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Abstract

Human Activity Recognition (HAR) is very vital in appreciating human de-

meanor and finds applications in healthcare, sports analytics, and surveillance

systems. Increasingly the data driven insights are being utilized HAR plays a

key role in identifying patterns, trends and anomalies associated with human ac-

tivities. The use of machine learning and deep learning techniques has helped

to improve significantly HAR methodologies leading to higher accuracy and ef-

ficiency. This study provides an extensive insight into traditional and advanced

transfer learning pre-trained models for exploring intricacies of HAR.

Each of the different model architectures in the research was assessed in depth

by this evaluation, with its own strengths and capabilities. VGG16 or VGG19 and

EfficientNetV2S, Xception are examples of old pre-trained models which would be

compared with ConvNeXt frameworks such as ConvNeXtSmall, ConvNeXtBase,

ConvNeXtLarge, and ConvNeXtXLarge. The main objective of this study is

to comparatively analyze the efficiency of these models using human activity

recognition. The benchmarking used a well-curated dataset that involved 12000

images annotated and classified into fifteen activities The Kaggle dataset sourced

is useful for evaluating any performance changes made to different pretrained

models. In order to avoid partiality and control external factors; like biases each

model had exactly the same number of layers as others.

The experiments are carried out in the Google Colab environment, which is

cloud-based and therefore allows for extensive experimentation and analysis.
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Chapter 1

INTRODUCTION

Human Activity Recognition (HAR) is one such emerging field of Artificial Intel-
ligence dealing with the automatic detection and classification of the tasks taken
care of by men. This kind of field is important because of the applications of the
same in various sectors. HAR can track health-wise movement of patients to en-
sure safety and wellness, detect falls, and for rehabilitation programs. This means
that fitness tracking applications, when used in combination with real-time feed-
back, can provide performance improvements. Smart home systems put together
the components of HAR to create better experiences for users. They automate
homes in response to the residents and their activities[8]. These may involve dim-
ming or brightening lights or controlling the climate whenever someone comes into
or leaves a room. Surveillance systems, too, leverage the capability of HAR to
auto-analyze footage, be it for noticing and responding to deviant behavior or
suspicious activity.

The introduction of machine learning and deep learning-based algorithms
to activity recognition techniques has brought this renaissance in HAR, where
much better accurate and reliable models have been developed. Previously, the
backbone of HAR was built based on traditional machine-learning-based mod-
els, particularly Support Vector Machines (SVMs) and Random Forests, using
handcrafted features that were extracted from the sensor data to discriminate
between various activities. These algorithms have worked really well with a solid
mathematical foundation and applicability for a very wide range of classification
tasks[12]. For instance, SVMs find an optimal hyperplane that passes to separate
data points from various classes with the maximum margin. They are powerful
tools for binary classification. Random Forests, on the other hand, are ensemble
methods to build many decision trees and take the mode of classes as output for
classification tasks. They certainly advance the problem of overfitting and low
accuracy because several models are combined.

However, with these traditional approaches, a lot of domain expertise is always
required to select and engineer the desired features from raw sensor data. It is
done in a very laborious and crucial way because the quality and appropriateness
of the features determine how well the model performs. Moreover, traditional
algorithms may also suffer from the complexity and high dimensionality in modern
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sensor datasets. Such datasets may likely contain high-dimensional sample points,
collected from several sensors, that follow closely the nuances of user activity,
a process that classical methods find hard to disentangle properly for suitable
classification[9].

Limitation of conventional machine learning approaches brought acceptance of
deep learning strategies in HAR. Remarkable properties of deep learning models,
particularly CNNs and RNNs, are for automatic feature learning from raw data.
Since the models are highly dimensional by themselves, they will have the capacity
to capture temporal dependencies and spatial hierarchies in sensor data, hence
increasing classification performance.

CNNs are designed to solve spatial patterns and are well adapted for local-
correlation-type data processing, such as tasks involving images or sensor signals
represented in time-series data. RNNs and their more advanced versions, such
as LSTM, perform the task of capturing temporal dependencies, especially those
sequence data where activities flow from one to another.

Although traditional machine learning algorithms, such as SVMs and Random
Forests, have been an essential source of innovation in the very early development
of HAR, this trend is rapidly altering with recent moves toward deep learning.
This becomes really very critical because deep learning models can automatically
represent most of the relevant features into a dataset characterized by complex,
high-dimensional distributions, thus reducing the necessity for expert domain
knowledge, making these systems more accurate and reliable. This shift is driving
capability and applicability in HAR, opening the floodgates of innovation for
healthcare, fitness, smart homes, and surveillance systems.

Deep learning techniques—especially Convolutional Neural Networks (CNNs)have
propelled human activity recognition into higher pedestals. Most enabling fea-
tures in CNNs are their automaticity for feature extraction and hierarchical fea-
tures from raw data without any manual engineering. This has moved CNNs from
an obscure field almost two decades ago to positions of prominence within HAR;
they continuously produce state-of-the-art results and surpass most benchmarks
of traditional machine learning algorithms.

There are some unique merits in using the deep learning methodologies in
the field of HAR. First, the introduced deep learning models alleviate qualitative
difficulties to a great extent when feature engineering manually. Feature engineer-
ing, as in any manual method, requires great effort and deep domain knowledge
for identifying and extracting meaningful features from sensor data. This process
is labor-intensive and moreover prone to human errors and biases. CNNs make
it possible to learn the patterns in complex data automatically and thus enable
development much more efficiently and effectively.

Deep learning models, on the other hand, have been consistently showing much
higher accuracy in recognizing activity compared to previous traditional methods.
These CNN models are deeply structured to perfectly learn and differentiate a
wide range of patterns in input data, including very subtle ones or those hard to
perceive. This inherently gives better classification among these activity classes,
as the model can sense variations and nuances that escape traditional algorithms.
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Thirdly, deep learning frameworks have the ability to be trained on unlabeled
data. In such scenarios as HAR applications, it is impossible or generally, in most
cases, too expensive to obtain fully labeled datasets. Semi-supervised and unsu-
pervised learning techniques allow models to learn from vast pools of unlabeled
data to improve their learning process and performance. In this way, the ability
to learn from a small set of labeled data and big pools of unlabeled data makes
deep learning models very flexible and scalable.

Furthermore, such deep learning models generally maintain efficiency across
diverse datasets and incorporate variations that arise from individual differences,
device models, and environmental conditions. Traditional machine-learning al-
gorithms find it difficult to generalize across conditions because they strongly
depend on the features engineered for a specific dataset. CNNs and other deep-
learning models can show better generalization behaviors because of the learned
hierarchical feature representations. Thus, this ensures that the models are con-
sistently performed well without regard to variance in the input data.

In addition, since deep models can be fine-tuned toward any kind of applica-
tion within the context of HAR, they are therefore very flexible in use. Transfer
learning, on the same note, can help in leveraging a pre-trained model on a
large-scale dataset and adapt it to a new but related task. This enables reuse of
models trained with huge datasets for tasks involved in HAR, yet at the same
time reducing demand on computational resources and training time largely.

The use of deep learning methodologies, especially CNNs, has really revo-
lutionized the field of HAR, where automated feature extraction could now be
done without relying on manual feature engineering. The benefits of deep learn-
ing methodologies for HAR are diverse: they simplify the process of develop-
ment, improve precision in recognizing human activities, learn from unlabored
data, and ensure generalization robustness over various datasets. Together, these
advantages place deep learning at the forefront of research and applications in
HAR, paving the way for more advanced, robust, and scalable activity recognition
systems[15].

A major shortcoming for deep learning approaches, and more specifically for
Convolutional Neural Networks, is their demand for massive amounts of training
data. The weights must be tuned using large training datasets in order to im-
prove their capability of generalization in the future. However, producing massive
labeled datasets remains a challenging task in many fields. These problems are
solved by Transfer Learning (TL) at this point.

1.1 Problem Statement of Dissertation
Human Activity Recognition (HARR) is an important application domain in arti-
ficial intelligence and computer vision tasked with the automatic recognition and
classification of what humans do. It is paid prime importance in health, fitness,
smart home systems, and surveillance domains. Current methods for recognizing
human activity depend on pre-trained models with manual feature extraction;
however, the existing approaches from both challenges resulted in accuracy and
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efficiency when dealing with complex datasets. Each of these architectures, at
some level, includes the use of ConvNeXt. Combined with the drive for more accu-
rate and effective performance in HAR, these architectures advance over classical
pre-trained models. This dissertation shall seek to do full comparison between
traditional pre-defined transfer learning models like VGG16, VGG19, Efficient-
NetV2S, and Xception over the newer architectures like ConvNeXt. Our goal is
to assess their performance through a 12,000-image dataset, compiled from fifteen
different classes of activities, and express new better capabilities of the ConvNeXt
architectures related to HAR.

1.2 Overview of the research objectives of the
Dissertation

The issue concerning this dissertation is that traditional pre-trained models are
not that effective in recognition considering the human activities. The tradi-
tional models, including VGG16, VGG19, EfficientNetV2S, and Xception, have
overlapped many applications, including HAR, in almost any task of image pro-
cessing. However, such models often fail to identify human activities because of
their complexity and variability in datasets or the approaches taken to get those
datasets. They are further challenged by the correct extraction and interpretation
of the subtle patterns and features inherent to human activity that are necessary
for reliable recognition.

ConvNeXt architectures are realized with newly designed convolutional lay-
ers that have been purposely designed to capture patterns while being intricate
and thus promising. This dissertation therefore leverages a dataset of 12,000
images spread over 15 different classes of activities into considering an exten-
sive evaluation of how these newer models perform compared with traditional
models. From the results, it is evidently clear that ConvNeXt models, more so
the ConvNeXtLarge, have done a remarkable improvement in the accuracy and
robustness involved in HAR tasks.

1.3 Transfer Learning in Machine Learning Re-
search

Transfer learning has found wide importance of late in the current days in machine
learning research. It applies already learned knowledge from source domain either
for improving the efficiency of learning or, it is especially known not to need a
large number of labeled examples for target domain. Unlike traditional learning
frameworks, transfer learning does not require that the data for training and
testing come from the same domain. Such flexibility allows models to apply the
knowledge gained by well-analyzed large datasets from one domain to different
but related tasks, hence significantly enhancing their performance in cases of
scarcity of labeled data within the new domain.
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Consequently, transfer learning minimizes the need for building target domain
models from scratch and reduces data scarcity problems during training. Not
only would this reduce the resources and time needed to train the computational
model, but it would also offer a transferred ability of generalization over new
tasks in the model by using prior knowledge.

From the CNN transfer learning literature, three dominant categories can be
identified: fixed feature extraction, fine-tuning with frozen layers, and pre-trained
models. Each category comes with its own pros and cons, and is uniquely adapted
to the specifics of each target domain.

1.3.1 Fixed Feature Extraction:
The pre-trained CNN acts as a fixed extractor of features. Features are extracted
from input data using the convolutional layers of the pre-trained network, which
are then fed to a new classifier. This is beneficial since it would leverage the salient
feature extraction ability of CNNs without much loss in retraining. However, this
might work less effectively if features learned from the pre-trained model are not
that relevant to the new task.

1.3.2 Fine-tuning and Layers Freezing:
In this method, the pre-trained network is partially re-trained on the new dataset.
In such a transfer learning scenario, few samples are available; therefore, some
layers are frozen from the beginning of the network, and the remaining part is
fine-tuned to fit the new task. Such a methodology balances between pre-trained
features and adaptation to data-specific characteristics. It is computationally
more expensive compared to fixed feature extraction but can result in better
performances compared to cases in which the source and target domains are
slightly related[18].

1.3.3 Using Pre-Trained Models:
This category includes using directly models pre-trained on large and generic
datasets, such as ImageNet, as a basis to approach new tasks. Pre-trained models
such as Xception, DenseNet, and VGG16 are the base pillars of transfer learning
in HAR research. The models are training on very large datasets, so the features
learned by them are very diverse and can then be transferred to many kinds
of tasks. The main advantage of such models is that they come with a rich
set of learned features, potentially fine-tuned further for new applications. The
bad part is that most might need a major adaptation to perform even close to
optimally in tasks quite different from their original training domain. Transfer
learning provides a pragmatic solution for challenges that arise due to the need
for large, labeled datasets, and more so in deep learning that is energy based. By
enabling models to leverage knowledge that is already available, transfer learning
accelerates the training process and boosts the model’s performance in low-data
regimes. This makes them valuable tools in developing HAR systems where
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collecting large labeled datasets can be particularly difficult. The potential of
transfer learning in improving HAR research and applications is demonstrated by
the application of sophisticated, pre-trained models such as Xception, DenseNet,
and VGG16, among others, in very robust and adaptable frameworks to myriads
of activity recognition tasks.

1.4 Overview of the Study
This paper explores several models in the domain of human activity recognition,
such as VGG-16, Xception, and ConvNeXt, for measures and generally for ac-
curacy. As always, critically probing how they fair, these models were further
fine-tuned in the Keras library for adopting experiments and analyses within the
Google Colab workspace using well-established mechanisms of transfer learning
without undergoing any challenge form. It gives researchers ways to effectively
use powerful pre-trained models, thus allowing for significant improvement in
experimentation and evaluation[6].

The article is arranged in such a manner that one ensures a look has been
taken at all key aspects discussed. To do that, first, the depth of the methodology
used within the process of experimentation is looked into. This entails how the
models were set up, trained, and the datasets used on the experiments, together
with which specific transfer learning methods were applied[19]. Basically, this let
the researchers take advantage of some pre-acquisition knowledge that the already
pre-trained models had, thus avoiding the hassle needed for massive labeled data
and speeding up the entire process.

All of these were very carefully designed with the utmost concern to ensure
that each model’s performance is measured correctly. This has been achieved by
comparing the performance of different models in showing/recognition of different
human activities. Here, the measurement of how well the model can classify
activities correctly using sensing data is emphasized in a really big way, since
accuracy is such an important performance metric in HAR[16]. Application of
the Keras library through the Google Colab platform was flexible and powerful
for implementing and testing these models, thereby allowing for quick model runs
and experiments without much computational constraint.

The paper then lays out the detailed methodology before proceeding to present
the obtained findings from the study. These range from quantitative results
in terms of accuracy scores of different models to qualitative insights on how
well each model is conditioned. The analysis of these results gives important
information about the current state of HAR research: strengths and weaknesses
of different deep learning approaches.

This paper will also consider possible implications for today’s HAR research.
The fact that deep learning models dramatically change the landscape of human
activity recognition when boosted by transfer learning techniques underlies this
paper. It has been said that transfer learning became a very important weapon
in this domain to achieve high performance even with low quantities of annotated
data. This latter aspect is important because for many HAR problems, collecting
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large-scale datasets, accurately labeled, is both an expensive and laborious task[7].
Use of pre-trained models, for example, VGG-16, Xception, and ConvNeXt,

show how powerful using existing well-trained architectures could be in increasing
efficiency and accuracy of HAR systems. These models have been trained on very
large representations, including the ImageNet dataset, hence providing a strong
baseline for transfer learning techniques, which will support the researcher in
developing a robust HAR model fast and with less data[11].

Thus the paper delves further into the various models in the HAR domain,
with more emphasis on the accuracy and performance metrics of the models.
This experimentation was efficiently and effectively conducted by the researchers
through the use of Keras pre-defined transfer learning mechanism realized in the
Keras library onto Google Colab[1]. These results proved the enormous potential
of deep learning and transfer learning in transforming HAR research, adding
another mile on the road toward more accurate and robust activity recognition
systems. This work not only pushes the state of the art in the understanding of
HAR but also sets a very solid step in the area, proving in practice how deep
learning can truly revolutionize the way human activities are recognized and
analyzed.



Chapter 2

RELATED WORK

In this chapter, all the related works related to human activity recognition (HAR),
traditional transfer learning pre-trained models and new pre-trained models are
elaborated.

2.1 HAR Based on Traditional Machine Learn-
ing and Deep Learning

Human activity recognition is a form of classification in which human activities
are detected and classified according to the data captured in video recordings,
data from sensors, and images. There are many approaches to HAR most are
traditional methods under which handcrafted features are stacked together using
sensor data both in the time and frequency domains. Such features include stan-
dard deviation, Pearson coefficient, harmonic mean, among others, which then
form input to several recognition models.

Some of the traditional machine learning algorithms that have been discussed
and applied to HAR include random forests, decision trees, support vector ma-
chines, and K-nearest neighbors. Thus, these models classify between the several
activities using the handcrafted features in providing the characterization of the
features concerning the activities. For example, random forests and decision trees
create a chain of decision rules based on the features, whereas SVMs find and
determine an optimal hyperplane that separates the classes of activities. KNN, in
contrast, classifies activities subject to the nearest labeled examples in the feature
space.

Great results have been achieved with traditional methodologies, and there
are a large number of studies supporting this view. Huge precisions in recognizing
a vast range of human activities were reached using traditional methods tuned
to find the most relevant aspects of the sensor data through feature engineering.
However, either domain expertise or subtleties within the data can easily be
overlooked, which is a potential drawback for this approach. However, these
methods again were able to establish a solid platform for further research in
HAR.

8



9

Traditional HAR approaches effectively work with handcrafted features from
sensor data; that is, they leverage algorithms such as random forests, decision
trees, SVMs, and KNN in order to obtain reliable recognition of activities. These
successes reveal the value of these methods even as the field increasingly leans to-
ward more automated feature extraction and advanced deep learning techniques.

For instance, several studies have proven the effectiveness of traditional ma-
chine learning approaches in HAR by using hand-crafted features and employing
various classifiers. For example, Casale et al. (2011) [4] achieved reasonable
accuracy in recognizing basic daily activities by using a computationally effi-
cient feature model through a random forest approach. The current work has
established some key attributes of random forests: handling large datasets in a
feature-rich setting in a computationally efficient way.

In a study by Casale et al., random forest was used for encoding the recognition
of basic daily activities. In doing so, they took full account of computationally
efficient features in their work to balance the fine line between accuracy and
processing time. In this work, the use of the random forest algorithm, known for
its robustness in handling large datasets, fits the task perfectly. They used basic
features, which ensured that the model they built could be implemented in real-
world applications without the use of sophisticated computational resources. The
study showed that even with primary features, random forests can give acceptable
performance in terms of accuracy for discriminating activities such as walking,
sitting, standing, and running. This work heralds that potential to be used in
practical HAR applications where efficiency is crucial.[4].

In the experiments conducted by Ayman et al., the PAMAP2 dataset was
used, which includes a large number of physical activities recorded with different
sensors. They used feature selection techniques to fuse sensor data for enhanced
activity recognition. The feature selection process should identify the most rele-
vant features with a simultaneous decrease in dimensionality and improvement in
performance. They made full use of the complementary information in data from
several types of sensors, such as accelerometers, heart rate monitors, and gyro-
scopes, to enhance classification accuracy. The random forest classifier was used
for this application, assuming that a classifier could be applied to diverse and
high-dimensional data. Their approach has shown that combining feature selec-
tion with sensor fusion can improve the accuracy of HAR models significantly[3].

Mekruksavanich et al. proposed a very complete framework for activity recog-
nition using accelerometer, gyroscope, and surface electromyography data. These
methods contribute together by using a decision tree model to interpret and com-
bine the data from more than one source of sensor input. The simplicity of the
decision tree algorithm and its high interpretability make it one viable choice for
this multisensor setup. They would further be able to record a large amount
of activity-related information, such as the dynamics of movements and muscle
activity, through data from varied types of sensors. In this case, their framework
was able to classify different exercises and physical activities quite competently;
thus, decision trees were sufficiently handy and flexible to use in multi-sensor
HAR applications[14].
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Arif et al. based their work on extracting time-domain statistical features
from accelerometer data for purposes of physical activity classification. Such fea-
tures were such as mean, standards deviation, skewness, and kurtosis calculated
from the accelerometer signals. Such features did disclose information regarding
the characteristics of activity quite well: for instance, walking might show a reg-
ular periodic acceleration, whereas activities like sitting would show minimum
variations. Then, these time-domain features were used to recognize activities
predicted from the classification algorithms. Their study emanated in very op-
timistic results and showed that even simple statistical features, if properly ex-
tracted and used, could discriminate across classes of different physical activities.
This highlighted the importance of properly engineered features in traditional
methodologies of HAR[2].

In recent decades, work in the field of HAR has gradually moved to deep learn-
ing methodologies because they enable the automatic learning of distinguishing
features directly from raw sensor data. And it is the case that remarkable im-
provements and achievements in the field of deep learning, focused on matters
concerning object tracking, image classification, and speech recognition, have
sufficed to bring about a shift toward deep feature-based methods. 1D and two-
dimensional (2D) Convolutional Neural Networks (CNNs) have been means of
growing importance in the field of HAR, yielding a top performance compared to
those of traditional approaches that mostly rely on hand-crafted features.

CNNs are particularly useful for HAR because they are capable of efficiently
processing raw sensor signals to extract hierarchical characteristics. In 1D CNNs,
convolutional operations are applied to input data in the form of time-series data,
which is a correct signal representation for typical sensor data used in HAR.

Thus, these models can capture local dependencies and temporal patterns
that correspond to the suitability of recognizing complex activities. On the other
hand, 2D CNNs are applied after transformation of sensor data into a 2D format,
such as spectrograms or images, enabling the model to take advantage of spatial
relationships within the sensor data.

The development of human activity recognition, recently increased by the use
of CNNs, applies models that are more sophisticated, including ensemble methods
with multiple CNN streams. These ensemble architectures are superior to their
single-stream analogs in a way that they can combine different perspectives and
features from multiple data representations. Such a multisource approach indeed
increases both robustness and accuracy in the activity recognition models. More
in general, recurrent neural networks are one of the most widely known and
frequently implemented approaches to HAR. The Long Short-Term Memory sub-
types are common because they work well with practically all sequential data.
They are designed to capture long-range dependencies and temporal correlations
in time series, which makes them applicable in tasks related to sequences. A case
in point is HAR.

For a concrete example, HAR through smartphone data was performed with
the help of a five-layered stacked LSTM network by Ullah et al., 2019. This deep
architecture of LSTM can effectively capture the temporal dynamics relevant to
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sensor signals and hence aid in performance improvement for the recognition of
different activities. Still, it has the power to model complex dependencies right
in time to distinguish between the activities underway[17].

Likewise, Hernandez et al. documented the benefits of using a BLSTM net-
work for HAR. The key feature of a BLSTM is that it processes data in both
forward and backward directions while at the same time being able to capture
information from both past and future time steps[10]. In fact, such a feature
can be very useful within HAR, likely to provide context from previous and sub-
sequent data points towards further differentiating otherwise similar activities.
For example, they found that a BLSTM was significantly better in distinguishing
such highly related activity classes as walking upstairs and downstairs, which
previously used to be identified as challenging distinctions to bring out because
of their close resemblance in patterns.

All these advanced studies highlight once again that deep learning is the core
technology changing HAR. Deep learning models can automatically learn fea-
tures from raw data, and therefore can avoid the time-consuming and domain-
knowledge-reliant process of engineering hand-crafted features. Therefore, the
ability of CNNs and LSTMs to capture very complex patterns and dependencies
in time has significantly enhanced the accuracy and robustness of HAR systems.

Future improvements on HAR come from integrating deep learning approaches
with ensemble methods and advanced RNN architectures, including LSTMs and
BLSTMs. These further pave the way for developing sophisticated, reliable recog-
nition applications that could rightfully be used in application domains such as
health and fitness, smart homes, and surveillance.

In this context, research efforts in deep learning for HAR have produced mod-
els able to learn from raw sensor data. Thus, various techniques comprising 1D
and 2D CNNs, LSTMs, as well as BLSTMs are highly effective and consistently
outperform methods based on traditional handcrafted features. The continuous
evolution and development of these deep learning methods, in the context of huge
benefits in HAR, put the studies forward and bring improvements for enhancing
the precision and usefulness of an activity recognition system.

These are diversified methodologies and techniques that underline the diversi-
fied nature of HAR research. However, the use of all these models and techniques
tends to come in the way of challenges associated with recognition and classifica-
tion of human activity. More specifically, by developing models for deep learning
techniques like convolutional neural networks and long short-term memory net-
works, one can learn complex features and temporal dependencies directly from
raw sensor data.

In this respect, the growing evolution of activity recognition research, em-
powered by such advanced methodologies, heralds further novel advancements
to the classification and understanding of various human activities. The more
researchers continue to explore and refine such techniques, the better the HAR
systems considered become in obtaining improved accuracy levels, robustness,
and handling of divergent and complex datasets. This development is highly
important for the development of ambient intelligence applications in various do-



12

mains such as healthcare, fitness, smart homes, and surveillance. The precision
with which activities are recognized carries great potential for enhancing users’
experiences and improving the overall system performance.

Finally, the heterogeneity in methodologies and techniques within the re-
searchers working on HAR makes the field multidimensional with great potential
for improvement. Concurrent models involving a number of CNN streams and
where RNNs have been applied until now, especially LSTMs and BLSTMs, prove
to be very effective toward the enhancement of the recognition of activities. These
improvements will serve to illustrate an area that can only be actualized with more
sophisticated machine-learning models so that, in return, more sophisticated and
reliable HAR systems can be developed.

2.2 Transfer Learning Based Method for Hu-
man Activity Recognition

Two main approaches have been widely researched for the field of Human Activity
Recognition:

• Hand-crafted feature-based methods

• Deep learning-based methods

Furthermore, some methods combine properties from both the techniques into
a hybrid model to leverage the best of both worlds.

Feature-based handcrafted approaches The handcrafted feature-based meth-
ods correspond to creating an algorithm that manually extracts features from
raw data used as input to other, more advanced machine learning tools. Those
features may come from a time or frequency domain, including statistics such
as mean, standard deviation, and skewness, or complex features like wavelet co-
efficients and spectral entropy. Some of the algorithms that are usually used
in conjunction with handcrafted features are Support Vector Machines (SVMs),
Random Forests, k-Nearest Neighbors (k-NN), and Decision Trees. While these
methods require much domain expertise to identify the most informative features,
they have had a good performance record in HAR tasks.

2.2.1 Deep Learning-based Methods
The most important development in HAR recently, after the invention of deep
learning, is that of the CNN and RNN architectural formulations. It revolution-
ized this area of deep learning in HAR tasks since they can automatically extract
features from raw data. Hierarchical feature representations are learned by such
models, thus capturing complex patterns and dependencies without having to do
explicit feature engineering.
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Convolutional Neural Networks (CNNs)

It have been shown to be highly effective in the treatment of HAR because of
their property pertaining to the ability to capture spatial hierarchies in data.
Convolutions are applied to time-series data in 1D CNNs, whereby the category
is useful for processing sensor signals. Most of the time, the sensor data can
be transformed with some kind of reshaping technique into a 2D form, thereby
enabling the use of 2D CNNs for exploiting spatial relationships. One of the key
arguments for using CNNs lies in the fact that they are capable of capturing local
patterns and are richly available within the sensor data.

Recurrent Neural Networks (RNNs)

: Long Short-Term Memory (LSTM) networks, a subclass of RNN models, have
set state-of-the-art performance in modeling sequential data. LSTMs capture
long-term dependencies and temporal dynamics, which are critical in recognizing
activities unfolding in time. This has further been improved with a new archi-
tecture called bi-directional LSTM, which processes features in both forward and
backward directions to furnish more accurate context that is temporal in nature.

2.2.2 Hybrid Techniques
Some of these HAR approaches thus constitute a hybrid of the hand-crafted,
feature-based technique and deep learning. Hybrid models leverage this by using
features that are generated manually as additional inputs in deep learning models
or combining traditional machine learning algorithms with neural network layers
to take advantage of the robustness and interpretability that handcrafted features
may lend, while still benefiting from the strong representation learning of deep
learning models.

2.2.3 Transfer learning in HAR
Transfer learning is one of the most effective ways to deal with HAR problems
using pre-trained models, which had been initially trained on large image data-
sets, including ImageNet. Such models have already been pretrained so as to learn
the rich feature descriptor from voluminous data and are fine-tuned or adapted in
order to handle HAR tasks. The following are considered the principal advantages
of transfer learning:

Lowers Training Time

This is so because a pre-trained model has already gone through the learning
process of useful features, which will be transferred to the HAR domain.



14

Improved Small Data Performance

Transfer learning is most useful when the labeled data is very small, as pre-trained
models on large datasets are very strong at feature extraction.

Enhanced Generalization

Pre-trained models typically generalize better for new tasks because they have
undergone extensive, varied large-scale training data.

These breakthroughs clearly illustrate the current evolution within HAR method-
ologies, with deep learning and transfer learning emerging as potent tools in the
development of more accurate activity recognition systems. On an equal footing,
the next stage in this evolution is the proper understanding and classification of
human activity, which will lead to a wide spectrum of practical implementations
in the areas of health care, fitness, smart homes, among others.

In classification, both the spatial and temporal templates fine-tune a pre-
trained VGG-16 model. Such a method uses transfer learning, where the weights
of a model are actually initialized, first trained on huge image datasets like Im-
ageNet, and then fine-tuned to work for the specific task of activity recognition
for in-home residents. This method enhances the generalization and performance
of models through avoidance of training deep learning architectures from scratch
and appropriates high-dimensional feature representations.

Other descriptors like GHI and TAGBM are added to this system to make
the model specific for human activities of subtle difference. After that, spatial
and temporal templates regulate classification of the model, which has made the
model clear to identify different forms of activities.

This has been proven effective in experiments on benchmark datasets like
KTH and UCF Sport actions, which makes it efficient and robust for activity
recognition tasks of totally different natures. By combining the ideas from domain
adaptation and transfer learning with these novel descriptors, Zebhi et al. have
successfully pushed this paper to lead the research direction toward HAR, opening
new doors for human activity understanding. Herein lies the potential for this
innovative approach to be inspiring towards further advancements in recognition
methodologies of activity and resulting in far more sophisticated models enabling
the solution of very real world problem challenges.
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Title of the Paper Year Author(s) Findings
A multi-class clas-
sification approach
for Human Activity
Recognition based
on accelerometer
data

2011 Casale et al. Achieved reasonable accuracy in rec-
ognizing basic daily activities us-
ing a computationally efficient fea-
ture model and a random forest ap-
proach. Demonstrated the effective-
ness of random forests in handling
large, feature-rich datasets.

Efficient activity
recognition from
low-level sensor
data

2019 Ayman et al. Used feature selection techniques to
fuse sensor data for enhanced ac-
tivity recognition, improving accu-
racy significantly by combining fea-
ture selection with sensor fusion us-
ing the PAMAP2 dataset.

An exercise recog-
nition framework
using multi-sensor
data

2020 Mekruksavanich
et al.

Proposed a framework for activity
recognition using accelerometer, gy-
roscope, and surface electromyogra-
phy data with a decision tree model,
effectively classifying different exer-
cises and physical activities.

Physical activity
classification using
time-domain statis-
tical features

2015 Arif et al. Extracted time-domain statistical
features from accelerometer data for
activity classification, showing that
simple statistical features can effec-
tively discriminate different physical
activities.

Human Activity
Recognition using
stacked LSTM
networks

2019 Ullah et al. Demonstrated the effectiveness of a
five-layered stacked LSTM network
in capturing temporal dynamics rel-
evant to sensor signals, improving
performance in recognizing different
activities using smartphone data.

Benefits of BLSTM
networks in Human
Activity Recogni-
tion

2019 Hernandez et
al.

Showed that BLSTM networks, pro-
cessing data in both forward and
backward directions, significantly
improve the accuracy of distinguish-
ing similar activities, such as walk-
ing upstairs and downstairs.

Various deep learn-
ing models and
techniques for
Human Activity
Recognition

2010s-
2020s

Multiple re-
searchers

Highlighted the effectiveness of
CNNs, LSTMs, BLSTMs, and
ensemble methods in automatically
learning features from raw sensor
data, consistently outperforming
traditional methods relying on
handcrafted features.

Table 2.1: Summary of Related Work



Chapter 3

RESEARCH METHODOLOGY

Methodology In this section, we present a chapter explicating an in-depth anal-
ysis—including the technical underpinning—of our methodology for Human Ac-
tivity Recognition. We hereby describe the technical backbone of our approach,
including transfer learning and advanced deep learning architectures; particu-
larly, the ConvNeXt model. An expository discourse on the methodologies used
is presented starting with the deep technical background, through descriptions of
the datasets used and the methods applied.

The base for our methodology in HAR lies in the concept of the usage of
transfer learning and models under ConvNeXt. Transfer learning became the
foundation that totally revolutionized machine learning when it allowed these
models to apply big pools of pre-trained knowledge, hence greatly reducing the
necessity to source huge labeled datasets for new tasks. This is especially useful
in the context of HAR because the collection and labeling of such huge amounts
of activity data can thus be expensive and time-consuming. Transfer learning
allows us to fine-tune neural network configurations that have already been pre-
trained on huge, large-scale datasets like ImageNet. Indeed, architectures such
as VGG16, GoogleNet, and Residual Networks have learned in-depth the feature
representations shared by millions of images that could be fine-tuned for our
special-purpose HAR tasks, thus making it possible to increase performance and
generalize to more complex cases.

ConvNeXt models are a new development in neural network architecture that
can take parallel input data through convolutional channels. It smoothens and
enhances feature extraction and representation learning since it captures both
the local and global patterns of the data. The parallel pathways imposed on
ConvNeXt models allow for comprehensive analysis of input data, which becomes
very useful in the case of complex tasks like HAR.

We use two popular benchmark datasets, KTH dataset and UCF Sport Action
dataset, with four scenarios each. The KTH dataset consists of video sequences
from six types of human actions: walking, jogging, running, boxing, hand wav-
ing, and hand clapping, performed by 25 subjects under four different scenarios
in terms of the background and direction. This dataset equips controlled envi-
ronment to conduct studies on human activities with more stress on consistent

16
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and repeatable actions. In contrast, UCF Sport Action gives much more details,
orders of magnitude more variations in motion, and a lot of variability in the
quantity. Datasets, on the other hand, are chock full of very different examples
of activities in realistic backgrounds and dynamic scenarios.

The video data is pre-processed and extracted from the raw video data of
KTH and UCF Sport Action datasets in an attempt to get useful features and
reduce computational complexity before training the models.

Pre-processing is done, including operations such as extraction of video frames,
normalization, and resizing. In the pre-processing step, we also estimate optical
flow to increase the available motion information in order to render the models
even more discriminative. The data augmentation techniques considered encom-
pass random cropping, rotation, and flipping for proper sample generation dur-
ing training to reduce the overfitting risk and hence achieve better generalization
performance. This is to guarantee the training of the system on high-quality,
representative data, which provides information properly and enables adequate
learning of the intricate patterns of real-world activities in modeling scenarios.
Our hope is that using this exhaustive methodology, we are able to contribute to
establishing a firm basis for the accurate recognition or classification of human
activities, which opens the way for new research and application in HAR.

3.1 Overview of the Models
The technical background of this research involves an in-depth understanding
of methodologies related to human activity recognition and the use of transfer
learning methods, including an exploration into different pre-defined models in
backing up this study.

HAR has played a commanding role in understanding human activity behavior
in various avenues, from health and sports analysis to surveillance. Most of the
classical approaches to HAR are based on hand-crafted features from sensor data
and machine learning algorithms, like support vector machines and decision trees.
All these frequently encounter issues when dealing with data that is complex or
high-dimensional, warranting the need for more sophisticated method.

Deep learning methodologies, such as Convolutional Neural Networks and
Recurrent Neural Networks, have brought about a revolution in human activity
recognition. These deep learning models are so efficient that they automatically
identify the relevant features from the raw data sensed from sensors or images.
In particular, CNNs show better performance in object tracking, image classifi-
cation, and speech recognition. Lately, an advancement called transfer learning
in the subfield of machine learning is enhancing the effectiveness of deep learning
techniques in HAR tasks.

In the proposed work, we describe the technical details related to the imple-
mentation of transfer learning and its application to HAR. We leverage transfer
learning to fine-tune pre-trained models, which were trained on large datasets like
ImageNet, for new tasks with very few labeled data samples for their training.
Again, these involve faster model convergence and enhancement in generalization
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ability and performance achieved for HAR.
We discuss further a variety of predefined models used in our research: VGG16,

VGG19, EfficientNetV2S, Xception, a couple of kinds of models with ConvNeXt,
and others. These models are entirely different in architecture, complex struc-
ture, and performance measures. They are thus, properly considered with respect
to accuracy in comparison with computational efficiency and suitability as can-
didates for use in transfer learning applications. This paper aims to dive into
the technical underpinnings of such HAR methodologies and transfer learning
techniques in the hope that it provides valuable knowledge on the effectiveness
of predefined models for human activity recognition tasks.

3.1.1 Traditional Transfer Learning Models
Conventional pre-trained models have surged computer vision and are behind
building most of the modern deep learning architectures today. Some standouts
in this category are VGG16, VGG19, EfficientNetV2S, and Xception.

VGG16 and VGG19 are Oxford University Visual Geometry Group archi-
tectures. Models in this family have one thing in common: being very deep in
architecture, with a lot of compositions of convolutional layers followed by fully
connected layers. Specifically, VGG16 has 16 weight layers and VGG19 deep-
ens the architecture to 19 layers. Although very simple in nature compared to
the design of much new architecture, the family of VGG models showed impres-
sive performance on a wide range of computer vision problems, including image
classification and object detection.

EfficientNetV2S is one in the family of the state-of-the-art models, constructed
with an eye towards state-of-the-art performance, while receiving equal attention
to computational efficiency. Developed at Google Research, EfficientNetV2 con-
tains a newly introduced compound-scaling approach in the balancing of model
depth, width, and resolution for optimal performance on diverse tasks. In par-
ticular, EfficientNetV2S is small in size and high in accuracy, which makes it
eminently suited for resource-constrained settings.

Another very popular, widely used family of pre-trained models is developed
by Google. Beginning with the Inception architecture, Xception is an extension
that adds something known as depthwise separable convolutions. That actually
decouples the spatial and channel-wise convolution to make it computationally
less complex but better in terms of representing features. So, in essence, Xception
is an architecture that can capture really fine features and, at the same time, be
computationally efficient. It is thus quite useful in a practical sense for a wide
range of computer vision tasks.

VGG16

In the domain of transfer learning, one can site the model VGG16-pretrained.
A Convolutional Neural Network architecture developed by the Visual Geometry
Group of Oxford University, VGG16 has received a lot of accolades due to its



19

depth and performance in computer vision applications, especially image catego-
rization.

Transfer learning may be strongly supported when the VGG16 model learns
very rich features and representations from huge data. Taking into account the
possible effective dealing with new challenges in classification and very few pre-
sented labeled data instances, those pre-trained weights of such VGG16 models
make this very much possible. Not only does the transfer learning approach
in training advance convergence speed, but it also enhances generalization and
brings about high accuracy compared to training the model from scratch.

Two of the most discussed performance measures when assessing the VGG16
architecture are the Top-1 accuracy and the Top-5 accuracy. In words, Top-1
accuracy means the number of test images which were correctly classified with
the highest confidence, while Top-5 accuracy means the number of test images in
which the correct class lies among the top five classes forecast.

Empirical tests of the VGG16 model present state-of-the-art performance on
various datasets and tasks. For instance, VGG16 shows leading results with Top-
1 accuracy at 71.3% and a Top-5 accuracy of 90.1%. These two metrics underline
how effective and robust the model is for delivering precise predictions as per real
applications.

This is a great example of transfer learning applied in the VGG16 pretrained
model: it improves performance to speed up the development of solid, very solid,
and accurate classification models. Being able to learn on an intricate level, this
model is suitable for researchers and practitioners involved in tasks that are very
hard and limited by labeled data.

VGG19

Pretrained model VGG19 is another key ingredient in the world of transfer learn-
ing, and it is just as strong in influence and usage in the host of diversified
computer vision applications. Developed by the Visual Geometry Group at the
University of Oxford, VGG19 shares its lineage with the VGG16 model and has
found remarkable success in a variety of tasks, most prominently in the task of
image categorization.

One of the strong models is VGG19, well equipped with 19 layers to help in
capturing visual data’s very fine, intricate, and complex patterns. Weighing in at
549 MB, with a whopping 143.7 million parameters, the VGG19 is supercharged
for learning discriminative features and achieving improved classification accu-
racy. Fine-tuning such a pre-trained model, the VGG19 one in specific, not only
allows fast and efficient dealing with new classification problems by researchers
and practitioners but makes such transfer learning possible to use learned fea-
tures and representations in it for faster convergence, improved generalization,
and higher classification accuracy compared with building from scratch.

Empirical studies concerning VGG19 have shown that they are very efficient
and reliable in inference, although a bit lower than VGG16 in terms of perfor-
mance related to the inference time. For example, tests in one paper led to an
average inference time of 4.4 ms per step on a GPU and 84.8 ms on a CPU. Thus,
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we can say that until today, VGG19 is still good for prudently precise predictions,
considering trade-offs among inference time and model complexity when taking
off. The VGG19 pretrained model is just a beacon of transfer learning power-
house, paving the way for the improvement of performance in computer vision,
more particularly in the classification of images. Its massive architecture coupled
with the ability of nuanced feature extraction makes this a more pressing tool to
use by researchers and practitioners in processing complicated classification tasks
with limited labeled data.

EfficientNetV2S

EfficientNetV2S is heading transfer learning and picking up the curiosity of the
academic research community well in its strength and compactness. Among these
families of impressive models, EfficientNet2S represents the ideal regarding high
performance and low demand in terms of computation and number of parameters.

Of course importantly, model EfficientNetV2S is compact at a mere 88 MB.
It has shown strong performance not only in image classification tasks but also
many others. This is an architecture with a balance between performance and
size that infers the use of an efficient strategy to scale models.

Overall, the compact design of EfficientNetV2S would perform a better task at
any instance where computational resources are constrained without a significant
reduction in classification accuracy. These efficient architectural components are
combined with effective scaling strategies to bring in balance between accuracy
and computational efficiency, making this model a very strong candidate for any
range of transfer learning applications.

EfficientNet is applied in practical aspects, especially when deploying in resource-
constrained environments and real-time inferencing, capable of providing top per-
formance while being frugal with computational resources. Lightweight, as it is,
EfficientNetV2S delivers on its promise for accuracy and assured performance on
every image classification task.

The EfficientNetV2S is the epitome of efficiency in the transfer learning paradigm,
compact in size, high in performance, and economical in using resources. In sum-
mary, this compact yet highly powerful architecture will prove an asset for re-
searchers and practitioners intending to apply transfer learning in resource-scarce
scenarios, hence further solidifying it as a potent contender in the landscape of
efficient and impactful deep learning models.

Xception

Indeed, Xception has been one of the first to emerge in transfer learning, both
effective and performant, in numerous tasks associated with image classification.
Famous for its small size and powerful architecture, the 88-MB Xception model
has been one that many take extremely seriously among a number of circles,
courtesy of its elevated precision and efficiency.

In addition, Xception has a large number of parameter powers of up to 22.9
million, relative to its small size, that makes it be able to learn detailed features



21

and representations from the available data. One of the striking features of this
network is depth: being 81 layers deep, the network is able to acquire hierarchi-
cal representations of images and it becomes possible for the model to capture
characteristics at a low level and at high levels rather accurately.

Xception makes sure that the computation is optimized with depthwise sep-
arable convolutions and the usage of skip connections. The use of such novel
architectural elements places Xception at the very forefront of the realm of effi-
cient deep learning models that strike the outstanding balance between parameter
utilization and performance.

While Xception is a little slower in execution inference time in comparison
with its alternatives, it is sufficiently accurate and parameter-efficient, making
it suitable for serving many applications. With such times—around 109.4 mil-
liseconds on a CPU and 8.1 milliseconds on a GPU—Xception is still relevant
to problems that require real-time processing or have less strict latency require-
ments.

One such example that embodies the ideas of compactness, accuracy, and
computational efficiency in transfer learning is shown with Xception. It can
learn intricate features while optimizing the use of computational resources, thus
being a valuable asset in deploying robust and efficient image classification models
for researchers and practitioners in numerous real-world scenarios. Due to its
relatively longer inference time, Xception becomes one of the prime choices within
this setting, where the application is mainly concerned with bringing out accuracy
and efficiency.

3.1.2 Introduction to ConvNext
ConvNext is working on the cutting edge to develop a structure for Convolutional
Neural Networks, and new architectural elements have been incorporated to add
efficiency and functionality. The ConvNet structurally differs from the other
conventional ConvNets because it has multiple parallel channels, each having its
configuration of convolutional layers and filters.

To use the outputs from these parallel branches, the innovative design of
ConvNext concatenates them to make the final prediction. The integration with
multiple branches can enable the network to distinguish intricate patterns and
characteristics in input data for its effective work in tasks concerning image and
speech recognition.

One big advantage of ConvNext is the extraction at both the coarse- and fine-
grain level due to multiple parallel routes with different filter sizes. This should
allow ConvNext to capture the widest possible variation in features, thereby
allowing for greater robustness and accuracy in feature extraction.

ConvNext also showed very flexible input size configuration, a thing that clas-
sical ConvNets lacked, since spatial pooling layers downsample their input before
further processing. This way, the model deals with variable input dimensions in
real-world applications, which can be quite unpredictable. Moreover, the Con-
vNext architecture has skip connections across the input and output levels of
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the network. This helps in the flow of gradient during training as well as in re-
taining important information from the input. This very beneficial path through
input to output space obeys faster convergence under training, adding up better
performance by the network.

With the addition of further novel architectural elements, ConvNext is a new
landmark in Convolutional Neural Network design, which shall offer improved
functionality, adaptability, and performance. It paints in the strongest and most
versatile manner the possibility of this application in capturing parallel channels
to take different input size optimizations under gradient flow for image recognition
and natural language processing[13].

Figure 3.1: Accuracy of Pretrained Models in ImageNet Dataset

ConvNeXtTiny

ConvNeXtTiny is one of the great families of compact-sized architectures, but
they do not compromise much in the native and transfer performance learning
skills. It has an extremely modest footprint of 109.42 MB, yet showing tremen-
dous capabilities to properly categorize images: it holds an accuracy rate of 81.3

Built with the idea to strike a balance between model size and functionality,
ConvNeXtTiny is designed to leverage 28.6M parameters in order to successfully
train discriminative features pertaining to an input dataset. The combination of
cardinality (grouped) convolutions with depth-wise separable convolutions cap-
tures both spatial and channel-wise dependencies in the data, which makes the
model more capable of distinguishing complex patterns and features.

Equally important, ConvNeXtTiny has a high level of accuracy compared to
big models —this shows how high the capability of the model itself is in extracting
useful information from the input data despite its small size. Furthermore, it
has a small size of representation, meaning efficient memory usage and friendly
deployment on devices with constrained resources.

This confers a lot of value to ConvNeXtTiny in relation to transfer learning
across diverse datasets and domains. In this regard, researchers and practitioners
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can leverage the capability of the pre-trained model of ConvNeXtTiny with ap-
plications toward image classification problems, more so when small amounts of
labeled data are available. This way, quick convergence is achieved from scratch
using the pre-trained weights.

ConvNeXtSmall

ConvNeXtSmall continues from the ConvNeXt Tiny family, giving a linear in-
crease in capabilities and performance with little to no compromise in efficiency.
Model size is 192.29 MB, with 82.3% for Top-1 accuracy. This is by very far the
superiorly accurate, powerful, larger model in image classification compared to
its predecessor.

ConvNeXtSmall uses near-similar architecture to ConvNeXt, but this time
pushes the parameter numbers to 50.2M. This augmentation allows the model to
extract many complex and discriminative features from the input data, making
it better at recognizing subtle patterns and characteristics.

Therefore, this serves to imply that with the use of depthwise separable convo-
lutions and cardinality (grouped) convolutions, the feature extraction from data
is well improvable by ConvNeXtSmall. Although slightly larger than the former,
the ConvNeXtSmall maintains the same level of efficiency in parameter utilization
as is observed in the ConvNeXtTiny, thus maintaining a high level of accuracy
yet accommodating the more complex representation of the data.

Practitioners will have to use a pre-trained Conv-NeXt-Small and fine-tuned
on its own datasets and domain so that known features, allowing fast conver-
gence, provide good performance, specifically for target tasks. The fact that it is
adaptive and effective enough makes it the proper candidate for usage in transfer
learning tasks, particularly in scenarios with sparse labeled data.

However, even if ConvNeXtSmall outperforms ConvNeXtTiny by a large mar-
gin of performance figures, practitioners need to understand the trade-off between
model size and performance. Complex details are captured with more precision
using ConvNeXtSmall, but in doing so, it uses more computational resources.
Therefore, a careful choice has alternative ways for the requirement of the task
at hand.

ConvNeXtBase

ConvNeXtBase is another big step in the architecture of ConvNeXt, oriented to
deal with more complex visual recognition tasks. With enormous numbers of
parameters up to 88.5 million, the ConvNeXtBase outperforms its precursors not
only by complexity but also by accuracy, reaching the terrific top-1 accuracy of
85.3

ConvNeXtBase follows the previous ones in design: a chain of convolutional
and pooling layers followed by one fully connected layer. However, it differs
in that this model consists of more filters in each block and ’blocks’ that have
been added of grouped convolutions. Further, ConvNeXtBase follows the deeper
superstructure by accommodating several more layers and greater kernel sizes to
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assist in getting out minute patterns or features in an efficient manner from the
data.

The larger size and increased complexity of ConvNeXtBase make it endowed
to perform effectively in challenging tasks, showing superior visual recognition
performance on tough tasks. At the same time, this ability comes at the expense
of extensive training and computational resources, justifying the emphasis on
resource constraints that are much needed in this regard.

In this regard, high modularity and adaptability remain at a high level, and
its application in transfer learning further instills a lot of trust. The network is
endowed with a feature through which researchers and practitioners can fine-tune
it with their own data using pre-trained weights from ConvNeXtBase; therefore,
state-of-the-art results are possible with relatively small amounts of data and
computational resources.

ConvNeXtBase is the major upgrade of the ConvNeXt family, with signifi-
cantly larger complexity and precision for the hardest tasks in visual recognition.
Its design as a modular one, along with pre-trained weights, makes this network
universally applicable to a wide range of transfer learning applications, thus ad-
vancing further the state-of-the-art efficiency and effectiveness for researchers and
practitioners.

ConvNeXtLarge

Being the richest and most complicated architecture among the family of Con-
vNeXt, ConvNeXtLarge brings the new performance record, being extremely ac-
curate and robust. While the model size is 755.07 MB, with the top-1 accuracy,
being rated at 86.3%, the ConvNeXtLarge surpasses all its precursors and proves
to be capable of being the leader in difficult visual recognition tasks.

Developed with a much higher level of complexity and parameter count—reaching
197.7 million—ConvNeXtLarge enables the extraction of complex and subtle
characteristics from input data. This bigger power is due to the fact that the
present design uses a higher number of filters, more blocks for grouped convolu-
tions, and deeper networks with a higher count of layers to build up double the
basic layout used for ConvNeXt.

These architectural enhancements enable ConvNeXtLarge to conduct highly
discriminative representation that leads to better performance when tested with
a variety of challenging visual recognition tests; however, it does so with a high
computational necessity and training time, rendering it sensitive to resource con-
straints.

This implies that it sustains efficiency and flexibility in the models under the
ConvNeXt family, even if it is scaled-up in size and complexity, hence capable
of undertaking multiple transfer learning functionalities. Those pre-trained Con-
vNeXtLarge weights enable fine-tuning on ConvNeXtLarge with less labeled data
to reach quick convergence; thus, being it attains the top performance over most
areas.

ConvNeXtLarge is the major member developed within the family of Con-
vNeXt: the state-of-art module with high capacity in accuracy and robustness
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for dealing with challenging recognition tasks. This is so great at doing service
to transfer learning applications that it’s a useful resource for state-of-the-art
image classification models, both researchers and practitioners, to call upon for
real-world scenarios.

ConvNeXtXLarge

ConvNeXt is the largest and most performant member in the ConvNext archi-
tecture family. Our large ConvNeXt, with a model size of 1310 MB and an
outstanding top-1 accuracy of 86.7%, outperforms all other members of the Con-
vNeXt family by large margins in both scale and performance.

The state-of-the-art performance of ConvNeXtXLarge is based on the huge
parameter count—350.1 million; that is what makes it capable of encoding very
complex and discriminative features from input data. Relying on the base ideas
of ConvNeXt, ConvNeXtXLarge introduces even more intricate and sophisticated
configurations in terms of increased numbers of grouped convolutions, filters, and
network depth.

ConvNeXtXLarge, while still performing excellently well, is also computation-
ally expensive and extremely time-consuming during training because of its huge
and intricate size. Accordingly, this very high accuracy places it on good foot-
ing, and it is going to be really challenged in tasks of visual recognition that are
sensitive in demanding at the very highest level of accuracy and robustness.

In this context of transfer learning, ConvNeXtXLarge would remove huge ob-
stacles: by using the pre-trained weights of ConvNeXtXLarge, one could adapt
this model to new datasets and domains to utilize the learned features for per-
formance improvement, even with small amounts of labeled data. That said, it
would be very important to make some trade-offs with ConvNeXtXLarge in var-
ious aspects, such as the size of the model, computational requirements, and the
possible inference time.

The ConvNeXtXLarge model is a robust and solid tool to study the potential
for transferring learning and, in turn, opening up possibilities to realize state-of-
the-art results on very challenging visual recognition tasks. Its superior perfor-
mance and adaptability have provided this tool as a great help in the realization
of up-to-the-edge solutions in image recognition and classification tasks.

3.1.3 ConvNext over traditional Convnet
ConvNext is a cutting-edge design that enhances Convolutional Neural Networks’
(ConvNets’) capabilities by including many parallel routes into the network.

Multiple Parallel Paths

ConvNext differs a lot from normal ConvNet because this architecture has many
parallel paths. The paths have a specific number, which constitutes its convolu-
tion layers and filters, in which case it carries out its activity independently of the
others. Concatenation of each individual prediction made by different paths is
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what produces the final prediction. The architecture of ConvNext that can help
analyze complex input information is configurable to capture diverse features and
patterns simultaneously.

Enhanced Feature Extraction

ConvNext can extract both fine- and coarse-grained features from the input data
since it has many parallel routes. Therefore, it can extract fine- and coarse-
grained features of the input data, in many parallel routes. It really helps further
in jobs that require high-level feature extraction, such as voice and picture recog-
nition. Capturing features at various granularity levels allows the ConvNext to
assimilate increasingly complex and subtle information to enhance the classifica-
tion and prediction accuracy.

Adaptability to Varying Input Sizes

ConvNext uses spatial pooling layers to handle inputs of various sizes, in contrast
to classic ConvNets, which generally need a fixed input size. On the other hand,
spatial pooling layers are used so as to make ConvNext able to deal with inputs
of arbitrary sizes. In general, classic ConvNets need a fixed input size while this
is what is powerfully called by various applications in the real world where most
of the input sizes for any particular task are likely to be variable, such as the
processing of photographs at different resolutions. ConvNext can successfully
handle inputs coming with arbitrary sizes by integrating spatial-pooling layers
necessary to downsample an input before it is passed through the network.

Skip Connections for Improved Training

Skip connections, which provide direct links between the input and output layers
of the network, are a feature of ConvNext. There is one important feature of
ConvNext: it has direct skip connections from the input layer to the output. The
result may save significant input data. These links allow the flow of training to
be better due to gradients, and as a whole, less time is consumed in the process
of training.

3.2 Proposed Work
It is designed to accomplish performance revolution on the human activity recog-
nition task using ConvNeXt architectures with traditional pre-trained models in
order to enhance accuracy and efficiency in classification of human activities from
sensor data. Based on this, a performance comparison between ConvNeXt ar-
chitecture and the performances of some traditional pre-trained models in HAR
is done. More specifically, the research explores the ways in which ConvNeXt
architectures function in capturing complex patterns and features in-belts with
human activities and their performance compared to that of some large models,
e.g., VGG16, VGG19, and Xception, in terms of accuracy and efficiency. The
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study will also examine the improvement of inductive HAR performance through
ensemble methods and advanced RNN architectures in connection with the Con-
vNeXt architectures. It will include data collection methodology—such as those
from wearable devices or other sources that can be used in creating a training and
evaluation set, model development through deep learning frameworks, training
and validation of these models, hyperparameter tuning, and evaluation metrics,
including accuracy, precision, recall, and F1-score. The experiments to be con-
ducted involve dataset selection, setting up the experiment, and model training
and evaluation with the perspective of model accuracy and efficiency compared
to robustness.

Contributions should be expected to advance the state-of-the-art in HAR, act-
ing as evidence for the effectiveness of ConvNeXt architectures, whose strengths
and limitations will be comprehensively explored and further advanced toward
better accuracy, efficiency, and robustness in HAR systems for real-world applica-
tions in healthcare, fitness tracking, and smart environments. Detailed timeline
and milestones ensure timely completion of research objectives, including detailed
data collection, development of models, experimentation, evaluation, and write-
up of the thesis. In summary, the proposed work would add value to the direction
HAR research is heading and contribute to the development of more accurate and
efficient HAR systems.

The flowchart below describes the step-by-step process in developing and im-
plementing a Human Activity Recognition (HAR) model by using deep learning
techniques. The first step is initializing basic data structures that are created for
the image data and labels, creating a list of the dataset’s defined length.3.2

At this point, during the phase labeled Loading and Pre-Processing of Images,
the images are loaded from the dataset, resized into 160 x 160 pixels, transformed
to NumPy Array, and added to the list img data. Its corresponding label is also
added to another list called img label. The labels are first transformed to numeric
value by encoding, then redefined as one-hot encoded vector lists for machine
learning model processing in the next step, pre-processing labels.

This part of the notebook builds the model. It initializes a Sequential model
with Keras, loading a pre-trained model while setting the proper input shape and
specifying the number of output classes. These flatten output from convolutional
layers and then add a fully-connected Dense layer with 512 units, culminating in
a Dense layer with 15 units.

The next stage after that would be to Compile the Model, where the model
is prepared for training with a specified optimizer, loss function, and evaluation
metric. Now our optimizer of choice is ’adam’, the loss used is ’categorical cross-
entropy’, and we’ll evaluate based on accuracy. In Model Training, the model is
trained using the fit() method, where you pass your training data, labels, number
of epochs, and your validation data. It is here, in this step, that the model
weights are tuned to minimize the losses and achieve correct outcomes; finally, it
is a trained HAR model. This detailed flowchart with accompanying description
depicts the steps to carry out in developing an HAR model, starting from data
processing to the final step: the model training part.
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Figure 3.2: Flow chart of proposed system



Chapter 4

EXPERIMENTAL SETUP

In this section, we will discuss the implementation of different pre-trained models
in HAR dataset.

4.1 About the Libraries
The following libraries provide essential functionalities and tools for data han-
dling, model construction, training, and evaluation in the implementation.

4.1.1 Os
The os library gives the handling of datasets in a basic way, which is required to
maneuver directories, manipulate file paths, and perform file operations within
context. As a relevant tool in the field, os enables dynamic traversing of directories
holding large configurations of image files for obtaining preprocessed data subsets
for analysis. OS must support making dynamic file path creation so that on the
fly it can organize data into sub-folders, based on the class labels or any other
parameter, thus making datasets effectively organized and retrievable easily. Not
only does it behave uniformly over any operating system but also its platform-
independent, and the code is portable and robust. Having these mechanisms
allows for error handling that will permit the researcher to predict and thus
adjust for eventual errors regarding missing files and permission errors and, with
it, increase reliability and overall robustness of the dataset management pipeline
in human activity recognition efforts.

4.1.2 Glob
The ‘glob‘ library is powerful and quite fast in finding and accessing files or path
names according to specified patterns, hence allowing for a very imperative way
of completing data management tasks within your project. This library enables
the easy dynamic loading of image files or datasets that have been stored in
different directories, hence reducing many efforts during data preparation before
training or evaluation. This flexibility will be assisted in merging data from
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diverse sources seamlessly and also allows one to build up large datasets for tasks
such as human activity recognition. ‘glob‘ also allows the researcher to input
specified search patterns needed, like wildcard expressions, so as to gain an extra
level of granularity and get to a higher level of detail in the identification of files
or directories. In general, ‘glob‘ enhances productivity and data quality in the
context of management workflows, which enables its users to focus on creating
and assessing trustworthy human activity recognition models.

4.1.3 Numpy
The ‘numpy‘ package is a mainstream library in the numerical computing environ-
ment, with efficient functions for working over arrays, mathematical transforma-
tions, and general data manipulations. It supports a lot—just a lot—of tasks for
analysis and model formulation pertaining to human activity recognition. It en-
ables one to perform mathematical computations on image data effectively, such
as normalization, scaling, and dimensionality reduction. This is followed by re-
sponsible data preparation for further analysis. Furthermore, ‘numpy‘ supports
the extraction of salient features from raw data for the generation of informa-
tive representations that encapsulate major characteristics of human activities.
Moreover, ‘numpy‘ can yield input tensors that fit perfectly into deep learning
frameworks, so compiling and evaluating models is much easier. By utilizing the
power of the ‘numpy‘ library, new knowledge from raw data can be elicited in
order to develop human activity recognition systems that are more accurate and
efficient.

4.1.4 Pandas
Other libraries, such as ‘pandas‘, are flexible enough and, further, very important
in terms of working with and analyzing data. What it specifically has to deal
with is the structured-data formats like CSV files. Meanwhile, in the project you
are engaged in regarding human activity recognition, there will be provided an
extended number of tools for effective table data management with information
about different activities. Through intuitive functionalities, a user is capable of
loading CSV files containing activity labels, merging datasets for compactness,
and executing data transformation, changing them into a form that will be easy
to proceed with further into analyses or model training. Similarly, ‘pandas‘ al-
lows descriptive statistics to be extracted, which are important from the point
of obtaining relevant information about the basic characteristics of the activity
and distributions:. With its intuitive structure and huge functionality, ‘pandas‘
makes it easy for a scientist to help simplify the data preprocessing pipeline and
speed up the process of the base model development to recognize activities.

4.1.5 Tensorflow Addons
‘tensorflow addons‘ is a good wrapper over TensorFlow, incorporating many fea-
tures alongside specialized operations and utilities. For human activity recogni-
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tion, in particular, ‘tensorflow addons‘ has been designed with advanced capabil-
ities, including specialized layers, which work hand in hand with the core func-
tioning of TensorFlow. These include a specialized loss function to handle some
special aspects of activity recognition, specific metrics to measure model perfor-
mance, and complex layers that capture the many aspects of human activity data
properly. Inclusion of ‘tensorflo addons‘ into your workflow will put researchers
in a better position to have access to many tools and resources through which it
will rather be easy to develop very high-performance activity recognition models.
This seamless integration allows researchers to explore new and innovative ways
for the optimization of model architectures so as to develop competitions that
rely on the best performance for accurate and robust recognition.

4.1.6 Tensorflow
TensorFlow forms the very basis of deep learning frameworks that provide a full
set of tools and functionalities in creating, training, and deploying machine learn-
ing models. You will use TensorFlow as the foundational framework in building
and training neural networks in your human activity recognition project. With
the rich ecosystem of TensorFlow, researchers will benefit from a wide array of
tools, APIs, and prebuilt models for developing advanced architectures, particu-
larly crafted for problems as interesting as activity recognition. The flexibility of
TensorFlow allows working with different paradigms in deep learning: from Con-
vNets, RNNs to transformer-based architectures, hence leaving where new ideas
or experiments in model design can be brought in. This is where TensorFlow can
be quite handy, with powerful functionalities applied to make the development
process easy for the researchers and further optimize model performance toward
state-of-the-art results for human activity recognition.

4.1.7 Keras
Keras is an integral part lying in close proximity to TensorFlow and is a high-
level API of neural networks. It is designed to be fast, user-friendly, and easy
to stick together for researchers with small code complexity during model build-
ing, composing, training, and evaluation. In the context of your project, Keras
eases the process of designing and putting into implementation architectures rel-
evant to deep learning during human-activity-recognition tasks. Due to the user-
friendliness and modular architecture of Keras, it is very easy for researchers to
design and configure neural network models according to the subtleties of activity
recognition tasks. There are a variety of pre-configured layers, activation func-
tions, and optimization algorithms in Keras for fast prototyping and research on
the configuration of a model. Additionally, Keras has very good integration with
the TensorFlow ecosystem. It further enables smooth interoperability by allowing
the use of a rich collection of other tools and resources for the training and evalu-
ation of models in this ecosystem. In service to this overall goal, the user-friendly
design and wide functional coverage of Keras allow the research activities needed
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to speed up the development cycle in order to optimize model performance for
attaining cutting-edge results in activity recognition.

4.1.8 Layers (by Keras)
There are some pre-configured layers available inside Keras’s ‘layers‘ module that
could be helpful in building a neural network. They span from a large list of convo-
lutional, pooling, activation, and normalization operation layers—basic building
blocks for the composition of deep neural networks. For your project, it will help
in predefining layers for the optimal development and configuration of a Convo-
lutional Neural Network (CNN) or a Recurrent Neural Network (RNN) model,
specifically for recognition during the observation of human activity. Such ac-
tivation layers will allow researchers to build deep architectures very easily and
experiment with many settings in tuning parameters toward better agreement in
performance.

4.1.9 ImageDataGenerator
It gives the ‘ImageDataGenerator‘ tool, and in return, it acts as a powerful re-
source for real-time data augmentation during the training period of an image
dataset. A case in point for human activity recognition: with the usage of the
‘ImageDataGenerator‘, one can augment their data by applying transformations
such as rotation, scaling, shifts, and flipping on input images. This kind of
strategy in increasing the dataset’s richness with respect to diversity of training
samples boosts the robustness and generalization capabilities of deep learning
models. Using an ‘ImageDataGenerator‘, you can greatly reduce overfitting and
improve the performance of a model on new data. This is done by subjecting
the model to greater spectra of variability that might be present in the original
dataset.

4.1.10 Categorical
The ‘to categorical‘ function is very important since it converts class vectors to
one-hot encodings. This operation is done mostly in classification that uses cate-
gorical labels. In your project for human activity recognition, class labels denoting
various kinds of human activities are now in the form that is suitable for training
the neural network. It means by converting this, the output of the model can be
interpreted as probabilities across classes, making it ideal for an exact prediction
and evaluation of an activity recognition task. By using ‘to categorical‘, you are
sure that your model will learn correctly to classify activities with respect to the
categorical representations thereof, which is more effective and interpretable.
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4.2 Dataset
A well-curated and annotated dataset of images provides the backbone to ac-
curately label these images in this research work. This supposedly encompasses
something like 15 different categories, which people generally divide human ac-
tivities into, and special care was taken for these categories to crop up in very
different kinds of actions and movements: walking, running, sitting, standing,
jumping, or for that matter, more specialized activities such as dancing, practic-
ing, playing different sports, etc [5]. This project aims at creating a diverse and
representative dataset, which could be used not only in training but also in cross-
validating machine learning models applied for Human Activity Recognition.

The data set consists of nearly twelve thousand images, divided into training
and validation sets for ease of building a model and evaluating it. Each image
was perfectly described, characterized by an easy-to-observe name that attributes
the activity being undertaken. This is required to be foundational with respect to
supervised learning: that it be the ground truth for which you train the models
and they learn to recognize and classify activities.

The images used in the selection process have to reflect a wide variety concern-
ing every category but also of every different context and condition of the images:
lighting, background, subject appearance, movement dynamics, and so on. This
is very important for building a model that is strong in generalization toward
real-world situations. The images were collected from various environments, be-
ing both outdoor and indoor. This was in an effort to represent a wide scope of
potential conditions under which the activities could take place. Furthermore,
preprocessing techniques were applied for clarity and relevance grooming of each
of the images: steps applied prior to cropping, resizing, and normalization of the
input data, making it so that it could be standardized with the ML algorithms.
Additional techniques to filter out noise totally cleaned these images of irrelevant
detail that would only hamper the learning process.

It is well equipped with the all-inclusive information in a dataset; hence,
models developed from it return not only accurate results but also reliability in
identifying and classifying a broad spectrum of human activities under different
scenarios. This type of rich dataset is therefore very important in training deep
learning models because it incepts the model with a lot of diversity in examples
to learn from and therefore develops it to be able to recognize subtle variations
in the activity being conducted. The approach aims to build models for correct
HAR with high accuracies and robust frameworks, relying on a wide and varied
dataset. Accordingly, it trains models that predict by a classification of the correct
activity class which the image it contains is described by its label. Generalization
performance of the built models has been measured with validation on new unseen
data.

Being a diverse data set of almost 12,000 labeled images, this well-structured
collection is one strong base for ensuring further development towards the state-of-
the-art HAR models. The careful selection, grooming, and labelling of the dataset
assure that models trained on the data can perceive a wide class of activities with
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high accuracy and confidence, thus making strong contributions to the field of
activity recognition and its practical application.

The fifteen human activity categories included in the dataset are as follows:
1. Calling
2. Clapping
3. Cycling
4. Dancing
5. Drinking
6. Eating
7. Fighting
8. Hugging
9. Laughing
10. Listening to music
11. Running
12. Sitting
13. Sleeping
14. Texting
15. Using a laptop
To provide a visual representation of the dataset’s diversity, the image (Figure

3.1) below showcases samples from each of the fifteen activity classes, illustrating
the breadth and richness of human activities captured within the dataset.

Figure 4.1: Human Activity Images taken in Dataset
Besides associating the dataset, which is broad in coverage with respect to

human activities related to different stages of life, the annotated nature of datasets
really proves to be a valuable resource both in developing and evaluating any
activity recognition model. Every image in the dataset is annotated well enough
through a descriptive tag representing an activity coherently and truthfully; this
lays down a nice foundation for the supervised learning processes. This detailed
annotation is very crucial in order to teach models to recognize, classify, and
learn activities based on human movement in a correct way based on good quality
labeled input samples.

The dataset has a very general scope covering 15 classes of human activities,
ranging from the basic daily activity of a human being to more specific ones such
as dancing, exercising, and playing sports.
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This ensures diversity in the data set and captures a very wide array of move-
ments and contexts that might mirror human behavior in all its complexity. It
captures activities carried out across many different environmental settings: in-
door and outdoor, hence representing the nature of conditions that these activities
are carried out in.

This further explains that, from around twelve thousand images, it is subdi-
vided for training and validation purposes. The model learns from a big number
of examples within the training set, whereas the purpose of validation is sup-
posed to check performance. It should check how general the model can be to
new, unseen data. Without such splitting, there is no possibility to build a really
well-working model, one which may perform well under real-life circumstances.

Preprocessing is essentially structured with cropping, resizing, normalization,
and noise deduction in order to obtain improved input data quality and harmo-
nize data for machine learning algorithms, while at the same time preventing
overfitting risks. Then each image is groomed carefully so that each one becomes
relevant and clear to provide the best training data to the models. Leveraging
the richness of annotation and diversity within this dataset, it will be possible
to create highly sophisticated state-of-the-art models for human activity recogni-
tion not only in terms of accuracy but also in terms of reliability across contexts
and conditions. The extensive amount of coverage on human activities in de-
tail through the labelling of images further generalizes the dataset so that new
research in human activity recognition can be initiated.

Models built on this dataset can perform well, which can be expected in health
care applications, fitness tracking, and smart home systems with surveillance.

Indeed, it is a rich data set in the sense that it contains varied activities
throughout the life course, and hence studying human behavior change over time
would be very valuable. For example, the study will be able to investigate how
recognition models can account for changes in an activity pattern through the
inclusion of pictures and videos showing activities carried out by individuals at
different life stages. Together, the diversity and annotated nature of the dataset,
together with comprehensiveness and wide coverage of human activities, make
it a major stride in human activity recognition research. This is indeed very
important for providing a strong base in the development of models that take
a lot of activities with accuracy and dependability through novel applications,
which finally add to human behavior understanding. This dataset, with rich
annotations and wide examples, will undoubtedly become very important and
could shape the future related to research in activity recognition.

4.3 Data Pre-processing
Human activity recognition mainly relies on the performance and reliability of the
model with very high-quality and consistent data. Proper data preprocessing is
an essential step toward ensuring the quality of the dataset for training advanced
models like the ConvNeXt architecture. This section elaborates on the data
preprocessing pipeline followed in this work to ensure that data are problem-free,
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and thereby meet the very strict standards for human activity recognition.
The philosophy that underlines our preprocessing pipeline is the class con-

sistency and balance of all categories of activities. This principle is embedded
at every step, from data collection through preprocessing, and ensures that the
process of training and evaluation is run on consistent and balanced represen-
tations of each activity class. These aspects focus on the minimization of bias
against some specific activity groups, which otherwise would distort the model’s
performance and further affect generalization.

The above is a comprehensive data preprocessing pipeline for ensuring high-
quality and research-friendly HAR datasets. The main intention for the class con-
sistency and balance in this dataset is to make the dataset fair, hence not biased
since reliable and accurate models for activities have been developed. Such an
approach enhances the model performance of the ConvNeXt architecture, hence
making it a general objective for advancing research on human activity recog-
nition using a robust and reliable foundation for training and model evaluation
processes.

From the above sections, it is evident that the data of images along with the
corresponding labels are structured in a properly arranged CSV file. The file acts
as the center point for storing each image’s label, so management and retrieval
could be done in a simplified way in further pre-processing and training stages.

The big part of pre-processing the data is to make sure the source photographs
are all a uniform size and format. All images are uniformly compressed to 160x160
pixels in resolution. Scaling ensures that all images are equal, which can be used
for comparison and feature extraction when the models are being trained.

The images are then converted into numpy arrays after resizing by using the
Python numpy module. Python’s np.asarray() method quickly converts these
images into numpy arrays so that they can be efficiently handled and processed
within the structure of the ConvNext architecture. These Numpy arrays encode
the preprocessed image data, thereby ready for both subsequent feature extraction
and model training processes.

At the same time, the class labels defined for each image are passed through
a transformation with the numpy library function ”to categorical()”. At this
transformation step, the class labels are encoded as one-hot vectors in order for
the model to be appropriately guided by categorical nature of classes and to
predict human activities properly. Such encoding of a categorical label makes the
dataset compatible to the ConvNext architecture which helps in distinguishing
and categorizing human actions effectively by a machine learning model.

The pre-processing procedures are important and, as a result, should be car-
ried out in such a meticulous way that they indeed create a dataset tailor-made
for use in human activity recognition. In this study, the suitability and effective-
ness of the dataset have been ensured by adopting uniform picture sizes, balanced
class distribution, and categorical label encoding techniques for training effective
ConvNext-based activity recognition models.
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4.4 Implementation Procedure
This section presents in detail the step-by-step process and flowchart of the hu-
man activity recognition model implementation using deep learning techniques.
In detail, it describes prepared tasks or operations to be applied in model devel-
opment, training, and evaluation, starting from stages of data preparation and
pre-processing, right through to model construction, compilation, and training.
From this, the steps can guide the reader across an entire workflow on how the
implementation is done in a way that is easy to grasp.

This section also indicates the necessity of the libraries and functions—following
are some: TensorFlow, Keras, NumPy, PIL in their respective roles throughout
the implementation. The general scope of this section will be a guide for practi-
tioners and researchers in replicating or adapting the illustrated model for their
own use in a human activity recognition task.

4.4.1 Data Preparation
It’s in this step that you create two lists: ‘img data‘ and ‘img label‘. You have
also defined the variable ‘length‘, which indicates a total number of training data
instances. This step initializes the most basic data structures for the loading and
processing of the dataset.

4.4.2 Loading and Pre-processing Images
This is the stage where images from the dataset are loaded and pre-processed
for further processing. You iterat ovr the lngth of th training data, opn ach
imag with th Python Imaging Library, rsiz th imags to a fix siz with prdfind
dimnsions of 160x160 pixls, convrt th imags into NumPy arrays, and appnd ths
lists of NumPy arrays to th list img data. At the same time, furthermore, the
corresponding labels for each of the images are appended in the list img label.
This process is critical to bring the dataset into memory and ready for the next
processing step.

4.4.3 Pre-processing Labels
At this step, you preprocess the labels that come with your images. The factorise
function is applied to the labels using the train csv DataFrame. By encoding
categorical labels into numeric values, it makes it possible for a machine learning
model to understand them. Then the numeric labels are converted into one-
hot encoded vectors by calling the ’to categorical()’ function. One-hot encoding
is a very common method in classification tasks. In this method, the vector
representation of a label transforms into a binary vector where the value ’1’
states that one element belongs to a class and the value ’0’ states that it does
not.
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4.4.4 Building the Model
Here you will start to construct the model of a neural network for human activity
recognition. First of all, this is initializing a Sequential model with Keras, which
is actually a high-level neural network API. The pre-trained model is loaded,
leaving only the last fully connected layers. The ’input shape’ parameter equals
(160, 160, 3), meaning size of input images: width, length, and 3 for RGB. The
number of output classes is also set to 15, which matches with respect to the
number of activity categories in the dataset.

4.4.5 Freezing Pre-trained Layers
You are freezing the weights of the model’s pre-trained layers, fixing them during
training. The aim is to avoid changing or retraining the weights so that it can
keep their learned representations from the pre-trained model. This way, it’s less
computationally expensive and guards, from a statistical point of view, against
the possibility of the model forgetting features that it learned during the process
of learning a new one.

4.4.6 Adding Custom Layers
Here, you add custom layers on top of the pre-trained model to tailor it to the
specific task of human activity recognition. The output of the convolutional
layers is flattened to prepare for the fully connected layers. Subsequently, a fully
connected ”Dense” layer with 512 units and a ’relu’ activation function is added to
capture high-level features from the extracted representations. Finally, a ”Dense”
layer with 15 units (equal to the number of classes) and a ’softmax’ activation
function is added to output probabilities for each activity category.

Going further, you tailor the model to custom requirements of your task by
adding some custom layers on the top of pre-trained models. The output from
convolutional layers is flattened so as to prepare the features ready for the fully
connected layers. This is then followed by a fully connected ’Dense’ layer with 512
units and an activation function of ’relu’ in order to capture high-level features
from the extracted representations.

Finally, we use a ”Dense” layer that has 15 units with the same number
of classes to obtain the category probabilities, where ’softmax’ is used as the
activation function.

4.4.7 Compiling the Model
In this step you compile the model in order to configure it for training. The ‘com-
pile()‘ method is used in specifying the optimizer, loss function and evaluation
metric. Here, the ’adam optimizer, ’categorical cross-entropy’ loss function along
with the ’accuracy’ metric is selected. The optimizer is in charge of updating
the model’s weights over training, and the loss Function approximates the per-



39

formance of the model during optimization. The accuracy metric evaluates the
model’s performance against the validation dataset.

4.4.8 Model Training
Then, the model is trained on the training data. The method ’fit()’ is supplied
with associated training data, labels, the number of epochs to train for, and vali-
dation data it should check against. The model is trained in a way that minimizes
loss and increases accuracy by tweaking its weights through an optimization al-
gorithm and a loss function. This argument was set to ’1’ so that I could obtain
logs for every epoch to be used later in gaining some insights into the training
process.



Chapter 5

RESULTS AND DISCUSSION

This chapter presents the training process’s outcomes and the experiments in
which different models were used in the context of human activity recognition.
It sets deep insights into model performance measured in terms of accuracy,
loss, and other relevant measures that are drawn out of training and evaluation
phases. The performance variance is also compared in the classification of the
exact human activity for all models. This gives readers a very clear idea of the
relative performance and suitability of each model for the specified task, which
can help them make decisions and further explore the results.

5.1 Training Process Results
This section shows the result of training process of all the models used in the
experiment.

5.1.1 VGG16

Epochs Train Accuracy Train Loss Validation Loss Validation Accuracy
1 0.4354 2.3097 1.5611 0.5012
2 0.6115 1.2049 1.5441 0.5417
3 0.7031 0.9072 1.5237 0.5500
4 0.7813 0.6647 1.6445 0.5270
5 0.8478 0.4721 1.8451 0.5377
6 0.8979 0.3234 1.9071 0.5504
7 0.9292 0.2246 2.1260 0.5345
8 0.9571 0.1435 2.1318 0.5421
9 0.9762 0.0966 2.3576 0.5460
10 0.9558 0.1446 2.5895 0.5278

Table 5.1: Training process of VGG16

40
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The table below summarizes the performance of the VGG16 model on HAR
for 10 epochs. Validation accuracy has a slight increase, remaining around 50%,
whereas training accuracy increased from 43.54% up to 95.58%, and training loss
dropped to 0.1446 from 2.3097. The best validation accuracy achieved is 55.04%.
It overfits because it does not generalize as well with new data as it does with the
training data. This can be explained by the fact that the validation loss increases
up to 2.5895.

5.1.2 VGG19

Epochs Train Accuracy Train Loss Validation Loss Validation Accuracy
1 0.4450 2.2763 1.5712 0.5044
2 0.6137 1.2110 1.5558 0.5222
3 0.7059 0.9099 1.5755 0.5417
4 0.7837 0.6627 1.6346 0.5540
5 0.8437 0.4770 1.7299 0.5595
6 0.9020 0.3130 1.7934 0.5480
7 0.9350 0.2150 1.9439 0.5603
8 0.9658 0.1336 2.0790 0.5540
9 0.9788 0.0905 2.2085 0.5571
10 0.9823 0.0722 2.3624 0.5591

Table 5.2: Training process of VGG19

Training for the Human Activity Recognition VGG19 model happens over 10
epochs. The training started from 44.50% accuracy and 2.2763 loss in epoch 1;
then, it improved to 98.23% accuracy with a 0.0722 loss in epoch 10. Valida-
tion accuracy increases just a bit at the end of epoch 0, from 50.44% to 55.91%,
signifying that there are some generalization issues. Over the epochs, there is
evidence of a trend in the increase in validation loss which has a maximum at
2.3624. These trends suggest potential overfitting and require further develop-
ment in optimization processes to better model generalization on unseen data.

5.1.3 EfficientNetV2S
Below is training performed on EfficientNetV2S for 10 epochs in the case of
Human Activity Recognition. Starting from an initial training accuracy of 60.62
with a corresponding loss of 1.2529 in epoch 1, the two metrics continuously rise
across the training. At the 10th epoch, the model hits a training accuracy of 94.41
along with the loss of 0.1800. The validation metrics are also very telling because
the accuracy surges from 65.60 to 67.42% over the same period, yet the loss
slightly arises at 1.3200. Such results indicate an effective learning process and
the possibility of generalization, although there is room for slight optimization.
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Epochs Train Accuracy Train Loss Validation Loss Validation Accuracy
1 0.6062 1.2529 1.0638 0.6560
2 0.7137 0.8851 1.0497 0.6611
3 0.7616 0.7311 1.0305 0.6655
4 0.8137 0.5886 1.0178 0.6829
5 0.8431 0.4798 1.0695 0.6746
6 0.8826 0.3713 1.1150 0.6734
7 0.9018 0.3040 1.1518 0.6714
8 0.9253 0.2421 1.2077 0.6734
9 0.9342 0.2118 1.2540 0.6698
10 0.9441 0.1800 1.3200 0.6742

Table 5.3: Training process of EfficientNetV2S

5.1.4 Xception

Epochs Train Accuracy Train Loss Validation Loss Validation Accuracy
1 0.1355 5.1623 2.5775 0.1444
2 0.1819 2.4961 2.4989 0.1698
3 0.2156 2.3857 2.4235 0.1956
4 0.2309 2.3212 2.4329 0.1901
5 0.2536 2.2518 2.4419 0.1988
6 0.2686 2.2085 2.4543 0.1988
7 0.2854 2.1506 2.3898 0.2123
8 0.3001 2.0985 2.4336 0.2028
9 0.3180 2.0535 2.5453 0.1960
10 0.3322 2.0043 2.5273 0.1972

Table 5.4: Training process of Xception

The training results for the Xception model in Human Activity Recognition
are then logged over 10 epochs. From both initial metrics, it is seen that at
epoch 1 are a training accuracy of 13.55% and loss equal to 5.1623. They both
somewhat increase along with the continuation of the next epochs. However,
for epoch 10, these remain significantly low at 33.22% for training accuracy and
2.0043 for loss. Marginal improvement in validation metrics is also seen, with
the resultant accuracy of 19.72%, which is quite low. The results point out some
challenges for model learning and generalization: they seem to bring about a need
for further optimization and exploration.
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5.1.5 ConvNeXtSmall
The training progress of the ConvNeXtSmall model is plotted over 10 epochs
for Human Activity Recognition. Both starting from an initial training accuracy
of 66.61%, and loss at 1.0662 in epoch 1, they slightly increase all through the
training. After the 10th epoch, the model has a training accuracy of 98.44% with
a loss value of 0.0569. Validation metrics further show the good trends of increase:
accuracy rises to 71.94% and validation loss has gone down just a little to 1.3656.
The classification results show considerable learning and generalization of the
model, which may perform robustly on unseen data with further optimization.

Epochs Train Accuracy Train Loss Validation Loss Validation Accuracy
1 0.6661 1.0662 0.8929 0.7190
2 0.8107 0.5923 0.8487 0.7365
3 0.8817 0.3856 0.8845 0.7405
4 0.9235 0.2511 0.9320 0.7353
5 0.9535 0.1645 0.9602 0.7480
6 0.9517 0.1074 1.0224 0.7437
7 0.9700 0.0715 1.0696 0.7496
8 0.9864 0.0543 1.1557 0.7484
9 0.9890 0.0435 1.2181 0.7433
10 0.9844 0.0569 1.3656 0.7194

Table 5.5: Training process of ConvNeXtSmall

5.1.6 ConvNeXtBase

Epochs Train Accuracy Train Loss Validation Loss Validation Accuracy
1 0.7801 0.7238 0.5805 0.8250
2 0.9043 0.3010 0.5714 0.8333
3 0.9454 0.1749 0.6133 0.8325
4 0.9700 0.0972 0.6573 0.8357
5 0.9834 0.0604 0.7114 0.8421
6 0.9869 0.0440 0.7631 0.8353
7 0.9899 0.0341 0.7667 0.8361
8 0.9880 0.0394 0.8749 0.8290
9 0.9771 0.0786 0.9555 0.8143
10 0.9745 0.0797 0.9990 0.8163

Table 5.6: Training process of ConvNeXtBase
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The training results of the ConvNeXtBase model with respect to HAR are
logged through 10 epochs. In the beginning, the obtained training accuracy was
at 78.01%, and the loss is 0.7238 in epoch 1, although both measures constantly
rose from the following epochs. Finally, in epoch 10, the training accuracy reached
97.45% with a loss of 0.0797. Validation metrics also seemed promising, in which
the accuracy increased to 81.63%, but the validation loss crept up in value to
0.9990. It indicates effective learning and generalization ability, hence showing
potential for robust performance on unseen data with further optimization.

5.1.7 ConvNeXtLarge

Epochs Train Accuracy Train Loss Validation Loss Validation Accuracy
1 0.8020 0.6631 0.5230 0.8413
2 0.9228 0.2443 0.5587 0.8341
3 0.9633 0.1178 0.5659 0.8508
4 0.9803 0.0644 0.6850 0.8440
5 0.9856 0.0479 0.6796 0.8437
6 0.9921 0.0295 0.7294 0.8504
7 0.9956 0.0166 0.7515 0.8575
8 0.9960 0.0164 0.8715 0.8444
9 0.9697 0.1011 0.9436 0.8357
10 0.9636 0.1145 0.9751 0.8286

Table 5.7: Training process of ConvNeXtLarge

The illustration below shows the training progress for human activity recog-
nition with the ConvNeXtLarge model after 10 epochs of training. Starting ac-
curacy is 80.20% and loss is 0.6631 at epoch 1, both monotonically increasing
during training, it gives a training accuracy of 96.36% and an average training
loss of 0.1145 over 10 epochs. Further promising trends can be seen from valida-
tion metrics: the accuracy now reaches 82.86%, and the loss slightly rose up to
0.9751. All those results would lead us to believe that learning and generalization
are effective; thus, the potential of the model for good performance with still not
foreseen data is pretty solid.

5.1.8 ConvNeXtXLarge
Training progress of the ConvNeXtXLarge model for human activity recognition
over 10 epochs: starting from a training accuracy of 80.55% and a loss of 0.6631
in epoch 1, development continues quite smoothly for both metrics. In epoch 10,
the model receives a training accuracy of 98.97% with a loss of 0.0317. Validation
metrics also show promising growth; for example, accuracy increased to 85.15%,
and validation loss slightly dipped by a notable 0.9744. The results indicate a



45

Epochs Train Accuracy Train Loss Validation Loss Validation Accuracy
1 0.8055 0.6631 0.4954 0.8512
2 0.9213 0.2450 0.5701 0.8365
3 0.9603 0.1262 0.5908 0.8460
4 0.9806 0.0621 0.6144 0.8480
5 0.9829 0.0538 0.7148 0.8508
6 0.9854 0.0483 0.7876 0.8448
7 0.9768 0.0738 0.9707 0.8222
8 0.9745 0.0794 0.8929 0.8440
9 0.9869 0.0409 0.9527 0.8472
10 0.9897 0.0317 0.9744 0.8516

Table 5.8: Training process of ConvNeXtXLarge

good process of learning and generalization, churning out models that could serve
honorably for the classification task on unseen data.

5.2 Compare between eight models on training
and validation data

This sections provides the comparison of all the predefined models. Comparison

Sl.No Pre-trained Model Training Accuracy Validation Accuracy
1 VGG16 97.46 56.23
2 VGG19 98.43 54.96
3 EfficientNetV2S 96.71 68.85
4 Xception 53.68 23.36
5 ConvNeXtSmall 99.86 71.80
6 ConvNeXtBase 98.13 83.41
7 ConvNeXtLarge 98.63 85.63
8 ConvNeXtXLarge 98.23 85.87

Table 5.9: Comparison of 8 models

between eight predefined models for human activity recognition in HAR amid the
training and validation data.

The training accuracy of the VGG16 model is high at 97.46%, but the valida-
tion accuracy is very low, at 56.23%, which proves quite overfitted. Equally high
is the training accuracy for the VGG19 model at 98.43%, with the validation one
being even lesser at 54.96%, suggesting an analogous nature of overfitting.

On the other hand, the EfficientNetV2S model has slightly lower training
accuracy, at 96.71%, but spikes to relatively high validation accuracy of 68.85%,
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hence generalizing better. It might imply that the EfficientNetV2S model may be
decoding the primary information embedded in the dataset without overfitting.

In contrast, the prediction made by the Xception model is rather poor on
training and validation datasets, with accuracies of 53.68% and 23.36%, respec-
tively. This implies that it is challenged in learning proper representations for
data, hence the poor performance in both sets.

The ConvNeXt models consistently outperform the VGG and Xception mod-
els in both training and validation accuracies. An exceptionally high training
accuracy of 99.86% and 71.80% for validation accuracy was achieved with the
ConvNeXtSmall model, indicating robust learning and generalization capability.
On the other hand, baseline models such as ConvNeXtBase, ConvNeXtLarge,
and ConvNeXtXLarge also showed a lot of contrasts in terms of training and
validation accuracies, which ranged from 98.13% to 98.63% for training and from
83.41%.

These results appear to support the fact that ConvNeXt models are highly
effective for HAR tasks, and among them, ConvNeXtLarge and ConvNeXtXLarge
particularly perform strongly. This shows the importance of model architecture
and design in handling HAR tasks. A sign of how classic models like VGG
and Xception perform a little limit to capturing complex patterns from data
compared to that of newer architectures like EfficientNetV2S and ConvNeXt,
which perform well and show high promise in HAR applications due to high
accuracy and generalization abilities.

Figure 5.1: Training and validation accuracy of ConvNeXtLarge Model
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Figure 5.2: Training and validation Loss of ConvNeXtLarge Model



Chapter 6

CONCLUSION

In the field of HAR, the pursuit of greater accuracy and efficiency has led the
recognition community from considerations about everything from traditional
pre-trained models to more advanced architectures like ConvNeXt. Here, this
paper deals with the deep evaluation and comparison of their performances on
a dataset comprising 12,000 images in 15 different activity classes. The results
of the experiment produced an interesting story that definitively highlights the
superiority of ConvNeXt architectures applied to HAR over all others, with Con-
vNeXtLarge leading this group. Even though promising performance initially ap-
peared using traditional models pretrained as VGG16, VGG19, EfficientNetV2S,
and Xception, their performance was largely poorer than for newly formulated
ConvNeXt ones.

Of all the trained models, the leading model proved to be ConvNeXtLarge,
which touched on an accuracy of training and validation better than the others.
This major success has therefore proven the power of ConvNeXt architectures
in capturing complicated patterns and features that are generally displayed in
human activities. By using a mixed convolutional layer architecture in ways
never before done, ConvNeXtLarge managed to state-of-the-art accuracy and ro-
bustness of activity recognition. It can pick out fine flavor and adapt to mixed
datasets, thus putting it at the core of where HAR is moving. Moreover, suc-
cess of model ConvNeXtLarge is of more general importance for the machine
learning/artificial intelligence community in that this attests to the fact that
new design in architecture might solve major practical tasks which claim high
precision/reliability, in particular HAR.

This research also depicted how important continuous innovation and explo-
ration are to the development of models. With the ever-evolving technologies and
the increasing complexity of the datasets, new methodologies and architectures
are coming forward which will now start to come into reality. The great perfor-
mance of ConvNeXt Large will not only consolidate itself further among models
for HAR but also open new possibilities and potential for deep learning.

48
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6.1 Future Work
The developed ConvNeXtLarge model demonstrated excellent performance, the
architecture should be further investigated and optimized. This can be done
with further experimentation with different configurations, layers, and hyperpa-
rameters to increase generalization capabilities toward datasets with even more
diversity and complexity in activity patterns. It will allow data augmentation
and semi-supervised learning to enhance further the robustness and performance
of HAR ConvNeXt models when a few labeled data are available.

Another important point is bringing in multi-modal data sources in the future.
While the present study was majorly based on visual data, merging information
from other sensors such as accelerometers, gyroscopes, and physiological sensors
may provide a much clearer picture of human activity in general. This might
call for techniques of fusion novel enough to bring heterogeneous sources of data
cogently together for more accurate, context-aware HAR systems. Furthermore,
such research should be applied and deployed further. This would include prob-
lems that arise due to real-time processing, computational efficiency issues, as
well as scalability of the models. In terms of practical application of HAR, there
is an urgent need to develop light and efficient variants of the ConvNeXt model
architecture that are executable on edge and smartphone devices.

The final indication, however, is to the monitoring of the HAR systems in
relation to adapting to the dynamic nature of environments. With the advent
of new types of activities and changes in user behavior observed, online learning
techniques and adaptive algorithms will allow an HAR system to equip itself with
the tools to evolve while keeping performance high. Future works will explore the
optimization of ConvNeXt architectures for joint learning from multimodal data
with the help of advanced RNNs, incorporation of the application of different
techniques for explainable AI, deployment in real-world scenarios, and continued
adaptation. All these steps together will advance the field of HAR further toward
more accurate, robust, and reliable activity recognition systems that can cater to
the demands of actual and practical real-world environment settings.
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