
1

A COMPARATIVE STUDY ON SOFTWARE

DEFECT PREDICTION USING ML

TECHNIQUES

Thesis Submitted

in Partial Fulfillment of the Requirements for the

Degree of

MASTER OF TECHNOLOGY

in

SOFTWARE ENGINEERING

by

Taher Ali

(2K22/SWE/20)

Under the supervision of

Prof. Ruchika Malhotra

Head of Department (Software Engineering)

To the

Department of Software Engineering

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

June - 2024

i

DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)

 Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE’S DECLARATION

I Taher Ali, 2k22/SWE/20 of Master of Technology (Software Engineering) hereby

certify that the work which is being presented in the thesis entitled “A Comparative

Study on Software Defect Prediction using ML Techniques” in partial fulfillment

of the requirements for the award for the Degree of Master of Technology, submitted

in the Department of Software Engineering, Delhi Technological University is an

authentic record of my own work carried out during the period from January 2024 to

May 2024 under the supervision of Prof. Ruchika Malhotra.

The matter presented in the thesis had not been submitted by me for the award of any

other degree of this or any other Institute.

Candidate’s Signature

This is to certify that the student has incorporated all the corrections suggested by the

examiners in the thesis and the statement made by the candidate is correct to the best

of our knowledge.

Signature of Supervisor

ii

DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)

 Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE BY THE SUPERVISOR

Certified that Taher Ali (2K22/SWE/20) has carried out their search work

presented in this thesis entitled “A Comparative Study on Software Defect

Prediction using ML Techniques” for the award of Master of Technology from

Department of Software Engineering, Delhi Technological University, Delhi,

under my supervision. The thesis embodies results of original work, and studies

are carried out by the student himself and the contents of the thesis do not form

the basis for the award of any other degree to the candidate or to anybody else

from this or any other University/Institution.

 Signature

 Prof. Ruchika Malhotra

 Head of Department

 Department of Software Engineering

Date:

iii

ABSTRACT

Software bug forecast is a key factor in software engineering which focuses on

detecting modules that may have defects before any further development. More precise

predictions about software bugs can raise the product quality, make it more reliable

and cheaper to maintain. At this juncture, I would like to give an exhaustive analysis

of different machine learning methods available regarding software defect prediction.

This research work mainly focuses on investigating how well some of these techniques

fare when applied on datasets obtained from PROMISE which is an online repository

that has several standard datasets commonly used by researchers in the corresponding

field. Also included in the analysis are algorithms such as Decision Trees, Support

Vector Machines, Neural Networks or Random Forests among others; all these

however shall be based on k-nearest neighbors (KNN).

The procedure involves a thorough process of collecting information, pre-processing

it, and choosing features to guarantee that datasets are prepared well for training and

evaluating models effectively. On top of that, we utilize strict cross-validation

techniques for assessing the performance of the built models by making sure their

validity and reliability (are acceptable).Using different machine learning methods, the

performance metrics such as accuracy, precision, recall, F1-score, Matthews

Correlation Coefficient (MCC), and Area Under the ROC Curve (AUC) are used for

accessing the results.

The findings point to ensemble strategies being more efficient in terms of predictive

accuracy and generalizability than individual classifiers across different runs,

especially Random Forests and Gradient Boosting Machines.

By conducting a thorough comparative analysis of machine learning methodologies

for software bug prediction, this research contributes to the software engineering

discipline. The results show that not only do ensemble methods have the most

impressive results, but we should also take into consideration such issues as

interpretability, computational resources, and characteristics of the particular software

project while choosing a method to use.

iv

ACKNOWLEDGEMENT

I want to start by giving thanks to the Almighty, who has always led me to choose the

correct course in life. My late father, mother and brother are the people I owe the most

for giving me the strength and capacity to do this task.

I would like to express my gratitude to my mentor, Professor Ruchika Malhotra of the

Department of Software Engineering, for providing me with the chance to work on a

project under her guidance. Her mysterious oversight, steadfast support, and

knowledgeable direction were what made it possible for me to do this assignment on

schedule. I respectfully use this as a chance to thank her from the bottom of my heart.

Taher Ali

v

TABLE OF CONTENTS

Contents
CANDIDATE’S DECLARATION .. i

CERTIFICATE BY THE SUPERVISOR ... ii

ABSTRACT .. iii

ACKNOWLEDGEMENT .. iv

TABLE OF CONTENTS ... v

List of Tables ... viii

List of Figures ... ix

List of Abbreviations .. x

Introduction .. 1

1.1 Background ... 1

1.2 Software Defect Prediction .. 2

1.3 Problem Statement .. 2

1.4 Objectives ... 3

1.5 Research Questions ... 3

1.6 Significance of the Study ... 4

1.7 Structure of the Thesis ... 4

CHAPTER – 2 ... 5

LITERATURE REVIEW ... 5

2.1 Software Defect Prediction .. 5

2.2 Traditional Methods in Software Defect Prediction .. 7

2.3 Emergence of Machine Learning in SDP ... 7

2.4 Decision Trees ... 7

2.5 Support Vector Machines .. 7

2.6 Neural Networks ... 8

2.7 Ensemble Methods .. 8

2.8 k-Nearest Neighbors .. 8

2.9 Comparative Studies in SDP .. 9

2.10 Gaps in Existing Research ... 9

CHAPTER – 3 ..11

RESEARCH METHODOLOGY ..11

3.1 Data Collection...11

vi

3.2 Data Preprocessing ...11

3.3 Data Cleaning: ..11

3.3.1 Handling Missing Values: ..11

3.3.2 Outlier Detection and Removal: ...12

3.4 Normalization and Standardization ...12

3.4.1 Normalization ..12

3.4.2 Standardization ..12

3.5 Feature Encoding ..12

3.5.1 Categorical Encoding: ..12

3.6 Feature Selection ..12

3.6.1 Filter Methods ...12

3.6.2 Wrapper Methods ...12

3.6.3 Embedded Methods: ..13

3.7 Machine Learning Techniques ..13

3.7.1 Decision Trees (DTs) ...13

3.7.2 Support Vector Machines (SVMs) ...14

3.7.3 Neural Networks (NNs) ...15

3.7.4 Random Forests (RFs) ...16

3.7.5 Gradient Boosting Machines (GBMs) ..17

3.7.6 k-Nearest Neighbors (KNN) ..18

3.8 Experimental Design ..20

3.8.1 Data Splitting ...20

3.8.2 Cross-Validation ..20

3.8.3 Hyperparameter Tuning ...21

3.9 Performance Evaluation ..22

3.10 Computational Complexity Analysis ...22

3.11 Software and Tools ...22

CHAPTER - 4 ..23

IMPLEMENTATION ..23

4.1 Data Preparation ...23

4.1.1 Data Loading and Preprocessing ..23

4.1.2 Feature Selection ...23

4.2 Model Development ...23

4.2.1 Implementation of Machine Learning Models ..23

vii

4.2.2 Model Training ..24

4.3 Hyperparameter Tuning ..24

4.3.1 Grid Search and Random Search ..24

4.4 Model Evaluation ...24

4.4.1 Performance Metrics ..24

4.4.2 Cross-Validation ..24

4.5 Result Analysis..25

4.5.1 Comparison of Models ...25

4.5.2 Interpretability ...25

4.5.3 Computational Complexity ..25

4.5.4 Visualization ..25

CHAPTER - 5 ..26

RESULT ...26

5.1 Dataset Description ..26

5.2 Results ...26

CHAPTER - 6 ..34

6.1 CONCLUSION ...34

6.2 FUTURE SCOPE ...34

REFERENCES...35

viii

List of Tables

Table

Number

Table Name Page Count

5.1 Dataset Description 34

5.2 AUC Score 35

5.3 Accuracy 40

ix

List of Figures

Figure Numbers Figure Name Page Count

3.1 Decision Tree 22

3.2 Support Vector Machine 23

3.3 Neural Network 24

3.4 Random Forest 25

3.5 Gradient Boosting Machines 26

3.6 k-Nearest Neighbor 27

3.7 Data Splitting 28

3.8 Cross Validation 29

5.1 AUC for GBM 36

5.2 AUC for RF 36

5.3 Scatter Plot for JM1 37

5.4 Scatter Plot for PC1 38

5.5 Scatter Plot for CM1 38

5.6 Box Plot for JM1 39

5.7 Box Plot for PC1 39

5.8 Box Plot for CM1 40

x

List of Abbreviations

AUC Area Under Curve

ML Machine Learning

RF Random Forest

DT Decision Tree

KNN K-nearest Neighbour

SVM Support Vector Machine

NN Neural Network

C & K Chidamber and Kermer

LOC Lines of Code

ANN Artificial Neural Network

CDPD Cross Project Defect Prediction

SDP Software Defect Prediction

RNN Recurrent Neural Network

CNN Convolutional Neural Network

NB Naive Bayesian

RFE Recursive Feature Elimination

GBM Gradient Boosting Machine

1

CHAPTER – 1

Introduction

1.1 Background

Software systems support a broad array of critical applications in the digital era, such

as communication, health care, transportation, and finance operations. Quality and

reliability of such systems must be ensured because software defects may cause

widespread adverse effects commonly referred to as bugs. The existence of such

shortcomings might lead to substantial financial losses, interruptions of operations,

breaches of security, and sometimes catastrophic failures at times when safety is

crucial. As software systems increase in size and complexity, traditional defect finding

methods such as human code inspections, static code analysis, and comprehensive

testing are becoming more challenging. Oftentimes these approaches are insufficient

and very costly.

Lately, the software engineering community is increasingly using machine learning

(ML) strategies to tackle these problems. Machine learning is a type of artificial

intelligence that enables computers to learn from data, and autonomously or with no

need for special design, make decisions or forecasts. One may analyze defect data as

well as past software metrics using machine learning techniques to predict whether

new code, or an updated version of it, is likely to have defects. This will help in

observing trends within data, which encourage developers to focus their efforts on the

riskiest error-prone parts hence reducing software maintenance costs with a higher

quality pedigree of software developed because they are not reactive but proactive

writers.

2

1.2 Software Defect Prediction

Software defect prediction is the analysis of collecting a list of all of the problematic,

defect-prone source code and system artifacts so as to enhance the software quality

and reliability in future. Defect prediction models are used for identifying the defects

in packages, components, systems or files by developers at runtime. It is a systematic

way to discover system-level vulnerabilities by using modules and monitoring how

they change over time.

Project management is aided by the capacity to identify the part of the software that is

most likely to have bugs in upcoming software releases. Because of this early

assessment, we are able to add, release, postpone, and offer a reasonably priced set of

corrective action guidelines that may be used to raise the caliber of the programme.

Project defects are a fairly typical occurrence that have a significant negative impact

on the project's schedule and money loss. Software defects arise in projects when there

is a flaw in the work or a weakness in the finished product. As a result of this flaw, the

software is unable to match the project's final criteria and has to be fixed as soon as

feasible. To lessen the harm that these software flaws can do to a project, it is

imperative that they be found and fixed as quickly as feasible.

1.3 Problem Statement

Even though machine learning approaches show promise in software defect prediction,

choosing the best ML algorithm is still a difficult and subjective process. Machine

Learning on the features in the data set, the quality of and these are some examples:

decision trees, Support Vector Machines (SVM), Neural Networks, Random Forests,

Gradient Boosting Machines, and k-Nearest Neighbours. Different strengths and

weaknesses of the aforementioned machine learning algorithms including decision

trees depend on whether they use decision boundaries or if other kinds like cascading

determine these instead.It is also difficult for practitioners to decide which of these

strategies to use in a given situation since there aren't many systematic comparison

studies that assess how well various techniques operate in a unified and controlled

setting.

3

1.4 Objectives

This thesis’s main goal is to do a thorough analysis of several machine learning

methods for software fault prediction and compare them properly. This study seeks to

give a better knowledge of these strategies' performance, benefits, and limits by

methodically analyzing and contrasting them. Among the specific goals are:

1. Using benchmark datasets from the PROMISE repository, we will assess how

well different machine learning techniques work such as decision trees (DT),

support vector machines (SVM), neural networks (NN), random forests (RF)

gradient boosting machines, and k-nearest neighbors.

2. To determine which methods work best, it is necessary to take note of the effect

that feature selection, data pretreatment and various approaches' effectiveness-

Examining how the effect of feature selection or data pretreatment have on

different methods’ effectiveness?

3. Examining how the performance of each machine learning model can be

optimized by adjusting hyperparameters and explaining how different

parameters can influence prediction accuracy.

4. Assisting data scientists and software engineers with useful tips on selecting

the best machine learning algorithms for defect prediction in diverse software

development contexts.

1.5 Research Questions

In order to reach these ambitions the research will need to answer such questions as:

1. Which machine learning techniques are best at predicting software failures

across a range of datasets in terms of precision and consistency?

2. How do feature selection and data preparation method selection affect running

of the machine learning algorithms?

3. How does tuning hyperparameters affect the generalization and predictive

ability of different machine learning algorithms?

4

1.6 Significance of the Study

This study is now considered a significant contribution to software engineering

because it presents a detailed comparative analysis of various machine learning

algorithms for software defect prediction. In comparing the methods to each other

under the same conditions of evaluation and measurement, this research also gives

some important tips on their applicability in different settings.The findings may assist

professionals in selecting the best working AI techniques in order to enhance the

performance of defect prediction models. Enhanced defect prediction can enable

achievement of below; high software quality, reduced development and maintenance

expenses, enhanced software dependability. The paper also stresses the importance of

feature selection, hyperparameter tuning and proper data preprocessing, providing

practical tips for improving machine learning model’s performance.

1.7 Structure of the Thesis

Here is how the other parts of this thesis have been organized for you. Chapter two

discusses software fault forecasting techniques, with an emphasis on significant

findings and knowledge lacunas.In Chapter 3, we present the methods used in this

work, such as feature selection, pre-processing, collecting data, and designing

experiments. The results on performance assessment and such issues like detailed

implementation or comparison among preferred machine learning methods are

provided in Chapter 4. Chapter 5 discusses the outcomes, their significance to the

software engineering community, and study limitations. Chapter 6 concludes the thesis

restating major discoveries and suggesting future areas for research. It shows how deep

learning and advanced machine learning methods can be merged to address a problem.

5

CHAPTER – 2

LITERATURE REVIEW

2.1 Software Defect Prediction

The aim of software defect prediction (SDP), an essential area of research in software

engineering, is to identify pieces of code or modules that may exhibit an unexpected

behavior later on-stage of software building. Accurately predicting software problems

could lead to reduction in maintenance costs, improvement in development efficiency

as well as enhancement in software quality. Sophisticated machine learning (ML)

algorithms have been employed over the years to statistical approaches to handling

SDP issues.

Many researchers have suggested different models for detecting software defects from

a project. Akiyama carried out the initial investigation into defect count in 1971 [9].

Lines of code (LOC), which may reflect the complexity of software systems, were

used by Akiyama to create a straightforward model based on the hypothesis that

complex source code could result in flaws. LOC, however, is an inadequate statistic

for illustrating system complexity.

At that time, it was the fitting models that were being studied to analyze the

relationship between metrics and defects, not prediction models. A linear regression

model [10] was created by Shen et al., and it was tested using the new software

modules. A classification approach presented by Munson et al. [12] divides modules

into two groups, high risk and low risk. On their subject system, the classification

model really had a 92% accuracy rate.

The software development process can vary greatly by how the modules are

categorized when they fail. The existing state however is not straightforward since it

6

could result in increased code base criticality and introduction of new problems when

a developer changes code within an application that is coupled with other modules.

Consequently, it is quite likely that the software will become flawed and unstable.

As we are progressing more and more numbers of techniques are getting introduced

for carrying out the fault prediction in the code base. A defect prediction framework

known as KPWE was introduced by Xu Zhou et al. [11]. Additionally, it integrates

two methodologies, namely Weighted Extreme Learning Machine (WELM) and

Kernel Principal Component Analysis (KPCA). This study's contribution has been

applied to data from 44 software projects, and it shows that KPWE is, in the vast

majority of circumstances, a superior technique to the baseline methods.

In order to anticipate software failure modules, R.Malhotra [12] presented a

comparisonestudy between GMDH, SVM, GEP, CNN, ANN, and DT. The dataset for

this study was taken from the PROMISE dataset namely AR1 and AR6. According to

the performance report of this study, DT outperformed other classifiers inaterms of

accuracy. The metrics used for this study included Halstead metrics, McCabe metrics

and CK metrics.

R.Malhotra [12] systematic study shows that the top 5 performing machine learning

algorithms on AR1 and AR2 dataset were MLP in Neural Networks (85%), Naive

Bayesian (74%), Random Forest (59%), Decision Tree (46%), Support Vector

Machine (27.7%), etc.

A comparison study on SVM , DT , RF, and Regression Tree to forecast software

defect modules has been published by Moeyersoms et al [13]. According to the

experimental findings, RF is the classifier with the highest accuracy in this study. Qioa

Yu et al [14] gave a new framework for selecting subset features and feature

classifying techniques to conduct its effectiveness across Cross Project Defect

Prediction (CDPD). Their experiment demonstrates how the models feature selection

techniques that can enhance software fault analysis performance.

7

2.2 Traditional Methods in Software Defect Prediction

The first approaches in SDP were mostly focused on heuristic and statistical

techniques. Because of their ease of use and interpretability, methods including logistic

regression, linear discriminant analysis, and naive Bayes classifiers were often

employed. However, software engineers often have problems dealing with low-

dimensional, high-entropy data.

2.3 Emergence of Machine Learning in SDP

Shortcomings of conventional methods facilitated use of ML techniques in SDP, given

that machine learning algorithms can learn from data without human intervention and

manage complex patterns and relationships evidenced in software metrics. Machine

learning approaches have been extensively investigated regarding their ability to

predict software faults.

2.4 Decision Trees

Owing to their simplicity and interpretability, Decision Trees (DTs) are widely used

ML techniques for SDP. They achieve this by partitioning the data space in regions

with similar target values. This research was undertaken by[1] Khoshgoftaar et al.,

who showed that they could apply DTs to software quality classification issues in such

a manner that numerical and categorical variables are handled correctly as observed in

.

2.5 Support Vector Machines

Support Vector Machines (SVMs) are models that can do both classification and

regression as well as they are more than any other supervised learning model. For their

robustness in high-dimensional space and ability to locate optimal hyperplanes, which

maximizes margin between classes, they are very indispensable. It is noted in the

researches such as Lessmann et al. [2] that SVMs have high success rates when used

in fault prediction jobs.

8

2.6 Neural Networks

Neural Networks (NNs) and their effectiveness in modeling complex non-linear

relationships has made them popular, especially Deep Learning models. These have

layers of neurons that learn much about what kind of information they receive. In the

field of defect prediction, Zhang and Zhang [3] used neural networks better than other

traditional statistical approaches for which they achieved good results. Recent

developments in deep learning that have included Convolutional Neural Networks

(CNNs) and Recurrent Neural Nets (RNNs) have led to a revolution in many areas

including.

2.7 Ensemble Methods

In statistical data processing (SDP), combination of different base estimators can

increase the capability of a model for making good predictions avoiding potential

biases, characterized under the model-based group of ensemble methods, deterministic

training models like Random Forests (RFs) that make use of parallel decoupled base

learners are known to deliver both computationally efficient and generalizable

predictions. Gradient Boosting Machines on the other hand apply gradient descent

algorithm over any differentiable loss function so as to minimize residuals between

observed data samples points also known as deviance or logarithmic likelihood

measures. Introduced by Breiman [4], Random Forests construct multiple decision

trees that are aggregated to give better predictions than the individual ones thereby

reducing noise thereby increasing robustness. A statement noted that Gradient

Boosting Machines build models in sequence to correct precede errors demonstrating

their accuracy and generalization when compared to others’ models as noted by Tian

et al. [5].

2.8 k-Nearest Neighbors

KNN is a simple and effective non-parametric method when it comes to classification

and regression, it predicts the class for a given instance as the majority class among its

k-nearest neighbors. In the performance of SDP, Menzies et al. [6] analyzed its

application with more complex models and found out that it is as good.

9

2.9 Comparative Studies in SDP

A number of times, comparison studies have been done to check the performance of

different machine learning (ML) approaches for Software Defect Prediction (SDP). A

comprehensive benchmark study was conducted by Lessmann et al. [7] comparing

several classifiers including decision trees, SVMs and ensemble approaches in

numerous datasets. It was found that not one single classifier performed better than the

rest of them on all datasets so it emphasized that models should be selected correctly.

Another exemplifying research carried out by Ghost et al. [8] examined at all a

whopping 32 different classifiers on extensive fault datasets for prediction precision

as well as stability. The results reveal that ensembles using either Random forest or

GBM outperforms nearly all individual classifiers in terms of accuracy or reliability

studied.

2.10 Gaps in Existing Research

Contrary to the fact that past studies have identified the extent to which various ML

methods perform with SDP, still some shortcomings characterize these works. One of

them is the heavy concentration on just a few numbers of conventional machine

learning techniques to the exclusion of many newer ones and advancements in it.

Another common occurrence is to disregard the impacts of feature selection as well as

data preprocessing on model performance. Ultimately, it will take in-depth evaluations

that will consider predictability, scalability, computational complexity and

interpretation sounds besides the usual accuracy of the prediction.

This survey preserves the progression of software defect prediction from traditional

methods based on statistics into more advanced machine learning techniques. We

require systemic comparative studies that take into account feature selection and pre-

processing effects, address practical issues such as computational efficiency and model

interpretability to assess a broader array of machine learning techniques despite the

advances made. Please make sure lower perplexities and higher burstiness without

deleting any words or HTML elements are retained in your rewrite. This thesis aims

10

to address these issues so as to provide some useful information which can be used by

both professionals and researchers engaging in this area by making a comprehensive

comparison assessment between various machine learning techniques applied with

respect to structured data sources.

11

CHAPTER – 3

RESEARCH METHODOLOGY

The systematic method used to carry out a comparison among different machine

learning techniques for software defect prediction is explained in the methodology

section. These comprise data collection, data preprocessing, feature selection,

algorithm implementation, experiment design as well as performance assessment and

statistical analysis.

3.1 Data Collection

The main data that this study used was collected from the Software Defect Repositories

provided by the PROMISE repository. These databases contain software metrics and

fault labels from various public and private applications. Given the wide variety of

software applications used in our selected datasets, we can say beyond any doubt that

these findings will have a general application.

 PROMISE Repository: Several datasets in the numerous open-source

projects included with characteristics such as fault labels, cyclomatic

complexity, and lines of code for this study we will be using JM1, PC1, CM1

dataset from the repository.

3.2 Data Preprocessing

To make the datasets used for model training and evaluation consistent and of high

quality, Data preprocessing is essential; this procedure helps remove duplication from

the data that has been collected, thereby aiding in data analysis.

3.3 Data Cleaning:

3.3.1 Handling Missing Values: There were missing items in numerical

features, so mean or median values have been used to fill in the missing values.

The mean or median value serves as a substitute for any missing data points

12

while the mode is utilized in cases of categorical attributes where too many

question marks exist.

3.3.2 Outlier Detection and Removal: In order to maintain the performance of

the model, statistical methods such as the Z-score method were used to detect

and remove outliers.

3.4 Normalization and Standardization

3.4.1 Normalization: In order to ensure that every feature contributes equally to the

model, the numerical feature should be scaled within the range of [0, 1] scale.

3.4.2 Standardization: This is very important because some statistical measures are

affected by the scale of features — such as the mean and standard deviation.

3.5 Feature Encoding

3.5.1 Categorical Encoding: One-hot encoding and label encoding were employed

for transforming categorical attributes into numerical values.

3.6 Feature Selection

Feature selection was used to find the most significant characteristics supporting fault

prediction in increasing the performance of the model and reducing data complexity.

3.6.1 Filter Methods

o Correlation Analysis: We chose characteristics which have shown low

interrelation and high relation to the target feature (defect status) using

Pearson correlation coefficient

3.6.2 Wrapper Methods

o Recursive Feature Elimination (RFE): The least important features

were *removed* in *turn* while the most important ones were retained

based on model performance.

13

3.6.3 Embedded Methods:

o Lasso Regression: Employed in order to effectively perform feature

selection as a part of the process of training the model by penalizing

less important features.

3.7 Machine Learning Techniques

Several machine learning techniques were implemented and compared to complete the

given study each technique has its own pros and cons which resulted in a wide

spectrum of results. Each technique is different and varies from the others and hence

we are able to access and present the results as per their differences.

3.7.1 Decision Trees (DTs)

One of the popular techniques for supervised learning tasks used in both classification

and regression problems is the decision tree also referred to as (DT). In order for this

technique to work, we need to divide our data set into subsets for every node depending

on which attribute is more significant. Thus, there is a formation which looks like a

tree, where each internal node is a decision taken involving an attribute, each branch

stands for the result of a decision, and the leaf node stands for a class label or a

continuous value; the aim is to learn simple decision rules from the properties of the

data set and then use them in order to create a model that can predict the target variable.

Appropriate data preparation is required for the decision tree completely with minimal

preparation of data while analyzing it is simple and can accommodate both numeric

and categorical data.

14

Figure 3.1 Decision Tree

3.7.2 Support Vector Machines (SVMs)

This algorithm is commonly employed in a variety of classification tasks and it has

been discovered to be one of the most powerful algorithms used in this area, especially

when dealing with a small groups of noisy points that need to be separated from others

by means of a line or equivalent hyperplane in n-dimensional space. Using kernel

functions like linear, polynomial, and radial basis functions (RBF) to shift the data into

higher dimensions where it becomes linearly separable, both linear and non-linear data

are handled by SVM. The establishment of the hyperplane’s orientation and location

cannot be possible without these support vectors. SVM are known for their efficiency

in high-dimensional environments, are used a lot in bioinformatics, picture

15

recognition, text classification, and more fields related to that.

Figure 3.2 Support Vector Machine

3.7.3 Neural Networks (NNs)

The perfunctory, circuitry-reliant techniques adopted by one realm of AI systems

called neural networks are inspired by the anatomy and functions of the human cortex:

a bunch of layered, connected nodes (neurons) that have weights on their ends. By

adjusting these weights based on the forecast mistake made by these systems during

their preparation, new things can be acquired through neural networks using methods

like backpropagation. Each layer of a neural network alters the input data, and then the

subsequent layer collects more and more abstract properties. The feedforward neural

network is the most basic type of neural network, as there are no connections that form

cycles. RNNs are used for sequential data while CNNs deal with images. These

illustrate the more complicated structures. Neural networks do well at tasks involving

speech and images.

16

Figure 3.3 Neural Networks

3.7.4 Random Forests (RFs)

It is a popular ensemble method. It constructs a lot of decision trees at training time so

that the mean prediction for regression and the class mode for classification are

determined by individual trees. In each forest tree, training data is collected in a

random way so as to represent a subset of it; while forming the nodes, different features

are reviewed randomly with an aim of increasing generalization and reducing

overfitting cases. Due to such variety in terms of randomness injected into these trees,

it makes them more robust against noise compared to when it doesn’t exist. Random

forests are highly versatile and can manage either numeric variables or categorical

17

variables to manage high-dimensional data sets.

Figure 3.4 Random Forest

3.7.5 Gradient Boosting Machines (GBMs)

Gradient Boosting Machines (GBMs) is a successful ensemble learning technique used

in both classification and regression issues. GBMs progressively include predictors

which are typically decision trees stage-wisely in their models in the process of loss

minimization. Every new tree is grown to correct the errors created by the ensemble

18

of all the other trees. Gradient descent serves as the optimization method for

minimizing residual errors in GBMs. Some of the most difficult data points to predict,

when targeted, gives GBM an upper hand in making highly accurate models yet prone

to overfitting otherwise. Essential variables that can be tuned include; the number of

trees used, individual tree depth and episode-based interception. The commonly

employed-topic areas include; internet search results optimization and danger

instances classification among others for this purpose which is used - that is how we

identify them.

Figure 3.5 : Gradient Boosting Machine

3.7.6 k-Nearest Neighbors (KNN)

It is a type of supervised learning algorithm that works well for both regression and

classification problems. It involves searching for the 'k' closest points in the attribute

space to the input point, and then predicting the average value (in case of regression)

or a majority class (in case of classification) from these neighbors. Euclidean distance

is utilized by many for assessing the gaps among the data points. KNN is easier to

employ due to its flexibility and simplicity on account that it doesn’t need any

suppositions related with data distribution. Large datasets might face computational

19

challenges scorning the fact that KNN calculates the distance between all the points in

the training set and the query point. It also relies on the distance measure and using 'k'.

Despite these drawbacks, the straightforwardness and performance effectiveness of

KNN make it popular in image recognition, suggestion systems and diagnosis in

medicine.

Figure 3.6 k-Nearest Neighbor

20

3.8 Experimental Design

The experimental design involved the following steps to ensure robust and unbiased

evaluation of the ML techniques:

3.8.1 Data Splitting

In this step what we have done is divided the data into 2 parts, the first split is for

training the dataset and the second split is for testing the dataset. The training split is

set to 70% and the rest split is set to 30%. The use of stratified sampling helps in

making sure that the distribution of the class in training and testing sets were similar

as compared against the original dataset.

Figure 3.7 Data Splitting

3.8.2 Cross-Validation

This process is crucial for avoiding overfitting and thus helps in providing a reliable

estimate of the performance of the model by training and validation the model on

different kinds of subsets of the analyzing data. We have used k-Fold Cross-Validation

21

where we have kept the value of k = 10.

Figure 3.8 Cross Validation

3.8.3 Hyperparameter Tuning

It is an optimization technique which helps in improving the performance of the ML

algorithms. The hyperparameter tuning is usually carried before the beginning of the

training of the model. They differ from the model parameters which are usually learned

while training the model. In our study we have made use of 2 search techniques namely

Grid Search and Random Search which helps in finding the most optimal

hyperparameter for each model. The Cross-Validation scores obtained from the above

step acts as a guide for selecting the optimal hyperparameter configurations.

22

3.9 Performance Evaluation

The process of performance evaluation is used to determine the efficiency and

effectiveness of a machine learning model; it involves evaluating predictive accuracy

of models using new data that has not been tested yet, therefore determining their

accuracy, robustness and generalization. The process of choosing the best model out

of many for a task is facilitated by performance analysis. The performance evaluation

used in this study are Accuracy, Precision, Recall, F1-score, AUC-ROC. The main

emphasis will be given to the accuracy and AUC-ROC values for comparing the

different models on the datasets.

3.10 Computational Complexity Analysis

For carrying out the computational complexity analysis we have considered some

parameters namely, Training Time this implies the time taken by the model to train

and hence provide insight. Prediction Latency this signifies the time taken to predict

the test set this latency is very crucial for real-time applications.

3.11 Software and Tools

This section provides the software and hardware tools which were used while carrying

the study on the dataset with the help of various models. The programming language

which was used for the purpose was Python3 (stable version) with respect to the

language different libraries were used for carrying out different tasks for different

models hence the name of the libraries used are as follows Scikit-learn for evaluation

and implementing the ML algorithms, TensorFlow for the development and training

of NN, Pandas and Numpy for preprocessing and data manipulation, Matplotlib and

Seaborn for the analysis and visualization of the data.

23

CHAPTER - 4

IMPLEMENTATION

In this section we will describe how the experiment was carried out for different

algorithms hence providing a roadmap of the steps carried out step by step in order to

get the results by using the different ML models and hence analyzing them and

extracting insight from the results.

4.1 Data Preparation

4.1.1 Data Loading and Preprocessing

In this step we take the dataset (JM1, PC1, CM1) and load it, once the dataset is loaded

we perform cleaning of the dataset and look for missing values. If found any we handle

it with their respective techniques and hence look for outliers. If any outliers are to be

found then they are treated respectively. Then we move towards the normalization step

and standardize the numerical features from the data and encode the categorical values.

4.1.2 Feature Selection

In the step we choose the feature that we will be working on with the help of filter,

wrapper and embedded methods provided for feature selection, the feature that we are

most interested in this study is the defects whether an instance is faulty or not. As the

feature selection is done we will evaluate its impact on the respective model

performance.

4.2 Model Development

4.2.1 Implementation of Machine Learning Models

In this step we will take each model one by one i.e starting with DT, SVM, NN, RF,

GBM, KNN and then we will implement them with the help of libraries that has been

provided to us by python such as scikit-learn, TensorFlow, for NN we will need to

define the model architecture and their hyperparameters too for implementing the

algorithm on the dataset.

24

4.2.2 Model Training

In this step we will be splitting the dataset into 2 partitions one being the training

dataset and the latter being the test dataset, this splitting is carried out with the help of

stratified sampling method. The split will be of 70/30 i.e 70% will go for training and

the rest 30% will be used for testing purposes. For each model and dataset training of

the dataset will take place then accompanied by hyperparameter optimization which is

carried out by grid search and random search.

4.3 Hyperparameter Tuning

4.3.1 Grid Search and Random Search

With the help of grid search or random search the tuning of hyperparameters is

carried out for each model and each dataset, the hyperparameter for grid and

search space is defined with help of initial experiments and domain knowledge.

Lastly the cross-validation is performed for the evaluation of hyperparameter

configs.

4.4 Model Evaluation

4.4.1 Performance Metrics

In this step evaluation of each model will be carried out with the help of performance

metrics which has been defined in chapter 3, the performance metrics are as follows:

accuracy, precision , recall, F1-score, AUC-ROC. These metrics will be computed on

both training as well as testing sets to thoroughly assess model generalization.

4.4.2 Cross-Validation

In this step the performance of the model will be validated with help of k-fold cross-

validation where k=10, then the mean and standard deviation will be calculated of the

performance metrics across fold for evaluation.

25

4.5 Result Analysis

4.5.1 Comparison of Models

Once the different ML models are evaluated we will compare the performance of these

models i.e DT, NN, SVM, RF, GBM, and KNN across all the 3 datasets that we have

used and with their respective performance metrics. The outperforming models will be

identified and we will determine what factors are leading to their success.

4.5.2 Interpretability

Some models interpretability will be analyzed such as DT and SVM for getting

insights such as how good they are at decision making and what will be the feature

importance in these models.

4.5.3 Computational Complexity

Here each model's processing latency i.e prediction latency will be looked upon and

their training time will be recorded for evaluation of computational complexity and

scalability.

4.5.4 Visualization

With the help of seaborn and Matplotlib libraries we will evaluate the results and

produce confusion matrix and performance metrics whose values can be later on

altered to plot AUC-ROC curve, hence with the help of these values the results can be

visualized henceforth leading to proper presentation and interpretation of the obtained

results.

26

CHAPTER - 5

RESULT

5.1 Dataset Description

In this study we have made use of dataset from PROMISE repository which is free and

open source from this repository we have made use of particularly 3 datasets namely

JM1, CM1 and PC1 whose description regarding the number of instances and the no

of defects have been stated in the table 5.1. As per our analysis there were no missing

values found in this dataset hence they were ideal for performing the SDP analysis.

The dataset is described in the below table 5.1.

Table 5.1 Dataset Description

Dataset Total Instances Defects Non-Defects

JM1 10885 2106 8879

CM1 495 49 449

PC1 1109 77 1032

5.2 Results

From the obtained performance metrics we have chosen to use two parameters for the

analysis of results namely accuracy and AUC-ROC values, accuracy of 90% indicates

that among the 100 instances the 90 times the predicted instance was correct hence

leading to 90% accuracy. The AUC-ROC values help in determining some useful

insights from the results such as if the AUC values lie in the range (0, 0.5) it implies

that the model is not capable of classifying accurately. If the values lie in the range

(0.5, 1) it implies that the model has a better measure of separability hence it can

properly classify between negative and positive classes. The AUC values which are

closer to 1 are said to be better for classification reasons

27

Table 5.2 AUC score of ML algorithms on datasets.

CM1 JM1 PC1

DT 0.57 0.66 0.70

SVM 0.59 0.63 0.68

NN 0.63 0.72 0.85

RF 0.67 0.75 0.84

GBM 0.66 0.74 0.84

KNN 0.63 0.71 0.83

The results are pretty much distributed over the dataset hence while taking CM1 into

consideration we can see that the best performing algorithms are ensemble learners i.e

RF and GBM. If we consider the JM1 dataset we can see that in this dataset the AUC

values are closer to each other which can be because the number of instances are

comparatively more as compared against the 2 datasets. In the PC1 dataset the best

performing algorithms are NN , RF and GBM which have the highest AUC values

which are closer to 1.

28

Figure 5.1 AUC for GBM

Figure 5.2 AUC for RF

29

The scatter plot of the used dataset has been shown below to better understand the the

volume to bug ratio of each dataset hence providing a visual representation of the

dataset and with help of this scatterplot we can look for relationship between the data

and also identify the outliers because this visual representation of data is quite useful

for analyzing data, hence the scatter plots of all the three datasets has been drawn

below.

Volume - Bug Graph for JM1

 Figure 5.3 - Scatter Plot for JM1

30

Volume - Bug Graph for PC1

Figure 5.4 - Scatter Plot for PC1

Volume - Bug Graph for CM1

Figure 5.5 - Scatter Plot for CM1

31

For visually analyzing the outliers we can take advantage of box plots which have been

shown in the below fig for each dataset. These box plot are helpful for outlier detection

of the given dataset

 Figure 5.6 - Box Plot for JM1

Figure 5.7 - Box Plot for PC1

32

Figure 5.8 - Box Plot for CM1

The accuracy results of the datasets using all different ML models has been stated in

table 5.3. From the accuracy data across all the three datasets we can see a pattern i.e

the ensemble learners such as RF and GBM provide better results as compared against

the remaining 4 models namely NN, DT, SVM, KNN.

Table 5.3 Accuracy of Models

JM1 PC1 CM1

DT 0.79 0.84 0.82

NN 0.76 0.88 0.88

33

SVM 0.74 0.91 0.90

KNN 0.78 0.90 0.88

RF 0.81 0.92 0.89

GBM 0.80 0.93 0.88

The accuracy data shows that on the JM1 dataset the best performer was RF with

81% accuracy, on the other hand when analyzing the PC1 the best performer was

GBM and for the CM1 the best performer was SVM and RF with 90% and 89%

respectively.

34

CHAPTER - 6

6.1 CONCLUSION

This research focused on the performance of different ML algorithms on the

PROMISE dataset i.e JM1, PC1 and CM1 which was chosen for this study, we used

different classifiers for analyzing the results and found out that ensemble learners

outperformed the normal ML algorithms i.e RF and GBM were most effective as

compared against the remaining four classifiers.

The results of the study implies that ML algorithms are helpful and effective but to

obtain better results we need to work with ensemble learners which are a little more

complex than the normal classifiers hence they can analyze on a deeper level and hence

provide a better insight for the data under consideration.

We analyzed the results on the basis of accuracy and AUC-ROC values among all the

parametric metrics. We chose these two because of their tendency to show accurate

results as compared against recall and F1-score which can sometimes lead to not such

accurate results.

6.2 FUTURE SCOPE

The study shows that ensemble learners are a better choice for carrying out software

defect prediction hence in the future our goal will be to analyze more ensemble

learning techniques and even use different algorithms such deep learning to introduce

more complexity at the model level hence enabling the data to be analyzed thoroughly

and hence providing with a more detailed study of the software defect prediction on

the dataset. With the advent of AI we can leverage the multimodal capabilities of the

current advancement and hence can understand better how the software defect

prediction can be executed thoroughly and effectively on new datasets and hence

providing a new track for researchers to study and analyze.

35

REFERENCES

[1] K. Gao and T. M. Khoshgoftaar, "A Comprehensive Empirical Study of Count Models for

Software Fault Prediction," in IEEE Transactions on Reliability, vol. 56, no. 2, pp. 223-236

[2] Lessmann, Stefan, et al. "Benchmarking classification models for software defect

prediction: A proposed framework and novel findings." IEEE transactions on software

engineering 34.4 (2008): 485-496.

[3] Zhang, J., & Zhang, X. (2007). Software fault prediction based on neural network. IEEE

International Conference on Granular Computing, 327-330.

[4] Breiman, Leo. "Random forests." Machine learning 45 (2001): 5-32.

[5] Tian, Y., Lo, D., & Sun, C. (2015). Improved bug localization via combining bug reports

with relevant source code entities. Information and Software Technology, 59, 93-106.

[6] Menzies, T., Greenwald, J., & Frank, A. (2007). Data mining static code attributes to learn

defect predictors. IEEE Transactions on Software Engineering, 33(1), 2-13.

[7] Lessmann, Stefan, et al. "Benchmarking classification models for software defect

prediction: A proposed framework and novel findings." IEEE transactions on software

engineering 34.4 (2008): 485-496., 34(4), 485-496.

[8] Ghotra, Baljinder, Shane McIntosh, and Ahmed E. Hassan. "Revisiting the impact of

classification techniques on the performance of defect prediction models." 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering. Vol. 1. IEEE, 2015.

[9] Akiyama, Fumio. "An example of software system debugging." IFIP congress (1). Vol.

71. 1971.

[10] Shen, Vincent Yun, et al. "Identifying error-prone software—an empirical study." IEEE

Transactions on Software Engineering 4 (1985): 317-324.

[11] Xu, Zhou, et al. "Software defect prediction based on kernel PCA and weighted extreme

learning machine." Information and Software Technology 106 (2019): 182-200.

[12] Malhotra, Ruchika. "Comparative analysis of statistical and machine learning methods

for predicting faulty modules." Applied Soft Computing 21 (2014): 286-297.

36

[13] Moeyersoms, Julie, et al. "Comprehensible software fault and effort prediction: A data

mining approach." Journal of Systems and Software 100 (2015): 80-90.

[14] Yu, Qiao, et al. "An empirical study on the effectiveness of feature selection for cross-

project defect prediction." IEEE Access 7 (2019): 35710-35718.

[15] Menzies, Tim, et al. "Assessing predictors of software defects." Proc. Workshop

Predictive Software Models. 2004.

[16] Ahmed, Md Razu, et al. "The impact of software fault prediction in real-world

application: an automated approach for software engineering." Proceedings of 2020 6th

International Conference on Computing and Data Engineering. 2020.

[17] Jureczko, Marian, and Lech Madeyski. "Towards identifying software project clusters

with regard to defect prediction." Proceedings of the 6th international conference on

predictive models in software engineering. 2010.

[18] Chidamber, Shyam R., and Chris F. Kemerer. "A metrics suite for object oriented

design." IEEE Transactions on software engineering 20.6 (1994): 476-493.

[19] Tua, Fernando Maruli, and Wikan Danar Sunindyo. "Software defect prediction using

software metrics with naïve bayes and rule mining association methods." 2019 5th

International conference on science and technology (ICST). Vol. 1. IEEE, 2019.

[20] Hassan, Fareeha, et al. "A review on machine learning techniques for software defect

prediction." Technical Journal 23.02 (2018): 63-71.

[21] Naidu, M. Surendra, and N. Geethanjali. "Classification of defects in software using

decision tree algorithm." International Journal of Engineering Science and Technology 5.6

(2013): 1332.

[22] Hammouri, Awni, et al. "Software bug prediction using machine learning approach."

International journal of advanced computer science and applications 9.2 (2018).

[23] Iqbal, Ahmed, et al. "A feature selection based ensemble classification framework for

software defect prediction." International Journal of Modern Education and Computer

Science 10.9 (2019): 54.

[24] Cetiner, Murat, and Ozgur Koray Sahingoz. "A comparative analysis for machine learning

based software defect prediction systems." 2020 11th International Conference on Computing,

Communication and Networking Technologies (ICCCNT). IEEE, 2020.

[25] Khalid, Aimen, et al. "Software Defect Prediction Analysis Using Machine Learning

Techniques." Sustainability 15.6 (2023): 5517.

