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ABSTRACT 
 

Software bug forecast is a key factor in software engineering which focuses on 

detecting modules that may have defects before any further development. More precise 

predictions about software bugs can raise the product quality, make it more reliable 

and cheaper to maintain. At this juncture, I would like to give an exhaustive analysis 

of different machine learning methods available regarding software defect prediction. 

This research work mainly focuses on investigating how well some of these techniques 

fare when applied on datasets obtained from PROMISE which is an online repository 

that has several standard datasets commonly used by researchers in the corresponding 

field. Also included in the analysis are algorithms such as Decision Trees, Support 

Vector Machines, Neural Networks or Random Forests among others; all these 

however shall be based on k-nearest neighbors (KNN). 

The procedure involves a thorough process of collecting information, pre-processing 

it, and choosing features to guarantee that datasets are prepared well for training and 

evaluating models effectively. On top of that, we utilize strict cross-validation 

techniques for assessing the performance of the built models by making sure their 

validity and reliability (are acceptable).Using different machine learning methods, the 

performance metrics such as accuracy, precision, recall, F1-score, Matthews 

Correlation Coefficient (MCC), and Area Under the ROC Curve (AUC) are used for 

accessing the results. 

The findings point to ensemble strategies being more efficient in terms of predictive 

accuracy and generalizability than individual classifiers across different runs, 

especially Random Forests and Gradient Boosting Machines. 

By conducting a thorough comparative analysis of machine learning methodologies 

for software bug prediction, this research contributes to the software engineering 

discipline. The results show that not only do ensemble methods have the most 

impressive results, but we should also take into consideration such issues as 

interpretability, computational resources, and characteristics of the particular software 

project while choosing a method to use. 
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CHAPTER – 1 

 

 

Introduction 
 

1.1 Background 

Software systems support a broad array of critical applications in the digital era, such 

as communication, health care, transportation, and finance operations. Quality and 

reliability of such systems must be ensured because software defects may cause 

widespread adverse effects commonly referred to as bugs. The existence of such 

shortcomings might lead to substantial financial losses, interruptions of operations, 

breaches of security, and sometimes catastrophic failures at times when safety is 

crucial. As software systems increase in size and complexity, traditional defect finding 

methods such as human code inspections, static code analysis, and comprehensive 

testing are becoming more challenging. Oftentimes these approaches are insufficient 

and very costly. 

Lately, the software engineering community is increasingly using machine learning 

(ML) strategies to tackle these problems. Machine learning is a type of artificial 

intelligence that enables computers to learn from data, and autonomously or with no 

need for special design, make decisions or forecasts. One may analyze defect data as 

well as past software metrics using machine learning techniques to predict whether 

new code, or an updated version of it, is likely to have defects. This will help in 

observing trends within data, which encourage developers to focus their efforts on the 

riskiest error-prone parts hence reducing software maintenance costs with a higher 

quality pedigree of software developed because they are not reactive but proactive 

writers. 
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1.2 Software Defect Prediction 

 

Software defect prediction is the analysis of collecting a list of all of the problematic, 

defect-prone source code and system artifacts so as to enhance the software quality 

and reliability in future. Defect prediction models are used for identifying the defects 

in packages, components, systems or files by developers at runtime. It is a systematic 

way to discover system-level vulnerabilities by using modules and monitoring how 

they change over time. 

Project management is aided by the capacity to identify the part of the software that is 

most likely to have bugs in upcoming software releases. Because of this early 

assessment, we are able to add, release, postpone, and offer a reasonably priced set of 

corrective action guidelines that may be used to raise the caliber of the programme. 

Project defects are a fairly typical occurrence that have a significant negative impact 

on the project's schedule and money loss. Software defects arise in projects when there 

is a flaw in the work or a weakness in the finished product. As a result of this flaw, the 

software is unable to match the project's final criteria and has to be fixed as soon as 

feasible. To lessen the harm that these software flaws can do to a project, it is 

imperative that they be found and fixed as quickly as feasible. 

 

1.3 Problem Statement 

Even though machine learning approaches show promise in software defect prediction, 

choosing the best ML algorithm is still a difficult and subjective process. Machine 

Learning on the features in the data set, the quality of and these are some examples: 

decision trees, Support Vector Machines (SVM), Neural Networks, Random Forests, 

Gradient Boosting Machines, and k-Nearest Neighbours. Different strengths and 

weaknesses of the aforementioned machine learning algorithms including decision 

trees depend on whether they use decision boundaries or if other kinds like cascading 

determine these instead.It is also difficult for practitioners to decide which of these 

strategies to use in a given situation since there aren't many systematic comparison 

studies that assess how well various techniques operate in a unified and controlled 

setting. 
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1.4 Objectives 

This thesis’s main goal is to do a thorough analysis of several machine learning 

methods for software fault prediction and compare them properly. This study seeks to 

give a better knowledge of these strategies' performance, benefits, and limits by 

methodically analyzing and contrasting them. Among the specific goals are: 

1. Using benchmark datasets from the PROMISE repository, we will assess how 

well different machine learning techniques work such as decision trees (DT), 

support vector machines (SVM), neural networks (NN), random forests (RF) 

gradient boosting machines, and k-nearest neighbors. 

2. To determine which methods work best, it is necessary to take note of the effect 

that feature selection, data pretreatment and various approaches' effectiveness- 

Examining how the effect of feature selection or data pretreatment have on 

different methods’ effectiveness? 

3. Examining how the performance of each machine learning model can be 

optimized by adjusting hyperparameters and explaining how different 

parameters can influence prediction accuracy. 

4. Assisting data scientists and software engineers with useful tips on selecting 

the best machine learning algorithms for defect prediction in diverse software 

development contexts. 

1.5 Research Questions 

In order to reach these ambitions the research will need to answer such questions as: 

1. Which machine learning techniques are best at predicting software failures 

across a range of datasets in terms of precision and consistency? 

2. How do feature selection and data preparation method selection affect running 

of the machine learning algorithms? 

3. How does tuning hyperparameters affect the generalization and predictive 

ability of different machine learning algorithms? 
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1.6 Significance of the Study 

This study is now considered a significant contribution to software engineering 

because it presents a detailed comparative analysis of various machine learning 

algorithms for software defect prediction. In comparing the methods to each other 

under the same conditions of evaluation and measurement, this research also gives 

some important tips on their applicability in different settings.The findings may assist 

professionals in selecting the best working AI techniques in order to enhance the 

performance of defect prediction models. Enhanced defect prediction can enable 

achievement of below; high software quality, reduced development and maintenance 

expenses, enhanced software dependability. The paper also stresses the importance of 

feature selection, hyperparameter tuning and proper data preprocessing, providing 

practical tips for improving machine learning model’s performance. 

1.7 Structure of the Thesis 

Here is how the other parts of this thesis have been organized for you. Chapter two 

discusses software fault forecasting techniques, with an emphasis on significant 

findings and knowledge lacunas.In Chapter 3, we present the methods used in this 

work, such as feature selection, pre-processing, collecting data, and designing 

experiments. The results on performance assessment and such issues like detailed 

implementation or comparison among preferred machine learning methods are 

provided in Chapter 4. Chapter 5 discusses the outcomes, their significance to the 

software engineering community, and study limitations. Chapter 6 concludes the thesis 

restating major discoveries and suggesting future areas for research. It shows how deep 

learning and advanced machine learning methods can be merged to address a problem. 

 

  



5 
 

 
 

CHAPTER – 2 

 

 

LITERATURE REVIEW 
 

2.1 Software Defect Prediction 

The aim of software defect prediction (SDP), an essential area of research in software 

engineering, is to identify pieces of code or modules that may exhibit an unexpected 

behavior later on-stage of software building. Accurately predicting software problems 

could lead to reduction in maintenance costs, improvement in development efficiency 

as well as enhancement in software quality. Sophisticated machine learning (ML) 

algorithms have been employed over the years to statistical approaches to handling 

SDP issues. 

Many researchers have suggested different models for detecting software defects from 

a project. Akiyama carried out the initial investigation into defect count in 1971 [9]. 

Lines of code (LOC), which may reflect the complexity of software systems, were 

used by Akiyama to create a straightforward model based on the hypothesis that 

complex source code could result in flaws. LOC, however, is an inadequate statistic 

for illustrating system complexity. 

 

At that time, it was the fitting models that were being studied to analyze the 

relationship between metrics and defects, not prediction models. A linear regression 

model [10] was created by Shen et al., and it was tested using the new software 

modules. A classification approach presented by Munson et al. [12] divides modules 

into two groups, high risk and low risk. On their subject system, the classification 

model really had a 92% accuracy rate.  

 

The software development process can vary greatly by how the modules are 

categorized when they fail. The existing state however is not straightforward since it 
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could result in increased code base criticality and introduction of new problems when 

a developer changes code within an application that is coupled with other modules. 

Consequently, it is quite likely that the software will become flawed and unstable. 

 

As we are progressing more and more numbers of techniques are getting introduced 

for carrying out the fault prediction in the code base. A defect prediction framework 

known as KPWE was introduced by Xu Zhou et al. [11]. Additionally, it integrates 

two methodologies, namely Weighted Extreme Learning Machine (WELM) and 

Kernel Principal Component Analysis (KPCA). This study's contribution has been 

applied to data from 44 software projects, and it shows that KPWE is, in the vast 

majority of circumstances, a superior technique to the baseline methods.  

 

In order to anticipate software failure modules, R.Malhotra [12] presented a 

comparisonestudy between GMDH, SVM, GEP, CNN, ANN, and DT. The dataset for 

this study was taken from the PROMISE dataset namely AR1 and AR6. According to 

the performance report of this study, DT outperformed other classifiers inaterms of 

accuracy. The metrics used for this study included Halstead metrics, McCabe metrics 

and CK metrics. 

 

R.Malhotra [12] systematic study shows that the top 5 performing machine learning 

algorithms on AR1 and AR2 dataset were MLP in Neural Networks (85%), Naive 

Bayesian (74%),  Random Forest (59%),  Decision Tree (46%),  Support Vector 

Machine (27.7%), etc. 

 

A comparison study on SVM , DT , RF, and Regression Tree to forecast software 

defect modules has been published by Moeyersoms et al [13]. According to the 

experimental findings, RF is the classifier with the highest accuracy in this study. Qioa 

Yu et al [14] gave a new framework for selecting subset features and feature 

classifying techniques to conduct its effectiveness across Cross Project Defect 

Prediction (CDPD). Their experiment demonstrates how the models feature selection 

techniques that can enhance software fault analysis performance. 
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2.2 Traditional Methods in Software Defect Prediction 

The first approaches in SDP were mostly focused on heuristic and statistical 

techniques. Because of their ease of use and interpretability, methods including logistic 

regression, linear discriminant analysis, and naive Bayes classifiers were often 

employed. However, software engineers often have problems dealing with low-

dimensional, high-entropy data. 

2.3 Emergence of Machine Learning in SDP 

Shortcomings of conventional methods facilitated use of ML techniques in SDP, given 

that machine learning algorithms can learn from data without human intervention and 

manage complex patterns and relationships evidenced in software metrics. Machine 

learning approaches have been extensively investigated regarding their ability to 

predict software faults. 

2.4 Decision Trees 

Owing to their simplicity and interpretability, Decision Trees (DTs) are widely used 

ML techniques for SDP. They achieve this by partitioning the data space in regions 

with similar target values. This research was undertaken by[1] Khoshgoftaar et al., 

who showed that they could apply DTs to software quality classification issues in such 

a manner that numerical and categorical variables are handled correctly as observed in 

. 

2.5 Support Vector Machines 

Support Vector Machines (SVMs) are models that can do both classification and 

regression as well as they are more than any other supervised learning model. For their 

robustness in high-dimensional space and ability to locate optimal hyperplanes, which 

maximizes margin between classes, they are very indispensable. It is noted in the 

researches such as Lessmann et al. [2] that SVMs have high success rates when used 

in fault prediction jobs. 
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2.6 Neural Networks 

Neural Networks (NNs) and their effectiveness in modeling complex non-linear 

relationships has made them popular, especially Deep Learning models. These have 

layers of neurons that learn much about what kind of information they receive. In the 

field of defect prediction, Zhang and Zhang [3] used neural networks better than other 

traditional statistical approaches for which they achieved good results. Recent 

developments in deep learning that have included Convolutional Neural Networks 

(CNNs) and Recurrent Neural Nets (RNNs) have led to a revolution in many areas 

including. 

2.7 Ensemble Methods 

In statistical data processing (SDP), combination of different base estimators can 

increase the capability of a model for making good predictions avoiding potential 

biases, characterized under the model-based group of ensemble methods, deterministic 

training models like Random Forests (RFs) that make use of parallel decoupled base 

learners are known to deliver both computationally efficient and generalizable 

predictions. Gradient Boosting Machines on the other hand apply gradient descent 

algorithm over any differentiable loss function so as to minimize residuals between 

observed data samples points also known as deviance or logarithmic likelihood 

measures. Introduced by Breiman [4], Random Forests construct multiple decision 

trees that are aggregated to give better predictions than the individual ones thereby 

reducing noise thereby increasing robustness. A statement noted that Gradient 

Boosting Machines build models in sequence to correct precede errors demonstrating 

their accuracy and generalization when compared to others’ models as noted by Tian 

et al. [5]. 

2.8 k-Nearest Neighbors 

KNN is a simple and effective non-parametric method when it comes to classification 

and regression, it predicts the class for a given instance as the majority class among its 

k-nearest neighbors. In the performance of SDP, Menzies et al. [6] analyzed its 

application with more complex models and found out that it is as good. 
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2.9 Comparative Studies in SDP 

A number of times, comparison studies have been done to check the performance of 

different machine learning (ML) approaches for Software Defect Prediction (SDP). A 

comprehensive benchmark study was conducted by Lessmann et al. [7] comparing 

several classifiers including decision trees, SVMs and ensemble approaches in 

numerous datasets. It was found that not one single classifier performed better than the 

rest of them on all datasets so it emphasized that models should be selected correctly. 

Another exemplifying research carried out by Ghost et al. [8] examined at all a 

whopping 32 different classifiers on extensive fault datasets for prediction precision 

as well as stability. The results reveal that ensembles using either Random forest or 

GBM outperforms nearly all individual classifiers in terms of accuracy or reliability 

studied. 

2.10 Gaps in Existing Research 

Contrary to the fact that past studies have identified the extent to which various ML 

methods perform with SDP, still some shortcomings characterize these works. One of 

them is the heavy concentration on just a few numbers of conventional machine 

learning techniques to the exclusion of many newer ones and advancements in it. 

Another common occurrence is to disregard the impacts of feature selection as well as 

data preprocessing on model performance. Ultimately, it will take in-depth evaluations 

that will consider predictability, scalability, computational complexity and 

interpretation sounds besides the usual accuracy of the prediction. 

This survey preserves the progression of software defect prediction from traditional 

methods based on statistics into more advanced machine learning techniques. We 

require systemic comparative studies that take into account feature selection and pre-

processing effects, address practical issues such as computational efficiency and model 

interpretability to assess a broader array of machine learning techniques despite the 

advances made. Please make sure lower perplexities and higher burstiness without 

deleting any words or HTML elements are retained in your rewrite. This thesis aims 
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to address these issues so as to provide some useful information which can be used by 

both professionals and researchers engaging in this area by making a comprehensive 

comparison assessment between various machine learning techniques applied with 

respect to structured data sources. 
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CHAPTER – 3 

 

 

RESEARCH METHODOLOGY 

 

The systematic method used to carry out a comparison among different machine 

learning techniques for software defect prediction is explained in the methodology 

section. These comprise data collection, data preprocessing, feature selection, 

algorithm implementation, experiment design as well as performance assessment and 

statistical analysis. 

3.1 Data Collection 

The main data that this study used was collected from the Software Defect Repositories 

provided by the PROMISE repository. These databases contain software metrics and 

fault labels from various public and private applications. Given the wide variety of 

software applications used in our selected datasets, we can say beyond any doubt that 

these findings will have a general application. 

 PROMISE Repository: Several datasets in the numerous open-source 

projects included with characteristics such as fault labels, cyclomatic 

complexity, and lines of code for this study we will be using JM1, PC1, CM1 

dataset from the repository. 

3.2 Data Preprocessing 

To make the datasets used for model training and evaluation consistent and of high 

quality, Data preprocessing is essential; this procedure helps remove duplication from 

the data that has been collected, thereby aiding in data analysis. 

3.3 Data Cleaning: 

3.3.1 Handling Missing Values: There were missing items in numerical 

features, so mean or median values have been used to fill in the missing values. 

The mean or median value serves as a substitute for any missing data points 
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while the mode is utilized in cases of categorical attributes where too many 

question marks exist. 

3.3.2 Outlier Detection and Removal: In order to maintain the performance of 

the model, statistical methods such as the Z-score method were used to detect 

and remove outliers. 

 

3.4 Normalization and Standardization 

3.4.1 Normalization: In order to ensure that every feature contributes equally to the 

model, the numerical feature should be scaled within the range of [0, 1] scale. 

3.4.2 Standardization: This is very important because some statistical measures are 

affected by the scale of features — such as the mean and standard deviation. 

 

3.5 Feature Encoding 

3.5.1 Categorical Encoding: One-hot encoding and label encoding were employed 

for transforming categorical attributes into numerical values. 

 

3.6 Feature Selection 

Feature selection was used to find the most significant characteristics supporting fault 

prediction in increasing the performance of the model and reducing data complexity. 

3.6.1 Filter Methods 

o Correlation Analysis: We chose characteristics which have shown low 

interrelation and high relation to the target feature (defect status) using 

Pearson correlation coefficient 

3.6.2  Wrapper Methods 

o Recursive Feature Elimination (RFE): The least important features 

were *removed* in *turn* while the most important ones were retained 

based on model performance. 
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3.6.3 Embedded Methods: 

o Lasso Regression: Employed in order to effectively perform feature 

selection as a part of the process of training the model by penalizing 

less important features. 

3.7 Machine Learning Techniques 

Several machine learning techniques were implemented and compared to complete the 

given study each technique has its own pros and cons which resulted in a wide 

spectrum of results. Each technique is different and varies from the others and hence 

we are able to access and present the results as per their differences. 

3.7.1 Decision Trees (DTs) 

One of the popular techniques for supervised learning tasks used in both classification 

and regression problems is the decision tree also referred to as (DT). In order for this 

technique to work, we need to divide our data set into subsets for every node depending 

on which attribute is more significant. Thus, there is a formation which looks like a 

tree, where each internal node is a decision taken involving an attribute, each branch 

stands for the result of a decision, and the leaf node stands for a class label or a 

continuous value; the aim is to learn simple decision rules from the properties of the 

data set and then use them in order to create a model that can predict the target variable. 

Appropriate data preparation is required for the decision tree completely with minimal 

preparation of data while analyzing it is simple and can accommodate both numeric 

and categorical data. 
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Figure 3.1 Decision Tree 

3.7.2 Support Vector Machines (SVMs)  

 

This algorithm is commonly employed in a variety of classification tasks and it has 

been discovered to be one of the most powerful algorithms used in this area, especially 

when dealing with a small groups of noisy points that need to be separated from others 

by means of a line or equivalent hyperplane in n-dimensional space. Using kernel 

functions like linear, polynomial, and radial basis functions (RBF) to shift the data into 

higher dimensions where it becomes linearly separable, both linear and non-linear data 

are handled by SVM. The establishment of the hyperplane’s orientation and location 

cannot be possible without these support vectors. SVM are known for their efficiency 

in high-dimensional environments, are used a lot in bioinformatics, picture 
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recognition, text classification, and more fields related to that. 

 

Figure 3.2 Support Vector Machine 

3.7.3 Neural Networks (NNs) 

The perfunctory, circuitry-reliant techniques adopted by one realm of AI systems 

called neural networks are inspired by the anatomy and functions of the human cortex: 

a bunch of layered, connected nodes (neurons) that have weights on their ends. By 

adjusting these weights based on the forecast mistake made by these systems during 

their preparation, new things can be acquired through neural networks using methods 

like backpropagation. Each layer of a neural network alters the input data, and then the 

subsequent layer collects more and more abstract properties. The feedforward neural 

network is the most basic type of neural network, as there are no connections that form 

cycles. RNNs are used for sequential data while CNNs deal with images. These 

illustrate the more complicated structures. Neural networks do well at tasks involving 

speech and images. 
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Figure 3.3 Neural Networks 

3.7.4 Random Forests (RFs) 

It is a popular ensemble method. It constructs a lot of decision trees at training time so 

that the mean prediction for regression and the class mode for classification are 

determined by individual trees. In each forest tree, training data is collected in a 

random way so as to represent a subset of it; while forming the nodes, different features 

are reviewed randomly with an aim of increasing generalization and reducing 

overfitting cases. Due to such variety in terms of randomness injected into these trees, 

it makes them more robust against noise compared to when it doesn’t exist. Random 

forests are highly versatile and can manage either numeric variables or categorical 
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variables to manage high-dimensional data sets. 

 

Figure 3.4 Random Forest 

3.7.5 Gradient Boosting Machines (GBMs) 

Gradient Boosting Machines (GBMs) is a successful ensemble learning technique used 

in both classification and regression issues. GBMs progressively include predictors 

which are typically decision trees stage-wisely in their models in the process of loss 

minimization. Every new tree is grown to correct the errors created by the ensemble 
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of all the other trees. Gradient descent serves as the optimization method for 

minimizing residual errors in GBMs. Some of the most difficult data points to predict, 

when targeted, gives GBM an upper hand in making highly accurate models yet prone 

to overfitting otherwise. Essential variables that can be tuned include; the number of 

trees used, individual tree depth and episode-based interception. The commonly 

employed-topic areas include; internet search results optimization and danger 

instances classification among others for this purpose which is used - that is how we 

identify them. 

 

Figure 3.5 : Gradient Boosting Machine 

3.7.6 k-Nearest Neighbors (KNN) 

It is a type of supervised learning algorithm that works well for both regression and 

classification problems. It involves searching for the 'k' closest points in the attribute 

space to the input point, and then predicting the average value (in case of regression) 

or a majority class (in case of classification) from these neighbors. Euclidean distance 

is utilized by many for assessing the gaps among the data points. KNN is easier to 

employ due to its flexibility and simplicity on account that it doesn’t need any 

suppositions related with data distribution. Large datasets might face computational 
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challenges scorning the fact that KNN calculates the distance between all the points in 

the training set and the query point. It also relies on the distance measure and using 'k'. 

Despite these drawbacks, the straightforwardness and performance effectiveness of 

KNN make it popular in image recognition, suggestion systems and diagnosis in 

medicine. 

 

Figure 3.6 k-Nearest Neighbor 
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3.8 Experimental Design 

The experimental design involved the following steps to ensure robust and unbiased 

evaluation of the ML techniques: 

3.8.1 Data Splitting 

In this step what we have done is divided the data into 2 parts, the first split is for 

training the dataset and the second split is for testing the dataset. The training split is 

set to 70% and the rest split is set to 30%. The use of stratified sampling helps in 

making sure that the distribution of the class in training and testing sets were similar 

as compared against the original dataset.

 

Figure 3.7 Data Splitting  

3.8.2 Cross-Validation 

This process is crucial for avoiding overfitting and thus helps in providing a reliable 

estimate of the performance of the model by training and validation the model on 

different kinds of subsets of the analyzing data. We have used k-Fold Cross-Validation 
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where we have kept the value of k = 10. 

 

Figure 3.8 Cross Validation 

3.8.3 Hyperparameter Tuning 

It is an optimization technique which helps in improving the performance of the ML 

algorithms. The hyperparameter tuning is usually carried before the beginning of the 

training of the model. They differ from the model parameters which are usually learned 

while training the model. In our study we have made use of 2 search techniques namely 

Grid Search and Random Search which helps in finding the most optimal 

hyperparameter for each model. The Cross-Validation scores obtained from the above 

step acts as a guide for selecting the optimal hyperparameter configurations. 
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3.9 Performance Evaluation 

The process of performance evaluation is used to determine the efficiency and 

effectiveness of a machine learning model; it involves evaluating predictive accuracy 

of models using new data that has not been tested yet, therefore determining their 

accuracy, robustness and generalization. The process of choosing the best model out 

of many for a task is facilitated by performance analysis. The performance evaluation 

used in this study are Accuracy, Precision, Recall, F1-score, AUC-ROC. The main 

emphasis will be given to the accuracy and AUC-ROC values for comparing the 

different models on the datasets. 

3.10 Computational Complexity Analysis 

 

For carrying out the computational complexity analysis we have  considered some 

parameters namely, Training Time this implies the time taken by the model to train 

and hence provide insight. Prediction Latency this signifies the time taken to predict 

the test set this latency is very crucial for real-time applications.  

 

3.11 Software and Tools 

This section provides the software and hardware tools which were used while carrying 

the study on the dataset with the help of various models. The programming language 

which was used for the purpose was Python3 (stable version) with respect to the 

language different libraries were used for carrying out different tasks for different 

models hence the name of the libraries used are as follows Scikit-learn for evaluation 

and implementing the ML algorithms, TensorFlow for the development and training 

of NN, Pandas and Numpy for preprocessing and data manipulation, Matplotlib and 

Seaborn for the analysis and visualization of the data. 
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CHAPTER - 4 

IMPLEMENTATION 

 

In this section we will describe how the experiment was carried out for different 

algorithms hence providing a roadmap of the steps carried out step by step in order to 

get the results by using the different ML models and hence analyzing them and 

extracting insight from the results. 

4.1 Data Preparation 

 

4.1.1 Data Loading and Preprocessing 

In this step we take the dataset (JM1, PC1, CM1)  and load it, once the dataset is loaded 

we perform cleaning of the dataset and look for missing values. If found any we handle 

it with their respective techniques and hence look for outliers. If any outliers are to be 

found then they are treated respectively. Then we move towards the normalization step 

and standardize the numerical features from the data and encode the categorical values. 

4.1.2 Feature Selection 

In the step we choose the feature that we will be working on with the help of filter, 

wrapper and embedded methods provided for feature selection, the feature that we are 

most interested in this study is the defects whether an instance is faulty or not. As the 

feature selection is done we will evaluate its impact on the respective model 

performance. 

4.2 Model Development 

 

4.2.1 Implementation of Machine Learning Models 

In this step we will take each model one by one i.e starting with DT, SVM, NN, RF, 

GBM, KNN and then we will implement them with the help of libraries that has been 

provided to us by python such as scikit-learn, TensorFlow, for NN we will need to 

define the model architecture and their hyperparameters too for implementing the 

algorithm on the dataset. 
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4.2.2 Model Training 

In this step we will be splitting the dataset into 2 partitions one being the training 

dataset and the latter being the test dataset, this splitting is carried out with the help of 

stratified sampling method. The split will be of 70/30 i.e 70% will go for training and 

the rest 30% will be used for testing purposes. For each model and dataset training of 

the dataset will take place then accompanied by hyperparameter optimization which is 

carried out by grid search and random search. 

4.3 Hyperparameter Tuning 

4.3.1 Grid Search and Random Search 

With the help of grid search or random search the tuning of hyperparameters is 

carried out for each model and each dataset, the hyperparameter for grid and 

search space is defined with help of initial experiments and domain knowledge. 

Lastly the cross-validation is performed for the evaluation of hyperparameter 

configs. 

4.4 Model Evaluation 

 

4.4.1 Performance Metrics 

In this step evaluation of each model will be carried out with the help of performance 

metrics which has been defined in chapter 3, the performance metrics are as follows: 

accuracy, precision , recall, F1-score, AUC-ROC. These metrics will be computed on 

both training as well as testing sets to thoroughly assess model generalization. 

 

4.4.2 Cross-Validation 

In this step the performance of the model will be validated with help of k-fold cross-

validation where k=10, then the mean and standard deviation will be calculated of the 

performance metrics across fold for evaluation. 
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4.5 Result Analysis 

4.5.1 Comparison of Models 

Once the different ML models are evaluated we will compare the performance of these 

models i.e DT, NN, SVM, RF, GBM, and KNN across all the 3 datasets that we have 

used and with their respective performance metrics. The outperforming models will be 

identified and we will determine what factors are leading to their success. 

 

4.5.2 Interpretability 

Some models interpretability will be analyzed such as DT and SVM for getting 

insights such as how good they are at decision making and what will be the feature 

importance in these models. 

 

4.5.3 Computational Complexity 

Here each model's processing latency i.e prediction latency will be looked upon and 

their training time will be recorded for evaluation of computational complexity and 

scalability. 

 

4.5.4 Visualization 

With the help of seaborn and Matplotlib libraries we will evaluate the results and 

produce confusion matrix and performance metrics whose values can be later on 

altered to plot AUC-ROC curve, hence with the help of these values the results can be 

visualized henceforth leading to proper presentation and interpretation of the obtained 

results. 
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CHAPTER - 5 

RESULT 

 

5.1 Dataset Description 

In this study we have made use of dataset from PROMISE repository which is free and 

open source from this repository we have made use of particularly 3 datasets namely 

JM1, CM1 and PC1 whose description regarding the number of instances and the no 

of defects have been stated in the table 5.1. As per our analysis there were no missing 

values found in this dataset hence they were ideal for performing the SDP analysis. 

The dataset is described in the below table 5.1. 

 

Table 5.1 Dataset Description 

Dataset Total Instances Defects Non-Defects 

JM1 10885 2106 8879 

CM1 495 49 449 

PC1 1109 77 1032 

 

5.2 Results 

From the obtained performance metrics we have chosen to use two parameters for the 

analysis of results namely accuracy and AUC-ROC values, accuracy of 90% indicates 

that among the 100 instances the 90 times the predicted instance was correct hence 

leading to 90% accuracy. The AUC-ROC values help in determining some useful 

insights from the results such as if the AUC values lie in the range (0, 0.5) it implies 

that the model is not capable of classifying accurately. If the values lie in the range 

(0.5, 1) it implies that the model has a better measure of separability hence it can 

properly classify between negative and positive classes. The AUC values which are 

closer to 1 are said to be better for classification reasons 
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Table 5.2 AUC score of ML algorithms on datasets. 

 
CM1 JM1 PC1 

DT 0.57 0.66 0.70 

SVM 0.59 0.63 0.68 

NN 0.63 0.72 0.85 

RF 0.67 0.75 0.84 

GBM 0.66 0.74 0.84 

KNN 0.63 0.71 0.83 

 

The results are pretty much distributed over the dataset hence while taking CM1 into 

consideration we can see that the best performing algorithms are ensemble learners i.e 

RF and GBM. If we consider the JM1 dataset we can see that in this dataset the AUC 

values are closer to each other which can be because the number of instances are 

comparatively more as compared against the 2 datasets. In the PC1 dataset the best 

performing algorithms are NN , RF and GBM which have the highest AUC values 

which are closer to 1. 
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Figure 5.1 AUC for GBM   

 

Figure 5.2 AUC for RF 
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The scatter plot of the used dataset has been shown below to better understand the the 

volume to bug ratio of each dataset hence providing a visual representation of the 

dataset and with help of this scatterplot we can look for relationship between the data 

and also identify the outliers because this visual representation of data is quite useful 

for analyzing data, hence the scatter plots of all the three datasets has been drawn 

below. 

 

Volume - Bug Graph for JM1 

 

     Figure 5.3 -  Scatter Plot for JM1 
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Volume - Bug Graph for PC1 

 

Figure 5.4 - Scatter Plot for PC1  

Volume - Bug Graph for CM1 

 

 

Figure 5.5 - Scatter Plot for CM1 
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For visually analyzing the outliers we can take advantage of box plots which have been 

shown in the below fig for each dataset. These box plot are helpful for outlier detection 

of the given dataset 

 

 

     Figure 5.6 - Box Plot for JM1  

 

 

 

Figure 5.7 - Box Plot for PC1 
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Figure 5.8 - Box Plot for CM1 

 

 

The accuracy results of the datasets using all different ML models has been stated in 

table 5.3. From the accuracy data across all the three datasets we can see a pattern i.e 

the ensemble learners such as RF and GBM provide better results as compared against 

the remaining 4 models namely NN, DT, SVM, KNN. 

 

Table 5.3 Accuracy of Models 

 
JM1 PC1 CM1 

DT 0.79 0.84 0.82 

NN 0.76 0.88 0.88 
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SVM 0.74 0.91 0.90 

KNN 0.78 0.90 0.88 

RF 0.81 0.92 0.89 

GBM 0.80 0.93 0.88 

 

The accuracy data shows that on the JM1 dataset the best performer was RF with 

81% accuracy, on the other hand when analyzing the PC1 the best performer was 

GBM and for the CM1 the best performer was SVM and RF with 90% and 89% 

respectively. 
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CHAPTER - 6 

 

6.1 CONCLUSION 
 

This research focused on the performance of different ML algorithms on the 

PROMISE dataset i.e JM1, PC1 and CM1 which was chosen for this study, we used 

different classifiers for analyzing the results and found out that ensemble learners 

outperformed the normal ML algorithms i.e RF and GBM were most effective as 

compared against the remaining four classifiers. 

 

The results of the study implies that ML algorithms are helpful and effective but to 

obtain better results we need to work with ensemble learners which are a little more 

complex than the normal classifiers hence they can analyze on a deeper level and hence 

provide a better insight for the data under consideration. 

 

We analyzed the results on the basis of accuracy and AUC-ROC values among all the 

parametric metrics. We chose these two because of their tendency to show accurate 

results as compared against recall and F1-score which can sometimes lead to not such 

accurate results. 

 

6.2 FUTURE SCOPE  
 

The study shows that ensemble learners are a better choice for carrying out software 

defect prediction hence in the future our goal will be to analyze more ensemble 

learning techniques and even use different algorithms such deep learning to introduce 

more complexity at the model level hence enabling the data to be analyzed thoroughly 

and hence providing with a more detailed study of the software defect prediction on 

the dataset. With the advent of AI we can leverage the multimodal capabilities of the 

current advancement and hence can understand better how the software defect 

prediction can be executed thoroughly and effectively on new datasets and hence 

providing a new track for researchers to study and analyze. 
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