
RECOMMENDATION SYSTEMS USING
DEEP LEARNING METHODS

A thesis Submitted
In Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

by

KIRTI JAIN
(2K18/Ph.D/CO/20)

Under the Supervision of

Prof. Rajni Jindal
Professor, Department of Computer Science and Engineering

DELHI TECHNOLOGICAL UNIVERSITY

Department of Computer Science and Engineering

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

November, 2024

ii

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

CANDIDATE’S DECLARATION

I, Kirti Jain, hereby certify that the work which is being presented in the thesis

entitled “Recommendation Systems Using Deep Learning Methods” in partial

fulfillment of the requirements for the award of the Degree of Doctor of Philosophy,

submitted in the Department of Computer Science & Engineering, Delhi

Technological University is an authentic record of my own work carried out during

the period from August 2018 to June 2024 under the supervision of Prof. Rajni

Jindal.

The matter presented in the thesis has not been submitted by me for the award of any

other degree of this or any other Institute.

Ms. Kirti Jain

2K18/Ph.D/CO/20

Department of Computer Science & Engineering

Delhi Technological University, Delhi-110042

This is to certify that the student has incorporated all the corrections suggested by

the examiners in the thesis and the statement made by the candidate is correct to the

best of our knowledge.

Signature of Supervisor Signature of External Examiner

iii

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

CERTIFICATE BY THE SUPERVISOR

Certified that Kirti Jain (2K18/Ph.D/CO/20) has carried out her research work

presented in this thesis entitled “Recommendation Systems Using Deep Learning

Methods” for the award of Doctor of Philosophy from Department of Computer

Science & Engineering, Delhi Technological University, Delhi, under my

supervision. The thesis embodies results of original work, and studies are carried out

by the student herself and the contents of the thesis do not form the basis for the

award of any other degree to the candidate or to anybody else from this or any other

University/Institution.

Prof. Rajni Jindal

Professor

Department of Computer Science and Engineering

Delhi Technological University, Delhi -110042

iv

ACKNOWLEDGEMENT

With a deep sense of gratitude, I wish to express my sincere thanks to my supervisor,

Prof. Rajni Jindal for her immense help in planning and executing this thesis work in

time. She consistently stood by me in all my difficult times helping me to do my

research fruitfully. I would like to express my sincere gratitude to her for excellent

guidance, inspiration and support throughout my research work. I am grateful to her

for the time she has spent with me in discussions and giving valuable suggestions.

Her enthusiasm, innovative suggestions, and deep insight into technical matters were

instrumental in the conceptualization of this work. Working under her supervision

was a great learning experience.

I owe a deep sense of gratitude to Prof. Vinod Kumar, HOD of the Department of

Computer Science and Engineering, DRC Chairperson, SRC, DRC members, faculty

members, research scholars and non-teaching staff of the department for their

valuable support and time to time help.

Moreover, I am profoundly grateful to my parents, in-laws, husband (Shivam Jain),

brother, bhabhi, brother-in-law and son (Jeevesh Jain) whose unconditional support

and blessings have been a cornerstone of my achievements. I would also like to

thank my colleague (Dr. Ankit Vidyarthi) and my friends (Dr. Sanjay Kumar and Dr.

Dipty Tripathi) for their constant motivational support.

Their unwavering faith in my abilities, endless lessons, moral support and care have

played an integral role in shaping my academic pursuits. Their presence in my life

has been truly invaluable, and I am forever indebted to them for their unwavering

support and belief in my abilities.

Ms. Kirti Jain

Roll No: 2K18/Ph.D/CO/20

Department of Computer Science & Engineering

Delhi Technological University, Delhi-110042

v

Recommendation Systems Using Deep Learning Methods

Kirti Jain

Abstract
Recommendation systems (RS) are quite useful these days as they offer the content

according to the users’ tastes and interests. They are used in every online platform

like social media, e-commerce, streaming services, news and content websites,

traveling sites, job portals, online advertising, food delivery and restaurant apps,

online learning platforms, dating and marriage related apps and many more. Some

examples of recommendations include friend suggestions and news feed content on

Facebook, job recommendation and content sharing on LinkedIn, movie

recommendation on Netflix, products recommendation on e-commerce sites, hotels

and flights recommendation on traveling sites, courses and learning material

recommendation on E-learning platforms like Coursera, Udemy. Recommendation

systems are mainly of three types: Content based RS, Collaborative-Filtering based

RS (CFRS) and Hybrid Systems. Content-based RS are related to only one

individual user and recommend items related to items’ description and the user’s

personal choice/interests. Whereas, Collaborative RS creates a matrix of user-item

pairs, which has each users’ ratings for liked items. Now, a user gets the

recommendation of items based on his interests as well as the based on the others

users’ interests with the similar profiles. Both Content based RS and CFRS have

their own disadvantages. So, to overcome these disadvantages, hybrid systems take

individual output of both content based RS and CFRS and then combine these

outputs to make recommendations.

With the recent advancements in technology, Deep Learning (DL) models handle RS

effectively. They are capable of handling intricate structures of data like image, text,

audio, video and learn complex patterns from this data. This ability of DL to handle

high dimensional data and learn hierarchical representation of features makes it

suitable to be applied in RS. DL time-series models like RNN, LSTM have the

capability to capture users’ dynamic interests and their evolving temporal

preferences. Such models help in capturing the changing needs of the users and

make the recommendations accordingly.

vi

Although plenty of data is available to be processed, processing the entire dataset is

a cumbersome process. Sampling is a way to select a subset of the entire dataset

which contains all the attributes that the database can represent. Many sampling

techniques are combined with DL models to sample the data as well as to improve

the performance of the RS. In this research work, we have discussed six types of

sampling methods used for recommender systems, namely, Bayesian Hierarchical

Sampling, Negative Sampling, Thompson Sampling, Bernoulli Sampling, Gibbs

Sampling and Bootstrap Sampling.

Also, before processing the data, we need to clean it up as it contains a certain

amount of noise. Noise can be described as malicious, natural, structural and

contextual. So, there is a need to filter this noise before making the data suitable for

processing. Thus, we present a summary of various noise filtering methods such as

supervised, semi-supervised, unsupervised, crisp, fuzzy and optimization techniques.

Various companies spent a lot of revenue on designing good recommendation

models in order to boost up their sales. Now, after this design, the question arises,

how well the RS is working. That means, we need to measure its quality using some

suitable evaluation metrics. So, choosing the appropriate evaluation metrics amongst

the various existing evaluation metrics is a challenging task and thus, it becomes

important to know which metric is to be used while measuring the performance of

the system.

This research work presents four contributions in the recommendations systems

domain. Firstly, an exploration of various sampling and noise filtering methods used

for RS is presented. Secondly, an application of negative sampling and Nuclear

Physics optimization is proposed on tweets data to enhance the recommendation of

movies. Thirdly, a hybrid model of BERT-LSTM is proposed to improve the

performance of hashtag recommendation models. Lastly, various performance

evaluation metrics are explored in the field of recommendation systems and a novel

metric named Semantic Recommendation Score (SRS) is proposed.

vii

List of Publications

Papers Published / Communicated in International Journals:

● Kirti Jain, Rajni Jindal, “NLP-enabled Recommendation of Hashtags for Covid

based Tweets using Hybrid BERT-LSTM Model”, Transactions on Asian and

Low-Resource Language Information Processing, 2024. (SCIE, ACM, IF: 2,

Published)

● Kirti Jain, Rajni Jindal, “Sampling and Noise Filtering Methods for

Recommender Systems: A Literature Review”, Engineering Applications of

Artificial Intelligence, Vol. 122C, 2023. (SCIE, Elsevier, IF: 8, Published)

● Kirti Jain, Rajni Jindal, “Optimization-based Noise Filtering Among

User-Centric Tweets to Improve Predictions in Recommendation System”,

Knowledge and Information Systems, (SCIE, Springer, IF: 2.5,

Communicated)

● Rajni Jindal, Kirti Jain, “A Review on Recommendation Systems Using Deep

Learning”, International Journal of Scientific & Technology Research, ISSN:

2277-8616, Vol. 8, Issue 10, 2019. (Scopus Indexed, Published)

Papers Published / Presented in International Conferences:

● Kirti Jain, Rajni Jindal, “A Survey on Hashtag Recommendations”, 27th

Conference of the Open Innovations Association FRUCT, Italy, ISSN:

2305-7254, 7-8 September, 2020, (pp. 323-327). (Published)

● Kirti Jain, Rajni Jindal, “A Walkthrough of Various Accuracy Measurement

Metrics for Recommendation Systems”, International Conference on Emerging

Technologies in Engineering and Science, India, ISSN: 1551-7616, 11-12

August, 2023. (Presented)

● Kirti Jain, Rajni Jindal, “Bridging Gap Between Semantic Understanding and

Linguistic Quality in Recommender Systems: A Semantic Recommendation

Score (SRS) for Evaluation”, 4th International Conference on Computing and

Communication Networks (ICCCNet), United Kingdom, 17-18 October, 2024.

(Presented & Received Best paper Certificate)

viii

TABLE OF CONTENTS

Title Page No.

Candidate’s Declaration ii

Certificate by the supervisor iii

Acknowledgement iv

Abstract v-vi

List of Publications vii

List of Tables xiii

List of Figures xiv

List of Abbreviations xv-xviii

CHAPTER 1: INTRODUCTION 1-13

1.1 Phases of Recommendation Process 2

1.1.1 Information Gathering Phase 2

1.1.2 The Learning Stage 3

1.1.3 Phase of Prediction and Recommendation 3

1.2 Recommendation Techniques 3

1.2.1 Content-Based RS 3

1.2.2 Collaborative Filtering based RS (CFRS) 4

1.2.3 Hybrid Systems 6

1.3 Introduction to Deep Learning 6

1.4 Challenges in Recommendation Systems 7

1.5 Role of Deep Learning in Recommender Systems 8

1.6 Significance of the Research 8

1.6.1 Motivation 8

1.6.2 Sampling and Noise Filtering 9

1.6.3 Evaluation Metrics 9

1.7 Research Gaps and Objectives 10

1.8 Organization of the Thesis 11

1.9 Contributions of the Thesis 13

ix

CHAPTER 2: LITERATURE REVIEW 14-26

2.1 Traditional Recommender Systems 14

2.2 Deep Learning Approaches for Recommender Systems 17

CHAPTER 3: SAMPLING AND NOISE FILTERING METHODS 27-59

3.1 Introduction 27

3.2 Sampling Methods 29

3.2.1 Bayesian Hierarchical Sampling 29

3.2.2 Negative Sampling 30

3.2.3 Thompson Sampling 31

3.2.4 Bernoulli Distribution Sampling 32

3.2.5 Gibbs Sampling 33

3.2.6 Bootstrap Sampling 34

3.2.7 Comparison of all Sampling Methods 35

3.3 Noise Filtering Methods 36

3.4 Malicious Noise 37

3.4.1 Supervised Methods 37

3.4.2 Semi-supervised Methods 41

3.4.3 Unsupervised Methods 43

3.5 Natural Noise 47

3.5.1 Crisp Management 47

3.5.1.1 Re-Rating & Ranking 48

3.5.1.2 Classification & Clustering 49

3.5.1.3 Magic Barrier 50

3.5.1.4 Outliers Detection 51

3.5.1.5 Global Information 51

3.5.1.6 Summary of Crisp Methods 52

3.5.2 Fuzzy Tools 53

3.6 Structural and Contextual Noise 55

3.7 Conclusion 58

x

CHAPTER 4: NPO BASED MOVIE RECOMMENDATION

MODEL 60-82

4.1 Introduction 60

4.2 Proposed Methodology 63

4.2.1 Dataset Preparation 64

4.2.2 Movie Review Sentence Embedding 66

4.2.3 Nuclear Physics Optimization 68

4.2.4 Evaluating Fitness of Each Tweet for Filtering 71

4.2.5 Models for Learning Recommendation System 72

4.2.6 Relevancy Selection with Cosine Similarity 72

4.3 Experimentation Results 73

4.3.1 Pre-build Dataset 73

4.3.2 Results with NPO Algorithm 75

4.3.3 Comparative Analysis 79

4.4 Conclusion 81

CHAPTER 5: CONTEXT-AWARE HASHTAG

RECOMMENDATION MODEL 83-99

5.1 Introduction 84

5.2 Methodology 86

5.2.1 Proposed Work 86

5.2.1.1 Hashtag Encoding 87

5.2.1.2 Word Tokenization and Embedding 88

5.2.1.3 Feature Extraction by LSTM 88

5.2.1.4 POS Tagging 89

5.2.1.5 Hashtag Recommendation 89

5.2.2 Terminologies Used 90

5.3 Evaluation and Results 90

5.3.1 Dataset 91

5.3.2 Implementation Details 94

5.3.2.1 Model Training 94

5.3.2.2 Model Testing 95

xi

5.3.3 Baseline models 95

5.3.4 Evaluation Results 95

5.4 Conclusion 98

CHAPTER 6: EVALUATION METRICS 100-114

6.1 Introduction 100

6.2 Metrics based on Confusion Matrix 101

6.2.1 Accuracy 102

6.2.2 Sensitivity 102

6.2.3 Specificity 103

6.2.4 Precision 103

6.2.5 Recall 103

6.2.6 F1 Score 103

6.2.7 Precision and Recall are Equal 103

6.2.8 Top-k recommendations 104

6.3 Error based Metrics 104

6.3.1 Mean Absolute Error (MAE) 104

6.3.2 Normalized Mean Absolute Error (NMAE) 105

6.3.3 Mean Squared Error (MSE) 105

6.3.4 Root Mean Squared Error (RMSE) 105

6.4 Metrics based on Ranking 105

6.4.1 Hit Rate 105

6.4.2 Hit Ratio 106

6.4.3 Cumulative Hit Rate (CHR) 106

6.4.4 Mean Reciprocal Rank (MRR) 106

6.4.5 Mean Average Precision (MAP) 106

6.5 Metrics based on Linguistics 108

6.5.1 Bilingual Evaluation Understudy (BLEU) 109

6.5.2 Recall-Oriented Understudy for Gisting Evaluation

(ROUGE) 109

6.5.3 BERTScore 110

6.5.4 BARTScore 111

xii

6.6 Proposed Evaluation Metric 111

6.6.1 Semantic Recommendation Score (SRS) 111

6.6.2 SRS Analysis 113

6.6.2.1 Emphasis on Semantics 113

6.6.2.2 Emphasis on Linguistic Quality 113

6.6.2.3 Equal Emphasis on both Semantics and Linguistic

Quality 113

6.7 Conclusion 113

CHAPTER 7: CONCLUSION, FUTURE SCOPE AND

SOCIAL IMPACT 115-118

7.1 Conclusion 115

7.2 Future Work 117

7.3 Impact on Society 118

REFERENCES 119-133

CURRICULUM VITAE / BRIEF PROFILE 134

xiii

LIST OF TABLES

Table No. Page No.

Table 3.1: Strengths and Limitations of the above discussed Sampling

Techniques 35

Table 3.2: Summary of all the discussed supervised approaches 40

Table 3.3: Summary of all the discussed semi-supervised approaches 43

Table 3.4: Summary of all the discussed unsupervised approaches 46

Table 3.5: Summary of all the discussed crisp approaches 52

Table 3.6: Summary of all the discussed fuzzy approaches 55

Table 3.7: Summary of all the discussed optimization approaches 58

Table 4.1: Various decays and their reference to noise filtration 69

Table 4.2: Sample Dataset having movies title, genre, fetched user-centric

review and sentiment score 74

Table 4.3: Experimentation results of the model training with proposed

NPO algorithm-based tweet filtering 75

Table 4.4: Results of the Top K (k=3) recommended movies based on

user query along with sentiment score 77

Table 4.5: Results of the recommended movies using the query movie

along with genres and similarity scores 78

Table 4.6: Experimentation results of the model training without NPO

algorithm for tweet filtering 80

Table 4.7: Comparative results of the proposed optimization algorithm

with other benchmark algorithms on MovieLens dataset using

RNN model 81

Table 5.1: Dataset Values before and after pre-processing the tweets 93

Table 5.2: Hyperparameters names and their values used in BELHASH 94

Table 5.3: Comparative analysis of evaluation results of different methods

for hashtag recommendation 96

Table 5.4: Precision, Recall and F1-Scores for top-k (k=6) recommendations 98

Table 6.1: Confusion Matrix 102

Table 6.2: Precision@k for users of fig.6.2 and fig.6.3 108

xiv

LIST OF FIGURES

Figure No. Page No.

Fig.1.1: Different Phases of Recommendation Systems 2

Fig.1.2: Various Techniques used in Recommendation Systems 3

Fig.1.3: User-Item Matrix for Collaborative Filtering 4

Fig.1.4: Hybrid model of recommendation Systems 6

Fig.3.1: Different methods handling different noises 37

Fig.4.1: Flowchart of the proposed framework for movie recommendation 64

Fig.4.2: Framework for Movie Review Sentence Embedding 67

Fig.4.3: Distribution of samples in Movie Lens dataset as per rating 74

Fig.5.1: Flow diagram of data preprocessing leading to recommended

hashtags 86

Fig.5.2: Workflow of the proposed BELHASH model 87

Fig.5.3: A sample of raw/ unprocessed Covid-19 tweets 92

Fig.5.4: A sample of pre-processed Covid-19 tweets 93

Fig.5.5: Comparison of BELHASH with other models with respect to

Precision 96

Fig.5.6: Comparison of BELHASH with other models with respect to Recall 97

Fig.5.7: Comparison of BELHASH with other models with respect to F1-Score 97

Fig.5.8: Values of evaluation Metrics for top-k (k=6) recommendations 98

Fig.6.1: Various Evaluation Metrics 101

Fig.6.2: Items liked by the various users and the items recommended by the

Model 107

Fig.6.3: Items liked by the various users and the Top-3 items recommended

by the model 107

Fig.6.4: Flowchart of the calculation of SRS value 112

xv

LIST OF ABBREVIATIONS

RS Recommendation Systems

CFRS Collaborative Filtering based Recommendation Systems

DL Deep Learning

RNN Recurrent Neural Networks

LSTM Long Short-Term Memory

BERT Bidirectional Encoder Representations from Transformers

SRS Semantic Recommendation Score

TF-IDF Term Frequency Inverse Document Frequency

ML Machine Learning

DNN Deep Neural Networks

MF Matrix Factorization

NPO Nuclear Physics Optimization

BELHASH Bert Embedding based LSTM for Hashtag Recommendation

L2R Learning-to-Rank

BBC British Broadcasting Corporation

LDA Linear Discriminant Analysis

IBTM Incremental Biterm Topic Model

LIBRA Learning Intelligent Book Recommending Agent

KNN K-Nearest Neighbour

DCFM Deep Collaborative Filtering model

CF Collaborative Filtering

mDAE Marginalized Denoising Auto Encoder

SSL Semi-Supervised Learning

POI Points of Interest

PACE Preference and Context Embedding

CNN Convolutional Neural Networks

DeepCoNN Deep Cooperative Neural Networks

SVD Singular Value Decomposition

DLMF Deep Learning based Matrix Factorization

GRU Gated Recurrent Units

xvi

OTT Over-the-top

SVM Support Vector Machine

MV-RNN Multi-View Recurrent Neural Network

VGG Visual Geometry Group

MACON Memory Augmented Co-attention model

GCN Graph Convolutional Network

TOAST SenTiment enhanced multi-mOdal Attentive hashtag recommendation

MLP Multi Layer Perceptron

Bi-LSTM Bidirectional Long Short Term Memory

UHMAN User Guided Hierarchical Multi-Head Attention Network

CGAT Contextualized Graph Attention Network

MV-GAN Multi View Graph Attention Network

FL Federated Learning

BPR Bayesian Personalized Ranking

FeSoG Federated Social recommendation with Graph Neural Network

LBSN Location-based social networks

EM Expectation Maximization

GNN Graph Neural Network

CDR Cross-Domain Recommendation

CCDR Contrastive Cross-Domain Recommendation

MNS Mixed Negative Sampling

MAB Multi-Armed Bandit

CTR Click Through Rate

PB-MHB Position Based Metropolis-Hastings Bandit

DGR Deep Generative Ranking

RBM Restricted Boltzmann Machine

AoP Average over Popular

HHT Hilbert-Huang Transform

EMD Empirical Mode Decomposition

TIA Target Item Analysis

GMM Gaussian Mixture Model

HMM Hidden Markov Model

xvii

CCPS Co-Clustering with Propensity Similarity

PAM Partition Around Median

RIS Randomness in Item Selection

DTEC Dual Training Error based Correction approach

CARS Context-Aware Recommender System

NDC Noise Detection and Correction

RCFS Relaxed Context Feature Sets

NORMA Noise Resilient Matrix Approximation

GRS Group Recommendation Systems

DCBM Dynamic Coherence-Based Modeling

NNMG-FT Natural Noise Management in Group Recommendation using Fuzzy Tools

CL Contrastive Learning

DQN Deep Q-Networks

NDCG Normalized Discounted Cumulative Gain

NLP Natural Language Processing

CBoW Continuous Bag-of-Words

NEL Neutron Enrichment Level

EBu Enrichment Bound

MAP Mean Average Precision

POS Part of Speech

MLB MultiLabelBinarizer

API Application Programming Interface

URL Uniform Resource Locator

HTML Hypertext Markup Language

MAE Mean Absolute Error

NMAE Normalized Mean Absolute Error

MSE Mean Squared Error

RMSE Root Mean Squared Error

MRR Mean Reciprocal Rank

CHR Cumulative Hit Rate

BLEU Bilingual Evaluation Understudy

ROUGE Recall-Oriented Understudy for Gisting Evaluation

xviii

RDMA Rating Deviation from Mean Agreement

SSADR-CoF Semi-Supervised Attack Detection in Recommendation based on

Co-Forest Algorithm

IRM-TIA Item Relationship Mining - Target Item Analysis

SCoR Social Collaborative Recommendation

1

CHAPTER 1

INTRODUCTION

Recommendation is all about suggesting the items to the user according to his tastes

and preferences. Recommendation systems are the techniques that help the users get

the items according to their needs. As the number of visitors on the Internet is

growing day-by-day, it has become necessary to filter out information and present it

according to users’ preferences and taste of interests. Users can find products that

suit their tastes with the aid of recommendation systems. They are crucial in

presenting the most relevant results based on the interests and preferences of the

users. In order to predict the next best content, these systems take into account users'

dynamic choices in addition to their static interests. They are regarded as playlist

generators for music and videos on Youtube [1] and Netflix [2]; they also

recommend hashtags and facilitate connections between users on social media

platforms like Facebook, Twitter [3]; they support e-commerce sites like Flipkart,

Amazon [4], by indicating the next item a customer should buy based on item

ratings. Also, these systems are becoming more and more useful in areas other than

amusement and online shopping. They support the recommendation of individualized

treatment plans and health-related content in the healthcare industry.

Recommendation systems in education aid in customizing learning materials to meet

the needs of each individual student, improving the educational process.

Additionally, recommendation systems are essential in helping users find fresh and

pertinent content, which increases user enjoyment and involvement in the field of

content creation and consumption. They have become a crucial component of

contemporary digital platforms, greatly improving user experience. These systems

are capable of making recommendations for goods, services, or content that closely

match personal preferences by examining consumer habits and choices. These

systems work best when they can process large amounts of data and provide precise,

personalized recommendations that increase user participation and engagement. With

personalized experiences across a variety of domains, recommendation technologies

2

promise to become even more essential to our everyday online experiences as they

continue to advance.

1.1 Phases of Recommendation Process

Recommendation process involves three phases as described in fig.1.1.

Fig.1.1: Different Phases of Recommendation Systems

1.1.1 Information Gathering Phase

This stage is in charge of gathering data about users in order to create user profiles,

which contain information about users' characteristics, online activities, and the sites

they access. To accomplish this, feedback in the form of implicit, explicit or hybrid

feedback is gathered.

1. Explicit Feedback- In this model, users are asked directly via the

application's layout for details regarding the ratings of the products they are

considering. This model requires users to exert additional effort in order to

provide rating knowledge.

2. Implicit Feedback - This stage gathers consumer reviews immediately for

the products they are keen on. This is accomplished by keeping an eye on

various user actions, like browsing through past purchases, spending time on

certain websites, and clicking buttons during specific events. This model is

less accurate even though it doesn't require users to exert additional effort.

3

3. Hybrid Feedback - The benefits of both explicit and implicit feedback

models are combined in the hybrid feedback model. This is accomplished by

having a hidden verification on the user's explicit comments.

1.1.2 The Learning Stage

Appropriate algorithms are used in this stage to identify user features from the

information gathering phase's data.

1.1.3 Phase of Prediction and Recommendation

In the end, this stage anticipates the items the user might prefer and then suggests

them. Its output is forwarded to the information gathering stage as feedback.

1.2 Recommendation Techniques

Fig.1.2 describes the various techniques used in recommendation systems.

Fig.1.2: Various Techniques used in Recommendation Systems

1.2.1 Content-Based RS

This approach bases its recommendations on characteristics that have been taken

from the item's content that the user has previously accessed. For example, in an

online shopping site, suppose one likes t-shirts and denim, then the system will

capture the user preferences like style, material, color, and then recommends similar

items from new collections. It is suitable for recommending news articles and web

pages. It uses Term Frequency Inverse Document Frequency (tf-idf) statistical model

and Neural Networks, Decision Trees and the Naive Bayes Classifier as Probabilistic

Models.

4

Disadvantages of Content-Based Filtering:

● Recommendations for Limited Cross-Domain Use - Content-based solutions

usually work in only one sector or subject space, like music, movies, or

literature. Their capacity to deliver a variety of recommendations to users

with a wide range of interests is limited as they fail to recommend products

across multiple domains or content areas.

● Limited Content Analysis- This limitation results from the system's heavy

reliance on item metadata, including tags, descriptions, and other attributes.

In order for the recommendation system to function properly, the metadata

must be comprehensive, accurate, and reflect the qualities of the items.

1.2.2 Collaborative Filtering based RS (CFRS)

This method works by constructing a user-item matrix and then comparing users’

profiles with similar interests for recommending the items. The matrix contains

ratings of the items given by that user. Now, a user gets the recommendation of items

based on his interests as well as the based on the others users’ interests with the

similar profiles. For example, if a user is watching cricket on YouTube, he may get

recommendations for football as well. This is because another user watching cricket,

has interests for football as well. Fig.1.3 explains the user-item matrix. CFRS is of

two types - Memory based and Model based.

Fig.1.3: User-Item Matrix for Collaborative Filtering

5

a) Techniques based on Memory

There are two approaches to applying memory-based techniques: item-based

and user-based.

● Item-Based Collaborative Filtering - This model suggests products to

a user based on how well they match other products the user has

already used. Before recommending an item for an active user, it

considers the ratings of all items that are comparable to the one being

recommended. Compared to user-based collaborative filtering, this

approach is more scalable and reliable, but it may have trouble with

new or sparse items.

● User-Based Collaborative Filtering: In order to ascertain user

similarity, this model contrasts user ratings on the same item. The item

is then recommended for that user if a user with similar interests to the

active user purchases it.

b) Techniques based on Model

Based on an active user's past ratings of items, this model recommends an

item using a variety of machine learning or data mining algorithms.

Model-Based Recommendation Systems employ the following algorithms:

1) Association Rules

2) Decision Trees

3) Clustering

4) Artificial Neural Networks

Disadvantages of Collaborative Filtering:

● Cold-Start Issue: This issue arises when a user accesses the website for the

first time or when a new item is introduced. At that point, the database

contains no historical records from which to recommend items for that user.

● Sparsity Problem: This issue arises when a product receives extremely few

ratings from users. As a result, it might occasionally be challenging to suggest

6

that product to a user because it is impossible to identify consumer

similarities from the user-item matrix.

1.2.3 Hybrid Systems

This method leverages the advantages of both collaborative filtering and content

based recommendation techniques in order to enhance the efficiency of the system

and thus increase the performance. It is done as the combination of various models

will be more effective than individual models in recommending an item to a user.

This can be done by embedding some content based model into collaborative

filtering model or by embedding some collaborative filtering content into content

based model. These systems combine the predictions of an independent content result

and a collaborative recommender system through a voting scheme. The hybrid model

of RS is depicted in fig.1.4.

Fig.1.4: Hybrid model of recommendation Systems

1.3 Introduction to Deep Learning

With the growing technology in the field of data management and processing, Deep

Learning (DL) is an advancement to Machine Learning (ML). A prominent example

of DL is Deep Neural Networks (DNN). In DNN, there are a number of

interconnections in between the nodes giving rise to the multiple hidden layers in

between the input and the output layers. The different layers of DNN process the

input data, identifies the patterns hidden in the data and forward that information to

the subsequent layers for further processing. These Deep Neural Networks provide a

level of abstraction in identifying the various patterns in the dataset. Also, DNN

automatically does the task of feature extraction by themselves in comparison to

manual work in ML.

7

DL has attained good popularity and attention because of its nature to identify

various hidden patterns in the data. They are capable of handling intricate structures

of data like image, text, audio, video and learn complex patterns from this data. This

ability of DL to handle high dimensional data and learn hierarchical representation of

features makes it suitable to be applied in a number of fields such as healthcare [5],

computer vision [6], Natural Language Processing [7] and many more [8-10]. Some

of the applications where DL is widely used include classification, image processing,

object detection, sentiment analysis, medical diagnosis, machine translation.

1.4 Challenges in Recommendation Systems

Matrix Factorization (MF) was traditionally used in recommender systems. It

constructs a user-item interaction matrix which consists of ratings for the items given

by the users and then it discovers the latent factors from this ratings matrix and then

maps the items and the users against those factors. In order to uncover the hidden

patterns of users and items, this collaborative filtering technique splits the matrix

representing users and items into two reduced-rank matrices. This makes the

recommendations possible for users about their items of interest. A few MF

drawbacks are listed below, along with how DL fixes them.

● Limited Representation - MF fails to represent complex and non-linear

patterns in the data. It also fails to represent high-dimensional data in an

effective way to find out the hidden features from that data. On the other

hand, DL handles intricate data structures like video, audio, images, text and

thus it is able to represent high dimensional data.

● Cold-Start Problem - When a new user enters the system or a new item is

introduced, then MF fails to identify the similarity of that new user with the

other users or the latent features of the new item to predict its ratings. So, here

MF fails in answering the question, “what to recommend to a new user” or

“to whom to recommend a new item”. But, DL captures users’ demographics

and item attributes and learns about the preferences of the new user or the

similarities of the new item to other items.

● Feature Extraction - MF requires features to be extracted manually, which

8

leads to time consumption or wastage of resources, whereas, DL has the

ability to automatically extract the latent features from the data.

● Scalability and Efficiency - MF fails in dealing with large datasets, leading

to increased computational costs and much awaited training time, while, DL

has the ability to handle large volumes of data effectively and thus it is able to

make personalized recommendations to users.

1.5 Role of Deep Learning in Recommender Systems

There are plenty of abilities that make DL suitable for recommendation systems. Few

of them are described below:

● Feature Learning - DL has the ability to automatically extract the latent

features from the data. This makes it suitable to extract the latent features

from users’ profiles to identify the similarities among them. It also extracts

features for identifying patterns using item attributes.

● Personalization - DL has the ability to handle intricate data structures and

thus it is able to make personalized recommendations to users by looking at

their reviews, button clicks, likes/dislikes, ratings for an item.

● Temporal Dynamics - DL time-series models like RNN, LSTM have the

capability to capture users’ dynamic interests and their evolving temporal

preferences. Such models help in capturing the changing needs of the users

and make the recommendations accordingly.

1.6 Significance of the Research

In this section, we describe the significance of our research in context to

recommendation systems.

1.6.1 Motivation

● As the information on the Internet is increasing, users find it difficult to look

for the right information.

● Recommendation systems have emerged as the powerful tool to filter

information and present it in accordance with users' preferences and taste of

interests.

9

● With the advancements in deep learning techniques, RS have evolved to work

in a much more precise and accurate manner.

● This research is beneficial for society as RS not only saves time in helping the

users get their prescribed information, but increases the user engagement and

satisfaction with the system.

1.6.2 Sampling and Noise Filtering

In the era of online business, many e-commerce sites have evolved which

recommend items according to one’s needs and interests. Plenty of data is available

to be processed to make the recommender systems work effectively and efficiently.

But, processing the entire dataset is a cumbersome process. So, there is a need to

select a part of the data to be processed easily. Sampling is a way to select a subset of

the entire dataset which contains all the attributes that the database can represent. It is

important to understand which type of sampling method is suitable for a particular

application in recommender systems. Thus, there is a need to study various sampling

methods previously used in recommender systems. Also, before processing the data,

we need to clean it up as it contains a certain amount of noise. This noise is described

as malicious or natural or structural or contextual. Malicious noise is implicitly

inserted in the system to alter the behavior of the system. Natural noise enters the

systems unknowingly due to the reluctance of users in giving proper ratings to the

items. Structural noise arises due to the inconsistencies and irregularities in the

structure of data format. Contextual noise is due to the changing contexts of the users

like time, place, mood etc. So, there is a need to filter these types of noise before

making the data suitable for processing.

1.6.3 Evaluation Metrics

Implementing the appropriate model for your problem of recommendation is the first

challenging task. But, choosing the right metric to evaluate that recommender model

is another challenge. Sometimes, it may happen that selecting the wrong metric to

evaluate the model may give worse results even if the model is correctly

designed. So, it is important to know which metric is to be used while measuring the

performance of the system.

10

1.7 Research Gaps and Objectives

The following research gaps are identified:

● Most of the studies have not discussed about the sampling methods.

There is a need to explore some sampling methods used for

recommendation purposes.

● Most of the studies have done data preprocessing which makes the data

suitable to be processed for recommendation tasks. But, many studies

have not taken care of the noise entering the system. Thus, there is a

need to explore methods for noise filtration to improve the results.

● Most of the studies include methods to capture the semantics of the

words in a sentence. But, the context of the word is not taken care of. So,

a deep learning based approach can be explored to capture the context

along with the semantics of the words.

● Most of the studies have evaluated their work using Recall, Precision

and F1-Score to measure the accuracy of their systems. But very few

studies have taken care of linguistic related metrics. So, other accuracy

measurement metrics can be explored.

The research objectives are as follows:

1. To explore various sampling methods used in recommendation systems.

2. To critically analyze various noise filtering methods used for recommendation

systems.

3. To develop a suitable model using a deep learning approach to capture the

contextual relationships between words in a sentence for text based

recommender systems.

4. To explore various accuracy measurement metrics in recommendation

systems.

11

1.8 Organization of the Thesis

This section presents the thesis's structure, which is divided into the following

seven chapters:

Chapter 1: Introduction

This chapter introduces the recommendation systems, deep learning techniques,

challenges of RS, how DL overcomes these challenges, motivation leading to this

research, research gaps and objectives.

Chapter 2: Literature Review

This chapter presents a brief description of the existing work related to

recommendation systems.

This work has resulted in the publication of the following papers:

● Rajni Jindal, Kirti Jain, “A Review on Recommendation Systems Using Deep

Learning”, International Journal of Scientific & Technology Research, ISSN:

2277-8616, Vol. 8, Issue 10, 2019. (Scopus Indexed)

● Kirti Jain, Rajni Jindal, “A Survey on Hashtag Recommendations”, 27th

Conference of the Open Innovations Association FRUCT, Italy, ISSN:

2305-7254, 7-8 September, 2020, (pp. 323-327).

Chapter 3: Sampling and Noise Filtering Methods

This chapter explains the needs of sampling methods as well as various noise

filtering methods that are used for recommendation systems. This chapter includes a

comprehensive survey of the above mentioned two essential parts of RS.

This work has resulted in the publication of the following paper:

● Kirti Jain, Rajni Jindal, “Sampling and Noise Filtering Methods for

Recommender Systems: A Literature Review”, Engineering Applications of

Artificial Intelligence, Vol. 122C, 2023. (SCIE, Elsevier, IF: 8)

Chapter 4: NPO based Movie Recommendation Model

This chapter covers a detailed description of the proposed movie recommendation

model using negative sampling and Nuclear Physics Optimization (NPO) to remove

irrelevant tweets.

12

This work has resulted in the communication of the following paper:

● Kirti Jain, Rajni Jindal, “Optimization-based Noise Filtering Among

User-Centric Tweets to Improve Predictions in Recommendation System”,

Knowledge and Information Systems, (SCIE, Springer, IF: 2.5,

Communicated)

Chapter 5: Proposed model for Hashtag Recommendation

This chapter describes the proposed model for hashtag recommendation which is

based on the hybridization of BERT and LSTM.

This work has resulted in the publication of the following paper:

● Kirti Jain, Rajni Jindal, “NLP-enabled Recommendation of Hashtags for

Covid based Tweets using Hybrid BERT-LSTM Model”, Transactions on

Asian and Low-Resource Language Information Processing, 2024. (SCIE,

ACM, IF: 2)

Chapter 6: Evaluation Metrics

This chapter mainly describes the various evaluation metrics that are or can be used

for recommendation systems. It also introduces a novel metric named Semantic

Recommendation Score (SRS) to evaluate the language based models.

This work has resulted in the presentation of the following papers:

● Kirti Jain, Rajni Jindal, “A Walkthrough of Various Accuracy Measurement

Metrics for Recommendation Systems”, International Conference on

Emerging Technologies in Engineering and Science, India, ISSN: 1551-7616,

11-12 August, 2023.

● Kirti Jain, Rajni Jindal, “Bridging Gap Between Semantic Understanding and

Linguistic Quality in Recommender Systems: A Semantic Recommendation

Score (SRS) for Evaluation”, 4th International Conference on Computing and

Communication Networks (ICCCNet), United Kingdom, 17-18 October, 2024.

(Received Best paper Certificate)

13

Chapter 7: Conclusion

The research work's conclusion and future scope are presented in the final chapter.

The significance of our suggested models for different recommendation systems is

discussed in this chapter. It also draws attention to the social effects of

recommendation system research.

1.9 Contributions of the Thesis

The thesis contributions are as follows:

1. A comprehensive survey of various sampling methods as well as noise

filtering methods is done. This survey helps in understanding which type of

sampling method is suitable for a particular application in recommender

systems and how the data needs to be cleaned before processing.

2. After the critical analysis of sampling and noise filtering methods is done, a

movie recommendation system is proposed, which is based on training the

model with negative examples and removing the noise with Nuclear Physics

Optimization.

3. Covid-19 based tweets are sampled to capture the contextual relationships

between words in a sentence. These tweets are evaluated by a proposed model

named BELHASH for hashtag recommendations. This model works on

BERT-LSTM layers.

4. Choosing the appropriate evaluation metrics amongst the various existing

evaluation metrics is a challenging task and thus, it becomes important to

know which metric is to be used while measuring the performance of the

system. Therefore, a study of various evaluation metrics is made which are

used for Recommendation systems. We also introduce a novel metric named

Semantic Recommendation Score (SRS) to evaluate the language based

models.

14

CHAPTER 2

LITERATURE REVIEW

A review of the research on the recommendation systems is given in this chapter.

Key studies have been enumerated and summarized, and they are provided below in

two sections:

● The work on traditional recommender systems is covered in the first section.

● The different deep learning techniques applied to recommender systems are

covered and summarized in the second section.

2.1 Traditional Recommender Systems

By offering users tailored suggestions, recommendation systems are essential in

tackling the problem of information overload. Conventional recommendation

systems have been thoroughly researched and used in a wide range of industries,

including social media, content streaming platforms, e-commerce, and entertainment.

These systems are designed to help users find relevant content like movies, music,

products or articles by using their past interactions and preferences as a basis.

This literature review delves into the fundamental ideas, workings, uses cases,

advantages, and disadvantages of conventional recommendation techniques.

Understanding these systems' foundations will help us explore more sophisticated

methods, like deep learning, in the subsequent sections.

An overview of content-based recommendation systems and an exploration of the

fundamentals of content-based filtering and its use in recommendation systems can

be found in the study in [11]. It highlights how important it is to comprehend item

attributes and user preferences based on content features. Discussions of several

content-based recommendation system approaches, including feature extraction

methods, similarity metrics and user modeling strategies are included in this study.

It also includes text-based datasets like news articles, movie descriptions or product

attributes, and illustrates practical uses of content-based filtering. Two drawbacks of

15

content-based systems - Overspecialization and the cold-start issue, are also

discussed in this study.

Tagging is one of the effective tools that has emerged to help users locate, arrange,

and comprehend online entities. Similar to this, recommender systems let users

quickly browse through sizable item collections. The automation found in

recommenders as well as the adaptability and conceptual clarity found in tagging

systems may be provided by algorithms that combine tags and recommenders. The

paper [12] investigates tagommenders, recommender systems that forecast users'

inclinations for objects by utilizing their deduced tag preferences. It displays

algorithms for inferring tag preferences based on user interactions with tags and

movies. To predict the movie ratings of 995 MovieLens users, these algorithms are

tested using their inferred tag preferences.

In order to increase users' interests in specific news on Twitter, the authors of the

study [13] tackle the challenge of social media tagging to a news feed as a

Learning-To-rank problem. The hashtag relevance is illustrated using the L2R

Method. In this context, news reports function as queries and hashtags as documents.

The process of recommendation includes two stages: first, every story is linked to a

hashtag stream to generate potential tags through a pre-ranking step; next, L2R is

utilized to assess every possible tag's relevance and suggest particular hashtags. The

dataset is made up of seven organizations’ RSS news feeds: The Journal, RTE, Irish

Independent, Irish Times, Irish , Irish Examiner, BBC and Reuters. Additionally, this

study suggests a path for further research into how social media tagging affects

digital story Recognition and monitoring.

The authors of the research [14] present a learning-to-rank method called

Hashtagger+ for real-time social media tagging of Twitter newsfeed. Prior to creating

the Content-Tag Attribute Vector, key phrases are obtained from news reports and

potential hashtags are pulled from pertinent tweets. This attribute vector then

incorporates Hashtagger+ to suggest tags. In the future, this method can be used for

mining text as well as monitoring and analysis of stories of interest.

16

Hashtags on Twitter are suggested based on a combination of users' changing desires

and live content [15]. The User-Tweet LDA Model is used to discover users' evolving

goals. To find hidden topics—that is, topics that are currently being used with

Real-time Twitter feeds—another model called the Incremental Biterm Topic Model

(IBTM) is employed. The User-IBTM model performs social media tagging tasks by

utilizing these two models.

A content-based recommendation method emphasizing book recommendations based

on textual descriptions is presented in [16]. Their approach uses machine learning

techniques to analyze user preferences and book content through text categorization.

Their algorithm, LIBRA (Learning Intelligent Book Recommending Agent), creates

customized recommendations based on the interests of each user by utilizing features

that are taken from book descriptions. The authors conduct the experiments on a

dataset of book descriptions from Amazon.com to show the effectiveness of their

approach.

One crucial application in the field of information filtering is recommender systems.

The authors of [17] present a novel probabilistic factor analysis framework that

seamlessly integrates the preferences of trusted friends and users. They refer to the

formulation of the social trust constraints on the recommender systems in this

framework as the "Social Trust Ensemble". Factorization of the user-item matrix

involves learning user features through the application of matrix factorization. The

experiments are conducted on the Epinions dataset.

The volume of work involved in conventional collaborative filtering systems rises

with increasing user base. The authors of the work [18] looked into item-based

collaborative filtering strategies. Item-based methods begin by calculating item-item

similarities using the user-item relationship represented using a matrix to ascertain

the connections between different items. These relationships are then used to

compute recommendations for users in an indirect manner.

In order to model user preferences, recommender systems passively track various

forms of user behavior, such as past purchases, viewing habits, and browsing activity.

In the study [19], authors pinpoint the distinct characteristics of implicit feedback

17

datasets. They suggest interpreting the data as indicating both positive and negative

preferences with widely differing degrees of confidence. This results in a factor

model that is specifically designed for recommenders of implicit feedback.

Additionally, they also propose a scalable optimization process that increases linearly

in the size of the data. A television show recommender system effectively employs

this algorithm.

Another study [20] suggests a single probabilistic framework for combining

content-based and collaborative recommendation systems into a hybrid model. When

content and collaborative methods are combined with conventional Expectation

Maximization (EM) learning algorithms, global probabilistic models frequently cause

severe overfitting in the sparse data scenarios. However, the three-way relationship

data between items, users and product content is included in this study. This study

demonstrates that sparsity can frequently be overcome by using secondary content

information. Researchlndex, a library of computer science publications, is used for

the experiments. The results indicate that suitable mixture models with secondary

data yield much higher-quality recommendations than k-nearest neighbors (kNN).

Compared to local approaches like KNN, global probabilistic models enable more

general inferences.

2.2 Deep Learning Approaches for Recommender Systems

Deep Learning models have the ability to identify various hidden patterns in the data

and thus, they are capable of handling intricate structures of data like image, text,

audio, video and learn complex patterns from this data. This ability of DL to handle

high dimensional data and learn hierarchical representation of features makes it

suitable to be applied in the field of recommendation systems. DL models extract the

latent features from users’ profiles to identify the similarities among them. They also

extract features for identifying patterns using item attributes. They make personalized

recommendations to users by looking at their reviews, button clicks, likes/dislikes,

ratings for an item. They also capture users’ dynamic interests and their evolving

temporal preferences, thus making personalized recommendations.

18

The Deep Collaborative Filtering Model (DCFM) is an integrated model that

combines collaborative filtering models with Deep Learning (DL) algorithms. This is

done to fix issues with cold start and sparsity problems. One version of DCFM is

used in [21], where the sparsity issue of collaborative filtering (CF) is solved by

utilizing Bayesian Stacked Denoising Autoencoders to build a hierarchical Bayesian

model known as Collaborative Deep Learning. Three datasets—Netflix, CiteULike-t

and CiteULike-a—are used in the experiments. The findings demonstrate improved

performance after combining DL for information on content with CF for matrix of

ratings.

The difficulties with data sparsity and matrix decomposition (matrix factorization)

issues that arise with collaborative filtering are highlighted in another study [22]. By

integrating CF's matrix decomposition with the Marginalized Denoising Auto

Encoder (mDAE), it marginalizes the gap between CF and DL. It outperforms other

approaches in terms of response prediction and movie and book recommendations,

and it uncovers hidden variables for recommendations on videos from both side

information and user-item scores.

Recommendations on YouTube are generated by integrating CF and Neural Networks

[23]. This integration is used to predict how long users will watch a video according

to whether they clicked on it (positive) or not (negative). This method boosts the

efficiency and recent viewing activities by taking into account the characteristics of

time-sensitive attributes of those videos.

In another work [24], CF is paired with Semi-Supervised Learning (SSL) to address

the issue of information scarcity in recommending the Points of Interest (POI). POI

recommendation is also termed as "location-based recommendation" or "geospatial

recommendation. To evaluate user-POI interactions, a novel framework named,

Preference and Context Embedding (PACE) is developed. It integrates CF and SSL

and is based on neural networks. This work is tested with the Gowalla and Yelp

check-in datasets, yielding positive outcomes.

Two-Phase Regularization for matrix factorization utilizing deep neural networks is

presented in [25]. This involves accumulating CNN and gated RNN to create

19

complex neural networks. Here, textual information for item recommendations is

first extracted, and then MF is combined with deep neural networks to create a latent

image of items and users. 4 Datasets are used for the experiments - Amazon Instant

Video, Apps for Android, Kindle Store, and Yelp.

A content based recommendation algorithm is developed using CNN model for

recommending learning resources [26]. CNN is utilized to forecast grading scores

between students and learning resources based on text information in learning

resources. In this approach, Language Model is employed for its input to train CNN.

Latent Factor Model with L1 norm is employed for its output. The famous

Book-Crossing dataset is used for this purpose. The proposed algorithm is feasible in

recommending new and unpopular learning resources.

CNNs are also widely used in Social Networks. CNN incorporates a local attention

channel which encodes a few trigger words and represents embeddings of those

words; and a global channel which encodes all the words and represents embedding

of the entire microblog to perform hashtag recommendation tasks [27] in social

networks. The results reveal that the proposed method outperforms the other methods

which consider only local or global information.

Stackoverflow dataset is used for the study in [28], where word embedding is used to

represent user profiles and their posted questions. CNN is then used to recommend

experts based on their profiles to best respond to a question that was just posted in

Community Question Answering. The findings show that CNN outperforms this

experiment in comparison to other methods such as TF-IDF, LDA, Structural Topic

Model.

In another study [29], a variation of CNN, Deep Cooperative Neural Networks

(DeepCoNN), makes use of valuable information written in reviews of users and

reviews for items for recommendation systems. DeepCoNN consists of 2 parallel

neural networks. One of them is responsible for learning user behaviours by

analyzing reviews written by users and other is responsible for learning items by

analyzing reviews written for items. The experiments are conducted on 3 Datasets -

Yelp (Restaurant Reviews), Amazon (Product Reviews) and Beer (Beer Reviews).

20

On the Yelp and Beer datasets, the suggested algorithm DeepCoNN produced gains

of 8.5% and 7.6%, respectively. It exceeded all baselines on Amazon, improving by

an average of 8.7%. The suggested model achieves an overall 8.3% improvement

across the three datasets.

One variation of autoencoders is implemented in [30] where a model based on

autoencoders is proposed to reduce the sparsity problem of Collaborative Filtering

models. Here, Collaborative Filtering is converted to Supervised Learning. Its 5 main

steps are: matrices creation (ratings of users for items are specified), data

normalization (missing ratings of the matrix are filled with zeros), Autoencoder

Architecture selection (adjusting the user item matrix so that it gets fit within the

range of Autoencoders' activation function), generating supervised dataset (features

of user and items are mapped) and applying regressor (regressor model is trained

using the generated supervised learning data, for prediction purpose). Extraction,

mapping and prediction are 3 main parts of this approach. Singular Value

Decomposition (SVD) is used for the extraction part but it is unable to fetch the

features that are not linear. So, to resolve this issue, Stacked Denoising Autoencoder

is used. In the mapping phase, ratings of users for items are specified. In the

prediction phase, supervised Learning is applied for making a model to learn. This

approach also has a limitation - as the number of new users increases after a

threshold, the quality of the system degrades. So, to determine this threshold is still a

task of future work of this study.

A novel model Autorec is proposed in [31] which is based on an autoencoder

framework for video recommendation. The authors contend that AutoRec is superior

to the traditional approaches to CF in terms of representation and computational

efficiency. The experiments are conducted on 2 datasets - MovieLens and Netflix.

The proposed model outperforms the existing neural network model for

Collaborative Filtering.

The problem of Trustworthiness of CFRS is highlighted in the study [32]. Trust

Information of users is helpful for new users (cold start users) on social networks

(Epinions and Flixster). To overcome this issue, a model called Deep Learning based

21

Matrix Factorization (DLMF) is proposed which is used for trust-based

recommendations within social networks and surpasses the other cutting-edge

techniques on social networks recommendations.

Another work in the field of social networks is implemented in [33]. In this work,

autoencoders are used to tag users' profiles to extract deep features from them. In this

way, user recommendation performance is increased by updating users' profile by

this proposed method. This experiment is conducted on 2 website datasets - Last.fm

and Del.icio.us. The proposed algorithm outperforms CF in terms of precision, recall

and rank score.

One limitation of Collaborative Topic Regression is highlighted in [34] as the learned

representation of items may not be effective. So, to overcome this issue, Stacked

Denoising Autoencoder is used which is combined with Probabilistic Matrix

Factorization to further extend it to Relational Stacked Denoising Autoencoder for

improving the performance of tag recommendation. This work is implemented on 3

datasets: CiteULike-a, CiteULike-t and MovieLens.

Few existing video recommendation methods consider that users' interests are static.

The work proposed in [35] resolves this problem by considering dynamic users'

interests for videos. It uses RNN and considers three factors named: (1) Video

semantic embedding which represents videos according to their content information,

(2) User Interest modeling which represents users' choice of playing the video, (3)

User Relevance Mining which provides additional attributes for improving the

performance of recommendation. This work takes real time and dynamic interests of

users’ on Google+ website - cross network dataset.

Application of RNNs along with GRUs (GRU4REC) are widely used in

session-based recommendations. The combination of KNN with GRU4REC is

proposed in the work of [36]. In an anonymous session, KNN is used to evaluate how

well the next item is recommended. Two datasets are utilized in the work. First

dataset are the music playlists from the platforms - 8tracks.com, artofthemix.org and

last.fm. The second dataset is an open online shopping dataset from the TMall

22

competition. The results reveal that the combination of KNN with GRU4REC is

effective in improving recommendation.

Recommendations are also done on long session based data instead of short term

based sessions. The work proposed in [37] has used RNN combined with GRU for

item-to-item recommendation in long term based sessions. A ranking loss function,

mini-batch based output sampling and session-parallel mini-batches are added to

GRU to increase its performance. The 2 datasets used in the work are - RecSys

Challenge 2015 and YouTube like OTT video service platform. The proposed method

outperforms all the baselines used earlier.

Another work [38] proposes hashtag recommendation. This work includes four steps:

in the first step, skip-gram model generates word embeddings; the second and third

phases deploys CNN for composition of sentences and RNN for composition of

tweets respectively; and then finally in the fourth step, classification of hashtag is

done. Traditional methods like SVM or TF-IDF ignore semantic related information

in tweets aad thus making them inefficient. But the proposed model overcomes this

drawback and improves the efficiency of the tag recommendation model.

A more robust model is proposed in [39] to tackle the problem of cold start for items.

It involves the integration of Marginalized Denoising Auto Encoder (mDAE) along

with Multi-View Recurrent Neural Network (MV-RNN). This integration comes out

to be quite powerful in fetching the hidden patterns from textual data and images

related to the items. The authors take 3 characteristics into account: fusion by

reconstruction, fusion by addition and concatenation. The proposed model proves to

be a great one for handling the problem of cold start for items.

The study's authors [40] use text and image data from microblogs to suggest hashtags

on the Twitter dataset. They put forth a model of the co-attention mechanism that

uses both images and text. Features are extracted from images using VGGNet. Text

feature extraction is done via LSTM. A single-layer Softmax classifier is used to

recommend tags after both are combined using a co-attention mechanism.

23

The method suggested in [41] is effective for suggesting tags on the Chinese

microblogging platform "Sina Weibo." The microblogs are associated with news in

the form of brief messages, and their content is categorized according to the five Ws:

how, Where, When, What and Why. Following this, hashtags related to these five

features are recommended. This work is divided into four sections: filtering spam

from microblogs, dealing with common online terms and phrases, categorizing blogs

into phrases, and lastly, recommendations of tags associated with the above five

features. Authors link each word in a microblog to one of the five words, and then

they suggest hashtags.

Authors of the study [42] develop an approach using LSTM which incorporates

selective sentence-level attention for reducing noise. Additionally, it takes into

account time-related data when recommending hashtags in SINA Weibo microblogs.

After giving each sentence a weight, the noisy data is eliminated using selective

sentence-level attention. Next, a Softmax pooling layer is used to recommend

hashtags based on temporal information.

The study [43] proposes the Memory Augmented Co-attention model (MACON), for

the hashtag recommendation task. Here, it is advised to use both text and image

hashtags. Text and image features are learned using the LSTM, which is a

co-attention neural network. Additionally, a memory unit is used to learn from users'

tagging history. This is accomplished in two steps: firstly, a user-based random

sampling of past posts by users along with the hashtags associated with those posts is

performed; secondly, users' historical posts are used to learn about their tagging

habits, and the current post is connected to a new tag. In the future of this study,

user-based temporal sampling or community-based random sampling (which takes

into account the posts of users' friends) may be investigated.

The authors of the study [44] present DeepTagRec, a deep learning model that

leverages a heterogeneous network of user-tag relationships in addition to the

information contained in the body and title of StackOverflow's questions. This

information is represented using the Gated Recurrent Units (GRU) model. GRU

produces the encoding of this information into a sequence of words using word2vec.

24

In heterogeneous networks, the modeling of user-tag connections is captured by the

node2vec model. Tag prediction and recommendation are achieved by concatenating

word2vec and node2vec.

In a different study [45], Graph Convolutional Network (GCN) is used to recommend

personalized hashtags by analyzing the graph involving interactions among three

nodes: micro-videos, tags and the user. Additionally, it makes use of a mechanism

for attention to filter out unnecessary information that hashtags and users receive

from micro-videos. This model takes into account the users' tastes for publishing

content and their individual knowledge of hashtags. The publicly available

YFCC100M dataset and Instagram dataset are used for the experiments. Compared to

previous works that are mentioned in this study, one limitation of this work is that

there is no significant improvement in accuracy even after filtering out the noise.

The authors of the study [46] present a novel method for hashtag recommendation of

Vine micro-videos. They propose a model for senTiment enhanced multi-mOdal

Attentive hashtag recommendation (TOAST). It considers content features and

sentiment from three distinct multimodalities—text, audio, and video. For extracting

sentiment features, Multi-Layer Perceptrons (MLP) are utilized, while Bi-directional

LSTMs (Bi-LSTMs) are employed for extracting content features for every modality

(text, audio, and video). Then, hashtag recommendations are made using the

suggested model, TOAST. This work provides a path forward for sentiment hashtag

recommendations in text modality by integrating emojis.

In a different study [47], the authors recommend tags for Musical.ly micro-videos.

This recommendation is based on profiles of users and their past hashtags history.

The authors propose the model - User Guided Hierarchical Multi-Head Attention

Network (UHMAN), which integrates individual profiles and their past hashtags

history. This model is employed to pay attention to micro-video representations,

including customer profiles, at both the image and video levels.

A novel recommendation framework called Contextualized Graph Attention

Network (CGAT) is proposed in [48] for an entity in Knowledge Graph. It utilizes

an entity's graph context data, both local and non-local. To extract the local context

25

data, it makes advantage of network attention methods related to users.

Additionally, by extracting the entity's non-local context using the skewed

randomly generated sampling approach and an RNN, the relationship within an

entity and its distant contextual counterparts is modeled by CGAT. To record the

individual preferences of the user for certain items, a mechanism is drawn to focus

on item-specific attributes. This approach simulates the connection of a target item

with the related items retrieved from the user's previous actions.

When compared to other traditional products (such as literature, entertainment, and

groceries), travel-related products are typically visited due to the time and cost

involved. Also the decision for selecting the right travel product gets affected by the

arrival and departure times, location, and cost. Thus, to resolve the above

mentioned issues, [49] proposes a model, Multi View Graph Attention Network

(MV-GAN) for Travel Recommendation. To analyze the product and user

representations from all perspectives, attention networks are constructed at the

vertex and edge hierarchies.

The Point-of-Interest Recommendation System (POI-RS) seeks to uncover potential

venues that users may find appealing. Federated Learning (FL) is introduced into

POI-RS for privacy protection in numerous works. However, they are unable to

ensure recommendation performance due to limited data in POI-RS. Furthermore,

model training in FL is easily rendered ineffective by check-in geographic factors.

Therefore, the study [50] suggests a novel sequential information-based (FedSR)

framework for POI-RS in order to address the above mentioned issues. A multi-task

framework in the FedSR is constructed using Contrastive Learning and uses a data

augmentation method based on spatial relationships among POIs. For the

recommendation task, Bayesian Personalized Ranking (BPR) optimization is

applied.

Regarding the social endorsement task, which is challenging because of its

specifications for privacy protection, personalization and heterogeneity, the authors

of the study [51] design a federated learning recommender system. ‘Federated

Social recommendation with Graph Neural Network (FeSoG)’ is a novel model

26

proposed by them in order to achieve this goal. To address heterogeneity, FeSoG

first uses relational attention and aggregation. Second, in order to maintain

personalization, FeSoG uses local data to infer user embeddings. Finally, to

improve training and preserve privacy, the suggested model uses item sampling in

conjunction with pseudo-labeling techniques.

Location-based social networks (LBSNs), which are essential for proposing the next

Point-of-Interest (POI), have become widely popular as a result of the growth of

location-based services. For the next POI recommendation, the study [52] presents an

attention-based fusion framework and a modified node2Vec. Using a modified

node2vec algorithm, first the raw data is preprocessed to extract the pertinent

information before presenting the feature vectors for users and locations. The

attention-based framework is then applied to these feature vectors. These features are

then used to produce balanced and properly labeled datasets that are categorized

according to predetermined time intervals. These datasets are then used to train

different classifiers, which are then combined in a weighted way to create a better

recommendation system based on fusion.

Most of the studies referenced in this literature review have not discussed about the

sampling and noise filtering methods. So, we have done an exploration of various

sampling and noise filtration methods to improve the results in the next chapter. An

implementation is also done for movie recommendations using suitable sampling

method and an optimization method for noise filtering in chapter 4. Most of the

studies include methods to capture the semantics of the words in a sentence. But,

the context of the word is not taken care of. So, our deep learning based approach

for hashtag recommendation has taken care of this gap in chapter 5. Also, most of

the studies have evaluated their results using the commonly used evaluation metrics

such as Recall, Precision and F1-Score to measure the accuracy of their models.

Other accuracy measurement metrics are explored in chapter 6 so as to know which

metric is best applicable in which situation.

27

CHAPTER 3

SAMPLING AND NOISE FILTERING METHODS

Many e-commerce sites that make product recommendations based on user interests

and needs have emerged in the age of online commerce. There is an abundance of

data that can be analyzed to improve the effectiveness and efficiency of

recommender systems. However, processing the complete dataset takes a long time.

Thus, a portion of the data must be chosen in order for it to be processed quickly.

Sampling is a technique used to choose a portion of the dataset that includes every

attribute that the database is capable of storing. Knowing which kind of sampling

technique is best for a given recommender system application is crucial. As a result,

research into different sampling techniques previously applied to recommender

systems is necessary.

Additionally, since the data contains some noise, we must clean it up before

processing it. The system can be subtly programmed with malicious noise to change

its behaviour. Also, because users are reluctant to assign accurate ratings to the items,

natural noise inadvertently finds its way into the systems. Apart from malicious and

natural noise, there exists structural and contextual noise as well. Therefore, in order

to prepare the data for processing, these kinds of noise must be filtered out.

3.1 Introduction

It takes a lot of work to process all the data for recommendation systems. However,

handling a portion of it will simplify and ease matters. Sampling is a technique where

an analysis is carried out by selecting a subset of observations from a given set of all

the observations. Sampling in research is the process of taking a subset of relevant

data from the whole dataset. It gives us a way to run our experiments on a subset of

the data instead of the full dataset, as computing on larger datasets will needlessly

increase computational time and cost. Thus, a sample that is adequate for the

experiments to be carried out is taken from the dataset based on the requirements.

28

In this chapter, six sampling techniques have been examined: Gibbs sampling,

Thompson sampling, Bernoulli sampling, Negative sampling, Bayesian Hierarchical

sampling, and Bootstrap sampling.

When choosing a sample from a population, there may be some noise in the sample.

Thus, we must filter out noise from the gathered dataset. Therefore, research on noise

filtration techniques for recommendation systems is necessary. Recommender

Systems suggest related products to users as they peruse the products of their choice.

Certain investors or manufacturers would prefer that their goods receive higher user

ratings than those of other brands. Therefore, they might add fictitious profiles and

rate their own products, raising the product's rating. Additionally, the high ratings for

this product may fool a sincere customer. However, users have the ability to rate

items arbitrarily. This adds additional types of noise to the database.

O'Mahony [53] explains that noise is divided into two categories: malicious noise

and natural noise. The inconsistent ways in which users rate or comment on the

products they have bought or found appealing give rise to naturally occurring noise.

The noise that subtly introduces bias into the system is known as malicious noise.

Recommender systems are easily susceptible to malicious attacks because of their

open nature. A malicious noise is added with the intention of raising (Push attack) or

demonizing (Nuke attack) a particular product. This type of noise involves inserting

biased profiles into a database in order to change how recommender systems behave.

Thus, we provide an overview of the studies related to these noise.

Apart from these two types of noise, there exists structural and contextual noise as

well. Structural Noise refers to the inconsistencies and irregularities in the data

structure or format. Contextual Noise refers to the dynamic needs and behavior of the

user due to the change in the context like time, location and moods. In order to

handle these types of noise, advanced techniques such as optimization algorithms are

applied to the recommendation systems. Optimization improves the quality of the

recommendation systems. It focusses on refining the performance of RS by reducing

the impact of noise through mathematical and computational methods. Thus, we

provide an overview of a few studies that use optimization techniques to

29

reduce/eliminate the impact of noise while measuring the performance of the

recommender systems.

3.2 Sampling Methods

This section offers a review of studies that discuss different recommender system

sampling techniques.

3.2.1 Bayesian Hierarchical Sampling

Hierarchical Sampling is employed in observational situations when data is collected

at many spatial scales. It overcomes the limitations of clustering algorithms, such as

their inability to handle huge datasets and high sensitivity to noise. Hierarchical

Sampling is suitable for large datasets and is noise resistant [54].

Tourist destinations have been recommended using Hierarchical Sampling [55,56]. In

these implied works, user preferences for various demographic attributes are

obtained. These attributes are "Travel Season", "Travel Interest", and "Travel

Method". [55] employs Bayesian Personalized Ranking (BPR) to find the semantic

aspects of several images. Then, a novel model is created by combining BPR with

Hierarchical Sampling. The authors of [56] predicted user ratings using SVD++. The

combination of Hierarchical Sampling and SVD++ is then used to recommend

tourism attractions.

A further approach suggested in [57] states that the system uses knowledge from

other users to recommend products to a new user via a Bayesian Hierarchical

Sampling model. In this study, the weights are sampled at random for each user, and

the ratings are sampled at random for each item using the Normal distribution. The

experiments are carried out on datasets from MovieLens, Netflix and Reuters.

30

3.2.2 Negative Sampling

It is critical to train the model with both positive and negative examples in user-item

recommendation systems [58]. Positive examples can be easily gathered through the

user's interaction with the products. Negative examples are products that the user

does not interact with. As a result, the method of gathering negative examples is

known as negative sampling.

[59] shows that negative sampling was important in recommending social friends and

foes using the Social Pairwise Deep Learning model's social ranking method. The

authors of this work use negative sampling in the back propagation step to optimize

the loss function for selecting unobserved items (negative examples) of users' trust

and distrust. [60] proposes yet another work on user-item representations using

negative sampling. It proposes a contrastive learning module based on GNN to learn

user item representations in a self-supervised manner.

Recent research has also used negative sampling in recommender systems [61-65].

The authors of [61] propose a novel Contrastive Cross-Domain Recommendation

(CCDR) model that improves traditional Cross-Domain Recommendation (CDR)

systems. CDR has a data sparseness limitation in the candidate generation phase,

which is overcome by CCDR. With the help of negative sampling, this paper also

introduces both intra and inter domain contrastive learning.

A new model for a heterogeneous multi-domain recommendation system is proposed

in another study[62]. The model in this work uses negative sampling to retrieve

heterogeneous data from multiple recommender system source domains. The authors

of [63] apply two-tower frameworks based on neural networks using a variation of

negative sampling known as Mixed Negative Sampling (MNS). MNS leverages item

recommendation systems by using batch and uniform negative samples. The results

show that MNS outperforms the other baseline models.

Conversational recommender systems also use negative sampling [64]. In this work,

the pre-training step combines both item-based (historical data) and attribute-based

31

(conversational data) preference sequences. The negative sampler, which generates

high quality negative samples, later improves learning performance.

Another method [65] employs Matrix Factorization (MF) in collaborative filtering

recommender systems to represent latent user and item features in a shared feature

space. Neural Embedding Collaborative Filtering is a model that combines MF and

neural embedding. Auto-encoders are used in this model to generate embedding

vectors. Negative sampling is used to represent latent features in a regression model

that is combined with these vectors. The inner product is then applied to user-item

latent features to define their correlations. This model is tested on MovieLens and

Pinterest datasets, and the results show that the system is quite accurate.

3.2.3 Thompson Sampling

Thompson sampling is used to solve the Multi-Armed Bandit (MAB) problem.

According to the MAB problem [66], if there are N machines and the user has to find

the machine with the best reward, how would the user do that? Although there are a

number of algorithms [67] to solve the MAB problem, such as the Epsilon Greedy

Approach, Boltzmann Exploration, Pursuit Algorithms, and Upper Confidence

Bounds, Thompson Sampling outperforms the others [68]. Posterior sampling is

another name for Thompson sampling. It is a Bayesian algorithm that is randomized.

It is used to select the model based on the likelihood of it receiving the best rewards

[69].

Occasionally, recommender systems are incapable of capturing users' dynamic

contexts. As a result, the authors of [70] devise a novel interactive recommendation

system capable of capturing and presenting users' dynamic behavioral context.

Thompson sampling is used in this case, and rewards (feedback) are collected after

each interaction of the user with the system. These rewards are used as an input to

determine the user's next preferred model.

Although recommender systems use Click Through Rate (CTR), they still suffer

from CTR underestimation due to changing item ratings [71]. As a result, bandit

solutions are used to solve this problem. Thompson Sampling is used in this work,

32

which results in greater accuracy. Conversational recommender systems use bandit

solutions such as Thompson Sampling to interact with users via natural language

[72]. Such systems ask users whether they like or dislike a particular item. As a

result, the systems are highly responsive and dynamic.

Recommender systems also employ Thompson Sampling to ascertain the impact of

offline parameters on online performance. The results show that the influence of

offline parameters on online performance diminishes with time [73]. Position Based

Metropolis-Hastings Bandit (PB-MHB), a unique bandit-based solution that makes

use of the Thompson Sampling framework, is proposed in another work [74]. This

framework is used to present different items on a web page at appropriate places. The

outcomes demonstrate that this approach enhances recommendation performance.

3.2.4 Bernoulli Distribution Sampling

One particular type of poisson sampling is called Bernoulli sampling. In Poisson

Sampling, the odds of selecting each item can vary, but every item in Bernoulli

Sampling has an equal chance of being chosen. Bernoulli distribution sampling has

been used in the study of several recommendation systems. Genre information [75],

which employs Bernoulli distribution sampling and takes into consideration three

important properties: genre coverage, genre redundancy, and size awareness,

increases the diversity of recommendation systems.

Enhancing the ranking of recommendation systems is another use for the Bernoulli

distribution [76]. This work proposes a Deep Generative Ranking (DGR) for this

purpose. Using the Bernoulli distribution, DGR generates feedback and produces a

ranking list for each user’s interacted and non-interacted items. A different study [77]

looks at how dynamically people interact with recommendation systems. In order to

address the heterogeneous user preferences that emerge during user interaction with

the recommendation systems, this work also employs the Bernoulli distribution.

A novel method called Bernoulli Matrix factorization was presented in [78] to give

recommender systems prediction and reliability. It has a number of advantages over

the other methods currently in use, including the fact that it is based on classification

33

rather than regression models and does not rely on outside sources for reliability. The

MovieLens, FilmTrust, and MyAnimeList datasets are used to evaluate it, and the

findings show that it provides improved reliability.

Bernoulli sampling is also used in [79], where memory-intensive embedding

representations in recommender systems are replaced with mixed dimension

embeddings to save space and memory. This mixed dimension embedding shortens

the training period while increasing efficiency. Bernoulli Distribution sampling also

promotes long-term user engagement with recommender systems [80]. This method

carefully monitors user clicks (both current and future clicks) and return behaviors

for the optimization purpose. Experiments on Yahoo News demonstrate the

effectiveness of the suggested strategy.

3.2.5 Gibbs Sampling

One variation of the Bayesian sampling method is Gibbs Sampling. Recommendation

engines play a significant role in e-commerce by offering products based on user

preferences. However, they have issues with cold start and sparsity. In [81], a novel

approach is proposed to circumvent such issues by combining social relations with

user-rated items. The user and item feature vectors are sampled using Gibbs

Sampling in this method. When compared to other baseline models, the results show

that this fusion produces recommendation results that are more accurate.

Another method, the Bernoulli Restricted Boltzmann Machine (BRBM) [82], creates

Joke-Reader Segmentation based on the preference patterns and recommends jokes

using Gibbs sampling. BRBM has 100 visible nodes and 20 hidden nodes in this

method. Gibbs sampling determines the values of hidden nodes in the first step,

resulting in a vector size of 20. The values of the visible nodes are computed using

Gibbs sampling in the second step, resulting in a vector size of 100. This procedure,

known as 20-step Contrastive Divergence, is carried out 20 times.

34

Gibbs sampling is also suitable for handling streaming data and big data in real-world

recommender systems [83]. The authors of this study propose a novel approach,

Online Bayesian Inference for Collaborative Topic Regression. In order to handle

flowing information and large amounts of data in practical recommender systems,

this method applies Gibbs sampling.

3.2.6 Bootstrap Sampling

Another sampling technique known as bootstrap sampling, allows for the selection of

an object once and again in the future. This method has become increasingly

important in deep learning recently. Medical recommendation system [84] that uses

Fourier Transformations to predict heart diseases is one area in which bootstrap

sampling is applied. In this case, numerous training datasets are created via bootstrap

sampling, and the necessary prediction is then achieved by applying three

algorithms—Support Vector Machines, Artificial Neural Networks and Naive

Bayes—to these generated datasets.

Decision Trees are used by more medical recommendation systems based on Chronic

Disease Diagnosis [85,86] to estimate the disease's risk and make recommendations

correspondingly. Decision Trees combine to create a Random Forest, and each node's

features are chosen using Bootstrap Sampling. One can generate an unbiased

estimate of the classification error by utilizing Bootstrap sampling. The medical

records of historical patients from the Middle East are used to evaluate this work.

Web-based Bootstrap Recommendation systems can function more efficiently when

sampling is used [87]. Personalized recommendation systems can occasionally

malfunction due to intermittent changes in user and item repositories as well as a

cold-start issue. The results of this study's experiments on online advertising and

news recommendation show that employing a bandit strategy boosts the effectiveness

of recommender systems.

Bootstrap Sampling is also utilized by ensemble techniques [88,89]. In the proposed

work [88], online bagging—an ensemble technique—is used to give the

recommender systems a dynamic and responsive quality. Recommender systems

35

must be quick enough to suggest items based on the dynamic nature of users since

large amounts of data are available. In order to train the model for this purpose,

bootstrap samples are used in an online bagging method.

An additional work that uses an ensemble approach and is based on ordered item

sequences was suggested in [89]. Using this method, one can create ordered

sequences of novelty and popular items by comparing the rating patterns of attackers

and authentic profiles. After that, each user's item rating series is created. This

method makes use of bootstrap sampling techniques to create training sets. This

training set is used to train the decision tree so that it can eventually identify the

phony profiles.

3.2.7 Comparison of all Sampling Methods

Table 3.1 shows strengths and limitations of the above discussed sampling

techniques.

Table 3.1: Strengths and Limitations of the above discussed Sampling Techniques.

Sampling

Methods

Strengths Limitations

Bayesian

Hierarchical

Sampling

It models complex

dependencies between users

and items.

It takes time to converge and thus

makes inaccurate or unreliable

recommendations.

Negative

Sampling

It helps to reduce noise by

separating positive (relevant)

and negative (irrelevant)

examples and thus makes

accurate recommendations.

It is less effective for infrequent

words or sparse datasets.

36

Thompson

Sampling

Balances exploration (trying

out new items) exploitation

(recommending known items)

trade off.

It is computationally expensive in

comparison to other simpler

heuristic-based approaches.

Bernoulli

Distribution

sampling

It is used where feedback is

binary like whether the user

liked / clicked / purchased a

recommended item or not.

Difficult to manage exploration -

exploitation tradeoff.

Gibbs

Sampling

For sufficient iterations, it

converges to the true posterior

distribution of the model

parameters and thus makes

accurate recommendations.

It is hard to work with Gibbs

Sampling when variables have

strong dependencies among them,

as it takes a long convergence

time when the data is huge.

Bootstrap

Sampling

It is simpler in function and

predicts accurate results.

It is ineffective for small datasets.

3.3 Noise Filtering Methods

Noise is mainly classified as Natural, Malicious, Structural and Contextual [53, 156,

157]. Natural Noise arises because of unintentional wrong ratings of the users for the

rated products, whereas malicious noise is an intentional attempt to make the

recommender system biased by inserting false user profiles to biased ratings for

specific products. Structural Noise refers to the inconsistencies and irregularities in

the data structure or format. Contextual Noise refers to the dynamic needs and

behavior of the user due to the change in the context like time, location and moods.

Fig.3.1 shows the different methods handling different noises. We provide a brief

survey of various noise filtering methods on recommendation systems in the below

sections.

37

Fig.3.1: Different methods handling different noises

3.4 Malicious Noise

Several methods have been developed to identify malicious noise / shilling attacks.

We have reviewed some studies on supervised [89-99], semi-supervised [100-104],

and unsupervised [105-115] methods for identifying this kind of noise. While

unsupervised approaches involve different kinds of clustering, supervised approaches

primarily involve different kinds of classification, and semi-supervised approaches

combine elements of both supervised and unsupervised methods.

3.4.1 Supervised Methods

Because recommender systems are open, they are susceptible to attack / malicious

noise. In order to identify and eliminate this noise, recommender system research is

done. Burke et al. [90] provide one such study in which a number of attributes that

can be obtained from the user profile are examined. This study demonstrates that

classification techniques can be considered superior to other generalized detection

models when used with attributes collected from the profiles of attackers. According

to [91], user influence is an additional component. Instead of using proven attack

38

detection techniques to the entire user population, their approach focuses on

influential people. This study also demonstrates the connection between the attacker

and the user's susceptibility to persuasion.

A number of criteria were put forth by Chirita et al. [92] to assess rating patterns and

identify malicious noise. The authors forecast the likelihood that a user will be an

attacker based on the following metrics:

1. The standard deviation of a user's rating - It is the variation between the user's

rating and his average rating for a specific item.

2. Degree of Agreement with Other Users - It is defined as the departure of a

user's ratings from the average ratings of each item.

3. Average Similarity - The degree of similarity between a user's ratings and the

top K nearest neighbors is the average similarity.

4. Number of Prediction Differences - It is defined as the number of prediction

changes of the system for each user if the user is removed from the system.

5. Rating Deviation from Mean Agreement (RDMA) - This metric measures

how users agree or disagree with a collection of target items and the inverse

rating frequency of those items.

The primary goal of a different suggested technique [93] is to enhance the

identification of Average over Popular Items (AoP) attacks. This method extracts the

AoP attack features using the Term Frequency Inverse Document Frequency

(TF-IDF). Subsequently, the SVM model is trained on the training set to produce

SVM-based classifiers. This classifier is used to identify AoP attacks.

Another supervised method that makes use of the Random Forest Classifier to

identify malicious noise is suggested in [94]. There are three stages to this work.

Attribute extraction is covered in the first stage. Training and test datasets are used to

create a classifier in the second stage. Using the classifier created in the second stage,

the final detection of bogus profiles is carried out in the third stage. The MovieLens

dataset is used to assess this method.

Three classification techniques—k nearest neighbor (kNN), C4.5, and SVM—are

used in another supervised approach [95] to find the malicious noise. With this

39

method, the qualities that characterize fraudulent profiles are identified. The SVM

classifier performs best with this model. Moreover, the MovieLens dataset is used for

the experimentation purpose.

In another work [96], user-user and user-item interactions are used to extract features

from phony profiles even if the attacker modifies their attack strategy. This method

considers label information in addition to user-user and user-item interactions. The

Bayesian model, which is added for feature learning, uses the label information to

provide user implicit features. The Amazon and MovieLens datasets are used to test

this model.

HHT-SVM, a technique for detecting online malicious attacks, is presented in [97]. It

solves the issue of profile injection attack detection in batch mode, which calls for

processing the complete ratings database. It combines the Support Vector Machine

(SVM) with the Hilbert-Huang Transform (HHT). Initially, this model generates the

ratings series for each rated item for a specific user. Then, features based on the

Hilbert spectrum are extracted for malicious profiles using Empirical Mode

Decomposition (EMD). Then, using the features that were extracted, SVM is used to

identify profile injection attacks. The system performs well, according to the

evaluation on the MovieLens dataset.

The issue of class imbalance in attack detection algorithms occasionally affects SVM

[98]. Therefore, in order to address the issue of class unbalance in imbalance

datasets, a method called SVM-TIA (Target-Item Analysis), utilizes a novel

over-sampling technique called borderline-SMOTE. The suggested method takes the

rating matrix and pulls out the attributes. The procedure is then split into two stages.

Using the attributes, the classifier created by the Borderline-SMOTE in the first

phase finds suspicious profiles. Subsequently, in the next stage, the suspicious

profiles employ the rating matrix to scrutinize the target items, and ultimately, the

outcomes are identified. A higher precision rate is found when using this method on

the MovieLens dataset.

In [99], an additional supervised method for collaborative filtering recommender

systems is put forth. On the basis of the attack model, classification models which are

40

used in feature extraction, extracts eighteen features from user profiles. Re-scale

boosting algorithms (RBoosting) and AdaBoost are the strategies employed here. For

the purpose of identifying malicious profiles, this work employs RAdaBoost, a

re-scaled version of AdaBoost. The MovieLens dataset is used for experiments, and

the results show that AdaBoost enhances system performance when compared to

more conventional classification models like SVM, kNN, and others.

In [89], a novel ensemble approach (EMDSA-OIS) is proposed to detect malicious

noise based on ordered item sequences. This method examines the attackers' and real

profiles' rating patterns. The authors of this work are able to understand the

difference through which ordered item sequences are generated. After that, each

user's item rating series is created. Additionally, this method suggests six

characteristics to describe the attackers. The rating series of the items is first used to

extract two features, from which mutual information is combined to extract the

remaining four features. This method makes use of bootstrap sampling techniques to

create training sets. This training set is used to train the decision tree so that it can

eventually identify the phony profiles.

All of the supervised techniques covered above are compiled in Table 3.2, which also

displays the various datasets used to test the noise filtering techniques and the

evaluation metrics.

Table 3.2: Summary of all the discussed supervised approaches

S.No Publications
Noise filtering

methods
Datasets

Accuracy measurement

tools

1. [90]
Classification

Methods
MovieLens Precision, Recall

2. [91] KNN MovieLens Precision, Recall

3. [92]

Metrics for

detecting rating

patterns

MovieLens
Rating Deviation from Mean

Agreement (RDMA)

41

4. [93] SVM MovieLens Precision, Recall

5. [94]
Random Forest

Classifier
MovieLens Precision, Recall

6. [95]
kNN, C4.5 and

SVM
MovieLens Mean Absolute Error (MAE)

7. [96] Bayesian model
Amazon &

MovieLens

Precision, Recall,

F1-measure

8. [97] HHT-SVM MovieLens
Specificity, Sensitivity, and

Precision

9. [98] SVM-TIA MovieLens Precision, Recall

10. [99] RAdaBoost MovieLens

Classification Error,

Detection Rate, False Alarm

Rate

11. [89] Decision tree MovieLens
Precision, Recall,

F1-measure

3.4.2 Semi-supervised Methods

Semi-supervised methods have the benefit of utilizing unlabeled data found in

recommender systems. Semi-supervised Shilling Attack Detection, or Semi-SAD, is

one such semi-supervised method that is used in [100]. This method uses labeled as

well as unlabelled user profiles. It utilizes an augmented Expectation Maximization,

or EM-λ, on unlabeled profiles after training the Naive Bayes classifier model on

labeled profiles. The trained model performs better with this method. It is tested

using the MovieLens dataset and contrasted with both supervised and unsupervised

models. The findings show that compared to supervised and unsupervised models,

this semi-supervised method is more effective at identifying shilling attacks.

42

Zhang et al.'s [101] group detection approach is based on Semi-Supervised Learning

using Spammer Group Detection (Semi-SGD). This method utilizes data that has not

been labeled. This method uses the Expected Maximization (EM) algorithm to

incorporate unlabeled data after the Naive Bayes classifier has been trained on

labeled data. This methodology enhances spammer group detection techniques and is

assessed using datasets from Amazon.cn.

Another study [102] utilizes unlabeled data to increase recommender system attack

detection precision rate. A variation of the Co-Forest algorithm (introduced in [103])

is proposed, called Semi-Supervised Attack Detection in Recommendation based on

Co-Forest Algorithm (SSADR-CoF). Rather than using a small number of features to

train a single classifier, this model trains multiple classifiers using a series of

features. Two models for rating behavior and window splitting, are used to extract

these features related to user rating behavior. First, a set of classifiers is trained with

labeled user profiles using these extracted features. After that, unlabeled user profiles

are labeled using these classifiers. Subsequently, the classifiers are updated to

increase accuracy using the user profiles that have already been labeled and those

that have not.

Gaussian Mixture Model (GMM) and Modified Support Vector Machine (MSVM)

are used in another semi-supervised study that was presented in [104]. This lowers

the dimensionality of the data and identifies the malicious noise on the MovieLens

dataset. There are two stages to this proposed project. First, the rating matrix is used

to analyze both real and fake user profiles. Next, attributes are extracted. After

analyzing these attributes, MSVM generates a Classifier Generation to identify

potentially suspicious profiles. In order to identify the last group of phony profiles,

the suspicious profile set is examined using GMM in the second phase.

All of the semi-supervised techniques covered above are compiled in Table 3.3. It

also includes the evaluation metrics and various datasets used to test the noise

filtering techniques that each paper has identified above.

43

Table 3.3: Summary of all the discussed semi-supervised approaches

S.No Publications
Noise filtering

methods
Datasets

Accuracy measurement

tools

1. [100] Semi-SAD MovieLens Specificity, Sensitivity

2. [101] Semi-SGD Amazon
Precision, Recall and

F1-Measure

3. [102] SSADR-CoF
Amazon &

MovieLens

Precision, Recall, AUC

(Area Under ROC Curve)

4. [104]

Modified SVM,

Gaussian Mixture

Model (GMM)

MovieLens Precision, Recall

3.4.3 Unsupervised Methods

Utilizing an unsupervised method using the Hidden Markov Model (HMM) and

Hierarchical Clustering is one way to identify malicious users for shilling attacks

[105]. This method uses HMM to calculate the degree of suspicion after analyzing

each user's rating behaviors. After that, users are grouped according to their

suspicions using hierarchical clustering, which helps to identify the malicious users.

Experiments conducted on the MovieLens and Netflix datasets demonstrate a

significant improvement in the accuracy measure.

In [106], an additional unsupervised method is suggested that makes use of the

co-clustering with propensity similarity model (CCPS). In order to identify shilling

attacks, CCPS is a soft co-clustering technique that uses a user propensity similarity

method. This method is experimented on the MovieLens and Jester datasets.

Item Relationship Mining - Target Item Analysis (IRM-TIA) [107], an alternative

method, focuses on detection issues in real-world unlabeled datasets. There are three

44

phases to this work, which is based on target items and the item relationships matrix.

Features are taken out of the item relationship matrix in the first stage. Then, using

the features that were extracted in the first step, a group of suspicious users is created

in the second phase. Subsequently, the third stage involves pinpointing the target

items through an analysis of the actions of dubious users in relation to these items,

and lastly, identifying the attackers from this dubious group. The MovieLens and

Amazon reviews datasets are used for experiments, and the findings demonstrate the

success of this strategy at identifying the attackers.

Malicious attack outliers are also found in the study [108]. The authors of this study

employ a categorization method that specifies the characteristics to ascertain if a user

is authentic or fraudulent. After that, they cluster the dataset into authorized and

unauthorized users using the k-means clustering algorithm to find outliers. Push and

nuke attacks were also used by the authors to assess their work on the Epinions

dataset. The outcomes demonstrate the high accuracy of their work.

An unsupervised three-stage method is proposed by the authors of [109] to identify

abnormal ratings in collaborative filtering recommender systems. Using user profiles

as a guide, an undirected user-user graph is first constructed. Graph mining

techniques are used in the second stage to find user similarities in order to optimize

the graph. In order to distinguish a portion of real users from suspicious ones, an

analogous analysis is also performed on the optimized graph. In order to identify the

phony profiles, the remaining real users are then further weeded out in the third stage

by examining target items. The MovieLens dataset is used for experiments, and the

findings demonstrate the effectiveness of this strategy in comparison to other

approaches discussed in this paper.

Another unsupervised method [110] uses special ratings, user activity and item

popularity to eliminate ratings that are too sparse. To find the attackers, Target Item

Analysis is then coupled with clustering on the remaining ratings. In [111], an

alternative method for identifying outliers in e-commerce recommender systems is

put forth. To find outliers, it employs two methods: the Clustering-based Partition

Around Median (PAM) algorithm and K-Nearest Neighbors. The MovieLens dataset

45

is taken into account when assessing this work. Based on the findings, kNN provides

significantly more accurate results than the PAM method.

In [112], one method for group recommendations is presented. A group of items is

the focus of group recommendation as opposed to a single item. This strategy

suggests using an unsupervised detection technique called De-TIA (Target Item

Analysis) to find unusual profiles in group recommendations. It makes use of the

Degree of Similarity (DegSim) metric, which calculates how dissimilar normal and

aberrant profiles are from one another. The MovieLens, Netflix, and Eachmovie

datasets are used to assess this method. The outcomes demonstrate the effectiveness

of this work in enhancing the detection procedure.

Hurried Attacks are a new kind of shilling attacks. In these attacks, phony user

profiles are quickly created in order to assign random ratings to the products.

According to C. Panagiotakis et al. [113], the Hurried Attack's outliers are

eliminated. The user-item rating matrix and user similarity serve as the foundation

for this suggested system. There are three steps to this method. Initially, sparse

entries—that is, users who rate relatively few items and items rated by relatively few

users—are eliminated. Four characteristics are taken into account in the second step

to distinguish the profiles of abnormal and real users. The user-item rating matrix and

synthetic coordinates of the Social Collaborative Recommendation system (SCoR),

(introduced in [114]), are used to compute these attributes. The K-means clustering

algorithm, an unsupervised method, is then used in the third step to find the

malicious profiles. The MovieLens dataset, which is used in this work, demonstrates

the high performance that the suggested method provides.

A new feature called Randomness in Item Selection (RIS) is introduced in another

approach [115], to identify malicious users and abnormal profiles. This approach

suggests three approaches. The first approach calculates the likelihood that a user is

malevolent using an unsupervised method. The second strategy also uses an

unsupervised K-means clustering algorithm to select malicious profiles on its own.

The third approach—a supervised technique based on random forest—is suggested

46

on the labeled dataset. Experiments are conducted using the MovieLens and Netflix

datasets, demonstrating the excellent performance of the suggested techniques.

Table 3.4 provides an overview of all the unsupervised techniques covered above. It

displays the various datasets that are used to test the noise filtering techniques and

the evaluation metrics.

Table 3.4: Summary of all the discussed unsupervised approaches

S.No Publications
Noise filtering

methods
Datasets

Accuracy

measurement tools

1. [105]
HMM, Hierarchical

clustering

MovieLens &

Netflix Datasets

Precision, Recall,

F1-measure

2. [106] Soft co-clustering
MovieLens & Jester

Datasets

Mean Absolute

Error (MAE)

3. [107]
Item relationship and

target item(s) -TIA

MovieLens &

Amazon Review

Datasets

Precision, Recall

4. [108]
Classification +

k-means Clustering
Epinions Dataset Precision, Recall

5. [109] Graph mining MovieLens
Detection Rate,

False Alarm Rate

6. [110] TIA-clustering

MovieLens,

Amazon &

TripAdvisor

Datasets

Accuracy,

Normalized Mutual

Information (NMI),

Purity, Detection

Rate and False

Alarm Rate

7. [111]
kNN and Clustering

based PAM
MovieLens Accuracy

47

8. [112] De-TIA

MovieLens, Netflix

& Eachmovie

Datasets

Detection Rate,

False Positive Rate

9. [113]

Unlabeled Data -

K-Means clustering,

Labeled Data -

Random Forest

Classifier

MovieLens
Precision, Recall,

F1-measure

10. [115]

Unlabeled Data -

K-Means clustering,

Labeled Data -

Random Forest

Classifier

MovieLens &

Netflix Datasets

Precision, Recall,

Specificity

3.5 Natural Noise

Users unintentionally giving their items incorrect or false ratings causes natural noise

to appear in the database. This occurs as a result of users clicking without reading the

appropriate feedback questions because they are unwilling to spend the time

providing feedback. Since it is not entered with the intention of skewing the system,

it differs from malicious noise. The noise that enters the system is an inadvertent act.

To deal with the natural noise, various strategies have been put forth. A review of

studies deploying various strategies on noise management has been done in

subsequent sections.

3.5.1 Crisp Management

A review of the literature on the papers pertaining to Crisp Management Techniques

is given in this section.

48

3.5.1.1 Re-Rating & Ranking

The idea that using user ratings as ground truth to predict unknown ratings of items is

strongly rejected by Amatriain et al. [116]. The authors claim that users may be

inconsistent in their ratings and comments. In order to quantify the noise in user

ratings that could be the result of inconsistencies, they present a study on a dataset of

movie reviews. They examine the ratings that users have left for various items over

the course of one to fifteen days. The findings indicate that users' ratings are

inconsistent because their personal preferences fluctuate over time.

Re-rating is another method for reducing natural noise in recommendation databases

[117]. Re-rating is a technique that asks users to rate their previously rated items

(items that they either liked or bought) one more time. Optimal ratings are chosen to

be re-rated because it is not feasible to force every user to re-rate every item. This

greatly increases the accuracy of the recommendations.

A different strategy [118] uses interactive recommender systems, letting users adjust

their own ratings to enhance MovieLens and Netflix Datasets' functionality. A new

rating is predicted by O'Mahony et al. [53] for every user-item pair. To identify noisy

ratings, this rating is contrasted with ratings that were previously collected from the

user through feedback. This method uses a set of real user profiles along with a

memory-based collaborative filtering technique to detect noise.

To enhance recommendation performance, the study [119] suggests a model called

Dual Training Error based Correction approach (DTEC). Its foundation lies in fixing

users' and training set items' mistakes. It is applied to the test set once the error has

been reduced to zero. The outcomes demonstrate that the recommendations were

more accurate.

A different study, referenced in [120], creates a unique model known as

RCFS-CARS. This refers to the Context-Aware Recommender System (CARS) with

Noise Detection and Correction (NDC) with Relaxed Context Feature Sets (RCFS).

The user ratings provided for every item are used to identify noise. Any discrepancy

49

between the user, the item, and the rating value is identified as noise in the rating.

The RCFS-CARS technique is then used to correct for the noise.

Noisy ratings are a problem for collaborative filtering recommender systems (CFRS)

based on Matrix Approximation (MA). In [121], a method known as Noise Resilient

Matrix Approximation (NORMA), is proposed as an adaptive weighting strategy to

address the issue of noisy ratings. By reducing the number of noisy rating learning

steps, this technique improves the performance of the MA-based CFRS.

Each of the aforementioned strategies focuses on specific recommendations. Castro

et al. [122] suggest using natural noise management in group recommendations to

control noise at various rating levels and lower prediction error. Research is done

using the MovieLens and Netflix datasets, and the findings indicate that the

recommendation system performs more accurately.

A method that makes use of the users' ranking of the items is suggested in [123].

Users typically give popular items high ratings. However, occasionally, such items

receive a lower rating. Sincere users inadvertently assign lower ratings to these kinds

of products. Therefore, those who are providing fictitious ratings must be eliminated

from the database. Therefore, if a user gives a rank for a popular item that is lower

than a threshold value, that user is considered noisy.

3.5.1.2 Classification & Clustering

A strategy used in [124] is predicated on identifying a user as an expert and offers

three techniques for adjusting the noisy ratings. The first approach focuses on the

weighted average rating that various experts have given the same item. The second

approach centers on the expert's weighted average rating of various items. The mean

value of the above two methods is used as the third method. The entire approach

increases the accuracy of the MovieLens dataset by concentrating on item attributes.

Enhancing the volume and caliber of user data is the main goal of another study that

has been suggested in [125]. The Transfer Latent Factor Model, a novel framework

based on user ratings, is proposed. This method divides the users into three

50

categories: heavy, medium and light, based on behavior data. The user's ratings are

used to determine this grouping. Noise is identified and eliminated for heavy users,

while noise is identified and corrected for light users but no processing is done for

medium users.

A different method is applicable to ratings of noisy and sparse data [126]. To identify

and correct noisy data, this approach first divides users and items into three classes:

weak, average, and strong. Subsequently, the second phase involves utilizing sparse,

noise-free data in conjunction with the Bhattacharya coefficient to forecast unrated

items and suggest desired items to users.

Group Recommendation Systems (GRS) [127] are becoming more and more popular

these days on social networking sites such as Facebook, Twitter. Users who share

similar interests form groups. Therefore, we must remove group members who have

different interests or traits before we can suggest a group to any user. These users are

referred to as noise because of their divergent interests. This study deploys Decision

trees that are created for GRS after hierarchical clustering is utilized to eliminate this

noise. With this method, we obtain 73% accurate results.

3.5.1.3 Magic Barrier

The goal of the study in [128], based on user ratings, is to raise recommender

systems' magic barrier. The magic barrier is a measure of whether or not a

recommender system's accuracy can be increased. The authors of [128] assess their

method using recommender systems for movies. The differences in user ratings are

assessed while analyzing the movie dataset. These scores are employed to forecast

the system's accuracy.

Another definition of the magic barrier is the recommender system's lower bound on

error [129]. This error is referred to as noise that influences users' rating preferences.

According to the work suggested in [129], the magic barrier and user coherence are

connected. This work distinguishes between easy users (lower magic barrier) and

difficult users (higher magic barrier) using this coherence factor. The findings show

that users with high coherence have lower recommendation error.

51

A different study using the magic barrier is discussed in [130], where it is stated that

changing the user profile may cause the recommendations to be incorrect. In order to

achieve this, this work suggests a coherence-based method called Dynamic

Coherence-Based Modeling (DCBM), which eliminates from the user profile any

items that are not pertinent to the user. The results show that the recommendation

system is now more accurate after removing such items.

3.5.1.4 Outliers Detection

Datasets that don't fit into the intended dataset are known as outliers. According to Li

et al. [131], natural noise is the noise that users unintentionally introduce due to their

variety of personalities. It recognizes users who are noisy but not malicious and who

rate comparable products differently. The foundation of this strategy is the idea that it

doesn't rely on any data outside of ratings. The outcomes demonstrate that when the

noise is eliminated, accuracy increases. Toledo et al. [132] describe an alternative

method based on the same idea that detects and corrects natural noise using current

ratings. It classifies noisy data using item and user profiles, then makes necessary

corrections.

An alternative method [133] models the noise as outliers using the Gaussian

Distribution and computes the recovered ratings using the Expectation Maximization

(EM) algorithm. Following several iterations of this comparison, the authors compare

the original and recovered ratings to identify outliers; ratings that are suspected of

being outliers are then handled as such.

3.5.1.5 Global Information

Global information has been used in some natural noise management techniques. A

proposal for this method is found in [134], wherein global information is derived

from user and item preferences. If the user's and the item's preferences are not

aligned, this information is used to classify ratings as noisy. The noise that is detected

is then corrected.

52

3.5.1.6 Summary of Crisp Methods

Table 3.5 enumerates all of the crisp techniques covered above, outlining the various

datasets used to assess these techniques and the evaluation metrics to evaluate the

proposed approaches.

Table 3.5: Summary of all the discussed crisp approaches

S.No. Publications
Noise filtering

methods
Datasets

Accuracy

measurement

tools

1. [116] Re-Rating
Netflix & Movies

Dataset
RMSE

2. [117] Re-Rating Netflix Dataset RMSE

3. [118] Re-Rating
MovieLens & Netflix

Dataset
RMSE

4. [119]

Zero error in user

and item training

dataset

Netflix Prize,

MovieLens, Jester &

Jester2 Datasets

RMSE

5. [120]
Using Current

Ratings

IncarMusic &

LDOS-CoMoDa

Datasets

RMSE, Response

Time, F1-measure

6. [121] Ratings
MovieLens & Netflix

Datasets
RMSE

7. [122] Rating Levels
Netflix Tiny &

MovieLens datasets
MAE

8. [123] Ranking
MovieLens

and Jester Datasets

MAE, RMSE, F1

measure

9. [124] Classification MovieLens Dataset RMSE

10. [125] Clustering MovieLens Dataset RMSE, Precision

53

11. [126] Classification MovieLens Dataset

MAE, RMSE,

Precision, Recall,

F1 measure

12. [127] Clustering Facebook Dataset Accuracy

13. [128] Magic Barrier Moviepilot Dataset RMSE

14. [129] Magic Barrier

MovieLens,

Moviepilot & Yelp

Datasets

RMSE

15. [130] Magic Barrier
Yahoo! Webscope &

MovieLens Datasets

RMSE, Average

Difference

16. [131]
Using Current

Ratings

EachMovie &

MovieLens Datasets
Precision

17. [132]
Using Current

Ratings

MovieLens &

MovieTweeting

Datasets

MAE, F1

measure

18. [133]
Using Recovered

Ratings

MovieLens, Amazon,

Yelp & FilmTrust

Datasets

Mean Average

Precision, RMSE

19. [134]
Global

Information
MovieLens Dataset MAE

3.5.2 Fuzzy Tools

Fuzzy tools were first proposed by Yera et al. [135] to control natural noise in

recommender systems. This study discusses the Crisp management's shortcomings

and how they are eliminated by the fuzzy method. This indicates that when

recommending products to users, the fuzzy method is strong and adaptable enough to

handle rating ambiguity and uncertainty as well as natural noise management.

54

Another study [136] uses fuzzy tools in four steps to detect and correct natural noise.

First, it detects the irregularities in the ratings database, then, secondly, it filters them.

Then in the third step, it calculates the degree of noise and finally in the fourth step, it

detects and corrects that noise, making the ratings database noise-free.

In [137], a multiphase fuzzy linguistic approach is proposed. It first determines the

users' gender before calculating the rating values and item tendency scores. The next

step is to define fuzzy sets, which are used to translate rating values and item

tendency scores into linguistic values. After that, conflict ratings are determined by

comparing the linguistic values of the two. Next, the linguistic sets are used to

categorize the noise. Ultimately, noise is identified and user attributes are calculated.

In [138], a different fuzzy approach that divides ratings into light, medium, and

heavy classes is presented. Then this method generates fuzzy user and item profiles.

The generated user and item fuzzy profiles are then used to identify the noise. Using

threshold rating values in accordance with the Maximum membership principle,

detected noise is finally corrected.

Group recommendations are another application for fuzzy tools. In the age of social

media, it's possible that we begin to follow certain individuals. Thus, group

recommendation is required in these situations. A method for making

recommendations to a group of users that takes into account everyone's likes and

dislikes is called group recommendation. When recommending a group, one must

take into account the interests of each member and then suggest a course of action

that will satisfy everyone.

J. Castro et al. [139] suggest another method called Natural Noise Management in

Group Recommendation using Fuzzy Tools (NNMG-FT). It eliminates the ratings

that users have left for a variety of items from the ratings database. There are three

steps to this approach: (i) Fuzzy Profiling generates features for users, items, and

ratings; (ii) Global Noise Management takes the features produced by fuzzy profiling

and manages the rating database globally; (iii) Local Noise Management eliminates

localized noise from the ratings database. A noise-free ratings database is produced

throughout the entire process.

55

All of the fuzzy approaches covered above are compiled in Table 3.6, which also

includes the evaluation metrics, various datasets used to test these methods, and

whether these recommendations are applied on individual or group.

Table 3.6: Summary of all the discussed fuzzy approaches

S.No. Publications

Recommendation

Type - Individual /

Group

Datasets
Accuracy

measurement tools

1. [135] Individual

MovieLens,

MovieTweeting &

Netflix Datasets

MAE, F1 measure

2. [136] Individual

MovieLens,

MovieTweeting &

Netflix Datasets

MAE

3. [137] Individual MovieLens Dataset

Detection

Percentage,

Precision, Recall,

F1-measure

4. [138] Individual

MovieLens &

Yahoo music

Datasets

MAE, RMSE,

Precision, Recall,

F1-measure

5. [139] Group
Netflix Tiny &

MovieLens datasets
MAE

3.6 Structural and Contextual Noise

Apart from malicious and natural noise, there exists other forms of noise as well:

● Structural Noise: This type of noise refers to the inconsistencies and

irregularities in the data structure or format.

56

● Contextual Noise: This noise refers to the dynamic needs and behavior of the

user due to the change in the context like time, location and moods.

To handle such types of noise, advanced techniques are required. Optimization

frameworks have emerged as a powerful tool to take care of such noises.

Optimization is a mathematical and computational technique which picks up the best

solution among any other possible solutions for a given problem. It has been applied

to various fields including engineering, marketing, economics and finance where it

helps in decision making to make more profits. Some of the applications of

optimization are fake news detection [140], healthcare [141], supply chain

management [142], Natural Language Processing [143] and many more [144,145].

Optimization improves the quality of the recommendation systems. It focusses on

refining the performance of RS by reducing the impact of noise through

mathematical and computational methods. One such work [50] includes the concept

of Federated Learning in POI based RS. In this work, Contrastive Learning (CL)

which is a multi-task framework is used for this purpose. This study suggests a novel

sequential information-based (FedSR) framework for POI-RS. A multi-task

framework in the FedSR is constructed using Contrastive Learning and uses a data

augmentation method based on spatial relationships among POIs. For the

recommendation task, Bayesian Personalized Ranking (BPR) optimization is applied.

BPR optimization rationalizes the negative examples in federated CL, which

improves the accuracy of the recommendations made.

The study [146] explores the application of Deep Q-Networks (DQN) in news

recommendation systems for recommending personalized news to users. DQN

emphasizes the combination of gradient descent optimization methods and loss

functions. By combining these two methods, the accuracy of Q-value estimation is

improved and thus provides users with more precise and customized article

recommendations.

Another work [59] uses Gradient Descent Optimization to optimize the loss

function in order to improve the accuracy of recommendations made for social

friends and foes. The authors propose a deep learning technique to compute the

57

nonlinear correlations between user preferences and the social knowledge of links

between distrust and trust at the deep representations by optimizing the ranking loss

function with various ranking criteria. Using backpropagation, they determine the

parameters of their ranking model. To achieve the numerous ranking criteria of their

ranking loss function, they employ a social negative sampling technique in each

backpropagation phase.

In another work [80], authors propose utilizing sequential decision optimization to

enhance user engagement over the long term for recommender systems. To be more

precise, authors directly model users' click and return behaviors for online

optimization. In online learning, three competing factors are taken into account:

exploring unknowns for model estimation, exploiting current clicks and exploiting

clicks in the future. Authors devise a bandit-based solution to achieve this balance.

They rigorously show that in optimizing accumulated interactions from a sample of

consumers in an interval of time, their proposed strategy most likely accomplishes

an upper remorse limit. However, a linear remorse is unavoidable if the

recommendations are made without taking into account the user's temporal return

behavior.

The authors of [109] suggest a three-stage method for detecting abnormal ratings in

collaborative filtering recommender systems. First, an undirected user-user graph is

built using user profiles as a guide. In the second step, user similarities are

discovered using graph mining techniques to optimize the graph. The optimized

graph is also subjected to an equivalent analysis to separate a subset of legitimate

users from dubious ones. The remaining genuine users are then further filtered out

in the third stage by looking at target items in order to identify the fake profiles.

Experiments are conducted using the MovieLens dataset, and results show how

effective this strategy is compared to other methods.

All of the optimization approaches covered above are compiled in Table 3.7, which

also includes the type of recommendation, various datasets used to test these methods

and accuracy measurement tools.

58

Table 3.7: Summary of all the discussed optimization approaches

S.No. Publications
Optimization

Type

Recommenda

tion Type
Datasets

Accuracy

measuremen

t tools

1. [50]

Bayesian

Personalized

Ranking (BPR)

Optimization

POI based RS
Brightkite,

Gowalla

Hit Rate,

NDCG

2. [146]
Gradient Descent

Optimization

News

Recommendat

ion

Historical

user

interaction

data

Click-through

rate (CTR)

3. [59]
Gradient Descent

Optimization

Social friends

and foes

recommendati

on

Epinions

dataset

Recall,

NDCG

4. [80]

Sequential

Decision

Optimization

News

Recommendat

ion

Yahoo

frontpage

news

recommenda

tion module

CTR, Return

Rate, User

ratio

5. [109]
Graph

Optimization

Movies

Recommendat

ion

MovieLens

dataset

Detection

Rate, False

Alarm Rate

3.7 Conclusion

We present a summary of sampling techniques that include everything from movie or

product recommendations to interactive and conversational recommendations. We

have discussed six types of sampling methods used for recommender systems,

namely, Bayesian Hierarchical Sampling, Negative Sampling, Thompson Sampling,

59

Bernoulli Sampling, Gibbs Sampling and Bootstrap Sampling. We conclude that for

disease diagnosis recommendation systems, bootstrap sampling is used. When

ranking or rating is involved, such as in online user-item recommendations, negative

sampling is deployed. While Gibbs sampling and Bernoulli distribution are better

suited for suggesting movies and products, Bayesian Hierarchical sampling is

employed for suggesting picturesque locations. While Thompson sampling is useful

for determining how offline parameters affect online performance, it is limited in that

it cannot replicate real-world human behavior, which makes it difficult to improve

the performance of interactive and conversational recommender systems.

Next, we present a summary of noise filtering techniques. We distinguish between

two major types of noise: malicious and natural. Furthermore, we discover that all of

the suggested methods for filtration of noise are based on Collaborative Filtering

Recommender Systems (CFRS) rather than Content-based RS. In this context,

"noise" refers to false ratings that can be generated by users' inconsistent behavior or

deliberately entered by users. The CFRS, which builds a user-item matrix based on

user ratings for items they like, is intentionally impacted by false ratings.

Adolescents with similar interests are recommended inappropriate items based on

this fake matrix. As a result, it's critical to eliminate noise from CFRS.

Apart from malicious and natural noise, there exists other forms of noise as well such

as structural noise and contextual noise. In order to handle these types of noise,

advanced techniques such as optimization algorithms are applied to the

recommendation systems. Optimization improves the quality of the recommendation

systems. It focusses on refining the performance of RS by reducing the impact of

noise through mathematical and computational methods. Thus, we provide an

overview of a few studies that use optimization techniques to reduce/eliminate the

impact of noise while measuring the performance of the recommender systems.

60

CHAPTER 4

NPO BASED MOVIE RECOMMENDATION MODEL

After the exploration of various sampling and noise filtering methods in the previous

chapter, this chapter proposes a Movie recommendation model using a suitable

sampling method and an optimization technique for noise filtering. With the

exponential growth of social media platforms, user-generated content has become a

valuable resource for various applications, including recommendation systems.

However, the presence of noise in user-centric tweets often hampers the performance

of these systems by introducing irrelevant or misleading information. This chapter

presents a novel approach utilizing the Nuclear Physics Optimization Algorithm

(NPO) for noise filtering among user-centric tweets to enhance the accuracy and

reliability of recommendation systems.

The proposed methodology involves preprocessing the raw tweet data and extracting

relevant features that capture user preferences and interests. Subsequently, the NPO

is employed to identify and filter out noisy tweets based on their semantic similarity

and relevance to the target domain. The NPO dynamically adjusts its parameters to

optimize the filtering process and adapt to the characteristics of the tweet dataset.

Experimental evaluations conducted on real-world tweet dataset of Movie

recommendation demonstrate the effectiveness of the proposed approach in

improving the performance of recommendation systems. Comparative analysis

against baseline methods reveal significant enhancements in prediction accuracy and

recommendation quality. Moreover, the proposed method exhibits robustness and

scalability across diverse tweet datasets and recommendation scenarios.

4.1 Introduction

The proliferation of social media platforms has introduced new opportunities and

challenges for recommendation systems. User-generated content, social interactions,

and social graphs contain valuable information that can augment traditional

recommendation techniques. Integrating social signals into recommendation

61

algorithms enables systems to leverage social influence, user trust, and community

preferences to generate more effective recommendations [158]. However, the noisy

and unstructured nature of social media data poses challenges in extracting relevant

information and mitigating the impact of misinformation or biased signals.

Addressing these challenges requires innovative approaches that combine data

mining, natural language processing, and social network analysis to harness the

power of social media for personalized recommendation generation.

Beyond e-commerce, recommender systems have found extensive utility in content

streaming platforms such as Netflix [2], Spotify [159], and YouTube [1], where they

curate personalized playlists, and recommend movies, music tracks, and videos based

on user interactions and feedback. By accurately predicting user preferences and

anticipating their content consumption patterns, these systems optimize user

engagement, retention, and subscription revenues. Moreover, in the domain of social

networking, recommender systems facilitate meaningful connections and interactions

by suggesting friends, groups, and content of interest, thereby enhancing user

experience and fostering community engagement [158].

In the realm of NLP, recommender systems leverage advanced linguistic analysis

techniques to understand the semantic meaning and context of textual data, enabling

them to generate personalized recommendations [160]. These systems employ a

variety of algorithms to model user preferences based on their interaction history and

the characteristics of the items being recommended. By leveraging linguistic features

such as semantic similarity, sentiment analysis and topic modeling, NLP-powered

recommender systems can provide more accurate and contextually relevant

recommendations to users.

On the other hand, user-centric tweets represent a unique and valuable source of data

for NLP-based recommender systems, offering real-time insights into user

preferences, opinions, and interests. Unlike traditional textual sources, such as

product reviews or news articles, user-centric tweets are characterized by their

brevity, informality, and rapid dissemination. Despite these challenges, NLP

techniques enable recommender systems to extract valuable signals from user-centric

62

tweets, such as sentiment, topics, and user interactions, to better understand user

preferences and generate personalized recommendations [161]. However, the noisy

and unstructured nature of tweet data poses significant challenges for

recommendation systems, necessitating the development of innovative approaches

for noise filtering and information extraction to enhance recommendation quality.

Integrating user-centric tweets into NLP-powered recommender systems opens up

new opportunities for enhancing recommendation accuracy and relevance by

incorporating real-time user feedback and social context. By harnessing the rich

linguistic information embedded in tweets, such as hashtags, mentions, and

conversational patterns, recommender systems can capture nuanced user preferences

and emerging trends in a dynamic social environment [38]. Moreover, the inherent

diversity and timeliness of tweet data enable recommender systems to adapt quickly

to changing user interests and preferences, providing more personalized and

up-to-date recommendations.

In recommendation systems, the presence of noise in tweets can distort user

preferences and interests, resulting in erroneous recommendations. By filtering out

noise, recommendation algorithms can focus on meaningful content that reflects

genuine user preferences, leading to more personalized and relevant

recommendations. Moreover, noise filtering contributes to the overall trustworthiness

and credibility of recommendation systems, enhancing user satisfaction and

engagement.

Filtering noise in tweets is crucial due to the vast amount of user-generated content

on social media platforms. With millions of tweets posted daily, noise, such as spam,

irrelevant information, and misinformation, can significantly degrade the quality of

data used for various applications, including recommendation systems. Noise

filtering helps to ensure that only relevant and reliable information is considered,

leading to more accurate predictions and improved user experiences.

63

The main contributions of this chapter are:

Firstly, the utilization of the Nuclear Physics Algorithm (NPO) introduces a novel

and effective method for filtering noise in tweet datasets, thus enhancing the

accuracy and reliability of recommendation systems. Unlike traditional approaches,

NPO dynamically adjusts its parameters to optimize noise filtering, thereby adapting

to the unique characteristics of the tweet data and improving its efficiency and

effectiveness.

Secondly, the proposed methodology contributes to enhancing the accuracy and

reliability of recommendation systems by effectively removing noise from

user-centric tweets. This ensures that only relevant and reliable information is

considered in the recommendation process. This leads to more accurate predictions

and personalized recommendations, ultimately enhancing user satisfaction and

engagement with the recommendation system.

Lastly, the proposed approach contributes to advancing the utilization of social media

data for recommendation systems by providing a scalable and robust solution for

noise filtering in diverse tweet datasets. The effectiveness of the NPO-based filtering

method is demonstrated through comprehensive experimental evaluations on

real-world tweet datasets, showcasing its superiority over baseline methods.

4.2 Proposed Methodology

The proposed methodology involves preprocessing the raw tweet data and extracting

relevant features that capture user preferences and interests. Subsequently, the NPO

is utilized to optimize the noise-filtering process by iteratively adjusting its

parameters to maximize the relevance of retained tweets while minimizing the impact

of noise.

The key contributions of this chapter lie in the innovative application of the NPO for

noise filtering in user-centric tweets and its integration into recommendation systems.

By enhancing the quality of tweet data used for predictions, the proposed approach

leads to more personalized and relevant recommendations, ultimately improving user

64

satisfaction and engagement. Moreover, the scalability and adaptability of the NPO

make it well-suited for handling diverse tweet datasets and recommendation

scenarios, highlighting its potential for practical applications in real-world systems.

The proposed framework for the recommendation system of the user-centric data is

shown in Fig.4.1.

Fig.4.1: Flowchart of the proposed framework for movie recommendation

4.2.1 Dataset Preparation

For our study, we utilize two distinct datasets: one comprising movie metadata taken

from the MovieLens Dataset from the URL:

https://grouplens.org/datasets/movielens/latest/ and the other capturing Twitter

sentiments related to these movies. The movie dataset encompasses comprehensive

information on over 45,000 movies included in the Full MovieLens Dataset. A wide

range of information is included in this metadata, such as cast and crew bios, posters,

plot keywords, revenue and budget estimates, countries of origin, production firms

and release dates. Additionally, it provides insights into the popularity and reception

of each movie, with TMDB vote counts and average ratings facilitating a quantitative

assessment of user opinions.

65

Moreover, the movie dataset incorporates a substantial volume of user ratings,

constituting a significant aspect of the dataset’s richness. With a repository of 26

million ratings contributed by 270,000 users, this dataset offers a comprehensive

view of audience preferences and opinions across the entire spectrum of movies.

Ratings are recorded on a scale of 1 to 5 and are sourced from the official GroupLens

website, ensuring credibility and reliability. This extensive collection of user ratings

serves as a valuable resource for understanding viewer sentiments and preferences

towards different movies.

In conjunction with the movie metadata, we augment our analysis with data derived

from Twitter sentiments pertaining to these movies. By leveraging Twitter’s vast

platform for real-time user-generated content, we gain insights into the public

discourse and sentiment surrounding each movie. This Twitter sentiment dataset

provides a complementary perspective to the quantitative movie metadata, offering

qualitative insights into audience reactions, opinions, and discussions in the social

media sphere. Integrating these two datasets enables us to perform a comprehensive

analysis that combines quantitative metrics with qualitative insights, enriching our

understanding of the factors influencing movie recommendations and user

preferences.

The sentiments incorporated in our analysis are derived from users who have

assigned sentiment labels to their expressions, categorized into five distinct

categories: 0 for negative sentiment, 1 for somewhat negative, 2 for neutral, 3 for

somewhat positive, and 4 for positive sentiment. These sentiment labels provide a

nuanced understanding of user opinions and attitudes towards the movies under

consideration. By categorizing sentiments into discrete levels, ranging from highly

negative to highly positive, we capture the full spectrum of user sentiment variations,

enabling a comprehensive analysis of audience perceptions.

The sentiment labels assigned by users serve as valuable indicators of their subjective

reactions and experiences with the movies. Negative sentiments (labels 0 and 1)

reflect dissatisfaction or disappointment, while positive sentiments (labels 3 and 4)

signify enjoyment or appreciation. The neutral sentiment label (label 2) indicates a

66

lack of strong emotional inclination, suggesting a more balanced or indifferent stance

towards the movie. By considering these diverse sentiment labels, we can discern

patterns and trends in user perceptions, identifying key factors that influence

audience satisfaction and engagement.

4.2.2 Movie Review Sentence Embedding

To make the user-centric comments on the movies ready for the model training, here

we have used the Continuous Bag-of-Words (CBoW) algorithm [162] with negative

sampling for sentence embedding, facilitating the creation of dense vector

representations for sentences. This approach is particularly effective for sentiment

analysis and recommendation systems where understanding the semantic meaning of

sentences is crucial. The framework of sentence embedding is shown in Fig.4.2.

The CBoW algorithm operates by predicting a target word based on the context of

surrounding words within a fixed-size window. Unlike skip-gram models [162],

which focus on predicting surrounding words given a target word, CBoW aims to

predict the target word given its context. This makes it well-suited for generating

sentence embedding, as it captures the overall meaning and context of the sentence

rather than individual word meanings.

In the CBoW algorithm with negative sampling, the training process involves

sampling negative examples (words not present in the context window) to contrast

with the positive examples (actual context words). This helps the model learn to

distinguish between relevant and irrelevant words in the context of generating

sentence embedding. By iteratively adjusting the model parameters to minimize the

prediction error for positive examples while maximizing it for negative examples, the

algorithm learns to produce more accurate and meaningful sentence embedding.

67

Fig.4.2: Framework for Movie Review Sentence Embedding

During training, the CBoW model processes each sentence by averaging the word

embedding of its constituent words, effectively condensing the entire sentence into a

single vector representation. This sentence embedding captures the semantic meaning

and context of the sentence in the high-dimensional vector space. By leveraging

negative sampling, the model learns to focus on informative words while filtering out

noise and irrelevant information, resulting in more robust and informative sentence

embedding.

Here is an example to showcase the negative samples. Suppose, there is a tweet: "The

acting in the movie was great, but the plot was confusing."

● Target Word: "great"

● Context Words: "acting", "movie"

● Sentiment Context: Positive

68

The positive examples consist of pairs of the target word and its actual context

words. In this case, positive examples will be: (great, acting), (great, movie).

Negative examples are words that are not present in the context window of the target

word but could potentially be associated with it incorrectly. In this case, negative

examples will be: (great, confusing), (great, plot). During training, the model is

presented with both positive and negative examples. It learns to predict the positive

examples accurately while predicting the negative examples as unlikely or irrelevant.

The model's parameters are adjusted to minimize the prediction error for positive

examples and maximize it for negative examples. Through this process, the model

learns to focus on words that are relevant to the context of the movie review while

filtering out noise and irrelevant words.

4.2.3 Nuclear Physics Optimization

Utilizing Nuclear Physics Optimization (NPO) for filtering noisy tweets represents a

novel approach to enhance the quality and relevance of information extracted from

social media data. Inspired by the principles governing atomic nuclei interactions,

NPO offers a unique framework for optimizing the process of noise filtering in

tweets, thereby improving the reliability of the extracted content.

In the context of noisy tweet filtering, NPO operates by treating each tweet as a

particle within a system, with the objective of optimizing the selection of informative

tweets while minimizing the impact of noise. The algorithm simulates the

interactions between these ”particles,” representing tweets, by applying principles

analogous to nuclear forces and electrostatic interactions. Through iterative

optimization cycles, NPO dynamically adjusts the positions of tweets within the

solution space, with attractive forces guiding the selection of relevant tweets and

repulsive forces aiding in the expulsion of noisy or irrelevant content.

The effectiveness of NPO for filtering noisy tweets lies in its ability to balance

exploration and exploitation, allowing for the efficient identification and retention of

informative tweets while simultaneously mitigating the influence of noise. By

leveraging the inherent parallelism and adaptability of NPO, the algorithm can

69

effectively navigate the complex landscape of social media data, identifying relevant

signals amidst the noise. Moreover, NPO offers the flexibility to incorporate

additional constraints or domain-specific knowledge, enabling tailored solutions for

different noise filtering tasks.

The NPO algorithm is designed around the physics-based concept of particle decay.

There are three types of decay processes prevalent in physics: alpha, beta, and

gamma [164]. The term ”alpha, beta, and gamma particle decay” refers to the use of

nuclear physics principles to drive particle decay simulation and comprehension. In

our context, particles represent tweets and the decay simulation aims to filter out

noisy or irrelevant tweets. In nuclear physics, alpha, beta, and gamma decay are the

three most frequent kinds of radioactive decay that change unstable atomic nuclei

into more stable structures. This decay process is described in Table 4.1.

Table 4.1 Various decays and their reference to noise filtration

Types of Decay Noisy Tweets Filtration

The unsteady nucleus releases an alpha
particle, which is made up of two
neutrons and protons, during alpha
decay.

Tweets containing spammy hashtags or
promotional links are removed.

A neutron can change into a proton
(beta-plus decay) or a proton can
change into a neutron (beta-minus
decay) in Beta decay.

Tweets having grammatical errors or
slang language are corrected so as to
transform the tweets to be able to be
processed.

When an energized nucleus emits extra
energy in the form of a gamma-ray
photon, it is known as gamma decay.

Excessive emoticons or punctuation
marks are removed from the tweets so
as to reduce noise, just like the excess
energy is released by an energized
nucleus as a gamma-ray.

In the physics concepts, the particle is also evaluated on the measure of the Neutron

Enrichment Level (NEL). It is a measure of the relative abundance of neutrons

compared to protons in a given nucleus or particle. It is often used in the context of

70

nuclear physics and nuclear engineering to describe the stability and characteristics

of atomic nuclei. Thus to find the stability of the particle Ai, the NEL of the particle

plays a crucial role. For any particle, NEL is calculated using Equation 4.1.

NELAi = (NAi − PAi) / M (4.1)

Where NAi and PAi are the number of Neutrons and protons of particle Ai , and M is

the atomic mass of the particle and can be evaluated as the sum of the Protons and

Neutrons.

The value computed by Equation 4.1 has importance in decision making. The

neutron surplus or deficit in the nucleus about the amount of protons is indicated by

the NEL value. A positive NEL value denotes a neutron excess, which is the nucleus

having more neutrons than protons. There may be a propensity toward

neutron-richness if the NEL value is positive. Conversely, a negative NEL score

denotes a neutron deficiency, which is the absence of more neutrons in the nucleus

than protons. One may expect a propensity toward proton-richness if the NEL value

is negative.

Another use of the NEL value in particle physics is to provide insights into the

stability and behavior of atomic nuclei. Nuclei with higher NEL values (positive

values) have an excess of neutrons compared to protons and may be more likely to

undergo decay to achieve a more stable neutron-to-proton ratio. Conversely, nuclei

with lower NEL values (negative values) may be more stable or prone to other modes

that release energy only, like gamma decay, depending on their specific nuclear

properties.

To make this decision, we calculate the enrichment bound of the particle system. It

refers to the maximum or minimum value allowed for a certain property or

characteristic of the particle. In the context of nuclear physics or particle interactions,

the enrichment bound may pertain to parameters such as the neutron-to-proton ratio,

energy levels, or other physical quantities. The mathematical calculation to compute

the enrichment bound is given by Equation 4.2.

71

EBu = (4.2)𝑖=1

𝑁

∑ 𝑁𝐸𝐿(𝐴𝑖)

𝑁

where N is the total number of particles in the system.

Thus, if the NEL of a particle is discovered to be more than the Enrichment bound

(EBu), i.e. NEL(Ai) > EBu, then the associated particle is assumed to have the higher

Neutron to Proton ratio, and the particle is expected to decay. Finally, the new

particle formed is given by Equation 4.3.

Ai
new = Ai

m + Best Solution (4.3)

Next is the condition when the NEL(Ai) is found to be lower than the Enrichment

bound EBu i.e. NEL(Ai) < EBu then the condition is considered that the system has

the lower Neutron to proton ratio. In such a case the particle will not go under any

decay process where the mass decreases. There is only the release of energy. Thus,

the new particle position in such a case is calculated by using Equation 4.4.

Ai
new = Ai

m + rand(0, 1) (4.4)

4.2.4 Evaluating Fitness of Each Tweet for Filtering

To evaluate the fitness function of each tweet for filtering noisy tweets, we can

formulate it mathematically using the provided variables. Let’s denote the fitness

function as F(t) where t represents a tweet. The fitness function can be defined as the

ratio of properly categorized samples to the total number of samples, adjusted by the

ratio of selected features to the total number of features in the dataset.

Mathematically, this can be expressed by Equation 4.5.

F(t) = Ai
new × (α(1 − TC/TD) + β(Nf/NF)) (4.5)

where α and β are the constant parameters with the values of 0.1 and 0.55

respectively which are figured out experimentally. TC is the number of samples that

were properly categorized, TD is the total number of samples in the data set, Nf is the

number of features selected by the optimization algorithm, and NF is the total

number of features in the data set.

72

This fitness function captures the performance of each tweet in terms of its relevance

to the classification task (properly categorized samples) and the importance of the

selected features in distinguishing relevant tweets from noisy ones. By incorporating

these factors, the fitness function provides a quantitative measure of the suitability of

each tweet for filtering noisy tweets, guiding the optimization algorithm towards

selecting tweets that contribute most effectively to the noise filtering process.

4.2.5 Models for Learning Recommendation System

Various machine learning and deep learning models are used in the learning phase of

movie recommendation using tweets to evaluate twitter data and extract valuable

insights for recommendation purposes. Using supervised machine learning methods,

including Logistic Regression, Support Vector Machines (SVMs), or Naive Bayes

classifiers [165], is one often employed method for categorizing tweets according to

their sentiment or applicability to particular films. The sentiment (positive, negative,

or neutral) or relevance (relevant, irrelevant) labels attached to each tweet are used to

train these models on labeled tweet data. These models can efficiently categorize

fresh tweets and determine which ones are most pertinent for movie recommendation

by learning from the labeled data.

Moreover, movie recommendation systems are increasingly using deep learning

models—in particular, Recurrent Neural Networks (RNN) [166]—to analyze Twitter

data. Sentiment analysis tasks require a comprehension of language flow and context,

and RNNs are well suited for these kinds of tasks since they can capture sequential

dependencies in tweet text. More precise and sophisticated movie suggestions are

made possible by this deep learning model, which is trained on vast amounts of

twitter data to create representations that capture the sentiment and semantic meaning

of tweets.

4.2.6 Relevancy Selection with Cosine Similarity

In the realm of movie recommendation systems utilizing tweets, cosine similarity

[163] emerges as a fundamental metric for retrieving relevant movie suggestions

73

based on the textual content of tweets. Cosine similarity quantifies the similarity

between two vectors in a multi-dimensional space, making it an ideal measure for

comparing the semantic similarity of tweet representations and movie attributes.

Mathematically, cosine similarity between two vectors A and B is calculated as the

cosine of the angle between them and is defined by using Equation 4.6

Cossim(A,B) = (A.B) / ||A||.||B|| (4.6)

where A.B denotes the dot product of vectors A and B, and ||A|| and ||B|| represent

their respective Euclidean norms.

To apply cosine similarity in the context of movie recommendation using tweets,

each tweet and movie are represented as vectors in a common feature space. For

tweets, vector representations can be derived from tweet embeddings obtained

through CBoW capturing the semantic meaning of tweet content. Similarly, movie

vectors encapsulate relevant attributes such as genre, cast, and plot keywords,

extracted from movie metadata.

Once tweet and movie vectors are obtained, cosine similarity is computed between

each tweet vector and the vectors representing all movies in the dataset. This yields a

similarity score for each movie, quantifying its relevance to the tweet. The movies

with the highest cosine similarity scores are then recommended to the user, as they

are deemed most similar in content and context to the tweet.

4.3 Experimentation Results

4.3.1 Pre-build Dataset

To evaluate the results of the proposed approach, the dataset was built using two

strategies. The first strategy uses the movie lens dataset which has numerous movies

with their genre, titles, and ratings. For these movies, the user-centric reviews of the

respective movies were fetched, and the sentiment score was generated for each

movie item in the dataset. The sample collection of the dataset is shown in Table 4.2.

Also, Fig.4.3 provides a summary of the distribution of ratings in the Full MovieLens

Dataset, showing how many samples fall within each rating category. It helps

74

visualize the frequency of different rating values given by users, which is crucial for

understanding user preferences and evaluating recommendation algorithms.

Fig.4.3: Distribution of samples in Movie Lens dataset as per rating

Table 4.2: Sample Dataset having movies title, genre, fetched user-centric review
and sentiment score

S.No. Original

Title

Genres User-centric Comment Sentiment

1
Jumanji

Adventure,

Fantasy,

Family

Jumanji, with plenty of laughs,

action-packed excitement, great music,

spectacular sets, and inspirational

themes, this film is an absolutely

winning adventure.

4

2 Ace Ventura Romance,

Comedy

Ace Ventura. Neither terrible, boring

nor soporific, just not very funny.
1

3 Die Hard Drama
Die Hard. There are good

performances from everyone in this

long, often funny, very violent but

exciting melodrama.

2

75

4 Meet Joe

Black
Drama

Meet Joe Black. I’ve never

encountered such dramatic flatulence,

never heard so many pregnant silences

that don’t deliver, never watched so

many close-ups that graze on actors’

faces until every last trace of

expression has been devoured.

3

5 Toy Story Comedy Toy Story is a Pixar classic, one of the

best kids’ movies of all time.
4

Using the formed dataset, the model is trained to items that are most closely

associated with the query item. Based on the constraint, the model predicts the top k

items among the dataset that are most likely to be the query item.

4.3.2 Results with NPO Algorithm

The experimentation results from model training on movie recommendation using

tweets filtered by the proposed NPO algorithm offer insightful information on the

performance of different classifiers, including Logistic regression, Naive Bayes

classifiers, Support Vector Machines (SVMs) and Recurrent Neural Networks

(RNN). The evaluation measures, which comprise Mean Average Precision (MAP),

Precision, Recall, F1-Score and Accuracy, were applied to the diverse group of

classifiers. They offer a comprehensive assessment of their effectiveness in

generating movie recommendations tailored to user preferences based on tweet data.

The experimentation results of the proposed framework are shown in Table 4.3.

Table 4.3: Experimentation results of the model training with proposed NPO

algorithm-based tweet filtering

Classifier Accuracy Precision Recall F1-Score MAP

Support Vector

Machine (SVM)
0.91 0.90 0.88 0.89 0.88

76

Naive Bayes

(NB)
0.82 0.80 0.85 0.82 0.70

Logistic Regression

(LR)
0.87 0.88 0.86 0.87 0.78

Recurrent Neural

Networks (RNN)
0.94 0.93 0.91 0.92 0.92

The results in Table 4.3 indicate that the machine learning classifiers achieved

varying degrees of success in accurately predicting relevant movie recommendations.

Support Vector Machines demonstrated strong overall performance, achieving high

accuracy, precision, recall, and F1-score, suggesting robustness in distinguishing

relevant tweets for movie recommendation. Naive Bayes classifiers exhibited

competitive performance, particularly in recall and F1-score, although slightly lower

accuracy and precision were observed compared to SVMs. Logistic regression

models also yielded promising results, with high accuracy and precision, indicating

their efficacy in classifying relevant tweets for recommendation purposes.

Furthermore, the experimentation results highlight the effectiveness of deep

learning-based approaches, particularly Recurrent Neural Networks (RNNs), in

capturing the complex relationships and patterns in tweet data for movie

recommendations. RNNs demonstrated superior performance across multiple

metrics, achieving the highest accuracy, precision, recall, and F1-score among the

classifiers evaluated. Additionally, RNNs outperformed traditional classifiers in

terms of Mean Average Precision (MAP), indicating their ability to provide

high-quality ranked recommendations that align closely with user preferences.

Also, the experimentation was performed to present the outcomes of our movie

recommendation system, focusing on the top-k (k=3) movie titles recommended to

users based on their queries. We begin by outlining the methodology employed to

generate these recommendations, detailing the algorithms, models, and evaluation

metrics utilized in the process. Subsequently, we provide a comprehensive analysis of

77

the recommended movie titles, highlighting their relevance, diversity, and alignment

with user preferences. The experimentation results of the recommendation system are

shown in Table 4.4. The top-k movie recommendations are presented in a tabular

format, showcasing the movie titles along with additional information such as

sentiment score (Positive, Negative, or Neutral) with the score in a range of 0 to 1.

Table 4.4: Results of the Top K (k=3) recommended movies based on user query

along with sentiment score

User Query Top k Recommended Movies Sentiment Score

”Love romantic

movies”

1. Titanic

2. The Notebook

3. La La Land

Positive (0.8)

”Action-packed

films”

1. Avengers: Endgame

2. The Dark Knight

3. Mad Max: Fury Road

Positive (0.7)

”Best comedy

movies”

1. Superbad

2. The Hangover

3. Dumb and Dumber

Positive (0.6)

”Horror movies”
1. The Conjuring

2. A Nightmare on Elm Street

3. Hereditary

Negative (0.3)

”Classic films”
1. Casablanca

2. Gone with the Wind

3. Citizen Kane

Positive (0.8)

”Sci-fi movies”
1. Star Wars: The Empire Strikes Back

2. Blade Runner 2049

3. Inception

Positive (0.7)

78

”Animated films”
1. Toy Story

2. Finding Nemo

3. Shrek

Positive (0.8)

”Family-friendly

movies”

1. The Lion King

2. Up

3. Frozen

Positive (0.9)

”Indie movies”
1. Juno

2. Little Miss Sunshine

3. Moonlight

Neutral (0.5)

”Documentaries”
1. Fahrenheit 9/11

2. Blackfish

3. March of the Penguins

Positive (0.6)

The experimentation results of the recommended movies by using the context of the

given movie as a query vector are shown in Table 4.5. The results show the top k

(k=3) recommended movies with their similarity scores. The proposed model is very

effective in recommending movies based on the fetched features and the learned

RNN model. The results in Table 4.5 show the randomly selected 4 movies as the

query with their information of Genres and the index position in the dataset.

Table 4.5: Results of the recommended movies using the query movie along with

genres and similarity scores

Query 1 Movie: Jumanji — Genres: Adventure Fantasy Family —

Index: 1

Recommended

Results (k=3)

Return To Oz — Genres: Adventure Family Fantasy —

Similarity: 1.0

Peter Pan — Genres: Adventure Fantasy Family — Similarity:

1.0

79

Harry Potter And The Prisoner Of Azkaban — Genres:

Adventure Fantasy Family — Similarity: 0.9

Query 2 Movie: Die Hard — Genres: Action Thriller — Index:

1007

Recommended

Results (k=3)

Iron Eagle Iii — Genres: Action Thriller — Similarity: 1.0

The Peacemaker — Genres: Action Thriller — Similarity: 1.0

D-Tox — Genres: Action Thriller — Similarity: 0.9

Query 3 Movie: Faces — Genres: Drama — Index: 688

Recommended

Results (k=3)

The Hours — Genres: Drama — Similarity: 1.0

The Graduate — Genres: Drama — Similarity: 0.9

Coming Apart — Genres: Drama — Similarity: 0.9

Query 4 Movie: Toy Story — Genres: Animation Comedy Family

— Index: 0

Recommended

Results (k=3)

The Wrong Trousers — Genres: Animation Comedy Family

— Similarity: 1.0

A Close Shave — Genres: Family Animation Comedy —

Similarity: 1.0

Creature Comforts — Genres: Animation Comedy Family —

Similarity: 0.9

4.3.3 Comparative Analysis

In the comparative analysis, the performance of the proposed model is evaluated on

several checkpoints. The initial comparison in the experimentation was in between

the performance metrics and their evaluations on the dataset using the proposed NPO

80

and without the NPO algorithm. The results of the proposed NPO algorithm with

performance metrics are presented in Table 4.3 and the performance on the same

dataset using the same metrics but without using NPO as a filtering approach is

shown in Table 4.6.

Table 4.6: Experimentation results of the model training without NPO algorithm

for tweet filtering

Classifier Accuracy Precision Recall F1-Score MAP

Support Vector

Machine (SVM)
0.85 0.86 0.84 0.85 0.75

Naive Bayes

(NB)
0.82 0.80 0.85 0.82 0.70

Logistic Regression

(LR)
0.87 0.88 0.86 0.87 0.78

Recurrent Neural

Networks (RNN)
0.90 0.92 0.88 0.90 0.82

By comparing the performance metrics across different optimization and feature

selection algorithms, we can assess the effectiveness of the proposed optimization

algorithm in filtering data in the MovieLens dataset compared to alternative

approaches. Higher values of accuracy, precision, recall, F1-score, and MAP indicate

better performance of the algorithm in improving the quality of filtered data for

movie recommendation purposes. The experimentation results of the comparison

with other benchmark algorithms are shown in Table 4.7.

81

Table 4.7: Comparative results of the proposed optimization algorithm with

other benchmark algorithms on MovieLens dataset using RNN model

Algorithm Accuracy Precision Recall F1-Score MAP

Proposed

Optimization
0.94 0.93 0.91 0.92 0.92

Genetic

Algorithm

[167]

0.87 0.86 0.86 0.86 0.82

Particle

Swarm

Optimization

[167]

0.90 0.88 0.86 0.87 0.89

4.4 Conclusion

In this work, we proposed a framework incorporating the new optimization algorithm

inspired by nuclear physics for the filtering of noise in user-centric tweets. The

proposed framework is used for the recommendation of movies based on the user

query and filtered output from the optimization algorithm in the MovieLens dataset.

The experimentation on optimization-based noise filtering among user-centric tweets

to improve predictions in movie recommendation systems, employing classifiers

such as Support Vector Machines (SVMs), Naive Bayes classifiers, logistic

regression, and Recurrent Neural Networks (RNN), has yielded valuable insights and

promising outcomes. Through the proposed optimization based noise filtering

approach, we aimed to enhance the quality and relevance of movie recommendations

generated from user-centric tweets, thereby enriching the overall movie

recommendation experience.

82

Our findings demonstrate that the optimization-based noise filtering method

significantly improves the performance of movie recommendation systems across

various classifiers and evaluation metrics. Specifically, we observed notable

enhancements in accuracy, precision, recall, F1-score, and Mean Average Precision

(MAP) when compared to traditional recommendation approaches without noise

filtering. This underscores the effectiveness of our approach in mitigating the impact

of noisy data and extracting more accurate and relevant information from user-centric

tweets for movie recommendations.

Furthermore, the comparative analysis revealed the superiority of certain classifiers

over others in leveraging the filtered tweet data for movie recommendation purposes.

While Support Vector Machines (SVMs), logistic regression, and Naive Bayes

classifiers exhibited commendable performance across multiple metrics, Recurrent

Neural Networks (RNN) demonstrated competitive results in an overall assessment,

showcasing the adaptability of our noise filtering approach to different classification

algorithms.

The future scope of this work encompasses several avenues for further exploration

and enhancement. Firstly, we aim to evaluate and optimize the time complexity of the

proposed model to make it more efficient. Secondly, there is a need for continued

research into refining the optimization based noise filtering method to accommodate

diverse data sources and recommendation contexts beyond movie recommendations.

Additionally, incorporating additional features and contextual information from

user-centric tweets, such as user engagement metrics, could further enrich the

recommendation process.

83

CHAPTER 5

CONTEXT-AWARE HASHTAG RECOMMENDATION MODEL

In the previous chapter, we proposed a model for movie recommendation using

negative samples and Nuclear Physics Optimization technique for filtering noisy

tweets. Now, we shift our focus from movie recommendations to hashtag

recommendations. Unlike movie recommendation, which is mainly based on user

ratings and preferences, hashtag recommendation requires a thorough comprehension

of the contextual and dynamic nature of social media content. This chapter puts forth

a model intended to capture the meanings associated with words in tweets for

recommending relevant hashtags. Our proposed method comprehends the context

and meaning behind user-generated content, thus improving the user engagement and

interaction on social media platforms.

Using hashtags to summarize thoughts, feelings, emotions, mood swings, food tastes,

and much more has become popular. It also symbolizes a variety of things, including

locations, families, and friendships. It's a tool for searching and sorting different

content on social media platforms. The term "Hashtag Recommendation" originated

from the necessity to automate hashtagging due to its increasing prevalence.

Furthermore, a large number of posts on social media platforms go untagged. These

untagged posts are removed during the search process by applying a label to the data.

Such posts are abandoned and add nothing useful to the conversation. However, if

the user sees labels that are relevant to his post, he may select one or more of them,

labeling the posts in the process. Hashtag recommendation enters the picture in these

situations. We have presented a model for hashtag recommendation in this chapter

called BELHASH, an LSTM based on Bert Embedding. Because the hashtags are

one-hot encoded using MultiLabelBinarizer into multiple binary vectors of zeros and

ones, this task is classified as a multilabel classification task. Covid 19 tweets have

been used to assess this model.

84

5.1 Introduction

Deep learning has emerged as a trending approach to be applied on language related

domains. DL algorithms can detect trends, sentiments and emerging issues in

real-time, providing a deeper understanding of online conversations. Furthermore,

they contribute to the development of recommendation systems and content curation,

shaping our social media interactions and experiences. Social media has become an

important part of our daily life. Plenty of data is available on social media sites which

can be used for mining patterns indicating various implications related to health,

understanding and assessing the disasters and thus helping in disaster management,

analyzing customer feedback, developing marketing strategies, brand communication

and monitoring, analyzing social media reviews for various purposes such as

election candidate approval ratings, hotel and restaurant ratings.

As the number of Internet users is increasing day by day, the number of posts on

social media sites has also increased. Users keep posting their day-to-day life on

social media. Among many social media sites, Twitter has become a popular

microblogging social site where users interact by posting tweets. Tweets not only

describe one’s thoughts or life, but also represent the various trends going around in

the world at that moment. Twitter data has been used for different purposes such as

sentiment analysis, healthcare field, educational sector, predicting elections, and

many more.

With the increase in the number of posts on Twitter, there is a need to label these

posts. Many users are not aware or have little knowledge of the concept of

hashtagging. For such users, recommendation is provided so that they can select the

hashtags according to their needs from among the recommended ones. This hashtag

recommendation makes the posts labelled from being unlabelled.

A lot of research has been done on healthcare [147,148], but a few years back,

Covid-19 pandemic shook the entire world. Almost all the countries were affected

economically as well as medically by this infectious virus. Twitter was filled with

tweets related to coronavirus and its impact on health. Although many of these tweets

are accompanied by hashtags, still many tweets remain untagged. Such untagged

85

tweets get filtered out while searching and categorizing tweets using a label. A

hashtag is a label which summarizes the entire text. As the hashtags are being posted

along with the tweets, there is a need to automate this system. Automating means

recommending the hashtags based on the tweets as posted by the user. Such

recommendation will help the untagged tweets to get a tag from the recommended

hashtags. Thus, a need is felt to make a model that can capture the context of the

words of tweets and then recommend hashtags.

Recommendation systems are mainly of two types: Content based RS and

Collaborative Filtering RS [168]. Content based RS mainly focus on the users’

content and then recommending the tags according to that content. Whereas,

Collaborative Filtering RS makes use of other users’ tagging history with the similar

interests of posts as the current user is having. In this work, we have focussed on

Content Based RS. This task is considered as a Multilabel Classification task. In the

context of multilabel classification, the hashtag recommendation task can be seen as

predicting a set of relevant hashtags for a given text input. Each hashtag acts as a

distinct label, and the goal is to determine which hashtags are most suitable for

describing or categorizing the content of the text. Hashtags are one-hot encoded into

multiple binary vectors [169], where multiple tags can be set to 1 for a given tweet.

We have presented a model for hashtag recommendation in this chapter called

BELHASH, an LSTM based on Bert Embedding. 100K Covid-19 tweets were used

to evaluate this model. The process flow diagram is shown in Fig.5.1. Combining

LSTM with BERT in the hashtag recommendation task serves a unique purpose.

Coupling these two potent models provides complimentary benefits, improving the

model's capacity to capture global semantics and local context—that is, BERT's

comprehensive learning of the text and LSTM's capacity to record temporal

information. The proposed model can successfully represent both short- and

long-term interdependence because of this fusion.

86

Fig.5.1: Flow diagram of data preprocessing leading to recommended hashtags

The main contributions of this chapter are:

● We have proposed a model named BELHASH to recommend Hashtags.

● Proposed model is experimented with 100K Covid-19 related tweets.

● Proposed model is composed of a cascading of BERT-LSTM for relevant text

feature extraction. This model achieves state of the arts results.

5.2 Methodology

In this section, we describe our proposed model, BELHASH (Bert Embedding based

LSTM for Hashtag Recommendation), in detail followed by the various

terminologies used for our work.

5.2.1 Proposed Work

BELHASH is a Bert Embedding [170] based LSTM model [171] for Hashtag

Recommendation. The architecture of the proposed model is shown in Fig.5.2. This

model has mainly five components. The first component is hashtag encoding where

hashtags are one-hot encoded into a binary vector of 0s and 1s. Here, 0 represents the

absence of a hashtag for that tweet whereas 1 represents the presence of a hashtag for

that tweet. The second component is word tokenization where tweets are tokenized

into multi-dimensional vectors using BERT tokenizer [170]. The third component

comprises feature extraction by LSTM. The fourth component is Part-of-speech

(POS) tagging where tags are given a probability of being associated with a tweet.

The last component is hashtag recommendation where cosine similarity [163] is

87

applied between all tags and encoded vector representation of a new tweet. Those

tags having high similarity are given a ranking according to the probability

distribution of cosine similarity function. These hashtags are then sorted in the

descending order according to their probabilities, recommending top-k hashtags.

Now, each of these components are described below in detail.

Fig.5.2: Workflow of the proposed BELHASH model

5.2.1.1 Hashtag Encoding

We have scraped 100K Covid-19 tweets using Twitter API. This tweets dataset has

25000 unique hashtags. Out of these, we have filtered out 1350 hashtags having

frequency of occurrence greater than or equal to 10. These hashtags are encoded

using MultiLabelBinarizer (MLB). MLB is used to encode the presence or absence of

each hashtag for a given tweet. It creates a binary vector where each element

corresponds to whether a specific hashtag is present in the tweet or not. This vector is

often referred to as a "binary label vector." Thus, through MLB, a binary vector is

created for a given tweet containing zeros and ones. If a hashtag is present in the

tweet, the corresponding element in the binary vector is set to 1; otherwise, it's set to

0. Let’s take an example:

88

total_hashtags: ['covid19', 'home', 'health', 'staysafe', ...]

tweet_hashtags: ['covid19', 'health']

binary vector: [1, 0, 1, 0, ...]

Here, for the given tweet, the element at index 0 represents the presence of 'covid19',

the element at index 1 represents the absence of 'home', the element at index 2

represents the presence of 'health', the element at index 3 represents the absence of

'staysafe' and so on. During training, the binary label vectors are used as target

values, and during inference, the predicted binary vectors are decoded to obtain the

recommended hashtags for a given tweet.

5.2.1.2 Word Tokenization and Embedding

Word tokenization is the second step of text processing tasks. In this step, each tweet

goes through the process of word tokenization. It is a method to split the words in the

form of tokens or unbreakable units. Each word is then given a unique number which

is represented by a multi dimensional vector. We have used Bert tokenizer for this

purpose. Bert tokenizer captures the context of the same words according to the

sentences in which they are appearing. If a word is appearing with two different

semantics, then that word will be represented by two different vectors. In contrast,

other embedding techniques like Word2Vec, Glove, generate the same vector

representation for the same word, even if it is appearing in two different contexts.

This is because other embedding techniques do not capture the semantics of the

words according to their occurrences.

5.2.1.3 Feature Extraction by LSTM

Long Short Term Memory (LSTM) is a variation of Recurrent Neural Networks

(RNN). LSTM resolves the vanishing gradient problem of RNN by retaining the

previous words in the memory to generate the next outputs in the sequences. In the

context of hashtag recommendation, the LSTM neural network plays a crucial role in

extracting meaningful features from the input text. These features are essential for

capturing the underlying semantics and context of the text, which in turn aids in

89

making accurate hashtag predictions. Simultaneously, the hashtags associated with

each tweet are one-hot encoded and processed through a separate LSTM layer.

The LSTM learns to associate specific patterns, phrases, and contextual cues with

relevant hashtags. For instance, consider the sentence "Stay safe and wash your

hands regularly. #COVID19 #health." The LSTM can learn that the presence of

phrases like "wash your hands" and "stay safe" are indicative of the hashtags

"#COVID19" and "#health." These associations are learned over time through the

iterative process of training. Thus, LSTM extract the features in a text processing

task effectively.

5.2.1.4 POS Tagging

The textual features of input tweets are extracted through LSTM networks, capturing

the contextual nuances and sequential dependencies within the text. Simultaneously,

the hashtags associated with each tweet are one-hot encoded and processed through a

separate LSTM layer. The outputs from these two distinct LSTM pathways are then

fused in a tagging layer, where the model learns to generate relevant part-of-speech

(POS) tags based on the intricate interplay between the textual content and the

hashtag information. The tagging layer serves as a bridge between the textual and

hashtag domains, synthesizing meaningful representations that encapsulate the

essence of the input tweet.

5.2.1.5 Hashtag Recommendation

At last, Cosine Similarity is applied between all POS tags and encoded vector

representation of a new tweet. Those tags having high similarity are given a ranking

according to the probability distribution of cosine similarity function. These hashtags

are then sorted in the descending order according to their probabilities. Then top-k

recommendations are made.

90

5.2.2 Terminologies Used

The various terminologies used are given below followed by two algorithms of

BELHASH. Algorithms 5.1 and 5.2 describe the hashtag and text processing parts of

the tweet respectively.

T = {T1, T2, …. Ti….Tn} : Set of Cleaned Tweets, where Ti is the tweet at the ith

location and n is the total number of tweets.

H = {H1, H2, …. Hi….Hn} : Set of hashtags for a Tweet T, where Hi is the hashtag at

the ith location and n is the total number of hashtags.

HR = {HR1, HR2, …. HRi….HRk} : Set of recommended hashtags for a Tweet T, where

HRi is the hashtag at the ith location according to the rank probability and k is the

number of recommended hashtags.

Ti(w) : Word Tokenization of tweet Ti

Ti(E) : Encoded vector representation of tokenized words of tweet Ti

Ti(F) : Features extracted for tweet Ti

P = {HP1, HP2, …. HPi….HPn} : HPi is the Probability distribution (Ranking) of the

hashtag Hi for a given tweet T.

S = {HP1, HP2, …. HPi….HPn} : Set of hashtags of tweet Ti sorted according to their

probability distributions. HP1 is the hashtag with the highest probability. HP2 is the

hashtag with the second highest probability and so on.

FH = {FH1, FH2, …. FHi….FHn} : Set of all 1350 filtered hashtags where FHi is the

hashtag at the ith location.

V: Binary vector of all Hashtags(H) for a tweet Ti

V(F): Features extracted for Binary Vector V of all Hashtags(H) for a tweet Ti

5.3 Evaluation and Results

In this section, we provide the details to the dataset and its preprocessing,

implementation details and comparison with baseline models.

91

Algorithm 5.1: HASHTAG_PROCESSING(FH, H)

Input: Set of hashtags (H) for a tweet Ti and all filtered hashtags (FH)
Output: Extracted features of Binary Vector (V(F))
1. Procedure HASHTAG_PROCESSING(FH, H)
2. Transformed_labels (TL) ← MLB(FH)
3. for each FHi in TL do
4. for each Hi ∈ H do
5. if FHi == Hi, then
6. Set V[FHi] = 1
7. else
8. Set V[FHi] = 0
9. end if
10. end
11. end
12. Extracted_features (V(F)) ← LSTM (V)
13. Return V(F)

Algorithm 5.2: TEXT_PROCESSING(T, H)

Input: Set of Tweets (T) and its hashtags (H)
Output: Top-k recommended hashtags (HR)
1. Procedure TEXT_PROCESSING(T, H)
2. for each tweet Ti do
3. Ti(w) ← bert-based-uncased-tokenizer (Ti)
4. Ti(E) ← bert-based-uncased-model-encoder (Ti(w))
5. Extracted_features (Ti(F)) ← LSTM (Ti(E))
6. Part-of-speech Tags (POST) ← Tagging (Ti(F) + V(F))
7. Probability distribution (P) ← Cosine_Similarity (POST)
8. Sorted probabilities (S) ← Sorting (P)
9. HR ← Pick Top-k recommendations from S
10. end
11. return HR

5.3.1 Dataset

We have evaluated our proposed model on the Covid-19 dataset, which is scraped

using Twitter API. A sample of collected tweets is shown in Fig.5.3.

92

Fig.5.3: A sample of raw/ unprocessed Covid-19 tweets

We performed data preprocessing so as to remove noisy data. Several steps of data

preprocessing are described below:

1. Non-Hashtags Tweets Removal - We removed the tweets containing no

hashtags and kept the tweets containing at least one hashtag for a given tweet.

2. Non-English Tweets and Unicode Characters Removal - We removed

non-english characters from tweets and non-english hashtags. We also

removed tweets and hashtags containing unicode characters.

3. URL, HTML and Punctuations Removal - In this step we removed tweets

containing URL patterns starting from http(s), email IDs and punctuation

marks.

4. Emojis Removal - This step is concentrated on removing emoticons, symbols

& pictographs, transport & map symbols, and flags.

5. Conversion to Lowercase - In this step, we convert all the tweets and their

associated hashtags to lowercase so that the same hashtags but in uppercase

can be treated as one.

6. Hashtag Removal - In this step, we removed all the hashtags appearing at the

end of the tweets but retained the ones appearing in between the tweets.

Generally, hashtags are present at the end, describing the overall theme of the

tweet. So, we have removed them so as to predict hashtags from the context

of the tweet.

7. Lemmatization - We lemmatized all tweets and hashtags so that the variant

forms of one word can be treated as a single word.

93

8. Filter Candidate Tweets - In this step, tweets with very short length compared

to its numbers of hashtags, are filtered out based on a threshold.

If length(tweets) / Number of Hashtags < Threshold => drop that tweet

9. Drop Duplicate Tweets - For duplicate tweets, we have kept only the first

tweet and removed the duplicates.

10. Hashtag Filtration - Hashtags having frequency of occurrence greater than or

equal to 10 in the entire dataset are kept. So, out of 25K tags, 1350 tags are

kept.

After preprocessing, we split our dataset into 80% and 20% for the training and

testing respectively. A sample of the cleaned dataset is shown in Fig.5.4. Table 5.1

shows the dataset details.

Fig.5.4: A sample of pre-processed Covid-19 tweets

Table 5.1: Dataset Values before and after pre-processing the tweets

Dataset Parameters Values

Total fetched Tweets 1.65 Lakhs

Pre-processed Tweets 1 Lakh

Unique hashtags before preprocessing 25000

Unique hashtags after preprocessing 1350

Training Dataset 80K Tweets

Test Dataset 20K Tweets

94

5.3.2 Implementation Details

Pytorch library of Python is used to perform the experiments. The dataset is divided

into 80% training set and 20% test set. All the tweets are padded to the maximum

length of tweets i.e. 280 characters, by padding extra tokens (zeros), to ensure

uniformity in the input data. Both the training set and test set are divided into batches

each of 32 size. For the training set, we shuffle the tweets but not for the test set. We

have used 0.05 as the Learning Rate and Adam as the optimizer. The

hyperparameters and their values are given in Table 5.2.

Table 5.2: Hyperparameters names and their values used in BELHASH

Parameter Name Parameter Value

Tokenizer 'bert-base-uncased'

Max_Padding 280

Batch Size 32

Epochs 50

Dropout 0.3

Learning Rate 0.05

Optimizer Adam

Loss function BCEWithLogitsLoss

5.3.2.1 Model Training

The Bert-based-uncased Pretrained model is used to tokenize the tweets. Then this

tokenized form is encoded into a vector representation capturing the semantics of the

words. LSTM layer is applied over this vector representation of tweets to extract the

features. After this, a Dropout of value 0.3 is used to regularize the weights in the

95

backpropagation process. Then the last layer of Softmax is applied to get the learned

representation of hashtags of a given tweet.

5.3.2.2 Model Testing

For a new tweet, Bert embedding and LSTM layers are applied to have features

extracted from encoded vector representation for that tweet. Then, Cosine Similarity

is applied for that encoded representation of the new tweet and the learned

representation of hashtags obtained in the training step. Cosine similarity gives a

probability distribution (rank) of hashtags to be recommended for the new tweet.

Then, sorting is applied over the rank of the hashtags, arranging them in a descending

sequence in order to recommend top-k hashtags.

5.3.3 Baseline models

To compare our model with other models, following baseline models are considered:

● Latent Dirichlet Allocation: This method extracts latent topics from social

media content and associates hashtags with these topics [149].

● SVM: The method proposed in [150] converts the tag recommendation

problem into classification task and uses SVM to model it.

● EmHash: Bert Embedding based model forming clusters of hashtags and then

recommending hashtags by predicting the desired cluster [151].

5.3.4 Evaluation Results

The results obtained after training and evaluating the BELHASH model over the

scraped tweets are given in Table 5.3. It achieved an accuracy of 72.31%. The graphs

of various benchmark models compared with our model are given in fig.5.5, fig.5.6

and fig.5.7. Precision, Recall and F1-Scores for top-k (k=6) recommendations are

given in table 5.4 and its graph is shown in Fig.5.8. The results show that BELHASH

performs better than other state-of-the-art models.

96

Table 5.3: Comparative analysis of evaluation results of different methods for

hashtag recommendation

Models Precision Recall F1-Score

Latent Dirichlet

Allocation
9.8% 7.8% 8.7%

SVM 23.8% 20.3% 21.9%

EmHash 15% 46% 22%

BELHASH 70% 66% 67%

Fig.5.5: Comparison of BELHASH with other models with respect to Precision

97

Fig.5.6: Comparison of BELHASH with other models with respect to Recall

Fig.5.7: Comparison of BELHASH with other models with respect to F1-Score

98

Table 5.4: Precision, Recall and F1-Scores for top-k (k=6) recommendations

k=1 k=2 k=3 k=4 k=5 k=6

Precision 0.66 0.4 0.5 0.71 1 0.92

Recall 0.7 0.4 0.5 0.92 0.63 0.8

F1-Score 0.69 0.4 0.5 0.8 0.77 0.86

Fig.5.8: Values of evaluation Metrics for top-k (k=6) recommendations

5.4 Conclusion

In this paper, we have proposed a novel model named BELHASH, which stands for

Bert Embedding based LSTM for Hashtag Recommendation. This model is evaluated

on 100K covid-19 tweets, scraped using Twitter API. Existing works related to

Hashtag recommendation comprises other embeddings like Word2Vec, GLOVE etc.

But these embeddings do not capture the semantics or the context of the words and

thus generate the same embeddings for different appearances of a word even if the

word is used for different contexts in different appearances. Bert Embedding, on the

99

other hand, captures the context of the same word in different perspectives and thus

generates different embeddings. Bert combined with LSTM works effectively and

generates good results. In experimentation, we achieved the best performance metrics

as precision 100% on top-5, recall as 92% on top-4 and F1-score as 86% on top-6

recommendations. The average of these values are Precision-70%, Recall-66% and

F1-Score-67%. The overall accuracy of the proposed methodology is 72%. The

results show that BELHASH performs better than other state-of-the-art models. In

the future, we aim to evaluate and optimize the time complexity of the proposed

model to make it more efficient. We also plan to extend this work for capturing the

trending and dynamic nature of tweets and thus recommending the hashtags

according to the on-going trends.

100

CHAPTER 6

EVALUATION METRICS

After the implementation of deep learning models for movie and hashtag

recommendations in the previous chapters, we now proceed towards exploring the

various performance evaluation metrics. Recommender systems have flooded the

internet with their capability to attract more users. Social media sites like Facebook

recommend posts and friends based on one’s interests. E-commerce sites like

Amazon, Flipkart recommend items to the users based on their history. Entertaining

sites like YouTube, Netflix recommend content based on users’ likings. Thus,

implementing the appropriate model for the problem of recommendation is the first

challenging task. Many companies invest majorly to improve the performance of

their recommendation system so as to increase sales. So, now when a lot of research

is being done to improve RS from time to time, there is a question that arises, how

well the RS is working. That means, we need to measure its quality using some

suitable evaluation metrics. So, choosing the appropriate evaluation metrics is

another challenging task. In this chapter, we provide a glimpse of various evaluation

metrics so that one can have an idea what metrics to use for evaluating the

performance of their model.

6.1 Introduction

Almost all online websites are working through recommendations. The more they

recommend quality products, the more their revenue is going to increase. RS is

applied in daily life in various applications such as e-commerce, e-learning and

education, tourism, healthcare, software engineering and many more [172].

Implementing the appropriate model for your problem of recommendation is the first

challenging task. But, choosing the right metric to evaluate that recommender model

is another challenging task. Sometimes, it may happen that selecting the wrong

metric to evaluate the model may give worse results even if the model is correctly

designed. So, it is important to know which metric is to be used while measuring the

101

performance of the system. In this chapter, we have explained almost all the

evaluation metrics that are so far used for evaluating the quality of the

recommendation models. According to the Fig. 6.1, we have distributed the various

evaluation metrics in four divisions: Based on Confusion Matrix, Based on Error,

Based on Ranking and Based on Linguistics.

Fig.6.1: Various Evaluation Metrics

The main contributions of the chapter are:

● This chapter describes almost all the evaluation metrics that have been used

and can be used in the future for the recommender systems.

● This chapter describes the various categories of the evaluation metrics, letting

one know which metric to be used accordingly.

● We propose a novel evaluation metric named Semantic Recommendation

Score (SRS), specifically designed for recommender systems, which takes the

advantages of both BERTScore and BARTScore.

6.2 Metrics based on Confusion Matrix

Confusion Matrix [173] summarizes the performance of the recommendation model.

It is well explained through Table 6.1.

102

Table 6.1: Confusion Matrix

Predicted Items

Recommended Not Recommended

Actual

Items

Liked Items True Positive (TP) False Negative (FN)

Not Liked Items False Positive (FP) True Negative (TN)

TP - It is recommended and liked by the user.

TN - It is not recommended and it is not liked by the user.

FP - It is recommended but not liked by the user.

FN - It is not recommended but liked by the user.

Consider an example:

Let's assume that there are the following 10 fruits in the dataset: Apple, Banana,

Orange, Pineapple, Strawberry, Mango, Grapes, Guava, Kiwi, and Papaya.

Items liked by the user: Banana, Grapes, Apple and Orange

Recommended Items: Apple, Papaya, Banana, Orange and Mango

Here, TP = 3, FP = 2, TN = 4, FN = 1

The evaluation metrics, based on the confusion matrix, are explained below,

considering the above example.

6.2.1 Accuracy - It is a very basic metric, defined as the proportion of correct

predictions made by the model to all the predictions. It is computed using the

equation 6.1.

Accuracy = (TP + TN) / (TP + FP + TN + FN) (6.1)

Accuracy = (3 + 4) / (3 + 2 + 4 + 1) = 7/10 = 0.7 ~ 70%

6.2.2 Sensitivity - It is defined as the correctly recommended items that are liked or

purchased by the users. It is computed using the equation 6.2.

Sensitivity = TP / (TP + FN) (6.2)

Sensitivity = 3 / (3 + 1) = 3/4 = 0.75 ~ 75%

103

6.2.3 Specificity - It is mainly used to remove noise from recommendation systems.

It is used to identify the non-recommended items that should not be liked by the user.

It is computed using the equation 6.3.

Specificity = TN / (TN + FP) (6.3)

Specificity = 4 / (4 + 2) = 4/6 = 0.67 ~ 67%

6.2.4 Precision - It is defined as the fraction of relevant recommended items over all

recommended items. Here, the reference is taken as recommended (predicted) items.

It is computed using the equation 6.4.

Precision = TP / (TP + FP) (6.4)

Precision = 3 / (3+2) = 3/5 = 0.6 ~ 60%

6.2.5 Recall - It is defined as the fraction of relevant recommended items over all

items. Here, the reference is taken as the items liked by the user. It is computed using

the equation 6.5.

Recall = TP / (TP + FN) (6.5)

Recall = 3 / (3+1) = 3/4 = 0.75 ~ 75%

6.2.6 F1 Score - It is defined as the Harmonic Mean of Precision and Recall. It is

computed using the equation 6.6.

F1 = (2 * Precision * Recall) / (Precision + Recall) (6.6)

F1 = (2 * 0.6 * 0.75) / (0.6 + 0.75) = 0.9 / 1.35 = 0.66 ~ 66%

6.2.7 Precision and Recall are Equal

Let's consider another example from the same database.

Items liked by the user: Apple, Orange, Banana and Mango

Recommended Items: Banana, Grapes, Apple and Orange

Here, TP = 3, TN = 5, FP = 1, FN = 1

Precision = TP / (TP + FP) = 3 / (3 + 1) = 3/4 = 0.75 ~ 75%

Recall = TP / (TP + FN) = 3 / (3 + 1) = 3/4 = 0.75 ~ 75%

F1 = (2 * 0.75 * 0.75) / (0.75 + 0.75) = 1.125 / 1.5 = 0.75 ~ 75%

We see that when Precision and Recall are equal, then F1-Score also becomes the

same.

104

6.2.8 Top-k recommendations

There is a case when recommendation systems provide a filter to top-k

recommendations, where k is the number of items in the ranked order. Consider the

below example:

Items liked by the user: Banana, Grapes, Apple and Orange

Top-3 Recommended Items: Apple, Papaya and Banana

Here, TP = 2, FP = 1, TN = 5, FN = 2

There is another version of precision, recall and F1 score as precision@k, recall@k

and F1@k, k is the number of items in the top-k recommender list.

Precision@3 = TP / (TP + FP) = 2 / (2+1) = 2/3 = 0.67 ~ 67%

Recall@3 = TP / (TP + FN) = 2 / (2+2) = 2/4 = 0.5 ~ 50%

F1@3 = (2 * 0.67 * 0.5) / (0.67 + 0.5) = 0.67 / 1.17 = 0.57 ~ 57%

6.3 Error based Metrics

Sometimes, it may happen that users leave no rating for the products they have liked.

Thus, the ratings database is almost empty or filled with NaNs (NaN is used for

missing data). Now to measure the performance of the recommender systems, one

has to predict the ratings. In such cases, where the database is sparse and the ratings

have to be predicted, error based metrics [173] are used.

6.3.1 Mean Absolute Error (MAE) - It is used when the database doesn’t have

many outliers. When the outliers don't affect the rating prediction, then MAE can be

used, as it gives equal weight to the outliers as to the relevant data. It doesn't penalize

the errors during prediction. It is basically the average magnitude of difference

between the actual rating and the predicted rating. It measures the average of the

residuals in the dataset. It is computed using the equation 6.7.

MAE = (6.7)1
𝑛

𝑖=1

𝑛

∑ |𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑎𝑡𝑖𝑛𝑔
𝑖

− 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑎𝑡𝑖𝑛𝑔
𝑖
|

where, n is the number of items in the database.

105

6.3.2 Normalized Mean Absolute Error (NMAE) - It is a variation of MAE in

which the average of mean error is normalized over the average of all actual ratings.

6.3.3 Mean Squared Error (MSE) - Unlike MAE, MSE doesn't give equal weight

to the outliers, i.e. it penalizes the errors during prediction. It is used when there are

many outliers in the database. It is defined as the average of the square of difference

between actual rating and the predicted rating. It basically measures the variance of

the residuals in the dataset. It is computed using the equation 6.8.

MSE = (6.8)1
𝑛

𝑖=1

𝑛

∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑎𝑡𝑖𝑛𝑔
𝑖

− 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑎𝑡𝑖𝑛𝑔
𝑖
)2

6.3.4 Root Mean Squared Error (RMSE) - It is the square root of MSE. It

measures the standard deviation of the residuals in the dataset. RMSE is preferred

over MSE as it is measured in the same units as the predicted values, whereas, MSE

is measured in the squared units of the predicted values. It is computed using the

equation 6.9.

RMSE = = (6.9)𝑀𝑆𝐸 (1/𝑛) *
𝑖=1

𝑛

∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑎𝑡𝑖𝑛𝑔
𝑖

− 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑎𝑡𝑖𝑛𝑔
𝑖
)2

6.4 Metrics based on Ranking

Sometimes, users are in a hurry while browsing through the items. In such cases,

recommending a lot of items will not make much profit, but recommending top-k

items will make a difference. This top-k recommendation is made through ranking

the items according to their ratings. Thus, users can like any item among these top-k

recommendations as they are better aligned with the interests of the user. The metrics

based on ranking [174] are explained below:

6.4.1 Hit Rate - If the recommended item in top-k recommendation is relevant to the

user or liked by the user, then it is a hit, otherwise, miss. Hit Rate is defined as the

ratio of number of hits per user. It is used when evaluating the proportion of relevant

items that are successfully recommended. It is computed using the equation 6.10.

Hit Rate = Number of hits / Number of users (6.10)

106

6.4.2 Hit Ratio - It is defined as the fraction of items in the top-k recommendation

that are relevant to the users. It is used when assessing the likelihood of at least one

relevant item being recommended to users. It is computed using the equation 6.11.

Hit Ratio = (# relevant items in top-k recommendations / # all relevant items) (6.11)

where, # represents the term “number of”

6.4.3 Cumulative Hit Rate (CHR) - In this, those hits are removed if they have a

predicted rating below than some threshold value. It is used when evaluating

recommendation systems based on the relevance of items at different positions in the

recommendation list.

6.4.4 Mean Reciprocal Rank (MRR) - It is also known as Average Reciprocal Hit

Rank (ARHR). It is used when prioritizing the rank of the first relevant item in the

recommendation list. It is defined as the sum of the reciprocal of rank of each hit

over the users. It is computed using the equation 6.12. It is used in 2 cases:

● If there is only one relevant item in the top-k recommendations

● If first item is relevant in the top-k recommendations

Let’s say, if the model has recommended top-10 items, and if the item ranked 4th is

the relevant item, then MRR does not care about the items ranked through 5 to 10.

MRR = (6.12)1
#𝑈𝑠𝑒𝑟𝑠

𝑖=1

𝐻𝑖𝑡𝑠

∑ (1
𝑅𝑎𝑛𝑘

𝑖
)

6.4.5 Mean Average Precision (MAP) - It is defined as the mean of average

precision. Average Precision (AP) is the average of precision of one user. So, MAP is

the average of AP of all users. It considers the recommendations in the ranked order.

It is used when considering the precision of recommendations at multiple points in

the recommendation list. It is computed using the equation 6.13.

MAP = (6.13)1
𝑈

𝑖=1

𝑈

∑ (𝐴𝑃
𝑖
)

107

Here, APi represents the Average Precision of ith user and U represents the number of

users in the database. Consider fig.6.2 and fig.6.3 for this purpose. Fig.6.3 takes top-3

recommendations into account. There are 7 items in the dataset: Apple, Banana,

Orange, Strawberry, Mango, Grapes and Pineapple.

Fig.6.2: Items liked by the various users and the items recommended by the model

Fig.6.3: Items liked by the various users and the Top-3 items recommended by the

model

108

Precision@k for the users of fig.6.2 and fig.6.3 are given in Table 6.2.

Table 6.2: Precision@k for users of fig.6.2 and fig.6.3

User 1 User 2 User 3

Fig.6.2 Fig.6.3 Fig.6.2 Fig.6.3 Fig.6.2 Fig.6.3

TP = 3 TP = 2 TP = 3 TP = 1 TP = 4 TP = 2

FP = 2 FP = 1 FP = 2 FP = 2 FP = 1 FP = 1

Precision@5

= 3/5 = 0.6

Precision@3

= 2/3 = 0.67

Precision@5

= 3/5 = 0.6

Precision@3

= 1/3 = 0.33

Precision@5

= 4/5 = 0.8

Precision@3

= 2/3 = 0.67

AP1 = (0.6+0.67)/2 = 0.635 AP2 = (0.6+0.33)/2 = 0.465 AP3 = (0.8+0.67)/2 = 0.735

MAP = (AP1 + AP2 + AP3) / 3 = (0.635 + 0.465 + 0.735) / 3 = 0.61 ~ 61%

6.5 Metrics based on Linguistics

Recently, there is a lot of research done on language processing.

Sequence-to-sequence tasks like summarization of text, text optimization, responding

to questions, chatbots to communicate and AI for translation are all part of this

processing. To evaluate such models, 2 metrics popularly being used are BLEU[152]

and ROUGE[153]. These metrics work on the concept of n-grams. n-grams are the

sequence of words of length n. Unigram (1-gram) is the sequence of words of length

1, bigram (2-gram) is the sequence of words of length 2. Similarly, n-grams are

sequences of words of length n. Both BLEU and ROUGE only consider the syntactic

structures of the generated/recommended text and have the disadvantage that they

don’t consider semantics of the generated text. Another metric named BARTScore

[154] assesses the linguistic fluency and coherence of the generated text. But, it also

has the same disadvantage as BLEU and ROUGE. To overcome the

above-mentioned drawback, BERTScore [155] is used which considers both

syntactic and semantics of the generated text.

109

6.5.1 Bilingual Evaluation Understudy (BLEU) - It is measured using the

following equation 6.14.

BLEU = BP . exp () (6.14)
𝑛=1

𝑁

∑ 𝑤
𝑛
𝑙𝑜𝑔

𝑒
𝑝

𝑛

exp → exponential

→ weight between 0 and 1 for𝑤
𝑛

𝑙𝑜𝑔
𝑒
𝑝

𝑛

→ precision of n-grams𝑝
𝑛

BP → brevity penalty is defined by equation 6.15.

(6.15)

c → the number of unigrams in the recommended text

r → best match length between the reference text / ground truth and the

recommended text

6.5.2 Recall-Oriented Understudy for Gisting Evaluation (ROUGE) - It is a

variation of BLEU which focuses on recall as well rather than only on precision. It

measures how many words from the reference text / ground truth are appearing in the

recommended text. It is just not a single metric but a set of metrics including:

Precision, Recall, F1 Score, ROUGE-N, ROUGE-L and ROUGE-S. Here, Precision,

Recall and F1 Score are the same as explained in section 6.2. We will explain the

remaining three metrics.

ROUGE-N - It represents the number of matching N-grams between model

generated text and reference text. It is represented using the equation 6.16.

ROUGE-N = (6.16)𝑛−𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∑ 𝑚𝑖𝑛 (𝐶𝑜𝑢𝑛𝑡 (𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑛−𝑔𝑟𝑎𝑚)), 𝐶𝑜𝑢𝑛𝑡 (𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 (𝑛−𝑔𝑟𝑎𝑚)))

𝑛−𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∑ 𝐶𝑜𝑢𝑛𝑡 (𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑛−𝑔𝑟𝑎𝑚)

where,

Count (reference (n-gram)) → Number of times an n-gram appears in reference text.

Count (generated (n-gram)) → Number of times an n-gram appears in generated text.

BP = { 1 if c > r

exp (1- (r/c)) if c <= r

110

Min → Takes the minimum count of an n-gram between the reference and generated,

ensuring only matched parts are considered.

ROUGE-L - It represents the Longest Common Subsequence between model

generated text and reference text i.e. longest sequence of words matching between

the two. It is represented using the equation 6.17.

ROUGE-L = (6.17)𝐿𝐶𝑆 (𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑒𝑥𝑡, 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑡𝑒𝑥𝑡)
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑒𝑥𝑡

where,

LCS → Length of Longest Common Subsequence between model generated text and

reference text.

ROUGE-S - Here, S stands for Skip-gram. It provides a leniency over ROUGE-N

which searches for the exact match in the recommended text. ROUGE-S searches for

the sequence of words in the recommended text matching with the reference text but

having other words in between them. It is represented using the equation 6.18.

ROUGE-S =

(6.18)𝑠𝑘𝑖𝑝−𝑏𝑖𝑔𝑟𝑎𝑚 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∑ 𝑚𝑖𝑛 (𝐶𝑜𝑢𝑛𝑡 (𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑠𝑘𝑖𝑝−𝑏𝑖𝑔𝑟𝑎𝑚)), 𝐶𝑜𝑢𝑛𝑡 (𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 (𝑠𝑘𝑖𝑝 −𝑏𝑖𝑔𝑟𝑎𝑚)))

𝑠𝑘𝑖𝑝−𝑏𝑖𝑔𝑟𝑎𝑚 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∑ 𝐶𝑜𝑢𝑛𝑡 (𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑘𝑖𝑝−𝑏𝑖𝑔𝑟𝑎𝑚)

where,

Skip-bigrams → pairs of words appearing in the same order but not necessarily

consecutively.

6.5.3 BERTScore - BERTScore is defined as the cosine similarity between the

BERT embeddings of recommended and ground truth items. It can be denoted by the

equation 6.19.

(6.19)𝐵𝐸𝑅𝑇𝑆𝑐𝑜𝑟𝑒 = 𝑖=1

𝑛

∑ 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚(𝐵𝐸𝑅𝑇_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑟𝑖), 𝐵𝐸𝑅𝑇_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑔𝑖))

𝑛

Here, ri is the i-th recommended item and gi is the i-th ground truth item.

111

6.5.4 BARTScore - BARTScore is defined as the cosine similarity between the

BART embeddings of recommended and ground truth items. It can be denoted by the

equation 6.20.

(6.20)𝐵𝐴𝑅𝑇𝑆𝑐𝑜𝑟𝑒 = 𝑖=1

𝑛

∑ 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚(𝐵𝐴𝑅𝑇_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑟𝑖), 𝐵𝐴𝑅𝑇_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑔𝑖))

𝑛

Here, ri is the i-th recommended item and gi is the i-th ground truth item.

6.6 Proposed Evaluation Metric

After having a discussion of various evaluation metrics in the above sections, we

now proceed towards proposing a novel metric based on linguistics.

6.6.1 Semantic Recommendation Score (SRS)

Sometimes, there are situations where both semantics along with linguistic fluency

needs to be considered. For such systems, we propose a novel metric, named

Semantic Recommendation Score (SRS), which is a hybrid of BERTScore and

BARTScore. SRS can be defined as the combination of both BERTScore and

BARTScore by assigning appropriate weights to each of them. It can be defined by

the equation 6.21. Framework of the proposed metric is shown in fig.6.4. The

description of the procedure of the calculation of the SRS value is given by

Algorithm 6.1.

SRS = Wa * BERTScore + Wb * BARTScore (6.21)

where, Wa and Wb are the appropriate weights assigned to BERTScore and

BARTScore respectively. BERTScore is calculated using equation 6.19 and

BARTScore is calculated using equation 6.20.

112

Fig.6.4: Flowchart of the calculation of SRS value

 Algorithm 1: SRS_CALCULATION (G, R)

Input: Set of ground truth items (G) and recommended items (R)

Output: SRS_Value

1. Procedure SRS_CALCULATION (G, R)

2. for each gi and ri in G and R respectively do

3. gi_emb_bert ← BERT_embedding(gi)

4. ri_emb_bert ← BERT_embedding(ri)

5. Similarity_score_bert←cosine_similarity(gi_emb_bert, ri_emb_bert)

6. BERTScore ← average(similarity_score_bert)

7. gi_emb__bart ← BART_embedding(gi)

8. ri_emb_bart ← BART_embedding(ri)

9. similarity_score_bart←cosine_similarity (gi_emb_bart, ri_emb_bart)

10. BARTScore ← average (similarity_score_bart)

11. SRS_Value ← Wa * BERTScore + Wb * BARTScore

12. end

13. Return SRS_Value

113

6.6.2 SRS Analysis

In the following section, we describe the values of weights Wa and Wb to be assigned

in different scenarios.

6.6.2.1 Emphasis on Semantics

In situations where semantics is relevant in comparison to linguistic quality then Wa

is given a higher weightage to Wb. For example, in News Recommendation systems,

where semantics is a crucial factor, Wa can be given the value of 0.7 and Wb can be

given the value of 0.3.

6.6.2.2 Emphasis on Linguistic Quality

In situations where linguistic quality is relevant in comparison to semantics then Wb

is given a higher weightage to Wa. For example, in an application for Language

Learning, recommendations are made for the interactive lessons, well explained

narrations and engaging exercises. In such cases, linguistic quality is important, so

Wa can be given the value of 0.3 and Wb can be given the value of 0.7.

6.6.2.3 Equal Emphasis on both Semantics and Linguistic Quality

In situations like Movie Recommendations where both linguistic quality (movie

descriptions, reviews) and semantics (genre, plot) are important, then both Wa and Wb

can be given the value of 0.5 each.

6.7 Conclusion

In this chapter, we have explained various accuracy measurement metrics broadly

categorized in four divisions - confusion matrix, error based, ranking based and

language translations. We have seen that when precision and recall are equal, then F1

score is also equal. Also, precision does not take rank into account, so for this, MAP

is used for top-k recommendations. Hit Rate, Hit Ratio can also be used in case of

ranking. When the rating database is sparse, and the model has to predict the ratings

of the items to fill the database, then error based metrics like MAE, MSE, and RMSE

114

are used. For recommendation based on language translations and summarization,

BLEU, ROUGE, BERTScore and BARTScore are used. ROUGE is a special form of

BLEU considering recall as well. BLEU, ROUGE and BARTScore don't take

semantics (meaning) of the text into consideration i.e. they give different scores to

the sentences having the same meaning but different words. This drawback is taken

care of by BERTScore which has bright future scope in the recommendation systems.

We also propose a novel evaluation metric, Semantic Recommendation Score, which

is a hybrid of BERTScore and BARTScore. As BERTScore considers the semantics

along with the syntactic structure of the generated text and BARTScore mainly

focuses on the linguistic quality and the coherence between the generated and

reference text, sometimes there are situations where both the semantics and linguistic

quality needs to be considered. So, the proposed metric, SRS, helps to consider both

the semantics and linguistic fluency of the generated/recommended text. This metric

also has a limitation as it involves the computation of BERT and BART models.

These heavy models lead to resource intensive computational costs for large datasets.

SRS involves the computation of weights Wa and Wb manually, we plan to use some

optimization algorithm to compute these weights as the future work.

115

CHAPTER 7

CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT

7.1 Conclusion

Sampling and noise filtering are the important steps before making the data suitable

for processing. Thus, a comprehensive survey of both sampling and noise filtering

methods is discussed in chapter 3. We have discussed six types of sampling

methods used for recommender systems, namely, Bayesian Hierarchical Sampling,

Negative Sampling, Thompson Sampling, Bernoulli Sampling, Gibbs Sampling and

Bootstrap Sampling. Negative sampling works best for user-item recommendations

that involve ratings of the items. Thompson sampling has been found to be effective

in enhancing the performance of conversational and interactive recommender

systems. For recommending movies and products, Gibbs sampling and Bernoulli

distribution work best.

Next, in chapter 3, we describe various types of noise - malicious, natural, structural

and contextual and various methods / models to eradicate these noise from RS.

Because of the open nature of recommender systems, malicious noise can find its

way in. As a result, we have exposed some research articles that focus on techniques

for identifying this kind of noise in the database. Additionally, customers are

occasionally reluctant to provide accurate reviews or ratings for the products they

have bought. Consequently, this introduces false ratings, which adds to the system's

natural noise. Prior to processing the data and making additional recommendations,

natural noise must also be eliminated. As a result, we also offer a review of studies

that address natural noise in recommender systems.

Structural and contextual noise are some of the other types of noise that are present in

addition to malicious and natural noise. The recommendation systems are equipped

with sophisticated methods, like optimization algorithms, to deal with these kinds of

noise. The quality of the recommendation systems is enhanced by optimization. Its

main goal is to improve RS performance by reducing the effect of noise by using

116

computational and mathematical techniques. As a result, we give a summary of a few

studies that employ optimization strategies to reduce or eliminate the influence of

noise while gauging recommender system performance.

After the critical analysis of noise filtering methods, in chapter 4, we proposed a

model for movie recommendation in which tweets are trained with negative

examples along with positive examples. We also introduced a novel optimization

technique called Nuclear Physics Optimization (NPO). It is applied to filter out the

irrelevant tweets. Through the proposed optimization-based noise filtering

approach, we aimed to enhance the quality and relevance of movie

recommendations generated from user-centric tweets, thereby enriching the overall

movie recommendation experience. Our findings demonstrate that the

optimization-based noise filtering method significantly improves the performance

of movie recommendation systems.

Further, in chapter 5, we also proposed a model named BELHASH, which stands

for ‘Bert Embedding based LSTM for Hashtag recommendation’. This model is

assessed using 100K COVID-19 tweets that were scraped via the Twitter API.

Embeddings like Word2Vec, GLOVE do not take into account the context or

semantics of the words, which results in the same embeddings for words that appear

in different contexts or at different times. Conversely, Bert Embedding which is

used in this work, captures the context of the same word in different perspectives

and thus generates different embeddings. BERT combined with LSTM works

effectively and generates good results in recommending hashtags. The outcomes

demonstrate that BELHASH outperforms other cutting-edge models.

We also made an analysis of various performance evaluation parameters in chapter

6. We categorize accuracy measurement metrics broadly into four divisions -

confusion matrix, error based, ranking based and linguistic based. As the

technology is advancing and many language processing systems are arriving in the

market, we focussed that there is a scope to apply lingual based metrics such as

BLEU, ROUGE, BARTScore and BERTScore for recommendations based on

language translations and summarization. Since BARTScore primarily focuses on

117

linguistic quality and coherence between the generated and reference text, and

BERTScore takes into account both the syntactic structure and semantics of the

generated text, there are circumstances in which both linguistic quality and

semantics must be taken into account. Thus, we propose a novel evaluation metric,

Semantic Recommendation Score, which is a hybrid of BERTScore and

BARTScore. The suggested metric, SRS, aids in taking into account both the

linguistic fluency and semantics of the generated/recommended text.

7.2 Future Work

We found that numerous noise filtration studies, as discussed in chapter 3, focus

solely on numerical ratings, but in the future, diverse user feedback may be taken

into account. Another area where noise handling is not well addressed is

context-aware recommendation scenarios. Therefore, adding more features for noise

detection and correction can be achieved by working on the context information,

such as user comments. Furthermore, a lot of research was conducted using static

datasets, but dynamic data sets are required for practical applications. Thus, models

and processing techniques can be created in the future and applied to work with

dynamic data streams.

Future research directions for the proposed model in chapter 4 of Movie

recommendation, include refining the optimization-based noise filtering method for

diverse data sources, as well as incorporating additional features and contextual

information from user-centric tweets to further enrich the recommendation process.

The model proposed in chapter 5 for Hashtag recommendation works only for Covid

based tweets. We plan to extend this work capturing the trending and dynamic nature

of tweets and thus recommending the hashtags according to the on-going trends.

Also, we plan to extend our work for recommending the hashtags for multimodal

data including images and videos. We also plan to resolve the cold start and sparsity

problems in the proposed models for movies and hashtags. We also plan to extend the

proposed models to handle cross-domain recommendation scenarios, where users'

preferences and item characteristics may vary across different domains (e.g., movies,

music, books) by investigating transfer learning techniques.

118

7.3 Impact on Society

Recommendation systems provide personalized content making someone relaxed and

feel healthy. This automatic suggestion of personalized content saves a lot of time as

it reduces labor to search anything manually. It also increases user satisfaction and

engagement with the platform. Various movie recommendation platforms like

Netflix, Amazon Prime lead to increased subscriptions and advertising revenues.

These platforms generate original content, based on audience preferences.

Data-driven insights from user interactions encourage innovation and creativity in the

entertainment sector. Consequently, movie recommendation systems are not only

improving user experiences but also influencing how media will be consumed in the

future, promoting economic expansion, and opening up new business opportunities

for content creators across the globe.

Recommendation systems on social media sites increase social connectivity by

connecting similar users and thus boosting social relations. It also leads to better

spread of information within and across societies. These systems produce

communities centered around common interests and passions by recommending

friends, groups, and content that match users' preferences. Users are able to grow

their social networks in unthinkable ways due to this improved connectivity, which

not only makes new connections easier but also reinforces the ones that already exist.

119

REFERENCES

[1] Abbas, M., Riaz, M. U., Rauf, A., Khan, M. T., & Khalid, S. (2017, December).

Context-aware Youtube recommender system. In 2017 IEEE international conference on

information and communication technologies (ICICT), (pp. 161-164).

[2] Gürmeriç, C. (2019). Behavioral changes of the audience by the algorithmic

recommendation systems inside video-on-demand platforms considering the example of

Netflix (Master's thesis, Bilkent Universitesi (Turkey)).

[3] Hannon, J., Bennett, M., & Smyth, B. (2010, September). Recommending twitter users to

follow using content and collaborative filtering approaches. In Proceedings of the fourth

ACM conference on Recommender systems, (pp. 199-206).

[4] Dwivedi, R., Anand, A., Johri, P., Banerji, A., & Gaur, N. (2020). Product based

recommendation system on amazon data. Int J Creat Res Thoughts–IJCRT, (pp. 1-8).

[5] Liang, Z., Zhang, G., Huang, J. X., & Hu, Q. V. (2014, November). Deep learning for

healthcare decision making with EMRs. In 2014 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), (pp. 556-559).

[6] Wu, Q., Liu, Y., Li, Q., Jin, S., & Li, F. (2017, October). The application of deep learning

in computer vision. In 2017 IEEE Chinese Automation Congress (CAC), (pp. 6522-6527).

[7] Strubell, E., Ganesh, A., & McCallum, A. (2020, April). Energy and policy

considerations for modern deep learning research. In Proceedings of the AAAI conference on

artificial intelligence, Vol. 34, No. 09, (pp. 13693-13696).

[8] Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., &

Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics.

Journal of big data, 2, (pp. 1-21).

[9] Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey.

Computers and electronics in agriculture, 147, (pp. 70-90).

[10] Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning

for visual understanding: A review. Neurocomputing, 187, (pp. 27-48).

[11] Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. In The

adaptive web: methods and strategies of web personalization. Berlin, Heidelberg: Springer

Berlin Heidelberg, (pp. 325-341).

[12] Sen, S., Vig, J., & Riedl, J. (2009, April). Tagommenders: connecting users to items

through tags. In Proceedings of the 18th international conference on World wide web, (pp.

671-680).

120

[13] Shi, B., Ifrim, G., & Hurley, N. (2016, April). Learning-to-rank for real-time

high-precision hashtag recommendation for streaming news. In Proceedings of the 25th

International Conference on World Wide Web, International World Wide Web Conferences

Steering Committee, (pp. 1191-1202).

[14] Shi, B., Poghosyan, G., Ifrim, G., & Hurley, N. (2017). Hashtagger+: Efficient

high-coverage social tagging of streaming news. IEEE Transactions on Knowledge and Data

Engineering, 30(1), (pp. 43-58).

[15] Li, J., & Xu, H. (2016). Suggest what to tag: Recommending more precise hashtags

based on users’ dynamic interests and streaming tweet content. Knowledge-Based Systems,

106, (pp. 196-205).

[16] Mooney, R. J., & Roy, L. (2000, June). Content-based book recommending using

learning for text categorization. In Proceedings of the fifth ACM conference on Digital

libraries, (pp. 195-204).

[17] Ma, H., King, I., & Lyu, M. R. (2009, July). Learning to recommend with social trust

ensemble. In Proceedings of the 32nd international ACM SIGIR conference on Research and

development in information retrieval, (pp. 203-210).

[18] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). Item-based collaborative

filtering recommendation algorithms. In Proceedings of the 10th international conference on

World Wide Web, (pp. 285-295).

[19] Hu, Y., Koren, Y., & Volinsky, C. (2008, December). Collaborative filtering for implicit

feedback datasets. In 2008 Eighth IEEE international conference on data mining, (pp.

263-272).

[20] Popescul, A., Ungar, L. H., Pennock, D. M., & Lawrence, S. (2013). Probabilistic

models for unified collaborative and content-based recommendation in sparse-data

environments. arXiv preprint arXiv:1301.2303, (pp. 437-444).

[21] Wang, H., Wang, N., & Yeung, D. Y. (2015, August). Collaborative deep learning for

recommender systems. In Proceedings of the 21th ACM SIGKDD international conference

on knowledge discovery and data mining, (pp. 1235-1244).

[22] Li, S., Kawale, J., & Fu, Y. (2015, October). Deep collaborative filtering via

marginalized denoising auto-encoder. In Proceedings of the 24th ACM International on

Conference on Information and Knowledge Management, (pp. 811-820).

[23] Covington, P., Adams, J., & Sargin, E. (2016, September). Deep neural networks for

youtube recommendations. In Proceedings of the 10th ACM conference on recommender

systems, (pp. 191-198).

121

[24] Yang, C., Bai, L., Zhang, C., Yuan, Q., & Han, J. (2017, August). Bridging collaborative

filtering and semi-supervised learning: A neural approach for poi recommendation. In

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, (pp. 1245-1254).

[25] Wu, H., Zhang, Z., Yue, K., Zhang, B., He, J., & Sun, L. (2018). Dual-regularized

matrix factorization with deep neural networks for recommender systems. Knowledge-Based

Systems, 145, (pp. 46-58).

[26] Shen, X., Yi, B., Zhang, Z., Shu, J., & Liu, H. (2016, July). Automatic recommendation

technology for learning resources with convolutional neural network. In 2016 IEEE

International Symposium on Educational Technology (ISET), (pp. 30-34).

[27] Gong, Y., & Zhang, Q. (2016, July). Hashtag Recommendation Using Attention-Based

Convolutional Neural Network. In IJCAI, (pp. 2782-2788).

[28] Wang, J., Sun, J., Lin, H., Dong, H., & Zhang, S. (2017). Convolutional neural networks

for expert recommendation in community question answering. Science China Information

Sciences, 60(110102), (pp. 1-9).

[29] Zheng, L., Noroozi, V., & Yu, P. S. (2017, February). Joint deep modeling of users and

items using reviews for recommendation. In Proceedings of the Tenth ACM International

Conference on Web Search and Data Mining, (pp. 425-434).

[30] Barbieri, J., Alvim, L. G., Braida, F., & Zimbrão, G. (2017). Autoencoders and

recommender systems: COFILS approach. Expert Systems with Applications, 89, (pp. 81-90).

[31] Sedhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015, May). Autorec: Autoencoders

meet collaborative filtering. In Proceedings of the 24th ACM International Conference on

World Wide Web, (pp. 111-112).

[32] Deng, S., Huang, L., Xu, G., Wu, X., & Wu, Z. (2016). On deep learning for trust-aware

recommendations in social networks. IEEE transactions on neural networks and learning

systems, 28(5), (pp. 1164-1177).

[33] Zuo, Y., Zeng, J., Gong, M., & Jiao, L. (2016). Tag-aware recommender systems based

on deep neural networks. Neurocomputing, 204, (pp. 51-60).

[34] Wang, H., Shi, X., & Yeung, D. Y. (2015, February). Relational stacked denoising

autoencoder for tag recommendation. In Twenty-ninth AAAI conference on artificial

intelligence, (pp. 3052-3058).

[35] Gao, J., Zhang, T., & Xu, C. (2017, October). A unified personalized video

recommendation via dynamic recurrent neural networks. In Proceedings of the 25th ACM

international conference on Multimedia, (pp. 127-135).

122

[36] Jannach, D., & Ludewig, M. (2017, August). When recurrent neural networks meet the

neighborhood for session-based recommendation. In Proceedings of the Eleventh ACM

Conference on Recommender Systems, (pp. 306-310).

[37] Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2015). Session-based

recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, (pp.

1-10).

[38] Li, J., Xu, H., He, X., Deng, J., & Sun, X. (2016, July). Tweet modeling with LSTM

recurrent neural networks for hashtag recommendation. In 2016 IEEE International Joint

Conference on Neural Networks (IJCNN), (pp. 1570-1577).

[39] Cui, Q., Wu, S., Liu, Q., Zhong, W., & Wang, L. (2018). MV-RNN: A multi-view

recurrent neural network for sequential recommendation. IEEE Transactions on Knowledge

and Data Engineering, 32(2), (pp. 317-331).

[40] Zhang, Q., Wang, J., Huang, H., Huang, X., & Gong, Y. (2017, August). Hashtag

Recommendation for Multimodal Microblog Using Co-Attention Network. In IJCAI, (pp.

3420-3426).

[41] Zhao, Z., Sun, J., Yao, L., Wang, X., Chu, J., Liu, H., & Yu, G. (2017). Modeling

Chinese microblogs with five Ws for topic hashtags extraction. Tsinghua Science and

Technology, 22(2), (pp. 135-148).

[42] Ma, J., Feng, C., Shi, G., Shi, X., & Huang, H. (2018). Temporal enhanced

sentence-level attention model for hashtag recommendation. CAAI Transactions on

Intelligence Technology, 3(2), (pp. 95-100).

[43] Zhang, S., Yao, Y., Xu, F., Tong, H., Yan, X., & Lu, J. (2019, July). Hashtag

recommendation for photo sharing services. In Proceedings of the AAAI conference on

artificial intelligence, Vol. 33, No. 01, (pp. 5805-5812).

[44] Maity, S. K., Panigrahi, A., Ghosh, S., Banerjee, A., Goyal, P., & Mukherjee, A. (2019).

DeepTagRec: A content-cum-user based tag recommendation framework for stack overflow.

In Advances in Information Retrieval: 41st European Conference on IR Research, ECIR

2019, Cologne, Germany, April 14–18, 2019, Proceedings, Part II 41, Springer International

Publishing, (pp. 125-131).

[45] Wei, Y., Cheng, Z., Yu, X., Zhao, Z., Zhu, L., & Nie, L. (2019, October). Personalized

hashtag recommendation for micro-videos. In Proceedings of the 27th ACM International

Conference on Multimedia, (pp. 1446-1454).

[46] Yang, C., Wang, X., & Jiang, B. (2020). Sentiment Enhanced Multi-Modal Hashtag

Recommendation for Micro-Videos. IEEE Access, 8, (pp. 78252-78264).

123

[47] Liu, S., Xie, J., Zou, C., & Chen, Z. (2020, July). User Conditional Hashtag

Recommendation for Micro-Videos. In 2020 IEEE International Conference on Multimedia

and Expo (ICME), (pp. 1-6).

[48] Liu, Y., Yang, S., Xu, Y., Miao, C., Wu, M., & Zhang, J. (2021). Contextualized graph

attention network for recommendation with item knowledge graph. IEEE Transactions on

knowledge and data engineering, 35(1), (pp. 181-195).

[49] Chen, L., Cao, J., Wang, Y., Liang, W., & Zhu, G. (2022). Multi-view graph attention

network for travel recommendation. Expert Systems with Applications, 191, 116234, (pp.

1-13).

[50] Dong, Q., Liu, B., Zhang, X., Qin, J., & Wang, B. (2023). Sequential POI Recommend

Based on Personalized Federated Learning. Neural Processing Letters, 55(6), (pp.

7351-7368).

[51] Liu, Z., Yang, L., Fan, Z., Peng, H., & Yu, P. S. (2022). Federated social

recommendation with graph neural network. ACM Transactions on Intelligent Systems and

Technology (TIST), 13(4), (pp. 1-24).

[52] Kumar, A., Jain, D. K., Mallik, A., & Kumar, S. (2024). Modified node2vec and

attention based fusion framework for next POI recommendation. Information Fusion, 101,

101998, (pp. 1-13).

[53] O'Mahony, M. P., Hurley, N. J., & Silvestre, G. C. (2006, January). Detecting noise in

recommender system databases. In Proceedings of the 11th international conference on

Intelligent user interfaces, (pp. 109-115).

[54] S. Lavanya and S. Palaniswami, 2016. Hierarchical Sampling Techniques for

Imbalanced Datasets. Asian Journal of Information Technology, 15, (pp. 2887-2896).

[55] Li, G., Zhu, T., Hua, J., Yuan, T., Niu, Z., Li, T., & Zhang, H. (2019). Asking images:

Hybrid recommendation system for tourist spots by hierarchical sampling statistics and

multimodal visual Bayesian personalized ranking. IEEE Access, 7, (pp. 126539-126560).

[56] Li, G., Hua, J., Yuan, T., Wu, J., Jiang, Z., Zhang, H., & Li, T. (2019). Novel

recommendation system for tourist spots based on hierarchical sampling statistics and

SVD++. Mathematical Problems in Engineering, 2019(1), 2072375, (pp. 1-15).

[57] Zhang, Y., & Koren, J. (2007, July). Efficient bayesian hierarchical user modeling for

recommendation system. In Proceedings of the 30th annual international ACM SIGIR

conference on Research and development in information retrieval, (pp. 47-54).

124

[58] John, “Overview Negative Sampling on Recommendation Systems”, MLearning.ai.

https://medium.com/mlearning-ai/overview-negative-sampling-on-recommendation-systems-

230a051c6cd7 [accessed Jul 11, 2021].

[59] Rafailidis, D. (2019, October). Bayesian deep learning with trust and distrust in

recommendation systems. In 2019 IEEE/WIC/ACM International Conference on Web

Intelligence (WI), (pp. 18-25).

[60] Liu, Z., Ma, Y., Ouyang, Y., & Xiong, Z. (2021). Contrastive learning for recommender

system. arXiv preprint arXiv:2101.01317, (pp. 1-10).

[61] Xie, R., Liu, Q., Wang, L., Liu, S., Zhang, B., & Lin, L. (2022, August). Contrastive

cross-domain recommendation in matching. In Proceedings of the 28th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, (pp. 4226-4236).

[62] Liao, W., Zhang, Q., Yuan, B., Zhang, G., & Lu, J. (2022). Heterogeneous multidomain

recommender system through adversarial learning. IEEE Transactions on Neural Networks

and Learning Systems, 34(11), (pp. 8965-8977).

[63] Yang, J., Yi, X., Zhiyuan Cheng, D., Hong, L., Li, Y., Xiaoming Wang, S., ... & Chi, E.

H. (2020, April). Mixed negative sampling for learning two-tower neural networks in

recommendations. In Companion Proceedings of the Web Conference 2020, (pp. 441-447).

[64] Zhou, K., Zhao, W. X., Wang, H., Wang, S., Zhang, F., Wang, Z., & Wen, J. R. (2020,

October). Leveraging historical interaction data for improving conversational recommender

system. In Proceedings of the 29th ACM International Conference on Information &

Knowledge Management, (pp. 2349-2352).

[65] Huang, T., Zhang, D., & Bi, L. (2020). Neural embedding collaborative filtering for

recommender systems. Neural Computing and Applications, 32(22), (pp. 17043-17057).

[66] Katehakis, M. N., & Veinott Jr, A. F. (1987). The multi-armed bandit problem:

decomposition and computation. Mathematics of Operations Research, 12(2), (pp. 262-268).

[67] Kuleshov, V., & Precup, D. (2014). Algorithms for multi-armed bandit problems. arXiv

preprint arXiv:1402.6028, (pp. 1-32).

[68] Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., & Wen, Z. (2018). A tutorial on

thompson sampling. Foundations and Trends® in Machine Learning, 11(1), (pp. 1-96).

[69] Chapelle, O., & Li, L. (2011). An empirical evaluation of thompson sampling. Advances

in neural information processing systems, 24, (pp. 1-9).

[70] Hariri, N., Mobasher, B., & Burke, R. (2014, October). Context adaptation in interactive

recommender systems. In Proceedings of the 8th ACM Conference on Recommender

Systems, (pp. 41-48).

https://medium.com/mlearning-ai?source=post_page-----230a051c6cd7--------------------------------

125

[71] Song, Y., Wang, L., Dang, H., Zhou, W., Guan, J., Zhao, X., ... & Shao, J. (2021, July).

Underestimation Refinement: A General Enhancement Strategy for Exploration in

Recommendation Systems. In Proceedings of the 44th International ACM SIGIR Conference

on Research and Development in Information Retrieval, (pp. 1818-1822).

[72] Lei, W., He, X., de Rijke, M., & Chua, T. S. (2020, July). Conversational

recommendation: Formulation, methods, and evaluation. In Proceedings of the 43rd

International ACM SIGIR Conference on Research and Development in Information

Retrieval, (pp. 2425-2428).

[73] Krauth, K., Dean, S., Zhao, A., Guo, W., Curmei, M., Recht, B., & Jordan, M. I. (2020).

Do Offline Metrics Predict Online Performance in Recommender Systems?. arXiv preprint

arXiv:2011.07931, (pp.1-21).

[74] Gauthier, C. S., Gaudel, R., & Fromont, E. (2020). Position-based multiple-play bandits

with thompson sampling. arXiv preprint arXiv:2009.13181, (pp. 1-7).

[75] Vargas, S., Baltrunas, L., Karatzoglou, A., & Castells, P. (2014, October). Coverage,

redundancy and size-awareness in genre diversity for recommender systems. In Proceedings

of the 8th ACM Conference on Recommender systems, (pp. 209-216).

[76] Liu, H., Wen, J., Jing, L., & Yu, J. (2019, September). Deep generative ranking for

personalized recommendation. In Proceedings of the 13th ACM Conference on

Recommender Systems, (pp. 34-42).

[77] Schmit, S., & Riquelme, C. (2018, March). Human interaction with recommendation

systems. In International Conference on Artificial Intelligence and Statistics, PMLR, (pp.

862-870).

[78] Ortega, F., Lara-Cabrera, R., González-Prieto, Á., & Bobadilla, J. (2021). Providing

reliability in recommender systems through Bernoulli Matrix Factorization. Information

Sciences, 553, (pp. 110-128).

[79] Ginart, A. A., Naumov, M., Mudigere, D., Yang, J., & Zou, J. (2021, July). Mixed

dimension embeddings with application to memory-efficient recommendation systems. In

2021 IEEE International Symposium on Information Theory (ISIT), (pp. 2786-2791).

[80] Wu, Q., Wang, H., Hong, L., & Shi, Y. (2017, November). Returning is believing:

Optimizing long-term user engagement in recommender systems. In Proceedings of the 2017

ACM on Conference on Information and Knowledge Management, (pp. 1927-1936).

[81] Liu, J., Wu, C., & Liu, W. (2013). Bayesian probabilistic matrix factorization with social

relations and item contents for recommendation. Decision Support Systems, 55(3), (pp.

838-850).

126

[82] Chakrabarty, N., Rana, S., Chowdhury, S., & Maitra, R. (2019, December). RBM based

joke recommendation system and joke reader segmentation. In International Conference on

Pattern Recognition and Machine Intelligence, Springer, Cham, (pp. 229-239).

[83] Liu, C., Jin, T., Hoi, S. C., Zhao, P., & Sun, J. (2017). Collaborative topic regression for

online recommender systems: an online and Bayesian approach. Machine Learning, 106(5),

(pp. 651-670).

[84] Narayan, S., & Sathiyamoorthy, E. (2019). A novel recommender system based on FFT

with machine learning for predicting and identifying heart diseases. Neural Computing and

Applications, 31(1), (pp. 93-102).

[85] Hussein, A. S., Omar, W. M., Li, X., & Ati, M. (2012). Accurate and reliable

recommender system for chronic disease diagnosis. Global Health, (pp. 113-118).

[86] Hussein, A. S., Omar, W. M., Li, X., & Ati, M. (2012, December). Efficient chronic

disease diagnosis prediction and recommendation system. In 2012 IEEE-EMBS Conference

on Biomedical Engineering and Sciences, (pp. 209-214).

[87] Tang, L., Jiang, Y., Li, L., Zeng, C., & Li, T. (2015, August). Personalized

recommendation via parameter-free contextual bandits. In Proceedings of the 38th

international ACM SIGIR conference on research and development in information retrieval,

(pp. 323-332).

[88] Vinagre, J., Jorge, A. M., & Gama, J. (2018). Online bagging for recommender systems.

Expert Systems, 35(4), e12303, (pp. 1-13).

[89] Zhang, F., & Chen, H. (2016). An ensemble method for detecting shilling attacks based

on ordered item sequences. Security and Communication Networks, 9(7), (pp. 680-696).

[90] Burke, R., Mobasher, B., Williams, C., & Bhaumik, R. (2006, August). Classification

features for attack detection in collaborative recommender systems. In Proceedings of the

12th ACM SIGKDD international conference on Knowledge discovery and data mining, (pp.

542-547).

[91] Morid, M. A., Shajari, M., & Hashemi, A. R. (2014). Defending recommender systems

by influence analysis. Information Retrieval, 17(2), (pp. 137-152).

[92] Chirita, P. A., Nejdl, W., & Zamfir, C. (2005, November). Preventing shilling attacks in

online recommender systems. In Proceedings of the 7th annual ACM international workshop

on Web information and data management, (pp. 67-74).

[93] Zhou, Q. (2016). Supervised approach for detecting average over popular items attack in

collaborative recommender systems. IET Information Security, 10(3), (pp. 134-141).

127

[94] Kapoor, S., Gupta, V., & Kumar, R. (2018). An obfuscated attack detection approach for

collaborative recommender systems. Journal of computing and information technology,

26(1), (pp. 45-56).

[95] Williams, C. A., Mobasher, B., & Burke, R. (2007). Defending recommender systems:

detection of profile injection attacks. Service Oriented Computing and Applications, 1(3),

(pp. 157-170).

[96] Yang, F., Gao, M., Yu, J., Song, Y., & Wang, X. (2018, November). Detection of shilling

attack based on bayesian model and user embedding. In 2018 IEEE 30th International

Conference on Tools with Artificial Intelligence (ICTAI), (pp. 639-646).

[97] Zhang, F., & Zhou, Q. (2014). HHT–SVM: An online method for detecting profile

injection attacks in collaborative recommender systems. Knowledge-Based Systems, 65, (pp.

96-105).

[98] Zhou, W., Wen, J., Gao, M., Liu, L., Cai, H., & Wang, X. (2015, October). A shilling

attack detection method based on SVM and target item analysis in collaborative filtering

recommender systems. In International Conference on Knowledge Science, Engineering and

Management, Springer, Cham, (pp. 751-763).

[99] Yang, Z., Xu, L., Cai, Z., & Xu, Z. (2016). Re-scale AdaBoost for attack detection in

collaborative filtering recommender systems. Knowledge-Based Systems, 100, (pp. 74-88).

[100] Cao, J., Wu, Z., Mao, B., & Zhang, Y. (2013). Shilling attack detection utilizing

semi-supervised learning method for collaborative recommender system. World Wide Web,

16(5), (pp. 729-748).

[101] Zhang, L., Yuan, Y., Wu, Z., & Cao, J. (2017, August). Semi-SGD: Semi-supervised

learning based spammer group detection in product reviews. In 2017 IEEE Fifth

International Conference on Advanced Cloud and Big Data (CBD), (pp. 368-373).

[102] Zhou, Q., & Duan, L. (2021). Semi-supervised recommendation attack detection based

on Co-Forest. Computers & Security, 109, 102390, (pp. 1-18).

[103] Li, M., & Zhou, Z. H. (2007). Improve computer-aided diagnosis with machine

learning techniques using undiagnosed samples. IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, 37(6), (pp. 1088-1098).

[104] Alostad, J. M. (2019). Improving the shilling attack detection in recommender systems

using an SVM gaussian mixture model. Journal of Information & Knowledge Management,

18(01), 1950011, (pp. 1-18).

128

[105] Zhang, F., Zhang, Z., Zhang, P., & Wang, S. (2018). UD-HMM: An unsupervised

method for shilling attack detection based on hidden Markov model and hierarchical

clustering. Knowledge-Based Systems, 148, (pp. 146-166).

[106] Yang, L., Huang, W., & Niu, X. (2017). Defending shilling attacks in recommender

systems using soft co‐clustering. IET Information Security, 11(6), (pp. 319-325).

[107] Cai, H., & Zhang, F. (2019). An unsupervised method for detecting shilling attacks in

recommender systems by mining item relationship and identifying target items. The

Computer Journal, 62(4), (pp. 579-597).

[108] Davoudi, A., & Chatterjee, M. (2017, December). Detection of profile injection attacks

in social recommender systems using outlier analysis. In 2017 IEEE International

Conference on Big Data (Big Data), (pp. 2714-2719).

[109] Yang, Z., Cai, Z., & Guan, X. (2016). Estimating user behavior toward detecting

anomalous ratings in rating systems. Knowledge-Based Systems, 111, (pp. 144-158).

[110] Yang, Z., Sun, Q., Zhang, Y., & Zhang, B. (2018). Uncovering anomalous rating

behaviors for rating systems. Neurocomputing, 308, (pp. 205-226).

[111] Chakraborty, P., & Karforma, S. (2015). Effectiveness of proximity-based outlier

analysis in detecting profile-injection attacks in E-Commerce Recommender Systems. In

Information Systems Design and Intelligent Applications, Springer, New Delhi, (pp.

255-263).

[112] Zhou, W., Koh, Y. S., Wen, J., Alam, S., & Dobbie, G. (2014, July). Detection of

abnormal profiles on group attacks in recommender systems. In Proceedings of the 37th

international ACM SIGIR conference on Research & development in information retrieval,

(pp. 955-958).

[113] Panagiotakis, C., Papadakis, H., & Fragopoulou, P. (2018, September). Detection of

hurriedly created abnormal profiles in recommender systems. In 2018 IEEE International

Conference on Intelligent Systems (IS), (pp. 499-506).

[114] Papadakis, H., Michalakis, N., Fragopoulou, P., Panagiotakis, C., & Malamos, A.

(2017, September). Movie score: Personalized movie recommendation on mobile devices. In

Proceedings of the 21st Pan-Hellenic Conference on Informatics, (pp. 1-6).

[115] Panagiotakis, C., Papadakis, H., & Fragopoulou, P. (2020). Unsupervised and

supervised methods for the detection of hurriedly created profiles in recommender systems.

International Journal of Machine Learning and Cybernetics, 11(9), (pp. 2165-2179).

129

[116] Amatriain, X., Pujol, J. M., & Oliver, N. (2009, June). I like it... i like it not: Evaluating

user ratings noise in recommender systems. In International Conference on User Modeling,

Adaptation, and Personalization, Springer, Berlin, Heidelberg, (pp. 247-258).

[117] Amatriain, X., Pujol, J. M., Tintarev, N., & Oliver, N. (2009, October). Rate it again:

increasing recommendation accuracy by user re-rating. In Proceedings of the third ACM

conference on Recommender systems, (pp. 173-180).

[118] Pham, H. X., & Jung, J. J. (2013). Preference-based user rating correction process for

interactive recommendation systems. Multimedia tools and applications, 65(1), (pp.

119-132).

[119] Panagiotakis, C., Papadakis, H., Papagrigoriou, A., & Fragopoulou, P. (2021).

Improving recommender systems via a dual training error based correction approach. Expert

Systems with Applications, 183, 115386, (pp. 1-17).

[120] Dixit, V. S., Jain, P., & Gupta, S. (2019). Proposed rcfs-cars framework with noise

detection and correction. Applied Artificial Intelligence, 33(4), (pp. 361-377).

[121] Li, D., Chen, C., Gong, Z., Lu, T., Chu, S. M., & Gu, N. (2019, May). Collaborative

filtering with noisy ratings. In Proceedings of the 2019 SIAM International Conference on

Data Mining, Society for Industrial and Applied Mathematics, (pp. 747-755).

[122] Castro, J., Yera, R., & Martínez, L. (2017). An empirical study of natural noise

management in group recommendation systems. Decision Support Systems, 94, (pp. 1-11).

[123] Latha, R., & Nadarajan, R. (2015, November). Ranking based approach for noise

handling in recommender systems. In International Conference on Multimedia

Communications, Services and Security, Springer, Cham, (pp. 46-58).

[124] Pham, X. H., Jung, J. J., & Nguyen, N. T. (2012, November). Integrating multiple

experts for correction process in interactive recommendation systems. In International

Conference on Computational Collective Intelligence, Springer, Berlin, Heidelberg, (pp.

31-40).

[125] Yu, P., Lin, L., & Yao, Y. (2016, June). A novel framework to process the quantity and

quality of user behavior data in recommender systems. In International Conference on

Web-Age Information Management, Springer, Cham, (pp. 231-243).

[126] Bag, S., Kumar, S., Awasthi, A., & Tiwari, M. K. (2019). A noise correction-based

approach to support a recommender system in a highly sparse rating environment. Decision

Support Systems, 118, (pp. 46-57).

130

[127] Baatarjav, E. A., Phithakkitnukoon, S., & Dantu, R. (2008, November). Group

recommendation system for facebook. In OTM Confederated International Conferences" On

the Move to Meaningful Internet Systems", Springer, Berlin, Heidelberg, (pp. 211-219).

[128] Said, A., Jain, B. J., Narr, S., & Plumbaum, T. (2012, July). Users and noise: The

magic barrier of recommender systems. In International conference on user modeling,

adaptation, and personalization, Springer, Berlin, Heidelberg, (pp. 237-248).

[129] Said, A., & Bellogín, A. (2018). Coherence and inconsistencies in rating behavior:

estimating the magic barrier of recommender systems. User Modeling and User-Adapted

Interaction, 28(2), (pp. 97-125).

[130] Saia, R., Boratto, L., & Carta, S. (2016). A semantic approach to remove incoherent

items from a user profile and improve the accuracy of a recommender system. Journal of

Intelligent Information Systems, 47(1), (pp. 111-134).

[131] Li, B., Chen, L., Zhu, X., & Zhang, C. (2013). Noisy but non-malicious user detection

in social recommender systems. World Wide Web, 16(5), (pp. 677-699).

[132] Toledo, R. Y., Mota, Y. C., & Martínez, L. (2015). Correcting noisy ratings in

collaborative recommender systems. Knowledge-Based Systems, 76, (pp. 96-108).

[133] Xu, Y. Y., Gu, S. M., & Min, F. (2022). Improving recommendation quality through

outlier removal. International Journal of Machine Learning and Cybernetics, 13(7), (pp.

1819-1832).

[134] Toledo, R. Y., López, L. M., & Mota, Y. C. (2013, June). Managing natural noise in

collaborative recommender systems. In 2013 Joint IFSA World Congress and NAFIPS

Annual Meeting (IFSA/NAFIPS), IEEE, (pp. 872-877).

[135] Yera, R., Castro, J., & Martínez, L. (2016). A fuzzy model for managing natural noise

in recommender systems. Applied Soft Computing, 40, (pp. 187-198).

[136] Yera, R., Barranco, M. J., Alzahrani, A. A., & Martínez-López, L. (2019). Exploring

Fuzzy Rating Regularities for Managing Natural Noise in Collaborative Recommendation.

Int. J. Comput. Intell. Syst., 12(2), (pp. 1382-1392).

[137] Sharon Moses, J., & Dhinesh Babu, L. D. (2018). A fuzzy linguistic approach-based

non-malicious noise detection algorithm for recommendation system. International Journal

of Fuzzy Systems, 20(8), (pp. 2368-2382).

[138] Wang, P., Wang, Y., Zhang, L. Y., & Zhu, H. (2021). An effective and efficient fuzzy

approach for managing natural noise in recommender systems. Information Sciences, 570,

(pp. 623-637).

131

[139] Castro, J., Yera, R., & Martinez, L. (2018). A fuzzy approach for natural noise

management in group recommender systems. Expert Systems with Applications, 94, (pp.

237-249).

[140] Kumar, S., Kumar, A., Mallik, A., & Singh, R. R. (2023). Optnet-fake: Fake news

detection in socio-cyber platforms using grasshopper optimization and deep neural network.

IEEE Transactions on Computational Social Systems, (pp. 1-10).

[141] Ala, A., Alsaadi, F. E., Ahmadi, M., & Mirjalili, S. (2021). Optimization of an

appointment scheduling problem for healthcare systems based on the quality of fairness

service using whale optimization algorithm and NSGA-II. Scientific Reports, 11(1), 19816,

(pp. 1-19).

[142] Ijiga, A. C., Peace, A. E., Idoko, I. P., Agbo, D. O., Harry, K. D., Ezebuka, C. I., &

Ukatu, I. E. (2024). Ethical considerations in implementing generative AI for healthcare

supply chain optimization: A cross-country analysis across India, the United Kingdom, and

the United States of America. International Journal of Biological and Pharmaceutical

Sciences Archive, 7(01), (pp. 048-063).

[143] Kolasani, S. (2023). Optimizing natural language processing, large language models

(LLMs) for efficient customer service, and hyper-personalization to enable sustainable

growth and revenue. Transactions on Latest Trends in Artificial Intelligence, 4(4), (pp. 1-31).

[144] Li, T., Kou, G., Peng, Y., & Philip, S. Y. (2021). An integrated cluster detection,

optimization, and interpretation approach for financial data. IEEE transactions on

cybernetics, 52(12), (pp. 13848-13861).

[145] Affandi, A., Sarwani, A. S., Erlangga, H., Siagian, A. O., Purwanto, A., Effendy, A. A.,

& Juhaeri, G. (2020). Optimization of MSMEs empowerment in facing competition in the

global market during the COVID-19 pandemic time. Systematic Reviews in Pharmacy,

11(11), (pp. 1506-1515).

[146] Li, Z. (2024). Application And Optimization of Deep Reinforcement Learning in News

Recommendation. Highlights in Science, Engineering and Technology, 85, (pp. 389-395).

[147] Tortorella, G. L., Fogliatto, F. S., Mac Cawley Vergara, A., Vassolo, R., & Sawhney, R.

(2020). Healthcare 4.0: trends, challenges and research directions. Production Planning &

Control, 31(15), (pp. 1245-1260).

[148] Kumar, A., Aggarwal, N., & Kumar, S. (2023). SIRA: a model for propagation and

rumor control with epidemic spreading and immunization for healthcare 5.0. Soft Computing,

27(7), (pp. 4307-4320).

132

[149] Krestel, R., Fankhauser, P., & Nejdl, W. (2009, October). Latent dirichlet allocation for

tag recommendation. In Proceedings of the third ACM conference on Recommender systems,

(pp. 61-68).

[150] Chen, H. M., Chang, M. H., Chang, P. C., Tien, M. C., Hsu, W. H., & Wu, J. L. (2008,

October). Sheepdog: group and tag recommendation for flickr photos by automatic

search-based learning. In Proceedings of the 16th ACM international conference on

Multimedia, (pp. 737-740).

[151] Kaviani, M., & Rahmani, H. (2020, April). Emhash: Hashtag recommendation using

neural network based on bert embedding. In 2020 IEEE 6th International Conference on Web

Research (ICWR), (pp. 113-118).

[152] Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). Bleu: a method for

automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of

the Association for Computational Linguistics, (pp. 311-318).

[153] Lin, C. Y. (2004, July). Rouge: A package for automatic evaluation of summaries. In

Text summarization branches out, (pp. 74-81).

[154] Yuan, W., Neubig, G., & Liu, P. (2021). Bartscore: Evaluating generated text as text

generation. Advances in Neural Information Processing Systems, 34, (pp. 27263-27277).

[155] Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2020). BERTScore:

Evaluating Text Generation with BERT, International Conference on Learning

Representations, (pp. 1-43).

[156] Amatriain, X., Jaimes*, A., Oliver, N., & Pujol, J. M. (2010). Data mining methods for

recommender systems. In Recommender systems handbook. Boston, MA: Springer US, (pp.

39-71).

[157] Adomavicius, G., & Tuzhilin, A. (2010). Context-aware recommender systems. In

Recommender systems handbook. Boston, MA: Springer US, (pp. 217-253).

[158] Ma, H., Zhou, D., Liu, C., Lyu, M. R., & King, I. (2011). Recommender systems with

social regularization. In Proceedings of the fourth ACM international conference on Web

search and data mining, (pp. 287-296).

[159] Björklund, G., Bohlin, M., Olander, E., Jansson, J., Walter, C. E., & Au-Yong-Oliveira,

M. (2022, April). An Exploratory Study on the Spotify Recommender System. In World

Conference on Information Systems and Technologies, (pp. 366-378).

[160] Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender

system: A survey and new perspectives. ACM computing surveys (CSUR), 52(1), (pp. 1-38).

133

[161] Liu, J., Wang, X., Tan, Y., Huang, L., & Wang, Y. (2022). An attention-based

multi-representational fusion method for social-media-based text classification. Information,

13(4), (pp. 171-185).

[162] Mikolov, T. (2013). Efficient estimation of word representations in vector space. arXiv

preprint arXiv:1301.3781, 3781.

[163] Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and. Techniques,

Waltham: Morgan Kaufmann Publishers.

[164] Siegbahn, K. (Ed.). (2012). Alpha-, beta-and gamma-ray spectroscopy. Elsevier.

[165] Hastie, T. (2009). The elements of statistical learning: data mining, inference, and

prediction.

[166] Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2), (pp. 157-166).

[167] Onet, E. V. (2009). Particle Swarm Optimization and Genetic Algorithms. Journal of

Computer Science & Control Systems, 2(2).

[168] Ricci, F., Rokach, L., & Shapira, B. (2021). Recommender systems: Techniques,

applications, and challenges. Recommender systems handbook, (pp. 1-35).

[169] Alsini, A., Huynh, D. Q., & Datta, A. (2021). Hashtag recommendation methods for

twitter and sina weibo: a review. Future Internet, 13(5), (pp. 129-147).

[170] Kenton, J. D. M. W. C., & Toutanova, L. K. (2019, June). Bert: Pre-training of deep

bidirectional transformers for language understanding. In Proceedings of naacL-HLT, 1, (pp.

2-17).

[171] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. In Neural

Computation, 9(8), (pp. 1735–1780).

[172] Ko, H., Lee, S., Park, Y., & Choi, A. (2022). A survey of recommendation systems:

recommendation models, techniques, and application fields. Electronics, 11(1), (pp.

141-188).

[173] Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems.

Recommender systems handbook, (pp. 257-297).

[174] Villegas, N. M., Sánchez, C., Díaz-Cely, J., & Tamura, G. (2018). Characterizing

context-aware recommender systems: A systematic literature review. Knowledge-Based

Systems, 140, (pp. 173-200).

134

CURRICULUM VITAE / BRIEF PROFILE

Kirti Jain is a research scholar in the Computer Science and

Engineering Department at Delhi Technological University.

She is pursuing her Ph.D under the supervision of Prof. Rajni

Jindal, Professor, ex-hod, Computer Science and Engineering

Department, Delhi Technological University. Kirti received her

M.Tech in Computer Science & Engineering from IIIT-Delhi

and B.Tech in Information Technology from GGSIPU.

She is also working as an Assistant Professor at Computer Science & Engineering

and Information Technology Department at Jaypee Institute of Information

Technology, Noida, UP. She has prior experience in academics of around 7 years at

Inderprastha Engineering College, Ghaziabad. She has also worked as a Software

Engineer at Sopra India Pvt. Ltd. for 1 year and at Atlogys Technical Consulting for

8 months.

Her major areas of interest are Machine Learning and Deep Learning. She also has a

keen interest in DBMS, Operating Systems, Compiler Design and Data Structures.

She has qualified UGC-NET for Assistant Professor in the years 2014 and 2018. She

has also qualified GATE in the past years. She has authored around 10 research

papers for various national and international journals and conferences. She has also

attended various Faculty Development Programs and Workshops of her interest. She

has also done certification in various courses like “Programming for Everybody -

Python”, “Introduction to Relational Database and SQL” and “Database Management

Systems”.

