MesoNet and Recce, every 

model achieves a flawless score, indicating the presence of overfitting in the models. This 

implies that they perform inadequately when tested on a different dataset with a distinct 

distribution but perform well when trained and tested on the same dataset. Most models achieve 

an accuracy score of around 50% for the deepfake face swap category. The performance of our 

model surpassed that of the other models by a substantial margin, achieving a score of over 

70%. This demonstrates that texture is a feasible feature that can be used in many variations. 

In addition, current state-of-the-art (SoTA) techniques, specifically Recce [64] and IID [65], 

do not perform optimally, indicating that there is still a significant gap between the desired 

outcome and the effectiveness of various manipulations. 

Table 3.11 displays the model comparison between the face2face training data and the testing 

data from different categories of FF++. All models exhibited exceptional performance across 

all dataset categories, surpassing the scores presented in the table above. MesoNet and 

CapsuleNet, considered state-of-the-art models in the past, struggled to achieve accuracy 

beyond 60%. These models utilized conventional convolution layers to learn the features of the 

training dataset, leading to inferior performance when applied to unseen datasets. Based on the 

transformer architecture, the E-VIT model has outperformed earlier models. This demonstrates 

the vision transformer's ability to learn global feature space, resulting in a modest improvement 

compared to CNN-based approaches. The reconstruction-based method, Recce, has subpar 

performance and scores even lower than previous methods. In many circumstances, the model's 

reconstruction abilities do not contribute to its performance. The IID technique, which 

incorporates both implicit and explicit identities, has partially uncovered the distinction, 
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leading to somewhat improved performance compared to previous models. Our model has 

outperformed the other models and achieved an accuracy score of 80%, demonstrating the 

strong discriminatory capabilities of the texture and cross-attention mechanism of ViT. 

Table 3.12 displays the score for the model trained on the Faceswap category and then tested 

on all other categories of FF++. Most models exhibit subpar performance when trained on FS 

but excel when tested within the same category. This is partially because of the Faceswap 

formation procedure that utilizes facial landmark points. These points are used to create a 3D 

template, which is then projected onto the target shape to minimize any differences between 

the projected shape and the landmark points. The IID model created explicitly for identifying 

face swap faces, performs relatively better than other models but still performs poorly. The 

UCF model, although designed to uncover standard features through feature disentanglement 

and method-specific approaches, does not perform as well as other models. The SBI model, 

known for its ability to perform generalization and robustness, has unfortunately fallen short 

compared to other models. Recce and MesoNet models do not perform well in diverse 

scenarios. However, the E-VIT model performs slightly better than the other models. Our 

model has achieved an average score of approximately 65%, surpassing other models' 

performance. However, there is room for improvement in the category of manipulation. The 

feature space for this particular category differs from other manipulations, which challenges 

our model's performance in this area. 

Table 3.13 depicts the model trained on NT and subsequently verified on the other categories 

of FF++. All categories of models exhibit comparable performance to one another. The 

generation of NT data samples utilizes the neural texture of the targeted individual and employs 

a rendering-based approach. This texture is also a common feature found in various 

manipulations. Training on such examples allows the model to perform well on other 

manipulations. Most models have an accuracy score of approximately 70% or higher. All 

models in the FS category exhibit subpar performance. The accuracy score of Capsule-Net is 

significantly lower compared to other models. DF has the highest level of accuracy compared 

to all other categories of cross-manipulation, with the face2face category ranking second. The 

model is constructed using the texturing technique, allowing it to comprehend the intrinsic 

attributes of the data sample. Consequently, it demonstrates exceptional proficiency in 

managing many forms of manipulation. The performance of our model has been potent, with 

an accuracy score that has reached 85% in cross-manipulation scenarios. 

Most models achieve near-perfect scores when trained and tested on the same distribution but 

struggle to generalize effectively to different distributions. Thanks to the texture module and 
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cross-attention mechanism, our model demonstrates strong performance over a wide range of 

manipulations. This confirms that texture is a consistent and valuable feature across diverse 

manipulations. Nevertheless, every performance is adversely affected by the FS category of 

manipulation of FF++. Figure 3.11 depicts the Receiver Operating Characteristic (ROC) scores 

of different models trained on the Deepfake category and then evaluated on the other categories 

of FF++. The superiority of the LBP-ViT model over other models is readily apparent. 

Additionally, the performance of all models decreases in the Face swap category. his decline 

may be attributed to face-swap manipulation inconsistencies, which have a limited range and 

may not be effectively captured by the model's texture analysis. 

3.3.3.5 Experiments on the different GAN images in cross-domain settings 

The GAN images have been known to be highly realistic and believable to the naked eye since 

the breakthrough research paper by Ian Goodfellow [135] in 2014. Different GAN image 

generation mechanisms, like ProGAN, StyleGAN, StarGAN, and STGAN, have been 

developed over the years to cover various types of manipulation of images. High-resolution 

images like ProGAN and StyleGAN and low-resolution images like StarGAN and STGAN 

were used to evaluate the model performance in different image settings. Five real and fake 

image datasets have been designed for fair and comprehensive evaluation: CelebA-HQ 

ProGAN, CelebA-HQ StyleGAN, FFHQ StyleGAN, CelebA StarGAN, and CelebA STGAN. 

Models have trained on one set and tested on the other set. Seven state-of-the-art models have 

been considered for comparison against the proposed model: 

1) Residual-Net [136]. 

2) CNN's generated images are surprisingly easy to spot now(CNN-Net) [130]. 

3) Efficient-Net [137]. 

4) Recce [133]. 

5) IID [128]. 

6) SBI [134]. 

7) UCF [108]. 

Similarly, for these models, code has been taken from their GitHub repositories and customized 

for the GAN dataset, and more evaluation metrics have been added for a more robust and 

comprehensive evaluation. Table 3.14 represents the models' results on various GAN images. 

Other models seem to be under-fitting to the cross-forgery detection and overfitting to the same 

data distribution settings. Another interesting observation is that almost all the models do not 

perform well when trained on CelebA-HQ StyleGAN and tested on the CelebA-HQ ProGAN 
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images. It is evident that when the testing dataset contains both fake and real images, models 

can swiftly identify them due to their training but struggle to identify the other class. In the first 

row, the model trained on CelebA-HQ ProGAN and tested on CelebA-HQ StyleGAN shows 

high precision in identifying the CelebA-HQ class. However, the lower recall value indicates 

it struggles with classifying the other category. ProGAN and StyleGAN utilise distinct 

manipulation techniques, leading to the creation of distinct feature spaces. Consequently, 

models trained on one category may not yield satisfactory performance on the other. The 

CelebA-HQ and FFHQ real datasets exhibit similar feature space, allowing models trained on 

one to perform effectively on the other. For instance, a model trained on the CelebAHQ 

StyleGAN can achieve impressive results when combined with the FFHQ StyleGAN. In other 

words, state-of-the-art(SoTA) methods excel in accurately classifying authentic images but 

struggle when identifying fake images. This leads to an average accuracy score of 50%, 

indicating a weak performance in detecting samples from different datasets. The ideal score for 

CelebA StarGAN and CelebA STGAN images indicates their common data distribution space. 

Our model effortlessly surpassed the scores of several cutting-edge models and significantly 

elevated the standards of evaluation criteria. Therefore, once again, this confirms that the model 

has the capability to acquire diverse distinguishing characteristics and textures that appear to 

endure across multiple types of counterfeit picture distributions. Nevertheless, the model 

encounters challenges when trained on StyleGAN images and tested on ProGAN images. 

Despite being synthetic, it is essential to note that these images come from different distribution 

spaces, which poses a challenge for the model to identify. Figure 3.12 represents the ROC 

curves of the models trained and tested on various GANs. The AUC scores of different models 

are shown and apparently our model has the highest score in comparison to the other models. 

3.3.3.6 Experiments on various post-processing operations of FF++, Celeb-

DF, and DFDCPreview dataset 

Images or data samples on the web undergo processing operations like blurring, compression, 

translation, rotation, up sampling or down sampling, and manipulators. A constraint of the 

diverse models is their insufficient resilience to diverse post-processing techniques such as 

noise addition, scaling, translation, blurring, compression, and so on [132]. Three post-

processing procedures (blurring, compression, and noise addition) are performed on the test 

dataset to show the model's resilience. The images were blurred using the Gaussian blur 

PyTorch transformation with a kernel size of 7x7 and sigma 25; noise was added using a zero 

mean and 0.2 standard deviation; and the images' quality was reduced by three times due to 
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compression (Figure 3.13). The regular images were used to train the models, but several post-

processing methods were applied to the images for testing. Three primary deepfake datasets 

have been taken into consideration for analysis. Once more, the comparative evaluation was 

conducted using four models: 

a) CViT [138]. 

b) MesoInception-4 model [125]. 

c) CNN's generated images are easy to spot now(CNN-Net) [130]. 

d) Recce [133]. 

e) IID [128]. 

f) SBI [134]. 

g) UCF [108]. 

Testing dataset without undergoing any post-processing operations: The initial row of each 

dataset exhibits the outcomes without any post-processing interventions applied to the image. 

All models in this scenario have exhibited outstanding performance, as shown in (Table 3.15),. 

The accuracy for the FF++ and DFDCPreview datasets is approximately 99%, highlighting the 

impressive capabilities of these state-of-the-art models in performing well within their 

designated domains. The IID achieved a flawless score on the DFDCPreview dataset. The 

accuracy score for Celeb-Df is approximately 95% for these models, as the dataset contains 

realistic diversified content that includes subtle modification artifacts that are challenging for 

the model to identify. MesoNet exhibits a marginal decline in performance for the FF++ and 

DFDCPreview datasets, potentially attributed to its reliance on conventional CNN layers, 

which may not correctly learn all the manipulations present in the FF++ dataset. The Recce 

approach exhibits a marginal decline in performance when used to the DFDCPreview dataset, 

mainly because it is not adept at accurately detecting the minor anomalies present in this 

dataset. 

Testing dataset undergoes blurring operations: Models are trained on data samples without 

blurring operation while tested on the blurred data samples. As stated, The images were blurred 

using the Gaussian blur PyTorch transformation with a kernel size of 7x7 and sigma 25. The 

models had a minimum drop of 14% in performance when subjected to blur operations in the 

case of FF++. In the case of the DFDCPreview and Celeb-Df datasets, the performance 

decreased marginally, approximately 4-6%, with a few exceptions for specific models. 

MesoNet has a more significant decline in performance for Celeb-DF and DFDCPreview, 

mainly because these datasets heavily depend on conventional CNN features. The IID model 

has demonstrated a loss in performance for the FF++ dataset, while there is a modest decrease 
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in performance for the other dataset. Another Recce model is significantly affected by the 

blurring operation due to its firm reliance on the training dataset. As a result, it exhibits 

inadequate generalization and robustness when faced with unseen data during testing. Other 

models are likewise affected by the blurring procedure, although to a lesser degree. Our model 

demonstrates enhanced resilience and robustness, as evidenced by a minimal reduction in 

performance of only 1-2% for the DFDCPreview and Celeb-Df datasets. Additionally, 

approximately 14% of the data samples still exhibit discriminative artifacts even after being 

subjected to significant blurring.  

Noise addition to the test data samples: The data samples are augmented with noise using a 

PyTorch transformation, where the noise has a mean of zero and a standard deviation of 0.2. 

The results revealed a substantial decrease in the scores for all the models, with scores as low 

as 50% for CviT, MesoNet, and CNN-Net. This highlights the susceptibility of these detection 

approaches to the introduction of noise. The hybrid model of CViT has been significantly 

impacted by the introduction of noise in the FF++ and DFDC Preview datasets, resulting in 

susceptibility to adversarial perturbations and subsequent inaccurate classification. MesoNet 

experiences a significant decrease in its classification score, rendering it vulnerable to different 

adversarial techniques. The UCF model, renowned for identifying shared characteristics 

through feature disentanglement and multi-task learning, faces significant challenges in 

achieving robustness when exposed to noise. Another approach, i.e. Recce, utilizing 

reconstruction learning and a bi-partite graph, focuses on generalization but struggles to 

perform effectively when noise features are introduced. In order to achieve high performance 

on a dataset with much noise, a model must either employ advanced data augmentation 

techniques that introduce noise to help the model learn how to classify it or utilize the attention 

mechanism to leverage multi-scale features that can effectively capture both local and global 

features that are robust to noise. Our model has used the latter strategy, enabling it to acquire 

intricate and resilient characteristics that withstand different adversarial procedures. When the 

accuracy of the other model in the DFDCPreview dataset does not exceed 80%, the LBP-ViT 

model consistently exceeds it with an accuracy score of 98%. Nevertheless, the model is still 

susceptible to the introduction of noise to some degree. 

Testing dataset undergoes compression: The images' quality was reduced by three times due 

to compression. The models' performance does not significantly decrease when samples are 

compressed for the DFDCPreview and Celeb-DF datasets, showing that the size reduction has 

minimal effect on the modified artifacts. The performance of models such as UCF, CNN-Net, 

Recce, and IID in the FF++ dataset has been significantly affected, indicating that these models 
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are not explicitly designed for compression scenarios. Additionally, the dataset contains 

multiple categories of manipulation, making it even more challenging for the models to learn 

the diverse distribution of features. The Celeb-DF dataset had the most negligible impact on 

the performance of the models, followed by the DFDCPreview dataset. Compression typically 

includes decreasing the resolution of data samples, affecting the finer features and leading to 

blocking, halo, ringing, and banding distortions. These artifacts specifically damage the 

gradients in the smooth sections. The models that concentrate on certain artifacts struggle to 

perform well in the presence of diverse and complex characteristics. Models that concentrate 

on several types of artifacts at different levels of detail are more likely to categories 

complicated feature patterns accurately. Our model prioritizes intricate characteristics, starting 

with textures and incorporating traditional CNN features at various scales. It leverages 

transformer capabilities to grasp global and local details through a cross-attention mechanism. 

This enables the model to effectively learn subtle, complex features at multiple scales for 

improved performance.
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Table 3.10 Models trained on the Deepfakes category of FF++ and tested on its other categories 

Test 

Ucf MesoNet CapsuleNet E-ViT Recce IID Sbi LBP-ViT(ours) 

Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc 

Df 
0.998

9 

0.998

5 

0.998

7 

0.998

7 

0.998

7 
1.0 0.999 

0.999

4 
1.0 

0.999

5 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0.819

5 

0.900

7 

0.994

9 

0.909

7 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

F2F 0.791 0.263 0.263 0.697 
0.602

3 
0.667 

0.145

5 

0.238

9 

0.634

5 

0.536

5 

0.623

9 
0.151 

0.243

1 

0.615

9 
0.53 

0.755

1 
0.165 

0.270

8 

0.647

9 

0.555

7 
0.629 0.084 0.148 

0.641

7 

0.517

2 

0.779

0 

0.271

5 

0.402

6 

0.721

8 

0.597

2 

0.664

1 

0.135

5 

0.225

0 

0.616

7 

0.533

4 

0.750

0 

0.641

1 

0.691

3 

0.797

8 

0.719

8 

FS 0.224 0.018 0.033 0.711 
0.539

6 

0.216

8 

0.015

5 

0.028

9 

0.296

2 

0.479

7 

0.376

4 

0.033

5 

0.061

5 

0.420

7 
0.489 

0.392

5 

0.026

5 

0.049

6 

0.470

0 

0.492

7 

0.214

7 

0.017

5 

0.032

3 

0.417

7 

0.476

7 

0.463

7 
0.016 

0.030

9 

0.562

1 

0.498

7 

0.231

8 
0.016 

0.029

9 

0.380

6 

0.481

5 

0.715

1 
0.045 

0.084

7 

0.667

3 

0.647

8 

NT 
0.816

4 
0.238 0.368 

0.669

3 

0.592

3 

0.770

3 
0.208 

0.327

5 

0.697

2 
0.573 

0.713

2 
0.25 

0.370

2 

0.663

9 

0.574

7 

0.789

5 
0.257 

0.387

7 

0.682

9 

0.594

2 

0.869

6 
0.13 

0.226

2 

0.715

8 

0.552

5 

0.876

5 
0.245 

0.382

9 

0.726

3 

0.602

5 

0.789

0 

0.252

5 

0.382

5 

0.731

8 

0.592

5 

0.738

2 

0.655

5 

0.694

4 

0.798

2 

0.720

1 

Table 3.11: Models trained on the Face2face category of FF++ and tested on its other categories 

Test 

Ucf MesoNet CapsuleNet E-ViT Recce IID Sbi LBP-ViT(ours) 

Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc 

Df 
0.853

1 

0.316

5 

0.461

7 

0.753

3 
0.631 

0.745

9 
0.367 

0.491

9 

0.708

5 
0.621 

0.816

1 
0.253 

0.386

2 

0.630

4 

0.59

8 
0.6751 

0.277

5 

0.393

3 

0.673

3 
0.572 

0.891

8 

0.181

5 

0.301

6 

0.808

2 

0.579

5 

0.863

8 
0.387 

0.534

5 

0.811

7 
0.663 

0.798

5 

0.501

5 

0.616

0 
0.794 

0.687

5 

0.887

6 

0.643

5 

0.746

1 

0.861

9 
0.781 

F2F 
0.997

5 

0.998

5 

0.998

0 

0.998

6 
0.998 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0.998

9 

0.987

5 

0.993

2 

0.999

5 

0.993

2 

0.999

5 
1.0 

0.999

7 
1.0 

0.999

7 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

FS 0.644 0.124 
0.207

9 

0.528

2 

0.527

7 

0.587

1 
0.266 

0.366

2 

0.606

4 

0.539

5 

0.637

1 
0.151 

0.244

1 
0.566 

0.53

2 
0.6399 

0.239

0 

0.348

0 

0.592

2 

0.552

5 
0.6 

0.094

5 
0.163 

0.650

7 

0.515

7 

0.578

0 

0.131

5 

0.214

3 

0.660

5 

0.517

7 

0.599

7 

0.291

5 

0.392

3 

0.610

6 

0.548

5 

0.634

0 

0.583

9 

0.607

9 

0.665

7 

0.651

2 

NT 
0.809

2 
0.314 

0.452

4 

0.682

7 
0.62 

0.693

7 

0.337

5 

0.454

1 

0.684

3 

0.594

2 

0.812

2 

0.285

5 

0.422

4 

0.666

6 

0.60

9 
0.7209 

0.485

5 

0.580

2 

0.710

6 

0.648

7 

0.847

2 

0.238

5 

0.372

2 

0.748

0 

0.597

7 

0.789

1 
0.378 

0.511

1 

0.787

7 

0.638

4 

0.761

8 
0.579 

0.657

9 

0.787

1 

0.698

9 

0.851

5 
0.777 

0.812

5 

0.880

4 

0.820

7 

Table 3.12: Models trained on the Faceswap category of FF++ and tested on its other categories 

Test 

Ucf MesoNet CapsuleNet E-ViT Recce IID Sbi LBP-ViT(ours) 

Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr. Re. F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc Pr Re F1 AUC Acc 

Df 0.371 
0.030

5 

0.056

4 

0.457

7 

0.489

4 

0.589

2 
0.522 

0.553

5 

0.632

1 
0.579 

0.537

5 

0.089

5 

0.153

4 

0.541

5 

0.506

5 

0.687

2 
0.311 

0.428

2 

0.671

2 

0.584

7 

0.546

6 

0.149

5 

0.234

7 

0.543

8 

0.512

7 

0.741

4 

0.388

5 

0.509

8 

0.726

2 

0.626

5 

0.538

0 
0.092 0.157 

0.575

9 

0.506

5 

0.807

5 

0.267

7 

0.402

1 

0.698

4 

0.631

4 

F2F 
0.740

3 

0.162

5 

0.266

5 

0.536

9 

0.552

7 

0.621

6 

0.545

5 

0.581

1 

0.635

4 

0.606

7 

0.638

3 

0.198

5 

0.302

8 

0.556

8 

0.543

0 

0.670

0 

0.300

5 

0.414

9 
0.573 

0.576

2 

0.678

3 

0.300

5 

0.416

4 

0.615

7 
0.579 

0.694

3 

0.431

5 

0.532

2 

0.696

4 

0.620

7 

0.675

8 

0.184

5 

0.289

8 

0.582

4 

0.548

0 

0.690

2 

0.307

5 

0.425

4 

0.631

6 

0.584

7 

FS 
0.996

9 

0.994

9 

0.994

9 

0.994

9 
0.995 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0.985

6 
0.996 

0.990

7 

0.999

0 

0.990

7 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0.999

7 

0.999

7 

0.999

7 

0.999

7 

NT 
0.613

7 
0.058 0.105 

0.492

9 

0.510

7 

0.590

3 
0.539 

0.563

5 

0.620

5 

0.582

5 

0.534

2 

0.136

5 

0.217

4 

0.535

0 

0.508

7 

0.624

6 

0.235

5 

0.342

0 

0.557

4 
0.547 

0.568

6 

0.163

5 

0.253

9 

0.536

7 

0.519

7 

0.611

3 

0.285

5 

0.389

2 

0.592

6 
0.552 

0.651

3 
0.085 

0.150

3 

0.526

7 

0.519

7 

0.851

4 

0.099

9 

0.178

8 

0.643

4 

0.659

6 
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Table 3.13:  Models trained on the NT category of FF++ and tested on its other categories 

Test 

Ucf MesoNet CapsuleNet E-ViT Recce IID Sbi LBP-ViT(ours) 

Pr. Re. F1 AUC Acc. Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc 

Df 0.8814 0.613 
0.723

1 

0.786

0 

0.765

2 

0.734

7 

0.814

5 

0.772

5 

0.828

7 

0.760

2 

0.761

9 
0.616 

0.681

2 

0.780

1 

0.711

7 

0.789

4 

0.650

5 

0.713

3 

0.832

5 

0.738

5 

0.794

1 
0.729 

0.760

1 

0.854

2 
0.77 

0.800

6 
0.532 

0.639

2 

0.833

1 

0.699

7 

0.791

3 
0.711 

0.749

0 

0.853

8 

0.761

7 

0.828

5 
0.858 0.843 

0.916

6 

0.840

2 

F2F 0.7989 0.379 
0.514

6 

0.638

4 
0.642 

0.727

6 

0.861

5 

0.788

9 

0.834

2 

0.769

5 

0.710

0 

0.504

5 

0.589

8 

0.726

5 

0.649

2 

0.758

3 
0.739 

0.748

5 

0.837

4 

0.751

7 

0.716

9 

0.624

5 

0.667

5 

0.784

3 

0.689

9 

0.779

4 

0.533

5 

0.633

4 

0.821

3 

0.691

2 

0.770

3 
0.689 

0.727

3 

0.821

2 

0.741

7 

0.859

3 
0.849 

0.854

1 

0.936

0 
0.855 

FS 0.2403 
0.046

5 
0.078 

0.400

5 

0.449

7 

0.501

3 

0.374

5 

0.428

7 

0.529

6 
0.501 

0.455

7 

0.167

5 

0.244

9 

0.488

6 

0.483

7 

0.496

6 

0.223

5 

0.308

2 

0.505

7 

0.498

5 

0.303

9 

0.129

5 

0.181

6 

0.404

5 

0.415

6 

0.376

1 

0.102

5 

0.161

1 

0.498

8 

0.466

2 

0.423

4 
0.177 

0.249

6 

0.472

0 

0.468

0 

0.748

2 

0.029

9 

0.057

2 

0.676

3 

0.667

6 

NT 0.9954 0.993 
0.994

5 

0.997

2 

0.994

5 

0.998

5 
1.0 

0.999

2 
1.0 

0.999

2 
1.0 

0.992

5 

0.995

9 

0.997

8 
0.996 1.0 1.0 1.0 1.0 1.0 

0.949

4 

0.995

5 

0.971

9 

0.999

9 

0.971

2 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0.998

5 
1.0 

0.999

2 
1.0 

0.999

2 

Table 3.14: Models trained and tested on different types of GAN datasets 

Train Test 

Ucf Res-Net CNN-Net Efficient-Net Recce IID Sbi LBP-ViT(ours) 

Pr. Re. F1 AUC Acc. Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc 

CelebA-

HQ_Pro

GAN 

CelebA

HQ_ 

StyleGA

N 

0.9 
0.00

6 

0.011

9 
.4645 

0.502

66 
1.0 

0.116

6 

0.208

9 

0.959

8 

0.558

3 

0.971

4 

0.191

3 

0.321

2 

0.970

8 

0.595

7 
1.0 0.008 

0.015

8 

0.846

6 
0.504 1.0 

0.001

3 

0.002

6 

0.660

8 

0.506

6 
1.0 

0.003

3 

0.006

6 

0.684

2 

0.501

66 

0.965

5 

0.018

6 

0.036

6 

0.681

4 
0.509 

0.988

1 
0.662 

0.798

2 

0.972

1 
0.827 

FFHQ_ 

StyleGA

N 

0.652 
0.99

7 

0.788

4 

0.777

7 

0.732

3 

0.659

0 

0.172

6 

0.273

6 

0.625

3 

0.541

6 

0.609

8 

0.346

6 

0.446

5 

0.653

3 

0.570

3 

0.721

5 
0.038 

0.072

2 

0.720

5 

0.511

6 

0.666

6 

0.001

3 

0.002

6 

0.657

2 

0.500

3 
0.8 

0.002

6 

0.005

3 

0.604

8 
0.501 0.9 0.018 0.035 0.623 0.508 

0.772

4 
0.776 

0.774

1 

0.831

7 

0.773

6 

CelebA-

HQ_Styl

eGAN 

CelebA

HQ_ 

ProGAN 

0.471 
0.00

5 

0.010

5 

0.416

1 

0.496

6 
0.01 0.01 0.01 

0.535

4 

0.499

6 

0.788

9 

0.003

3 

0.006

6 

0.836

3 

0.501

3 
1.0 0.006 

0.001

3 

0.809

3 

0.503

3 
1.0 

0.006

6 

0.00 

13 
0.497 0.503 0.5 0.5 0.5 

0.546

8 
0.5 

0.629

2 
0.084 

0.148

2 

0.641

7 

0.517

2 

0.763

5 
0.254 

0.381

1 

0.729

9 

0.587

6 

FFHQ_ 

StyleGA

N 

0.732 
0.99

9 

0.845

2 

0.773

5 

0.816

9 

0.815

6 
1.0 

0.898

5 

0.997

9 
0.887 

0.993

1 

0.998

6 

0.861

9 

0.994

3 
0.84 

0.742

0 

0.999

3 

0.851

7 

0.997

2 

0.826

0 

0.886

2 
0.966 

0.924

4 

0.981

2 

0.921

0 

0.863

1 
1.0 

0.926

5 

0.999

8 

0.920

6 

0.768

9 

0.998

6 

0.868

9 

0.995

2 

0.849

3 

0.956

5 

0.954

6 

0.955

6 

0.990

1 

0.955

6 

FFHQ_S

tyleGAN 

CelebA

HQ_ 

ProGAN 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.01 0.567 0.50 
0.772

7 
0.012 0.023 

0.779

9 
0.506 

0.903

2 

0.018

6 

0.036

5 

0.795

2 

0.508

3 
0.75 0.002 

0.003

9 

0.609

0 

0.500

6 

0.666

6 

0.001

3 

0.002

6 

0.602

7 

0.503

3 

0.610

2 
0.024 

0.046

2 

0.600

1 

0.504

3 

0.740

4 

0.722

6 

0.731

4 

0.804

8 

0.734

6 

CelebA

HQ_ 

StyleGA

N 

0.996 0.99 
0.993

3 

0.997

9 

0.993

3 
1.0 

0.997

3 

0.998

6 

0.999

9 

0.998

7 

0.999

8 

0.996

3 

0.996

3 

0.999

9 

0.996

3 

0.996

3 

0.999

3 

0.999

3 

0.999

9 

0.999

3 
1.0 0.848 

0.917

7 

0.996

5 
0.924 1.0 

0.999

3 

0.999

6 

0.999

9 

0.999

6 

0.988

1 
0.998 

0.993

0 

0.999

7 
0.993 1.0 

0.998

6 

0.999

3 

0.999

9 

0.999

3 

CelebA_

StarGA

N 

CelebA_

STGAN 
0.999 1.0 

0.999

6 
1.0 

0.999

6 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.006 

0.011

8 

0.988

5 
0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

CelebA_

StarGA

N 

CelebA_

STGAN 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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Table 3.15: Models trained on different datasets and tested on various post-processing scenarios. 

Trainin

g 

Dataset 

Testing 

Dataset 

CViT MesoNet UCF CNN-Net Recce IID Sbi LBP-ViT(ours) 

Pr. Re. F1 AUC Acc. Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc Pr. Re. F1 AUC Acc 

FF++ FF++ 0.9412 0.979 
0.959

6 
0.994 

0.999

7 

0.832

2 

0.999

8 

0.908

4 

0.996

8 

0.899

1 
0.988 

0.991

5 

0.989

8 

0.996

8 

0.989

7 

0.999

8 

0.999

6 

0.996

8 

0.999

9 

0.996

8 

0.989

8 

0.914

2 

0.950

5 

0.994

2 

0.952

4 

0.989

7 

0.995

1 

0.992

3 

0.999

6 

0.992

3 

0.997

3 

0.997

2 

0.997

3 

0.999

1 

0.997

3 

0.997

5 

0.998

2 

0.997

7 

0.999

9 

0.999

8 

FF++ 
FF++ 

Blurry 
0.7590 0.996 

0.861

5 
0.966 

0.839

9 

0.530

5 
1.0 

0.693

3 

0.981

9 

0.557

5 
0.673 

0.928

2 

0.780

3 

0.829

7 

0.738

6 

0.980

7 

0.998

2 

0.832

9 

0.983

1 

0.799

8 

0.705

9 

0.876

7 

0.782

1 

0844

4 

0.755

8 
0.575 

0.997

5 

0.729

9 

0.869

9 

0.630

4 

0.719

4 

0.963

7 

0.823

8 

0.915

7 

0.793

9 

0.797

4 

0.950

2 

0.867

1 

0.938

0 

0.854

4 

FF++ 
FF++ 

Noisy 
0.5344 0.728 

0.616

3 
0.568 

0.546

9 

0.523

5 

0.992

8 

0.685

4 

0.707

9 

0.544

5 
0.642 

0.644

5 

0.643

3 

0.647

9 

0.641

5 
0.5 0.5 0.5 0.5 0.5 

0.613

7 

0.566

8 

0.589

3 

0.616

4 

0.590

4 
0.5 0.5 0.5 

0.590

3 
0.5 

0.624

1 

0.574

2 

0.598

1 
0.643 

0.597

1 

0.640

6 

0.818

7 

0.718

8 

0.739

2 

0.679

7 

FF++ 

FF++ 

Compress

ion 

0.9391 0.972 
0.955

3 
0.991 

0.954

5 

0.926

2 

0.986

8 

0.955

5 

0.994

0 

0.954

1 
1.0 

0.002

5 

0.004

4 

0.578

4 

0.501

1 

0.937

6 

0.076

4 

0.141

9 

0.930

0 

0.538

1 
1.0 

0.049

8 
0.095 

0.881

1 

0.524

9 
1.0 

0.009

4 

0.018

6 
0.912 

0.504

7 

0.997

4 

0.394

9 

0.565

7 

0.961

4 

0.696

9 

0.977

8 

0.878

8 

0.925

7 

0.985

8 

0.929

5 

DFDCP

review 

DFDCPre

view 
1.0 0.999 

0.999

6 
0.999 

0.999

6 

0.990

0 

0.999

3 

0.994

7 

0.999

9 

 

0.994

6 

 

1.0 
0.999

6 

0.999

7 

0.999

7 

0.999

8 

0.999

9 

0.998

6 

0.998

9 

0.999

9 
0.999 

0.998

9 

0.998

5 

0.998

7 

0.999

7 

0.990

5 
1.0 1.0 1.0 1.0 1.0 1.0 

0.999

3 

0.999

6 

0.999

9 

0.999

9 
1.0 

0.998

6 

0.999

3 

0.999

9 

0.999

3 

DFDCP

review 

DFDCPre

view_Blur

ry 

0.9688 0.851 
0.906

3 
0.969 0.912 

0.998

5 

0.891

3 

0.941

8 

0.998

1 
0.945 0.998 

0.792

6 

0.883

8 

0.928

7 

0.895

6 

0.996

7 
0.72 

0.837

2 

0.996

5 
0.86 

0.605

0 

0.977

3 

0.747

4 

0.877

0 

0.669

6 
1.0 

0.849

3 

0.918

5 

0.994

0 

0.924

6 

0.980

5 

0.943

3 

0.961

6 

0.995

0 

0.962

3 

0.999

3 
0.99 

0.994

6 

0.999

8 

0.994

6 

DFDCPr

eview 

DFDCPre

view 

Noisy 

0.7944 0.703 
0.746

1 
0.839 

0.760

6 
0.5 1.0 

0.666

6 
0.5 0.5 0.5 1.0 

0.666

6 

0.544

7 
0.5 

0.559

8 
1.0 

0.666

6 

0.601

5 
0.5 0.875 

0.018

8 

0.036

5 

0.564

4 
0.508 0.5 1.0 

0.666

6 
0.50 0.5 0.5 1.0 

0.666

6 

0.609

6 
0.50 

0.981

3 

0.984

6 

0.984

6 

0.998

8 
0.983 

DFDCP

review 

DFDCPre

view 

Compress

ion 

0.9986 0.998 
0.998

6 
0.999 

0.998

6 

0.969

5 

0.998

6 

0.983

9 

0.999

4 

0.983

6 
0.757 

0.999

9 

0.861

9 

0.794

0 
0.84 

0.994

3 
1.0 

0.758

7 

0.993

8 

0.993

9 

0.500

8 

0.995

3 

0.666

3 

0.604

2 

0.501

6 

0.937

5 
1.0 

0.967

7 

0.999

9 

0.966

6 

0.981

6 

0.998

6 
0.99 

0.999

9 
0.99 

0.997

3 

0.999

3 

0.998

3 

0.999

7 

0.998

3 

Celeb-

DF 
Celeb-DF 0.8997 0.941 

0.919

7 
0.978 

0.917

8 

0.822

2 

0.907

5 

0.862

8 

0.925

9 

0.855

6 
0.954 

0.954

3 

0.954

4 

0.960

5 

0.954

4 

0.984

8 

0.937

6 

0.940

6 

0.981

4 

0.940

8 

0.787

8 

0.967

3 

0.868

4 

0.967

6 

0.853

4 

0.922

7 

0.945

1 

0.933

8 

0.977

3 

0.933

0 

0.922

7 

0.965

3 

0.943

5 

0.989

7 

0.942

2 

0.974

1 

0.939

5 

0.956

4 

0.984

8 

0.957

2 

Celeb-

Df 

Celeb-DF 

Blurry 
0.8075 0.930 

0.864

5 
0.937 

0.854

2 

0.629

1 

0.975

7 

0.764

9 

0.882

2 

0.700

2 
0.830 

0.951

1 

0.886

5 

0.893

7 

0.878

2 

0.960

0 

0.942

1 

0.891

2 

0.957

4 
0.885 

0.697

8 

0.932

8 

0.798

4 
0.911 

0.764

4 

0.748

3 

0.939

7 

0.833

2 

0.917

4 

0.811

8 

0.893

8 

0.861

8 

0.877

5 

0.957

8 

0.879

7 

0.996

5 

0.943

2 

0.954

7 

0.980

4 

0.955

3 

Celeb-Df 
Celeb-DF 

Noisy 
0.6041 0.564 

0.583

2 
0.643 

0.597

1 
0.5 0.5 0.5 

0.526

7 
0.50 0.5 1.0 

0.666

6 

0.508

3 
0.50 0.5 0.5 0.5 0.513 0.50 

0.623

3 

0.564

2 

0.592

3 

0.660

3 

0.608

2 

0.624

1 
0.5 0.5 

0.542

7 
0.50 0.5 0.5 0.5 

0.468

3 
0.5 

0.643

1 

0.838

6 

0.727

9 

0.743

1 

0.686

7 

Celeb-

Df 

Celeb-DF 

Compress

ion 

0.8280 0.891 
0.858

1 
0.938 

0.852

8 

0.946

8 
0.334 

0.493

8 

0.919

3 

0.657

6 
0.973 

0.524

8 

0.681

9 

0.912

4 

0.755

1 

0.934

4 
0.534 

0.688

1 

0.932

8 
0.758 

0.866

6 

0.768

7 

0.814

7 

0.918

6 

0.825

2 

0.904

8 

0.752

4 

0.821

6 

0.932

1 

0.836

6 

0.937

8 

0.760

7 
0.84 

0.955

8 

0.855

2 
0.895 

0.929

5 

0.912

0 

0.973

4 

0.910

4 
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Figure 3.11 ROC curves for the model trained on the DeepFakes dataset and tested on other categories of FF++ 
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Figure 3.12 ROC curves of the model trained and tested on various sets of GAN images 
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Original Image Blurred Image Noisy Image Compressed Image 

Figure 3.13 Images undergo different post-processing operations 

3.3.4 Ablation Studies 

Ablation studies are performed for each component of LBP-ViT outlined in this section to 

confirm its validity. This section employs different categories of the Faceforensics++ dataset 

to conduct experiments. The components undergo an iterative training process on three FF++ 

categories and are then tested on a fourth category. 

3.3.4.1 Model without the transformer encoder 

In this experimentation, the vision transformer encoder has been removed along with the cross-

attention (as attention mechanism is a part of transformer encoder), to study the relevance of 

ResNet and the global texture module. The ResNet18 architecture serves as the basis for this 

component, and the global texture module is calculated prior to each down-sampling operation 

in the main branch. Furthermore, these texture features combine until they join with the primary 

branch(Figure 3.14). Subsequently, these textural features are combined with the main branch 

and transmitted to the fully linked and sigmoid layer for final classification. depicts the 

schematic illustration of the model. The classification results are displayed in Table 3.16. The 

accuracy score ranges from 70% to 85% for several categories of FF++ (except the Face swap 

category), indicating that global texture features captured at different semantic levels enables 

it to detect hidden altered artifacts. If we compare the accuracy score of the overall model with 

the current module, there has been a substantial decrease in the score for DF and NT category, 

showing the greater importance of visual transformer with its cross-attention mechanism. 

Transformer encoder enables further learning and refinement of features that has been 

calculated at different scale to attend to the global and local details with great attention of 

detailing. Absence of transformer would lead to a substantial decrease in the score of various 

categories of FF++. Nevertheless, the model continues to experience difficulty accurately 

categorizing images for face-swap categories. This could be attributed to the limited ability of 

the model to successfully capture and manipulate textures within a narrow range of swap 
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boundaries. The model demonstrates its ability to efficiently capture artifacts for several 

categories, indicating that the texture feature plays a significant role in classification. 

 

Figure 3.14 Model consisting of ResNet18 with Global texture block where features from both branches are 

concatenated for classification. 

3.3.4.2 Parallel branches cross-attention vision transformer 

The component is exhibited in Figure 3.15. In this scenario, two Convolutional Neural 

Networks (CNNs) located in different branches are utilized to process the input data and 

generate feature maps of different sizes. Subsequently, these maps are transmitted to the 

transformer encoder to provide a cross-attention process. The extracted features are 

subsequently inputted into a multi-layer perceptron, and the resulting output is combined to 

obtain the final prediction. Figure 3.15 displays the categorization outcome of this component. 

The transformer encoder learns the dependencies between the entire input image while 

calculating the relevance of the different pixels of the input image concerning each other, owing 

to the self-attention mechanism of the transformer encoder. So, the Global contextual 

relationship of a transformer includes a broader range of commonality of patterns over longer 

distances, including various patterns like intensities, brightness or spatial characteristics of an 

image. This method captures relationships between different pixels regardless of location by 

giving each one a "global view" of the entire image. Therefore, incorporating the global 

perspective of spatial attributes in their feature space may improve performance in the final 

classification task compared to the abovementioned ResNet design. The outcome is an 
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improvement in accuracy scores compared to the previous component, ranging from 60% to 

70%. This suggests that regular CNN features with cross-attention cannot effectively classify 

various changed images. The attention mechanism is crucial in cases where texture features 

lack discriminability, as seen by the face swap examples, where the score surpasses the prior 

component. The primary inference from this component is that effectively capturing the 

essential underlying characteristics that consistently exist across several modified samples 

necessitates more than a transformer equipped with cross-attention. 

 

Figure 3.15: Model diagram of parallel-branch cross-attention vision transformer where the image is initially 

passed through CNNs to create feature maps of different sizes. 

3.3.4.3 Model without the cross-attention mechanism 

A simple concatenation strategy has been employed, where the tokens from both branches are 

combined without regard for their scale and branch. Therefore, the fusion equation will 

resemble the following: 

ŷ = [ƒ1(𝔛𝑝𝑎𝑡𝑐ℎ & 𝑐𝑙𝑠
1 )||ƒ2(𝔛𝑝𝑎𝑡𝑐ℎ & 𝑐𝑙𝑠

2 )] (3.26) 
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𝛾 = ŷ + 𝔐𝐶𝒜〈ℒ𝒩(ŷ)〉 
(3.27) 

Here, ƒ(. ) is used for the dimension alignment. In Table 3.16,  part III displays the score for 

the tested model without the cross-attention mechanism. The score across all categories of 

FF++ decreases by approximately 2-4% compared to the overall model with the cross-attention 

mechanism. The cross-attention mechanism enforces the self-attention mechanism to 

concentrate on the specific patches within and across smaller regions of varying scales, 

enabling the model to improve the feature representation of local and global features. 

Incorporating multi-scale features into the analysis enabled more effective processing of local 

and global characteristics, resulting in enhanced performance. The lack of an attention 

mechanism results in a decrease in performance by 2-4%. It is worth noting that the 

performance of the NT category of FF++ is lower by around 1%. This is likely because the NT 

dataset utilizes a texture mechanism in its development, which is readily obtained via the 

Global Tex module. As a result, there is less reliance on the cross-attention mechanism 

compared to other models. 
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Figure 3.16: Model without the multi-layer aggregation of the texture. A single global texture module is computed 

and then fed into the dual branch of the vision transformer. 

3.3.4.4 Model without the multi-layer aggregation of global texture 

 Figure 3.16 illustrates the model's diagram, where a single global texture is applied after 

the ResNet layer and inputted into the vision transformer's dual branch. The results are 

displayed in Table 3.16 in section 3. There is a noticeable decrease in performance, 

approximately 6-8% compared to the overall model. One possible explanation for the 

performance issue is that CNN has a limited receptive field, which means it struggles to capture 

dependencies over longer distances. Additionally, the texture calculated on this feature map 

may not effectively capture long-range feature modelling, leading to a decrease in the model's 

performance. In addition, calculating the texture at various semantic levels makes it possible 

to capture detailed information such as edges, corners, shapes, and objects. This leads to a more 

comprehensive and enhanced feature representation. In addition, harnessing texture 
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information from various scales also enhances gradient flow during back-propagation, enabling 

models to adapt and process intricate scenes.  

3.3.4.5 LBP-ViT (ResNet with Global Texture Module + Cross-Attention 

Transformer) 

The model described in this paper integrates the cross-attention transformer and texture block 

with ResNet. The component above suggests that texture can be a promising characteristic for 

detecting deepfakes, even when subjected to various sorts of deepfake manipulation. An 

inductive bias-free cross-attention vision transformer focuses on the manipulation details at the 

same time. The cross-attention mechanism enhances, concentrates, and enhances the 

conventional CNN features after the texture has been calculated and combined. Consequently, 

this leads to a more powerful feature representation and enhances the model's overall 

performance. The Global relation of a transformer may include a broader range of commonality 

of patterns over longer distances, which may include global texture and other patterns like 

intensities, brightness or spatial characteristics of an image. So, their feature space includes all 

sum-Bonam of all spatial characteristics; hence, texture information may get subdued, and the 

final classification task may give better results. While explicitly computing global texture 

features(as the texture is one of the potential features for discrimination) and then getting fed 

to the transformer would enable the entire architecture to focus on such features, resulting in 

better classification results, as shown by Table 3.16. The table shows that this potent 

combination produces more than 83% accuracy for Face2face and Deepfake data, 78% for NT 

samples, and more than 66% for face-swap samples. This indicates that the model can learn 

discriminative characteristics that hold across various sample types. 

Table 3.16 displays the classification results for each component. Components are trained on three categories and 

tested on the fourth category of FF++ recursively. 

Train Test Precision Recall F1 Score AUC Acc 

Model without the transformer encoder 

F2F+FS+NT DF 0.8352 0.646 0.7285 0.8703 0.75 

DF+FS+NT F2F 0.9009 0.769 0.8297 0.9275 0.84 

DF+F2F+NT FS 0.7989 0.379 0.5146 0.6489 0.642 

DF+F2F+FS NT 0.7833 0.6075 0.6843 0.7972 0.71 

Dual-branch transformer with Cross-Attention Mechanism 

F2F+FS+NT DF 0.668 0.7875 0.7231 0.7639 0.6985 

DF+FS+NT F2F 0.6650 0.691 0.6778 0.7378 0.6715 

DF+F2F+NT FS 0.644 0.5475 0.5920 0.6628 0.6227 

DF+F2F+FS NT 0.6943 0.66 0.6767 0.7324 0.68475 
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Model without multi-layer aggregation of feature 

F2F+FS+NT DF 0.8425 0.8735 0.8577 0.9142 0.8575 

DF+FS+NT F2F 0.8501 0.7508 0.7977 0.88752 0.8107 

DF+F2F+NT FS 0.5863 0.6135 0.5995 0.6525 0.6425 

DF+F2F+FS NT 0.7334 0.8642 0.79344 0.8674 0.7724 

Model without cross-attention Mechanism 

F2F+FS+NT DF 0.7988 0.8465 0.8219 0.8766 0.8195 

DF+FS+NT F2F 0.8035 0.7288 0.7643 0.8556 0.7739 

DF+F2F+NT FS 0.5776 0.6079 0.5924 0.6475 0.6356 

DF+F2F+FS NT 0.6988 0.8216 0.7187 0.8266 0.7475 

Tex-ViT(ResNet+Texture+ Cross-Attention Transformer) 

F2F+FS+NT DF 0.8642 0.9005 0.8819 0.9425 0.8795 

DF+FS+NT F2F 0.8708 0.7785 0.8221 0.9245 0.8315 

DF+F2F+NT FS 0.6070 0.6365 0.6214 0.6725 0.6642 

DF+F2F+FS NT 0.7446 0.879 0.8062 0.8771 0.7887 

3.3.5 Visualization outcomes of the LBP-ViT’s predictions 

This section visually illustrates the specific area of interest for the LBP-ViT prediction. The 

model is trained using all the images in the dataset, and the GradCAM class activation maps 

are used to determine the specific regions of focus for the classifier during prediction. The 

model's forecast zone is illustrated in Figure 3.17. The model focuses on specific texture 

regions to get the visualization results. 
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Figure 3.17: LBP-ViT's model's region of  focus for various datasets 

3.3.6 Conclusion 

Empirical tests in this research validate that counterfeit facial images have a more even texture, 

and this overall information is not maintained throughout a significant spatial range. These 

investigations demonstrate that texture statistics are crucial and serve as a shared characteristic 

in the distribution of false face images. The proposed model utilizes ResNet-18 as the 

underlying architecture for extracting conventional convolution features. Additionally, it 

incorporates a textures module that computes the global utilizing gram matrices, together with 

Local binary patterns operation, before each down-sampling operation of ResNet-18. The 

texture information is continuously accumulated layer-by-layer and then combined with the 

usual features of ResNet-18 to produce the input for the dual-branch cross-attention-based 

vision transformer. An experiment was conducted to detect cross-forgery using several 

categories of Faceforensics++ and other GAN images. The results indicate that the model 

performed exceptionally well and outperformed numerous state-of-the-art models. In order to 

demonstrate the resilience of the model across many situations, we conducted experiments 

using the FF++, DFDCPreview, and Celeb-DF datasets. These experiments involved 

performing operations such as blurring, adding noise, and compression. This experiment 

demonstrates the model's ability to generalize to different types of unseen images and its 

resilience to various post-processing methods. 

3.4 Significant outcome of this Chapter 

The following are the significant results of this chapter: 

 Proposed two novel architecture based on texture and cross-attention mechanism i.e. 

Tex-ViT and Tex-Net for generalized deepfake detection. 
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 Tex_ViT uses gram-matrices for texture computation. The model collaborates 

conventional ResNet features with a texture module that runs parallel acts on parts of 

ResNet before every down-sampling operation and serves as an input to the dual branch 

of the cross-attention vision transformer. 

 Tex-Net model architecture uses the combination of Gram-matrices and Local Binary 

Patterns(LBP) for texture computation. The global texture is calculated at each down 

sampling operation of ResNet, and then layer features are aggregated at multiple layers. 

These features continue to combine before being fed into the dual-branch cross-

attention-based vision transformer for the classification. 

 Experimentation was conducted on different categories of FF++ in a cross-

manipulation setting and different GAN dataset images in cross-domain settings to 

demonstrate the model's generalization ability of both models. Both model 

demonstrates superior performance compared to other SoTA models, providing further 

evidence of the strength of texture features. 

 Through experimentation on FF++, DFDCPreview, and Celeb-Df, data samples were 

subjected to different post-processing operations such as blurring, noise addition, and 

compression. The results showed that the both models performed exceptionally well 

and demonstrated strong robustness against adversarial operations. 

The subsequent research studies serve as the foundation for this chapter. 
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Chapter 4: Deepfake video Dataset and framework 

for deepfake video detection 

4.1 Scope of this Chapter 

This chapter is dedicated to the problem of proposing a video dataset named, Div-Df, having 

variety of manipulation. This dataset is composed of 150 real videos of different celebrities of 

different professions and 250 deepfake videos (100 face-swap videos, 100 facial enactment 

videos, and 50 lip-sync videos). The dataset consists of real and fake videos of various famous 

personality’s speeches and interviews. Additionally, proposed a deepfake video detection 

model that combines Xception and LSTM pretrained models with channel and spatial attention 

mechanisms (CBAM). The latent spatial artifacts are captured by Xception using depthwise 

separable convolution, while the differences between the altered sequences are captured by 

LSTM. This hybrid model assembly allows for the learning of the spatial and temporal 

distortions along various dimensions and is an effective tool for deepfake identification. 

Benchmarking is done using the proposed framework and various state-of-the-art methods on 

the proposed dataset which shows the superiority of the proposed model against various state-

of-the-art models. 

4.2 Div-Df: A Diverse Manipulation Deepfake Video Dataset 

4.2.1 Abstract 

Recent advances in image and video manipulation have given rise to grave concerns. Deepfake 

technology employs deep learning techniques to produce astoundingly lifelike content. 

Deepfakes are risky since they have the ability to counterfeit someone's identity by replacing 

their face with that of another person or generating random noise in the mouth area. 

Additionally, with just a few seconds of audio, AI-based deep learning models can replicate 

any person's voice. Detecting such videos is the only promising defense against such fraudulent 

data. Several deepfake datasets have been made available to help in deepfake detector training 

and testing, including DF-TIMIT [139], FaceForensics++ [15], Celeb-DF [140], DFDC [141], 

Deeperforensics1.0 [142], etc. Even though this has significantly improved deepfake detection 

methods, they are still unable to capture real-world scenarios entirely, as most of the dataset is 

face-swap manipulation. To bridge this gap, we have proposed a Div-DF dataset containing 

various types of video manipulation like face swap, facial reenactment, and lip-sync. This 

dataset is composed of 150 real videos of different celebrities of different professions and 250 

deepfake videos (100 face-swap videos, 100 facial reenactment videos, and 50 lip-sync videos). 
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Deepfake videos are synthesized using state-of-the-art Face-Swap GAN(FSGAN) and the 

Wav2Lip method. The dataset contains high-quality samples of face-swapped and lip-sync 

videos, while the samples of face-re-enactment are of average quality. We have tested state-of-

the-art detection and image classification models to standardize our dataset's baseline 

evaluation of various detection methods. We have done a comprehensive assessment along 

different metrics and found that our dataset is challenging and represents real-world samples. 

4.2.2  Proposed Diverse Video Deepfake Dataset(Div-DF) 

Div.-DF consists of varied video manipulation types, including Face swap, face reenactment, 

and lip-sync. Existing datasets do not include such variety in their dataset; they majorly focus 

on the face swap. Table 4.1 focuses on a variety of existing datasets. There are 400 videos in 

Div-DF, 150 of which are genuine and 250 of which are deep fakes (which include 100 face-

swap videos, 100 face-reenact videos, and 50 lip-sync videos). Each video is typically 15 

seconds long, runs at 30 frames per second, and has a minimum resolution of 480 pixels. 

Table 4.1 A Comparison of DIV-DF with the existing Deepfake video dataset on various parameters 

Dataset Manipulation 

Types 

#Actor

s 

Real 

Video 

Source 

#Real 

Videos 

#Fake 

Videos 

Resolution 

 

UADFV [66] Faceswap 49 Youtube 49 49 294x500 

Df-TIMIT [139] FaceSwap 32 VidTIMIT 640 320 64x64(LQ), 

128x128(HQ) 

FF++ [15] Face Swap, 

Reenactment 

977 Youtube 1000 4000 480p, 720p, 

1080p 

DFDC [141] Faceswap 960 Volunteer 

Actor 

23654 104500 1080x1920 

DFDC Preview 

[143] 

Faceswap 66 Volunteer 

Actor 

1131 4113 1080x1920 

Google DFD 

[144] 

FaceSwap 28 - 363 3068 1080x1920 

Celeb-DF [140] FaceSwap 59 Youtube 590 5639 256x256 

DeeperForensics 

1.0 [142] 

FaceSwap 100 Videos 

Shoot  

50000 10000 1920x1080 

WildDeepfake 

[145] 

Faceswap - Internet 3805 3509 - 

FakeAVCeleb 

[146] 

FaceSwap, Lip-

Sync, VC 

600+ VoxCeleb

2. 

500 20000 - 

Div-DF(Ours) FaceSwap, 

LipSync, Facial 

reenact. 

30 Youtube 150 250 360p, 480p, 

720p, 1080p 
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4.2.2.1 Data Collection 

The authentic videos are selected from publicly accessible YouTube videos that correlate to 

speeches and interviews given by different celebrities who are of different ages, genders, and 

ethnicities. These videos are downloaded using the yt-dlp software, and then a portion of a 

video is extracted using FFmpeg software. Audios (English language) for the lip-sync 

manipulation are also extracted using the FFmpeg software.  Five videos are collected for each 

subject, and there are 30 such subjects which constitute 150 real videos. The real dataset 

comprises 60% males and 40% females. Figure 4.1 presents the statistics of our real dataset 

sequences along various dimensions like profession, geographical location, age group, and 

resolution. We can see that 7% of the Identities lie in the age group of 18-35 years, 36% in the 

age group of 35-60 years, and more than 37% lie in the age group more significant than 60 

years, and 20% have already died. The different professions of identities are politician followed 

by sportsman, actor, and others. The resolution of most sequences is excellent, around 1080p 

and 720p. A few videos are also of the resolution 480p and 360p, especially of the dead 

identities. The collected dataset is diverse in identities, illumination conditions, poses, and 

expressions.  

4.2.2.2 Synthesizing methods 

Our fake videos have three kinds of manipulation, i.e. Face-Swap, Facial reenactment and Lip-

Sync. For generating the videos of these manipulations, we have used two well-known 

methods: 

FSGAN [147]:: The Framework uses a unique recurrent neural network to do facial 

reenactment and face swapping for two identities. The model is identity-agnostic and 

applicable for both images or a video sequence. For video sequences based on reenactment, 

Delaunay triangulation, and barycentric coordinates, the model employs continuous face view 

interpolation. Afterward, a face blending network for maintaining skin tone, poses, and lighting 

conditions was used to combine the faces seamlessly. Model is subject-agnostic means it does 

not require training of the targeted faces. 

Wav2Lip [148]: A lip-sync technique that syncs the mouth region according to arbitrary audio. 

The authors identified the weakness of earlier lip-sync methods, proposed a different loss 

function, and designed a powerful discriminator that produces highly realistic lip-sync samples. 

FSGAN model generates face-swap and facial reenactment samples without requiring training 

on the input samples. Face-Swap-generated examples are highly realistic, while the 
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reenactment-generated samples are of the average medium in quality. The Wav2lip method is 

used to generate lip-sync samples of the dataset, developed are of good quality and hence 

challenging to spot as false with the naked eye. Figure 4.2 represents the visual samples of the 

dataset. 

  

  

Figure 4.1 Statistics of Div-Df dataset along different dimensions 
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Figure 4.2 Samples of various categories of the Div-Df dataset 

4.3 Deepfake video detection using a hybrid Xception-LSTM model with 

spatial and channel attention 

4.3.1 Abstract 

Recent advances in image and video manipulation have given rise to grave concerns. Deepfake 

technology employs deep learning techniques to produce astoundingly lifelike content. 

Deepfakes are dangerous since they have the ability to spoof someone's identity by swapping 

out their face for another person's or generating random noise from the mouth area. The only 

promising defense against such fake data is the detection of such videos. We have developed a 

deepfake detection model that combines Xception and LSTM pretrained models with channel 

and spatial attention mechanisms (CBAM) to counter the user's malevolent intent. The latent 

spatial artifacts are captured by Xception using depthwise separable convolution, while the 

differences between the altered sequences are captured by LSTM. This hybrid model assembly 

allows for the learning of the spatial and temporal distortions along various dimensions and is 

an effective tool for deepfake identification. The evaluation is conducted using our recently 

suggested Div-DF dataset, which includes various forms of video alteration such face swap, 

facial reenactment, and lip syncing. The evaluation reveals that our model performs well on a 

variety of datasets and can outperform a number of state-of-the-art deepfake detection and 

image classification models. 

4.3.2 Proposed Framework 

The model comprises three major components: CBAM, XceptionNet, and LSTM (Long short-

term Memory)(Figure 4.3).  

CBAM [149]: Channel attention exploits the relationship between the inter-channel of different 

modules, computed by squeezing the channel information along various channel axes. Then, 

the spatial information of the feature maps is aggregated using a single hidden layer with a 

shared multi-layer perceptron network after max-pooling and average-pooling operations with 

a single hidden layer. Channel attention focuses on the ‘what’ part, while spatial attention 

focuses on the ‘where’ information part of the feature maps. 
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XceptionNet [129]: The “extreme” version of Inception V3, where the spatial correlation and 

cross-channel correlation are completely separated. The design is a linear stack of 14 modules 

with residual connections in between 36 depth-wise separable convolutional layers. This novel 

decoupling of correlation resulting in a substantial reduction in the number of parameters and, 

hence, less overhead of computations. 

LSTM [150]: LSTM captures the long-term dependencies between the input samples. It is 

mainly used for sequence data or temporal data. LSTM removes vanishing gradient problems, 

leaving the training model unaltered and handling dispersed representations, continuous values, 

and noise, which are used to bridge long lags in some problems. Also, LSTMs do not require 

keeping a limited number of prior states. For our model, LSTM is employed to capture the 

temporal discrepancies between the frame of the video samples. 

Input video samples are broken into the frames fed to the CBAM model to refine the 

representation of the feature maps. Then, these representations are passed to the XceptionNet 

pre-trained model to capture intrinsic and latent spatial artifacts. Then, such representations are 

passed to the LSTM model to learn the temporal discrepancies between the frames.  

 

Figure 4.3: The proposed workflow for the deepfake detection where the original video was divided into frames 

and faces were detected using MTCNN face detection. The cropped faces are first fed into the CBAM module, 

and then the refined representation is passed to passed to the combination of XcpetionNet and LSTM to learn 

artifacts and then to the softmax function for prediction. 
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4.3.3 Experimentation 

The selection of training hyper-parameters, various datasets, the choice of the face extractor, 

and all of the experiment scenarios will be covered in this section. 

4.3.3.1 Experimental settings: 

The starting learning rate is set at 0.1. 64 is taken as the batch size. Using the Adam optimizer, 

the model's parameters will be updated. Each experiment is run for 100 epochs, and the 

experiments are run for 24GB NVIDIA TITAN RTX GPUs. 

4.3.3.2 Dataset Pre-Processing 

Our algorithm as well as different deepfake detection and image classification models have 

been tested on the Div.-DF dataset. There are 400 videos in Div-DF, 150 of which are genuine 

and 250 of which are deepfakes(which include 100 face-swap videos, 100 face-reenact videos, 

and 50 lip-sync videos). Each video is typically roughly 15 seconds long and has a frame rate 

of 30fps, and the resolution of the videos is 480px or more. Videos are initially divided into 

frames, and their faces are extracted using the MTCNN face extractor. Around 300-400 frames 

are extracted for the videos. The training set, validation set, and testing set were each given a 

portion of the dataset that was split into three sets with a ratio of 70%:15%:15%. 

4.3.3.3 Evaluation 

We tested out our model in the experiment. For comparison with our model, a number 

of  deepfake and image classification models are taken into consideration. Models are 

initialized with the pre-trained weights if they are available. The model is trained using the 

training dataset, and it is then evaluated against the validation dataset; weights from models 

that perform well during validation are kept for use on the test dataset. 

Various models that are considered for the evaluation are as follows: 

 MesoInception-4 model [125]. 

 Residual-Net50 [136]. 

 CNN-Net [130]. 

 Efficient-Net [137]. 

 CViT [151]. 

 Capsule Network [152]. 

 Global Texture [153]. 

 E-ViT [126]. 



86 

 

 

Code for these models was pulled from their GitHub repository, modified for the dataset, and 

given more assessment metrics for a more thorough evaluation. Table 4.2 contains the 

benchmark score of different deepfake detection models on our Div-Df dataset. The models' 

average accuracy is about 85 per cent, showing the vulnerability of the models in a diversified 

scenario. Our model can beat the score of various other models, showing our model's best 

performance in diversified scenarios. MesoNet, vision transformer and Efficient_B0 have great 

difficulty functioning in such diversified conditions. Figure 4.4 highlighted the ROC, i.e., 

different models' probability curves or detection capability. Almost all the model has an AUC 

score of more than 90% but less than 95%, demonstrating the typical performance of these 

contemporary models on this variety of datasets. 

Table 4.2: Benchmark score of our model and different model on the Div-DF dataset. 

Models Precision Recall F1-Score AUC Accuracy 

Capsule-Net [154] 0.9340 0.8496 0.8898 0.9405 0.8680 

CNN-Net [130]. 0.9766 0.8865 0.9019 0.9544 0.8791 

CViT [151] 0.8148 0.8888 0.8502 0.9196 0.8201 

EfficientNet_B0 [131] 0.6753 0.9936 0.8040 0.7394 0.6962 

E-ViT [126] 0.8762 0.8605 0.8683 0.9106 0.8357 

Gram-Net [115] 0.8835 0.9318 0.9070 0.9647 0.88 

MesoNet [125]. 0.7840 0.6994 0.7393 0.7862 0.6907 

ResNet50 [155]. 0.8827 0.8839 0.8831 0.9328 0.8533 

Proposed Model 0.9555 0.9364 0.9458 0.9855 0.9306 
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Figure 4.4: ROC curve of various deepfake detection models 

4.3.4 Conclusion 

In this study, we introduced a dataset called Div.-DF that contains various deepfake video 

manipulation, i.e. Face-Swap, facial reenactment and Lip-sync. The dataset comprises 150 real 

videos and 250 deepfake videos, divided into 100 faces-swap, 100 facial reenactments, and 50 

lip-sync videos. The data samples are of high visual quality, especially face-swap and lip-sync 

videos. We have also proposed deepfake detection method that captures the latent, intrinsic 

spatial and temporal discrepancies among the manipulated samples. The Xception pre-trained 

model is employed to capture the spatial artefacts, and to catch long-term differences among 

the artificial samples, we used LSTM. The input samples are initially passed through the 

CBAM module to refine the representation. We have standardized the benchmark evaluation 

of our model and compared it against different deepfake detection and image classification 

methods. Models perform well on the dataset that represents the diversified scenarios of 

manipulation.  

4.4 Significance outcome of this chapter 

The significance outcome of this chapter are as follows: 

 Proposed a novel diverse manipulation dataset named Div-Df and a framework for 

deepfake video detection. 
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 Div-DF dataset consists of real and various manipulated videos like Face Swap, Facial 

reenactment, and lip-sync. YouTube is used to collect real videos, while fake videos 

are created using FSGAN and Wav2Lip techniques. 

 Framework for deepfake video detection is proposed consisting of Xception model with 

spatial and channel attention to capturing spatial artifacts and LSTM to capture long-

term dependencies or time discrepancies among the manipulated samples. 

 Evaluated the performance of the proposed model and various state-of-the-art methods 

on Div-Df dataset and found that suggested model performs when videos are subjected 

to various manipulations, with performance on par with other SoTA models. 

The subsequent research studies serve as the foundation for this chapter.  

1. D. Dagar and D. K. Vishwakarma “Div-Df: A Diverse Manipulation Deepfake Video 

Dataset” IEEE Conference: Global Conference on Information Technologies and 

Communications(GCITC), Bengaluru. (2023), doi: 

10.1109/GCITC60406.2023.10426446. 

2. D. Dagar and D. K. Vishwakarma “A Hybrid Xception-LSTM model with channel and 

Spatial Attention for Deepfake Video Detection” IEEE Conference: International 

Conference on Mobile Networks and Wireless Communications, Tumakur, 

Karnataka. (2023), doi: 10.1109/ICMNWC60182.2023.10435983. 

  

10.1109/GCITC60406.2023.10426446.
https://ieeexplore.ieee.org/document/10435983
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Chapter 5: Localization for Deepfake Manipulation 

5.1 Scope of this Chapter 

This chapter is dedicated to the problem of deepfake manipulation in visual data. To solve this 

problem, a novel framework. To address this issue, developed a dual-branch model that 

integrates handmade feature noise with Convolutional Neural Networks (CNNs) as an 

Encoder-decoder (ED) system enhanced by the attention mechanism. This model utilises a 

dual-branch approach, where one branch incorporates noise features and the other branch 

incorporates RGB features. These branches are then combined and fed into an ED architecture 

for the purpose of semantic learning. Additionally, skip connections are employed to preserve 

spatial information. The shallowfakes dataset (CASIA, COVERAGE, COLUMBIA, NIST16) 

and deepfake dataset Faceforensics++ (FF++) were extensively tested to showcase their 

exceptional ability to extract features and outperform various baseline models.  

5.2 Shallowfake and Deepfake Image Manipulation Localization using 

Noise and RGB-based Dual Branch method 

5.2.1 Abstract 

The reliability of multimedia is being progressively tested by sophisticated Image 

Manipulation localization(IML) methods, which has led to the creation of the IML domain. A 

good manipulation model requires extracting non-semantic differences features between 

manipulated and authentic regions to exploit artifacts, which calls for explicit comparisons 

between the two areas. Existing models either use handcrafted-based feature methods, 

convolutional neural networks (CNNs), or a combination of both. Handcrafted feature methods 

assume the tampering beforehand, limiting their capabilities for diverse tampering operations, 

while CNNs model semantic information, which is not enough for the manipulation artifact. 

To improve these limitations, we have designed a dual-branch model that combines 

handcrafted feature noise and CNNs as an Encoder-decoder(ED) powered by the attention 

mechanism. This dual-branch model uses noise features on one branch and RGB on the other 

before feeding to an ED architecture for semantic learning and skip connection deployed to 

retain spatial information. Furthermore, this architecture uses channel spatial attention to 

strengthen further and refine the features' representation. Extensive experimentation on the 

shallowfakes dataset (CASIA, COVERAGE, COLUMBIA, NIST16) and deepfake datasets 

Faceforensics++(FF++) to demonstrate the superior feature extraction capabilities and 
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performance to various baseline models with AUC score even reaching 99%. Also, it is one of 

the first methods to perform localization on the deepfake dataset. The model is relatively 

lighter, has 38 million parameters, and easily outperforms other State-of-the-Art(SoTA) 

models. 

5.2.2 Proposed Methodology 

The proposed model consists of two parallel branches; one uses an RGB image as an input, 

while the other uses noise/residual features as an input feature determined by the Bayar 

convolution and SRM convolution filters. These kernel filters suppress semantic content and 

enhance low-level manipulation traces(Figure 5.1). The channel refines RGB and noise feature 

representation of manipulation and spatial attention maps generated by their respective 

modules. The input features are multiplied with the attention maps to strengthen discriminative 

features. ED architecture is employed where the encoder translates the intermediate features 

into discriminative feature maps, which are then further processed and recovered by the 

decoder to generate classification predictions down to the pixel level. Skip connections 

improve the propagation capabilities of encoder-decoder network features. A dual attention 

network further improves feature representation by adapting global dependencies along the 

spatial and channel axes and local semantic characteristics, resulting in a more precise 

manipulation of localized features. The resulting features from both branches are concatenated 

for a more accurate final manipulation prediction. 

 

Figure 5.1: Overview of the proposed model consisting of a dual branch consisting of  RGB  and noise branch  

followed by ED architecture 

Three components are used in the above model: Residual/Noise filters, ED with skip 

connection, and visual Attention modules. 
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5.2.2.1 Noise Inconsistencies 

An actual image has uniform noise distribution throughout the image. The intuition behind 

noise residual as a feature is that when an object is removed from one image/section (of an 

image) and copied/pasted onto another/section of an image, the noise features of the two are 

less likely to match. In this configuration, the noise residual is the disparity between a pixel's 

actual value and its estimated value, which is derived via interpolating the values of nearby 

pixels, which serves as the model for noise. Bayer and SRM filters are the most standard filters 

that successfully capture the low-level noise residual features. 

5.2.2.1.1 Bayar Convolution or Constrained CNN 

Using data, constrained CNN can learn the modifications brought up by image manipulation 

methods into local pixel relationships. Hence, this approach can suppress image-level content 

and subsequently learn the latent traces of image manipulation [156]. Constrained CNN's 

primary purpose is to learn prediction error filters, producing feature maps utilized as low-level 

forensic traces since they offer superior robustness and universality. To force the CNN to learn 

the low-level traces, the following constraints are enforced on the weights of the kernel of 

CNN: 

{

𝜔𝑘
(𝑙)(0, 0) =  −1,

 

∑ 𝜔𝑘
(𝑙)(𝑚, 𝑛) = 1,

𝑚,𝑛 ≠0

 (5.1) 

Abvoe equation represents the constraints enforced on the filter of the kernel. The superscript 

indicates the CNN layer. 𝑙𝑡ℎ, the kth convolutional filter within a layer is indicated by the 

subscript 𝑘, and for a CNN filter, the central value is represented by the spatial index (0,0). 

5.2.2.1.2 Steganalysis Features 

Another method used to extract features from an image's noise residuals is SRM (Spatial Rich 

Models) filters. Fridrich et al. [157] first introduced the concept of SRM. It was primarily 

created for steganalysis, extracting latent or hidden features from an image's noisy residuals by 

applying a set number of high-pass filters. Subsequently, those features are combined and sent 

to ensemble classifiers. It is a specially designed method that essentially calculates the statistics 

required to extract specific characteristics from the noise residuals surrounding the 

neighborhood of pixels in an image. This approach yields a feature that can be considered a 

local noise descriptor. 
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5.2.2.2 Encoder-Decoder with Skip connection  

The architecture used by most semantic segmentation algorithms today is the ED structure. Our 

encoder network consists of a Vgg-16 network with 13 convolutional layers (w/o full connected 

layers), followed by max-pooling layers and is divided into five stages wherein, at each stage, 

the spatial resolution is halved at every stage, and the channel dimension keeps doubling. This 

approach allows the model to acquire complex hierarchical representations of visual 

characteristics, resulting in more reliable and precise predictions. The rationale behind using 

VGG16(w/o FC layers) as an encoder network is that it has fewer parameters that enable the 

powerful representation of discriminative visual features. Hence, an encoder module gathers 

more semantic information while decreasing the feature mappings and increasing channel 

dimensions. The decoder network enables up-sampling by mapping low-resolution encoded 

feature maps to full-scale input-resolution feature maps. The proposed architecture uses the 

transpose convolution layers for the decoder module to enhance the coarse feature mapping of 

the full-resolution segmentation map. ED employs skip connection to enhance the neural 

network feature propagation abilities and to prevent gradient vanishing and exploding gradients 

[158]. 

5.2.2.3 Attention Mechanism 

The attention mechanism uses input-dependent weights to replace the traditional learnable 

fixed weights, allowing the CNN to learn input-aware relationships that help it emphasize the 

critical features. Two attention modules are used in the model to encode discriminative features 

more effectively, which are as follows: 

5.2.2.3.1 Channel Attention 

A channel attention map is created by utilizing the inter-channel relationship of features. For 

manipulated localized features, channel attention emphasizes “what" is meaningful for the end 

task [159]. The module first models the spatial features of various feature maps to generate 

context descriptors using average and max pooling operations. Subsequently, both descriptors 

are transmitted to a Multi-layer perceptron (MLP) [159]. Next, the output feature vectors are 

combined using element-wise summation, and the resulting vector is then normalized using the 

sigmoid function. 

𝑴𝒄(𝑭) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑭)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑭))) (5.2) 

Where 𝑴𝒄(𝑭) Denotes the feature map that captures channel attention.  
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5.2.2.3.2 Spatial Attention 

The inter-spatial interaction among features generates the spatial attention map. It is 

complementary to channel attention and differs in that it concentrates on "where" manipulation 

localization is presented. Initially, the average-pooling and max-pooling operations are 

performed on the channel axis to calculate the spatial attention. Subsequently, these results are 

combined to provide a suitable feature descriptor [159]. The concatenated feature descriptor is 

subjected to a convolution layer to generate a spatial attention map delineating regions where 

desired features are prioritized over undesirable ones.  

Below are the equations of the spatial attention map. 

𝑴𝒄(𝑭) = 𝑆𝑖𝑔(𝑓7×7 ([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑭)) ;  𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑭)])) (5.3) 

5.2.2.4 Dual Attention Mechanism 

The Dual Attention network incorporates a self-attention mechanism identifying spatial and 

channel feature dependencies.  

5.2.2.4.1 Position Attention Module 

 The purpose of the self-attention mechanism in the position attention module is to capture the 

spatial relationships between any two positions in the feature map [160]. A local feature 𝛼 ∈

ℛ𝐶×𝐻×𝑊 applied into the layer of convolution, resulting in the generation of two additional 

feature maps., 𝛽 ∈ ℛ𝐶×𝐻×𝑊 and 𝛾 ∈ ℛ𝐶×𝐻×𝑊, respectively. Next, reshape them ℛ𝐶×𝑁  where 

𝑁 = 𝐻 × 𝑊 denotes the number of pixels of a layer. The spatial attention map Š ∈ ℛ𝑁×𝑁  

which is then computed by performing a matrix multiplication between the transpose of 𝛽 and 

𝛾 and applying a softmax layer: 

𝑠𝑗𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝑖, 𝛾𝑖)  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … , 𝑁 (5.4) 

where 𝑠𝑗𝑖 quantifies the impact of 𝑖𝑡ℎ position is on 𝑗𝑡ℎ position. Subsequently, passes the 

feature 𝛼 through convolution layers to generate feature 𝛿 ∈ ℛ𝐶×𝐻×𝑊e  and reshape it to a size 

of ℛ𝐶×𝑁 . Next,  calculate the matrix multiplication  of 𝛿 and the transpose of 𝕊 and reshape 

the resulting matrix to have dimensions ℛ𝐶×𝐻×𝑊. Eventually, we determine the product of the 

input by a scaling factor 𝜌 and aggregate it with the characteristics 𝛼 using an element-wise 

summation to obtain the final result. 𝜃 ∈ ℛ𝐶×𝐻×𝑊Moreover, it is described below: 

𝜃𝑗 = 𝜌 ∑(𝑠𝑗𝑖𝛿𝑖) + 𝛼𝑖 ,

𝑁

𝑖=1

 
(5.5) 
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The outcome characteristic 𝜃 is obtained by taking a weighted sum of the initial characteristics 

and all the features at each point. Consequently, it selectively combines different contexts based 

on the spatial attention map and provides a global contextual view. 

5.2.2.4.2 Channel Attention Module 

By considering the connections between channel maps, it is feasible to emphasize the 

interdependence of feature maps and improve the representation of features in a specific 

semantic domain. Consequently, the channel attention module directly represents channel 

interdependencies [160]. As opposed to the position attention module, the channel attention 

map Ź ∈ ℛ𝐶×𝐻×𝑊 directly from the original features 𝜇 ∈ ℛ𝐶×𝐻×𝑊. To be more precise, we 

reshape 𝜇 to ℛ𝐶×𝑁and then multiply 𝜇 by its transposition in a matrix. Eventually, a softmax 

layer is employed to produce the channel attention map Ź ∈ ℛ𝐶×𝑐: 

𝑧𝑗𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝜇𝑖, 𝜇𝑗)  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … , 𝐶 (5.6) 

Where 𝑧𝑗𝑖 measures the influence of the 𝑖𝑡ℎ position's influence on 𝑗𝑡ℎ position. Furthermore, 

we apply a matrix multiplication using the transpose of Ź and 𝜇, transforming the outcome into 

𝜇 ∈ ℛ𝐶×𝐻×𝑊. The final output, 𝐹 ∈ ℛ𝐶×𝐻×𝑊, is then obtained by multiplying the result by a 

scaling parameter 𝜗 and using an element-wise sum operation with 𝜇. 

𝐹𝑗 = 𝜗 ∑(𝑥𝑗𝑖𝜇𝑖) + 𝜇𝑖

𝐶

𝑖=1

 (5.7) 

Above equation demonstrates the final feature of each channel, which represents the long-range 

semantic linkages between feature maps and is computed as a weighted sum of the features 

from all channels and the original features. It improves the ability to discriminate between 

different features [160]. 

5.2.3 Experiments 

This section aims to evaluate the performance of the proposed methodology by validating it on 

various benchmark datasets and comparing it with various SoTA manipulation localization 

methods. 

5.2.3.1 Datasets 

5.2.3.1.1  Shallowfake dataset 

A massive data hunger characterizes deep learning network training. There are insufficient 

images in the usual datasets used for image manipulation detection today to support deep neural 

network training. Furthermore, a standard dataset's altered images may not be sufficient for 
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training because they have fewer artifacts. The model undergoes pre-training using CASIAv2, 

subsequently fine-tuning with additional datasets, and testing is done on them. Table 5.1 

contains the details of the split of the training-testing dataset with their kind of manipulation. 

Table 5.1 Training and testing split of the various benchmark datasets. S means splicing, C means copy-move, 

and R means removal. 

Datasets Training Set Testing Set 
Total 

Samples 
Types of manipulation 

CASIA V2.0 [161] 5063 - 5063 S, C 

CASIA V1.0 [161] - 920 920 S, C 

COLUMBIA [162] 130 50 180 S 

COVERAGE [163] 75 25 100 C 

NIST16 [164] 414 150 564 S, C, R 

5.2.3.1.2 Deepfake Dataset 
No deepfake image dataset currently contains a ground truth mask for the manipulated regions. 

Zhang et al. [165] have built their dataset of Faceforensics++ [32], the only deepfake dataset 

containing masks for most of its videos. Famous FF++ contains 1000 videos and 5000 fake 

videos manipulated methods (Deepfakes, Face2Face, Faceshifter, Face-Swap and Neural-

Textures). Four manipulations are considered for the frames extracted as 1000 face shifter 

videos contain no ground truth mask from the videos. Two frames are extracted for each video, 

and due to some Accessibility concerns prevented us from downloading some legitimate and 

bogus videos. We have obtained a total of 8,449 genuine frames and 7,330 counterfeit frames. 

5.2.3.2 Experimental setup 

We use the Vgg-Net16 [166] as a backbone for encoder-decoder architecture, pre-trained on 

ImageNet [167], to develop our model using the PyTorch framework. The model is executed 

using two NVIDIA RTX A5000 GPUs, and the image is scaled to 256×256. The model is 

optimized using the Adam optimizer with a batch size 32 during the training and testing phase. 

The starting learning rate is 1e-4, which decays every 10th step with a decay rate of 0.8.  

5.2.4 Quantitative Analysis 

We have quantitatively assessed the performance of the shallowfake and deepfake datasets. 

5.2.4.1 Shallowfake dataset 

Following the approach [168], the model was trained using the CASIA2 dataset and fine-tuned 

with standard shallowfakes datasets like Nist16, Coverage, Columbia, and CASIA1. The AUC 

and F1 scores of these datasets are recorded in Table 5.2. For comparison, two categories of 

models are considered, i.e. unsupervised and DNN models. The table shows that the model 

outperforms the unsupervised models by a significant margin. The performance of handcrafted 
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features intended for the specific type of manipulation is severely constrained, and all of these 

traditional methods capture certain tampering artifacts with limited information for detection. 

Our method's scores are comparable and outperform the other DNN-based methods at various 

datasets. For the CASIA and Columbia, our model performs significantly well with an AUC 

score even reaching 96.72%, and on the Nist16 dataset, it has a comparable score to other 

models (AUC~99.9%). 

In comparison, the model performs poorly on the COVERAGE dataset, with an AUC score 

reaching 77.38% owing to fewer images and the dataset containing copied/moved objects of 

similar appearance.  Our technique captures the broader range of features like RGB features, 

noise inconsistencies, and global context rather than the neighboring pixels, which helps gather 

more information for manipulation classification. Various complex CNN models cannot 

perform well; this could be attributed to most DNN-based methods that model the network by 

superimposing multiple CNN networks or adding complex branches. For instance, TDA-Net 

combines three CNN streams, such as end-to-end training for a complex network, which makes 

it harder for the network to train and requires more computing power. Also, few models are so 

much simpler that they focus only on the semantic features and hence fail to locate the tampered 

segments accurately. On the other hand, our model is relatively less complex, easily captures 

non-semantic features and does not require significant training data to achieve comparable 

performance. 

Table 5.2 Evaluation experiments results of various models on the shallowfake dataset. “-” means unknown score. 

Category Method 
NIST16 COLUMBIA COVERAGE CASIA 

AUC F1 AUC F1 AUC F1 AUC F1 

Unsupervised 

ELA [169] 0.429 0.236 0.581 0.470 0.583 0.222 0.613 0.214 

NOI1 [170] 0.487 0.285 0.546 0.574 0.587 0.269 0.612 0.263 

CFA1 [171] 0.501 0.174 0.720 0.467 0.485 0.190 0.522 0.207 

DNN-based 

model 

MFCN [172] - 0.571 - 0.612 - - - 0.541 

RGB-N [173] 0.937 0.722 0.858 0.697 0.817 0.474 0.795 0.582 

J-LSTM [174] 0.764 - -  0.712 - - - 

LSTM-EnDec 

[175] 
0.794 -  - 0.712 - - - 

CR-CNN [176] 0.992 0.927 0.861 0.790 0.939 0.757 0.789 0.475 

ManTra-Net 

[177] 
0.795 - 0.824 - 0.819 - 0.817 - 

TDA-Net [168] 0.948 0.756 0.892 0.735 0.864 0.474 0.831 0.582 

GSR-Net [178] 0.945 0.736   0.768 0.489 0.796 0.574 

SPAN [179] 0.961 0.582 0.936 0.815 0.937 0.558 0.838 0.382 

PSCC-Net [180] 0.996 0.819 - - 0.941 0.723 0.875 0.554 

MVSS-Net++ 

[181] 
0.976 0.854 - - 0.897 0.753 0.844 0.546 

ObjectFormer 

[182] 
0.996 0.824 - - 0.957 0.7580 0.882 0.579 
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TA-Net [183] 0.997 0.865 - - 0.978 0.782 0.893 0.614 

Transforensics 

[184] 
- - - - 0.884 0.674 0.850 0.627 

Our Model 0.9919 0.9910 0.9672 0.9556 0.7738 0.4362 0.9494 0.8765 

5.2.4.2 Deepfake dataset 

Ten models are considered for evaluation on the deepfake dataset. Six are the SoTA image 

manipulation models; the others are the standard image-segmentation models. Codes of the 

models that are available on GitHub are considered for comparison. Pre-trained Pytorch models 

are used for image segmentation models, which are further fine-tuned. Three evaluation metrics 

are used for a more comprehensive evaluation. Table 5.3 shows the experimental results of the 

deepfake on the various models. All the models performed decently except MantraNet [177] 

on the various categories of the Faceforensics++ dataset. It could be attributed to the fact that 

most of the manipulations are of the face, and there is a single entity that occupies the entire 

frame, and all the models are powerful enough to capture such apparent artifacts. MantraNet 

performs poorly on all categories of the deepfake, possibly because images/frames are not high-

resolution and contain blurriness and noise, which the model cannot process and learn the latent 

discriminative features. NedB-Net [185] is another model that has performed well but has a 

relatively lower score than other SoTA models, which may be due to the low-quality images 

and the more significant manipulated regions; the paper's authors also highlight this problem. 

DL-Net [186] performs reasonably well in the FF++ dataset, with the F1 score reaching 96%, 

owing to its capability to capture high and low-level cues using noise level segmentation map 

prediction, which constraints the model to focus on the manipulated regions. However, the 

model has a low score for Face-swap manipulation among the four categories of FF++ 

manipulation. Another method [187] used for deepfake localization uses a weak supervision 

framework and uses three methods, i.e. GradCAM, Patches and Attention, for results 

illustrations. We have used GradCAM methods for score comparison. The method performs 

outstanding well in the weak supervision setting, showing the powerful discriminative 

capabilities of the model. However, like the earlier model, the model has a drop in performance 

for the FS category of manipulation, which could be the network's inability to make accurate 

predictions at the edges. DADF method [188] performs better than most models, which use 

multi-scale adapters to capture short and long-range forgeries and guided attention 

mechanisms, enhancing rich forgery clues. Their scores are at par with other methods and a 

proper State-of-the-art method for comparison. Another method [165] used also performed 

well, with the F1 score reaching 98%. Their method is built on top of existing UperNet and 
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uses Bayar convolution methods to trace noise clues. Despite being these State-of-the-art 

models, all models score more than 90%, which could be attributed to the fact that most of the 

manipulation has been done on the face, which is easy for the models to recognize. Our model 

has performed considerably well in the various categories of the FF++ dataset and 

outperformed the scores of other standard models. These evaluations showed that different 

modules designed well to work in tandem resulted in the robust learning of the discriminative 

for varied manipulation. 

Table 5.3 Evaluation experiments results of various models on categories of F++ dataset. IMD means Image 

Manipulation Detection models, and IS means Image Segmentation Models. 

 

5.2.5 Qualitative Analysis 

This section compares our method with the two most competitive methods, i.e. MantraNet and 

MVSSS, to give some specific qualitative outcomes on both shallowfakes and deepfake 

datasets. Figure 5.2 shows the visualization results of image manipulation detection.  Our 

method achieves better localization results than other methods, as the other methods generate 

Typ

es 

Method

s 

DeepFakes Face2Face FaceSwap Neural Texture 

IoU AUC F1 IoU AUC F1 IoU AUC F1 IoU AUC F1 

IM
D

 m
o

d
el

s 

MVSS-

Net 

[189] 

0.9558 0.9996 0.9787 0.9788 0.9997 0.9893 0.9570 0.9989 0.9780 0.9382 0.998 0.968 

Mantra

Net 

[177] 

0.3469 0.9523 0.5151 0.3553 0.9159 0.5243 0.3394 0.8888 0.5068 0.3664 0.9706 0.5363 

NedB_N

et [185] 
0.8811 0.9767 0.9368 0.8432 0.9662 0.9149 0.8522 0.9700 0.9221 0.8827 0.9783 0.9377 

DL-Net 

[186] 
0.8750 0.9952 0.9337 0.9108 0.9946 0.9533 0.8976 0.9976 0.9460 0.9262 0.9979 0.9617 

Weakly

_Super_

Gradca

m [187] 

0.9787 0.9990 0.9897 0.8753 0.9795 0.9336 0.9575 0.9791 0.9231 0.9861 0.9990 0.9868 

DADF 

[188] 
0.9453 0.9939 0.9677 0.9621 0.9899 0.9786 0.9599 0.9896 0.9655 0.9236 0.9788 0.9586 

Shallow

Deepfak

e_local 

[165] 

0.9617 0.999 0.9713 0.9801 0.9898 0.9799 0.9485 0.9856 0.9666 0.9365 0.9989 0.9689 

IS
 M

o
d

el
s 

DeepLa

b [190] 
0.9428 0.9981 0.9706 0.9840 0.9999 0.9919 0.9769 0.9986 0.9883 0.9704 0.9998 0.9640 

FCN 

[191] 
0.9701 0.9967 0.9848 0.9834 0.9988 0.9786 0.9470 0.9991 0.9728 0.9591 0.9984 0.9728 

LRASP

P [192] 
0.9114 0.9992 0.9536 0.9445 0.9998 0.9714 0.9106 0.9995 0.9532 0.9399 0.9997 0.9690 

Our Model 0.9736 0.9940 0.9866 0.9820 0.9964 0.9909 0.9810 0.9983 0.9904 0.9710 0.9913 0.9853 
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many false positives. In the case of the shallowfake dataset, the method has superior 

localization performance for CASIA, Columbia and Nist16 datasets. For the deepfake dataset, 

localization seems much easier, as most image manipulation is done on the face, making it easy 

for localization. MantraNet exhibits a significant departure from the ground truth, whereas 

MVSSNET exhibits a significant rate of false positives in regions that have not been altered. 

The primary cause of this outcome is that during the training phase, MVSSNET used a lot of 

natural images, which could have a clear negative impact on network training. Additionally, 

MVSSNET dramatically increases false positives due to frequently responding to altered and 

non-manipulated portions of the image. On the contrary, our method focuses on low-level 

features like noise and high-level contextual features, leading to better localization of 

manipulated artifacts. 

Dataset Original Image Ground-Truth Mask MantraNet MVSSS Our-Model 
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Figure 5.2 Qualitative Visualization results of the manipulation localization for shallow fakes and deepfake dataset 

images for different methods 

5.2.6 Ablation Studies 

We assess the proposed network in various settings with the components introduced one at a 

time to study the impact of each component. All the components were trained on the CASIA2 

dataset and then evaluated on the different shallowfakes datasets, i.e. NIST16, Columbia, 

Coverage and CASIA1. Table 5.4 shows the results of the ablations experiment. The different 

experimental settings are discussed below: 

Case A: Model without Channel Attention: Channel attention modules have been removed from 

both branches to study their impact. AUC and F1 scores decrease slightly, showing inter-

relation along the channel axis containing potential features that assisted in the detection task. 

Two things worth noting: for the Columbia and Nist16 dataset, scores decreased very slightly, 

nearly ~2%(AUC score), while for the Coverage dataset, it decreased significantly by nearly 

~9%, showing that where data samples are less, attention mechanism plays a pivotal role. 

Case B: Model without Spatial Attention: From scores, it perceives that spatial attention 

contributes less in comparison to channel attention to the detection features. It could be 

attributed to spatial attention focusing on high-level or semantic features, which is less critical 

for manipulation. Also, one of the trivial observations is that scores declined slightly and 

uniformly across all the datasets. 

Case C: Model without Channel and Spatial Attention: In this case, channel and spatial have 

been removed from both branches to study their relevance. Scores have decreased significantly, 

nearly ~14%, across all the datasets except the Coverage dataset. It shows that these modules 

work better together to capture informative features and global correlations along every axis 

and emphasize such critical features. 

Case D: Model without Dual Attention: Dual attention modules are axed from the Encoder-

decoder architecture to investigate their importance. This dual attention contributes less to the 

overall detection task of either the spatial or channel attention module. Also, the dual attention 

works almost uniformly for every dataset, showing its ability to capture long-range contextual 

information for varied manipulations. 

Case E: Model without Noise branch: Here, the noise branch, consisting of the RGB branch, 

is completely removed from the model. This means that RGB high-level or semantic features 

are primarily used for detection. Here, the performance decreased drastically by nearly ~8%, 

confirming that low-level features like noise consistencies are crucial indicators in the overall 

detection task. For the CASIA model, scores have decreased to a greater extent, around ~19%, 
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as it varied manipulation like splicing and copy-move, showing the relevance of residual noise 

feature to varied manipulation.Case F: Model without RGB branch: The RGB branch is 

completely removed from the overall model, and the noise branch is used for manipulation 

detection. In this scenario, the AUC score is decreased to a smaller extent, around 4%, again 

confirming that the low-level noise features have more relevance than high-level semantic 

features for the detection task. For the Coverage dataset, the performance has decreased 

drastically, meaning that noise branches need ample datasets to learn noise inconsistencies for 

detection tasks. 

Table 5.4: Ablation experiment of different components where the model trained on CASIA2 and tested on other 

datasets. 

Cases 
NIST16 COLUMBIA COVERAGE CASIA 

AUC F1 AUC F1 AUC F1 AUC F1 

Case A 0.9246 0.9688 0.9516 0.8758 0.6891 0.3623 0.8868 0.8078 

Case B 0.9327 0.9896 0.9626 0.9285 0.7208 0.3953 0.9123 0.852 

Case C 0.8055 0.8302 0.8328 0.7497 0.7373 0.3946 0.8033 0.4254 

Case D 0.9087 0.9291 0.93 0.8398 0.7307 0.4049 0.9210 0.8560 

Case E 0.8688 0.8015 0.8873 0.7333 0.7261 0.3871 0.7543 0.4852 

Case F 0.9239 0.9488 0.9435 0.8569 0.6052 0.2879 0.8863 0.8562 

Overall 

Model 
0.9441 0.9952 0.9641 0.8988 0.7542 0.4272 0.9313 0.8650 

5.2.7 Computational complexity Analysis 

In this section, we assessed the complexity of three distinct deep networks: MantraNet, SPAN, 

MVSSNET, Nedb_Net [185], DeepLabv3_ResNet50 [190], FCN_ResNet50 [193] and 

LRASPP_MobileNet [192]. All experimental analysis is done on two NVIDIA RTX A5000 

GPUs. Table 5.5 shows the computational analysis of different models compared to ours. 

Regarding the number of parameters, the model is relatively lighter, with 38.86 million 

parameters compared to MVSS-Net and Deeplab. MantraNet and LRASPP are many relatively 

lighter models than other models. Another metric was calculated in CPU and GPU time for one 

epoch for a batch size of 32 images of the CASIA dataset. The model runs on the GPU and 

CPU to measure their time in seconds. GPU time is always less time for different models. Our 

model takes less time both on GPU and CPU. 

Table 5.5: Computation complexity analysis of different models. GPU and CPU time are measured for an epoch 

of batch size of 32. 

Methods Parameters (Millions) CPU time (sec) GPU time (sec) 

MantraNet 3.80 8.06 0.14 

MVSS-Net 142.782 9.66 1.13 

SPAN 4.06 8.08 0.278 

Nedb-Net 45.085 10.11 1.171 



102 

 

 

DeepLabv3_ResNet50 39.63 9.97 1.17 

FCN_ResNet50 32.946 10.20 1.14 

LRASPP_MobileNet 3.21 9.01 1.01 

Our_Model 38.86 9.09 0.94 

 

5.2.8 Conclusion 

This paper proposes a novel dual-branch architecture consisting of Noise Residual extraction 

modules at one branch and RGB information at the other branch powered by the attention 

mechanism before feeding to the ED architecture for precise IML prediction. The model 

effectively captures the low-level inconsistencies critical for IML tasks and additional semantic 

features. Extensive experiments on the shallowfakes and deepfake datasets have shown that the 

model is able to capture subtle traces of manipulation and achieves SoTA results. Future work 

may involve checking the model's generalizability on the unseen dataset and robust evaluation 

of various compression scenarios. 

5.3 Significance outcome of this chapter 

The significance outcome of this chapter are as follows: 

 Developed a unique dual-branch architecture that employs RGB information on one 

branch and noise features on the other. In order to more accurately represent artifacts, 

both branches implemented channel and spatial attention, which was subsequently 

followed by ED architecture. A dual attention module is employed to learn semantic 

interdependencies in the spatial and channel domains for down-sampled features. 

 The discriminative capabilities of the model are demonstrated by the deepfake dataset 

FF++, which outperforms other models, and the shallowfakes dataset, which includes 

CASIA, Columbia, Coverage, and NIST16. 

 Ablation studies are conducted to investigate the significance of various components 

within the overall model.  

 The complexity computation analysis was conducted to demonstrate that the model 

with 38 million parameters is comparatively less complex than the various SoTA 

models. 

This chapter is based on the following research works: 

1. D. Dagar and D. K. Vishwakarma, “Shallowfake and Deepfake Image Manipulation 

Localization using Noise and RGB-based dual branch method” Signal, Image and 

Video Processing, vol 18, pages 7065-7077, 2024, doi: https://doi.org/10.1007/s11760-

024-03376-x 

https://doi.org/10.1007/s11760-024-03376-x
https://doi.org/10.1007/s11760-024-03376-x
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Chapter 6: Conclusion and Future Scope 

6.1 Conclusion 

This chapter concludes the research conducted in this thesis. Overall, four innovative 

architectures based on deep learning are proposed for the detection of deepfake manipulation 

in multimedia content. The first two models are specifically designed to address the issue of 

Deepfake detection in images. A Diverse manipulation video dataset and along with a 

framework for deepfake video detection is also proposed. Finally, the method to localize the 

deepfake manipulation is proposed. The details of the proposed approaches are as follows: 

 A novel deepfake detection model i.e Tex-ViT which uses gram-matrices as texture feature 

descriptor and cross-attention mechanism of vision transformer. The model combines 

traditional ResNet features with a texture module that operates in parallel on sections of 

ResNet before each down-sampling operation. This module then serves as an input to the 

dual branch of the cross-attention vision transformer. Experimentation done on the various 

categories of FF++ and GAN dataset images in cross-domain settings to demonstrate the 

model’s generalizability. Experiments were conducted on the Celeb-DF, FF++, and 

DFDCPreview datasets using various post-processing techniques such as blurring, noise 

addition, and compression. The results demonstrated the resilience of the models in varied 

settings. 

 Another method for deepfake detection named Tex-Net which uses the combination of 

Gram matrices and Local Binary patterns as a texture features representation and rest of the 

architecture is same as of Tex-ViT. The global texture is computed during each down 

sampling operation of ResNet, and subsequently, layer characteristics are consolidated at 

many layers. These characteristics persistently merge prior to being inputted into the dual-

branch cross-attention-based vision transformer for classification. The model's 

generalization capacity was demonstrated by conducting experimentation on several 

categories of FF++ and GAN dataset images in a cross-manipulation setting. 

Experimentation also done on the data samples from FF++, DFDCPreview, and Celeb-Df 

that were subjected to various post-processing techniques, including blurring, noise 

addition, and compression which demonstrated the model’s robustness. 

 Presented a Div-DF dataset comprising diverse forms of video modification such as face 

swapping, facial reenactment, and lip-syncing. The dataset consists of 150 authentic videos 

featuring various celebrities from different fields, together with 250 deepfake videos. The 

deepfake videos include 100 face-swap videos, 100 facial reenactment videos, and 50 lip-
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sync videos. Deepfake films are created by utilizing advanced techniques such as the Face-

Swap GAN (FSGAN) and the Wav2Lip approach. 

  A sophisticated deepfake video detection model is proposed which combines the 

pretrained Xception and LSTM models. Xception employs depthwise separable 

convolution to capture the latent spatial artefacts, whereas LSTM captures the 

discrepancies among the modified sequences. The hybrid model assembly enables the 

acquisition of knowledge about spatial and temporal distortions across many dimensions, 

making it a powerful tool for identifying deepfakes. Evaluation of the efficacy of the 

proposed model and various state-of-the-art models on our Div-Df which shows the 

superiority of the proposed model. 

 A novel model for deepfake manipulation localization is proposed. The model uses a dual-

branch model that integrates handmade feature noise with Convolutional Neural Networks 

(CNNs) as an Encoder-decoder (ED) system, enhanced by the attention mechanism. This 

model utilizes a dual-branch approach, where one branch incorporates noise characteristics 

and the other branch incorporates RGB features. These features are then fed into an ED 

architecture for semantic learning. Additionally, skip connections are included to preserve 

spatial information. Extensive research was conducted on the shallowfakes dataset, which 

includes CASIA, COVERAGE, COLUMBIA, and NIST16, as well as the deepfake dataset 

Faceforensics++ (FF++). The evaluation results proves the exceptional feature extraction 

capabilities of the model. 

6.2 Future Scope 

Extensive research has been carried out in recent years to identify deepfake manipulation in 

multimedia content. Although the performance in detecting or localizing these manipulations 

has consistently improved, there are still several promising research directions that need to be 

addressed. 

 Generalization to unknown dataset: Existing deepfake detection methods perform well 

on the seen dataset, but their performance degrades on the unseen dataset. Lots of methods 

have worked on the generalization but the performance is not satisfactory which makes 

them unfit for their deployment in real-world scenarios. Moreover, its absence gives the 

upper hand to the anti-social elements to misuse the technology at their whims and fancies. 

That’s why generalization is one of the most crucial indicators of the performance of the 

methods and future work would definitely needs to raise the bar of performance of the 

generalization of detection methods. 
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 Lack of Interpretability of detection methods: The main issue with detection approaches 

is the lack of interpretability. These methods typically rely on neural networks, which suffer 

from a fundamental problem of being black-box in nature, making it difficult to explain 

their results. In real-world situations, it is necessary to provide an explanation that can be 

easily understood by humans for any forensic methodologies used. For example, let's say a 

deepfake detection technology is used in the trial to identify evidence. If that is the situation, 

it may be necessary to provide a rationale or clarification for different portions of it being 

a deepfake. Hence, detection methods should prioritize the comprehensibility of the 

detection outcomes, which unquestionably continue to be a matter of concern for future 

consideration. 

 Robustness of various Adversarial perturbation: Recent research suggest that deep-

learning models, although they have improved in detecting manipulation, are highly 

susceptible to adversarial attacks. Injecting noise into the input pixel values can 

significantly alter the predictions made by a trained model. Enhancing the resilience of 

deep-learning models against adversarial attacks is an imperative area for future research. 

 Deployment in real world scenarios: Existing methods tend to perform well in the 

controlled environment, where we have a dataset that hardly represents real-world 

scenarios. For real-world data, which contains various noises and manipulation, their 

performance degrades as the detection methods are designed to identify specific types of 

artifacts. Further research should be focused on addressing deployment challenges for end-

users through the development of applications or web-based frameworks. The growing 

capability of modern hardware enables the utilization of complex computational models on 

mobile devices. 

 Scarcity of a large and quality dataset: A dataset is crucial for detection algorithms 

because it enables the learning of distinct sets of features needed to recognize different 

artifacts [10]. Other proposed datasets encounter issues that adversely affect the 

performance of detection algorithms. Some of the prominent concerns are as follows: 

1) The dataset is small in size and does not adequately reflect different types of 

modification.  

2) Facial features exhibit inconsistency and blurriness.  

3) Video frames exhibiting flickering or jitteriness.  

4) Inconsistent lighting in pictures. 
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5) Insufficient availability of a diverse audio sample with background noise to 

accurately depict real-world scenarios.  

6) Absence of obstructing objects in the images.  

7) Images or video frames of poor quality. 

Future work needs to focus on the creation of quality dataset which addresses above issues. 
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