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ABSTRACT

Semiconductor product design”is a central processing unit (CPU) core”based SoC

in which additional functionality”is provided by intellectual property (IP) cores

connected to the CPU core. In every new generation of the SoC, more functionalities

are added. In other words, it has a higher number of IPs compared to the previous

one, increasing its complexity. The time required to confirm that the product

behavior is in accordance with the specifications and/or datasheets also increases

with complexity. So post and pre silicon validation with less consumption of time is

required. Here the study of methods of pre and post silicon validation methods with

some examples of IPs are taken. They are studied and their results are also studied.
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CHAPTER 1

INTRODUCTION

Rapid advancements in the field of very large scale integration (VLSI) technology

has pushed the technology node into deep sub-micron figures allowing the industry

to observe a shift in the trend from system on board to system on chip (SoC) in

which all the components of a system that were earlier on a big printed circuit

board, have now been pushed to within the boundaries of a single integrated circuit

(IC). The die size on the other hand has remained the same. Consequently more

logic devices are accommodated in the same die area allowing most of the

required functionality to be present on the chip itself. This has resulted in high

performance systems at the cost of an increase in complexity. Modern paradigm

for the semiconductor product design is a central processing unit (CPU) core based

SoC in which additional functionality is provided by intellectual property (IP) cores

connected to the CPU core as shown in fig 1.1. In every new generation of the SoC,

more functionalities are added. In other words, it has a higher number of IPs

compared to the previous one, increasing its complexity. The time required to

confirm that the product behavior is in accordance with the

specifications and/or datasheets also increases with complexity.

The activity of verifying the design is a crucial phase in the product development

cycle. It starts as soon as the design specifications are completed and runs in

parallel with the design implementation activity. The verification phase evaluates

the correctness of the design implementation to meet the specifications.

Simulation checks and formal methods are commonly used for verification

focused on uncovering the register transfer level (RTL) design errors for quality

control. Verification does not cater to all the functional bugs as simulation is very

slow and formal verification methods face scalability problems [1]. Hence another

evaluation process, known as validation, is employed in the product development

cycle.



22

Fig. 1.1 Architecture of SOC.

.

Validation is a quality assurance phase which begins when the design is

implemented, and it tests the design to meet the desired operational requirements.

The validation process aims to establish evidence that the design is _t for the

intended purpose. It involves the activities of test planning, test execution and

response analysis. In test planning, the functionalities to be tested and the stimuli

for testing them, are determined. In test execution, the test stimuli are applied to the

device under validation. The responses obtained by the application of tests, are

analyzed for pass/fail results. Modern SoCs contain multiple IPs with some of

them working with external devices. Each IP is individually validated and the ones

working with external devices are validated multiple times against different

external devices manufactured by different vendors. For instance an IP of a ash

memory controller works with memory devices
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that may be externally connected and would be validated multiple times with

different ash memory devices.

1.1 MOTIVATION

The growing demand of the electronic market for versatile products and time to

market pressure have made the VLSI industry adopt a new electronic design

paradigm which is a processor core based SoC. In such a design, one or more CPUs

are the central entity and the required capabilities according to the design

specifications are provided by multiple IPs interfaced with the core. Above it, the

SoC is made programmable so that it is employable in multiple application

domains. The hardware is tightly coupled to the embedded software to implement

a particular functionality. Software has thus become an integral part of the SoC

making it an integrated system rather than a standalone entity. Therefore the

software must be validated along with the hardware. The increasing complexity of

the hardware and the embedded software has made the validation process a

complex time consuming task. Large investments, in terms of both time and

capital, are required to verify the design in order to prevent severe bugs to reach the

mass manufacturing phase.

1.2 OBJECTIVE

The objective of this thesis is to learn the various validation process which are pre
silicon and post silicon in the industry and also to look at the some examples to
understand it how validation is done before sending to the customer.

1.3 LITERATURE REVIEW

1.3.1 POST-SILICON VALIDATION OPPORTUNITIES

A approach is given by Mehdi Karimibiuki et al. in (4). They have used the field

programmable gate array (FPGA) prototype of an SoC to determine the RTL code

coverage of the validation tests instead of the software code coverage of virtual

prototypes in [9]. Modifications to the RTL code of the SoC capture the execution of
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the different sections of the RTL code in order to compute the statement and branch

coverage when the validation tests run on the FPGA prototype. These approaches

try to establish coverage metric for the PSV tests and allow good quality tests to be

ready before the arrival of the silicon prototype.

To enhance the observability and controllability during PSV, debug assisting

structures must be added to the SoC in the design phase. Embedded logic analyzer

(ELA), discussed by Ho Fai Ko et al. in [10], is such a design for debug (DFD)

structure consisting of embedded memories and trigger units. The ELAs are

distributed across the SoC to tap important on-chip signals. The trigger unit

monitors a set of signals to detect a pre-defined event which is followed by

sampling of the tapped signals and then storing them in the embedded memories

or trace buffers. The tapping is achieved by using the testing wrappers around the

concerned blocks. Miron Abramovici in (11) proposes the addition of

reconfigurable structures and supporting logic structures into the SoC for in-system

silicon validation. The reconfigurable structures namely programmable trigger

engine and reconfigurable logic engine, are interfaced to the standard joint test

action group (JTAG) port through a primary controller allowing its reconfiguration

according to the validation requirements. A tracer captures the tapped system

signals which are selected by a signal probe network. This system can be

configured for signal tracing and analyzing the logic, obtaining scan dumps and

for performing on-chip functional testing of a block. When the trace buffer

overflows, its content is offloaded over the JTAG port. The amount of trace data is

limited by the width and depth of the trace buffer which are kept small to minimize

the area overhead.

In [13], Kanad Basu and Prabhat Mishra have presented a method for signal

selection based on total restorability. The signal paths are classified into dependent

and independent paths. Then, using the probabilities of the different input signals

to affect the output signal on different paths, their edge values are computed. An



22

edge is a signal path containing combinational circuit elements between two flip

flops. The edge value is a measure of how one end of the path controls the other

end. Using these edge values, flip flop values are computed to filter out the flip flop

signals to be traced for complete restoration of non-traced values. In the attempt to

reduce the time invested in validation, different concepts have been consistently

proposed. In (6), a validation system for faster validation of microprocessors has

been presented by Ilya Wagner and Valeria Bertacco. Microprocessors are validated

by running constrained randomized sequences of instructions on the hardware and

in simulation. The results from the tests on hardware are compared with those of

simulations for pass/fail decisions. Obtaining the results from simulation is a time

consuming process as it is very slow in comparison to the actual hardware. The

validation time is reduced using the proposed scheme as the simulation stage,

required to get the reference outputs of various sequences of random instructions,

is bypassed. This is due to the fact that reversible programs are generated by this

system enforcing the same state of the processor after the test execution as

compared to the state before testing. Hence the final state is already known at the

start of the test. By studying the instruction set of a microprocessor, the inverses of

various arithmetic, logical, branching, memory, floating instructions are computed

and a library is created. After a randomized sequence is generated, the inverse of

each instruction from the library is appended to the sequence in the reverse order.

Now, the complete sequence has instructions as well as their inverse code present

within the same sequence in an order intended to bring the processor back to the

initial state after the entire sequence finished execution. Thus the simulation stage

is not needed as the final state is known beforehand and if a bug is present, the

final state will not match the initial state. In [5], the authors analyze the

effectiveness in reducing the complexity of the validation of a core based chip

having pre-validated IPs. In such scenarios the integration of the components and

the communication architecture is fault prone.
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1.3.2 PRE SILICON VALIDATION OPPORTUNITIES

A systematic approach in which all the interfaces are validated first rather than the

entire SoC, is proposed to reduce overall validation time. All data transfers, or

communications, among different SoC components, are routed through the

communication architecture. Common integration problems for an SoC are

identified and classified into three categories based on the parts of the SoC

involved. These are component to communication architecture, component to

component and communication architecture problems. This identification and

classification leads to a logical sequence for interface validation. First the

components to communication architecture interface is verified by high level test

benches. Then the component to component interfacing is validated by enforcing

communication among the different components in pairs. Finally the entire

communication architecture is validated using all the components simultaneously.

Validating the interfaces in that sequence followed by a full system simulation will

reduce the overall time consumption as interface validation require small, directed

test benches in simulation. In [14] functional self testing is advocated by Krstic et

al. to achieve at-speed testing of high speed circuits not possible with external

testers. At-speed testing requires execution of test cases at the maximum clock

frequency on which the circuit is designed to work. First the processor is self tested

by a test program which applies functional patterns for testing. Then the processor

is reused to test other components of the system. The processor executes

functional tests by generating patterns and analyzing the response. The structural

tests of stuck-at fault testing, path tests of delay testing, maximum aggressor tests

of bus testing and test patterns for component testing are mapped to sequences of

instructions which are executed by the processor core in order to perform the

required tests. The use of instructions eliminates the need of scan chains and

hence at-speed testing is made possible.
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1.4 THESIS ORGANISATION

This thesis is organized into five chapters, of which the introduction, literature

review covers the first chapter. The rest of the thesis is organized as follows:

Chapter 2 describes the IP cores in Soc design which are being validated before

sending to the foundary

Chapter 3. describes the pre-silicon validation, its method and how we have

implemented it on the IP cores.

Chapter 4 describes the post-silicon validation, its method and how we have

implemented it on the IP cores.

Chapter 5 includes the result, conclusion and the future scope.

CHAPTER 2

INTODUCTIONTO IPCORES IN SoC

With rapid strides in Semiconductor processing technologies, the density of

transistors on the die is increasing in line with Moore’s law which in turn is

increasing the complexity of the whole SoC design. With manufacturing yield and

time-to-market schedules crucial for an SoC(System on Chip), it is important to

select verification and analysis solutions that offer the best possible performance,

while minimizing iteration time and data volume. With the advent of cutting edge

technology applications like set top boxes, HDTV, an increasingly evident need has

been that of incorporating the SoC the whole system - on a single silicon i.e.,

Silicon On Chip (SoC) using standard IP-Cores. In an IP-Core based SoC design. A

streamlined verification and analysis flow can contribute significantly to the
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success of a product. A strategy is devised for a more streamlined approach in IP-

core based SoC verification which helps in smooth transition from design to chip

tape-out stage.

2.1 INTRODUCTION

Hardware designs have reached a mammoth scale today, with over ten million

transistors integrated on a single chip[1]. This breakthrough in technology has, in

fact, reached the point, where it is hard to design a complete system from scratch.

Industry has already started designing SoC’s from a large repertoire of Intellectual

Property Components or IP Cores sold by many vendors. System-on-chip designs

usually involve the integration of heterogeneous components on a standard

bus[3,4,8]. These components may require different protocols or have different

timing requirements. Moreover, designers often do not have complete knowledge of

the implementation details of each component. For example, vendors may want to

protect their IP Cores by only providing interface specifications. Consequently, the

validation of such designs is becoming more and more challenging. In this paper,

we outline a new methodology for formally verifying IP Core based system-on-chip

designs. It is well known fact that verification today constitutes about 70% to 80%

of the total design effort, thereby, making it the most expensive component in

terms of cost and time, in the entire design flow which is expected to get even

worse for SoC designs.

2.2 IP CORE BASED SOC DESIGN

Let us open by defining what an SoC is and is not. A System on Chip (SoC) is an

implementation technology[6], not a market segment or application domain. SoC’s

may have many shapes and many different variants, but a typical SOC may

contain the following components: a processor or processor sub-system, a

processor bus, a peripheral bus, a bridge between the two buses, and many
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peripheral devices such as data transformation engines, data ports (e.g.,UARTs,

MACs) and controllers (e.g., DMA) [1]. In many ways, the verification of an SoC is

similar to the verification of any ASIC: you need to stimulate it, check that it

adheres to the specification and exercise it through a wide set of scenarios.

SoC verification is special and it presents some special challenges:

Integration: The primary focus in SoC verification is on checking the integration

between the various components. The underlying assumption is that each

component was already checked by itself. This special focus implies a need for

special techniques.

Complexity: The combined complexity of the multiple sub-systems can be huge,

and there are many seemingly independent activities that need to be closely

correlated. As a result, we need a way to define complicated test scenarios as well

as measure how well we exercise such scenarios and corner cases.

Reuse of IP blocks: The reuse of many hardware IP blocks in a mix-and-match style

suggests reuse of the verification components as well. Many companies treat their

verification IP as a valuable asset (sometimes valued even more than the hardware

IP). Typically, there are independent groups working on the subsystems, thus both

the challenges and the possible benefits of creating reusable verification

components are magnified.

2.2.1 IP CORES

IP cores are pre-designed and pre-verified complex functional blocks. According to

their properties, IP cores can be distinguished into three types of cores[11].

Soft-cores: Soft-cores are architectural modules which are synthesizable. They
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offer the highest degree of modification flexibility. On the other hand, a lot of

physical design issues need to be faced before the core can be fabricated. This

makes the soft-cores very unpredictable in terms of performance. A synthesizable

soft-core consists of a set of technology-independent HDL files, synthesis

constraints, test-bench and validation information and adequate information. Firm-

cores are encrypted black boxes that are integrated into design flow in the same

way as library elements[11].

Firm-cores: Firm-cores are delivered as a mix of RTL code and a technology-

dependent net-list, and are synthesized with the rest of ASIC logic. They come

ready for routing analysis and do not present significant difficulties for floor-

planning, placement, and routing. They have the same routability properties as soft-

cores. The performance of the block is still unpredictable[11].

Hard-Cores: Hard-cores are mask and technology-dependent modules that already

have physical layout information which give predictable performance. The key

deliverable is a fully verified layout in Graphical Design System II (GDSII) format,

along with a design for a test structure and test patterns. The drawback of hard-

core is that the cores can not be customized for a particular design application.

Hard-cores require more model support than firm-cores, which increases

development cost. On the other hand, the usage cost is lower because timing

validation, test strategies, etc., have already been built into the design. Monolithic

hard-cores create a jigsaw puzzle problem for ASIC layouts. When more than one

hard-core is used, the ordinary place and route techniques cannot be used due to

the existence of a strange, non-rectangular area left for routing other non-core

logic[11].
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Fig. 2.1 IP core based SoC design.

Integration of Sub IPs/Blocks/Modules/Clusters: Before the actual SoC verification

starts, the first step is to integrate/stitches of the sub-blocks/sub-IPs/sub-clusters

into the SoC level verification environment. This is one of the major activities of

SoC verification.You also have to develop connectivity checkers which will make

sure whether the integration of the sub-blocks to SoC is done properly or not. This

will play a critical role in SoC level verification because if the integration is not done

properly, then you cannot expect SoC level targeted functionality out of it.

2.3 DESIGNMETHODOLOGIES

Every advancement in microelectronics processing technology is always followed

by the development of new design technology. This new design technology, a so-

called linchpin technology[12,13], becomes the building block to lead the design

entering the next generation of design methodology. The design methodology

responds with an adaptation to the new design process resulting in an incremental

increase in productivity. It alters the relationship between the designers and the

design by introducing a new level of abstraction.
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A linchpin technology always comes along with its specific design methodologies.

2.3.1 AREA DRIVEN DESIGN

Area-Driven Design (ADD)[11] is the most basic and the simplest methodology

used in creating ASIC designs. It is driven to achieve the primary goal target in

creating a design which can fit into a limited budget area. The designer is

challenged to implement as much functionality as possible in a single piece of

silicon. The ADD methodology is used to achieve small sized ASIC’s. Most ADDs

are created from scratch and do not offer any design reuse. The main ADD activity

is in logic minimization. The synthesis optimization is to produce the smallest

design which can meet the intended functionality. In this methodology, no floor

planning information is used at the RTL or gate level analysis.

2.3.2 TIMING DRIVEN DESIGN

Timing-Driven Design (TDD) [11] is a methodology for optimizing a design in a top

down, timing convergent manner. It is driven by the design requirement for meeting

performance or power consumption. The methodology is used to achieve a

moderately sized complex ASIC design. In general, the complexity of a TDD circuit

is between 5000 to 250K gates. It is primarily a custom logic design, offering a very

slim possibility of design reuse. The TDD methodology imposes a more floor plan-

centric design methodology that supports incremental changes of the design. The

floor planning and timing analysis tools can be used to determine the location of

placement sensitive areas, allowing the results to be tightly coupled into the design

optimization process. TDD relies on three linchpin technologies: interactive Floor-

Planning (FP) tools, Static Timing Analysis (STA) tools, and using compilers to

move design to higher abstraction with timing predictability. FP tools give accurate

estimation on the delay and area early in the design process. They address the

timing and area convergence problems which occur in the design process between

synthesis and ‘place and route’. STA enables a designer to identify timing problems
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and perform timing optimizations across the entire ASIC. It reduces the validation

stress in catching bugs using a slower timing-accurate gate-level simulation. The

advancement in compiler technology enables the designer to move the design into

higher abstractions while retaining timing predictability.

2.3.3 BLOCK BASED DESIGN

Block-Based Design (BBD) [11] is the design methodology used to produce designs

that are reliable, predictable, and can be implemented by top-down partitioning of

the design into hierarchical blocks. It introduces the concept of creating a system

by integrating blocks of pre-designed system functions into a more complex one.

The methodology is used to create medium-sized complex ASIC’s with complexity

between 150K to 1.5M gates. BBDs are primarily created as custom logic designs.

In comparison to TDD; BBD offers a better chance for reuse, although in reality, very

few BBDs are reusable.

2.3.4 PLATFORM -BASED DESIGN

Platform-Based Design (PBD)[11] is a methodology which is driven to increase

productivity and time to market by extensively using design reuse and design

hierarchy. It expands the opportunities to speed-up the delivery of derivative

products. PBD achieves high productivity through extensive and planned design

reuse. Productivity is increased by using predictable, pre-validated blocks that have

standardized interfaces. The methodology focuses on better planning for design

reuse and less modification on the existing functional blocks. PBD is used to

design large sized complex ASIC’s with design complexities greater than 300K

gates.

The PBD methodology separates the design into two categories of activity: block

authoring and block integration. Block authoring uses a methodology which is

suited to the block type such as TDD or BBD. Blocks are created with standardized

interfaces so they can be easily integrated with multiple target designs. Block

integration focuses on designing and verifying the architecture of the system and
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the interfaces between the blocks. PBD focuses around a standardized bus

architecture and increases its productivity by minimizing the amount of custom

interface design or modification of the blocks. The test for the design is

incorporated into the standard interfaces to support each block’s specific test

methodology. This allows for a hierarchical, heterogeneous test architecture.

2.4 TAPE OUT

Every design group ultimately needs to answer this question[14]. The means for

answering are always insufficient, as verification quality is so hard to measure.

Code coverage, toggle or fault coverage and bug rates are all useful measures, but

they are very far from complete, and fail to identify many of the complex combined

scenarios that need to be exercised in an SoC. To solve this dilemma, there is need

for coverage metrics that will measure progress in a more precise way. To

summarize, there is always an element of “spray and pray” in verification, hoping

you will hit and identify most bugs. In SoC’s, where so many independent

components are integrated, the uncertainty in results is even greater. There are new

technologies and methodologies available today that offer a more dependable

process, with less “praying” and less time that needs to be invested.
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CHAPTER 3

PRE SILICON VALIDATION

With any semiconductor device, design verification is very critical to the functional

and operational quality of the finished product, in which a single defect in any one

function could cause the failure of the device and necessitate a re-spin. At the

same time, the integration of more functions into single devices, shrinking product

design cycles, and compressed verification and validation cycles because of time

to market pressures are increasing device complexity. Increasing device complexity,

shrinking product-design cycles, and time-to-market pressures are compressing the

verification and validation cycles. Validation and debugging are complex

processes, where a large amount of data without a unified approaches that can

address every potential problem. Verification and validation helps to detect

functional errors. Functional errors occur because of incorrect capture of the

functional requirements, making incorrect assumptions during design, or introduce

mistakes in the design.

3.1 INTODUCTION TO PRE-Si VALIDATION

Pre-silicon validation is generally performed at a chip, multi-chip or system level.

The objective of pre-silicon validation is to verify the correctness and sufficiency of

the design before sending the design for fabrication. This approach typically

requires modeling the complete system, where the model of the design under test

may be RTL, and other components of the system may be behavioral or bus

functional models. Pre-silicon functional verification is time-consuming, some of

the validation issues include interactions with other peripherals and subsystems,
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signal integrity, timing, and board level issues. The full chip verification

environment consists of the entire ASIC along with bus functional models driving

the various inputs of the ASIC. The RTL is complete and there are no bus functional

models or missing RTL from the device under test. The full chip environment is

considerably slower than the module level environment. Full chip tests are also

harder to debug given the size of the design and the slower run times. Sometimes

based on the size of the design the design is regressed/ verified using an RTL

accelerator. Most of the tests in this level focus on end to end simulations to

ensure that the entire path through the device is clean and free from bugs.

In pre-silicon design verification, each of the functional blocks within the device is

verified for logical and algorithmic correctness. Full-chip verification tests the

interaction of all functional blocks and includes writing cycle-accurate, event-driven,

and transaction-driven tests. Cycle-accurate tests examine the behavior of a given

functional block on a cycle-to-cycle basis. Event-driven tests evaluate responses to

events such as interrupts and determine how the functional blocks handle these

events. Transaction-driven tests evaluate interactions using transaction-level

abstractions, such as memory reads and memory writes. Verification involves

software-based gate-level and RTL (register-transfer-level) simulations.

3.1.1 Key features

By subjecting the design under test (DUT) to real-world-like input stimuli, pre-silicon

validation aims to:

Validate design sufficiency

Validate design correctness.

Verify implementation correctness.

Uncover unexpected system component interactions
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Periodic intervals to re-create real-life traffic scenarios in a pre-silicon

validation

environment.

Reactive test generation implies a change in test generation when a

monitored

event is detected during simulation.

3.2 PROCESS OF VERIFICATION

Verification is a process used to demonstrate the functional correctness of a

design. The main purpose of "functional" verification is to ensure that a design

implements intended functionality. Functional verification is the activity where the

design or product is tested to make sure that all the functions of the device are

indeed working as stated. It is a complex and time-consuming design step,

accomplished by converting the specifications into a combination of: Stimuli and

expected results scenarios, verifying that the design produces the expected results

when applied with the stimuli.

Golden model and stimuli constraints, verifying that, whatever the

constraint compliant stimuli, the golden model and RTL behavior are

equivalent.

Properties and stimuli constraints, verifying that, whatever the constraint

compliant

stimuli, the properties hold true.

3.2.1 GOAL OF VERIFICATION

As a verification engineer our aim is to make sure the device can accomplish that

task successfully that is, the design is an accurate representation of the

specification. The process of verification parallels the design creation process [1].
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Find all, or as many as possible, of the bugs in my unit/cluster/area as quickly as

possible, or at least before first silicon. Find bugs in general, not just in my unit/

cluster/area. Find bugs at the right level (cluster vs. full chip). Understand the

design. Provide continuity of knowledge of the unit (not just how and why does it

work, but why was it designed that way). Quickly analyze and root cause bugs as

they appear. Identify and prevent others from making harmful or unnecessarily

high-risk changes to the design. Create high quality collateral (test plans, tests,

checkers, coverage, CTEs, APIs) for testing the design. Continuously improve and

increase effectiveness in all activities.

Enable the design team to do their job by identifying issues and increasing the

quality of their work. Give the design team confidence that when they make

mistakes and code bugs, we will find those bugs.

A system specification derives the verification strategy that is followed for

particular chip verification. These specifications along with the test plan answers

what to verify. Verification processes answers what tools and processes to use, and

verification methodology answers how to verify the chip. Verification methodology

and implementation is dependent on the set of available tools and the process

adopted for verifying the chip.

3.3 PILLARS OF VALIDATION

Nearly all validation collateral (what the validation team produces) falls into one of

three categories: stimulus, checking and coverage. Each of these may look different

for various validation groups, but all groups have them and each is critical for

success. The overall quality of validation is limited by the quality of the lowest of

these three areas:
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Fig.3.1: Pillars of Validation

3.3.1 STIMULUS

Stimulus is frequently referred to as tests or input. Stimulus is the content that you

use to exercise the design under test (DUT). Good stimulus will quickly exercise a

large amount of functionality in a minimal amount of simulation time. If you don't

have good stimulus, you will not exercise important conditions where bugs exist. In

uAV, stimuli are cluster or full chip tests along with tools to inject state or

transactions into the model

.

3.3.2 CHECKERS

Checking is verifying that the behavior of the DUT matches some referencemodel

or expectation. For example, a full-chip architectural checker like Chekhov will verify

that the results of an increment-register instruction results in the register's value

being one more than it was before the execution of the instruction. There are many

different checkers that are deployed in a project and include:
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Self-checking tests.

Assertions in the RTL Forbidden statements in protocytes.

Mini-checkers in (and outside) the cluster test envirorunents (CTEs).

Bus checkers.

3.3.3 COVERAGE

Coverage is used to identify gaps in the stimulus and make changes in the

stimulus to close those gaps. Failure to collect and use coverage results to improve

stimulus quality will resuts in a failure to exercise important cases, allowing bugs

to escape.

Gate length of the transistor is minimum. It has been observed in other processes

that the optimum ESD performance occurs for the minimum channel length, due to

the better activation offered by the parasitic NPN transistor. This is the reason why

it is advised to use the minimum gate length for ESD protection devices in IO's.

Large Width of the transistor, due to current density considerations, it is advised to

use large transistors. N-MOS transistor has been proved to be efficient as a

clamping device without LDD structure. So LDD structure is suppressed. A

complete I/O solution will be characterized on silicon realized during the process

development, for more information see the documents provided with the I/O library

3.4 FRONT END DESIGN PHASE

The usual sequence a designer goes through when developing an integrated circuit

is shown pictorially in Fig 3.2.

In broad terms the steps can be classified as:
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Capturing a description of the design using a HDL (Hardware Description

Language). Simulating the design to prove that it works correctly and meets

specification. Logic synthesis, where the design-description is converted into a

physical gate description. Physical Design involves the activity of organizing the

layout of the integrated circuit to satisfy various physical and electrical constraints.

E.g. power dissipation, pin-to-pin delays, electrical loading, etc.

Fig. 3.2 Phases of Design.

Starting at the front-end, the first step that needs to be performed is the design

capture of each module or design unit and development of the relevant test

benches. Graphical entry methods can also be used. The objective at this stage is

to ensure that the syntax and semantics of the HDL code written by the designer

are correct. Any coding errors not picked up at this stage will be passed through to

the simulation process which could have serious consequences as undetected

coding errors may cause the simulation to fail or produce spurious results. Once

the HDL code is correct a designer can safely move onto the second stage and
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start the simulation process. Modules that represent self-contained parts of the

design can be simulated as soon as they have been captured. Other modules that

rely on receiving signals from other parts of the design may require a dedicated test

bench to be created in order to be simulated, until all the other relevant and

dependent modules have been captured. The overall effect of using this particular

technique will be to increase the amount of testing that needs to be done at the sub-

system integration level. It can be tempting for a designer to move on to stage 3

and start the synthesis process as soon as all the parts of the design have been

successfully simulated. At the fundamental level this means establishing that all

executable statements in the design have been executed and that all the decision

branches have been taken.

3.4 AUTOMATIC TEST GENERATION

The test creation and/or generation methodology is critical in building a system

level pre silicon validation environment capable of generating real-world-like

stimuli. The test generation methodology is closely interrelated to the results

checking strategy. A dynamic test generator and checker are more effective in

creating very interesting, reactive test sequences. They are more efficient because

errors can be detected as they happen. An automated test generation tool should

be capable of handling directed testing, pseudo-random testing and reactive testing.

In directed testing, users specify the sequence of events to generate. This is

efficient for verifying known cases and conditions. Pseudo-random testing is useful

in uncovering unknown conditions or comer cases. Pseudo-random test generation,

where transactions are generated from user-defined constraints, can be

interspersed with blocks of directed sequences of transactions at periodic intervals

to re-create real-life traffic scenarios in a presilicon validation environment. Reactive

test generation implies a change in test generation when a monitored event is

detected during simulation.
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CHAPTER 4

POST-SILICON VALIDATION

The procedure to accomplish a particular test after determining its stimulus

depends on the validation engineer aiming to cover all corner cases for the target.

The hardware and software functionality is the prime aspect of validation, as

malfunctioning of the system proves very costly when already deployed in the field.

The functional validation discipline of PSV is performed to evaluate the functional

correctness of different parts of the SoC. Ideally the pre-silicon validation phase

should uncover all functional bugs, but this has become impossible to achieve with

increasingly complex designs. Hence functional coverage is the prominent

industrial coverage metric in which a set of functional points which the validation

process should address and verify, are identified by the engineer [4] based on the

specifications and datasheets. From a commercial view, successfully verifying all

practical use cases in an end user environment is the highest concern.
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4.1 INTRODUCTION TO POST-SILICON VALIDATION

PSV involves significant capital and time investment due to the unavailability of

global standards and procedures for PSV, limited access to the internal circuitry

and lack of automation tools. Efforts are made to establish standard coverage

metric for PSV, Kai Cong et al. [9] have used a virtual prototype or simulator of an

SoC to evaluate the coverage of the PSV tests. It is the software model of a

hardware which allows the unmodified execution of the programs, written for that

hardware. The software model is enhanced to capture the execution data whenever

a program runs on it. The execution data show which code sections of the software

model are executed allowing the computation of the traditional code coverage

metric like statement, branch, function and block coverage of a program. Two new

hardware specific coverages, register coverage and transaction coverage, are

defined which are also computed using the execution data. The register coverage

metric is the number of times a register is accessed in a test and the transaction

coverage metric is the number of times different transactions or events take place

in the virtual device during the test. In PSV, the same tests are executed on the

hardware prototype and the device state is recorded at different events. The

recorded data from the test execution on the virtual device and the actual device is

then compared to discover inconsistencies.

4.1.1 KEY FEATURES

As the amount of the trace buffer is limited, less number of signals and their states

can be stored. To increase the observability of the circuit, the non-traced values

must be computed from the traced signals and the input test vector using

restoration algorithms. Selection of the signals in such cases play a significant role

as the restoring capability of some set of signals may be higher than the others.

The possibility of a bug capture depends on the extent of signal restoration. In (12),

partial restoration calculations are performed for various signals and based on

them the signals to be traced are selected.
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4.2 VALIDATION PROCESS

Without loss of generality, an IP core is seen as a set of registers which are

accessed by their addresses over a bus. An IP block exports its functionality via

these registers [15]. The register set includes configuration, command, data and

status registers. To exercise a functionality, the associated register bits are

modified and tested according to the values mentioned in the datasheet. The test

cases are created following this procedure to verify the IP functionality and its

integration. The tests are categorized as directed tests and random tests. Directed

tests are manually created by a validation engineer to cover all functional coverage

points as planned. These can be short tests and long tests. Short tests are aimed at

individually validating each and every feature supported by the IP while long tests

exercises multiple features and are combinations.

Fig 4.1: Validation set-up

4.3 POST SILICONMETHODOLOGIES

Post-silicon validation involves a number of activities including validation of both

functional and timing behaviour as well as non-functional requirements. Each

validation has methodologies to mitigate these.

4.3.1 POWER-ON DEBUG
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Powering on the device is actually a highly complex activity. If the device does not

power on, the on-chip instrumentation architecture is typically not available,

resulting in extremely limited (often zero) visibility into the design internals. This

makes it difficult to diagnose the problem. Consequently, power-on debug includes

a significant brainstorming component. Of course, some visibility and

controllability exist even at this stage.

The debug activity then entails coming up with a bare-bone system configuration

(typically removing most of the complex features like power management, security

and software/firmware boot mechanisms) that can reliably power on. Typically,

starting from the time the silicon first arrives at the laboratory, obtaining a stable

power-on recipe can take anywhere from a few days to a week.

Once this is achieved, the design is reconfigured incrementally to include different

complex features. At this point, some of the internal design-for-debug (DfD)

features are available to facilitate this process. Once the power-on process has

been stabilised, a number of more complex validation and debug activities can be

initiated.

4.3.2 BASIC HARDWARE LOGIC VALIDATION

Compatibility validation refers to the activities that ensure the silicon works with

various versions of systems, application software and peripherals. Validation

accounts for various target use-cases of the system, platforms in which the SoC is

targeted to be included and so on. Compatibility validation includes, among others,

the following:

1. Validation of system usage with add-on hardware of multiple external devices

and peripherals

2. Exercising various operating systems, applications, protocols and

communication infrastructures

In addition to the generic complexities of post-silicon validation, a key challenge

here is the large number of potential combinations (of configurations of hardware,

software, peripheral, use-cases, etc) that need to be tested. It is common for
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compatibility validation to include over a dozen operating systems of different

flavours, more than a hundred peripherals and over 500 applications.

4.3.3. ELECTRICAL VALIDATION

Electrical validation exercises electrical characteristics of the system, components

and platforms to ensure an adequate electrical margin under worst-case operating

conditions. Electrical characteristics include input-output, power delivery, clock and

various analogue/mixed-signal (ams) components. Validation is done with respect

to various specification and platform requirements. For example, input-output

validation uses platform quality and reliability targets.

As with compatibility validation, a key challenge is the size of the parameter space.

For system quality and reliability targets, validation must cover the entire spectrum

of operating conditions (voltage, current, resistance, etc) for millions of parts. The

current state of practice in electrical validation is an integrated process of (1)

sampling the system response for a few sample parts, (2) identifying operating

conditions under which the electrical behaviour lies outside specification and (3)

optimisation, re-design and tuning as necessary to correct the problem.

Unlike logic and compatibility validation, electrical validation must account for

statistical variation of system performance and noise tolerance across different

process corners. PRQ requires the average defect to be low, typically less than 50

parts per million.

4.3.4 DEBUGGING IN THE PRESENCE OF NOISE

A consequence of the fact that we are using actual silicon as the validation vehicle

is that we must account for factors arising from physical reality in functional

debug, that is, effects of temperature, electrical noise and others. A key challenge in

post-silicon validation is to consequently find a recipe (for example, via tuning of

different physical, functional and non-functional parameters) to make a bug

reproducible.

On the other hand, the notion of reproducibility in post-silicon is somewhat weaker
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than in pre-silicon validation. Since post-silicon validation is fast, an error that

reliably appears once in a few executions (even if not 100 per cent of the time) is

still considered reproducible for post-silicon. Nevertheless, given the large space of

parameters, ensuring reproducibility to the point that one can use it to analyse and

diagnose the error is a significant challenge.

4.3.5 SECURITY AND POWER MANAGEMENT CHALLENGE

Modern SoC designs incorporate highly-sophisticated architectures to support

aggressive energy and security requirements. These architectures are typically

defined independently by disparate teams with complex flows and methodologies

of their own, and include their unique design, implementation and validation

phases. The challenge of security on observability is more direct. SoC designs

include a large number of assets, such as cryptographic keys, DRM keys, firmware,

debug mode and the like, which must be protected from unauthorised access.

“
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Fig. Security and power management challenges

Further, much of the DfD infrastructure is available on-field to facilitate

survivability. This permits their exploitation by malicious hackers to gain

unauthorised access to system assets after deployment. Indeed, many celebrated

system hacks have made use of post-silicon observability features, causing

devastating impact to the product and company reputation once carried out.

Consequently, a knee-jerk reaction is to restrict DfD features available in the design.

On the other hand, lack of DfD may make post-silicon validation difficult, long and

even intractable. This may delay the product launch. With aggressive time-to-

market requirement, a consequence of such delays can be a loss of billions of

dollars in revenue or even missing the market for the product altogether.

Power management features also affect observability, but in a different manner.

Power management features focus on turning off different hardware and software

blocks at different points of execution, when not functionally necessary. The key

problem is that observability requirements from debug and validation are difficult

to incorporate within the power management framework.

4.4 TEST EXECUTION

This involves setting up the test environment and platform, running the test and, in

case the test fails, performing some obvious sanity checks (like, checking if the

SoC has been correctly set up on the platform, power sources are connected and

switches are set up as expected for the test). If the problem is not resolved during

sanity check, it is typically referred to as a pre-sighting.

4.4.1 PRE-SIGHTING ANALYSIS

The goal of pre-sighting analysis is to make failure repeatable. This is highly non-

trivial, since many failures occur under highly-subtle and coordinated execution of

different IP blocks. For instance, IP A sends a message to IP C within a cycle of

another IP B sending a different message to C. This may result in a buffer overflow

(eventually resulting in a system crash), when occurring in a state in which input
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queue of C has only one slot left and before C has had the opportunity to remove

some items from the queue.

Making failure repeatable requires running the test several times, under different

software, hardware, systems and environmental conditions (possibly with some

knowledge and experience on potential root causes) until a stable recipe for failure

is discovered. At that point, failure is referred to as sighting.

4.4.2 BUG RESOLUTION

Once a plan of action has been developed for a sighting, it is referred to as a bug. A

team is assigned for ensuring that it is resolved in a timely manner based on the

plan. Resolution includes finding a workaround for the failure to enable exploration

of other bugs and triaging, and identifying the root cause for the bug.

Triaging and root causing bugs are two of the most complex challenges in post-

silicon validation. In particular, root cause for a failure observed on a specific

design component can be in a completely different part of the design. One of the

first challenges is to determine whether the bug is a silicon issue or a problem with

design logic. If it is determined to be a logic error, the goal is typically to recreate it

on a pre-silicon platform (such as RTL simulation and FPGA). The exact post-

silicon scenario cannot be exercised in a pre-silicon platform. One second of silicon

execution takes several weeks or months to exercise on RTL simulation.

4.4.3 TEST PLANS

These constitute arguably the most critical and fundamental readiness activity for

post-silicon validation. The objective is to identify different coverage targets, corner

cases and functionalities that need to be tested for the system being deployed.

Post-silicon test plans are typically more elaborate than pre-silicon plans, since

these often target system-level use-cases of the design that cannot be exercised

during pre-silicon validation. Test plan development starts concurrently with design

planning. When the test plan development starts, a detailed design (or even an

elaborate microarchitecture for the most part) is unavailable.
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Fig Different Validation Challenges

4.4.4 TRANSPORT SOFTWARE

Access software refers to tools that enable transport of data off-chip from silicon.

Data can be transferred off-chip either directly through pins, or by using available

ports from the platform (USB, PCIe, etc). For example, transporting through the USB

port requires instrumentation of the USB driver to interpret and route the debug

data while ensuring that USB functionality is not affected during normal execution.

This can become highly complex and subtle, particularly in the presence of other

features in the SoC, such as power management.
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Power management may, in fact, power down the USB controller when the USB port

is not being used by the functional activity of the system. The instrumented driver

ensures that debug data is still being transported while facilitating the power-down

functionality of the hardware to be exercised during silicon validation.

4.4.5 ANALYSIS SOFTWARE

Finally, there are software tools to perform analysis on the transported data. There

are tools to aggregate the raw signal or trace data into high-level data structures

(for example, interpreting signal streams from the communication fabric in the SoC

as messages or transactions among IPs), comprehending and visualising

hardware/software coordinations as well as tools to analyse such traced and

observed data for further high-level debug (such as estimating congestion across

the communication fabric, traffic patterns during internal transactions and power

consumption during system execution).

.

4.5 TEST GENERATION AND TESTING SETUP DESIGN

The central component of silicon debug is the set of tests to run. For validation to

be effective, the tests must expose potential vulnerabilities of the design and

exercise different corner cases and configurations.

4.5.1 POST-SILICON TESTS
Post-silicon tests can be divided into the following two categories:
4.5.1.1 FOCUSED TESTS

Such tests are carefully crafted by expert test writers to target specific features of

the system (like, multiprocessor and chipset protocols, CPU checks for specific

register configurations, address decoding and power management features).

Developing such tests involves significant manual effort. Further, tests are often

extremely long and targeted, running for several hours on silicon.

4.5.1.2 RANDOM AND CONSTRAINED-RANDOM TESTS

In addition to focused tests, exercise systems feature through random and

constrained-random testing. Examples of such tests include executing a random
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sequence of system instructions and exercising concurrent interleaving. The goal is

to exercise the system in ways not conceived by humans. Random instruction tests

can include hundreds of millions of random seeds generating instruction

sequences.

In addition to the tests, their applications require development of specialised

peripherals, boards and test cards. This is specifically pertinent for compatibility

validation where the system needs to be exercised for a large number of peripheral

devices, software versions and platform features.

4.6 TRACE SIGNAL SELECTION

Trace signals are used to address the observability limitation during post-silicon

debug. The idea is to trace a set of signals during run time and store in a trace

buffer. This is done so that traced values can be used during post-silicon debug.

Since I/O speed (for example, using JTAG) is significantly slower than the speed of

execution (for instance, MHz versus GHz), it is not possible to dump the traced

values through I/O ports during execution. Therefore an internal trace buffer is

required.

Trace signal selection needs to maintain various design constraints. For example,

trace buffer size directly translates to area and power overhead. Moreover, routing

selected signals to the trace buffer may cause congestion and other layout-related

issues. As a result, in a design with millions of signals, a typical trace buffer traces

a few hundred signals for a few thousand cycles. For example, a 128 _ 2048 trace

buffer can store 128 signals over 2048 clock cycles.

CHAPTER 5

TECHNOLOGY USED
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5.1 IP GPU

A Graphics Processing Unit (GPU) is a single-chip processor primarily used to

manage and boost the performance of video and graphics. GPU features include: 2-

D or 3-D graphics Digital output to flat panel display monitors Texture mapping

Application support for high-intensity graphics software such as AutoCAD

Rendering polygons Support for YUV color space Hardware overlays MPEG

decoding These features are designed to lessen the work of the CPU and produce

faster video and graphics. A GPU is not only used in a PC on a video card or

motherboard; it is also used in mobile phones, display adapters, workstations and

game consoles

5.1.1 TEST STRUCTURE

int main( void )

{

int c;int *dev_c;

HANDLE_ERROR( cudaMalloc( (void**)&dev_c, sizeof(int) ) ); add<<<1,1>>>( 2, 7,

dev_c );

HANDLE_ERROR( cudaMemcpy( &c, dev_c, sizeof(int),

cudaMemcpyDeviceToHost ) );

printf( "2 + 7 = %d\n", c ); cudaFree( dev_c );return 0; }

5.1.2 LINUX

Linux is the best-known and most-used open source operating system. As an

operating

system, Linux is software that sits underneath all of the other software on a
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computer, receiving requests from those programs and relaying these requests to

the computer’s hardware.

Testers to make sure everything works on different configurations of hardware and

software, and to report the bugs when it does not. Designers to create user

interfaces and graphics distributed with various programs. Writers who can create

documentation, and other important text distributed with software. Translators to

take programs and documentation from their native languages and make them

accessible to people around the world. Packagers to take software programs and

put all the parts together to make sure they run flawlessly in different distributions.

Enthusiasts to spread the word about Linux and open source in general. And of

course developers to write the software itself.

=================================================================

================================

B U I L D S U M M A R Y

=================================================================

================================

-------------------------------------------------------------------------------------------------

Generated by build_all

Test: test_template

Path: **********

Arguments: -nc

ProcessorBuild ResultBuild Time Image Filename Warnings

-------------------------------------------------------------------------------------------------

aop_procSUCCESS 00:00:05 cdvi_mannar.axf

apps_proc0SUCCESS 00:00:08 cdvi_mannar.axf

lpass_procSUCCESS 00:00:04 cdvi_mannar.elf
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mss_procSUCCESS 00:00:04 cdvi_mannar.elf

turing_procSUCCESS 00:00:03 cdvi_mannar.elf

Total build time: 00:00:27

Table 5.1 Showing compilation results

5.2 EMULATION PLATFORM

FPGA emulation of ASICs is fast enough to run meaningful segments of system

and application software, providing additional opportunities for system verification.

An FPGA prototype can be available before the physical ASIC, allowing for early

testing and debugging of software.

5.2 .1 TRACE 32

The lauterbach item TRACE32 ICD gives a huge extent of on chip debugging

interface. The hardware for this debugger is widespread and permits interfacing

various target processors by basically changing the software.

Support and debug cable and for a wide extend of on chip debug interfaces

assembler debugging Interface and Simple high-level to all compilers quick

download RTOS awareness Interface to all hosts Display of inner and outside

peripherals at a consistent level breakpoints of Flash programming Hardware and

trigger (in the event that backed by chip).Multiprocessor/multicore debugging

Software follow Virtual analyzer USB 3 Interface.

5.2.1.1 USE OF T32
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Procedure for debugging will be like that we have to connect the device to debug to

the debug board through DAP (debug access port) then that debug board will be

connected to our system through JTAG. we access the debug target through one

simulator tool that is TRACE 32.we can see any at present register value and we

can see their changes, even we can change that register value with the help of this

simulation tool. Here we will see how we can operate the debug target with the help

of this simulation tool.

First of all, install the software TRACE 32, there are different sources to download

this software, this software designed in python language, so in industry for

different projects their TRACE 32 is differently designed according to their project

specification.

Secondly, we will connect our debug target to the system through JTAG

Then we will flash the Meta file of that project on the devices, basically we get

two types of hardware for debugging first one is CDP and the second one is MDP,

this MDP is the compact form of CDP.

These all the basic steps that we will do before starting any project, after this we

plan according to our debugging target and for any debugging activity script is

written in various languages like .cmm, tcl, perl and python. Besides, it must be

expressed that the Trace32 program does not collect, compile, or connect your

program. This must be done by a few other application specific for this

reason.What trace32 does arrange to the user is download the executable to the

target run the program debug it and the rest of the features recorded underneath

the software. The software provided with the Trace32 system, gives support for all

the capacities that the Trace32 system[14] orders:

During our debugging experiments, we concentrate on the program flow trace w.r.t

timestamps, which uses the tracing features given by the PowerTrace module.
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Fig.5. T32 window

5.3 JTAG ADAPTER

Traditionally PSV followed scan and trace based methods. The scan based method

reuses the JTAG test access port and the scan chain design for test (DFT)

structures. A scan chain is a chain of flip flops connected back to back, allowing

the input of data from the last flip flop and output of data from the last flip flop

using the JTAG interface captured and then offloaded.
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Fig. 5.2 Schematic of JTAG

The flip flops are enhanced with a multiplexer to select from two inputs, one is the

normal data input of the circuit and the other is the test data input, based on a scan

enable input. By asserting the scan enable signal, the test mode is selected in

which the scan flip flops select the test vector input and the test vector advances

through the scan chain on each clock cycle. After the proper test vector is loaded

into the scan chain, it is applied to the circuit by deasserting the scan enable signal

followed by a clock cycle. The resulting values of the internal state elements are he

same way as loading of the test vector.

Specialized validation platforms known as hardware validation kits made for a par-

ticular SoC family, are required for functional validation. These have additional

probings and connections for enhancing the controllability and observability for

functional validation [5, 6]. The validation kit is connected to a normal personal



22

computer (PC) to receive the inputs. The debug hardware consists of a JTAG

controller which allows access to the internal SoC components. The software used

for debugging, runs on the PC attached to the validation kit via JTAG. The PC and

the validation kit are also connected to each other over the serial port. In addition,

both are connected to the local network. The complete set-up for validation is

shown in figure 4.1.

In PSV, the hardware prototype must run under the expected load. Thus an

operating system boot has become an important validation test for a modern

complex SoC [4, 7]. The Linux operating system is the most favorable choice by

semiconductor companies for this purpose as it is open source, fully customizable

and most probably it will be used in the end product. Linux has a low level software

known as device driver which implements the different functionalities of an IP.

JTAG vie is shown in figure 4.3.

Fig.4.3: JTAG view
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5.4 TEST REPORT

Fig. GPU TEST REPORT

5.4.1 RESULT
Since SVE is passed here then it is well. Had it been Failed then Engineers have to

debug the problem and report the issue if its software issue and solve the problem.

5.5 SCRIPTS
Scripts are lists of commands executed by certain programs or scripting engines.

They are usually text documents with instructions written using a scripting

language.
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5.5.1 Cmmscript
In the scripting each script line contains only one command . We basically write

scripts in the notepad or save with the cmm as extension.There are so many direct

commands in the cmm commands like: data.dump, data.set, data.store etc.

In this scripting language we use to write different use cases like for display,

modem, camera, camcorder etc. we use different cmm script for different

programming and run these all cases on the TRACE 32.

Fig. Core clock enable script

5.5.1.1 Results
It will enable all the clock of the system so that our main script will find the

environment as real soc environment and we can emulate.
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CHAPTER 6

CONCLUSION AND FUTURE SCOPE

According to the result genererated whether SVE is passed or failed the engineers

have to take actions. If SVE is passed it is ok but if SVE is failed they have to debug

and solve the issue. We have also concluded that the pre silicon and post silicon

validation is done now the chips are ready for the tape out that is ready for the out

to the market and now can be dispatched to the companies. As we have shown the

results of some IPs, there are hundreds of IPs which is allotted to each and every

person and they are working on them to improve their performance. Since company

has to reduce the cost so they are allocating the multiple IPs to the single person

which reduces the cost of the company.

In future the debugging can still be done by person but the software can be

automated to release the test report which reduces the work load of the individual

and also decreases the cost to company. Man power mental stress will reduce and

they will be able to utilize it to make things more productive.

.
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