-87-

Roll No.....

III SEMESTER

Total No. of Pages: 5

Ca Ca

MBA (Business Analytics)

END SEMESTER EXAMINATION Nov/Dec-2019

MB 314: Time Series Analytics

Time: 3:00 Hours

Max. Marks : 60

Note :	1.	The question paper consists of four sections. All the
		sections are compulsory.
	2.	All parts within each section are to be answered in a
		continuous manner on the answer sheet.
	3.	Internal choice is given in some sections.
	4.	Use of scientific calculator is allowed.

SECTION A [1x5=5]

Q.1 Choose the correct alternative:

[a] A stationary time series is one with

- (i) Time-varying mean
- (ii) Time-varying variance
- (iii) Both (i) and (ii)
- (iv) Time invariant mean and variance

[b] A white noise process is a stochastic process with

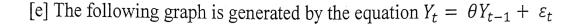
(i) Zero mean

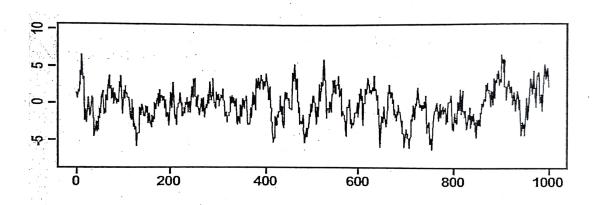
3

- (ii) Constant variance
- (iii) Serially uncorrelated error term
- (iv) All of the above

1

6


5


[c] An example of a difference stationary process

- (i) Random walk with drift
- (ii) Random walk without drift
- (iii) Both (a) and (b)
- (iv) Neither (a) nor (b)

[d] A non-stationary series that becomes stationary on differencing the series twice is

- (i) Integrated of order 0
- (ii) Integrated of order 1
- (iii) Integrated of order 2
- (iv) Integrated of order 3

The likely value of θ is:

- (i) 1
- (ii) 1.5
- (iii) -1.5
- (iv) 0.8

SECTION B [1x5=5]

Q.2 Explain the following terms:

[a] Spurious Regression

[b] Cointegration

€

S

3

V

3

3

2

0

۲

2

۲

3

9

9

9

9

3

3

[c] Correlogram

[d] First order and second order stationarity

[e] Panel Data

SECTION C [5x3=15]

Attempt any three questions

Q.3 Find out the order of integration for the following models:

- (a) $Y_t = \mu + 2Y_{t-1} Y_{t-2} + \epsilon_t$
- (b) $Y_t = \mu + 1.25Y_{t-1} 0.25Y_{t-2} + \epsilon_t$
- (c) $Y_t = 1.5Y_{t-1} + Y_{t-2} + \epsilon_t$

In case the models are non-stationary in parts (a)-(c), show how can these be made stationary.

Q.4 Explain the methodology and the steps involved in checking the stationarity of a time series using the Dickey-Fuller test.

Q.5 Consider the difference equation:

 $y_t = a_0 + a_1 y_{t-1} + b d^{rt}$

Find a particular solution to this equation and verify your answer. What happens if $|d^r| < 1$?

6

-

-

6

6

5

Q.6 Explain how the values of Autocorrelation Function (ACF) can be used for stationarity analysis.

SECTION D [7x5=35] Attempt any five questions

Q.7 Show that the near Random Walk Model $Y_t = \mu + \Phi Y_{t-1} + \varepsilon_t$ with $0 < \Phi < 1$ is asymptotically stationary.

Q.8 The population figures of India from 1911-1971 are as follows:

					- P	10(1	1971
Census	1911	1921	1931	1941	1951	1961	1971
Year						12.0	54.7
Population	25	25.1	27.9	31.9	36.1	43.9	54.7
(in crores)							

Estimate an exponential trend equation $y = ab^t$ for the above data. Estimate the population for 1981.

Q.9 Consider the second order homogeneous difference equation:

 $y_t = a_1 y_{t-1} + a_2 y_{t-2}$

Suppose $a_2 < 0$.

Show that the solution of this equation is $y_t^h = \beta_1 r^t \cos(t\theta + \beta_2)$, where β_1 and β_2 are arbitrary constants and $r = (-a_2)^{1/2}$.

Using this, or otherwise, solve the following equations and comment on the stability of the solutions:

(a) $y_t = 1.6y_{t-1} - 0.9y_{t-2}$ (b) $y_t = -0.6y_{t-1} - 0.9y_{t-2}$

4

Q.10 Consider the following model:

 $Y_t = \beta_1 + \beta_2 t + \beta_3 Y_{t-1} + u_t$

-91-

Characterise the nature of the time series for the following cases:

(i) $\beta_1 = 0, \beta_2 = 0 \text{ and } \beta_3 = 1$ (ii) $\beta_1 \neq 0, \beta_2 = 0 \text{ and } \beta_3 = 1$ (iii) $\beta_1 \neq 0, \beta_2 \neq 0 \text{ and } \beta_3 = 0$ (iv) $\beta_1 \neq 0, \beta_2 \neq 0 \text{ and } \beta_3 = 1$ (v) $\beta_1 \neq 0, \beta_2 \neq 0 \text{ and } \beta_3 = 1$

Q.11 Consider the second order homogeneous equation:

 $y_t - a_1 y_{t-1} - a_2 y_{t-2} = 0$

Summarise the general stability conditions for the above equation for different values of a_1 and a_2 by means of a stability triangle and unit root circle.

Q.12 Consider the first order difference equation:

$$y_t = a_0 + a_1 y_{t-1} + \varepsilon_t$$

- (a) Find the solution to this equation using the method of iteration.
- (b) Now solve this equation by taking the challenge solution

$$y_t = b_0 + b_1 t + \sum_{i=0}^{\infty} \propto_i \epsilon_{t-i}$$

Are the results obtained in (a) and (b) same?