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Abstract

In this thesis, the new construction of extremal Type I and Type II self-dual codes of

various lengths has been done using the group ring. Due to the numerous theoretical

and practical applications of group rings and algebraic coding theory in cryptography

and error correction, these topics have received much research attention. The thesis is

divided into seven chapters. Chapter 1 includes relevant definitions and concepts from

the literature that are pertinent to the topics employed in this thesis.

The second chapter focuses on constructing extremal self-dual codes of length 16.

For the first time, they are generated using the unitary units in a group ring with the

Quaternion group. Various code modification techniques are being applied in the correct

order to self-dual codes, which improves the rates (ratio of information symbol to code

length) and error-handling capacity of the code.

Chapter three focuses on a new construction for self-dual codes that uses the con-

cept of double-bordered construction, group rings, and reverse circulant matrices. Us-

ing groups of orders 2, 3, 4, and 5, and by applying the construction over the binary

field F2 and the ring F2 + uF2, an extremal binary self-dual codes of various lengths:

12, 16, 20, 24, 32, 40, and 48 are obtained. The significance of this new construction is the

construction of the unique Extended Binary Golay Code [24, 12, 8], and the unique Ex-

tended Quadratic Residue [48, 24, 12] Type II linear block code. Moreover, the existing

relationship between units and non-units with the self-dual codes presented in (23) is also

strengthened by limiting the conditions given in the corollaries of (23). Additionally, a

relationship between idempotent and self-dual codes is also established.

In chapter four the concept of n
r -th borders around the matrix is introduced. Here n

and r are the natural numbers such that r divides n. We have shown that this construction

is efficacious for any groups of order r (where r is a natural number such that r divides

n), over the Frobenius ring Rk. We discover extremal binary self-dual codes of lengths 32,

40, the well-known Extended Binary Golay Code, i.e., [24, 12, 8], and Extended Quadratic

Residue Code, i.e., [48, 24, 12] by two different ways.
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xii Abstract

In chapter five, we introduce the double-bordered construction of self-dual codes

whose generator matrix is of the form M = [In|A] where A is a block matrix consisting

of blocks that come from group rings and the elements in the first row cannot completely

determine the block matrix A. We demonstrate that this construction is feasible for a

group of order 2n where n is a natural number, over the Frobenius ring Rk. We show the

significance of this new construction by constructing several extremal self-dual codes of

lengths 20, 40, 32, and 64 over the field F2 and the ring F2 + uF2.

Chapter six focuses on the new technique for the construction of self-dual codes.

Double borders are introduced around a new altered form of a four-circulant matrix. Us-

ing this new construction over the field F2 and the ring F2 + uF2 and groups of orders

2, 3, 4, 5, 7, and 9, we generate extremal binary self-dual codes of the following lengths:

12, 20, 24, 32, 40, 48, 64, and 80.

In chapter seven we introduce a new class of ring, which is the ∗-version of the

semiclean ring, i.e., the ∗-semiclean ring. A ∗-ring is ∗-semiclean if each element is

the sum of a ∗-periodic element and a unit. Many properties of ∗-semiclean rings are

discussed. It is proved that if p ∈ P(R) such that pRp and (1− p)R(1− p) are ∗-semiclean

rings, then R is also a ∗-semiclean ring. As a result, the matrix ring Mn(R) over a ∗-

semiclean ring is ∗-semiclean. A characterization that when the group rings RCr and

RG are ∗-semiclean is done, where R is a finite commutative local ring, Cr is a cyclic

group of order r, and G is a locally finite abelian group. We have also found sufficient

conditions when the group rings RC3, RC4, RQ8, and RQ2n are ∗-semiclean, where R is

a commutative local ring. We have also demonstrated that the group ring Z2D6 is a ∗-

semiclean ring (which is not a ∗-clean ring). We have characterized the ∗-semicleanness

of FqG in terms of LCD and self-orthogonal abelian codes under the classic involution,

where Fq is a finite field with q elements and G is a finite abelian group.
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Chapter 1

Introduction

"This chapter presents a brief review of the past and present developments in the field

of Algebraic Coding Theory. This chapter introduces definitions, ideas, and techniques

that we will require in our later chapters."

Coding theory studies code properties and aims to ensure error-less communication

through noisy channels. The books "Algebraic Codes for Data Transmission" by Richard

(4) and "Fundamentals of Error-Correcting Codes" by Huffman (32) serve as the primary

source of information on the coding theory presented here.

In the study and development of error-correcting codes up until now, algebra has been

a significant factor. In 2009, Ted and Paul Hurley (34) introduced the concept of codes

from zero divisors and units in group rings. The algebraic structures that are pertinent to

the research are defined throughout the chapter. The goal is to make the explanation of

codes in later chapters easier.

1.1 Preliminaries

In this section, we recall some definitions and theorems related to abstract algebra and

coding theory that will interest the whole thesis. Throughout the thesis, in code con-

struction, we will assume all rings are finite, commutative, and Frobenius rings with a

multiplicative identity.

1.1.1 Groups, Rings, and Fields

The definitions of the terms ’group’ and ’ring’ from abstract algebra are assumed to

be familiar to the reader. Additionally, the reader is assumed to know the common defini-

1



2 Introduction

tions, theorems, and terms connected with groups, rings, and fields. All these definitions

and theories can be found in any standard algebra book, such as Contemporary Abstract

Algebra, by Joseph A. Gallian, see (20). In this thesis, the term F2 stands for the smallest

finite field with two elements, and the standard notation G =< generators | relation > is

used to denote a group G, where the term, "generators" is a list of the group’s generators

and "relations" is a list of combinations of the generators that equal the group’s identity.

Throughout the thesis, we will take only finite groups.

Now we will define some of the terms used in the study of linear algebra.

1.1.2 Modules, Submodules, Vector Spaces, and Subspaces

Let R(+,×) be a ring and (G, ⋆) be a commutative group. Then under an operation

◦ : R × G → G, the group G is called left module over R if the following axioms are

satisfied:

1. (a + b) ◦ g = (a ◦ g) + (b ◦ g).

2. a ◦ (g ⋆ h) = (a ◦ g) ⋆ (a ◦ h).

3. (a × b) ◦ g = a ◦ (b ◦ g).

4. 1 ◦ g = g.

Here, a, b are arbitrary elements of R, and g, h are arbitrary elements of G.

Similarly, a group G is called the right module over R if it satisfies all the above four

axioms under an operation ◦ : G × R → G with the relevant changes to the order of the

group and ring elements in the four axioms.

A non-empty subset H ⊂ G is called a submodule (or R-submodule) of G if H is a

subgroup of the additive group of G that is closed under scalar multiplication.

A vector space is a module over a field (41, p. 193). A subspace of a vector space is a

submodule of it (50, p. 78).

1.1.3 Basis and Dimensions

Let V be a vector space. A set of vectors in V , say B is called the basis of V if

every element of the vector space V can be written as a unique finite linear combination

of elements of the set B.

The number of elements in the basis of the vector space is called the dimension of the

vector space.
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1.1.4 Group rings and Ring of matrices

Let R be a ring and G be a group of order n. Then the elements of the group ring RG

are of the form
n∑

i=1
αigi, αi ∈ R, gi ∈ G. In a group ring, the cardinality of the ring and the

group can be infinite, but in our construction of codes, we will consider both the ring and

the group of finite cardinality.

The addition of the two elements of the group rings is defined coordinate-wise, i.e.,

n∑
i=1

αigi +

n∑
i=1

βigi =

n∑
i=1

(αi + βi)gi.

The product of the two elements of the group rings is defined by

(
n∑

i=1

αigi)(
n∑

j=1

βigi) =
∑

i, j

αiβ jgig j.

The book "An Introduction to Group Rings" by Milies and Sehgal (50) contained detailed

information about group rings.

In 2006, T. Hurley was the first to introduce the relationship between group rings and

rings of matrices.

Theorem 1.1.1. (33) Let R be a ring, G = {g1, g2, · · · , gn} be the finite group of order n,

and v = αg1g1 + αg2g2 + · · · + αgngn be an element of the group ring RG. Then there exists

a bijective ring homomorphism σ : v → σ(v) between the group ring RG and the matrix

σ(v) of n × n order over R.

The matrix is

σ(v) =


αg−1

1 g1
αg−1

1 g2
· · · αg−1

1 gn

αg−1
2 g1

αg−1
2 g2

· · · αg−1
2 gn

...
...

...
...

αg−1
n g1

αg−1
n g2

· · · αg−1
n gn


.

Example 1.1.2. The Cyclic group is defined as G = Cn = { z | zn = 1 } such that v =

α0 + α1z + α2z2 + · · · + αn−1zn−1 ∈ RCn, here (αi, i = 1 to n − 1) ∈ R. Then by Theorem

1.1.1, we have σ(v) = circ
[
α0 α1 α2 · · · αn−1

]
.

Example 1.1.3. (9) The Quaternion group is defined as G = Q8 = {x, y | x4 = 1, x2 =

y2, xy = y−1x} such that v =
∑3

j=0 x j(α j + α j+4y) ∈ F2k Q8, here α j, α j+4 ∈ F2k . Then

by Theorem 1.1.1, we have, σ(v) =

A B

C AT

, where A = circ
[
α0 α1 α2 α3

]
, B =

circ
[
α4 α5 α6 α7

]
, and C = circ

[
α6 α5 α4 α7

]
.
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1.1.5 Linear codes

A linear code C[n, k, d] is a k-dimensional subspace of the vector space Fn of all

n-tuples over a finite field F. The elements of C are called codewords. A linear code

C[n, k, d] is defined by three parameters namely ‘n’ length, ‘k’ dimension, and ‘d’ mini-

mum distance. The two parameters ‘k’ and ‘d’ of a code are important as they are directly

proportional to the rate and error-correction capability of a code. The linear combination

of codewords of the code C is also a codeword of code C over F. The code over the field

F2 is called binary code.

1.1.6 Minimum distance

The minimum distance of the code C[n, k, d] is defined as dmin = min{ d(a, b) | a , b}

for C. Here, d(a, b) = |{ i | 1 ≤ i ≤ n, ai , bi }|, where a = (a1, a2, · · · , an), b =

(b1, b2, · · · , bn) ∈ Fn
2 are the codewords for the code C. The elements ai are called the

components of the codeword. The more the minimum distance more will be the error-

correction capability of a code.

1.1.7 Generator matrices

Code can be described in terms of a generator matrix. The generator matrix of the

linear code C[n, k] is a k × n matrix for which rows form a basis of C. The standard form

of a generator matrix is M = [Ik|A], where Ik is the k×k identity matrix and A is the matrix

of order k × n − k, see (48, Theorem 5.5). The null space of a generator matrix is called

the dual code of the code C.

1.1.8 Self-dual codes

The Euclidean inner product between two elements, says l = {l1, l2, · · · , ln} and m =
{m1,m2, · · · ,mn} of Rn, is given by < l,m >E=

∑
limi. The dual C⊥ of code C is defined

as

C
⊥ = {l ∈ Rn| < l,m >E= 0 ∀m ∈ C}.

If C ⊆ C⊥, then the code C is said to be self-orthogonal, and if C = C⊥, then the code C

is said to be self-dual. Throughout the chapters, two types of binary self-dual codes are

built: Type I and Type II. The binary self-dual code C is said to be of Type I if the weight

of all its codewords is divisible by two, and of Type II if the weight of all its codewords

is divisible by four.
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Theorem 1.1.4. (49) Let dI(n) and dII(n) represent the minimum distance of Type I and

Type II codes of length n, respectively. Then

dII ≤ 4
⌊ n
24

⌋
+ 4

and

dI ≤


4
⌊

n
24

⌋
+ 4 i f n . 22(mod 24)

4
⌊

n
24

⌋
+ 6 i f n ≡ 22(mod 24).

Self-dual codes that attain these bounds are known as extremal self-dual codes. For

more details on self-dual codes over the Frobenius ring, see (13), (16), (51), and (52).

1.1.9 Equivalent codes

Two codes are equivalent if one can be obtained from another by reordering the com-

ponent of the code. If one matrix is obtained from another matrix by column permutation

then the resultant codes from both matrices are equivalent. Codes that are equivalent share

the same length, size, and minimum distance.

1.1.10 Ring F2 + uF2

The commutative Frobenius ring with characteristic 2 is denoted by Rk. For k ≥ 1,

the ring Rk is defined as

F2[u1, u2, · · · , uk]/⟨u2
1, u

2
2, · · · , u

2
k⟩,

such that uiu j = u jui, 1 ≤ i , j ≤ k. The ring Rk can be recursively expressed as

Rk = Rk−1 + ukRk−1.

In the thesis, we will do all the computational calculations for generating self-dual codes

over the ring F2 + uF2. The ring F2 + uF2 or R1 is defined as a commutative Frobenius

ring of characteristic 2 with the 4 elements 0, 1, u, and 1+ u and the condition that u2 = 0.

The ring F2 + uF2 is isomorphic to F2[X]/⟨X2⟩ and is represented as

F2 + uF2 = {a + bu|a, b ∈ F2, u2 = 0}.

The Lee weights of the elements 0, 1, u, and 1 + u of the ring F2 + uF2 are 0, 1, 2, and 1

respectively.

The Gray map ϕ is a map defined from (F2 + uF2)n to F2n
2 in such a way that ϕ(a + bu) =

(b, a + b), where a, b ∈ F2. This is a distance-preserving mapping, which means that the

Lee distance dL of a code C(n, 2k, dL) over (F2 + uF2)n equals the Hamming distance dH

of a code ϕ(C)(2n, k, dH).
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Theorem 1.1.5. The Gray image of a linear self-dual code C of length n over F2 + uF2 is

a binary linear self-dual code ϕ(C) of length 2n.

The natural projection Ω from F2 + uF2 to F2 is defined as follows:

Ω : F2 + uF2 → F2, Ω(a + bu) = a.

Let C be a linear code over F2 + uF2 and B = Ω(C). Then B is a projection of C into

F2 and C is a lift of B into F2 + uF2. The projection of a self-orthogonal code is always

self-orthogonal, but the projection of a self-dual code need not be self-dual. For more

details on Rk, see (12), (14), and (15).

1.2 Literature review and Historical context

As one of the most well-known families of codes, self-dual codes have drawn much at-

tention from the coding theory community. These codes have drawn the attention of

numerous academics due to their connections to lattices, cryptography, and combinatorial

objects like designs and association schemes. Among the self-dual codes, the classifica-

tion of extremal binary self-dual codes is a topic of active research, since the extremal

binary self-dual codes attain the maximum distance for the code of a particular length.

Since 1960, the construction of self-dual is an area of great interest for researchers. In

1969, both Chen (6) and Karlin (36) introduced the concept of a pure double circulant

method for building extremal self-dual codes. The classical technique for the construc-

tion of self-dual codes is to consider the generator matrix of the form M = [In|A], here

In is the n × n identity matrix and A is a n × n circulant matrix satisfying the condition

AAT = −In. This technique was modified further by introducing the border around the

matrix A, that is, by replacing the matrix A with the matrix of the form
α γ · · · γ

γ
... B

γ


.

Here B is a (n − 1) × (n − 1) circulant matrix, and α and γ ∈ R. Since their introduction,

these approaches have been widely utilized to create self-dual codes (25) and (26). This

approach was broadened in (22) to consider matrices A that result from group rings, that

is considering the generator matrix of the form M = [In| σ(v)], here σ(v) is a group ring

matrix of n × n order. In 2019, Steven T. Dougherty further modified this construction

by introducing a border to a matrix In and the group ring matrix A in the quest for some
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more new extremal self-dual codes of various lengths. The generator matrix for which is

defined as

M =


α γ · · · γ β δ · · · δ

γ δ
... In δ σ(v)

γ δ


.

In 2020, Joe Gildea extended this concept by introducing the concept of double-bordered

construction. He defined the generator matrix of the form

M =



β1 β2 β3 · · · β3 β4 · · · β4 β5 β6 β7 · · · β7 β8 · · · β8

β2 β1 β4 · · · β4 β3 · · · β3 β6 β5 β8 · · · β8 β7 · · · β7

β3 β4 β7 β8
...
...

...
...

β3 β4 In β7 β8 σ(v)

β4 β3 β8 β7
...
...

...
...

β4 β3 β8 β7



.

In 2003, Betsumiya (3) gave the four-circulant construction method for building extremal

binary self-dual codes over rings. The generator matrix M for this is of the form

M =

 In A B

In BT AT

 .
Here, A and B are the circulant matrices of n×n order satisfying the condition AAT+BBT =

−In over the ring. If the ring is of characteristic 2, then the condition for the generation

of self-dual code is redefined as AAT + BBT = In. Several modifications of this technique

are also done in the literature, one of them is replacing both the matrices A and B with the

group ring matrices σ(v1) and σ(v2), where v1 and v2 are the elements of the group ring.

In the upcoming chapters, we will use the concepts mentioned above and blend them

in such a way that the new resultant generator matrix can construct those extremal self-

dual codes that cannot be obtained by the generator matrix at the individual level and

one of the significant contributions is the construction of the Extended Binary Golay and

the Extended Quadratic Residue Code as both these codes have numerous applications.

Under this construction, we establish the link between units/non-units and idempotents

in the group ring and corresponding self-dual codes. Using this connection for some

particular examples of groups over the field F2 and the ring F2 + uF2 we can construct

many extremal binary self-dual codes of different lengths.
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1.3 Chapter-by-chapter summary of the thesis

The thesis is divided into seven chapters, the contents of which are as follows:

Chapter 1 consists of basic definitions, basic concepts of algebra, coding theory, and the

preliminaries of the results obtained in the literature. We then provide a brief review of

the algebraic coding theory. We will discuss how group rings can generate the extremal

self-dual codes.

Chapter 2 focuses on the construction of extremal self-dual codes of length 16. For the

first time, they are generated using the unitary units in a group ring with the Quaternion

group. Various code modification techniques are being applied in the correct order to

self-dual codes, resulting in a significant improvement in the rates (ratio of information

symbol to code length) and error-handling capability of the code.

Chapter 3 deals with the building self-dual codes that use the concept of double-bordered

construction, group rings, and reverse circulant matrices. Using groups of orders 2, 3, 4,

and 5, and by applying the construction over the binary field F2 and the ring F2 + uF2,

we obtain extremal binary self-dual codes of various lengths: 12, 16, 20, 24, 32, 40, and

48. In particular, we show its significance by constructing the unique Extended Binary

Golay Code [24, 12, 8] and the unique Extended Quadratic Residue [48, 24, 12] Type II

linear block code. Moreover, we strengthen the existing relationship between units and

non-units with the self-dual codes presented by Gildea, by limiting the conditions in the

corollaries of (23). Additionally, we establish a relationship between idempotent and self-

dual codes.

Chapter 4 focuses on building Extended Binary Golay Code and Extended Quadratic

Residue Code. In 2019, by Doughtery (19) the concept of a single border was introduced.

In 2020, by Gildea (24) the concept of double borders was introduced. In the chapter, we

have extended the Gildea and Doughtery concept by introducing the n
r -th borders around

the matrix. Here n and r are the natural numbers such that r divides n. We have shown

that this construction is efficacious for any groups of order r over the Frobenius ring Rk.

The motivation of this chapter is to construct extremal binary self-dual codes of various

lengths that are not obtained in (19) and (24).

In chapter 5 we introduce the concept of double borders around the generator matrix

M = [In|A], where A is a block matrix consisting of blocks that come from group rings

such that the elements in the first row cannot completely determine the block matrix A.

We demonstrate that this construction is feasible for a group of order n, over the Frobe-

nius ring Rk. We show the significance of this new construction by constructing several

extremal self-dual codes of lengths 20, 40, 32, and 64 over the field F2 and the ring

F2 + uF2.
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Chapter 6 focuses on the new technique for building self-dual codes. Double borders are

introduced around a new altered form of a four-circulant matrix. Using this new construc-

tion over the field F2 and the ring F2+uF2 and groups of orders 2, 3, 4, 5, 7, and 9, we gen-

erate extremal binary self-dual codes of the following lengths: 12, 20, 24, 32, 40, 48, 64,

and 80.

In Chapter 7 we introduce a new class of ring, which is the ∗-version of the semiclean

ring, i.e., the ∗-semiclean ring. A ring R is called semiclean if every element of R can be

expressed as sum of a periodic element and a unit. A ∗-ring is ∗-semiclean if each element

is sum of a ∗-periodic element and a unit. Many properties of ∗-semiclean rings are dis-

cussed. It is proved that if p ∈ P(R) ( here, P(R) represents the set of projections of a ring

R) such that pRp and (1 − p)R(1 − p) are ∗-semiclean rings, then R is also a ∗-semiclean

ring. As a result, the matrix ring Mn(R) over a ∗-semiclean ring is ∗-semiclean. The char-

acterization of the group rings RCr and RG in terms of the ∗-semicleanness of the rings

are given, where R is a finite commutative local ring, Ci is a cyclic group of order i, and G

is a locally finite abelian group. We have also given sufficient conditions when the group

rings RC3, RC4, RQ8, and RQ2n are ∗-semiclean, where R is a commutative local ring. We

have demonstrated that the group ring Z2D6 is a ∗-semiclean ring (which is not a ∗-clean

ring). We characterize the ∗-semicleanness of FqG in terms of LCD and self-orthogonal

abelian codes under the classic involution, where Fq is a finite field with q elements and

G is a finite abelian group.

We now move on to Chapter 2, which involves the construction of extremal self-dual

codes using unitary units in a group ring with the Quaternion group.





Chapter 2

Self-dual and modified codes over Q8

group ring

This chapter focuses on constructing extremal binary self-dual codes of length 16. For the

first time, they are generated using the unitary units in a group ring with the Quaternion

group. Various code modification techniques are being applied in the correct order to

self-dual codes, which improves the rates (ratio of information symbol to code length)

and error-handling capability of the code.

2.1 Introduction

The chapter arose from the concept given by Neill in (47) of constructing self-dual codes

from the unitary units of group algebra. In 2009, Hurley (34) and (35) introduced the con-

cept of code generation using zero divisors and units. One of the most significant families

of the code is the self-dual codes over fields. Because of its significant contribution to

lattices, designs, and coding theory, self-dual codes have achieved great importance in

literature (42). In Chapters 3 and 10 of (4), Blahut has discussed various linear code mod-

ification techniques.

Section 2.2.1 and 2.3.1 explain the construction of Type I and Type II and other unique

divisible self-dual codes from the unitary units of group algebra F2k Q8, for k = 1 and 2

respectively. Moreover, we have shown that up to equivalence, one code of Type I and two

codes of Type II of length sixteen exist. In further sections 2.2.2 and 2.3.2 modification

techniques are strategically used to enhance unique self-dual codes obtained in sections

2.2.1 and 2.3.1 respectively.

11
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Sections 2.3.2 and 2.3.3 discuss the encoding and decoding methods (Nearest neighbor

and Syndrome decoding (32)) of such codes which can correct t-errors (here t = ⌊ d−1
2 ⌋).

Throughout the chapter, SAGE software (54) is used to carry out all the computer calcu-

lations.

2.1.1 Self-dual codes and Unitary units

The following definition describes the formation of self-dual codes in the group ring

RG.

Definition 2.1.1. (34) Let |G| = n = 2s and a ∈ RG. Then a generates the self-dual code,

if a satisfies the following conditions a2 = 0, a = aT , aaT = 0, and the matrix σ(a) = A

has rank s.

Definition 2.1.2. (50) The augmentation mapping ξ : RG → R is a homomorphism,

defined as

ξ

∑
g∈G

γgg

 =∑
g∈G

γg,

where γg ∈ R.

Definition 2.1.3. (50) Let U(RG) denote the set of unit elements of the group ring RG.

Then the normalized units of the group ring RG is defined as

V(RG) = {u ∈ U(RG) | ξ(u) = 1}.

Definition 2.1.4. (50) An anti-automorphism map ⋆ : RG → RG of order two is defined

as ∑
g∈G

γgg


⋆

=
∑
g∈G

γgg
−1,

where γg ∈ R. Then the unitary units of group ring RG is define as

V⋆(RG) = {v ∈ V(RG) | v−1 = v⋆}.

Theorem 2.1.5. (48, Theorem 5.5) Let M be the generator matrix for the [n, k] code.

Then by using the elementary row operations the generator matrix M can be reduced to

an equivalent matrix of the standard form [Ik|B] where B is the matrix of k × (n− k) order

and Ik is the identity matrix of k × k order.

The relation between self-dual codes and unitary units of a group ring, as in (47), is

defined as follows. Suppose M is the generator matrix of the self-dual code i.e. MMT = 0.
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Then for M of the form [I| σ(v)], we have

MMT =
[
I σ(v)

]  I

σ(v)T

 = I + σ(v)σ(v)T = I + σ(v)σ(v⋆) = I + σ(vv⋆).

Thus MMT = 0 gives I+σ(vv⋆) = 0, i.e. vv⋆ = 1, which implies v⋆ = v−1. So from defini-

tion 2.1.4 we can say that v ∈ RG corresponds to a unitary unit of RG. Accordingly, from

Example 1.1.3 and Theorem 2.1.5 we conclude that the generator matrix for generation

of self-dual codes from unitary units of Quaternion group over the fields F2 and F4 is of

the form

M =

 I 0 A B

0 I C AT

 , (2.1)

where I is the identity matrix.

2.2 Codes in F2Q8

2.2.1 Self-dual codes from unitary units of F2Q8

Now, we will study the group algebra F2Q8. This structure has 28 possible codes.

Now consider a set M that contains all possible generator matrices of the form (2.1).

There are 256 generator matrices for F2Q8. One of them is mentioned below:

M =



1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0



.

Figure 2.1: Generator matrix of F2Q8
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Next, we obtain the self-dual code using the MMT = 0 condition. There are 64

self-dual codes. One of the generator matrices of a self-dual code is shown below:

M =



1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0

0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0

0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0

0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0

0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1



.

Figure 2.2: Self-dual generator matrix of F2Q8

The codes obtained are identical. Using the is_permutation_equivalent command in

the SAGE software we compare all the self-dual codes for equivalence over F2 and filter

only the unique ones. In this step, four unique matrices are obtained. The unique self-dual

generator matrices along with their code representation are shown below:

UCM0 =



1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0



.

Figure 2.3: Unique self-dual generator matrix of the code UC0[16, 8, 2]
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UCM1 =



1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1

0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1

0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0



.

Figure 2.4: Unique self-dual generator matrix of the code UC1[16, 8, 4]

UCM2 =



1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1

0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1

0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1

0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0

0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0

0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 0

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1



.

Figure 2.5: Unique self-dual generator matrix of the code UC2[16, 8, 4]
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UCM3 =



1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1

0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1

0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1

0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1

0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1

0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1



.

Figure 2.6: Unique self-dual generator matrix of the code UC3[16, 8, 4]

For each of the four codes listed above. The last 8 elements i.e. 0, 0, 0, 0, 0, 1, 0, 0 in

the first row of UCM0 act as the coefficient of 1, x, x2, x3, y, xy, x2y, x3y. The following

table is obtained from this.

Table 2.1: Coefficients table for F2Q8

v 1 x x2 x3 y xy x2y x3y d

0 0 0 0 0 0 1 0 0 2

1 0 0 0 0 1 1 1 0 4

2 1 0 0 0 1 1 1 1 4

3 1 1 1 0 1 1 1 1 4

Now we will verify that every element is unitary by computing vi ∗ v⋆i for i = 0 to 3, the

outcome should be 1 in each case.

Consider the first element, we have v0 = xy and v⋆0 = (xy)−1 = x3y. Multiplying v0 and v⋆0
yields v0 ∗ v⋆0 = x4y2 = 1.

For the second element, we have v1 = y + xy + x2y and v⋆1 = (y)−1 + (yx)−1 + (x2y)−1 =

x2y + x3y + y. Multiplying v1 and v⋆1 gives

v1 ∗ v
⋆
1 = x5y2 + 2x4y2 + 2x3y2 + 2x2y2 + xy2 + y2

= y2 = 1.

For the third element, we have v2 = 1+ y+ xy+ x2y+ x3y and v⋆2 = 1+ x2y+ x3y+ y+ xy.

Multiplying v2 and v⋆2 yields

v2 ∗ v
⋆
2 = x6y2 + 2x5y2 + 3x4y2 + 4x3y2 + 3x2y2 + 2y2x

+ y2 + yx3 + yx2 + yx + y + 1 + y + xy + x2y + x3y

= 4x4y2 + y2x2 + y2 + 1 = 1.
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Similarly, considering the fourth element, we have v3 = 1 + x + x2 + y + xy + x2y + x3y

and v⋆3 = 1 + x3 + x2 + x2y + x3y + y + xy. Multiplying v3 and v⋆3 gives

v3 ∗ v
⋆
3 = x6y2 + x6y + 2x5y2 + 3x5y + x5 + 3x4y2 + 4x4y + 2x4 + 4y2x3

+ 6yx3 + 2x3 + 3x2y2 + 5x2y + 2x2 + 2xy2 + 3xy + x + y2 + 2y + 1

= 1 + 2x2y + 2xy + 2x − 1 + 1 = 1.

Remark 2.2.1. The four unique divisible self-dual codes such as UC0[16, 8, 2],

UC1[16, 8, 4], UC2[16, 8, 4], and UC3[16, 8, 4] are obtained with divisors 2, 4, 2, and

4 respectively. The UC0 and UC2 are Type I codes, and the UC1 and UC3 are Type II

codes. Moreover, the codes UC1, UC2, and UC3 are extremal self-dual codes. The code

UC0 can detect one error, and the codes UC1, UC2, and UC3 can correct one error.

2.2.2 Modified codes of unique self-dual codes in F2Q8

In this section using the modifying techniques on unique self-dual codes, we en-

hance them by generating new codes having high error-correction capability and good

rate.

Product code

Consider linear codes C1 and C2 as [n1, k1, d1] and [n2, k2, d2] respectively, then their prod-

uct code Cprod is given by the form [n1n2, k1k2, d1d2].

Applying the product code approach on UCi for i = 0 to 3 generates sixteen product

codes categorized by the following forms, one code of the form [256, 64, 4], six codes of

the form [256, 64, 8], and nine codes of the form [256, 64, 16].

Remark 2.2.2. This approach raises the error-correction capability for given self-dual

codes UCi for i = 0 to 3 by almost sevenfold. Newly constructed product codes of form

[256, 64, 8] and [256, 64, 16] can correct three and seven errors respectively.

Subcode

A subcode is a code that is part of or subordinate to another code. Using the expurgating

approach i.e. (Fix n; decrease k; increase d) on UCi for i = 0 to 3 we generate the subcode

of UCi for i = 0 to 3 having high error-correction capability .

The code UC0 have eight subcodes of the form [16, 1, 2], twenty-eight subcodes of the

form [16, 2, 2], fifty-six subcodes of the form [16, 3, 2], seventy subcodes of the form

[16, 4, 2], fifty-six subcodes of the form [16, 5, 2], twenty-eight subcodes of the form
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[16, 6, 2], and eight subcodes of the form [16, 7, 2].

Similarly, the code UC1 have eight subcodes of the form [16, 1, 4], twenty-eight sub-

codes of the form [16, 2, 4], fifty-six subcodes of the form [16, 3, 4], seventy subcodes of

the form [16, 4, 4], fifty-six subcodes of the form [16, 5, 4], twenty-eight subcodes of the

form [16, 6, 4], and eight subcodes of the form [16, 7, 4].

The code UC2 have eight subcodes of the form [16, 1, 6], sixteen subcodes of the form

[16, 2, 6], twelve subcodes of the form [16, 2, 4], fifty-six subcodes of the form [16, 3, 4],

seventy subcodes of the form [16, 4, 4], fifty-six subcodes of the form [16, 5, 4], twenty-

eight subcodes of the form [16, 6, 4], and eight subcodes of the form [16, 7, 4].

The code UC3 have eight subcodes of the form [16, 1, 8], twenty-eight subcodes of the

form [16, 2, 4], fifty-six subcodes of the form [16, 3, 4], seventy subcodes of the form

[16, 4, 4], fifty-six subcodes of the form [16, 5, 4], twenty-eight subcodes of the form

[16, 6, 4], and eight subcodes of the form [16, 7, 4].

Remark 2.2.3. Newly constructed subcodes of form [16, 2, 6] and [16, 1, 8] can correct

two and three errors respectively.

Construction_x

Consider linear codes C1 and C2 as [n, k1, d1] and [n, k2, d2] respectively, such that C2 is

subcode of C1. The parameters of the codes satisfies the conditions k1 > k2 and d1 < d2.

If a code C3 [n3, k3, d3] exist and satisfies the conditions k3 + k1 = k2 and d3 + d1 ≤ d2,

then a new code can be constructed, defined as Cnew[n + n3, k1, d3 + d1].

As shown above [16, 1, 8] and [16, 7, 4] are subcodes of UC3[16, 8, 4]. Taking C1, C2,

and C3 as [16, 8, 4], [16, 1, 8], and [16, 7, 4] respectively the newly obtained code Cx is

[32, 8, 8].

Remark 2.2.4. This technique generates a highly efficient code [32, 8, 8] having four

times more information rate than a [16, 1, 8] subcode of UC3[16, 8, 4] and has a

three error-correction capability i.e three times more efficient in error-correction than

UC3[16, 8, 4].

Punctured code

The code C[n, k, d] can be punctured at the i-th coordinate by removing the i-th coordinate

from each of its code words. Applying the Puncturing approach i.e. (Fix n; decrease k;

decrease d) on UCi for i = 0 to 3 generates the linear punctured code of UCi for i = 0 to 3

with high rates.
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Puncture UC0[16, 8, 2] code at 3rd co-ordinate generates the [15, 8, 1] linear punctured

code. Puncturing the resultant code at the 3rd coordinate for 12 times generates the

[3, 3, 1] linear punctured code. Puncture [3, 3, 1] code at 2nd co-ordinate generates

[2, 2, 1] linear punctured code. Puncture [2, 2, 1] at 1st co-ordinate generates PC0[1, 1, 1]

linear punctured code.

Similarly, puncture the UC1[16, 8, 4] and UC2[16, 8, 4] codes at 3rd co-ordinate gives

C1[15, 8, 3] and C2[15, 8, 3] linear punctured codes respectively. Now again puncture the

resultant codes C1 and C2 at 3rd co-ordinate gives PC1[14, 8, 3] and PC2[14, 8, 3] linear

punctured codes respectively.

Puncture the UC3[16, 8, 4] code at 3rd co-ordinate gives PC3[15, 8, 3] linear punctured

code.

Remark 2.2.5. Puncturing unique self-dual codes raises the code quality by increasing

the code rate of UC0, UC1, UC2, and UC3 from 1/2 to 1, 1/2 to 8/14, 1/2 to 8/14, and

1/2 to 8/15 respectively.

Extended code

With the addition of a coordinate, longer codes can be constructed. Pick up the extension

so that only even vectors are in the new code. The extension of the code C[n, k, d] is

defined as

Cext = {y1y2y3 · · · yn+1 ∈ Fn+1
q | y1y2y3...yn ∈ C with y1 + y2 + y3 + ... + yn+1 = 0}.

Applying the extending approach i.e. (Fix k; increase n; increase d) on PC0[1, 1, 1],

PC1[14, 8, 3], PC2[14, 8, 3], and PC3[15, 8, 3] generates the EX0[2, 1, 2], EX1[15, 8, 4],

EX2[15, 8, 4], and EX3[16, 8, 4] extended linear codes with rate 1/2, 8/15, 8/15, and 1/2

respectively.

Remark 2.2.6. Using this approach we generate a mds code EX0[2, 1, 2] from UC0 and

raise the information rate for both the given self-dual codes UCi for i = 1 to 2 from 1/2

to 8/15 without affecting its error-correction capability.

Juxtapose code

Let M be the generator matrix of the binary linear code C[n, k, d]. The new linear binary

code CJ[2n, k, d
′

] can be constructed by juxtaposing two or more copies of the generator

matrix [M|M]. Using the juxtapose code approach on UCi for i = 0 to 3 gives the sixteen

juxtapose codes categorized by the following forms, one code of the form [32, 8, 4], six

codes of the form [32, 8, 6], and nine codes of the form [32, 8, 8].
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Remark 2.2.7. This approach improves the error-correction capability for given self-

dual codes UCi for i = 0 to 3. Newly constructed juxtapose codes of form [32, 8, 6]

and [32, 8, 8] can correct two and three errors respectively, whereas the codes UCi for

i = 0 to 3 can correct up to one error.

2.2.3 Encoding and Decoding

Encoding

Encoding is a process of conversion of information from one type to another. The

message block w of k bits is encoded into n bits by evaluating E = w ∗ M. Here, M is the

generator matrix.

Considering the message w = [0, 1, 1, 0, 1, 1, 0, 1] and using UCM0 as the generator

matrix, the message w is encoded as E0 = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1]. Sim-

ilarly using UCM1, UCM2, UCM3 as the generator matrix the word w is encoded as

E1 = [0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0], E2 = [0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1],

and E3 = [0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1] respectively. Since the generator matrices

UCMi, for i = 0 to 3 are in their standard form thus the first eight bits of encoded words

are information bits and the rest are check bits.

Decoding

The process of extracting a code word C[n, k, d] (a message m) from the received message

r is known as decoding. The parameter d of a code C[n, k, d] plays a vital role in the

error-correcting capability of a code.

Nearest neighbor decoding The process of finding a code word z in C (|C| = qn) that is

nearest to the received vector r is known as nearest neighbor decoding. A sphere S t(r) of

radius (0 ≤ t ≤ ⌊d−1
2 ⌋) center around the received vector r is drawn and we check all the

elements of S t(r) and choose the code word lets say z, that is present in C and is closest

to the received vector r. This test fails for t > ⌊ d−1
2 ⌋.

The nearest neighbor decoding method always decodes the received vector r correctly

whenever there are at most t errors in the received vector. But, if the received vector

contains more than t errors, it will not always decode correctly.

Let the message sent to the receiver is w = [0, 1, 1, 0, 1, 1, 0, 1]. Using the code

Cx and the command Cx.encode(w) in SAGE software the message w is en-

coded as [0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1].
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Let the error introduced in the message while passing through the channel is

e = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0].

Thus the message received by the receiver is r =

[0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1]. Using SAGE

software and Nearest neighbor decoding algorithm the message decoded by the decoder

is q = [0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1]. The

entire process which is explained above is shown below.

Figure 2.7: Encoding and decoding using Cx code

Syndrome decoding algorithm Syndrome decoding is a highly effective process to

decode a linear code across a noisy network. In the previous method, we have to construct

a table containing the nearest code word for every 2n vectors of Fn
2. In syndrome decoding,

one can find the nearest code word for the received vector by looking up a syndrome-error

table which contains only 2n−k − 1 vectors of Fn
2.

Algorithm
Let r = x+ e be the received vector. Here, x is the code word and e is the error introduced

while passing through the channel.

• Find syndrome s = QrT . Here, Q is the parity check matrix.

– If s = 0, the received vector r has no error, i.e. r = x and we are done

otherwise we switch to the next step.

• Construct syndrome table of order 2n−k − 1, consisting of two columns syndrome s

and error e respectively.

• If s , 0 in the first step, then corresponding to s find the error e using the table

constructed in the second step and then compute x = r − e.

Consider the message w = [0, 1, 1, 0, 1, 1, 0, 1]. Using UC3 the above message is encoded

as x = [0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1]. Let the error introduced in the message
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while passing through the channel is e = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The mes-

sage received by the receiver is r = [0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1]. Using SAGE

software and the command UC[3].syndrome(r) the syndrome for the receive vector r is

s = [0, 1, 0, 0, 0, 0, 0, 0]. (2.2)

Now using commands D = codes.decoders.LinearCodeS yndromeDecoder(UC[3]) and

D.syndrome_table() in SAGE the syndrome table of order 28 − 1 is constructed.

Figure 2.8: Syndrome table

Using the syndrome table we can say that the error in the received vector corresponding

to syndrome s (2.2) is e = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. Thus the code word is

x = r − e = [0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1].

2.3 Codes in F4Q8

2.3.1 Self-dual codes from unitary units of F4Q8

This structure has 48 possible codes, each of which is built using code written in

SAGE software. There are 65536 generator matrices for F4Q8 and 1024 self-dual codes.

Using the permutation_equivalent command, one unique code of distance two, one unique

code of distance three, and sixteen unique codes of distance four are obtained. The fol-

lowing table is generated from this.
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Table 2.2: Coefficients table for F4Q8

v 1 x x2 x3 y xy x2y x3y d

0 0 0 0 0 0 1 0 0 2

1 0 0 0 0 w+1 0 w 0 3

2 0 0 0 0 w 1 w 0 4

3 0 0 0 0 1 1 1 0 4

4 0 0 0 0 w+1 w w w 4

5 1 0 0 0 w w w w 4

6 1 0 0 0 w+1 w w+1 w 4

7 1 0 0 0 1 w 1 w 4

8 1 0 0 0 1 1 1 1 4

9 w 0 w 0 w+1 w w w 4

10 w 0 w 0 1 w+1 1 w 4

11 w 1 w 0 w w w w 4

12 w 1 w 0 w+1 w w+1 w 4

13 w 1 w 0 1 w 1 w 4

14 1 1 1 0 1 1 1 1 4

15 w w w w w+1 w w w 4

16 w w w w w+1 w+1 w+1 w 4

17 w+1 w w w 1 w+1 1 w+1 4

We are going to verify that every element is unitary by computing vi ∗ v⋆i for i =

0 to 17, the outcome should be 1 in each case.

Consider the first element, we have v0 = xy and v⋆0 = (xy)−1 = x3y. Multiplying v0 and v⋆0 ,

we obtain v0 ∗ v⋆0 = x4y2 = 1.

For the second element, we have v1 = (w+ 1)y+wx2y and v⋆1 = (w+ 1)(y)−1 +w(x2y)−1 =

(w + 1)x2y + wy. Multiplying v1 and v⋆1 , we obtain

v1 ∗ v
⋆
1 = w

2y2 + wy2 + w2x4y2 + 2w2x2y2 + wx4y2 + 2wx2y2 + x2y2

= 2w2y2 + 2wy2 + 1 = 1.

For the third element, we have v2 = wy+ xy+wx2y and v⋆2 = w(y)−1 + (xy)−1 +w(x2y)−1 =

wx2y + x3y + wy which yields

v2 ∗ v
⋆
2 = w

2y2 + wx5y2 + w2x4y2 + x4y2 + 2wx3y2 + 2w2y2x2 + wxy2

= 2w2y2 + 2wxy2 + y2 = 1.
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For the fourth element, we have v3 = y + xy + x2y and v⋆3 = (y)−1 + (xy)−1 + (x2y)−1 =

x2y + x3y + y which yields

v3 ∗ v
⋆
3 = y

2x5 + 2y2x4 + 2y2x3 + 2y2x2 + y2x + y2

= 2y2x + y2 = 1.

For the fifth element, we have v4 = (w + 1)y + wxy + wx2y + wx3y and v⋆4 = (w + 1)x2y +

wx3y + wy + wxy. Multiplying v4 and v⋆4 , we obtain

v4 ∗ v
⋆
4 = y

2w2 + y2w + y2w2x2 + y2wx + y2w2

+ y2w + y2x2 + y2w2x2 + y2wx

= y2x2 = 1.

Considering the sixth element, we have v5 = 1 + wy + wxy + wx2y + wx3y and v⋆5 =

1 + wx2y + wx3y + wy + wxy. Multiplying v5 and v⋆5 , we obtain

v5 ∗ v
⋆
5 = w

2y2 + w2y2x6 + 2w2y2x5 + 3w2y2x4 + 4w2y2x3

+ 3w2y2x2 + x2 + 2wyx + 1

= 2w2y2 + 2w2y2x2 + 1

= 1.

Similarly for n = 6 to 17, we obtain vn ∗ v⋆n = 1 for the following pair of elements:

v6 = 1 + (w + 1)y + wxy + (w + 1)x2y + wx3y.

v⋆6 = 1 + (w + 1)x2y + wx3y + (w + 1)y + wxy.

v7 = 1 + y + wxy + x2y + wx3y.

v⋆7 = 1 + x2y + wx3y + y + wxy.

v8 = 1 + y + xy + x2y + x3y.

v⋆8 = 1 + x2y + x3y + y + xy.

v9 = w + wx2 + (w + 1)y + wxy + wx2y + wx3y

v⋆9 = w + wx2 + (w + 1)x2y + wx3y + wy + wxy.

v10 = w + wx2 + y + (w + 1)xy + x2y + wx3y.

v⋆10 = w + wx2 + x2y + (w + 1)x3y + y + wxy.

v11 = w + x + wx2 + wy + wxy + wx2y + wx3y.

v⋆11 = w + x3 + wx2 + wx2y + wx3y + wy + wxy.
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v12 = w + x + wx2 + (w + 1)y + wxy + (w + 1)x2y + wx3y.

v⋆12 = w + x3 + wx2 + (w + 1)x2y + wx3y + (w + 1)y + wxy.

v13 = w + x + wx2 + y + wxy + x2y + wx3y.

v⋆13 = w + x3 + wx2 + x2y + wx3y + y + wxy.

v14 = 1 + x + x2 + y + xy + x2y + x3y.

v⋆14 = 1 + x3 + x2 + x2y + x3y + y + xy.

v15 = w + wx + wx2 + wx3 + (w + 1)y + wxy + wx2y + wx3y.

v⋆15 = w + wx3 + wx2 + wx + (w + 1)x2y + wx3y + wy + wxy.

v16 = w + wx + wx2 + wx3 + (w + 1)y + (w + 1)xy + (w + 1)x2y + wx3y.

v⋆16 = w + wx3 + wx2 + wx + (w + 1)x2y + (w + 1)x3y + (w + 1)y + wxy.

and

v17 = w + 1 + wx + wx2 + wx3 + y + (w + 1)xy + x2y + (w + 1)x3y.

v⋆17 = w + 1 + wx3 + wx2 + wx + x2y + (w + 1)x3y + y + (w + 1)xy.

Remark 2.3.1. The eighteen unique divisible self-dual codes, such as one code of the

form UC0[16, 8, 2], one code of the form UC1[16, 8, 3], and the rest of codes UCi for

i = 2 to 17 of the form [16, 8, 4] are obtained. The codes UC0 and UC1 can detect one

error, and the codes UCi for i = 2 to 17 can correct one error.

2.3.2 Modified codes of unique self-dual codes in F4Q8

Product code

Apply the product code approach on UCi for i = 0 to 17 generates three hundred and

twenty-four product codes categorized by the following forms, one code of the form

[256, 64, 4], two codes of the form [256, 64, 6], thirty-two codes of the form [256, 64, 8],

one code of the form [256, 64, 9], thirty-two codes of the form [256, 64, 12], and two

hundred and fifty-six codes of the form [256, 64, 16].

Remark 2.3.2. This approach raises the error-correction capability for given self-dual

codes UCi for i = 0 to 17 by almost sevenfold. Newly constructed product codes of

form [256, 64, 6], [256, 64, 8], [256, 64, 9], [256, 64, 12], and [256, 64, 16] can correct

two, three, four, five, and seven errors respectively.

Subcode

A code part of or subordinate to another code. There are 8, 28, 56, 70, 56, 28, 8 subcodes

of dimension 1, 2, 3, 4, 5, 6, 7 respectively for all the uniquely generated self-dual codes
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of F4Q8.

Using Expurgating approach we generate eight subcodes of the form [16, 1, 2], twenty-

eight subcodes of the form [16, 2, 2], fifty-six subcodes of the form [16, 3, 2], seventy

subcodes of the form [16, 4, 2], fifty-six subcodes of the form [16, 5, 2], twenty-eight sub-

codes of the form [16, 6, 2], and eight subcodes of the form [16, 7, 2] of UC0.

There are two hundred and fifty-six subcodes of UC1 which are as follows, eight of the

form [16, 1, 4], twenty-eight of the form [16, 2, 3], fifty-six of the form [16, 3, 3], seventy

of the form [16, 4, 3], fifty-six of the form [16, 5, 3], twenty-eight of the form [16, 6, 3],

and eight of the form [16, 7, 3].

The subcodes of UC2 and UC3 are as follows, eight of the form [16, 1, 4], twenty-eight of

the form [16, 2, 4], fifty-six of the form [16, 3, 4], seventy of the form [16, 4, 4], fifty-six

of the form [16, 5, 4], twenty-eight of the form [16, 6, 4], and eight of the form [16, 7, 4].

The subcodes of UC4 are as follows, eight of the form [16, 1, 5], sixteen of the form

[16, 2, 5], twelve of the form [16, 2, 4], fifty-six of the form [16, 3, 4], seventy of the form

[16, 4, 4], fifty-six of the form [16, 5, 4], twenty-eight of the form [16, 6, 4], and eight of

the form [16, 7, 4].

The subcodes of UC5 and UC8 are as follows, eight of the form [16, 1, 6], sixteen of the

form [16, 2, 6], twelve of the form [16, 2, 4], fifty-six of the form [16, 3, 4], seventy of

the form [16, 4, 4], fifty-six of the form [16, 5, 4], twenty-eight of the form [16, 6, 4], and

eight of the form [16, 7, 4].

The subcodes of UC6 and UC7 are as follows, eight of the form [16, 1, 6], twenty-four

of the form [16, 2, 6], four of the form [16, 2, 4], thirty-two of the form [16, 3, 6], twenty-

four of the form [16, 3, 4], sixteen of the form [16, 4, 6], fifty-four of the form [16, 4, 4],

fifty-six of the form [16, 5, 4], twenty-eight of the form [16, 6, 4], and eight of the form

[16, 7, 4].

The subcodes of UC9 are as follows, eight of the form [16, 1, 7], sixteen of the form

[16, 2, 7], eight of the form [16, 2, 6], four of the form [16, 2, 4], thirty-two of the form

[16, 3, 6], twenty-four of the form [16, 3, 4], sixteen of the form [16, 4, 6], fifty-four of

the form [16, 4, 4], fifty-six of the form [16, 5, 4], twenty-eight of the form [16, 6, 4], and

eight of the form [16, 7, 4].

The subcodes of UC10 are as follows, eight of the form [16, 1, 7], twenty-four of the form

[16, 2, 7], four of the form [16, 2, 4], thirty-two of the form [16, 3, 6], twenty-four of the

form [16, 3, 4], sixteen of the form [16, 4, 6], fifty-four of the form [16, 4, 4], fifty-six of

the form [16, 5, 4], twenty-eight of the form [16, 6, 4], and eight of the form [16, 7, 4].

The subcodes of UC11 are as follows, eight of the form [16, 1, 8], twenty-four of the form

[16, 2, 6], four of the form [16, 2, 4], thirty-two of the form [16, 3, 6], twenty-four of the
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form [16, 3, 4], sixteen of the form [16, 4, 6], fifty-four of the form [16, 4, 4], fifty-six of

the form [16, 5, 4], twenty-eight of the form [16, 6, 4], and eight of the form [16, 7, 4].

The subcodes of UC12 are as follows, eight of the form [16, 1, 8], sixteen of the form

[16, 2, 7], eight of the form [16, 2, 6], four of the form [16, 2, 4], thirty-two of the form

[16, 3, 6], twenty-four of the form [16, 3, 4], sixteen of the form [16, 4, 6], fifty-four of

the form [16, 4, 4], fifty-six of the form [16, 5, 4], twenty-eight of the form [16, 6, 4], and

eight of the form [16, 7, 4].

The subcodes of UC13 are as follows, eight of the form [16, 1, 8], sixteen of the form

[16, 2, 7], twelve of the form [16, 2, 4], fifty-six of the form [16, 3, 4], seventy of the form

[16, 4, 4], fifty-six of the form [16, 5, 4], twenty-eight of the form [16, 6, 4], and eight of

the form [16, 7, 4].

The subcodes of UC14 are as follows, eight of the form [16, 1, 8], twenty-eight of the form

[16, 2, 4], fifty-six of the form [16, 3, 4], seventy of the form [16, 4, 4], fifty-six of the form

[16, 5, 4], twenty-eight of the form [16, 6, 4], and eight of the form [16, 7, 4].

The subcodes of UC15 are as follows, eight of the form [16, 1, 9], twenty-eight of the form

[16, 2, 4], fifty-six of the form [16, 3, 4], seventy of the form [16, 4, 4], fifty-six of the form

[16, 5, 4], twenty-eight of the form [16, 6, 4], and eight of the form [16, 7, 4].

The subcodes of UC16 are as follows, eight of the form [16, 1, 9], sixteen of the form

[16, 2, 7], twelve of the form [16, 2, 4], fifty-six of the form [16, 3, 4], seventy of the form

[16, 4, 4], fifty-six of the form [16, 5, 4], twenty-eight of the form [16, 6, 4], and eight of

the form [16, 7, 4].

The subcodes of UC17 are as follows, eight of the form [16, 1, 9], sixteen of the form

[16, 2, 7], eight of the form [16, 2, 6], four of the form [16, 2, 4], thirty-two of the form

[16, 3, 6], twenty-four of the form [16, 3, 4], sixteen of the form [16, 4, 6], fifty-four of

the form [16, 4, 4], fifty-six of the form [16, 5, 4], twenty-eight of the form [16, 6, 4], and

eight of the form [16, 7, 4].

Remark 2.3.3. The newly constructed subcodes of the form [16, 1, 5], [16, 2, 6], [16, 4, 6],

[16, 2, 7], [16, 1, 8], and [16, 1, 9] can correct two, two, two, three, three, and four errors

respectively.

Construction_x

Use the approach as discussed in sec 2.2.2. Consider the subcodes [16, 1, 9] and [16, 7, 4]

of UC17[16, 8, 4]. Take C1, C2, and C3 as [16, 8, 4], [16, 1, 9], and [16, 7, 4] linear codes

respectively, we obtain new linear code Cx of form [32, 8, 8].
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Remark 2.3.4. The obtain code [32, 8, 8] is more efficient as it is a three error-correcting

code with a rate of 1/4.

Punctured code

Using SAGE software, puncture UC0[16, 8, 2] code at 3rd co-ordinate yields the [15, 8, 1]

linear punctured code. Repeating this process twelve times with the resultant codes yields

[3, 3, 1] linear punctured code. Puncturing [3, 3, 1] code at 2nd co-ordinate generates

[2, 2, 1] linear punctured code. Now puncture [2, 2, 1] code at 1st co-ordinate generates

PC0[1, 1, 1] linear punctured code.

Puncture UC1[16, 8, 3] code at 3rd co-ordinate generates [15, 8, 2] linear punctured code.

Now repeat this process two times with the resultant codes, we obtain [13, 8, 2] linear

punctured code. Puncture [13, 8, 2] code at 0 co-ordinate generates PC1[12, 8, 2] linear

punctured code.

Puncture UCi for i = 2 to 5, and UC8 codes at 3rd co-ordinate yields the C2[15, 8, 3],

C3[15, 8, 3], C4[15, 8, 3], C5[15, 8, 3], and C8[15, 8, 3] linear punctured codes respec-

tively. Puncture C2, C3, C4, C5, and C8 at 3rd co-ordinate generates the PC2[14, 8, 3],

PC3[14, 8, 3], PC4[14, 8, 3], PC5[14, 8, 3], and PC8[14, 8, 3] linear punctured codes

respectively .

Puncture UC6[16, 8, 4] code at 3rd co-ordinate generates [15, 8, 3] linear punctured code,

repeat this process two times with resultant code yield C6[14, 8, 3] linear punctured code.

Puncture C6 code at 3rd co-ordinate yields [13, 8, 3] linear punctured code. Puncture

[13, 8, 3] code at 2nd co-ordinate generates PC6[12, 8, 3] linear punctured code.

Puncture UC7[16, 8, 4] and UC11[16, 8, 4] codes at 3rd co-ordinate generates [15, 8, 3]

and [15, 8, 3] linear punctured codes respectively. Now repeat this process two times

with the resultant codes yields C7[13, 8, 3] and C11[13, 8, 3] linear punctured codes.

Puncture C7 and C11 codes at 2nd co-ordinate yields PC7[12, 8, 3] and PC11[12, 8, 3]

linear punctured codes.

Puncture UC9[16, 8, 4] and UC12[16, 8, 4] codes at 3rd co-ordinate yields [15, 8, 3] and

[15, 8, 3] linear punctured codes respectively. Now repeat this process two times with

resultant codes yields C9[13, 8, 3] and C12[13, 8, 3] linear codes. Puncture C9 and C12

code at 0-co-ordinate generates PC9[12, 8, 3] and PC12[12, 8, 3] linear punctured codes.

Puncture UC10[16, 8, 4] and UC17[16, 8, 4] codes two times at 3rd co-ordinate yields

C10[14, 8, 3] and C17[14, 8, 3] linear codes respectively. Now puncture C10 and C17 codes

at 3-rd co-ordinate generates [13, 8, 3] and [13, 8, 3] linear codes. Puncture [13, 8, 3] and

[13, 8, 3] codes at 0-co-ordinate yields PC10[12, 8, 3] and PC17[12, 8, 3] linear punctured

codes.
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Puncture UC13[16, 8, 4] code at 3rd co-ordinate generates [15, 8, 3] linear punctured

code. Now puncture [15, 8, 3] linear code at 0-co-ordinate yields PC13[14, 8, 3] linear

punctured code.

Puncture UC14[16, 8, 4] and UC15[16, 8, 4] linear codes at 3rd co-ordinate yields

PC14[15, 8, 3] and PC15[15, 8, 3] linear punctured codes.

Puncture UC16[16, 8, 4] code twice at 3rd co-ordinate generates PC16[14, 8, 3] linear

punctured code.

Remark 2.3.5. Puncturing a unique self-dual codes raises code quality by increasing a

code rate of UCi for i = 0 to 17 from 1
2 to 1, 2

3 , 4
7 , 4

7 , 4
7 , 4

7 , 2
3 , 2

3 , 4
7 , 2

3 , 2
3 , 2

3 , 2
3 , 4

7 , 8
15 , 8

15 , 4
7 , 2

3

respectively.

Extended code

Applying the Extending approach on the punctured codes PC0[1, 1, 1], PC1[12, 8, 2],

PC2[14, 8, 3], PC3[14, 8, 3], PC4[14, 8, 3], PC5[14, 8, 3], C6[14, 8, 3], PC7[12, 8, 3],

PC8[15, 8, 3], PC9[12, 8, 3], C10[14, 8, 3], PC11[12, 8, 3], PC12[12, 8, 3], PC13[14, 8, 3],

PC14[15, 8, 3], PC15[15, 8, 3], PC16[14, 8, 3], and PC17[14, 8, 3] which are obtain in

section 2.3.2 generates its extended codes EX0[2, 1, 2], EX1[13, 8, 3], EX2[15, 8, 4],

EX3[15, 8, 4], EX4[15, 8, 4], EX5[15, 8, 4], EX6[15, 8, 4], EX7[13, 8, 4], EX8[15, 8, 4],

EX9[13, 8, 4], EX10[15, 8, 4], EX11[13, 8, 4], EX12[13, 8, 4], EX13[15, 8, 4], EX14[16, 8, 4],

EX15[16, 8, 4], EX16[15, 8, 4], and EX17[15, 8, 4] respectively.

Remark 2.3.6. After applying the operations of Puncturing and Extending on the UCi for

i = 0 to 17 codes the new improve codes we obtain are EX0[2, 1, 2] this is mds code as it is

of form [n, k, n−k+1], EX1[13, 8, 3] it can correct one error with rate 8/13, EX2[15, 8, 4],

EX3[15, 8, 4], EX4[15, 8, 4], EX5[15, 8, 4], EX6[15, 8, 4], EX8[15, 8, 4], EX10[15, 8, 4],

EX13[15, 8, 4], EX16[15, 8, 4], and EX17[15, 8, 4] they can correct one error with rate

8/15, EX7[13, 8, 4] and EX9[13, 8, 4] can correct one error with rate 8/13, EX11[13, 8, 4]

and EX12[13, 8, 4] can correct one error with rate 8/13, EX14[16, 8, 4] and EX15[16, 8, 4]

they can correct one error with rate 1/2.

Juxtapose code

Applying the juxtapose code approach on UCi for i = 0 to 17 generates three hundred and

twenty-four juxtapose codes categorized by the following forms, one code of the form

[32, 8, 4], two codes of the form [32, 8, 5], five codes of the form [32, 8, 6], six codes of

the form [32, 8, 7], three hundred and ten codes of the form [32, 8, 8].
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Remark 2.3.7. This approach gives an improvement for given UCi for i = 0 to 17 unique

self-dual linear codes by getting a lot more realistic and relevant codes as the newly con-

structed juxtapose codes of form [32, 8, 5], [32, 8, 6], [32, 8, 7], and [32, 8, 8] can correct

two, two, three, and three errors respectively, whereas the error-correction capability of

UCi for i = 2 to 17 is one.

2.3.3 Encoding and Decoding

The process of encoding and decoding for the case of F4Q8 is similar to the approach

followed in F2Q8.



Chapter 3

Group ring construction of the
[24, 12, 8] and [48, 24, 12] Type II linear
block code

This chapter focuses on a new construction for self-dual codes that uses the concept of

double-bordered construction, group rings, and reverse circulant matrices. Using groups

of orders 2, 3, 4, and 5, and by applying the construction over the binary field F2 and the

ring F2+uF2, an extremal binary self-dual codes of various lengths: 12, 16, 20, 24, 32, 40,

and 48 are obtained. The significance of this new construction is the construction of

the unique Extended Binary Golay Code [24, 12, 8] and the unique Extended Quadratic

Residue [48, 24, 12] Type II linear block code. Moreover, the existing relationship be-

tween units and non-units with the self-dual codes presented in (23) is also strengthened

by limiting the conditions given in the corollaries of (23). Additionally, a relationship

between idempotent and self-dual codes is also established.

3.1 Introduction

Many researchers are interested in constructing extremal binary self-dual codes over

Frobenius rings since these codes are linked to other mathematical structures and have

numerous applications.

Extremal Type II codes have gotten the most attention in the literature because of their

strong relation to sphere packings. These codes fulfill the formula [n, n
2 , 4⌊

n
24⌋+4], n = 8m

(where m is a natural number) for [length, dimension, and distance] (32, p. 346). The Ex-

31
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tended Binary Golay Code i.e. [24, 12, 8] is the first putative code in the Type II series of

codes when n equals twenty-four. The second putative code in this series is the Extended

Quadratic Residue Code i.e. [48, 24, 12]. In this chapter, we have constructed both codes

using a new construction.

In 1990, the code [24, 12, 8] was constructed using ideals in the group algebra F2S 4;

see (2) for details. In 2008, the [24, 12, 8] code was constructed from F2D24; see (43) for

details. The most common approach to constructing an Extended Binary Golay Code and

Extended Quadratic Residue Code is to extend the Binary Golay Code of length 23 by

an even parity bit and the Quadratic Residue Code of length 47 by an even parity bit. A

new way of constructing the Extended Binary Golay Code and the Extended Quadratic

Residue Code is defined in this chapter. We construct the code here by blending the con-

cept of double-bordered constructions of self-dual codes from group rings over Frobenius

rings (24) with constructing self-dual codes from group rings and reverse circulant matri-

ces (23).

The following is an outline of the work in this chapter: Section 3.2 presents the new

constructions and the theoretical results. Section 3.3 presents numerical results for the

Extended Binary Golay Code, Extended Quadratic Residue Code, and extremal binary

self-dual codes of various lengths obtained by directly applying our construction over a

field F2 and ring F2 + uF2 with SAGE (54). The chapter wraps up with the conclusion of

our work.

3.2 Main matrix construction

Here we present our main construction. As mentioned above, we define a double border

around the matrix given in (23). The motivation is to produce extremal binary self-dual

codes of various lengths. The most important codes are the Extended Binary Golay Code,

i.e., [24, 12, 8] and the Extended Quadratic Residue Code, which we shall call Extended

QR, the only known [48, 24, 12] code, via our construction, that could not be obtained

in (23) and (24). Let v1, v2 ∈ RG, where R is a finite commutative Frobenius ring of
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characteristic 2 and G is a group of order n. The matrix is defined as follows:

Mσ =



β1 β2 β3 · · · β3 β4 · · · β4 β5 β6 β7 · · · β7 β8 · · · β8

β2 β1 β4 · · · β4 β3 · · · β3 β6 β5 β8 · · · β8 β7 · · · β7

β3 β4 β7 β8
...
... In 0

...
... σ(v1) σ(v2) +C

β3 β4 β7 β8

β4 β3 β8 β7
...
... 0 In

...
... σ(v2)T +C σ(v1)T

β4 β3 β8 β7



. (3.1)

Let Cσ be a code generated through the matrix Mσ. Then code Cσ has length 4n+ 4.

Lemma 3.2.1. Let R be a finite commutative Frobenius ring with characteristic 2, and

G = {g1, g2, · · · , gn} be a finite group of order n, so that

Nσ =

 σ(v1) σ(v2) +C

σ(v2)T +C σ(v1)T

 ,
where v1 and v2 are the elements of RG, σ(v1) and σ(v2) are group-ring matrices of n × n

order, and C is a reverse circulant matrix of n × n order over R. Then

σ(vk)


1
...

1

 = σ(vk)T


1
...

1

 =

µk
...

µk

 (k = 1, 2),

where µ1 =
∑
g∈G
αg, µ2 =

∑
g∈G
βg .

Let η denote the sum of all elements of the first row of matrix C. Then

(σ(v2) +C)


1
...

1

 = (σ(v2)T +C)


1
...

1

 =

µ2 + η
...

µ2 + η

 .
Proof. Clearly, σ(v1) = (αg−1

i g j
)i, j=1,··· ,n, σ(v2) = (βg−1

i g j
)i, j=1,··· ,n, and C = (γi j)i, j=1,··· ,n.

Now, the i−th element of column σ(v1)


1
...

1

 is

n∑
j=1

αg−1
i g j
=
∑
g∈G

αg−1
i g
=
∑
g∈G

αg = µ1, gi ∈ G, g−1
i ∈ G,
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and the i−th element of column σ(v1)T


1
...

1

 is

n∑
j=1

αg−1
j gi
=
∑
g∈G

αg−1gi =
∑
g∈G

αggi =
∑
g∈G

αg = µ1, gi ∈ G.

Thus,

σ(v1)


1
...

1

 = σ(v1)T


1
...

1

 =

µ1
...

µ1

 .

Similarly, the i−th element of column σ(v2)


1
...

1

 is

n∑
j=1

βg−1
i g j
=
∑
g∈G

βg−1
i g
=
∑
g∈G

βg = µ2, gi ∈ G, g−1
i ∈ G,

and the i−th element of column σ(v2)T


1
...

1

 is

n∑
j=1

βg−1
j gi
=
∑
g∈G

βg−1gi =
∑
g∈G

βggi =
∑
g∈G

βg = µ2, gi ∈ G.

Thus,

σ(v2)


1
...

1

 = σ(v2)T


1
...

1

 =

µ2
...

µ2

 .

Furthermore, the i−th element of column C


1
...

1

 is

n∑
j=1

γi j = γi1 + γi2 + · · · + γin = η.

Thus,

C


1
...

1

 =

η
...

η

 .
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Hence,

(σ(v2) +C)


1
...

1

 = (σ(v2)T +C)


1
...

1

 =

µ2 + η
...

µ2 + η

 .
□

In 2020, (23, Theorem 2.5), Gildea, Kaya, and Yildiz introduced a matrix and

showed that, under certain conditions, we can generate self-dual codes of order 4n by

a group of order n. In Theorem 3.2.2, we extend this result by introducing a double bor-

der around their matrix and demonstrating that, under certain conditions, we can generate

self-dual codes of order 4n + 4 by a group of order n. In (24), Gildea introduced the

concept of the double-bordered construction. Their main matrix construction does not in-

volve a reverse circulant matrix. In our main matrix construction, we have used a reverse

circulant matrix. Moreover, their main theorem, i.e, (24, Theorem 3.2), was restricted for

the group of order 2p (p is odd prime) only but, by Theorem 3.2.2, we have extended it to

any group of order n (n ∈ N). As a result, we can construct those extremal self-dual codes

that can not be attained by the technique used in (24), i.e., extremal self-dual codes of

length 12, 20, 40 are constructed as shown in Table 3.1, Table 3.5, and Table 3.6 respec-

tively. By blending both the concepts of (23) and (24) in Theorem 3.2.2, we can construct

those extremal self-dual codes that have not been obtained in (23) and (24). In particular,

we can build the well-known Extended Binary Golay Code, as shown in (Table 3.7, Code

G2), the Extended QR code, as shown in (Table 3.8, Code L2), and various other extremal

self-dual codes which are listed in Section 3.3.

Theorem 3.2.2. Let R be a finite commutative Frobenius ring with characteristic 2, G be

a finite group of order n, and Cσ be a code generated by the matrix Mσ such that rank

of a matrix Mσ is 2n + 2. Then Cσ is a self-dual code of length 4n + 4 if the following

conditions are satisfied :

Case I: n is odd

1.
8∑

i=0
βi = 0.

2. σ(v1v2 + v2v1) + σ(v1)C +Cσ(v1) = 0.

3. σ(v1v∗1 + v2v
∗
2) + σ(v2)C +Cσ(v2)T +C2 = In + (β2

3 + β
2
4 + β

2
7 + β

2
8)


1 · · · 1
...
. . .

...

1 · · · 1


n×n

.

4. σ(v∗1v
∗
2 + v

∗
2v
∗
1) +Cσ(v1)T + σ(v1)TC = 0.
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5. σ(v∗1v1 + v
∗
2v2) + σ(v2)TC +Cσ(v2) +C2 = In + (β2

3 + β
2
4 + β

2
7 + β

2
8)


1 · · · 1
...
. . .

...

1 · · · 1


n×n

.

6. β3(β1 + 1) + β4β2 + β7(β5 + µ1) + β6β8 + (µ2 + η)β8 = 0.

7. β4(β1 + 1) + β3β2 + β8(β5 + µ1) + β6β7 + (µ2 + η)β7 = 0.

Case II: n is even

1. β2
1 + β

2
2 + β

2
5 + β

2
6 = 0.

2. Conditions 2 to 7 for this case are the same as for the case ‘n is odd’.

Proof. Let Mσ =

M1 M2 M3 M4

MT
2 I2n MT

4 Nσ

, where M1 = circ(β1, β2), M2 = CIRC(A1, A2),

M3 = circ(β5, β6), M4 = CIRC(A3, A4), A1 = (β3, ..., β3) ∈ Rn, A2 = (β4, ..., β4) ∈ Rn,

A3 = (β7, ..., β7) ∈ Rn, A4 = (β8, ..., β8) ∈ Rn, and Nσ =

 σ(v1) σ(v2) +C

σ(v2)T +C σ(v1)T

.
Then,

MσMT
σ =

M1MT
1 + M2MT

2 + M3MT
3 + M4MT

4 M1M2 + M2 + M3M4 + M4NT
σ

MT
2 MT

1 + MT
2 + MT

4 MT
3 + NσMT

4 MT
2 M2 + I2n + MT

4 M4 + NσNT
σ

 .
Now,

M1MT
1 + M2MT

2 + M3MT
3 + M4MT

4 = circ(
2∑

i=1

(β2
i + nβ2

i+2 + β
2
i+4 + nβ2

i+6), 0).

Case I: n is odd

M1MT
1 + M2MT

2 + M3MT
3 + M4MT

4 = circ(
2∑

i=1

(β2
i + β

2
i+2 + β

2
i+4 + β

2
i+6), 0)

= circ(
8∑

i=1

β2
i , 0).

Case II: n is even

M1MT
1 + M2MT

2 + M3MT
3 + M4MT

4 = circ(
2∑

i=1

(β2
i + β

2
i+4), 0)

= circ(β2
1 + β

2
2 + β

2
5 + β

2
6, 0).

and

MT
2 M2 + I2n + MT

4 M4 + NσNT
σ =

2∑
i=1

β2
i+2 + β

2
i+6CIRC(A, 0) + I2n + NσNT

σ
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where A = circ(1, · · · , 1︸   ︷︷   ︸
n−times

), 0 = circ(0, · · · , 0︸   ︷︷   ︸
n−times

), and

NσNT
σ =

σ(v1v∗1 + v2v
∗
2) + σ(v2)C +Cσ(v2)T +C2 σ(v1v2) + σ(v1)C + σ(v2v1) +Cσ(v1)

σ(v∗1v
∗
2) +Cσ(v1)T + σ(v∗2v

∗
1) + σ(v1)TC σ(v∗2v2) + σ(v2)TC +Cσ(v2) +C2 + σ(v∗1v1)

 .
It follows from Lemma 3.2.1 that

NσMT
4 =



µ1β7 + µ2β8 + ηβ8 µ1β8 + µ2β7 + ηβ7
...

...

µ1β7 + µ2β8 + ηβ8 µ1β8 + µ2β7 + ηβ7

µ2β7 + ηβ7 + µ1β8 µ2β8 + ηβ8 + µ1β7
...

...

µ2β7 + ηβ7 + µ1β8 µ2β8 + ηβ8 + µ1β7


.

Additionally, MT
2 MT

1 + MT
2 + MT

4 MT
3 + NσMT

4 =

β3β1 + β4β2 + β3 + β7β5 + β6β8 + µ1β7 + µ2β8 + ηβ8 β4β1 + β3β2 + β4 + β8β5 + β6β7 + µ1β8 + µ2β7 + ηβ7
...

...

β3β1 + β4β2 + β3 + β7β5 + β6β8 + µ1β7 + µ2β8 + ηβ8 β4β1 + β3β2 + β4 + β8β5 + β6β7 + µ1β8 + µ2β7 + ηβ7

β4β1 + β3β2 + β4 + β8β5 + β6β7 + µ2β7 + ηβ7 + µ1β8 β4β2 + β3β1 + β3 + β5β7 + β6β8 + µ2β8 + ηβ8 + µ1β7
...

...

β4β1 + β3β2 + β4 + β8β5 + β6β7 + µ2β7 + ηβ7 + µ1β8 β4β2 + β3β1 + β3 + β5β7 + β6β8 + µ2β8 + ηβ8 + µ1β7


.

Clearly, MσMT
σ is a symmetric matrix and Cσ is self orthogonal if for

8∑
i=0
βi = 0,

σ(v1v2 + v2v1) + σ(v1)C + Cσ(v1) = 0, σ(v1v∗1 + v2v
∗
2) + σ(v2)C + Cσ(v2)T + C2 =

In + (β2
3 + β

2
4 + β

2
7 + β

2
8)


1 · · · 1
...
. . .

...

1 · · · 1


n×n

, σ(v∗1v
∗
2 + v

∗
2v
∗
1) + Cσ(v1)T + σ(v1)TC = 0,

σ(v∗1v1 + v
∗
2v2) + σ(v2)TC + Cσ(v2) + C2 = In + (β2

3 + β
2
4 + β

2
7 + β

2
8)


1 · · · 1
...
. . .

...

1 · · · 1


n×n

,

β3(β1+1)+β4β2+β7(β5+µ1)+β6β8+(µ2+η)β8 = 0, β4(β1+1)+β3β2+β8(β5+µ1)+β6β7+(µ2+η)β7 =

0. Because the rank of the matrix Mσ is 2n + 2 and Cσ is self-orthogonal under the conditions

established above, we can conclude that the code Cσ is a self-dual code if all of the preceding

conditions are met. □

In 2020, (23, Corollary 3.2, Corollary 3.3, and Corollary 3.4), Gildea, Kaya, and

Korban under certain conditions defined a relationship of units, non-units, and unitary
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units with self-dual codes, respectively. In Corollary 3.2.3, 3.2.4, 3.2.5, and 3.2.6 we

have relaxed both the restrictions, i.e., C commutes withσ(v1) and v1 commutes with v2. In

addition, we have replaced the condition that both Cσ(v2)T and Cσ(v2) must be symmetric

with the simple condition that σ(v2) is symmetric, which strengthens the relationship

between units, non-units, and unitary units with the self-dual codes.

Corollary 3.2.3. Let R be a finite commutative Frobenius ring of characteristic 2, G be

a finite group of order n, and Cσ be a self-dual code. Then the elements v1v∗1 + v2v
∗
2,

v∗1v1 + v
∗
2v2 ∈ RG are units if the following conditions are satisfied:

1. β2
3 + β

2
4 + β

2
7 + β

2
8 = 0.

2. σ(v2) is symmetric.

3. C2 = 0.

Proof. Ifσ(v2) is symmetric, thenσ(v2)C+Cσ(v2)T = 0. If C2 = 0 and β2
3+β

2
4+β

2
7+β

2
8 = 0,

thenσ(v1v∗1+v2v
∗
2) = σ(v∗1v1+v

∗
2v2) = In. Then, det(σ(v1v∗1+v2v

∗
2)) = det(σ(v∗1v1+v

∗
2v2)) = 1.

Hence, v1v∗1 + v2v
∗
2 and v∗1v1 + v

∗
2v2 are unitary units. □

Corollary 3.2.4. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order n (odd), and Cσ be a self-dual code. Then the elements v1v∗1 + v2v
∗
2,

v∗1v1 + v
∗
2v2 ∈ RG are non units if the following conditions are satisfied:

1. β2
3 + β

2
4 + β

2
7 + β

2
8 = 1.

2. σ(v2) is symmetric.

3. C2 = 0.

Proof. Ifσ(v2) is symmetric, thenσ(v2)C+Cσ(v2)T = 0. If C2 = 0 and β2
3+β

2
4+β

2
7+β

2
8 = 1,

then

σ(v1v∗1 + v2v
∗
2) = In +


1 1 · · · 1

1 1 · · · 1
...
...
. . .

...

1 1 · · · 1


n×n

=


0 1 · · · 1

1 0 · · · 1
...
...
. . .

...

1 1 · · · 0


n×n

.
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Then,

det(σ(v1v∗1 + v2v
∗
2)) = det


0 1 · · · 1

1 0 · · · 1
...
...
. . .

...

1 1 · · · 0


n×n

= (n − 1)det


1 1 · · · 1

0 1 · · · 0
...
...
. . .

...

0 0 · · · 1


n×n

= 0 (i f n is odd).

Hence, det(σ(v1v∗1 + v2v
∗
2)) = 0 and v1v∗1 + v2v

∗
2 is a non-unit by corollary 3 of (33).

Similarly, det(σ(v∗1v1 + v
∗
2v2)) = 0 and v∗1v1 + v

∗
2v2 is a non-unit. □

Corollary 3.2.5. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order n (odd), and Cσ be a self-dual code. Then the elements v1v∗1 + v2v
∗
2,

v∗1v1 + v
∗
2v2 ∈ RG are non units if the following conditions are satisfied:

1. β2
3 + β

2
4 + β

2
7 + β

2
8 = 0.

2. σ(v2) is symmetric.

3. C2 = I.

Proof. Ifσ(v2) is symmetric, thenσ(v2)C+Cσ(v2)T = 0. If C2 = I and β2
3+β

2
4+β

2
7+β

2
8 = 0,

then σ(v1v∗1+v2v
∗
2) = σ(v1v∗1+v2v

∗
2) = 0. Hence, v1v∗1+v2v

∗
2 and v∗1v1+v

∗
2v2 are non-units. □

Corollary 3.2.6. Let R be a finite commutative Frobenius ring of characteristic 2, G be

a finite group of order n (odd), and Cσ be a self-dual code. Then the element v2 ∈ RG is

unitary unit if following conditions are satisfied:

1. σ(v2) is symmetric.

2. β2
3 + β

2
4 + β

2
7 + β

2
8 = 0.

3. C2 = I.

4. v1 is unitary in RG.

Proof. If σ(v2) is symmetric, then σ(v2)C +Cσ(v2)T = 0. If C2 = I, β2
3 + β

2
4 + β

2
7 + β

2
8 = 0

and v1 is unitary in RG, then σ(1 + v2v∗2) = σ(1 + v∗2v2) = 0. Thus, v2v∗2 = v
∗
2v2 = 1 and v2

is unitary unit. □
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By Corollary 3.2.7, we have established a relationship between idempotents and

self-dual codes, which have been established for the first time in the literature.

Corollary 3.2.7. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order n (odd), and Cσ be a self-dual code. Then the elements v1v∗1 + v2v
∗
2,

v∗1v1 + v
∗
2v2 ∈ RG are idempotents if following conditions are satisfied:

1. β2
3 + β

2
4 + β

2
7 + β

2
8 = 1.

2. σ(v2) is symmetric.

3. C2 = 0.

Proof. If σ(v2) is symmetric, then σ(v2)C +Cσ(v2)T = 0.

If n is odd, then


1 · · · 1
...
. . .

...

1 · · · 1


2

n×n

=


1 · · · 1
...
. . .

...

1 · · · 1


n×n

. That is


1 · · · 1
...
. . .

...

1 · · · 1


n×n

is an idempotent matrix.

If C2 = 0 and β2
3 + β

2
4 + β

2
7 + β

2
8 = 1, then

σ(v1v∗1 + v2v
∗
2) = In +


1 · · · 1
...
. . .

...

1 · · · 1


n×n

= In −


1 · · · 1
...
. . .

...

1 · · · 1


n×n

.

If T is an idempotent matrix, then I −T is also an idempotent matrix. Thus, σ(v1v∗1 + v2v
∗
2)

is an idempotent matrix and v1v∗1 + v2v
∗
2 is an idempotent element of RG. Similarly, we can

say that v∗1v1 + v
∗
2v2 is an idempotent element of RG. □

3.3 Computational results

In this section, we apply our main construction over the field F2 and the ring F2 + uF2

to search for extremal binary self-dual codes of lengths of 12, 16, 20, 24, 32, 40, 48. We

consider groups of orders 2, 3, 4, and 5, in particular C2,C3,C4, and C5. We also employ

the Gray map to construct the famous Extended QR code. For all our computational

calculations, we have used the SAGE software (54).

Algorithm:

INPUT: Field F2.

OUTPUT: Extremal self-dual codes.
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1. Generate matrices σ(v) of order n × n by a group of order n, over the field F2. The

structure of the matrix σ(v) is described in Theorem 1.1.1.

2. Generate reverse circulant matrices C of order n × n over the field F2.

3. Generate boundary matrices M1, M2, M3, and M4 over the Field F2, where

M1 = circ(β1, β2), M2 = CIRC(A1, A2), M3 = circ(β5, β6), M4 = CIRC(A3, A4),

A1 = (β3, ..., β3) ∈ Rn, A2 = (β4, ..., β4) ∈ Rn, A3 = (β7, ..., β7) ∈ Rn,

A4 = (β8, ..., β8) ∈ Rn.

4. Construct the set of generator matrices Mσ of (2n + 2) × (4n + 4) order having

the structure mentioned in Equation (3.1) using all the possible combinations of

matrices obtained in Step 1, Step 2, and Step 3.

5. From the given set of generator matrices, collect matrices that satisfy the condition

MσMT
σ = 0 and have rank 2n + 2. These matrices generate self-dual codes Cσ

with parameters [4n+4, 2n+2, dmin], where dmin is the minimum distance of the code.

6. Evaluate dmin = min{d(a, b)|a , b} for the self-dual codes that are generated from

matrices collected in Step 5. Here, d(a, b) = |{i|1 ≤ i ≤ 4n + 4, ai , bi}|, where

a, b ∈ F4n+4
2 are the codewords of length 4n + 4 for the code Cσ.

7. Shortlist matrices from Step 5, whose dmin of its corresponding self-dual code

matches the minimum distance of extremal self-dual codes of length 4n + 4. Refer

to Theorem 1.1.4 for the minimum distance of extremal self-dual codes. In this

step, we obtain matrices that generate the extremal self-dual codes Cσ of length

4n + 4.

8. Classify self-dual codes constructed from the matrices obtained in Step 7 are of

Type I or Type II. The binary self-dual code Cσ is said to be of Type I and Type II

if the weight of all of its codewords is divisible by two and four respectively. The

weight of a codeword a is defined as w(a) = d(a, 0), where 0 = (0, 0, · · · , 0) is the
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zero vector.

9. Lift the obtained self-dual codes in Step 8, to the ring F2 + uF2, as discussed in

Section 1.1.10. Generate a set of all possible lifted matrices by mapping an element

0 of F2 to two elements 0 and u of the ring F2 + uF2 and element 1 of F2 is mapped

to elements 1 and 1 + u of the ring F2 + uF2.

10. From the given set of uplifted matrices, collect matrices that can generate self-dual

codes of length 4n+4, as done in Step 5.

11. Evaluate dL for the self-dual codes generated from matrices collected in Step 10.

Here dL denotes a code’s smallest positive Lee distance. The Lee weight of the

ring F2 + uF2 elements 0, 1, u, and 1 + u are 0, 1, 2, and 1 respectively. The Lee

distance between 4n+ 4 tuple is defined as the sum of Lee weights of the difference

between the components of these tuples.

12. Shortlist matrices whose dL of its corresponding self-dual code matches the

minimum distance of extremal self-dual codes of length 2(4n + 4). In this step,

we obtain matrices that can generate the self-dual codes over the ring F2 + uF2 of

length 4n+4, whose binary images are extremal self-dual codes of length 2(4n+4).

13. Classify self-dual codes constructed from the matrices obtained in Step 12 are of

Type I or Type II.

3.3.1 Construction from cyclic group of order 2

Here we execute the above construction for G = C2 over the field F2 and obtain an

extremal self-dual code of length 12.

Now, we lift the code A1 over the Frobenious ring F2+uF2 to obtain an extremal self-dual

code of length 12, whose binary image is the Type II extremal self-dual code of length

24.
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Table 3.1: Self-dual codes of length 12 from C2 over F2

Code(Ai) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) fC |Aut(Ai)| Type

1 (1, 0, 1, 1, 1, 0, 0, 0) (0, 0) (0, 0) (1, 0) 23040 [12, 6, 4]I

Table 3.2: The extremal binary self-dual codes of length 24 obtained from F2 + uF2 lift

of A1.

Code(Ii) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) fC Type

1 A1 (1, u, 1, 1, 1, 0, 0, u) (0, u) (0, 0) (1, 0) TypeII

3.3.2 Construction from cyclic group of order 3

Here we execute the above construction for G = C3 over the field F2 and obtain an

extremal self-dual code of length 16.

Table 3.3: Self-dual codes of length 16 from C3 over F2

Code(Bi) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) fC |Aut(Bi)| Type

1 (1, 0, 1, 1, 1, 0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 0, 0) 5160960 [16, 8, 4]II

2 (1, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0) (0, 0, 0) (1, 1, 0) 3612672 [16, 8, 4]II

3 (1, 0, 1, 1, 0, 0, 0, 1) (0, 0, 0) (0, 0, 0) (1, 1, 0) 73728 [16, 8, 4]I

Now, we lift the codes B1, B2, and B3 over the Frobenious ring F2 + uF2 to obtain

an extremal self-dual code of length 16, whose binary image is the Type II extremal

self-dual code of length 32.
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Table 3.4: The extremal binary self-dual codes of length 32 obtained from F2 + uF2 lift

of B1, B2, and B3.

Code(Ji) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) fC Type

1 B1 (1, u, 1, 1, 1, 0, 0, u) (u, 0, 0) (0, 0, 0) (1, 0, 0) TypeII

2 B1 (u + 1, 0, 1, u + 1, u + 1, u, 0, u) (u, 0, 0) (u, u, u) (u + 1, u, u) TypeII

3 B2 (1, 0, 0, 0, 0, 0, 0, 1) (0, u, u) (0, 0, 0) (1, 1, 0) TypeII

4 B2 (u + 1, 0, 0, u, u, 0, 0, 1) (u, 0, 0) (u, u, u) (u + 1, u + 1, u) TypeII

5 B3 (1, 0, 1, 1, 0, 0, u, 1) (0, u, u) (0, 0, 0) (1, 1, 0) TypeII

6 B3 (u + 1, 0, 1, u + 1, 0, u, 0, 1) (u, 0, 0) (u, u, u) (u + 1, u + 1, u) TypeII

3.3.3 Construction from cyclic group of order 4

Here we execute the above construction for G = C4 over the field F2 and obtain an

extremal self-dual code of length 20.

Table 3.5: Self-dual codes of length 20 from C4 over F2

Code(Di) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) fC |Aut(Di)| Type

1 (1, 0, 1, 1, 1, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (1, 0, 0, 0) 1857945600 [20, 10, 4]I

2 (1, 0, 1, 1, 1, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (1, 1, 1, 0) 294912 [20, 10, 4]I

3 (1, 0, 1, 1, 1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) 4423680 [20, 10, 4]I

4 (1, 0, 1, 1, 1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 1) 122880 [20, 10, 4]I

Now, we lift the codes D1, D2, D3, and D4 over the Frobenious ring F2 + uF2 to obtain

extremal self-dual code of length 20, whose binary image is the Type II extremal self-dual

code of length 40.

Table 3.6: The extremal binary self-dual codes of length 40 obtained from F2 + uF2 lift

of D1 and D2

Code(Ki) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) fC Type

1 D1 (1, u, 1, 1, 1, 0, 0, u) (0, 0, u, 0) (0, 0, 0, 0) (1, 0, 0, 0) TypeII

2 D1 (1, u, 1, 1, u + 1, 0, 0, u) (u, u, 0, u) (u, u, u, u) (1, 0, u, 0) TypeII

3 D2 (1, u, 1, 1, 1, 0, 0, u) (0, 0, u, 0) (0, 0, 0, 0) (1, 1, 1, u) TypeII

4 D2 (u + 1, 0, u + 1, u + 1, u + 1, u, u, 0) (u, u, 0, u) (u, u, u, u) (u + 1, u + 1, u + 1, 0) TypeII

3.3.4 Construction from cyclic group of order 5

Here we execute the above construction for G = C5 over the field F2 and obtain an

extremal self-dual code of length 24 of Type I and well-known Extended Binary Golay
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Code.

Table 3.7: Self-dual codes of length 24 from C5 over F2

Code(Gi) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) fC |Aut(Gi)| Type

1 (1, 0, 0, 0, 0, 0, 0, 1) (0, 0, 1, 1, 0) (0, 0, 0, 0, 0) (1, 0, 1, 0, 0) 138240 [24, 12, 6]I

2 (1, 0, 1, 1, 0, 0, 0, 1) (0, 0, 1, 1, 0) (0, 0, 0, 0, 0) (1, 0, 1, 0, 0) 244823040 [24, 12, 8]II

Now, we lift the codes G2 over the Frobenious ring F2+uF2 to obtain an extremal self-dual

code of length 24, whose binary image is the well-known Extended QR code.

Table 3.8: The extremal binary self-dual codes of length 48 obtained from F2 + uF2 lift

of E2.
Code(Li) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) fC Type

1 G2 (1, 0, 1, 1, 0, 0, 0, 1) (0, u, 1, 1, u) (0, 0, 0, u, u) (1, 0, 1, 0, 0) [48, 24, 10]I

2 G2 (u + 1, 0, u + 1, u + 1, 0, u, u, u + 1) (u, 0, u + 1, u + 1, 0) (u, u, u, u, u) (u + 1, u, u + 1, 0, 0) [48, 24, 12]II

3.4 Conclusion

We presented a new method for creating self-dual codes using group rings. By doing

so, we were able to show the relevance of this new construction by constructing extremal

binary self-double codes of various lengths: 12, 16, 20, 24 (Extended Binary Golay Code),

32, 40, and most importantly, we have completed the exhaustive search for [48, 24, 12]

self-dual doubly-even codes begun in (28), (29), and (44). We established a link between

unitary units/units/non-units and idempotents with self-dual codes. Due to the computing

limits imposed by the construction approach, we consider the groups of orders 2, 3, 4, and

5. These computational techniques can be applied to several families of rings and several

groups within this framework.





Chapter 4

n
r -th bordered constructions of self-dual
codes from Group rings over Frobenius
rings

In this chapter, we introduce the concept of n
r -th borders around the matrix. Here n and

r are the natural numbers such that r divides n. We have shown that this construction is

efficacious for any group of order r (where r is a natural number such that r divides n),

over the Frobenius ring Rk. We discover extremal binary self-dual codes of lengths 32,

40, the well-known Extended Binary Golay Code, i.e., [24, 12, 8], and Extended Quadratic

Residue Code, i.e., [48, 24, 12] by two different ways.

4.1 Introduction

A conventional technique for constructing self-dual code over rings and finite fields is to

consider a generator matrix of the form [In | A] where A satisfies the condition AAT = −I.

The numerous modifications of the work mentioned above have been done in the hope

of extremal self-dual codes of various lengths, see (19) and (24). In (19), the concept

of single border is introduced, and in (24), the concept of double border is there. In this

chapter, we extend the above work by constructing a n
r -th bordered construction to In and

σ(v), where σ(v) is the group ring matrix. We emphasize the importance of this new

construction by constructing both the significant codes, Extended Binary Golay Code and

Extended Quadratic Residue Code in two different ways, that is, by using triple-bordered

and fourth-bordered constructions, as listed in Tables 4.1, 4.2, 4.3, and 4.4.

47



48 n
r -th bordered constructions of self-dual codes from Group rings over Frobenius rings

The rest of the work in the chapter is organized as follows: In Section 4.2, we describe the

new n
r -th bordered matrix construction from group ring and prove our main results. In

section 4.3, we find the extremal binary self-dual codes of different lengths by applying

the construction on a different order of groups and list the obtained binary self-dual codes

in tables. In section 4.4, we end up with the conclusion and the direction for potential

future scope.

4.2 The n
r -th bordered construction from group ring

In this section, we have described our main matrix construction. The motivation of this

chapter is to construct extremal self-dual codes of various lengths that are not obtained in

(19) and (24). Let v1, v2, · · · , v n
r
∈ RG where R is a finite commutative Frobenious ring

with characteristic 2 and G is a finite group of order r where (r is natural number). Define

the matrix as below: Mσ =



α1 α2 · · · α n
r
γ1 · · · γ1 γ2 · · · γ2 · · · γ n

r
· · · γ n

r
β1 β2 · · · β n

r
δ1 · · · δ1 δ2 · · · δ2 · · · δ n

r
· · · δ n

r

α n
r
α1 · · · α n

r −1 γ n
r
· · · γ n

r
γ1 · · · γ1 · · · γ n

r −1 · · · γ n
r −1 β n

r
β1 · · · β n

r −1 δ n
r
· · · δ n

r
δ1 · · · δ1 · · · δ n

r −1 · · · δ n
r −1

...
...

...
...

...
...
...
...
...
...
...

...
...

...
...

...
...

...
...

...
...
...

...
...
...

...
...

...

α2 α3 · · · α1 γ2 · · · γ2 γ3 · · · γ3 · · · γ1 · · · γ1 β2 β3 · · · β1 δ2 · · · δ2 δ3 · · · δ3 · · · δ1 · · · δ1

γ1 γ n
r
· · · γ2 δ1 δ n

r
· · · δ2

...
... · · ·

...
...

... · · ·
... σ(v1) σ(v2) · · · σ(v n

r
)

γ1 γ n
r
· · · γ2 δ1 δ n

r
· · · δ2

γ2 γ1 · · · γ3 δ2 δ1 · · · δ3
...

... · · ·
... In

...
... · · ·

... σ(v n
r
) σ(v1) · · · σ(v n

r −1)

γ2 γ1 · · · γ3 δ2 δ1 · · · δ3
...

... · · ·
...

...
... · · ·

...
...

...
. . .

...

γ n
r
γ n

r −1 · · · γ1 δ n
r
δ n

r −1 · · · δ1
...

... · · ·
...

...
... · · ·

... σ(v2) σ(v3) · · · σ(v1)

γ n
r
γ n

r −1 · · · γ1 δ n
r
δ n

r −1 · · · δ1


where, αi, βi, γi, and δi ∈ R. Let the code generated by matrix Mσ be denoted by

Cσ. Then the length of the code Cσ is 2(n + n
r ). Now, we can prove our main result.

Lemma 4.2.1. Let R be a finite commutative Frobenius ring with characteristic 2 and

G = {g1, g2, · · · , gr} be a finite group of order r, so that

Nσ =


σ(v1) σ(v2) · · · σ(v n

r
)

σ(v n
r
) σ(v1) · · · σ(v n

r −1)
...

... . . .
...

σ(v2) σ(v3) · · · σ(v1)


,
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where v1, v2, · · · , v n
r

are the elements of RG and σ(v1), σ(v2), · · · , σ(v n
r
) are group-ring

matrices of n × n order. Then

σ(vk)


1
...

1

 = σ(vk)T


1
...

1

 =

µk
...

µk

 (k = 1, 2, · · · ,
n
r

),

where µ1 =
∑
g∈G
αg, µ2 =

∑
g∈G
βg, · · · , µ n

r
=
∑
g∈G
δg .

Proof. Clearly, σ(v1) = (αg−1
i g j

)i, j=1,··· ,r, σ(v2) = (βg−1
i g j

)i, j=1,··· ,r, and σ(v n
r
) = (δg−1

i g j
)i, j=1,··· ,r

.

Now, the i−th element of column σ(v1)


1
...

1

 is

r∑
j=1

αg−1
i g j
=
∑
g∈G

αg−1
i g
=
∑
g∈G

αg = µ1, gi ∈ G, g−1
i ∈ G,

and the i−th element of column σ(v1)T


1
...

1

 is

r∑
j=1

αg−1
j gi
=
∑
g∈G

αg−1gi =
∑
g∈G

αggi =
∑
g∈G

αg = µ1, gi ∈ G.

Thus,

σ(v1)


1
...

1

 = σ(v1)T


1
...

1

 =

µ1
...

µ1

 .

Similarly, the i−th element of column σ(v2)


1
...

1

 is

r∑
j=1

βg−1
i g j
=
∑
g∈G

βg−1
i g
=
∑
g∈G

βg = µ2, gi ∈ G, g−1
i ∈ G,

and the i−th element of column σ(v2)T


1
...

1

 is

r∑
j=1

βg−1
j gi
=
∑
g∈G

βg−1gi =
∑
g∈G

βggi =
∑
g∈G

βg = µ2, gi ∈ G.
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Thus,

σ(v2)


1
...

1

 = σ(v2)T


1
...

1

 =

µ2
...

µ2

 .

Continuing this way, the i−th element of column σ(v n
r
)


1
...

1

 is

r∑
j=1

δg−1
i g j
=
∑
g∈G

δg−1
i g
=
∑
g∈G

δg = µ n
r
, gi ∈ G, g−1

i ∈ G,

and the i−th element of column σ(v n
r
)T


1
...

1

 is

r∑
j=1

δg−1
j gi
=
∑
g∈G

δg−1gi =
∑
g∈G

δggi =
∑
g∈G

δg = µ n
r
, gi ∈ G.

Thus,

σ(v n
r
)


1
...

1

 = σ(v n
r
)T


1
...

1

 =

µ n

r
...

µ n
r

 .
□

In 2019, (19, Theorem 3.1) Dougherty, Gildea, Korban, Kaya, Tylyshchak, and

Yildiz introduced the concept of a single border matrix for the construction of self-dual

codes from group rings. In 2019, (24, Theorem 3.2) Gildea, Taylor, Kaya, and Tylyshchak

introduced the concept of a double border matrix for self-dual codes construction from

group rings. In Theorem 4.2.2, we have extended these two results by introducing the

concept of n
r -th border matrix and demonstrating that, under certain conditions, we can

generate self-dual codes of order 2(n + n
r ) by a group of order r. As a result, we can

construct those extremal self-dual codes that can not be attained by the technique used

in (24), i.e., extremal self-dual codes of lengths 32, and 40, as shown in Table 4.5, and

4.6, respectively. By extending the concepts of (19) and (24) in Theorem 4.2.2, we can

construct those extremal self-dual codes that have not been obtained in (19) and (24). In

particular, we built the well-known Extended Binary Golay Code, as shown in Tables 4.1

and 4.3, Codes A1 and B1; the Extended QR Code, as shown in Tables 4.2 and 4.4, Codes

I2 and J1; and various other extremal self-dual codes that are listed in Section 4.4.
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Theorem 4.2.2. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order r, and Cσ be a code generated by the matrix Mσ such that rank of a

matrix Mσ is (n + n
r ). Then Cσ is a self-dual code of length 2(n + n

r ) if and only if

1.
n
r∑

i=1
(α2

i + β
2
i ) + r(

n
r∑

i=1
(γ2

i + δ
2
i )) = 0.

2. α1α n
r
+β1β n

r
+r(γ1γ n

r
+δ1δ n

r
)+

n/r∑
i=2

(αiαi−1)+
n/r∑
i=2

(βiβi−1)+r(
n/r∑
i=2

(γiγi−1)+
n/r∑
i=2

(δiδi−1)) = 0.

3. α1α n
r −1 + α2α n

r
+ β1β n

r −1 + β2β n
r
+ r(γ1γ n

r −1 + γ2γ n
r
+ δ1δ n

r −1 + δ2δ n
r
) +

n/r∑
i=3

(αiαi−2) +

n/r∑
i=3

(βiβi−2) + r(
n/r∑
i=3

(γiγi−2) +
n/r∑
i=3

(δiδi−2)) = 0.

4. σ(
n
r∑

i=1
viv
∗
i ) = Ir + (

n
r∑

i=1
(γ2

i + δ
2
i ))circ(1, · · · , 1︸   ︷︷   ︸

r−times

).

5. σ(v1v∗n
r
+

n
r∑

i=2
viv
∗
i−1) = (γ n

r
γ1 + δ n

r
δ1 +

n
r −1∑
i=1

(γiγi+1 + δiδi+1))circ(1, · · · , 1︸   ︷︷   ︸
r−times

).

6. σ(v1v∗n
r −1 + v2v

∗
n
r
+

n
r∑

i=3
viv
∗
i−2) = (γ n

r
γ2 + γ n

r −1γ1 + δ n
r
δ2 + δ n

r −1δ1 +

n
r −2∑
i=1

(γiγi+2 +

δiδi+2))circ(1, · · · , 1︸   ︷︷   ︸
r−times

).

7. σ(v n
r
v∗1 +

n
r −1∑
i=1
vivi+1) = (γ n

r
γ1 + δ n

r
δ1 +

n
r −1∑
i=1

(γiγi+1 + δiδi+1))circ(1, · · · , 1︸   ︷︷   ︸
r−times

).

8. γ1α1 +

n
r −2∑
i=0

(γ n
r −iαi+2) + γ1 + δ1β1 +

n
r −2∑
i=0

(δ n
r −iβi+2) +

n
r∑

i=1
(µiδi) = 0.

9.
n
r −1∑
i=0

(γ n
r −iαi+1) + γ n

r
+

n
r −1∑
i=0

(δ n
r −iβi+1) + µ1δ n

r
+

n
r∑

i=2
(µiδi−1) = 0.

10. γ n
r
α n

r
+

n
r −1∑
i=1

(γ n
r −iαi) + γ n

r −1 + δ n
r
β n

r
+

n
r −1∑
i=1

(δ n
r −iβi) + µ1δ n

r −1 + µ2δ n
r
+

n
r∑

i=3
(µiδi−2) = 0.

11. γ1α2+γ2α1+

n
r −3∑
i=0

(γ n
r −iαi+3)+γ2+δ1β2+δ2β1+

n
r −3∑
i=0

(δ n
r −iβi+3)+µ n

r
δ1+

n
r −1∑
i=1

(µiδi+1) = 0.

Proof. Let Mσ =

M1 M2 M3 M4

MT
2 In MT

4 Nσ

, where M1 = circ(α1, α2, · · · , α n
r
), M2 =

CIRC(B1, B2, · · · , B n
r
), M3 = circ(β1, β2, · · · , β n

r
), M4 = CIRC(K1,K2, · · · ,K n

r
), B1 =

(γ1, · · · , γ1) ∈ Rr, B2 = (γ2, · · · , γ2) ∈ Rr, B n
r
= (γ n

r
, · · · , γ n

r
) ∈ Rr, K1 = (δ1, · · · , δ1) ∈ Rr,

K2 = (δ2, · · · , δ2) ∈ Rr, K n
r
= (δ n

r
, · · · , δ n

r
) ∈ Rr. Then

MσMT
σ =

M1MT
1 + M2MT

2 + M3MT
3 + M4MT

4 M1M2 + M2 + M3M4 + M4NT
σ

MT
2 MT

1 + MT
2 + MT

4 MT
3 + NσMT

4 MT
2 M2 + In + MT

4 M4 + NσNT
σ

 .
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Now,

M1MT
1 + M2MT

2 + M3MT
3 + M4MT

4 = circ(
n
r∑

i=1
(α2

i + β
2
i ) + r(

n
r∑

i=1
(γ2

i + δ
2
i )), α1α n

r
+ β1β n

r
+

n/r∑
i=2

(αiαi−1 + βiβi−1)+ r(γ1γ n
r
+ δ1δ n

r
+

n/r∑
i=2

(γiγi−1 + δiδi−1)), α1α n
r −1 + α2α n

r
+ β1β n

r −1 + β2β n
r
+

n/r∑
i=3

(βiβi−2 + αiαi−2) + r(γ1γ n
r −1 + γ2γ n

r
+ δ1δ n

r −1 + δ2δ n
r
+

n/r∑
i=3

(γiγi−2 + δiδi−2)), · · · , α1α n
r
+

β1β n
r
+

n/r∑
i=2

(αiαi−1 + βiβi−1) + r(γ1γ n
r
+ δ1δ n

r
+

n/r∑
i=2

(γiγi−1 + δiδi−1)),

and

MT
2 M2 + In + MT

4 M4 + NσNT
σ = circ(A, B,D, · · · , E) + In + NσNT

σ where

A = (
n
r∑

i=1
(γ2

i + δ
2
i ))circ(1, · · · , 1︸   ︷︷   ︸

r−times

), B = (γ n
r
γ1 + δ n

r
δ1 +

n
r −1∑
i=1

(γiγi+1 + δiδi+1))circ(1, · · · , 1︸   ︷︷   ︸
r−times

),

D = (γ n
r
γ2 + γ n

r −1γ1 + δ n
r
δ2 + δ n

r −1δ1 +

n
r −2∑
i=1

(γiγi+2 + δiδi+2))circ(1, · · · , 1︸   ︷︷   ︸
r−times

),

E = (γ n
r
γ1 + δ n

r
δ1 +

n
r −1∑
i=1

(γiγi+1 + δiδi+1))circ(1, · · · , 1︸   ︷︷   ︸
r−times

), and NσNT
σ = circ(F,G,H, · · · , I)

where F = σ(
n
r∑

i=1
viv
∗
i ), G = σ(v1v∗n

r
+

n
r∑

i=2
viv
∗
i−1), H = σ(v1v∗n

r −1 + v2v
∗
n
r
+

n
r∑

i=3
viv
∗
i−2), and

I = σ(v n
r
v∗1 +

n
r −1∑
i=1
vivi+1).

It follows from Lemma 4.2.1 that

NσMT
4 =



σ(v1) σ(v2) σ(v3) · · · σ(v n
r
)

σ(v n
r
) σ(v1) σ(v2) · · · σ(v n

r −1)

σ(v n
r −1) σ(v n

r
) σ(v1) · · · σ(v n

r −2)
...

...
...

...
...

σ(v2) σ(v3) σ(v4) · · · σ(v1)





δ1 δ n
r
δ n

r −1 · · · δ2
...

...
...

...
...

δ1 δ n
r
δ n

r −1 · · · δ2

δ2 δ1 δ n
r
· · · δ3

...
...

...
...
...

δ2 δ1 δ n
r
· · · δ3

...
...

...
...
...

δ n
r
δ n

r −1 δ n
r −2 · · · δ1

...
...

...
...
...

δ n
r
δ n

r −1 δ n
r −2 · · · δ1



=



4.2 The n
r -th bordered construction from group ring 53



n
r∑

i=1
(µiδi) µ1δ n

r
+

n
r∑

i=2
(µiδi−1) µ1δ n

r −1 + µ2δ n
r
+

n
r∑

i=3
(µiδi−2) · · · µ n

r
δ1 +

n
r −1∑
i=1

(µiδi+1)
...

...
...

...
...

n
r∑

i=1
(µiδi) µ1δ n

r
+

n
r∑

i=2
(µiδi−1) µ1δ n

r −1 + µ2δ n
r
+

n
r∑

i=3
(µiδi−2) · · · µ n

r
δ1 +

n
r −1∑
i=1

(µiδi+1)

µ n
r
δ1 +

n
r −1∑
i=1

(µiδi+1)
n
r∑

i=1
(µiδi) µ1δ n

r
+

n
r∑

i=2
(µiδi−1) · · · µ n

r
δ2 + µ n

r −1δ1 +

n
r −2∑
i=1

(µiδi+2)
...

...
...

...
...

µ n
r
δ1 +

n
r −1∑
i=1

(µiδi+1)
n
r∑

i=1
(µiδi) µ1δ n

r
+

n
r∑

i=2
(µiδi−1) · · · µ n

r
δ2 + µ n

r −1δ1 +

n
r −2∑
i=1

(µiδi+2)
...

...
...

...
...

...
...

...
...

...

µ1δ n
r
+

n
r∑

i=2
(µiδi−1) µ1δ n

r −1 + µ2δ n
r
+

n
r∑

i=3
(µiδi−2) · · · · · ·

n
r∑

i=1
(µiδi)

...
...

...
...

...

µ1δ n
r
+

n
r∑

i=2
(µiδi−1) µ1δ n

r −1 + µ2δ n
r
+

n
r∑

i=3
(µiδi−2) · · · · · ·

n
r∑

i=1
(µiδi)


= CIRC((

n
r∑

i=1
(µiδi))c, (µ1δ n

r
+

n
r∑

i=2
(µiδi−1))c, (µ1δ n

r −1 + µ2δ n
r
+

n
r∑

i=3
(µiδi−2))c, · · · , · · · , (µ n

r
δ1 +

n
r −1∑
i=1

(µiδi+1))c), where c =


1
...

1


r×1

.

Additionally,

MT
2 MT

1 +MT
2 +MT

4 MT
3 +NσMT

4 = CIRC((γ1α1+

n
r −2∑
i=0

(γ n
r −iαi+2))c, (

n
r −1∑
i=0

(γ n
r −iαi+1))c, (γ n

r
α n

r
+

n
r −1∑
i=1

(γ n
r −iαi))c, · · · , · · · , (γ1α2 + γ2α1 +

n
r −3∑
i=0

(γ n
r −iαi+3))c) +

CIRC(γ1c, γ n
r
c, γ n

r −1c, · · · , · · · , γ2c)+CIRC((δ1β1+

n
r −2∑
i=0

(δ n
r −iβi+2))c, (

n
r −1∑
i=0

(δ n
r −iβi+1))c, (δ n

r
β n

r
+

n
r −1∑
i=1

(δ n
r −iβi))c, · · · , · · · , (δ1β2 + δ2β1 +

n
r −3∑
i=0

(δ n
r −iβi+3))c) + CIRC((

n
r∑

i=1
(µiδi))c, (µ1δ n

r
+

n
r∑

i=2
(µiδi−1))c, (µ1δ n

r −1 + µ2δ n
r
+

n
r∑

i=3
(µiδi−2))c, · · · , · · · , (µ n

r
δ1 +

n
r −1∑
i=1

(µiδi+1))c)

= CIRC((γ1α1 +

n
r −2∑
i=0

(γ n
r −iαi+2) + γ1 + δ1β1 +

n
r −2∑
i=0

(δ n
r −iβi+2) +

n
r∑

i=1
(µiδi))c,

(
n
r −1∑
i=0

(γ n
r −iαi+1) + γ n

r
+

n
r −1∑
i=0

(δ n
r −iβi+1) + µ1δ n

r
+

n
r∑

i=2
(µiδi−1))c, (γ n

r
α n

r
+

n
r −1∑
i=1

(γ n
r −iαi) + γ n

r −1 +

δ n
r
β n

r
+

n
r −1∑
i=1

(δ n
r −iβi) + µ1δ n

r −1 + µ2δ n
r
+

n
r∑

i=3
(µiδi−2))c, · · · , · · · , (γ1α2 + γ2α1 +

n
r −3∑
i=0

(γ n
r −iαi+3) +

γ2 + δ1β2 + δ2β1 +

n
r −3∑
i=0

(δ n
r −iβi+3) + µ n

r
δ1 +

n
r −1∑
i=1

(µiδi+1))c).

Clearly, MσMT
σ is a symmetric matrix and Cσ is self-orthogonal if

n
r∑

i=1
(α2

i + β
2
i )+ r(

n
r∑

i=1
(γ2

i +

δ2
i )) = 0, α1α n

r
+β1β n

r
+r(γ1γ n

r
+δ1δ n

r
)+

n/r∑
i=2

(αiαi−1)+
n/r∑
i=2

(βiβi−1)+r(
n/r∑
i=2

(γiγi−1)+
n/r∑
i=2

(δiδi−1)) = 0,
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α1α n
r −1+α2α n

r
+β1β n

r −1+β2β n
r
+r(γ1γ n

r −1+γ2γ n
r
+δ1δ n

r −1+δ2δ n
r
)+

n/r∑
i=3

(αiαi−2)+
n/r∑
i=3

(βiβi−2)+

r(
n/r∑
i=3

(γiγi−2) +
n/r∑
i=3

(δiδi−2)) = 0, α1α n
r −2 + α2α n

r −1 + α3α n
r
+ β1β n

r −2 + β2β n
r −1 + β3β n

r
+

r(γ1γ n
r −2+γ2γ n

r −1+γ3γ n
r
+δ1δ n

r −2+δ2δ n
r −1+δ3δ n

r
)+

n/r∑
i=4

(αiαi−3)+
n/r∑
i=4

(βiβi−3)+ r(
n/r∑
i=4

(γiγi−3)+

n/r∑
i=4

(δiδi−3)) = 0, σ(
n
r∑

i=1
viv
∗
i ) = Ir + (

n
r∑

i=1
(γ2

i + δ
2
i ))circ(1, · · · , 1︸   ︷︷   ︸

r−times

),σ(v1v∗n
r
+

n
r∑

i=2
viv
∗
i−1) =

(γ n
r
γ1 + δ n

r
δ1 +

n
r −1∑
i=1

(γiγi+1 + δiδi+1))circ(1, · · · , 1︸   ︷︷   ︸
r−times

), σ(v1v∗n
r −1 + v2v

∗
n
r
+

n
r∑

i=3
viv
∗
i−2) =

(γ n
r
γ2 + γ n

r −1γ1 + δ n
r
δ2 + δ n

r −1δ1 +

n
r −2∑
i=1

(γiγi+2 + δiδi+2))circ(1, · · · , 1︸   ︷︷   ︸
r−times

), σ(v n
r
v∗1 +

n
r −1∑
i=1
vivi+1) =

(γ n
r
γ1 + δ n

r
δ1 +

n
r −1∑
i=1

(γiγi+1 + δiδi+1))circ(1, · · · , 1︸   ︷︷   ︸
r−times

),

γ1α1 +

n
r −2∑
i=0

(γ n
r −iαi+2) + γ1 + δ1β1 +

n
r −2∑
i=0

(δ n
r −iβi+2) +

n
r∑

i=1
(µiδi) = 0,

n
r −1∑
i=0

(γ n
r −iαi+1) + γ n

r
+

n
r −1∑
i=0

(δ n
r −iβi+1) + µ1δ n

r
+

n
r∑

i=2
(_iδi−1) = 0, γ n

r
α n

r
+

n
r −1∑
i=1

(γ n
r −iαi) + γ n

r −1 + δ n
r
β n

r
+

n
r −1∑
i=1

(δ n
r −iβi) +

µ1δ n
r −1 + µ2δ n

r
+

n
r∑

i=3
(µiδi−2) = 0, · · · , γ1α2 + γ2α1 +

n
r −3∑
i=0

(γ n
r −iαi+3) + γ2 + δ1β2 + δ2β1 +

n
r −3∑
i=0

(δ n
r −iβi+3) + µ n

r
δ1 +

n
r −1∑
i=1

(µiδi+1) = 0.

Since the rank of the matrix Mσ is (n + n
r ) and Cσ is self-orthogonal under conditions

proved above, we can say that the code Cσ is a self-dual code if all the above conditions

are satisfied. □

In Corollaries 4.2.3 and 4.2.4, we have established a relationship between the group

ring element and the unitary unit and non-unit.

Corollary 4.2.3. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order r, and Cσ be a self-dual code. Then
n
r∑

i=1
viv
∗
i ∈ RG is a unitary unit if

n
r∑

i=1
(γ2

i + δ
2
i ) = 0 condition is satisfied.

Proof. If
n
r∑

i=1
(γ2

i + δ
2
i ) = 0, then σ(

n
r∑

i=1
viv
∗
i ) = Ir . Then,

n
r∑

i=1
viv
∗
i = 1. Hence,

n
r∑

i=1
viv
∗
i ∈ RG is

a unitary unit. □

Corollary 4.2.4. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order r where (r is odd), and Cσ be a self-dual code. Then
n
r∑

i=1
viv
∗
i ∈ RG is

a non-unit if
n
r∑

i=1
(γ2

i + δ
2
i ) = 1 condition is satisfied.
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Proof. If
n
r∑

i=1
(γ2

i + δ
2
i ) = 1, then σ(

n
r∑

i=1
viv
∗
i ) = Ir + circ(1, · · · , 1︸   ︷︷   ︸

r−times

) = circ(0, 1, · · · , 1︸   ︷︷   ︸
(r−1)−times

)

and

det


0 1 · · · 1

1 0 · · · 1
...
...
. . .

...

1 1 · · · 0


= (r − 1)det


1 1 · · · 1

0 1 · · · 0
...
...
. . .

...

0 0 · · · 1


= 0 (i f r is odd).

Therefore, det(
n
r∑

i=1
viv
∗
i ) = 0 and

n
r∑

i=1
viv
∗
i is a non-unit by corollary 3 of (33). □

In Corollary 4.2.5, we have established a relationship between the group ring ele-

ment and the idempotent, which has not been established in (19) and (24).

Corollary 4.2.5. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order r where (r is odd), and Cσ be a self-dual code. Then
n
r∑

i=1
viv
∗
i ∈ RG is

an idempotent if
n
r∑

i=1
(γ2

i + δ
2
i ) = 1 condition is satisfied.

Proof. If
n
r∑

i=1
(γ2

i + δ
2
i ) = 1, then σ(

n
r∑

i=1
viv
∗
i ) = Ir − circ(1, · · · , 1︸   ︷︷   ︸

r−times

) = Ir + circ(1, · · · , 1︸   ︷︷   ︸
r−times

)

and the matrix circ(1, · · · , 1︸   ︷︷   ︸
r−times

) is an idempotent matrix. Since if T is an idempotent matrix

then I − T is also an idempotent matrix, which implies σ(
n
r∑

i=1
viv
∗
i ) is an idempotent matrix.

Hence, an element
n
r∑

i=1
viv
∗
i is an idempotent element. □

4.3 Computational results

Now, using this new construction over the field F2 and the ring F2 + uF2, we will design

the well-known Extended Binary Golay Codes [24, 12, 8], Extended Quadratic Residue

Code [48, 24, 12], and extremal self-dual codes of various lengths 32 and 40. We use the

(54) SAGE software for all the computational results.

Algorithm:

INPUT: F2 Field.

OUTPUT: Extremal self-dual codes.

1. Create the matrix Mσ over the field F2 by the structure described in 4.2.
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(a) Create the boundary matrices M1,M2,M3, and M4, where M1 = circ(α1, α2,

· · · , α n
r
), M2 = CIRC(B1, B2, · · · , B n

r
), M3 = circ(β1, β2, · · · , β n

r
), M4 =

CIRC(K1,K2, · · · ,K n
r
), B1 = (γ1, · · · , γ1) ∈ Rr, B2 = (γ2, · · · , γ2) ∈ Rr,

B n
r
= (γ n

r
, · · · , γ n

r
) ∈ Rr, K1 = (δ1, · · · , δ1) ∈ Rr, K2 = (δ2, · · · , δ2) ∈ Rr,

K n
r
= (δ n

r
, · · · , δ n

r
) ∈ Rr.

(b) Create the group ring matrices σ(v1), σ(v2), · · · , σ(v n
r
) over the field F2.

(c) Create the generator matrix Mσ of order ( n
r +n)×(2(n

r +n)) by using all feasible

combinations of the matrices acquired in Steps 1(a) and (b).

2. Create extremal self-dual codes.

(a) Shortlist those matrices from Step 1(c) that produce self-dual codes Cσ of

length 2( n
r + n), i.e., those matrices that satisfy the condition MσMT

σ = 0 and

have rank (n
r + n).

(b) The self-dual codes generated from the matrices shortlisted in Step 2(a) are of

the parameters Cσ[2(n
r + n), n

r + n, dmin], where dmin is the minimum distance

defined as dmin = min{d(l,m)|l , m} such that d(l,m) = |{i|1 ≤ i ≤ 2(n
r +n), li ,

mi}|, where l,m ∈ F2( n
r +n)

2 are the codewords for the code Cσ.

(c) Shortlist the extremal self-dual codes from Step 2(b) by using Theorem 4.2.2

and classifying them as Type I and Type II codes.

3. Create the matrix Mσ over the ring F2+uF2 by the structure described in the Section

4.2.

(a) Lift the matrix, which generates the extremal self-dual codes in Step 2(c), by

lifting an element 0 of F2 to elements 0 and u of F2 + uF2 and by lifting an

element 1 of F2 to elements 1 and 1 + u of F2 + uF2.

4. Create extremal self-dual codes.

(a) Select only those matrices from Step 3 that result in self-dual codes Cσ of

length 2( n
r + n) with dL as the smallest positive Lee distance.

(b) Evaluate dL, where dL is defined as the Lee distance between 2( n
r + n) tuples,

i.e., the sum of the Lee weights of the difference between the components of

these tuples. The Lee weights of the terms 0, 1, u, and 1 + u are 0, 1, 2, and 1,

respectively.

(c) Choose the matrices from Step 4(a) whose associated self-dual codes have a

Lee distance dL equal to the minimum distance of extremal self-dual codes
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of length 4(n
r + n), and classify these obtained self-dual codes as of Type I or

Type II.

4.3.1 Construction of extremal self-dual codes of lengths 24 and 48

from C3

We execute the above construction for G = C3. By considering n = 9 and r = 3, i.e.,

by using triple-bordered construction, a binary extremal self-dual code with parameters

[24, 12, 6] and the well-known Extended Binary Golay Code is constructed over the F2

field.

Table 4.1: Construction of Extended Binary Golay Code from G = C3 over F2

Code(Ai) (α1, α2, α3, γ1, γ2, γ3, β1, β2, β3, δ1, δ2, δ3) f(σ(v1)) f(σ(v2)) f(σ(v3)) Type

1 (1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0) (1, 0, 0) (0, 1, 0) (0, 1, 1) [24, 12, 8]II

2 (1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0) (1, 0, 0) (1, 0, 0) (0, 0, 1) [24, 12, 6]I

Now we will give the lift of F2 + uF2 to the codes in Table 4.1. The codes obtained are

a binary extremal self-dual code with parameters [48, 24, 10] and the Extended Quadratic

Residue Code, as listed in Table 4.2.

Table 4.2: The extremal binary self-dual codes of length 48 obtained from the F2 + uF2

lift of A1

Code(Ii) (α1, α2, α3, γ1, γ2, γ3, β1, β2, β3, δ1, δ2, δ3) f(σ(v1)) f(σ(v2)) f(σ(v3)) Type

1 A1 (1, 0, 0, 1, 1, 0, 1, u, 1, 1, 0, 0) (1, 0, 0) (0, u + 1, u) (0, 1, u + 1) [48, 24, 10]I

2 A1 (1, 0, 0, 1, 1, u, u + 1, 0, 1, 1, 0, u) (1, 0, u) (0, u + 1, u) (0, 1, 1) [48, 24, 12]II

4.3.2 Construction of extremal self-dual codes of lengths 24 and 48

from C2

We execute the above construction for G = C2. By considering n = 8 and r = 2, i.e.,

by using fourth-bordered construction, a binary extremal self-dual code with parameters

[24, 12, 6] and the well-known Extended Binary Golay Code is constructed over the F2

field.
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Table 4.3: Construction of Extended Binary Golay Code from G = C2 over F2

Code(Bi) (α1, α2, α3, α4, γ1, γ2, γ3, γ4, β1, β2, β3, β4, δ1, δ2, δ3, δ4) f(σ(v1)) f(σ(v2)) f(σ(v3)) f(σ(v4)) Type

1 (1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0) (0, 0) (1, 0) (1, 0) (1, 0) [24, 12, 8]II

2 (0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0) (0, 0) (1, 0) (1, 0) (1, 0) [24, 12, 6]I

Now we will give the lift of F2 + uF2 to the codes in Table 4.3. The code obtained

is the Extended Quadratic Residue Code, as listed in Table 4.4.

Table 4.4: The Extended Quadratic Residue Code [48, 24, 12], obtained from the F2+uF2

lift of B1

Code(Ji) (α1, α2, α3, α4, γ1, γ2, γ3, γ4, β1, β2, β3, β4, δ1, δ2, δ3, δ4) f(σ(v1)) f(σ(v2)) f(σ(v3)) f(σ(v4))

1 B1 (1, 1, 1, 0, 1, 0, 0, 0, 0, u + 1, 0, 0, u + 1, 1, u + 1, u) (0, u) (1, 0) (1, 0) (1, 0)

4.3.3 Construction of extremal self-dual codes of length 32 from C3

We execute the above construction for G = C3. By considering n = 12 and

r = 3, i.e., by using fourth-bordered construction, a binary extremal self-dual code with

parameters [32, 16, 8] of both Type I and Type II is constructed over F2 field.

Table 4.5: Construction of extremal self-dual codes of length 32 from G = C3 over F2

Code(Di) (α1, α2, α3, α4, γ1, γ2, γ3, γ4, β1, β2, β3, β4, δ1, δ2, δ3, δ4) f(σ(v1)) f(σ(v2)) f(σ(v3)) f(σ(v4)) Type

1 (0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1) (0, 0, 0) (1, 0, 0) (1, 0, 0) (0, 1, 1) [32, 16, 8]I

2 (0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0) (0, 0, 0) (1, 0, 0) (1, 0, 0) (0, 1, 1) [32, 16, 8]II

4.3.4 Construction of extremal self-dual codes of length 40 from C4

We execute the above construction for G = C4. By considering n = 16 and

r = 4, i.e., by using fourth-bordered construction, a binary extremal self-dual code with

parameters [40, 20, 8] of both Type I and Type II is constructed over F2 field.
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Table 4.6: Construction of extremal self-dual code of length 40 from G = C4 over F2

Code(Gi) (α1, α2, α3, α4, γ1, γ2, γ3, γ4, β1, β2, β3, β4, δ1, δ2, δ3, δ4) f(σ(v1)) f(σ(v2)) f(σ(v3)) f(σ(v4)) Type

1 (1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1) (0, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) [40, 20, 8]I

2 (0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1) (0, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) [40, 20, 8]II

4.4 Conclusion

This chapter proposes a new n
r -th bordered construction of group rings to create binary

linear self-dual codes. We come up with certain conditions that when this n
r -th bordered

construction will generate self-dual codes. We have connected non-units, units, and idem-

potents with the self-dual codes. We illustrated the importance of this new n
r -th bordered

construction by constructing the well-known Extended Binary Golay Code, Extended

Quadratic Residue Code, and many extremal binary self-dual codes of lengths 32 and 40.

We suggest two feasible directions for future research. One way is to take a group of

higher order, as with the increase in order of group there is an increase in length of self-

dual codes. This may potentially trigger a computational issue. The other feasible area

for research can be to apply the constructions to Frobenious rings Rk for k ≥ 2. However,

this will increase the computational complexity as |R2| = 16, |R3| = 256, etc. i.e, with the

increase in value of k, there is an increase in the cardinality of Rk.





Chapter 5

Group ring construction of [64, 32, 12]

Type II linear block code

In this chapter, we introduce the double-bordered construction of self-dual codes whose

generator matrix is of the form M = [In|A] where A is a block matrix consisting of blocks

which comes from group rings and the elements in the first row cannot completely deter-

mine the block matrix A. We demonstrate that this construction is feasible for a group of

order 2n where n is a natural number, over the Frobenius ring Rk. We show the signifi-

cance of this new construction by constructing several extremal self-dual codes of lengths

20, 40, 32, and 64 over the field F2 and the ring F2 + uF2.

5.1 Introduction

Algebraic codes and group rings have a natural relation. This strong relationship between

group rings and the algebraic codes is often endorsed in the effective quest for extremal

binary self-dual codes.

The work in this chapter is arranged as follows: In section 5.2.1, we have given the new

construction i.e. the introduction of a double border around the generator matrix of the

form M = [In|A] where A is a block matrix consisting of blocks which comes from group

rings and the elements in the first row cannot completely determine the block matrix A.

Identical generator matrices are in (18) and (22). In this section, we have proved our main

theorem. We specified the practicality and effectiveness of the theorem by constructing

many extremal self-dual codes of various lengths in section 5.3. Finally, in section 5.4 we

have given the conclusion of our work.
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5.2 Main matrix construction

Now, we will outline our main construction. Let v ∈ RG, where R is a finite commutative

Frobenius ring of characteristic 2, and G is a group of order n. The matrix is defined as

follows

Mσ =



β1 β2 β3 · · · β3 β4 · · · β4 β5 β6 β7 · · · β7 β8 · · · β8

β2 β1 β4 · · · β4 β3 · · · β3 β6 β5 β8 · · · β8 β7 · · · β7

β3 β4 β7 β8
...
... In 0

...
... σ(v1) σ(v2)

β3 β4 β7 β8

β4 β3 β8 β7
...
... 0 In

...
... σ(v2) σ(v3)

β4 β3 β8 β7



.

Let Cσ be a code generated through the matrix Mσ. Then, the code Cσ has length 4n + 4.

Lemma 5.2.1. Let R be a finite commutative Frobenius ring with characteristic 2, G =

{g1, g2, · · · , gn} be a finite group of order n such that

Nσ =

σ(v1) σ(v2)

σ(v2) σ(v3)

 ,
where v1, v2, and v3 are the elements of RG, and σ(v1), σ(v2), and σ(v3) are n × n group

ring matrices. Then

σ(vk)


1
...

1

 = σ(vk)T


1
...

1

 =

µk
...

µk

 (k = 1, 2, 3),

where µ1 =
∑
g∈G
αg, µ2 =

∑
g∈G
βg, and µ3 =

∑
g∈G
γg.

Proof. Clearly, σ(v1) = (αg−1
i g j

)i, j=1,··· ,n, σ(v2) = (βg−1
i g j

)i, j=1,··· ,n, and σ(v3) =

(γg−1
i g j

)i, j=1,··· ,n.

Now, the i−th element of column σ(v1)


1
...

1

 is

n∑
j=1

αg−1
i g j
=
∑
g∈G

αg−1
i g
=
∑
g∈G

αg = µ1, gi ∈ G, g−1
i ∈ G,
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and the i−th element of column σ(v1)T


1
...

1

 is

n∑
j=1

αg−1
j gi
=
∑
g∈G

αg−1gi =
∑
g∈G

αggi =
∑
g∈G

αg = µ1, gi ∈ G.

Thus,

σ(v1)


1
...

1

 = σ(v1)T


1
...

1

 =

µ1
...

µ1

 .

Furthermore, the i−th element of column σ(v2)


1
...

1

 is

n∑
j=1

βg−1
i g j
=
∑
g∈G

βg−1
i g
=
∑
g∈G

βg = µ2, gi ∈ G, g−1
i ∈ G,

and the i−th element of column σ(v2)T


1
...

1

 is

n∑
j=1

βg−1
j gi
=
∑
g∈G

βg−1gi =
∑
g∈G

βggi =
∑
g∈G

βg = µ2, gi ∈ G.

Thus,

σ(v2)


1
...

1

 = σ(v2)T


1
...

1

 =

µ2
...

µ2

 .

Similarly, the i−th element of column σ(v3)


1
...

1

 is

n∑
j=1

γg−1
i g j
=
∑
g∈G

γg−1
i g
=
∑
g∈G

γg = µ3, gi ∈ G, g−1
i ∈ G,

and the i−th element of column σ(v3)T


1
...

1

 is

n∑
j=1

γg−1
j gi
=
∑
g∈G

γg−1gi =
∑
g∈G

γggi =
∑
g∈G

γg = µ3, gi ∈ G.
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Thus,

σ(v3)


1
...

1

 = σ(v3)T


1
...

1

 =

µ3
...

µ3

 .
□

Theorem 5.2.2. Let R be a finite commutative Frobenius ring of characteristic 2, G =

{g1, g2, · · · , gn} be a finite group of order n, and Cσ be a code generated by the matrix Mσ
such that rank of the matrix Mσ is 2n + 2. Then Cσ is a self-dual code of length 4n + 4 if

and only if

Case I: n is odd

1.
8∑

i=0
βi = 0.

2. σ(v1v∗1 + v2v
∗
2) = In + (β2

3 + β
2
4 + β

2
7 + β

2
8)


1 · · · 1
...
. . .

...

1 · · · 1


n×n

.

3. v1v∗2 + v2v
∗
3 = 0.

4. v2v∗1 + v3v
∗
2 = 0.

5. σ(v2v∗2 + v3v
∗
3) = In + (β2

3 + β
2
4 + β

2
7 + β

2
8)


1 · · · 1
...
. . .

...

1 · · · 1


n×n

.

6. β3(β1 + 1) + β4β2 + β7(µ1 + β5) + β8(β6 + µ2) = 0.

7. β4(β1 + 1) + β3β2 + β8(µ1 + β5) + β7(β6 + µ2) = 0.

8. β4(β1 + 1) + β3β2 + β7(µ1 + β6) + β8(β5 + µ3) = 0.

9. β3(β1 + 1) + β4β2 + β7(µ3 + β5) + β8(β6 + µ2) = 0.

Case II: n is even

1. β2
1 + β

2
2 + β

2
5 + β

2
6 = 0.

2. Conditions 2 to 9 for this case are the same as for the case ‘n is odd’.

Proof. Let Mσ =

M1 M2 M3 M4

MT
2 I2n MT

4 Nσ

, where M1 = circ(β1, β2), M2 = CIRC(A1, A2),

M3 = circ(β5, β6), M4 = CIRC(A3, A4), A1 = (β3, ..., β3) ∈ Rn, A2 = (β4, ..., β4) ∈ Rn,
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A3 = (β7, ..., β7) ∈ Rn, A4 = (β8, ..., β8) ∈ Rn, and Nσ =

σ(v1) σ(v2)

σ(v2) σ(v3)

. Then

MσMT
σ =

M1MT
1 + M2MT

2 + M3MT
3 + M4MT

4 M1M2 + M2 + M3M4 + M4NT
σ

MT
2 MT

1 + MT
2 + MT

4 MT
3 + NσMT

4 MT
2 M2 + I2n + MT

4 M4 + NσNT
σ

 .
Now,

M1MT
1 + M2MT

2 + M3MT
3 + M4MT

4 = circ(
2∑

i=1

(β2
i + nβ2

i+2 + β
2
i+4 + nβ2

i+6), 0).

Case I: n is odd

M1MT
1 +M2MT

2 +M3MT
3 +M4MT

4 = circ(
2∑

i=1

(β2
i + β

2
i+2 + β

2
i+4 + β

2
i+6), 0) = circ(

8∑
i=1

β2
i , 0).

Case II: n is even

M1MT
1 + M2MT

2 + M3MT
3 + M4MT

4 = circ(
2∑

i=1

(β2
i + β

2
i+4), 0) = circ(β2

1 + β
2
2 + β

2
5 + β

2
6, 0).

and

MT
2 M2 + I2n + MT

4 M4 + NσNT
σ =

2∑
i=1

β2
i+2 + α

2
i+6CIRC(B, 0) + I2n + NσNT

σ

where B = circ(1, · · · , 1︸   ︷︷   ︸
n−times

), 0 = circ(0, · · · , 0︸   ︷︷   ︸
n−times

) and

NσNT
σ =

σ(v1v∗1 + v2v
∗
2) σ(v1v∗2 + v2v

∗
3)

σ(v2v∗1 + v3v
∗
2) σ(v2v∗2 + v3v

∗
3)

 .
It follows from Lemma 5.2.1 that

NσBT
4 =



µ1β7 + µ2β8 µ1β8 + µ2β7
...

...

µ1β7 + µ2β8 µ1β8 + µ2β7

µ2β7 + µ3β8 µ2β8 + µ3β7
...

...

µ2β7 + µ3β8 µ2β8 + µ3β7


.

Additionally, MT
2 MT

1 + MT
2 + MT

4 MT
3 + NσMT

4 =

β3β1 + β4β2 + β3 + β7β5 + β6β8 + µ1β7 + µ2β8 β4β1 + β3β2 + β4 + β8β5 + β6α7 + µ1β8 + µ2β7
...

...

β3β1 + β4β2 + β3 + β7β5 + β6β8 + µ1β7 + µ2β8 β4β1 + β3β2 + β4 + β8β5 + β6β7 + µ1β8 + µ2β7

β4β1 + β3β2 + β4 + β8β5 + β6β7 + µ2β7 + µ3β8 β4β2 + β3β1 + β3 + β5β7 + β6β8 + µ2β8 + µ3β7
...

...

β4β1 + β3β2 + β4 + β8β5 + β6β7 + µ2β7 + µ3β8 β4β2 + β3β1 + β3 + β5β7 + β6β8 + µ2β8 + µ3β7


.
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Clearly, MσMT
σ is a symmetric matrix and Cσ is self orthogonal if for

8∑
i=0
βi = 0, σ(v1v∗1 +

v2v
∗
2) = In+(β2

3+β
2
4+β

2
7+β

2
8)


1 · · · 1
...
. . .

...

1 · · · 1


n×n

, v1v∗2+v2v
∗
3 = 0, v2v∗1+v3v

∗
2 = 0, σ(v2v∗2+v3v

∗
3) =

In + (β2
3 + β

2
4 + β

2
7 + β

2
8)


1 · · · 1
...
. . .

...

1 · · · 1


n×n

, β3(β1 + 1)+ β4β2 + β7(µ1 + β5)+ β8(β6 + µ2) = 0,

β4(β1+1)+β3β2+β8(µ1+β5)+β7(β6+µ2) = 0, β4(β1+1)+β3β2+β7(µ1+β6)+β8(β5+µ3) = 0,

and β3(β1 + 1) + β4β2 + β7(µ3 + β5) + β8(β6 + µ2) = 0. Since the rank of a matrix Mσ is

2n+2, and Cσ is self-orthogonal under conditions proved above, we can say that the code

Cσ is a self-dual code if all the conditions mentioned above are satisfied. □

Corollary 5.2.3. Let R be a finite commutative Frobenious ring of characteristic 2, G be

a finite group of order n, and Cσ be a self-dual code. Then v1v∗1 + v2v
∗
2, v2v∗2 + v3v

∗
3 ∈ RG

are unitary units if β2
3 + β

2
4 + β

2
7 + β

2
8 = 0.

Proof. If β2
3 + β

2
4 + β

2
7 + β

2
8 = 0, then σ(v1v∗1 + v2v

∗
2) = σ(v2v∗2 + v3v

∗
3) = In and v1v∗1 + v2v

∗
2 =

v2v
∗
2 + v3v

∗
3 = 1. Thus, v1v∗1 + v2v

∗
2 and v2v∗2 + v3v

∗
3 are unitary units. □

Corollary 5.2.4. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order n(even), and Cσ be a self-dual code. Then v1v∗1+v2v
∗
2, v2v∗2+v3v

∗
3 ∈ RG

are units.

Proof. If n is even, then

K =


1 · · · 1
...
. . .

...

1 · · · 1


2

n×n

= 0

that is K is a nilpotent matrix.

As σ(v1v∗1 + v2v
∗
2) = In + K. If k is nilpotent then 1 + k is unit. Thus, v1v∗1 + v2v

∗
2 is unit.

Similarly, we can say that v2v∗2 + v3v
∗
3 is unit. □

Corollary 5.2.5. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order n (odd), and Cσ be a self-dual code. Then v1v∗1+v2v
∗
2, v2v∗2+v3v

∗
3 ∈ RG

are non units if β2
3 + β

2
4 + β

2
7 + β

2
8 = 1.

Proof. If β2
3 + β

2
4 + β

2
7 + β

2
8 = 1, then

σ(v1v∗1 + v2v
∗
2) = In +


1 1 · · · 1

1 1 · · · 1
...
...
. . .

...

1 1 · · · 1


n×n

=


0 1 · · · 1

1 0 · · · 1
...
...
. . .

...

1 1 · · · 0


n×n

,
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and

det(σ(v1v∗1+v2v
∗
2)) = det


0 1 · · · 1

1 0 · · · 1
...
...
. . .

...

1 1 · · · 0


n×n

= (n−1)det


1 1 · · · 1

0 1 · · · 0
...
...
. . .

...

0 0 · · · 1


n×n

= 0 (i f n is odd).

Therefore, det(σ(v1v∗1 + v2v
∗
2)) = 0 and v1v∗1 + v2v

∗
2 is a non-unit by corollary 3 of (33).

Similarly, det(σ(v2v∗2 + v3v
∗
3)) = 0 and v2v∗2 + v3v

∗
3 is a non-unit. □

Corollary 5.2.6. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order n (odd), and Cσ be a self-dual code. Then v1v∗1+v2v
∗
2, v2v∗2+v3v

∗
3 ∈ RG

are idempotents if α2
3 + α

2
4 + α

2
7 + α

2
8 = 1.

Proof. If n is odd, then


1 · · · 1
...
. . .

...

1 · · · 1


2

n×n

=


1 · · · 1
...
. . .

...

1 · · · 1


n×n

that is


1 · · · 1
...
. . .

...

1 · · · 1


n×n

is an

idempotent matrix.

If β2
3 + β

2
4 + β

2
7 + β

2
8 = 1, then

σ(v1v∗1 + v2v
∗
2) = In +


1 · · · 1
...
. . .

...

1 · · · 1


n×n

= In −


1 · · · 1
...
. . .

...

1 · · · 1


n×n

.

If T is an idempotent matrix, then I −T is also an idempotent matrix. Thus, σ(v1v∗1 + v2v
∗
2)

is an idempotent matrix and v1v∗1 + v2v
∗
2 is an idempotent element. Similarly, we can say

that v2v∗2 + v3v
∗
3 is an idempotent element. □

5.3 Computational results

Now, we will design extremal self-dual codes of different lengths of 20, 32, 40, 64 using

groups of orders of 4, 7. For all our computational calculations we have used the SAGE

software (54). Algorithm:

INPUT: Field F2.

OUTPUT: Extremal self-dual codes.

1. Generate matrices σ(v1), σ(v2), and σ(v3) of order n × n by a group of order n, over

the field F2.
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2. Generate boundary matrices M1, M2, M3, and M4 over the Field F2, where

M1 = circ(β1, β2), M2 = CIRC(A1, A2), M3 = circ(β5, β6), M4 = CIRC(A3, A4),

A1 = (β3, ..., β3) ∈ Rn, A2 = (β4, ..., β4) ∈ Rn, A3 = (β7, ..., β7) ∈ Rn, and

A4 = (β8, ..., β8) ∈ Rn.

3. Construct the set of generator matrices Mσ of order (2n + 2) × (4n + 4) having

the structure mentioned in Section 5.2.1 using all the possible combinations of

matrices obtained in Step 1 and Step 2.

4. From the given set of generator matrices, collect matrices that satisfy the condition

MσMT
σ = 0 and have rank 2n + 2. These matrices generate self-dual codes Cσ

with parameters [4n+4, 2n+2, dmin], where dmin is the minimum distance of the code.

5. Evaluate dmin = min{d(a, b)|a , b} for the self-dual codes that are generated from

matrices collected in Step 4. Here, d(a, b) = |{i|1 ≤ i ≤ 4n + 4, ai , bi}|, where

a, b ∈ F4n+4
2 are the codewords of length 4n + 4 for the code Cσ.

6. Shortlist matrices from Step 4, whose dmin of its corresponding self-dual code

matches the minimum distance of extremal self-dual codes of length 4n + 4. Refer

to Theorem 1.1.4 for the minimum distance of extremal self-dual codes. In this

step, we obtain matrices that generate the extremal self-dual codes Cσ of length

4n + 4.

7. Classify self-dual codes constructed from the matrices obtained in Step 6 are of

Type I or Type II. The binary self-dual code Cσ is said to be of Type I and Type II

if the weight of all of its codewords is divisible by two and four respectively. The

weight of a codeword a is defined as w(a) = d(a, 0), where 0 = (0, 0, · · · , 0) is the

zero vector.

8. Lift the obtained self-dual codes in Step 7, to the ring F2 + uF2, as discussed in

Section 1.1.10. Generate a set of all possible lifted matrices by mapping an element

0 of F2 to two elements 0 and u of the ring F2 + uF2 and element 1 of F2 is mapped

to elements 1 and 1 + u of the ring F2 + uF2.
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9. From the given set of uplifted matrices, collect matrices that can generate self-dual

codes of length 4n+4, as done in Step 4.

10. Evaluate dL for the self-dual codes generated from matrices collected in Step 9.

Here dL denotes a code’s smallest positive Lee distance. The Lee weight of the ring

F2 + uF2 elements 0, 1, u and 1 + u are 0, 1, 2 and 1 respectively. The Lee distance

between 4n+4 tuple is defined as the sum of Lee weights of the difference between

the components of these tuples.

11. Shortlist matrices whose dL of its corresponding self-dual code matches the

minimum distance of extremal self-dual codes of length 2(4n + 4). In this step,

we obtain matrices that can generate the self-dual codes over the ring F2 + uF2 of

length 4n+4, whose binary images are extremal self-dual codes of length 2(4n+4).

12. Classify self-dual codes constructed from the matrices obtained in Step 11 are of

Type I or Type II.

5.3.1 Construction from cyclic group of order 4

We execute the above construction for G = C4. The extremal self-dual codes of

length 20 (Type I) are constructed by considering the above-defined construction over F2

field.
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Table 5.1: Self-dual codes of length 20 from C4 over F2

Code(Ai) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) f(σ(v3)) |Aut(Ai)| Type

1 (1, 0, 1, 1, 1, 0, 0, 0) (1, 0, 0, 0) (0, 0, 0, 0) (1, 1, 1, 0) 215 · 33 · 5 [20, 10, 4]I

2 (1, 0, 1, 1, 1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 1, 0) (1, 1, 0, 1) 213 · 3 · 5 [20, 10, 4]I

Now we will give the lift of F2+uF2 on the codes of Table 5.1. The codes generated

are binary extremal self-dual code with parameters [40, 20, 8] as listed in Table 5.2.

Table 5.2: The extremal binary self-dual codes of length 40 obtained from F2 + uF2 lift

of A1 and A2.
Code(Ii) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) f(σ(v3)) Type

1 A1 (1, 0, 1, 1, 1, 0, 0, u) (1, 0, 0, 0) (0, u, u, 0) (1, 1, 1, 0) TypeI

2 A1 (u + 1, u, u + 1, u + 1, u + 1, 0, u, 0) (u + 1, u, u, u) (u, 0, 0, u) (u + 1, u + 1, u + 1, 0) TypeII

3 A2 (1, 0, 1, 1, 1, 0, 0, u) (1, 0, 0, 0) (1, 0, u + 1, u) (1, 1, u, 1) TypeI

4 A2 (u + 1, u, u + 1, u + 1, u + 1, 0, u, 0) (u + 1, u, u, u) (u + 1, u, 1, 0) (u + 1, u + 1, 0, u + 1) TypeII

5.3.2 Construction from C2 ×C2 group

We execute the above construction for G = C2 × C2. The extremal self-dual codes

of length 20 (Type I) are constructed by considering the above-defined construction over

F2 field.

Table 5.3: Self-dual codes of length 20 from C2 ×C2 over F2

Code(Bi) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) f(σ(v3)) |Aut(Bi)| Type

1 (1, 0, 1, 1, 1, 0, 0, 0) (0, 0, 1, 0) (0, 0, 0, 0) (0, 0, 0, 1) 217 · 34 · 52 · 7 [20, 10, 4]I

2 (1, 0, 1, 1, 1, 0, 0, 0) (0, 0, 1, 0) (0, 0, 1, 1) (0, 0, 0, 1) 215 · 32 [20, 10, 4]I

3 (1, 0, 1, 1, 1, 0, 0, 0) (0, 0, 1, 0) (0, 0, 1, 1) (1, 1, 1, 0) 213 · 3 · 5 [20, 10, 4]I

Now we will give the lift of F2 + uF2 on the codes of Table 5.3. The codes obtained are

binary extremal self-dual codes with parameters [40, 20, 8] as listed in Table 5.4.
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Table 5.4: The extremal binary self-dual codes of length 40 obtained from F2 + uF2 lift

of B1, B2, and B3.
Code(Ji) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) f(σ(v3)) Type

1 B1 (1, 0, 1, 1, 1, 0, 0, u) (0, u, 1, 0) (0, 0, u, u) (0, u, 0, 1) TypeI

2 B1 (u + 1, u, u + 1, u + 1, u + 1, 0, u, 0) (u, 0, u + 1, 0) (u, u, 0, 0) (u, 0, 0, u + 1) TypeII

3 B2 (1, 0, 1, 1, 1, 0, 0, u) (0, 0, 1, 0) (0, u, 1, 1) (0, u, 0, 1) TypeI

4 B2 (u + 1, u, u + 1, u + 1, u + 1, 0, u, 0) (u, u, u + 1, u) (u, 0, u + 1, u + 1) (u, 0, 0, 1) TypeII

5 B3 (1, 0, 1, 1, 1, 0, 0, u) (0, 0, 1, 0) (0, u, 1, 1) (1, 1, 1, u) TypeI

6 B3 (u + 1, u, u + 1, u + 1, u + 1, 0, u, 0) (u, u, u + 1, u) (u, 0, u + 1, u + 1) (u + 1, u + 1, u + 1, 0) TypeII

5.3.3 Construction from cyclic group of order 7

Finally, we execute the above-defined construction for G = C7 over F2. The

extremal self-dual code of length 32 is constructed by considering the above-defined

construction over F2 field.

Table 5.5: Self-dual codes of length 32 from C7 over F2

Code(Di) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) f(σ(v3)) |Aut(Di)| Type

1 (1, 0, 0, 0, 1, 1, 0, 1) (1, 1, 0, 1, 0, 0, 0) (1, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 1, 0, 1) 26 · 3 · 7 [32, 16, 6]I

Now we will give the lift of F2 + uF2 on the codes of Table 5.5. The codes obtained are

binary extremal self-dual code with parameters [64, 32, 12] as listed in Table 5.6.

Table 5.6: The extremal binary self-dual codes of length 64 obtained from F2 + uF2 lift

of D1.
Code(Ki) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(v1)) f(σ(v2)) f(σ(v3)) Type

1 D1 (1, 0, 0, 0, u + 1, u + 1, 0, 1) (u + 1, u + 1, 0, u + 1, u, 0, u) (u + 1, u, u, u, 0, 0, u) (1, u, u, u, u + 1, u, 1) TypeI

2 D1 (1, 0, 0, 0, u + 1, u + 1, u, 1) (u + 1, u + 1, 0, u + 1, u, 0, u) (u + 1, u, u, u, 0, 0, u) (1, u, u, u, u + 1, u, 1) TypeII

5.4 Conclusion

In this chapter, we have proposed a double-bordered construction of self-dual codes

whose generator matrix is of the form G = [In|A], where A is a block matrix consisting

of blocks that come from group rings and the elements in the first row cannot completely

determine the block matrix A, to create binary linear self-dual codes. We have given
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certain conditions that need to be fulfilled for building self-dual codes by this new con-

struction. We have created a relationship between the self-dual codes and non-units/units

of group rings and showcased the importance of this new construction by constructing

several extremal binary self-dual codes of lengths 20, 40, 32, 64.



Chapter 6

Double bordered constructions of linear
self-dual codes from altered
four-circulant matrix over Frobenius
rings

A new technique for the construction of self-dual codes is presented in this chapter. Dou-

ble borders are introduced around a new, altered form of a four-circulant matrix. Us-

ing this new construction over the field F2 and the ring F2 + uF2, and groups of orders

2, 3, 4, 5, 7, and 9, we generate extremal binary self-dual codes of the following lengths:

12, 20, 24, 32, 40, 48, 64, and 80.

6.1 Introduction

Self-dual codes are linear codes with strong connections to groups, designs, and lattices.

The research on constructions for extremal binary self-dual codes is substantial.

In the literature, there have been some well-known construction techniques for build-

ing self-dual codes. In 1969, Chen and Karlin introduced the concept of a pure double

circulant construction technique for constructing self-dual codes; see (6) and (36) for

more details. In 2003, Betsumiya (3) gave the concept of the four-circulant construction.

The generator matrix of the four-circulant matrix is defined as

M =

 In A B

In BT AT

 ,
73
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matrix over Frobenius rings

where A and B are n × n circulant matrices. Then the matrix M generates the self-dual

codes over the field F2 if and only if the AAT + BBT = In condition is satisfied.

In this chapter, we formulate the following modification of the four-circulant matrix: We

replaced the matrix A with a reverse circulant matrix C and the matrix B with a group ring

matrix, i.e., σ(v1). The new modified four-circulant matrix takes the form: In C σ(v1)

In σ(v1)T C

 .
Next, we blend this new, altered version of the four-circulant matrix with the concept of

double-bordered construction (24). The motivation of this chapter is to produce those ex-

tremal self-dual codes of various lengths that can not be obtained through the construction

defined in (3) and (24).

The rest of the chapter is structured as follows: In Section 6.2, we present the new tech-

niques and conditions required for constructing self-dual codes. The theoretical results

are also discussed. In Section 6.3, the new way is applied to obtain numerical results:

Extended Binary Golay Code, Extended Quadratic Residue Code, and extremal binary

self-dual codes of the following lengths: 12, 16, 24, 32, 40, 48, 64, and 80. We have used

the SAGE (54) software for all the computer calculations. In this section, we tabulate the

outcomes as well. The chapter ends with concluding remarks and recommendations for

possible expansion of this work.

6.2 Main matrix construction

Now, we will outline our main construction. We define a double border around the new

altered form of the four-circulant matrix, which uses reverse-circulant matrices and the

idea of group rings. Let v1 ∈ RG, where R is a finite commutative Frobenius ring of

characteristic 2, and G is a group of order n. Define the following matrix:

Mσ =



β1 β2 β3 · · · β3 β4 · · · β4 β5 β6 β7 · · · β7 β8 · · · β8

β2 β1 β4 · · · β4 β3 · · · β3 β6 β5 β8 · · · β8 β7 · · · β7

β3 β4 β7 β8
...
... In 0

...
... C σ(v1)

β3 β4 β7 β8

β4 β3 β8 β7
...
... 0 In

...
... σ(v1)T C

β4 β3 β8 β7



,
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where βi ∈ R, σ(v1) is a group-ring matrix of order n, and C is a reverse circulant matrix

of order n over a ring R. Let Cσ be a code that is generated by the matrix Mσ. Then the

length of the code Cσ is 4n + 4.

Lemma 6.2.1. Let R be a finite commutative Frobenius ring of characteristic 2, G =

{g1, g2, · · · , gn} is a finite group of order n, and the matrix Nσ is defined as

Nσ =

 C σ(v1)

σ(v1)T C

 .
Then

σ(v1)


1
...

1

 = σ(v1)T


1
...

1

 =

µ1
...

µ1

 ,
where µ1 =

∑
g∈G
δg .

Let the sum of all components in the first row of the matrix C be represented by η. Then

C


1
...

1

 =

η
...

η

 .
Proof. Consider the matrices σ(v1) = (αg−1

i g j
)i, j=1,··· ,n and C = (γi j)i, j=1,··· ,n.

Then the i−th element of column σ(v1)


1
...

1

 is

n∑
j=1

αg−1
i g j
=
∑
g∈G

αg−1
i g
=
∑
g∈G

αg = µ1, gi ∈ G, g−1
i ∈ G,

and the i−th element of column σ(v1)T


1
...

1

 is

n∑
j=1

αg−1
j gi
=
∑
g∈G

αg−1gi =
∑
g∈G

αggi =
∑
g∈G

αg = µ1, gi ∈ G.

Therefore,

σ(v1)


1
...

1

 = σ(v1)T


1
...

1

 =

µ1
...

µ1

 .
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matrix over Frobenius rings

Furthermore, the i−th element of column C


1
...

1

 is

n∑
j=1

γi j = γi1 + γi2 + · · · + γin = η.

Hence,

C


1
...

1

 =

η
...

η

 .
.

□

In 2003, Betsumiya (3) introduced the concept of four-circulant matrices and

showed that with circulant matrices of order n, we can generate a self-dual code of

order 4n. In Theorem 6.2.2, we generalize this result by replacing matrix A with a

reverse circulant matrix C and matrix B by a group ring matrix σ(v1). Furthermore,

we extend this result by introducing a double border around this generalized form of a

four-circulant matrix and proving that, under certain conditions, a group of order n can

generate self-dual codes of order 4n + 4. In 2020, Gildea (24) introduced the idea of

double-bordered construction. The idea of a reverse circulant matrix is not used in their

primary matrix construction. In our primary matrix, we have utilized the idea of a reverse

circulant matrix. Additionally, Theorem 3.2 of (24) was only applicable to groups of

order 2p (where p is an odd prime), but by Theorem 6.2.2, we have expanded it to cover

all groups of order n. In Theorem 6.2.2, we have merged the concepts of four-circulant

(3) and double border (24), which results in the generation of extremal self-codes that

can not be generated individually by the methods given in (3) and (24).

Theorem 6.2.2. Let R be a finite commutative Frobenius ring with characteristic 2, G be

a finite group of order n, and Cσ be a code generated by the matrix Mσ such that the rank

of the matrix Mσ is 2n + 2. Then Cσ is a self-dual code of length 4n + 4 if the following

conditions are satisfied:

Case I: n is odd

1.
8∑

i=0
βi = 0.

2. Cσ(v1) + σ(v1)C = 0.
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3. σ(v1v∗1) +C2 = In + (
2∑

i=1
β2

i+2 + β
2
i+6)circ(1, · · · , 1︸   ︷︷   ︸

n−times

).

4. β3β1 + β4β2 + β3 + β7β5 + β8β6 + ηβ7 + µ1β8 = 0.

5. β4β1 + β3β2 + β4 + β8β5 + β7β6 + ηβ8 + µ1β7 = 0.

Case II: n is even

1. β2
1 + β

2
2 + β

2
5 + β

2
6 = 0.

2. Conditions 2 to 5 for this case are the same as for the case ‘n is odd’.

Proof. Let Mσ =

M1 M2 M3 M4

MT
2 I2n MT

4 Nσ

, where M1 = circ(β1, β2), M2 = CIRC(A1, A2),

M3 = circ(β5, β6), M4 = CIRC(A3, A4), A1 = (β3, ..., β3) ∈ Rn, A2 = (β4, ..., β4) ∈ Rn,

A3 = (β7, ..., β7) ∈ Rn, A4 = (β8, ..., β8) ∈ Rn, and Nσ =

 C σ(v1)

σ(v1)T C

. Then

MσMT
σ =

M1MT
1 + M2MT

2 + M3MT
3 + M4MT

4 M1M2 + M2 + M3M4 + M4NT
σ

MT
2 MT

1 + MT
2 + MT

4 MT
3 + NσMT

4 MT
2 M2 + I2n + MT

4 M4 + NσNT
σ

 .
Now,

M1MT
1 + M2MT

2 + M3MT
3 + M4MT

4 = circ(
2∑

i=1

(β2
i + nβ2

i+2 + β
2
i+4 + nβ2

i+6), 0).

Case I: n is odd

M1MT
1 +M2MT

2 +M3MT
3 +M4MT

4 = circ(
2∑

i=1

(β2
i + β

2
i+2 + β

2
i+4 + β

2
i+6), 0) = circ(

8∑
i=1

β2
i , 0).

Case II: n is even

M1MT
1 + M2MT

2 + M3MT
3 + M4MT

4 = circ(
2∑

i=1

(β2
i + β

2
i+4), 0) = circ(β2

1 + β
2
2 + β

2
5 + β

2
6, 0).

and

MT
2 M2 + I2n + MT

4 M4 + NσNT
σ =

2∑
i=1

β2
i+2 + β

2
i+6CIRC(B, 0) + I2n + NσNT

σ

where B = circ(1, · · · , 1︸   ︷︷   ︸
n−times

), 0 = circ(0, · · · , 0︸   ︷︷   ︸
n−times

), and

NσNT
σ =

 σ(v1v∗1) +C2 Cσ(v1) + σ(v1)C

σ(v1)TC +Cσ(v1)T σ(v∗1v1) +C2

 .
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Using Lemma 6.2.1, we get

NσMT
4 =



ηβ7 + µ1β8 ηβ8 + µ1β7
...

...

ηβ7 + µ1β8 ηβ8 + µ1β7

µ1β7 + ηβ8 µ1β8 + ηβ7
...

...

µ1β7 + ηβ8 µ1β8 + ηβ7


.

Additionally, MT
2 MT

1 + MT
2 + MT

4 MT
3 + NσMT

4 =

β3β1 + β4β2 + β3 + β7β5 + β8β6 + ηβ7 + µ1β8 β4β1 + β3β2 + β4 + β8β5 + β7β6 + ηβ8 + µ1β7
...

...

β3β1 + β4β2 + β3 + β7β5 + β8β6 + ηβ7 + µ1β8 β4β1 + β3β2 + β4 + β8β5 + β7β6 + ηβ8 + µ1β7

β4β1 + β3β2 + β4 + β8β5 + β7β6 + µ1β7 + ηβ8 β4β2 + β3β1 + β3 + β7β5 + β8β6 + µ1β8 + ηβ7
...

...

β4β1 + β3β2 + β4 + β8β5 + β7β6 + µ1β7 + ηβ8 β4β2 + β3β1 + β3 + β7β5 + β8β6 + µ1β8 + ηβ7


.

Clearly, MσMT
σ is a symmetric matrix and Cσ is self orthogonal if

8∑
i=0
βi = 0, Cσ(v2) +

σ(v2)C = 0, σ(v2v∗2) + C2 = In + (
2∑

i=1
β2

i+2 + β
2
i+6)circ(1, · · · , 1︸   ︷︷   ︸

n−times

), β3β1 + β4β2 + β3 + β7β5 +

β8β6 + ηβ7 + µ1β8 = 0, and β4β1 + β3β2 + β4 + β8β5 + β7β6 + ηβ8 + µ1β7 = 0. Since the

rank of the matrix Mσ is 2n + 2 and Cσ is self-orthogonal. Therefore, if all the conditions

mentioned above are satisfied, we can conclude that the code Cσ is a self-dual code. □

Corollary 6.2.3. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order n, and Cσ be a self-dual code. Then an element v1 ∈ RG is a unitary

unit if the following conditions are satisfied:

1.
2∑

i=1
β2

i+2 + β
2
i+6 = 0.

2. C2 = 0.

Proof. Under the conditions C2 = 0 and
2∑

i=1
β2

i+2+β
2
i+6 = 0, we get σ(v1v∗1) = σ(v∗1v1) = In.

Hence, v1v∗1 = v
∗
1v1 = 1 and v1 is a unitary unit. □

Corollary 6.2.4. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order n (odd), and Cσ be a self-dual code. Then an element v1 ∈ RG is a

non-unit if the following conditions are satisfied:

1.
2∑

i=1
β2

i+2 + β
2
i+6 = 1.
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2. C2 = 0.

Proof. Under the conditions C2 = 0 and
2∑

i=1
β2

i+2 + β
2
i+6 = 1, we get σ(v1v∗1) = In +

circ(1, · · · , 1︸   ︷︷   ︸
n−times

). Evaluate,

det(v1v∗1) = det(circ(0, 1, 1, · · · , 1, 1︸         ︷︷         ︸
(n−1)−times

)) = (n − 1)det


1 1 · · · 1

0 1 · · · 0
...
...
. . .

...

0 0 · · · 1


n×n

= 0 (i f n is odd).

Hence, det(v1v∗1) = 0 and v1 is a non-unit by Corollary 3 of (33). □

Corollary 6.2.5. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order n, and Cσ be a self-dual code. Then an element v1 ∈ RG is a non-unit

if the following conditions are satisfied:

1.
2∑

i=1
β2

i+2 + β
2
i+6 = 0.

2. C2 = I.

Proof. Under the conditions C2 = I and
2∑

i=1
β2

i+2 + β
2
i+6 = 0, we get σ(v∗1v1) = 0. Hence, v1

is a non-unit. □

Corollary 6.2.6. Let R be a finite commutative Frobenius ring of characteristic 2, G be a

finite group of order n(odd), and Cσ be a self-dual code. Then an element v1 ∈ RG is an

idempotent if the following conditions are satisfied:

1.
2∑

i=1
β2

i+2 + β
2
i+6 = 1.

2. C2 = 0.

Proof. Since n is odd, therefore (circ(1, · · · , 1︸   ︷︷   ︸
n−times

))2 = circ(1, · · · , 1︸   ︷︷   ︸
n−times

), which implies

circ(1, · · · , 1︸   ︷︷   ︸
n−times

) is an idempotent matrix.

Under the conditions C2 = 0 and
2∑

i=1
β2

i+2 + β
2
i+6 = 1, we get

σ(v1v∗1) = In + circ(1, · · · , 1︸   ︷︷   ︸
n−times

) = In − circ(1, · · · , 1︸   ︷︷   ︸
n−times

)

where In − circ(1, · · · , 1︸   ︷︷   ︸
n−times

) is an idempotent matrix. Hence, σ(v1v∗1) is an idempotent matrix

and v1v∗1 is an idempotent element of RG. □
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6.3 Computational results

In this section, we search for extremal binary self-dual codes with lengths of

12, 16, 20, 24, 32, 40, 48, 64, and 80 using our main construction over the field F2 and

the ring F2 + uF2. Specifically, C2,C3,C4,C5,C7, and C9 are taken into consideration

as groups of orders 2, 3, 4, 5, 7, and 9. The well-known Extended QR code and extremal

self-dual codes of 64 and 80 lengths are also created using the Gray map. Our entire

computational work has been done using the SAGE software (54).

Algorithm:

INPUT: Field F2.

OUTPUT: Extremal self-dual codes.

1. Generate the matrix Mσ over the field F2 as per the structure mentioned in Section

6.2.

(a) Over the field F2, create boundary matrices M1, M2, M3, and M4,

where M1 = circ(β1, β2), M2 = CIRC(A1, A2), M3 = circ(β5, β6),

M4 = CIRC(A3, A4), A1 = (β3, ..., β3) ∈ Rn, A2 = (β4, ..., β4) ∈ Rn,

A3 = (β7, ..., β7) ∈ Rn, and A4 = (β8, ..., β8) ∈ Rn.

(b) Over the field F2, create n × n reverse circulant matrices C.

(c) Over the field F2, using group of order n create n × n group ring matrix σ(v).

(d) Over the field F2, using all the possible combinations of matrices obtained in

Steps 1(a), (b), and (c), creates (2n + 2) × (4n + 4) generator matrices Mσ.

2. Generate extremal self-dual codes.

(a) From Step 1, shortlist matrices of rank 2n + 2 that satisfy the con-

dition MσMT
σ = 0, i.e., those matrices that produce self-dual codes

Cσ[4n + 4, 2n + 2, dmin], where dmin is the minimum distance of the code.
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(b) Calculate dmin = min{d(a, b)|a , b} for Cσ. Here, d(a, b) = |{i|1 ≤ i ≤

4n + 4, ai , bi}|, where a, b ∈ F4n+4
2 are the codewords for the code Cσ.

(c) Select those matrices from Step 2(a) whose corresponding self-dual codes

have a minimum distance dmin that coincides with the minimum distance of

extremal self-dual codes of length 4n + 4.

(d) Identify whether the obtained self-dual codes are of Type I or Type II.

3. Generate the matrix Mσ over the ring F2 + uF2 as per the structure mentioned in

the Section 6.2.

(a) Lift the matrices obtained in Step 2(c) by mapping an element 0 of F2 to two

elements 0 and u of the ring F2 + uF2 and an element 1 of F2 to two elements

1 and 1 + u of the ring F2 + uF2.

4. Generate extremal self-dual codes

(a) Shortlist those matrices from Step 3, that produce self-dual codes Cσ of length

4n + 4, with dL as the smallest positive Lee distance of a code.

(b) Calculate dL. The Lee distance between 4n + 4 tuple is defined as the sum of

Lee weights of the difference between the components of these tuples.

(c) Select those matrices from Step 4(a) whose corresponding self-dual codes

have a Lee distance dL that coincides with the minimum distance of extremal

self-dual codes of length 2(4n + 4).

(d) Identify whether the obtained self-dual codes are of Type I or Type II.
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6.3.1 Construction from cyclic group of order 2

Here, using the main construction and the cyclic group of order 2 over the binary

field F2, we obtain an extremal self-dual code with parameters [12, 6, 4].

Table 6.1: Extremal self-dual code of length 12 from C2 over F2

Code(Ai) (β1, β2, β3, β4, β5, β6, β7, β8) fC f(σ(v1)) |Aut(Ai)| Type

1 (1, 0, 1, 1, 0, 1, 0, 0) (1, 0) (0, 0) 29 · 32 · 5 [12, 6, 4]I

By lifting the code of Table 6.1 over the ring F2 + uF2, we obtain an extremal self-dual

code of length 24.

Table 6.2: Extremal self-dual code of length 12 from C2 over F2 + uF2, whose binary

image is an extremal self-dual codes of length 24

Code(Ii) (β1, β2, β3, β4, β5, β6, β7, β8) fC f(σ(v1)) Type

1 A1 (1, u, 1, u + 1, 0, u + 1, 0, u) (1, 0) (0, u) [24, 12, 8]II

6.3.2 Construction from cyclic group of order 3

Here, using the main construction and the cyclic group of order 3 over the binary

field F2, we obtain extremal self-dual codes with parameters [16, 8, 4].

Table 6.3: Extremal self-dual codes of length 16 from C3 over F2

Code(Bi) (β1, β2, β3, β4, β5, β6, β7, β8) fC f(σ(v1)) |Aut(Bi)| Type

1 (1, 0, 1, 1, 0, 0, 0, 1) (1, 0, 1) (0, 0, 0) 213 · 32 [16, 8, 4]I

2 (0, 1, 1, 1, 1, 0, 0, 0) (1, 0, 0) (0, 0, 0) 214 · 32 · 5 · 7 [16, 8, 4]II

By lifting the code of Table 6.3 over the ring F2+uF2, we obtain extremal self-dual codes

of length 32.
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Table 6.4: Extremal self-dual codes of length 16 from C3 over F2 + uF2, whose binary

images are extremal self-dual codes of length 32

Code(Ji) (β1, β2, β3, β4, β5, β6, β7, β8) fC f(σ(v1)) Type

1 B1 (1, 0, u + 1, 1, 0, 0, 0, 1) (1, 0, 1) (0, u, u) [32, 16, 8]I

2 B1 (1, 0, 1, u + 1, 0, 0, u, u + 1) (1, 0, 1) (0, u, u) [32, 16, 8]II

3 B2 (0, u + 1, 1, u + 1, u + 1, u, 0, u) (u + 1, u, u) (0, u, u) [32, 16, 8]I

4 B2 (0, 1, u + 1, u + 1, u + 1, u, 0, u) (1, 0, 0) (u, 0, 0) [32, 16, 8]II

6.3.3 Construction from cyclic group of order 4

Here, using the main construction and the cyclic group of order 4 over the binary

field F2, we obtain an extremal self-dual code with parameters [20, 10, 4].

Table 6.5: Extremal self-dual codes of length 20 from C4 over F2

Code(Di) (β1, β2, β3, β4, β5, β6, β7, β8) fC f(σ(v1)) |Aut(Di)| Type

1 (0, 1, 0, 0, 1, 0, 1, 1) (1, 0, 0, 0) (0, 0, 0, 0) 217 · 34 · 52 · 7 [20, 10, 4]I

By lifting the code of Table 6.5 over the ring F2+uF2, we obtain extremal self-dual codes

of length 40.

Table 6.6: Extremal self-dual codes of length 20 from C4 over F2 + uF2, whose binary

images are extremal self-dual codes of length 40

Code(Ki) (β1, β2, β3, β4, β5, β6, β7, β8) fC f(σ(v1)) Type

1 D1 (0, 1, u, 0, 1, 0, u + 1, u + 1) (1, 0, 0, 0) (0, 0, u, 0) [40, 20, 8]I

2 D1 (0, 1, u, 0, u + 1, u, 1, 1) (1, 0, 0, 0) (0, 0, u, 0) [40, 20, 8]II

6.3.4 Construction from cyclic group of order 5

Here, using the main construction and the cyclic group of order 5 over the binary

field F2, we obtain an extremal self-dual code with parameters [24, 12, 6] and the Ex-

tended Binary Golay Code, i.e., [24, 12, 8].



84
Double bordered constructions of linear self-dual codes from altered four-circulant

matrix over Frobenius rings

Table 6.7: Extremal self-dual codes of length 24 from C5 over F2

Code(Gi) (β1, β2, β3, β4, β5, β6, β7, β8) fC f(σ(v1)) |Aut(Gi)| Type

1 (0, 1, 0, 0, 0, 0, 1, 0) (0, 1, 0, 0, 1) (0, 0, 1, 1, 0) 210 · 33 · 5 [24, 12, 6]I

2 (0, 1, 1, 1, 0, 0, 1, 0) (0, 1, 0, 1, 0) (0, 0, 1, 1, 0) 210 · 33 · 5 · 7 · 11 · 23 [24, 12, 8]II

By lifting the code of Table 6.7 over the ring F2 + uF2, we obtain the well-known

Extened Quadratic Residue Code.

Table 6.8: Extremal self-dual code of length 24 from C2 over F2 + uF2, whose binary

image is an extremal self-dual codes of length 48

Code(Li) (β1, β2, β3, β4, β5, β6, β7, β8) fC f(σ(v1)) Type

1 G2 (0, 1, u + 1, 1, 0, u, u + 1, u) (0, 1, u, 1, 0) (0, u, 1, 1, u) [48, 24, 12]II

6.3.5 Construction from cyclic group of order 7

Here, using the main construction and the cyclic group of order 7 over the binary

field F2, we obtain an extremal self-dual code with parameters [32, 16, 8].

Table 6.9: Extremal self-dual code of length 32 from C7 over F2

Code(Hi) (β1, β2, β3, β4, β5, β6, β7, β8) fC f(σ(v1)) |Aut(Hi)| Type

1 (1, 0, 1, 1, 1, 1, 0, 1) (1, 1, 0, 1, 0, 0, 0) (1, 0, 0, 0, 0, 0, 0) 215 · 32 · 5 · 7 [32, 16, 8]II

By lifting the code of Table 6.9 over the ring F2+uF2, we obtain extremal self-dual codes

of length 64.



6.4 Conclusion 85

Table 6.10: Extremal self-dual codes of length 32 from C7 over F2 + uF2, whose binary

images are extremal self-dual codes of length 64

Code(Mi) (β1, β2, β3, β4, β5, β6, β7, β8) fC f(σ(v1)) Type

1 H1 (1, 0, 1, 1, 1, 1, u, 1) (1, 1, 0, 1, 0, 0, 0) (1, 0, 0, u, u, 0, 0) [64, 32, 12]I

2 H1 (1, 0, 1, 1, 1, 1, 0, 1) (1, 1, 0, 1, 0, 0, 0) (1, 0, 0, u, u, 0, 0) [64, 32, 12]II

6.3.6 Construction from cyclic group of order 9

Here, using the main construction and the cyclic group of order 9 over the binary

field F2, we obtain extremal self-dual codes with parameters [40, 20, 8].

Table 6.11: Extremal self-dual codes of length 40 from C9 over F2

Code(Oi) (β1, β2, β3, β4, β5, β6, β7, β8) fC f(σ(v1)) |Aut(Oi)| Type

1 (1, 0, 1, 1, 1, 1, 0, 1) (1, 0, 1, 0, 1, 0, 0, 0, 0) (0, 1, 1, 0, 1, 0, 0, 0, 0) 22 · 32 [40, 20, 8]I

2 (1, 0, 0, 0, 1, 1, 0, 1) (1, 0, 1, 0, 1, 0, 0, 0, 0) (0, 1, 1, 0, 1, 0, 0, 0, 0) 23 · 3 · 5 · 19 [40, 20, 8]II

By lifting the code of Table 6.11 over the ring F2 + uF2, we obtain extremal self-dual

codes of length 80.

Table 6.12: Extremal self-dual codes of length 40 from C9 over F2 + uF2, whose binary

images are extremal self-dual codes of length 80
Code(Ni) (β1, β2, β3, β4, β5, β6, β7, β8) fC f(σ(v1)) Type

1 O2 (1, 0, 0, 0, 1, u + 1, u, 1) (1, 0, 1, 0, 1, 0, 0, 0, 0) (0, 1, 1, 0, u + 1, 0, 0, u, u) [80, 40, 14]I

2 O2 (1, 0, 0, u, 1, u + 1, u, 1) (1, 0, 1, 0, 1, 0, 0, 0, 0) (0, 1, 1, 0, u + 1, 0, 0, u, u) [80, 40, 14]II

6.4 Conclusion

We have a new construction for the generation of extremal self-dual codes by using the

concept of borders around a new, altered form of the four-circulant matrix. We show the

importance of this new technique by generating extremal binary self-dual codes of numer-

ous lengths: 12, 16, 20, 32, 40. More significantly, we constructed the unique Extended

Binary Golay Code search for which began in (2), (17), and (43), the unique Extended

Quadratic Residue Code search for which is done in (17), (28), and (29), and the extremal

self-dual codes of higher lengths, i.e., 64 and 80. With the self-dual codes, we develop
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a connection between unitary units/non-units and idempotents. One of the future scopes

would be to apply this new construction to numerous other families of rings and groups.



Chapter 7

∗-Semiclean rings and its application in
construction of LCD and
self-orthogonal abelian codes

In this chapter, we introduce a new class of ring, which is the ∗-version of the semiclean

ring, i.e., the ∗-semiclean ring. A ∗-ring is ∗-semiclean if each element is the sum of a

∗-periodic element and a unit. In this chapter, many properties of ∗-semiclean rings are

discussed. It is proved that if p ∈ P(R) such that pRp and (1− p)R(1− p) are ∗-semiclean

rings, then R is also a ∗-semiclean ring. As a result, the matrix ring Mn(R) over a ∗-

semiclean ring is ∗-semiclean. A characterization that when the group rings RCr and

RG are ∗-semiclean is done, where R is a finite commutative local ring, Cr is a cyclic

group of order r, and G is a locally finite abelian group. We have also found sufficient

conditions when the group rings RC3, RC4, RQ8, and RQ2n are ∗-semiclean, where R is

a commutative local ring. We have also demonstrated that the group ring Z2D6 is a ∗-

semiclean ring (which is not a ∗-clean ring). We have characterized the ∗-semicleanness

of FqG in terms of LCD and self-orthogonal abelian codes under the classic involution,

where Fq is a finite field with q elements and G is a finite abelian group.

7.1 Introduction

A ring R is called clean if every element of R can be expressed as sum of an idempotent

and a unit. In literature, a lot of work is done on this class of ring; see (46), (56), and (59)

for more details on it. A ring R is called ∗-clean if every element of R can be expressed as

87
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the sum of a projection and a unit. See (7), (10), (21), (31), (39), (53), and (55) for more

details on it. So far, much work has been done on the ∗-clean ring, but the ∗-semiclean

ring has yet to be discovered. The motivation of the chapter is to find out about the ∗

concept in the semiclean ring.

A ∗-semiclean ring is the subclass of a semiclean ring and properly contains the class

of a ∗-clean ring. A ring R is a ∗-ring (or ring with involution) if there is an operation

∗ : R→ R such that

(a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (a∗)∗ = a

for all a, b ∈ R. An element p of a ∗-ring R is known as a projection if p∗ = p = p2, i.e., p

is a self-adjoint idempotent. An element a of a ∗-ring R is called ∗-periodic if there exists

a positive integer n > 1 such that an = p, where p is a projection. A ∗-ring R is called

∗-semiclean if each element of R is sum of a ∗-periodic element and a unit. Both local

and ∗-clean rings are clearly ∗-semiclean, and a ∗-semiclean ring is semiclean.

Section 7.2 looks at the various basic properties of ∗-periodic elements. In Section 7.3,

we obtain multiple properties of ∗-semiclean rings. Moreover, examples of semiclean

rings that are not ∗-semiclean and ∗-semiclean rings that are not ∗-clean are provided. In

Section 7.4, the matrix extension of the ∗-semiclean rings is done. In Section 7.5, we in-

vestigate when a group ring RG is ∗-semiclean. We provide a characterization that when

the group rings RCr and RG are ∗-semiclean, where R is a finite commutative local ring,

Cr is a cyclic group of order r, and G is a locally finite abelian group. We obtain several

sufficient conditions for the group ring RG to be ∗-semiclean, where R is a commutative

local ring and G is one of the groups Ci, i = 3, 4 (cyclic group of order 3 and 4), Q8

(quaternion group of order 8), and Q2n (generalized quaternion group). As a result, nu-

merous examples of ∗-rings that are ∗-semiclean but not ∗-clean have been discovered.

Also, we have shown that the group ring Z2D6 is ∗-semiclean but not ∗-clean. In Section

7.6, we have established a relationship between the ∗-semicleanness of the group ring FqG

with the LCD and self-orthogonal codes. An LCD code (linear code with complementary

dual) is a linear code C satisfying the condition C ∩ C⊥ = {0}, where

C
⊥ = {y ∈ FqG| < z, y >= 0 ∀z ∈ C}.

A self-orthogonal code is a linear code C that satisfies the condition C ⊂ C⊥. Data stor-

age, telecommunication, consumer electronics, and cryptography all use LCD codes ex-

tensively. Self-orthogonal codes are extensively used in communication and information

sharing. We cite, for example, (1), (5), and (40) for more data and information on LCD

and self-orthogonal coding.
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In the chapter, the ring R represents an associative ring with unity. The terms J(R), U(R),

I(R), N(R), Pri∗(R), and P(R) represent the Jacobson radical, the group of all units, the set

of all idempotents, the set of all nilpotents, the set of all ∗-periodic elements, and the set

of projections of a ring R, respectively. For a group ring RG, the classical (or standard)

involution ∗ : RG → RG is given by (
∑
g∈G αgg)∗ =

∑
g∈G αgg

−1; see (50, Proposition

3.2.11) for more details. Also, for a ring R, the ring homomorphism ε : RG → R defined

by
∑
g∈G αgg =

∑
g∈G αg is known as the augmentation mapping of RG. Moreover, the

terms Zp, Z(p), and Z represent the ring of integers modulo p, the localization of Z at the

prime ideal generated by p, and the ring of integers, respectively.

7.2 ∗-Periodic elements

Some properties of ∗-periodic elements are given in this section.

Definition 7.2.1. Let R be a ∗-ring. An element x ∈ R is called ∗-periodic if xk = xl

(where, l and k are positive integers, l , k) such that xl(k−l) = p, where p ∈ P(R).

Theorem 7.2.2. Let R be a ∗-ring and x ∈ R. Then the following statements are equiva-

lent:

1. There exists n ∈ N such that xn = p, where p ∈ P(R).

2. There exists an integer n ≥ 2 such that x = f + a, where f n = f and f n−1 = p, with

p ∈ P(R), a ∈ N(R), and x f = f x.

3. x is a ∗-periodic element.

Proof. 1. ⇒ 2. Since xn = p = p2 = x2n, which implies xn = x2n for some n ∈ N. Rewrite

an element x as x = xn+1+ (x− xn+1) where (xn+1)n+1 = xn+1 (since (xn+1)n+1 = (xn · x)n+1 =

(px)n+1 = pxn+1 = px = xn · x = xn+1) and (xn+1)n = p. Also, (x − xn+1)n = xn(1 − xn)n =

p(1 − p)n = p(1 − p) = 0, i.e., x − xn+1 ∈ N(R).

2. ⇒ 3. It follows from (11, Lemma 4.3, Definition 4.4).

3. ⇒ 1. By Definition 7.2.1, we can say there exist distinct positive integers l and k such

that xl(k−l) = p, where p ∈ P(R). Since l(k − l) ∈ N, therefore, there exists n = l(k − l) ∈ N

such that xn = p. □

Let R be a ∗-ring. According to (8, Proposition 2.1), (10, Theorem 3.2), and (10,

Theorem 3.6), x ∈ R is a strongly-π-∗-regular element if and only if there exists an integer

n ≥ 1 such that xn = pu = up, where p ∈ P(R) and u ∈ U(R).
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Theorem 7.2.3. Let R be a ∗-ring and x ∈ R. Then the following statements are equiva-

lent:

1. x is ∗-periodic element.

2. x is strongly-π-∗-regular element, with u = 1 ∈ U(R).

Proof. 1. ⇒ 2. From Theorem 7.2.2, we get xn = p = p ·1, where p ∈ P(R) and 1 ∈ U(R);

therefore, x satisfies the condition of being strongly-π-∗-regular with u = 1 ∈ U(R).

2. ⇒ 1. As x is a strongly-π-∗-regular element, there exists an integer n ≥ 1 such that

xn = pu. Since u = 1, which implies xn = p, then by Theorem 7.2.2, x is ∗-periodic

element. □

The following concept is based on the above.

Definition 7.2.4. Let R be a ∗-ring. An element x ∈ R is called ∗-periodic if it satisfies the

conditions given in Theorem 7.2.2 or Theorem 7.2.3.

Let R be a ∗-ring. According to (55), an element x ∈ R is called (strongly) ∗-clean if

it can be expressed as x = p + u, where p ∈ P(R) and u ∈ U(R), with (pu = up).

Lemma 7.2.5. Every ∗-periodic element is strongly-∗-clean.

Proof. Let x be a ∗-periodic element. By Theorem 7.2.2, an integer n ≥ 1 exists, and

p ∈ P(R), such that xn = p. Clearly, 1 − p = f is a projection. If we prove that

u = x − (1 − p) is a unit, then it will complete the proof. Define

v = xn−1 p − (1 + x + · · · + xn−1)(1 − p).

Rewrite the term u as u = xp − (1 − x)(1 − p). Evaluate the term uv, we have

uv = (xp − (1 − x)(1 − p))(xn−1 p − (1 + x + · · · + xn−1)(1 − p))

= xn p + (1 − x)(1 + x + · · · + xn−1)(1 − p)

= p + (1 − xn)(1 − p)

= 1.

Clearly, uv = vu. Therefore, we get uv = vu = 1, which implies u is a unit with inverse v.

Hence, x = f + u, where f ∈ P(R) and u ∈ U(R). Clearly, f u = a + p − ap − 1 = u f .

Hence, element x is strongly ∗-clean. □



7.3 ∗-Semiclean rings 91

7.3 ∗-Semiclean rings

Let R be a ∗-ring. In 2003, Y. Ye introduced the class of semiclean rings (58). The notion

of ∗-semiclean rings can be perceived as a ∗-versions of the semiclean ring. In this section,

the definition and properties of ∗-semiclean rings are given.

Definition 7.3.1. A ∗-ring R is ∗-semiclean if every element in it can be written as the

sum of a ∗-periodic element and a unit.

Proposition 7.3.2. A ∗-ring R is ∗-semiclean if it is semiclean, and every idempotent is a

projection.

Corollary 7.3.3. The group ring Z(p)C3, where C3 is a cyclic group of order 3, is ∗-

semiclean for every prime p.

Proof. (58, Theorem 3.1) states that the group ring Z(p)C3 is semiclean, and (58, propo-

sition 3.1) tells us that the only idempotents of the group ring Z(p)C3 are 0, 1, 1
3 +

1
3a+ 1

3a2

and 2
3 −

1
3a− 1

3a2. Since 0∗ is 0, 1∗ is 1, ( 1
3 +

1
3a+ 1

3a2)∗ is 1
3 +

1
3a+ 1

3a2, and ( 2
3 −

1
3a− 1

3a2)∗

is 2
3 −

1
3a − 1

3a2, this implies that every idempotent is a projection. Hence, by Proposition

7.3.2, Z(p)C3 is ∗-semiclean for every prime p. □

We obtain the following relations between the classes of rings:

∗-periodic⇒ strongly-π-∗-regular ⇒ ∗-clean ⇒ ∗-semiclean

⇓ ⇓ ⇓ ⇓

periodic ⇒ strongly-π-regular ⇒ clean ⇒ semiclean

The examples given below show that the above relations are irreversible.

Example 7.3.4. 1. Let R =


0 0

0 0

 ,
1 0

0 1

 ,
1 1

0 0

 ,
0 1

0 1


 (where 0, 1 ∈ Z2) be

a commutative ring under the usual addition and multiplication. Clearly, the

ring R is semiclean. Now, define a map ∗ : R → R such that

x y

z w


∗

= x + y y

x + y + z + w y + w

. The only way of representing the element

1 1

0 0

 as sum

of the periodic and the unit is

0 1

0 1

+
1 0

0 1

, but

0 1

0 1

 < Pri∗(R). Hence, it is not

∗-semiclean.
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2. By Corollary 7.3.3, the group ring Z(7)C3, where C3 is a cyclic group of order 3,

generated by a, is ∗-semiclean. However, the element 2 + 3a of Z(7)C3 is not clean.

Thus, the group ring Z(7)C3 is not ∗-clean.

3. The ring F3C8 is finite; therefore, it is clean, but by (53, Example 3.12), it is not

∗-clean.

4. Let R = Z5
⊕
Z5 be a ring. Define an involution map ∗ : R → R such that

(a, b)∗ = (b, a). The ring R is strongly-π-regular, but it is not strongly-π-∗-regular

as idempotents do not coincide with projections.

5. The ring R = F72C8 is finite, so it is periodic, but by (53, Example 3.10), it is not

∗-clean, and thus according to Lemma 7.2.5, it is not ∗-periodic.

Theorem 7.3.5. Let R be a ∗-ring, with 2 ∈ U(R). Then R is semiclean, and every unit is

self-adjoint, i.e., v∗ = v for all v ∈ U(R) if and only if R is ∗-semiclean and ∗ = 1R.

Proof. ⇒ Let a ∈ R. Then, by Definition 7.3.1, we have a = f + v, where f 2n = f n and

v ∈ U(R). Observe that (1−2 f n)2 = 1. Because every unit of R is self-adjoint, 2 f n∗ = 2 f n.

As a result, 2( f n∗ − f n) = 0. Because 2 ∈ U(R), f n∗ = f n, implying that an element a ∈ R

is ∗-semiclean. Because f ∈ R is periodic, and every periodic is clean, so f = f
′

+ v
′

,

where f
′

∈ I(R) and v
′

∈ U(R). Observe that (1 − 2 f
′

)2 = 1. Because every unit of R is

self-adjoint, 2 f
′∗
= 2 f

′

. As a result, 2( f
′∗
− f

′

) = 0. Because 2 ∈ U(R), f
′∗
= f

′

, implying

that f ∗ = f . Hence, a∗ = a, so ∗ = 1R.

⇐ Obvious. □

If an element x is self-adjoint square root of 1, it fulfills the conditions x2 = 1 and

x∗ = x.

Every element of a ∗-clean ring in which 2 is invertible is shown to have sum of no more

than 2 units by Jian Cui and Zhou Wang (10). We extended this finding to ∗-semiclean

rings using Theorem 7.3.6 and demonstrated that each element of a ∗-semiclean ring can

be expressed as sum of three units.

Theorem 7.3.6. Let R be a ∗-semiclean ring with 2 ∈ U(R). Then every element of R is

sum of a self-adjoint square root of 1 and two units.

Proof. Let a ∈ R. Then a+1
2 = f + v, where f ∈ Pri∗(R) and v ∈ U(R). Because

f ∈ Pri∗(R), f n = f 2n, and f n = p = p∗. According to Lemma 7.2.5, f = f
′

+ v
′

, where

f
′

= (1− p) ∈ P(R) and v
′

∈ U(R). Thus, a = (2− 2p)− 1+ 2v
′

+ 2v = (1− 2p)+ 2v
′

+ 2v,

where (1 − 2p)∗ = 1 − 2p and (1 − 2p)2 = 1, with 2v
′

, 2v ∈ U(R). □
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An ideal I of a ∗-ring R is called ∗-invariant if I∗ ⊆ I. Lemma 7.3.7 extends an

involution ∗ of R to the factor ring R/I, which is still denoted by ∗.

Lemma 7.3.7. Let R be ∗-semiclean and I be ∗-invariant ideal. Then the ring R/I is

∗-semiclean. In particular, the ring R/J(R) is ∗-semiclean.

Proof. By (58, Proposition 2.1), the homomorphic image of semiclean is semiclean. Also,

the homomorphic image of projection is projection. Thus, the result holds. Since an ideal

J(R) is ∗-invariant, therefore, R/J(R) is ∗-semiclean. □

Every polynomial ring over a commutative ring is not ∗-semiclean, as shown in

Example 7.3.8.

Example 7.3.8. Let R be a commutative ring. Then the polynomial ring R[x] is not ∗-

semiclean.

Proof. By (58, Example 3.2), the polynomial ring R[x] is never semiclean. Hence, for

any involution ∗, the ring R[x] is not ∗-semiclean. □

Let R be a ∗-ring and R[[x]] be a power series ring. Then on R[[x]], an induced

involution ∗ is defined as (
∑∞

i=0 αixi)∗ =
∑∞

i=0 α
∗
i xi. In 2003, Yuanqing Ye (58) proved that

the ring R[[x]] is semiclean if and only if R is semiclean. This result has been extended to

∗-semiclean by Proposition 7.3.9.

Proposition 7.3.9. The ring R[[x]] is ∗-semiclean if and only if R is ∗-semiclean.

Proof. ⇒ Let R[[x]] be ∗-semiclean. Because R � R[[x]]/(x) and (x) is a ∗- invariant

ideal of R[[x]], R is ∗-semiclean according to Lemma 7.3.7.

⇐ Let R be ∗-semiclean and g(x) =
∑∞

i=0 αixi ∈ R[[x]]. If α0 = f + v, where f ∈ Pri∗(R)

and v ∈ U(R), then g(x) = f + (v +
∑∞

i=1 αixi), where f ∈ Pri∗(R) ⊆ Pri∗(R[[x]]) and

v +
∑∞

i=1 αixi ∈ U(R[[x]]). As a result, g(x) ∈ R[[x]] is ∗-semiclean. □

Every ∗-clean ring is a ∗-semiclean ring, but the converse is not true. By Theorem

7.3.10, we demonstrate that, under certain conditions, the converse will also hold.

Theorem 7.3.10. Let R be a torsion free ring, and z ∈ R such that z = b + v, where

b ∈ Pri∗(R) and v ∈ U(R). If v = ±1, then z is ∗-clean.

Proof. Case I: Let v = 1

Rewrite an element z ∈ R as z = b + 1, bk = bl (where, l and k are positive integers such

that l > k), and bk(l−k) = p = p∗ ∈ P(R).

We have (z − 1)k = (z − 1)l because bk = bl, which implies that (1 − z)2k = (1 − z)2l and
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(1 − z)2k(2l−2k) = p. As a result, 1 − z is ∗-periodic, and thus, according to Lemma 7.2.5,

an element 1 − z is ∗-clean, i.e., 1 − z = f + u, where f = (1 − p) ∈ P(R), and u ∈ U(R).

To put it simply, z = p + u
′

, where p ∈ P(R) and u
′

= −u ∈ U(R).

Case II: Let v = −1

Then an element z ∈ R is rewritten as z = b − 1.

1. Let b = bn (where, n is a positive integer such that n > 1).

Then z = bn−1 + (−1 + b − bn−1). Because b ∈ Pri∗(R) and b = bn, an element

bn−1 ∈ P(R). An element −1 + b − bn−1 is a unit in R, with the inverse (2n−1 − 1 +

2n−3b + 2n−4b2 + · · · + bn−2 + (1 − 2n−2)bn−1)(1 − 2n−1)−1 ∈ R. Hence, z = b − 1 is

∗-clean.

2. Let bk = bl (where, l and k are positive integers such that l > k).

Then z = bk(l−k) + (−1 + b − bk(l−k)). Because b ∈ Pri∗(R) and bk = bl, an element

bk(l−k) ∈ P(R). An element −1+ b− bk(l−k) is a unit in R. Hence, z = b− 1 is ∗-clean.

□

7.4 Matrix extension of ∗-semiclean rings

If R is a ∗-ring, then Mn(R) the ring of n × n matrices over R inherit the natural involution

from R: if A = (ai j), then A∗ is the transpose of (a∗i j). In 2010, Lia Vaš (55) proved that if

both pRp and (1 − p)R(1 − p) are ∗-clean rings (here p is a projection), then R is ∗-clean.

As a result, the Mn(R) (ring of n × n matrices over R) is ∗-clean. This result has been

extended to ∗-semiclean rings in this section.

Lemma 7.4.1. If pRp and (1 − p)R(1 − p) are both ∗-semiclean, where p ∈ P(R), then R

is also ∗-semiclean.

Proof. For each p ∈ R, write 1 − p = p. Apply the Pierce decomposition of the ring R:

R =

pRp pRp

pRp pRp

 .
Let M =

m n

o q

 ∈ R. Thus, m = a + u, where a ∈ Pri∗(pRp) such that ak1 = al1 (where,

l1 and k1 are possitive integers such that l1 > k1) and u is a unit in pRp with inverse u1.

Then, q−nu1o ∈ pRp. So q−ou1n = b+v, where b ∈ Pri∗(pRp) such that bk2 = bl2 (where,
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l2 and k2 are possitive integers such that l2 > k2) and v is a unit in pRp with inverse v1.

Thus,

M =

a + u n

o b + v + nu1o

 =
a 0

0 b

 +
u n

o v + ou1n

 .
To show:

u n

o v + ou1n

 is unit in R.

Compute,

 p 0

−ou1 p


u n

o v + ou1n


p −u1n

0 p

 =
u n

0 v


p −u1n

0 p

 =
u 0

0 v

 . Since

the matrices

u 0

0 v

,
 p 0

−ou1 p

, and

p −u1n

0 p

 are units in

pRp pRp

pRp pRp

, therefore,u n

o v + ou1n

 is unit in R.

To show:

a 0

0 b

 is ∗-periodic, i.e.,

a 0

0 b


k

=

a 0

0 b


l

and

a 0

0 b


k(l−k)

∈ P(R) (where, l and

k are the possitive integer such that l > k).

Without loss of generality, let k2 ⩾ k1.

ak1 = al1 = a(l1−k1)+k1 = as(l1−k1)+k1 ,

bk2 = bl2 = b(l2−k2)+k2 = bs(l2−k2)+k2 , and

ak2 = ak1+(k2−k1) = as(l1−k1)+k2 .

Let k = k2 and l = (l1 − k1)(l2 − k2) + k2. Then ak = al and bk = bl.

Thus,

a 0

0 b


k

=

ak 0

0 bk

 =
al 0

0 bl

 =
a 0

0 b


l

. Hence,

a 0

0 b

 is periodic.

As a ∈ Pri∗(pRp) and ak = al. Thus, ak(l−k) = p1, where p1 ∈ P(pRp).

Similarly, b ∈ Pri∗(pRp) and bk = bl. Thus, bk(l−k) = 1 − p2, where p2 ∈ P(pRp).

Compute,

a 0

0 b


k(l−k)

=

ak(l−k) 0

0 bk(l−k)

 =
p1 0

0 1 − p2

 ∈ P(R).

This proves that matrix M is ∗-semiclean. Therefore, R is ∗-semiclean. □

By Lemma 7.4.1, and an inductive argument, the next result holds.

Theorem 7.4.2. If p1, p2, · · · , pn are orthogonal projections with 1 = p1 + p2 + · · · + pn,

and piRpi is ∗-semiclean for each i, then R is ∗-semiclean.

The following two conclusions follow directly from Theorem 7.4.2.

Corollary 7.4.3. If R is ∗-semiclean, then so is Mn(R).
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Corollary 7.4.4. If N = N1
⊕

N2
⊕
· · ·
⊕

Nn are modules and End(Ni) is ∗-semiclean

for each i, then End(N) is ∗-semiclean.

7.5 ∗-Semiclean group rings

In this section, we obtain several results pertaining to commutative and non-commutative

∗-semiclean group rings. Throughout this section, we are considering standard involution

on the group ring RG.

Theorem 7.5.1. If RG is a ∗-semiclean ring, then so is ((R/J(R))G.

Proof. Define a mapΨ : RG → (R/J(R))G asΨ(
∑
g∈G αgg) =

∑
g∈G Ψ(αg)g,Ψ(αg) = αg+

J(R). Note thatΨ is an onto map. The mapΨ preserves an involution ∗ asΨ(
∑
g∈G αgg)∗ =

(Ψ(
∑
g∈G αgg))∗. Let x ∈ (R/J(R))G. Since Ψ is an onto map, there exists an element

x ∈ RG, which is defined as x = f + u, where f ∈ Pri∗(RG) and u ∈ U(RG). So,

x = Ψ( f ) + Ψ(u), where Ψ( f ) ∈ Pri∗((R/J(R))G) and Ψ(u) ∈ U((R/J(R))G). Hence,

((R/J(R))G is a ∗-semiclean ring. □

7.5.1 Abelian group rings

In 2015 (21), Gao, Chen, and Li found out that when the group rings RC3, RC4,

RS 3 and RQ8 are ∗-clean, where R is a commutative local ring. In this section, we have

extended this result to ∗-semiclean rings. As a consequence, many examples of group

rings that are ∗-semiclean but not ∗-clean have been obtained. In Theorem 7.5.7 and

7.5.8, a characterization that when the group rings RCr and RG are ∗-semiclean is obtained

(respectively). Here, R is a finite commutative local ring, Cr is a cyclic group of order r,

and G is a locally finite abelian group.

Proposition 7.5.2. (45) If R is local, G is a locally finite p-group, and p ∈ J(R), then the

group ring RG is local.

We now investigate when RC3 is ∗-semiclean.

In 2015 (21), Gao, Chen, and Li investigated the group rings RC3 and ZpC3 and

proved that if (−3)
p−1

2 ≡ 1(mod p), then the group ring ZpC3 is not ∗-clean; however,

Theorem 7.5.3(3) demonstrates that it is ∗-semiclean. Furthermore, in Theorem 7.5.3(2),

we relaxed the requirement that RC3 be clean, allowing us to broaden the class of rings

(rings that are ∗-semiclean but not ∗-clean are obtained). One such example is Z(7)C3,

which is explained below.
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Theorem 7.5.3. Let R be a commutative local ring and G = C3 = ⟨x⟩ be a cyclic group

of order 3.

1. If 3 < U(R), then RC3 is ∗-semiclean.

2. If 3 ∈ U(R) and the equation z2 + z+ 1 = 0 has no solutions in R, then the ring RC3

is ∗-semiclean.

3. If 2 ∈ U(R), then RC3 is ∗-semiclean if RC3 is clean and U(RC3) is a torsion group.

Proof. 1. Since 3 ∈ J(R), by Proposition 7.5.2, RC3 is local. Hence, RC3 is a ∗-

semiclean.

2. According to (37, Theorem 2.7), the ring RC3 is a semiclean ring. By (21, Theorem

2.4), if the equation z2+ z+1 = 0 has no solution in R, then every idempotent of the

ring RC3 is a projection. Hence, by Proposition 7.3.2, the ring RC3 is a ∗-semiclean

ring.

3. If RC3 is clean and 2 ∈ U(RC3), then by (57, Proposition 2.5), RC3 is a 2-good

ring. If an element a ∈ RC3, then there exist u1, u2 ∈ U(RC3) such that a = u1 + u2,

according to the definition of a 2-good ring. Because U(RC3) is a torsion group,

there exists m ∈ N such that um
1 = 1 = 1∗, implying that u1 ∈ Pri∗(RC3) and

u2 ∈ U(RC3). Thus, element a is ∗-semiclean. Since a is an arbitary element of

RC3, therefore, every element of RC3 is ∗-semiclean. Hence, RC3 is a ∗-semiclean

ring.

□

The examples given below are the direct consequences of Theorem 7.5.3.

Example 7.5.4. 1. By Theorem 7.5.3(1), the ring Z3C3 is ∗-semiclean.

2. The ring Z(7)C3 is ∗-semiclean because the equation z2 + z + 1 = 0 has no solution

in Z(7), but it is not ∗-clean because, according to (46), Z(p)C3 is clean if and only if

p � 1(mod3).

3. By (59, Corollary 19), we can say that ZpC3, where p > 2 is prime, is clean. Also,

as 2 ∈ U(ZpC3), by Theorem 7.5.3(3), we conclude ZpC3 is ∗-semiclean, but by (21,

Example 2.7), for p > 3, if (−3)
p−1

2 ≡ 1(mod p), it is not ∗-clean.

We now investigate when RC4 is ∗-semiclean.

In 2015 (21), Gao, Chen, and Li investigated the group rings RC4 and ZpC4, and
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proved that if p ≡ 1(mod 4), then the group ring ZpC4 is not ∗-clean; however, Theorem

7.5.5(2b) demonstrates that it is ∗-semiclean. Furthermore, in Theorem 7.5.5(2a), we

relaxed the requirement that RC4 be clean, allowing us to broaden the class of rings (rings

that are ∗-semiclean but not ∗-clean are obtained). One such example is Z(5)C4, which is

explained below.

Theorem 7.5.5. Let R be a commutative local ring and G = C4 = ⟨x⟩ be a cyclic group

of order 4.

1. If 2 < U(R), then RC4 is ∗-semiclean.

2. If 2 ∈ U(R), then RC4 is ∗-semiclean if any of the condition given below is satisfied.

(a) The equation z2 + 1 = 0 has no solutions in R.

(b) RC4 is clean and U(RC4) is torsion group.

Proof. 1. Since 2 ∈ J(R), by Proposition 7.5.2, RC4 is local. Hence, RC4 is a ∗-

semiclean.

2. (a) According to (37, Theorem 2.7), the ring RC4 is a semiclean ring. By (21,

Theorem 2.10), if the equation z2 + 1 = 0 has no solution in R, then every

idempotent of the ring RC4 is a projection. Hence, by Proposition 7.3.2, the

ring RC4 is a ∗-semiclean ring.

(b) The proof is similar to the proof of Theorem 7.5.3(3).

□

The examples given below are the direct consequences of Theorem 7.5.5.

Example 7.5.6. 1. The ring Z(5)C4 is ∗-semiclean because the equation z2 + 1 = 0 has

no solution in Z(5), but it is not ∗-clean because, according to (46), Z(5)C4 is not

clean.

2. By (59, Corollary 19), we can say that ZpC4, where p > 2 is prime, is clean. Also,

as 2 ∈ U(ZpC4), by Theorem 7.5.5(2b), we conclude ZpC4 is ∗-semiclean, but by

(21, Corollary 2.11), for p ≡ 1 (mod 4), ZpC4 is not ∗-clean.

By using Theorem 7.5.7 and Theorem 7.5.8, we can find various other examples of

∗-semiclean rings that are not ∗-clean. Some of them are listed in Example 7.5.9.

Theorem 7.5.7. Let R be a finite commutative local ring.

1. If 2 ∈ U(R) and Cr = ⟨x⟩ is a cyclic group of order r, then RCr is ∗-semiclean.
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2. If 2 ∈ J(R), Cr = ⟨x⟩ is a cyclic group of order r = 2st (s ≥ 0), where 2 ̸ |t, and γ

is the cyclic permutation on the set J = {1, 2, · · · , t − 1} defined as γ : J → J by

j→ 2 j(mod t), then RCr is ∗-semiclean.

Proof. 1. Let x ∈ RCr. The group ring RCr is periodic because it is finite. Thus,

according to (58, Lemma 5.1), RCr is clean. Furthermore, 2 ∈ U(R). Thus, by (57,

Proposition 2.5), RCr is a 2-good ring, i.e., x = u1 + u2, where u1, u2 ∈ U(RCr).

As RCr is periodic, according to (8, Proposition 2.3), U(RCr) is a torsion group.

Because u1 ∈ U(RCr), there exists n ∈ N such that un
1 = 1 = 1∗. Thus, u1 ∈

Pri∗(RCr) and u2 ∈ U(RCr). As a result, an element x meets the condition of being

∗-semiclean. Hence, RCr is ∗-semiclean.

2. Let s ≥ 1. Then Cr � C2s × Ct. Thus, RCr � (RC2s)Ct, where Ct = ⟨x⟩ is a cyclic

group of order t. By (45, Theorem), R
′

= RC2s is the local ring. Since (R/J(R)) is

a field of char = 2 and (R/J(R))C2s → (R
′

/J(R
′

)) is ring epimorphism, therefore,

(R
′

/J(R
′

)) is also a field of char = 2. Let a = a0 + a1x + a2x2 + · · · + at−1xt−1 be

an idempotent element of (R
′

/J(R
′

))Ct. Because 2 = 0 and xt = 1, it follows that

a2 = a2
0 + aγ(1)xγ(1) + · · · aγ(t−1)xγ(t−1). Because γ is the cyclic permutation on the

set J = {1, 2, · · · , t − 1}, therefore, a2
0 = a0 and a2

1 = a1 = a2 = · · · = at−1. So the

idempotents of (R
′

/J(R
′

))Ct are 0, 1, 1 + x + · · · + xt−1, and x + x2 + · · · + xt−1.

Because 0∗ = 0, 1∗ = 1, (1 + x + · · · + xt−1)∗ = 1 + x + · · · + xt−1 and (x + x2 + · · · +

xt−1)∗ = x + x2 + · · · + xt−1, implying that (R
′

/J(R
′

))Ct has four idempotents, all of

which are projections. Now, because Ct is a locally finite group, J(R
′

)Ct ⊆ J(R
′

Ct).

As the (char(R
′

/J(R
′

)), t) = 1, therefore, (R
′

/J(R
′

))Ct is semisimple, implying that

R
′

J(Ct) = J(R
′

Ct). Therefore, we get (R
′

/J(R
′

))Ct � R
′

Ct/J(R
′

)Ct = R
′

Ct/J(R
′

Ct).

Thus, the factor ring R
′

Ct/J(R
′

Ct) = R′Ct will also have only four idempotents :

0, 1, 1 + x + · · · + xt−1, and x + x2
+ · · · + xt−1, all of which are projections. Since

the order of the ring R′Ct is finite, R′Ct is clean. Thus, R′Ct is ∗-clean, i.e., for each

a ∈ R′Ct, there exists p ∈ P(R′Ct) and u ∈ U(R′Ct), such that a = p + u. Moreover,

in R
′

Ct the elements m1 = 0, m2 = 1, m3 = t−1(1+ x+ · · ·+ xt−1), and m4 = t−1((t −

1)−x−x2−· · ·−xt−1) are projections such that m1 = 0, m2 = 1, m3 = 1+x+· · ·+xt−1,

and m4 = x + x2 + · · · + xt−1. Which implies there exists a n1 = p ∈ P(R
′

Ct) such

that n1 = p for p ∈ P(R′Ct). There is also n2 = u ∈ U(R
′

Ct) such that n2 = u for

u ∈ U(R′Ct). Thus, there exists an element n3 = p + u ∈ R
′

Ct such that n3 = p + u

for p + u ∈ R′Ct. Then n3 = a, i.e., a − n3 ∈ J(R
′

Ct). Since R
′

is finite, R
′

is an

artinian ring, which implies J(R
′

) is nilpotent. Thus, J(R
′

)Ct is nil-ideal. By (38,

Corollary 4.3), J(R
′

)Ct is nilpotent. Since J(R
′

Ct) = J(R
′

)Ct, the ideal J(R
′

Ct) is
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also nilpotent. Since a − n3 ∈ J(R
′

Ct), therefore, a − n3 = a − (p + u) = k for some

k ∈ J(R
′

Ct). Simplifying it, we get a = p + u + k, where p ∈ P(R
′

Ct), u ∈ U(R
′

Ct),

and k ∈ J(R
′

Ct). Thus, a = p + v, where p ∈ P(R
′

Ct) and v = (u + k) ∈ U(R
′

Ct). As

a result, an element a meets the condition of being ∗-clean. Hence, RCr = R
′

Ct is

∗-clean. Thus, RCr is ∗-semiclean.

□

Theorem 7.5.8. Let R be a finite commutative local ring and G be a locally finite abelian

group.

1. If 2 ∈ U(R), then RG is ∗-semiclean.

2. If 2 ∈ J(R) and G is a locally finite 2-group, then RG is ∗-semiclean.

3. If 2 ∈ J(R) with R/J(R) � F2 and exponent of G is r, where r is an odd positive

integer, and a q ∈ N exists such that 2q ≡ −1(mod r), then RG is ∗-semiclean.

Proof. 1. Let x ∈ RG. Since G is a locally finite abelian group, there exists a finite

subgroup H such that x ∈ RH. The rest of the proof is similar to that of Theorem

7.5.7(1).

2. Since 2 ∈ J(R), by Proposition 7.5.2, RG is local. Hence, RG is ∗-semiclean.

3. We will first show that the group ring RG′ is ∗-clean for any arbitary finite abelian

group, say G
′

(with odd exponent say r) such that 2q ≡ −1(mod r) for some q ∈ N.

Let a = x1 + x2 + · · · + xt be the idempotent element of (R/J(R))G
′

, where xi ∈ G
′

for i = 1 to t. Then (x1 + x2 + · · · + xt)2 = x2
1 + x2

2 + · · · + x2
t = x1 + x2 + · · · + xt.

Thus, {x1, x2, · · · , xt} = {x2
1, x

2
2, · · · , x

2
t }. Furthermore, if x ∈ {x1, x2, · · · , xt}, then

x2k
∈ {x1, x2, · · · , xt} for some k ∈ N . Thus, an element x can be rewritten as

x = (xk1 + x2
k1
+ · · · + x2m1

k1
) + · · · + (xk j + x2

k j
+ · · · + x2m j

k j
). Here the elements xki are

distinct and mi’s are the smallest positive integers such that x2mi+1

ki
= xki . Evaluating

x∗, we have x∗ = (x−1
k1
+ x−2

k1
+ · · · + x−2m1

k1
) + · · · + (x−1

k j
+ x−2

k j
+ · · · + x−2m j

k j
). Since, for

some q ∈ N, we have 2q ≡ −1(mod p), thus, clearly a∗ = a, i.e., every idempotent

of (R/J(R))G
′

is a projection. Now, as the order of (R/J(R))G
′

is finite, it is a clean

ring. As a result, the ring (R/J(R))G
′

is ∗-clean. Now, as G is a locally finite group,

therefore, J(R)G
′

⊆ J(RG
′

). Since order of every element of G
′

is invertible in

(R/J(R)), therefore, (R/J(R))G
′

is semisimple. Thus, J(R)G
′

= J(RG
′

). Therefore,

we get (R/J(R))G
′

� RG
′

/J(RG
′

). Thus, every idempotent of RG
′

/J(RG
′

) is a

projection. Being the ring RG
′

/J(RG
′

) = RG′ of finite order, it is a clean ring.

Thus, it is a ∗-clean ring.
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Let z ∈ RG. Since G is a locally finite abelian group, there exists a finite abelian

subgroup H such that z ∈ RH. For l1 = z ∈ RH, there exists a z ∈ RH such that

l1 = z. Because z ∈ RH, and because, as explained above, the group ring RH is

a ∗-clean, there exists p ∈ P(RH) and u ∈ U(RH), such that z = p + u. Because

J(RH) is the ∗-invariant nil ideal of a ∗-ring RH, there exists a n1 = p ∈ P(RH)

such that n1 = p for p ∈ P(RH). There is also n2 = u ∈ U(RH) such that n2 = u for

u ∈ U(RH). Thus, there exists an element n3 = p + u ∈ RH such that n3 = p + u for

p + u ∈ RH. Thus, n3 = z, i.e., z − n3 ∈ J(RH). Also, the ideal J(RH) is nilpotent.

Since z − n3 ∈ J(RH), z − n3 = z − (p + u) = k for some k ∈ J(RH). Simplifying

it, we get z = p + u + k, where p ∈ P(RH), u ∈ U(RH), and k ∈ J(RH). Thus,

z = p + v, where p ∈ P(RH), and v = (u + k) ∈ U(RH). As a result, element z meets

the condition of being ∗-clean. Hence, RH is ∗-clean. Thus, RH is ∗-semiclean,

which implies RG is ∗-semiclean.

□

The examples given below are the direct consequences of Theorem 7.5.7 and Theo-

rem 7.5.8. These are ∗-semiclean but not ∗-clean group rings.

Example 7.5.9. 1. The ring F3C8 is ∗-semiclean, but by (53, Example 3.12), it is not

∗-clean.

2. The ring F7(C4 ×C8) is ∗-semiclean, but by (53, Example 3.10(1)), it is not ∗-clean.

3. The ring F3C35 is ∗-semiclean, but by (31, Example 3.3), it is not ∗-clean.

7.5.2 Non-abelian group rings

In this section, we investigate when a non-abelian group ring RG is ∗-semi-clean,

where R is a commutative local ring and G is Q8, Q2n, D2n, and D6.

Quaternion group Q8

The group ring ZpQ8 was studied by Gao in (21), and it was shown that it is not ∗-clean;

however, by Theorem 7.5.10, we obtain that it is ∗-semiclean.

Theorem 7.5.10. Let R be a commutative local ring and G = Q8 = ⟨x, y|x4 = 1, x2 =

y2, yx = x−1y⟩ be a quaternion group of order 8.

1. If 2 < U(R), then RQ8 is ∗-semiclean.

2. If 2 ∈ U(R), RQ8 is clean and U(RQ8) is a torsion group, then RQ8 is ∗-semiclean.



102
∗-Semiclean rings and its application in construction of LCD and self-orthogonal

abelian codes

Proof. 1. As R is local, Q8 is a finite 2-group, and 2 ∈ J(R), therefore, by Proposition

7.5.2, RQ8 is local. Thus, RQ8 is a ∗-semiclean ring.

2. The proof is similar to the proof of Theorem 7.5.3(3).

□

The example given below is the direct consequence of Theorem 7.5.10.

Example 7.5.11. The ring ZpQ8 (where p > 2 is prime) is clean. Furthermore, because

2 ∈ U(ZpQ8), we can conclude from Theorem 7.5.10(2) that ZpQ8 is ∗-semi-clean. How-

ever, according to (21, Example 3.9), ZpQ8 is not ∗-clean.

Generalized quaternion group Q2n and Dihedral group D2n

The group ring FqQ2n was studied by Hongdi Huang in (30) and it was shown that if 4|n

and gcd(q, 2n) = 1, then it is not ∗-clean; however, by Theorem 7.5.12, we obtain that it

is ∗-semiclean.

Theorem 7.5.12. Let R be a finite commutative local ring and G = Q2n = ⟨x, y|x4 =

1, y
n
2 = x2, yx = y−1⟩ be the generalised quaternion group of order 2n or G = D2n =<

x, y|yn = x2 = 1, xyx−1 = y−1 > be the dihedral group of order 2n.

1. If 2 ∈ U(R), then RQ2n and RD2n are ∗-semiclean.

2. If 2 ∈ J(R), then RQ2n and RD2n (where n is a power of 2) are ∗-semiclean.

Proof. 1. The proof is similar to the proof of Theorem 7.5.7(1).

2. As R is local, Q2n and D2n are finite 2-groups, and 2 ∈ J(R), therefore, by Proposi-

tion 7.5.2, RQ2n and RD2n are local. Thus, RQ2n and RD2n are ∗-semiclean rings.

□

The example below is the direct consequence of Theorem 7.5.12.

Example 7.5.13. The ring FqQ2n (where gcd(q, 2) = 1) is clean. Furthermore, because

2 ∈ U(FqQ2n), we can conclude from Theorem 7.5.12(1) that FqQ2n is ∗-semi-clean.

However, according to (30, Theorem 4.7), FqQ2n is not ∗-clean if 4|n and gcd(q, 2n) = 1.

In 2015 (21), Gao, Chen, and Li investigated the group ring Z2D6, and proved that

it is not ∗-clean; however, Example 7.5.14 demonstrates that it is ∗-semiclean. To prove

Z2D6 is ∗-semiclean, we have shown that every element is written as sum of a ∗-periodic

element and a unit. To check this, we first represented every element of Z2D6 in a matrix,

and by using the SAGE (54) software obtain units, ∗-periodic elements. We then checked



7.5 ∗-Semiclean group rings 103

whether every element of Z2D6 can be written as sum of a ∗-periodic element and unit of

it. By (33), the matrix representation σ(v) of an element v = α0+α1y+α2y
2+α3x+α4yx+

α5y
2x ∈ RD6, where D6 = ⟨x, y|y3 = x2 = 1, xyx−1 = y−1⟩ is a dihedral group of order 6,

as given by σ(v) =

 A B

BT AT

, where A = circ
[
α0 α1 α2

]
and B = circ

[
α3 α4 α5

]
.

The codes for this are given below.

Example 7.5.14. Consider the ring Z2D6. The group of all units of Z2D6 is U(Z2D6) =

{x, yx, y2x, 1, y+ y2 + x+ yx+ y2x, 1+ y+ y2 + x+ yx, 1+ y+ y2 + x+ y2x, 1+ y+ y2 + yx+

y2x, y, y2, 1+y+x+yx+y2x, 1+y2+x+yx+y2x}. The set of all ∗-peridic elements of Z2D6 is

Pri∗(Z2D6) = {0, x, yx, x+yx, y2x, x+y2x, yx+y2x, x+yx+y2x, 1, 1+x, 1+yx, 1+x+yx, 1+

y2x, 1+x+y2x, 1+yx+y2x, 1+x+yx+y2x, y, y+x+yx+y2x, 1+y, 1+y+x+yx+y2x, y2, y2+

x+yx+y2x, 1+y2, 1+y2+x+yx+y2x, y+y2, y+y2+x, y+y2+yx, y+y2+x+yx, y+y2+y2x, y+

y2+ x+y2x, y+y2+yx+y2x, y+y2+ x+yx+y2x, 1+y+y2, 1+y+y2+ x, 1+y+y2+yx, 1+

y+y2+x+yx, 1+y+y2+y2x, 1+y+y2+x+y2x, 1+y+y2+yx+y2x, 1+y+y2+x+yx+y2x}.

Every element of Z2D6 can be written as the sum of a ∗-periodic element and a unit. Thus,

we can say that the group ring Z2D6 is ∗-semiclean, but by (21, Theorem 3.4), it is not

∗-clean.

Code for the construction of a matrix representation of Z2D6.

1 Type = Integer(3)

2 Field = GF(Integer(2))

3 Vector = Field*Type

4 CM = [matrix.circulant(a) for a in Vector]

5 Length = len(CM)

6 Matrices_64 = []

7 for x in range(Length):

8 for y in range(Length):

9 CB = block_matrix(Integer(2),Integer(2),[CM[x],CM[y],CM[y].T,CM[x].T])

10 Matrices_64.append(CB)

Code to find the units of Z2D6.

1 Elements = Field*Integer(1)

2 Zero = Elements[Integer(0)][Integer(0)]

3 One = Elements[Integer(1)][Integer(0)]
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4 Identity_row = [One,Zero,Zero,Zero,Zero,Zero]

5 Identity_Matrix = matrix.circulant(Identity_row)

6 Matrices_Unit = []

7 List_Matrices_64 = list(range(len(Matrices_64)))

8 for x in List_Matrices_64:

9 y = x

10 while y <=List_Matrices_64[len(List_Matrices_64)-Integer(1)]:

11 if y not in List_Matrices_64:

12 y = y+Integer(1)

13 else:

14 mul_r = Matrices_64[x]*Matrices_64[y]

15 if mul_r == Identity_Matrix:

16 mul_r_rev = Matrices_64[y]*Matrices_64[x]

17 if mul_r_rev == Identity_Matrix:

18 Matrices_Unit.append(x)

19 Matrices_Unit.append(y)

20 break

21 y = y+Integer(1)

Code to find the ∗-periodic element of Z2D6.

1 Zero_row = [Zero for x in range(Integer(6))]

2 Zero_Matrix = matrix.circulant(Zero_row)

3 Zero_row_3 = [Zero for x in range(Integer(3))]

4 One_row_3 = [One for x in range(Integer(3))]

5 Combination_row_3 = [Zero,One,One]

6 Zero_matrix_3 = matrix.circulant(Zero_row_3)

7 One_matrix_3 = matrix.circulant(One_row_3)

8 Comb_matrix_3 = matrix.circulant(Combination_row_3)

9 Projection1 =

10 block_matrix(2,2,[One_matrix_3 ,Zero_matrix_3 ,Zero_matrix_3 ,One_matrix_3])

11 Projection2 =

12 block_matrix(2,2,[Comb_matrix_3 ,Zero_matrix_3 ,Zero_matrix_3 ,Comb_matrix_3])

13 Matrices_StrPeriodic = []

14 N = Integer(1000000)

15

16 for x in range(len(Matrices_64)):

17 res = Matrices_64[x]
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18 i = Integer(1)

19 while i <=N:

20 res = res*Matrices_64[x]

21 if res == Identity_Matrix or res == Zero_Matrix

22 or res == Projection1 or res == Projection2 :

23 Matrices_StrPeriodic.append([x,i+Integer(1)])

24 break

25 i = i+Integer(1)

Code to check whether every element of Z2D6 can be written as the sum of ∗-
periodic element and unit of it.

1 Matrices_Star_Semiclean = []

2 Star_Semiclean_map = []

3 StarPeriodic_Set = set(x[Integer(0)] for x in Matrices_StrPeriodic)

4 Unit_set = set(Matrices_Unit)

5

6 for x in StarPeriodic_Set:

7 for y in Unit_set:

8 res = Matrices_64[x]+Matrices_64[y]

9 if res in Matrices_64:

10 index = Matrices_64.index(res)

11 if index not in Matrices_Star_Semiclean:

12 Matrices_Star_Semiclean.append(index)

13 Star_Semiclean_map.append([x,y,index])

7.6 The relationship between the ∗-semicleanness of the

group ring FqG and coding theory

Consider the finite field with q elements, say Fq, and the finite abelian group with expo-

nent n, say G, such that (q, n) = 1. In this section, a relationship between abelian group

codes in FqG and the ∗-semicleanness (with the classical involution ∗) of the ring FqG

is developed. Let F̄ represent the algebraic closure of F. Let Ĝ represent the group that

consists of all characters of G over F, defined as,

Ĝ = {ϕ|ϕ : G → F̄ a homomorphism}
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Also |G| = |Ĝ|. For each ϕ ∈ Ĝ, we define

fϕ =
1
|G|

∑
g∈G

ϕ(g)g,

which is an element in F̄G.

Clearly, an element fϕ satisfies the following properties:

1. f 2
ϕ = fϕ, for any ϕ ∈ Ĝ.

2. fϕ fχ = 0, for any ϕ, χ ∈ Ĝ with ϕ , χ.

3.
∑
ϕ∈Ĝ fϕ.

Consequently, the set

K = { fϕ|ϕ ∈ Ĝ}

includes each and every primitive idempotent of F̄G.

Now using the set K we will construct the primitive idempotent of FG. Let ϕ ∈ Ĝ be a

fixed element of order d in Ĝ and wd be defined as a d-th primitive root of unity over F.

Then fϕ ∈ F(wd)G. More simply, we define it as

Trϕ( fϕ) = TrF(wd)/F( fϕ)

Consider the following lemma.

Lemma 7.6.1. (27) Let ϕ ∈ Ĝ. Then we have Trϕ( fϕ) is a primitive idempotent in FG.

Moreover, the set

F := {Trϕ( fϕ)|ϕ ∈ Ĝ)}

contains exactly all primitive idempotents of FG.

Lemma 7.6.2. (27, Proposition 4.2) Let ϕ ∈ Ĝ be an element of order d in Ĝ and Cϕ be

an abelian code generated by Trϕ( fϕ) in FqG. Then we get:

1. Cϕ is an LCD abelian code if and only if there exists t ∈ N such that qt ≡ −1(

mod d).

2. Cϕ is a self-orthogonal code if and only if there exists no t ∈ N such that qt ≡ −1(

mod d).

By Theorem 7.6.3, we are able to characterize LCD abelian codes and self-

orthogonal abelian codes with the ∗-semicleanness of a ring. In 2021, (27) Dongchun

Han and Hanbin Zhang showed that if all abelian group codes of FqG are self-orthogonal

abelian codes, then FqG cannot be a ∗-clean ring. By Theorem 7.6.3, we are able to show

that in this case, the ring FqG will be a ∗-semiclean ring. Examples of the same are given

below in Example 7.6.4.
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Theorem 7.6.3. Let Fq be a finite field of order q, G be a finite abelian group with expo-

nent n with (q, n) = 1, and Cϕ be the abelian code generated by Trϕ( fϕ) in FqG.

1. If q , 2, then

(a) If there exist t ∈ N such that qt ≡ −1(mod n), then FqG is ∗-semiclean if and

only if all abelian group codes are LCD abelian codes in FqG.

(b) If there exist no t ∈ N such that qt ≡ −1(mod n), then FqG is ∗-semiclean if

and only if all abelian group codes are self-orthogonal abelian codes in FqG.

2. If q = 2, and G is a finite 2-group then

(a) If there exist t ∈ N such that qt ≡ −1(mod n), then FqG is ∗-semiclean if and

only if all abelian group codes are LCD abelian codes in FqG.

(b) If there exist no t ∈ N such that qt ≡ −1(mod n), then FqG is ∗-semiclean if

and only if all abelian group codes are self-orthogonal abelian codes in FqG.

3. If q = 2 such that there exist t ∈ N such that qt ≡ −1(mod n), then FqG is ∗-

semiclean if and only if all abelian group codes are LCD abelian codes in FqG.

Proof. 1. (a) ⇒ Follows from Lemma 7.6.2(1).

⇐ Since every abelian group code is an LCD abelian codes in FqG, from (27,

Theorem 4.2), we can say that the ring FqG is ∗-clean. Since, every ∗-clean

ring is a ∗-semiclean ring. The result follows.

(b) ⇒ Follows from Lemma 7.6.2(2).

⇐ Follows from Theorem 7.5.8(1).

2. (a) ⇒Follows from Lemma 7.6.2(1).

⇐ Since every abelian group codes are LCD abelian codes in FqG, from (27,

Theorem 4.2), we can say that the ring FqG is ∗-clean. Since, every ∗-clean

ring is a ∗-semiclean ring. The result follows.

(b) ⇒ Follows from Lemma 7.6.2(2).

⇐ Since q = 2, therefore 2 ∈ J(Fq), by Proposition 7.5.2, FqG is local. Since

every local ring is a ∗-semiclean ring, FqG is also ∗-semiclean.

3. ⇒Follows from Lemma 7.6.2(1).

⇐ Follows from Theorem 7.5.8(3).

□
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In Example 7.6.4, we have given examples of group rings that are not ∗-clean but

are ∗-semiclean rings such that all their abelian group codes are self-orthogonal abelian

codes.

Example 7.6.4. 1. Consider the group ring F3C8. Since there is no t ∈ N such that

3t ≡ −1(mod 8), by Lemma 7.6.2, all its abelian group codes are self-orthogonal

abelian codes. By Theorem 7.6.3, F3C8 is ∗-semiclean. Also by (53, Example 3.12),

it is not ∗-clean.

2. Consider the group ring F3C35. Since there is no t ∈ N such that 3t ≡ −1(mod 35),

by Lemma 7.6.2, all its abelian group codes are self-orthogonal abelian codes. By

Theorem 7.6.3, F3C35 is ∗-semiclean.

7.7 Conclusion

In this chapter, we have developed a new class of ring that is ∗-semiclean ring and build

a relationship between the ∗-semicleanness of a ring with the LCD and self-orthogonal

abelian codes.
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