

PNET MODULE : EMPOWERING PETRI

NET MODELING AND SIMULATION

A Thesis submitted

in Partial Fulfilment of the Requirements for the

Degree of

MASTER OF SCIENCE
In

Applied Mathematics

by

Charu Singh

(2K22/MSCMAT/05)

Shefali
(2K22/MSCMAT/36)

Under the supervision of

Dr. Payal

Department of Applied Mathematics

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daultapur, Main Bawana Road, Delhi-42

May, 2024

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE’S DECLARATION

We, (Charu Singh) 2K22/MSCMAT/05 and (Shefali) 2K22/MSCMAT/36 hereby certify that the

work which is being presented in the thesis entitled “PNet Module: Empowering Petri Net Modeling

and Simulation ” in partial fulfilment of the requirement for the award of the Degree of Master of

Science, submitted in the Department of Applied Mathematics, Delhi Technological University is an

authentic record of our own work carried out during the period from August 2023 to April 2024

under the supervision of Dr. Payal

The matter presented in the thesis has not been submitted by me for the award of any other degree

of this or any other Institute.

 Candidate’s Signature Candidate’s Signature

This is to certify that the student has incorporated all the corrections suggested by the examiners in

the thesis and the statement made by the candidate is correct to the best of our knowledge.

Signature of Supervisor Signature of External Examiner

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE BY THE SUPERVISOR

Certified that Charu Singh (2K22/MSCMAT/05) and Shefali (2K22/MSCMAT/36) have

carried out their search work presented in this thesis entitled “PNet Module: Empowering

Petri Net Modeling and Simulation” for the award of Master of Science from

Department of Applied Mathematics, Delhi Technological University, Delhi, under

my supervision. The thesis embodies results of original work, and studies are carried

out by student themselves and content of the thesis do not form the basis for the

award of any other degree to the candidates or to anybody else from this or any other

University/Institution.

Place: Delhi

Date: June, 2024

 Dr. Payal

 SUPERVISOR

 DEPARTMENT OF APPLIED MATHEMATICS

 DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-

110042

PNET MODULE: EMPOWERING PETRI NET MODELING AND SIMULATION

(Charu Singh and Shefali)

ABSTRACT

Petri Nets provide a way of representing changes over time which is structured and is widely

used for representing models of various systems. However, expertise in programming is required

for working with Petri Nets and can often be complex. This is where PNet, a Python library that

is intended to make working with Petri Nets much easier, is introduced. Without needing to be a

coding expert using PNet, you can define your Petri Net using a simple text based language. You

can use regular Python functions even if you need more complex rules for how things change.

To demonstrate the simplicity of PNet, we provide three examples: one that shows you how to

bake a cake, another that models the spread of diseases, and the last one that describes the

evolution of molecule count in a system. With PNet, you can easily bring your ideas to life and

simplify the process of working with Petri Nets.

ACKNOWLEDGEMENTS

At the outset of this report, we extend our heartfelt appreciation to all individuals who have

supported us in completing this dissertation. Without their proactive direction, assistance,

collaboration, and support, we could not have advanced toward achieving the desired outcomes.

Dr. Payal provided diligent assistance and support that enabled us to complete our dissertation,

for which we are eternally grateful. We express our sincere appreciation to each other for working

together to complete this project while preserving our individuality. We are thankful that Delhi

Technological University provided this opportunity to us. We additionally express our sincere

gratitude and respect to our parents as well as other family members, who have always provided

us with both material and moral support. Finally, but just as importantly, we would like to express

our heartfelt gratitude to all of our friends who supported us in any way during this effort.

This quick acknowledgement does not imply a lack of gratitude for anything.

Thanking You

 CHARU SINGH

 SHEFALI

TABLE OF CONTENTS
Candidate’s Declaration 2

Certificate by Supervisor 3

Abstract 4

Acknowledgements 5

Content vi

References vii

1 INTRODUCTION 1

1.1 Introduction to Petri Net...………………………...………………………….1

1.2 Modeling………………………………..…………………………………..1

1.3 Elements of a Petri Net…………………………………………………….. 2

1.4 Operational Semantics……………………………………………………... 3

1.5 Execution Rules……………………………………………………………. 3

1.6 Features of Petri Nets……………………………………………………… 4

1.7 Petri Net Adaptations……………………………………………………….4

1.8 Analysis Methods…………………………………………………………...5

2 INTRODUCTION TO PNET 7

2.1 Introduction…………………………………………………………………..7

2.2 Description of PNet…………………………………………………………..8

2.2.1 Step Rule……………………………………………………………10

2.2.2 Ratio Rule…………………………………………………………...10

2.2.3 Delay Rule…………………………………………………………..11

2.2.4 Incubation Rule……………………………………………………...11

2.2.5 Function Rule………………………………………………………..12

3 MODELING USING PNET 35

3.1 Baking a Cake……….………...………………………………………………35

3.1.1 Appendix A: Code for Baking a Cake………………………………..38

3.2 Epidemiological Model ……………...………………………………………..40

3.2.1 Appendix B: Code for SIRS Model…………………………………..45

3.3 Evolution of Molecule Count in a System …………………………….………48

3.3.1 Code for Evolution of Molecule Count in a System………………….51

4 CONCLUSION 56

1

CHAPTER 1

 INTRODUCTION

1.1 Introduction to Petri Net

Petri nets, devised by Carl Adam Petri in the 1960s, are

graphical and mathematical tools utilized for representing

systems that exhibit concurrency, synchronization, and mutual

exclusions. For understanding and analyzing systems Petri Nets

are an invaluable tool. Petri net theory allows mathematical

modeling of a system as a Petri Net. Analyzing the Petri net

reveals significant details regarding the portrayed system's

dynamic behavior and structure. This in turn, we can use to get

access to the modeled system in order to suggest improvements

or alterations. Therefore, the formation of a theory of Petri Net

depends on the use of Petri nets for the purpose of designing and

modeling systems.

1.2 Modeling

Petri Nets can be used to model a variety of phenomena. Sometimes,

we create a model of a system rather than studying it directly. A

model is like a mathematically expressed, cut-down version, which

gives us the important aspects of the thing we're studying. By

working with this model, our main goal is to learn new things about

the real phenomenon without having to deal with the challenges or

expenses of directly manipulating it. The majority of modeling

activities require the utilization of mathematical principles. Many

physical processes commonly employ numerical representations to

2

describe them, while inequalities or equations illustrate the

relationship between different features. Mathematics can be used to

define elementary concepts like location, mass, forces, and

momentum in domains such as engineering and the natural sciences.

In order to utilize modeling efficiently, it is important to have a

comprehensive understanding of both the subject being modeled and

the underlying principles of the modeling technique. A significant

amount of importance has been acquired by mathematics due to its

ability to facilitate the modeling of phenomena in several scientific

disciplines. To analyze and represent phenomena that undergo

continuous change, calculus was devised, such as the concepts of

velocity, position and acceleration in the field of physics.

The efficiency and prevalence of modeling have significantly

increased due to the introduction of high-speed computers. The

conversion of a system into a mathematical model and subsequently

providing these instructions to a computer can lead to the conduction

of simulations. As a result, we can now simulate larger and more

intricate systems than ever before. Accordingly, extensive studies

have been conducted on computer hardware and computer modeling

methodologies. In modeling, computers have a dual purpose: they

function as tools for modeling, and they are also subjects of

modeling themselves.

1.3 Components of a Petri Net

A basic Petri net is made of the following elements:

Places: Which are represented by circles and denote conditions

or states of the system.

Transitions: They are represented by rectangles or bars;

transitions signify events or activities that can alter the system's

state.

3

Tokens: They are placed inside the places, tokens

indicate the presence or absence of certain conditions.

Mathematically, we can think of them as markers of a

place.

Arcs: Places and transitions are related, and vice versa by Arcs. The

flow of the system and the determination of the input and output

conditions for transitions are defined by arcs.

1.4 Operational Semantics

The way a Petri net behaves is governed by the firing of transitions,

which are as follows:

Enabled Transitions: If all the input places (places

connected to the transition by arcs that are incoming)

have the required number of tokens, then it is said for

a transition to be enabled.

Firing: A transition fires when it consumes tokens from its input

places and produces them in its output places.

1.5 Execution Rules

Initial Marking: The arrangement of tokens in the locations

determines the starting condition of the system. We refer to this

distribution as the initial marking.

Enabling of Transitions:

• For a transition to be considered enabled, every input place

(a place with an arrow pointing towards the transition)

should contain a minimum of one token.

• In other words, we can define it as, the required conditions

(represented by tokens in the places) that must be met for

the event (transition) to potentially occur.

Firing of Transitions:

4

• Triggering of an enabled transition leads to the removal

when the transition takes one token from each input site

and adds one token to each related output spot.

• The happening of the event is represented by firing, which

causes a change in the system's current condition.

• The moving of tokens from the input places through the

transition to the output places is described by this process.

1.6 Properties of Petri Nets

Several fundamental properties that can be derived from Petri

net models are as follows:

Boundedness: A Petri net is considered bounded if there exists a

maximum limit on the amount of tokens that any spot can hold.

Liveness: A Petri net is considered live if it is possible to fire

any transition from any reachable state at any point. Deadlock:

It refers to a state in which the system halts due to the absence of

enabled transitions.

Conservation: The net is conservative if the total number of

tokens remains constant throughout all possible firings.

1.7 Variants of Petri Nets

Colored Petri Nets (CPN): Extension of the basic model

by assigning colors to tokens, which allows the model to

be more expressive and detailed. Timed Petri Nets:

Incorporates information related to timing and enables the

modeling of systems with time- dependent behaviors.

Stochastic Petri Nets (SPN): The introduction of

probabilistic behavior is done in order to make them

5

suitable for performance dependability and assessment

studies.

1.8 Analysis Methods

Petri Net Theory gives us various methods to analyze the

properties of systems and their behavior. Here are the main analysis

methods described:

1. Reachability Analysis:

What It Is: This method lets us know that by firing a

sequence of transitions, a particular state (or marking)

can be reached from the initial state.

Why It Matters: It helps determine whether the system can enter

undesirable states, such as unsafe conditions or deadlock.

How It Works: The software produces a reachability graph that

illustrates all the reachable markers from the initial state by

executing transitions. This allows for a comprehensive view of

all feasible system states.

2. Invariant Analysis:

What It Is: Using this method, we can identify invariants, which are

the conditions that remain true and do not depend on how transitions

fire.

Types:

• Place Invariants: The constant linear combinations of places. They

aid in the verification of conservation properties, guaranteeing the

absence of creation or destruction of certain resources.

• Transition Invariants: These are defined as the sequences of

transitions that leave the marking unchanged, indicating repeated

patterns or cyclical behavior.

Why It Matters: Invariants, help us verify the consistency and

correctness of the system, ensuring its behavior as intended over

time.

3. Liveness Analysis:

6

What It Is: This method verifies whether the Petri net is live,

implying that each transition has the potential to initiate from a

reachable marker.

Why It Matters: Liveness ensures that the system has no deadlocks

and that all parts of the system can eventually be activated and

remain operational.

How It Works: By examining the reachability graph or using

mathematical techniques like the rank theorem, we can get to know

if all transitions have the potential to fire.

4. Boundedness Analysis:

What It Is: This method helps us determine if there is a restriction

on the maximum amount of tokens that can accumulate in each

location.

Why It Matters: Ensuring boundedness helps manage system

resources effectively by preventing resource overflow.

How It Works: By calculating place invariants or examining the

reachability graph, we can establish upper limits on the number of

tokens for each place.

5. Coverability Analysis:

What It Is: This method determines whether a marking can be

reached where the number of tokens in one or more places exceeds a

certain threshold.

Why It Matters: It helps identify situations where resources might

be exhausted or overused.

How It Works: By generating a coverability tree, which is a

modified version of the reachability graph, we can see if and when

certain token counts are exceeded.

6. Performance Analysis:

What It Is: This method helps to evaluate the efficiency and

performance of the system modeled by the Petri net.

Why It Matters: It helps to optimize resource usage, identify

bottlenecks and improve overall performance of the system. How

It Works: Techniques like timed Petri nets (where transitions have

firing delays) and simulation are used to measure and analyze

performance metrics like latency, utilization and throughput.

7

CHAPTER 2

INTRODUCTION TO PNET

2.1 Introduction

Petri Nets have diverse uses in domains such as system

modeling, biochemistry, and software engineering, signal

transduction networks, gene control networks and namely in

biochemical reactions. For instance, Liu and Heiner used Petri

Nets to investigate biological reaction networks. A unified Petri

Net framework was designed to model and analyze the networks

created by them. Petri Nets are valuable for analyzing several

process features, including reachability, termination,

boundedness, safety, reversibility, liveness, coverability, home

state, fairness, and persistence. These features can be analyzed

using techniques such as reachability graphs, coverability trees,

state equations and incidence matrices. Multiple libraries have

been created to simulate Petri Nets, simplifying their utilization

in various programming contexts. SimForge GUI is

incorporated into OpenModelica, but MATLAB provides the

Petri Net Simulink Block (PNSB) as an option. Python offers

the SNAKES library, developed by Pommereau, which enables

the implementation of Petri Nets using a sophisticated object

oriented methodology. This approach involves representing

transition rules and tokens as Python objects. This strategy gives

adaptability but may necessitate a more challenging learning

process, particularly for individuals who are not acquainted with

8

Python. Translating Convert a text-based definition of a Petri

Net into a model using SNAKES can be a difficult task. In

addition, SNAKES may not be capable of handling intricate

transition rules that require implementation as functions.

Nevertheless, SNAKES provides benefits such as the

integration of plugins, , the ability to transform implemented

Petri Nets into the C language and tools for Petri Net analysis.

A package designed for Petri Net modeling is being presented in

this paper. The main objective is to reduce the additional costs

related to object-oriented programming by providing Python

functions as an alternate form of transition rule. This approach

helps to make it easier for beginners to get started with Petri

Nets, serving as a stepping stone before moving on to more

complex libraries like SNAKES. PNet is now part of COPADS,

a Python library of data structures, and algorithms which

doesn't rely on any third-party dependencies.

2.2 Description of PNet

In this section, we'll explain how to utilize PNet by delineating the

necessary procedures to construct a simulation. There are five primary

stages involved:

 Setting up the Petri Net: This mainly involves creation of the

structure of the Petri Net.

 Adding places or states: These are the conditions or locations

within the system.

 Adding transition rules: These gives the definition of the

actions that can occur between places/states.

 Running the simulation: This involves execution of the Petri

Net model to observe how it behaves over time.

 Generating the results file: After simulation is done, the

outcomes are recorded and saved for analysis.

 To construct a Petri Net using PNet, we begin by importing the PNet

module and thereafter instantiate the PNet class from the said module. Next,

9

you add states or places by using the add_places method to the Petri Net

simulation.

This method requires two parameters:

⚫ A dictionary representing the initial tokens.

⚫ The name of the place

The dictionary consists of token names as keys and the number

of tokens of each type as values. This enables locations to

accommodate multiple varieties of tokens. For example, if you

possess a container holding 1000 yellow seeds and 1000 green

seeds, you can depict it as net.add_places('vessel',

{'yellow_seeds':1000,

 'green_seeds':1000})

 The value of the 'green_seeds' attribute is set to 1000.

Occasionally, we come across situations where an inexhaustible

quantity or requirement is necessary, such as when

contemplating an infinite number of births or the Earth as an

infinite reservoir of charges in electronics. To handle this, we

introduce a special place called ouroboros, named following

the infinity symbol in math. This place is defined using a certain

set of criteria or parameters having an unlimited number of "U"

tokens to represent infinity.

In order to complete the third phase, you need to incorporate

transition rule(s) by utilizing the add_rules method. We now assign a

name to each transition rule. Transitions serve as a pathway for

tokens to transition between places, while the rules take care of the

mechanics of this transition. A transition rule typically contains a

destination place and a source place to define the movement of

tokens. It also specifies source and destination token types to ensure

clarity. The valuation of the transition processes is then conducted by

employing logical operators, taking into consideration the present

10

token values. These operators are resolute by criteria, which

represent the desired outcome after the transitions occur. The five

types of rules includes ratio, step, function, incubation, and delay

rules. The implementation of transition rules is contingent upon the

time interval. While it is preferable for each rule to specify only one

transition, in practice, a single rule can trigger multiple transitions.

This is because PNet enables the specification of many transitions

within a rule, which serves as a simple and concise method.

2.2.1 Step Rule

A step rule operates in a step-by-step manner, triggering at each

time-step. It requires specifying the origin place and the token at

that place, as well as the destination place and the affected token

there. This defines a single transition. For instance, consider a

vessel containing yellow and green seeds. The given step rule

outlines the process of exchanging a single seed at each time

step. The rule is added to the network using the net.add_rules()

function, using the parameters 'swap_seed', 'step', and the

following seed exchange: 'B1.yellow_seed -> B2.yellow_seed;

1'.

The value of B2.green_seed is assigned to B1.green_seed with a

weight of 1. net.add_rules('swap_seed', 'step', ['B1.yellow_seed ->

B2.yellow_seed; 1', 'B2.green_seed -> B1.green_seed; 1'])

2.2.2 Ratio Rule

The ratio rule also operates in a step-by-step manner,

similar to the step rule. Both rules have similar

parameters, but the key difference lies in how they

determine when to trigger the execution. Instead of

specifying a fixed number of tokens, the ratio rule uses

a proportion of tokens to decide when to execute. This

11

proportion is compared against a specified limit using

a logical operator. Based on a certain ratio the number

of tokens moved can increase or decrease is useful for

defining transitions. For instance, imagine we have

two vesseles, one filled with yellow seeds and the other

empty. We want to move 12% of the remaining yellow

seeds from the first vessel to the second. This can be

represented as,

net.add_rules('swap_ratio', 'ratio',['B1.yellow_seeds

-> B2.yellow_seeds; 0.12; \ B1.yellow_seeds < 1; 0'])

2.2.3 Delay Rule

The delay rule is essentially a step rule that has a specific time

period between each movement of a token. This means it can

create a regular, intermittent pattern of token movement, akin to

spiking. For instance, let us transfer 10 seeds from vessel B1 to

B2 occurs once every 6th time step, and we can characterize this

as thus.

net.add_rules('interval_transfer’,

'delay',['B1.seeds

-> B2.seeds; 10; 6'])

2.2.4 Incubation Rule

The incubation rule represents a period of anticipation preceding a

particular action takes place. It involves specifying a timer and a

value, which checks provided that

the necessary requirements are fulfilled, one may travel to the

intended destination.

As an illustration,

12

if we want to soak a of seeds for 60 time steps

(equivalent to 60 minutes) in a vessel after adding

water, and then relocate the soaked seeds into a pot, we

can define this using an incubation rule.

net.add_rules('soak', 'incubate',

['60; vessel.seeds -> pot.seeds; \ vessel.water

> 0'])

2.2.5 Function Rule

The function rule is a customizable condition defined

by the user. It's typically used when the predefined

step, ratio, delay, or incubation rules don't meet the

user's specific needs. However, all types of transition

rules can be represented as function rules, making

them a more flexible option. Another regular use of

function rules is to alter tokens from one type to

another. The main disparity among transition rules lie

in the situations that activate them. To compute a

function rule, you need to specify the source and end

places, as well as the initial and final tokens involved.

For instance, the earlier described ratio rule.

net.add_rules('swap_ratio', 'ratio',['B1.yellow_seeds

-> B2.yellow_seeds; 0.20; \ B1.yellow_seeds < 2; 1'])

 can be defined by the following function rule:

 def seed_swap(places): place = places['B1'] n =

place.attributes['yellow_seeds'] if n > 0.0: return 0.0 else:

return 0.20 * n

net.add_rules('swap_ratio', 'function',

['B1.yellow_seeds -> B2.yellow_seeds’ , seed_swap, ‘B1.yellow_seeds >

0'])

13

Only one parameter is accepted in the function rule(s) that you're working

with, which is a dictionary called places. This dictionary contains

information about different states or places in a network (let's call it PNet).

You can access each state or place by using its name as the key to the

places dictionary.

To access each state or place, simply use its name as the key in the

places dictionary.

Each place or state in the "places" collection is related with

tokens, which are implemented as an attributes dictionary. The

tokens can be accessed by their respective names.

The simulate method stores simulation results in memory.

Therefore, increasing the reporting intervals will generate more

reports and result in faster memory usage. On the other hand,

there is a generator function “the simulate_yield method” in

which there is no pre-storing of all the simulation results are

stored in memory. The three parameters necessitated by the

simulate method are: the period of time to simulate, the rise of

time, and the rate of reporting. However, the simulate_yield

method requires only two parameters: the duration of time steps

and the time to simulate.

Finally, PNet provides a method to convert the simulation outcomes into

a format that is compatible with CSV file output. The current simulation's

step count and the status of each token kept in memory will be provided

by the reports. Furthermore, you have the option to construct a list that

accurately represents the current state of the tokens either for a single step

or for the entire simulation. Simulation and reporting are frequently

interconnected. An example of how simulation and report creation are

coupled is demonstrated in the code given below, which utilizes either the

simulate or simulate_yield method. The length of the simulation is set to

14

100 units. Each timestep represents a unit of time. The simulation will

return results every timestep. Use the function net.simulate to run a

simulation for a specific length of time, with a specified timestep and

report frequency.

To obtain the report tokens, use the net.report_tokens() method. This

method is specifically designed for simulating yield. The variable

"status" is assigned a list comprehension that iterates over the results

of the "simulate_yield" method of the "net" object. The method is

called with the arguments "length_of_simulation" and "timestep".

The code assigns the value of a list comprehension to the variable

"status". The list comprehension iterates over each element "d"

in the list "status" and creates a tuple with the first element of "d"

and the result of calling the "report_tokens" method of the "net"

object with the second element of "d".

length_of_simulation = 90

timestep = 1 report_frequency

= 1

for simulate method

net.simulate(length_of_simulation,timestep,

report_frequency) status = net.report_tokens() #

for simulate_yield method status = [d for d in

net.simulate_yield(length_of_simulation, timestep)]

status = [(d[0], net.report_tokens(d[1])) for d in

status]

Framework for Petri Nets Typed Applications

class Place(object):

Class to represent a place or container in Petri nets. The

tokens are represented as a dictionary where each

token is represented as a key-value pair. The key

15

represents the type of token and the value represents

the number of such tokens. This enables more than

one type of tokens to be represented.

def _init_(self, name):

Contructor method.

 self.name = str(name)

self.attributes = {}

class PNet(object):

 Class to represent a Petri Net or Petri Net typed object.

 The places and transition rules are represented as dictionary objects.

Places dictionary will have the name of place as key and the Place

(pnet.Place object) as value. Transition rules dictionary will have the

name of rule appended with a number (in the format of <rule

name>_<number> in order to ensure uniqueness) as key and the value is a

dictionary to represent the transition rule (the structure of the transition

rule dictionary is dependent on the type of rules).

 Again recognizing the following types of transition rules are

allowed:

- step rule

- delay rule

- incubate rule

- ratio rule

- function rule

Step rule is to be executed at each time step. For

example, if 20g of flour is to be transferred from flour

vessel to mixer vessel at each time step, this 'add_flour'

rule can be defined as:

16

net.add_rules('add_flour','step',['flour.flour

mixer.flour; 20'])

A single step rule can trigger more than one token movement.

For example, the following step rule simulates the mixing of

ingredients into a flour dough:

net.add_rules('blend', 'step', ['mixer.flour

-> mixer.dough; 15', 'mixer.water ->

mixer.dough; 10', 'mixer.sugar ->

mixer.dough; 0.9', 'mixer.yeast ->

mixer.dough; 1'])

Delay rule acts as a time delay between each token

movement. For example, the following rule simulates

the transfer of 0.5g of yeast into the mixer vessel:

net.add_rules('add_yeast', 'delay', ['yeast.yeast ->

mixer.yeast; 0.5; 10'])

Incubate rule is a variation of delay rule. While delay

rule is not condition dependent, incubate rule starts a

time delay when one or more conditions are met. For

example,

 net.add_rules('rise', 'incubate', ['10;

mixer.dough -> pan.dough; mixer.flour == 0;

mixer.water == 0; mixer.sugar == 0;

mixer.yeast == 0'])

sets a 10 time step delay when all flour, water, sugar,

and yeast in the mixer vessel are used up, which

simulates the complete mixing into a bread dough. The

10 time step then simulates the time needed for the

dough to rise. After 10 time steps, dough in the mixer

is transfered into the pan.

17

Ratio rule is a variant of step rule. Instead of absolute

number of tokens to move, the movement is a

percentage of the number of tokens. For example,

net.add_rules('bake', 'ratio', ['pan.dough ->

pan.bread; 0.3; pan.dough < 1; 0'])

will move 30% of the token value from dough in pan to bread in pan. If the

token value of dough in pan is less than 1, then the token value of dough in

pan will be set to 0.

Function rule is a generic and free-form rule, that takes

the form of a Python function. This is usually used

when the transition cannot be represented by any other

rules. Given a user-defined function, FUNC,

net.add_rules('cool', 'function', ['table.temperature >

air.temperature', FUNC, 'table.bread > 0; table.temperature

> 30']) FUNC will be

executed when table.bread > 0 and table.temperature > 30.

The returned result of FUNC will be the token transfer from

table.temperature to air.temperature.

FUNC takes all the places as a single parameter, such

as FUNC(places), where 'places' is a dictionary with

the name of each place as key. Token values in any

place can be assessed. For example,

 >>> place_names = places.keys()

 >>> a_place = places[places_names[0]]

>>> token_set = a_place.attributes.keys()

>>> a_token_value =

a_place.attributes[token_set[0]]

 ''' def _init_(self,

zerolowerbound=True):

18

 Contructor method.

Zero lower bound boolean: flag to determine whether number

of tokens is bounded at zero. Default = True

(the lowest number for tokens is zero)

self.places = {}

self.add_places(place_name:'ouroboros',to

kens:{'U':flo at('inf')}) self.rules = {}

self.report = {} self.losses = {}

self.zerolowerbound = zerolowerbound

self.rulenumber = 1

 def

add_places(self, place_name,

tokens):

Method to add a place/container into the Petri Net.

For example, the following adds a "flour" place containing

1000 tokens of flour, which can be seen as a vessel of 1000g of flour:

net.add_places('flour', {'flour':

1000})

place_name string: name of the place/container tokens dictionary:

token(s) for the place/container where key is the type of token and value is

the quantity of tokens for the specific type

self.places[place_name] =

Place(place_name)

self.places[place_name].attributes =

tokens def add_rules(self,

rule_name, rule_type, actions):

Method to add a transition rule into the Petri Net.

rule_name string: name of the transition rule. This

name need not be unique within the model as this

19

method will append a running rule number to the name

to ensure internal uniqueness.

rule_type string: type of rule. Allowable types are 'step' for

step rule, 'delay' for delay rule, and 'incubate' for incubate

rule. Please see module documentation for the description

of rules.

actions list: describe the action(s) of the transition rule

if rule_type not in ['function']: For t

in actions:

 t = [x.strip() for x in

t.split(';')] d = {'type': rule_type,

'movement': None} if rule_type ==

'step': movement = [x.strip()

for x in t[0].split('->')]

d['movement']=[(loc.split('.')[0],loc.s

plit('.')[1])

for loc in movement]

d['value'] = float(t[1]) if rule_type

== 'delay': movement =

[x.strip() for x in t[0].split('->')]

d['movement']=[(loc.split('.')[0],loc.s

plit('.')[1])

for loc in movement]

 d['value'] = float(t[1])

d['delay'] = int(t[2]) if rule_type ==

'incubate': d['value'] = float(t[0])

movement = [x.strip() for x in

t[1].split('->')]

d['movement']=[(loc.split('.')[0],loc.s

plit('.')[1])

for loc in movement]

d['conditions'] = [cond for cond in

20

t[2:]] d['timer'] = 0 if

rule_type == 'ratio':

movement = [x.strip() for x in

t[0].split('->')]

d['movement']=[(loc.split('.')[0],loc.s

plit('.')[1])

for loc in movement]

 d['ratio'] = float(t[1])

d['limit_check'] = t[2]

d['limit_set'] = float(t[3])

self.rules[rule_name + '_' +

str(self.rulenumber)] =d

self.rulenumber = self.rulenumber + 1

if rule_type in ['function']: d =

{'type': rule_type, 'movement': None}

if rule_type == 'function':

movement = [x.strip() for x in

actions[0].split('->')]

d['movement']=[(loc.split('.')[0],loc.s

plit('.')[1])

for loc in movement] d['function'] =

actions[1]

 d['conditions'] = [cond.strip() for

cond in actions[2].split(';')]

self.rules[rule_name + '_' +

str(self.rulenumber)] = d

self.rulenumber = self.rulenumber

+ 1

 def _step_rule(self,

movement, value, interval):

21

Private method which simulates a step rule action.

movement string: defines the movement of a token type.

Each movement is defined in the following format:

<source place>.<source token> ->

<destination

place>.<destination

token> value float:

the number of tokens

to move interval

integer: simulation

time interval

''' source_place =

self.places[movement[0][0]]

source_value = movement[0][1]

destination_place =

self.places[movement[1][0]]

destination_value = movement[1][1] if

source_place.attributes[source_value]<(

value*interval) and

self.zerolowerbound == True:

 value =

source_place.attributes[source_value]

source_place.attributes[source_value] =

\

source_place.attributes[source_value]-

(value*interval)

destination_place.attributes[destinatio

n_value] = \

destination_place.attributes[destinatio

n_value] + \ (value*interval) def

22

_test_condition(self, place, token,

operator, value):

 '''!

Private method used by rule processors for logical check

of condition. For example, the condition

'mixer.flour == 0' will be written as

>>> _test_condition('mixer', 'flour',

'==', 0)

place string: name of place/container token string:

name of token operator string: binary operator.

Allowable values are '==' (equals to), '>' (more than),

'>=' (more than or equals to), '<' (less than), '<=' (less

than or equals to), and '!=' (not equals to).

value: value to be checked

@return 'passed' if test result is true, or 0 if test result is false

 ''' value = float(value)

if operator == '==' and \

self.places[place].attributes[to

ken] == value: return

'passed' elif operator == '>' and

\

self.places[place].attributes[tok

en] > value: return 'passed' elif

operator == '>=' and \

self.places[place].attributes[tok

en] >= value:

 return 'passed' elif operator

== '<' and \

self.places[place].attributes[tok

en] < value:

23

 return 'passed' elif operator

== '<=' and \

self.places[place].attributes[toke

n] <= value:

 return 'passed' elif operator

== '!=' and \

self.places[place].attributes[toke

n] != value:

return 'passed' else:

return 'failed' def

_conditions_processor(self

, conditions):

conditions list: one or more logical conditions in the

format of '<place>.<token> <binary operator>

<criterion>', such as 'oven.heat > 300', for evaluation

test = [0] * len(conditions) for i in

range(len(conditions)): cond = conditions[i] if

len(cond.split('==')) == 2: operator = '==' cond =

[c.strip() for c in cond.split('==')] elif

len(cond.split('>')) == 2: operator = '>' cond =

[c.strip() for c in cond.split('>')] elif

len(cond.split('>=')) == 2: operator = '>='

cond = [c.strip() for c in cond.split('>=')] elif

len(cond.split('<=')) == 2: operator

= '<=' cond = [c.strip() for c in

cond.split('<=')] elif len(cond.split('!=')) ==

2: operator = '!=' cond =

[c.strip() for c in cond.split('!=')]

source_place = cond[0].split('.')[0]

source_value = cond[0].split('.')[1] criterion =

cond[1] test[i] =

24

self._test_condition(source_place, source_value,

operator, criterion) return test def

_incubate_rule(self, rule, interval):

 rule: a dictionary representing the incubate

rule interval integer: simulation time interval

 @return modified rule dictionary

 value = rule['value'] timer =

rule['timer'] conditions = rule['conditions']

movement = rule['movement']

 test = self._conditions_processor(conditions)

if len(['failed' for t in test if t == 'failed']) ==

0: if (timer + interval) < value:

 rule['timer'] = timer + interval

else:

 source_place

self.places[movement[0][0]]

 source_value = movement[0][1]

=

 destination_place

self.places[movement[1][0]]

=

 destination_value = movement[1][1]

destination_place.attributes[destination_value] = \

destination_place.attributes[destination_value] + \

source_place.attributes[source_value]

source_place.attributes[source_value]

=

25

0 rule['timer'] = 0 return

rule

 def _ratio_rule(self, movement,

ratio, limit_check,

limit_set, interval): movement string: defines the

movement of a token type.

 Each movement is defined in the following format:

<source place>.<source token> ->

<destination place>.<destination token>

ratio float: the ratio of tokens to move

limit_check string: logical check for

remainder value limit_set flaot: value to

set token if token in limit_check is

true interval integer: simulation time

interval source_place =

self.places[movement[0][0]]

source_value = movement[0][1]

destination_place =

self.places[movement[1][0]]

destination_value = movement[1][1]

 Step 1: Perform ratio rule operation

 token_value

source_place.attributes[source_value] *

\ ratio * interval

source_place.attributes[source_value] =

\

=

source_place.attributes[source_value] -

token_value

26

destination_place.attributes[destinatio

n_value]

= \

destination_place.attributes[destinatio

n_value] + token_value

Step 2: Perform remaining checks and corrections

if len(limit_check.split('>')) == 2:

operator = '>' limit_check

= [c.strip() for c in

limit_check.split('>')] if

len(limit_check.split('<')) == 2:

 operator = '<'

 limit_check = [c.strip() for

c in limit_check.split('<')]

check_place =

limit_check[0].split('.')[0]

check_token =

limit_check[0].split('.')[1]

check_value = float(limit_check[1])

if

 self._test_condition(check_place,

check_token, operator,

check_value) == 'passed': if

source_value in self.losses:

self.losses[source_value] =

self.losses[source_value] +

\ source_place.attributes[source_value]

- limit_set else:

self.losses[source_value] =

27

\

source_place.attributes[source_value] -

limit_set

source_place.attributes[source_value] =

limit_set def

_function_rule(self, movement,

function, conditions): '''!

Private method which simulates a

function rule action.

movement string: defines the movement of a token type.

Each movement is defined in the following format:

<source place>.<source token> ->

<destination place>.<destination token>

function: a Python function to be executed when conditions are

met. This function describes the transition of token.

conditions list: one or more logical conditions in the format of

'<place>.<token> <binary operator>

<criterion>', such as

'oven.heat > 300', for evaluation

 '''

source_place =

self.places[movement[0][0]]

source_value = movement[0][1]

 destination_place =

self.places[movement[1][0]]

destination_value = movement[1][1]

 test =

self._conditions_processor(conditions)

if len(['failed' for t in test if t ==

28

'failed']) == 0:

token_value = function(self.places)

source_place.attributes[source_value] =

\

source_place.attributes[source_value] -

token_value

destination_place.attributes[destinatio

n_value] = \

destination_place.attributes[destinatio

n_value] + token_value

def _execute_rules(self, clock,

interval):

'''!

 Method used by PNet.simulate() and

 PNet.simulate_yield() to execute all the rules.

clock cloat: wall time of the current simulation interval integer:

simulation time interval

 affected_places

= [] for rName in

self.rules.keys():

Step rule

if self.rules[rName]['type'] == 'step': movement =

self.rules[rName]['movement'] value

=

self.rules[rName]['value']

self._step_rule(movement, value,

interval) # Delay rule

 if

29

self.rules[rName]['type'] == 'delay' and

\

 (clock %

self.rules[rName]['delay']) == 0:

 movement =

self.rules[rName]['movement']

value =

self.rules[rName]['value']

self._step_rule(movement, value,

interval)

Incubate rule

 if self.rules[rName]['type']

== 'incubate':

 value =

self.rules[rName]['value']

 rule =

self._incubate_rule(self.rules[rName],

interval) self.rules[rName] = rule

Ratio rule

 if self.rules[rName]['type']

== 'ratio':

 movement =

self.rules[rName]['movement']

ratio = self.rules[rName]['ratio']

 limit_check =

self.rules[rName]['limit_check']

 limit_set =

30

self.rules[rName]['limit_set']

self._ratio_rule(movement, ratio,

limit_check,

limit_set, interval)

Function rule

 if

self.rules[rName]['type'] ==

'function': movement

 =

self.rules[rName]['movemen

t'] conditions =

self.rules[rName]['conditi

ons']

 function =

self.rules[rName]['function']

self._function_rule(movement, function,

conditions) def simulate(self,

end_time, interval=1.0,

report_frequency=1.0):

'''!

 Method to simulate the Petri Net.

This method stores the generated report in

memory; hence, not suitable for extended

simulations as it can run out of memory. It is

possible to conserve memory by reducing the

reporting frequency. Use

31

simulate_yield method for extended

simulations.

 end_time integer: number of

time steps to simulate. If end_time =

1000, it can be 1000 seconds or 1000 days, depending

on the significance of each step interval float: number

of intervals between each time step. Default = 1.0,

simulate by time step interval report_frequency

float: number of time steps between each reporting.

Default = 1.0, each time step is reported

 '''

clock = 1

end_time =

int(end_time)

while clock < (end_time

+ 1):

self._execute_rules(clock,

interval) if (clock %

report_frequency) == 0:

self._generate_report(clock)

clock = clock + interval

def simulate_yield(self,

end_time, interval=1.0):

 '''!

Method to simulate the Petri Net. This

method runs as a generator, making it

suitable for extended simulation.

 end_time integer: number of time steps to

simulate. If end_time = 1000, it can be

1000 seconds or 1000 days, depending on the

significance of each step interval float: number of

32

intervals between each time step. Default = 1.0, simulate

by time step interval

 '''

clock = 1

end_time = int(end_time

) while

clock

< end_time:

self._execute_rules(clock,

interval)

self._generate_report(clock)

rept = {} for k in

self.report[str(clock)].keys():

rept[k] =

self.report[str(clock)][k]

del self.report[str(clock)][k]

yield (clock, rept) clock

= clock + interval

 def

_generate_report(se

lf, clock):

Method to generate and store report in memory of each

token status (the value of each token) in every

place/container. clock float: step count of the current

simulation

 ''' rept =

{} for pName

in self.places.keys():

 for aName in

self.places[pName].attributes.keys():

 value =

33

self.places[pName].attributes

[aName] name =

'.'.join([pName, aName])

rept[name] = value

self.report[str(clock)] = rept

def report_tokens(self,

reportdict=None):

 '''!

Method to report the status of each token(s) from each

place as a list. This can be used in 2 different ways: to

generate a list representation of a status from , one time

step (such as from simulate_yield method), or to

generate a list representation of a status from entire

simulation (such as from simulate method). from

simulate method

net.simulate(65, 1, 1)

status = net.report_tokens() from

simulate_yield method status = [d

for d in net.simulate_yield(65,

1)] status = [(d[0],

net.report_tokens(d[1])) for d in

status]

reportdict dictionary: status from one time

step.

Default = None. If None, it will assume that simulate

method had been executed and all status are stored in

memory, and this method will generate a report from status

 stored in memory @return tuple of

([<place.token name>], [([<place.token

value>]]) if reportdict is given, or

tuple of (time step, [<place.token name>],

34

[([<place.token value>]]) if reportdict is

None. if reportdict:

 placetokens =

reportdict.keys()

tokenvalues =

[reportdict[k] for k in placetokens]

return (placetokens, tokenvalues)

else: timelist =

list(self.report.keys())

datalist = [0] * len(timelist)

for i in range(len(timelist)):

 placetokens =

list(self.report[timelist[i]].keys())

 tokenvalues

[self.report[timelist[i]][k]

for k in placetokens]

 =

 datalist[i] = (timelist[i],

placetokens,

tokenvalues)

return datalist

35

CHAPTER 3

MODELING USING PNET

3.1 Baking a Cake

In this example, we modeled the recipe of baking a cake (look at

Appendix A for execution) and simulation was done for 120 time

steps. We note that the recipe except the use of infinite tokens from

Ouroboros, it utilizes all features of PNet. In the recipe used we call

for 1000 g of flour, 6 eggs, 500 g of water and 200 g of butter in the

following steps:

1. First, we issue the command to activate the mixer. Then, we

carefully incorporate 500 g of flour, 250 g of sugar, 3 eggs, and 100

g of butter during each time step.

2. In each time step, the mixer will now turn the mixer batter to

800g of cake pan batter. 3. After thoroughly combining the

ingredients, allow the dough to rise in the mixer for 60 time steps.

4. Next, we'll transfer the dough into the pan and allow it to rise for an

additional 60 time steps.

5. Transfer the cake to the table for cooling.

6. Enjoy your cake.

The two Steps, we need to display the process of adding and

mixing the ingredients into a cake batter. The rate at which dough

forms is slower compared to the rate at which ingredients are

added. For instance, during each time step, the mixer receives

500 g of flour, 100 g of butter, 3 eggs, and 250 g of sugar and are

36

converted to a batter. After, completion of above steps, the cake

is then transferred to a table and cooled down(Step 5).

We described a baking process using a Petri net structure and firing

rules. Now, let's explore its working and application in detail:

Application using Petri Net Structure:

1. Places: These represent different states or locations in the baking

process:

• flour, sugar, eggs, butter: Places represents the ingredients needed

for baking.

• mixer: Represents the mixing process where ingredients are

combined to form a cake batter.

• cake_pan: Represents the container where the batter is poured.

• oven: Represents the oven where the cake is baked.

2. Transitions: Transitions represent the actions or steps used in the

baking process:

• mix: Represents the mixing of ingredients in the mixer.

• pour_into_pan: Represents pouring the batter from the mixer into the

cake pan.

• bake: Represents the baking process in the oven.

Working using Firing Rules:

1. Enabling Transitions: Before a transition can occur, it is important

to be enabled. A transition gets enabled if all of its input places have

enough tokens (ingredients) to assure their input arcs. In this

simulation, each transition checks if there are enough ingredients

available in the consequent places.

37

2. Firing Transitions: When a transition is triggered, it takes tokens

from its input places and generates tokens in its output places

according to the specified rules. For example:

• The mix transition consumes ingredients from the flour,

sugar, eggs, and butter places, mixes them, and produces

batter in the mixer place.

• The pour_into_pan transition consumes batter from the

mixer place and pours it into the cake pan.

• The bake transition consumes batter from the cake pan,

bakes it in the oven for a specified time, and produces a

cake.

3. Simulation:

• The simulation runs for a specified number of time steps.

• At each time step, the transitions are evaluated for firing based on

the availability of ingredients and the specified rules.

• If a transition is enabled, it fires, updating the token counts in the

places accordingly.

• The process continues for the specified number of time steps,

simulating the entire baking process from mixing to baking.

Fig 1: Petri Net Diagram of Cake Baking Model

38

3.1.1 Appendix A: Code for Baking a Cake

import pnet import

copads from copads
import pnet # Create a
Petri net object
net=pnet.PNet()

Define ingredients

net.add_places('flour', {'flour': 1000}) net.add_places('sugar',

{'sugar': 500}) net.add_places('eggs', {'eggs': 6})
net.add_places('butter', {'butter': 200})

Define utensils

net.add_places('mixer', {'flour': 0, 'sugar': 0, 'eggs': 0,

'butter': 0, 'batter': 0})

net.add_places('cake_pan', {'batter': 0}) net.add_places('oven',
{'batter': 0, 'cake': 0})

Define steps

net.add_rules('mix', 'step', [

 'flour.flour -> mixer.flour; 500',

 'sugar.sugar -> mixer.sugar; 250',

39

1. Introduction

The above Python code implements a simulation of a baking process

using Petri Nets, a mathematical modeling tool used in various fields

including computer science and systems biology. The objective is to

model the steps involved in baking a cake, including mixing

ingredients, pouring the batter into a cake pan, and baking it in an

oven.

2. Petri Net Setup

• Importing Modules: The code imports necessary modules including

`pnet` for Petri Net simulation and `copads` for additional

computational processes.

• Creating Petri Net Object: An instance of a Petri Net is created using

the `PNet` class.

 'eggs.eggs -> mixer.eggs; 3',

 'butter.butter -> mixer.butter; 100'

]) net.add_rules('pour_into_pan', 'step', [

'mixer.batter -> cake_pan.batter; 800'

])

net.add_rules('bake', 'incubate', [

 '60; cake_pan.batter -> oven.batter; cake_pan.batter > 0'])

Simulate the baking process net.simulate(120, 1, 1)

Generate results file data = net.report_tokens()

headers = ['timestep'] + data[0][1]

f = open('cake.csv', 'w')

f.write(','.join(headers) + '\n') for
tdata in data: tdata = [tdata[0]] +
\ [str(x) for x in tdata[2]]

 f.write(','.join(tdata) + '\n')

f.close()

40

3. Model Definition

• Ingredients and Utensils: Places (nodes) representing ingredients like

flour, sugar, eggs, and butter are defined along with their initial

quantities. Additionally, places representing utensils such as mixer,

cake pan, and oven are defined.

• Steps: Various steps involved in the baking process are defined using

rules. These steps include mixing ingredients in the mixer, pouring

the batter into a cake pan, and baking the cake in an oven. Each step

specifies the transition of tokens (quantities) between places.

4. Simulation

• Simulating the Baking Process: The baking process is simulated

using the defined Petri Net model. The simulation runs for 120 time

units with 1 repetition and 1 time step.

5. Results Generation

• Generating Results File: The results of the simulation are extracted

and formatted into a CSV file named "cake.csv". The file contains

information about the quantities of ingredients and the state of

utensils at each time step during the baking process.

6. Conclusion

In conclusion, this code demonstrates the use of Petri Nets for

modeling and simulating a real-world process—in this case, the

baking of a cake. By defining ingredients, utensils, and steps, and

simulating the process, it provides insights into the dynamics of the

baking process and facilitates analysis and optimization.

3.2 Model on Epidemiological Disease

Epidemiological disease models are conceptual frameworks that

analyze ecological and epidemiological events, specifically focusing

on the interactions between a host and a disease. Epidemiological

models have demonstrated their utility in studying the evolutionary

dynamics and forecasting characteristics of pathogen dissemination,

such as duration and prevalence. Alphabet models are conceptual

frameworks that represent a population, where individuals who are

vulnerable are assumed to be infected by a contagious pathogen.

The population is categorized into three epidemiological subclasses:

S represents persons who are vulnerable to disease we use the

variable "I" to represent the

41

number of individuals who are infected, and "R" to represent the

number of individuals who no longer contribute to the spread of

diseases at a given moment. The Susceptible-Infectious-Susceptible

(SIS) model is based on the premise that the pathogen infects

individuals who are susceptible, leading to an infection. After

recovering from the infection, these individuals return to the

susceptible category once again. Hosts that are infected experience a

consistent recovery rate per person, denoted as γ, whereas β

represents the rate at which the susceptible class becomes infected.

The SIS model is designed to simulate the spread of rapidly

changing viruses and diseases that do not confer immunity. The

Susceptible-Infectious-Recovered (SIR) model is analogous to the

SIS model, with the distinction of the pathogen that results in

permanent immunity. Those are immune to reinfection who have

been infected and then recovered, exhibiting lasting immunity. This

paradigm is engaged for viral illnesses including measles, mumps,

and rubella. The SIRS model is similar to the SIR model, with the

distinction that the acquired protection is transient. The ones who

are not having immunity to reinfection are those who have been

infected and then healed. TB is an example of an infection that can

be modeled using the SIRS framework. Nevertheless, a set of

ordinary differential equations (ODEs) can be used to execute the

majority of epidemiological models and Petri Nets are widely used

mathematical constructions in the field of mathematical modeling.

Therefore, there is a requirement for a technique to express an

Ordinary Differential Equation (ODE) using Petri Net notation.

Soliman and Heiner have established a connection between ODEs

and state-transition networks. In essence, an ordinary differential

equation (ODE) represents the relationship between time progress

and the evolution of a system's state, but a Petri Net captures the

transitions that lead to changes in the system's condition w.r.t. time

(Fig. 2). Within the framework of states (nodes) and transitions

42

(arcs), this implies that ODEs symbolize the nodes, while Petri Nets

symbolize the transitions. Consequently, it becomes straightforward

to convert ODE representations to Petri Net representations,

provided that the time unit remains consistent in both

representations.

Fig 2: Petri Net Transition Rule and Ordinary Differential Equation

Correspondence.

Fig 3: The input-output diagram represents the influenza epidemic model in a

school setting without reinfection.

43

Fig 4: Using numerical methods, we can solve the differential

equations that describe the spread of an infectious disease in a

hypothetical population of N = 106. The parameter values utilized

were β = 10−6 susceptibles−1 day−1, γ = 1/3 years−1, b = a = 1/50

years−1, with initial populations S(0) = 9 × 105 and I(0) = 105.

Our simulation results are indicating that the ratio of the population

that is infected to the population that is susceptible stabilizes over

time. Since, there is no immunity acquired after recovering from the

infection, it is anticipated that there would be a consistent population

of infected individuals, which is also referred to as an endemic

population. This assumes that there are no births or deaths for the

whole term, and that the sickness is not fatal. When individuals

develop immunity after recovering from a disease, the SIS model

transforms into the SIR model. In the SIR model, the population

gradually becomes completely immune over time, assuming no new

individuals are born. This is analogous to the situation with

chickenpox, where most individuals who have recovered from the

disease get lifetime immunity. As a result, children are more

44

susceptible to chickenpox, while most adults are immune.

Nevertheless, the possibility of reinfection arises if the acquired

immunity is of a limited duration, resulting in a evolution from the

SIR model to the SIRS model. We come to know by our findings that

in situations when there is a consistent population of infected

individuals (known as endemic) the SIRS model exhibits similar

behavior to the SIS model. However, there is also a consistent group

of individuals with immunity who have recently recovered from the

condition. This occurrence is anticipated when the infectious agent

has the ability to re-infect an individual who has previously

recovered from the infection.

We are describing the dynamics of an epidemic using a Petri net

structure and firing rules. Let's delve into its application and

functioning:

Application using Petri Net Structure:

1. Places: These represent the different states of individuals within the

population:

 Susceptible: People who are vulnerable to the infection.

 Infected: People who are presently contaminated with the illness.

 Recovered: Individuals who have recovered from the disease and

gained immunity.

2. Transitions: Transitions represent the events or actions that occur in

the epidemic:

 Infection: Represents the transmission of the disease from

susceptible individuals to infected individuals.

 Recovery: Represents the recovery of infected individuals.

 Resusceptible: Represents the loss of immunity in recovered

individuals, making them susceptible again.

Working using Firing Rules:

45

1. Enabling Transitions: Before a transition can occur, it must be

enabled. A transition is considered enabled if there are a

sufficient number of tokens available in the corresponding input

places. In this simulation, a transition is enabled if there are

sufficient susceptible individuals for infection, infected

individuals for recovery, or recovered individuals for

resusceptibility.

2. Firing Transitions: The act of extracting tokens from input

places and generating tokens in output places according to the

specified rules happens when a transition is said to be fired. The

infection transition leads to consumption of susceptible

individuals and leads to production of infected individuals in

this simulation, the recovery transition leads to consumption of

infected individuals and production of recovered individuals,

and the resusceptible transition consumes recovered individuals

and produces susceptible individuals.

3. Simulation:

 The simulation operates for a specified number of time steps.

 At each time step based on the conditions specified by the firing

rules, the transitions are evaluated for firing.

 The enabling of a transition leads to it’s firing, updating the token

counts in the places accordingly.

 For the specified number of time steps the process keeps on

continuing which then allows the epidemic dynamics to unfold over

time.

 3.2.1 Appendix B: Code for SIRS Model

46

 from copads import pnet

Parameters infection_rate

= 0.01 recovery_rate =

0.005 resusceptible_rate =

0.01

Initialize Petri

net net = pnet.PNet()

net.add_places('susceptible', {'susceptible': 100})

net.add_places('infected', {'infected': 0})

net.add_places('recovered', {'recovered': 0})

Define transition functions def

susceptible_to_infected(places

): susceptible =

places['susceptible'].attributes['susceptible'] return

infection_rate * susceptible

 def infected_to_recovered(places): infected =

places['infected'].attributes['infected'] return

recovery_rate * infected

 def recovered_to_susceptible(places): recovered =

places['recovered'].attributes['recovered'] return

resusceptible_rate * recovered

Add rules net.add_rules('infection',

'function', [

 'susceptible.susceptible ->

infected.infected', susceptible_to_infected,

47

h'susceptible.susceptible > 0'

]

)

 net.add_rules('recovery',

'function', [

 'infected.infected -> recovered.recovered',

infected_to_recovered,

'infected.infected > 0'

]

)

net.add_rules('resusceptible', 'function', [

48

 'recovered.recovered -> susceptible.susceptible',

recovered_to_susceptible, 'recovered.recovered

> 0'

])

Simulate the Petri net net.simulate(500,

1, 1)

Report tokens and save to CSV

data = net.report_tokens() headers

= ['timestep'] + data[0][1] with

open('sirs.csv', 'w') as f:

 f.write(','.join(headers) + '\n') for

timestep_data in data: row = [timestep_data[0]]

+ [str(x) for x in timestep_data[2]]

 f.write(','.join(row) + '\n')

3.3 Evolution of Molecule Count in a System

To simulate the evolution of molecule count in the system using a

Petri net using python, we can write a custom implementation.

Here's how we can do this:

1. Describe the places, transitions, and arcs for the Petri net.

2. Define functions to check transition enablement and firing.

49

3. Simulate the system over a number of steps, applying the

transitions according to their probabilities.

We are unfolding a simple chemical reaction process using a Petri

Net structure and it’s firing rules. Let's break down its application

and working using Petri nets:

 Application using Petri Net Structure:

1. Places: In the system, places symbolize different states or

locations. In this simulation, there are three places:

 Molecules: Represents the pool of molecules in the system.

 Synthesis: Represents the process of synthesizing molecules.

 Dissociation: Represents the process of dissociating molecules.

2. Transitions: In the system, events or actions that can occur

are represented by Transitions. In this simulation, there are two

transitions:

 synthesize: Represents the synthesis process (combining different

things).

 dissociate: Represents the dissociation process(breakdown into

smaller components).

3. Arcs: The flow of tokens (molecules) between places and

transitions is represented by Arcs. There are input arcs and output

arcs:

 Places to transitions are connected by Input Arcs, indicating the

tokens required for the transition to fire.

 Transitions to places are connected by Output Arcs, indicating

where the tokens produced by the transition will go.

50

Working using Firing Rules:

1. Enabling Transitions: Enabling is necessary to make a

transition fire. A transition is considered enabled if all of its input

spots have enough tokens to satisfy their input arcs. The

`is_enabled` method in the `Transition` class checks if a

transition is enabled.

2. Firing Transitions: When a transition fires then the

consumption of tokens from its input places according to the

input arcs takes place which later produces tokens in its output

places according to the output arcs. The `fire` method in the

`Transition` class handles this process.

3. Simulation: The simulation executes for a predetermined

amount of iterations.

 At each step, there's a probability of synthesis and dissociation

taking place.

 If the conditions for synthesis or dissociation are met (based on

random probabilities and transition enabling), the corresponding

transition fires.

 The number of molecules in the 'Molecules' place is recorded at

each step to track the evolution of the system.

51

Fig 5: Evolution of molecule count in the system

3.3.1 Appendix C: Code for evolution of molecule count in a system

import random

import matplotlib.pyplot as plt

class Place: def init(self,

name, tokens=0):

self.name = name

self.tokens = tokens class

Transition:

def init(self, name):

self.name = name

 def is_enabled(self, net, input_places):

 return all(net.places[place].tokens >= weight for place,

weight in input_places.items()) def fire(self, net,

input_places, output_places): for place, weight in

input_places.items():

 net.places[place].tokens -= weight

52

for place, weight in output_places.items():

net.places[place].tokens += weight

53

class PetriNet: def

init(self, name):

self.name = name

self.places = {}

self.transitions = {}

self.input_arcs = {}

self.output_arcs = {} def

add_place(self, place):

self.places[place.name] = place def

add_transition(self, transition):

self.transitions[transition.name] = transition

self.input_arcs[transition.name] = {}

self.output_arcs[transition.name] = {} def

add_input(self, place, transition, weight=1):

self.input_arcs[transition][place] = weight def

add_output(self, place, transition, weight=1):

self.output_arcs[transition][place] = weight

Define the Petri net

net = PetriNet('MoleculeSynthesisDissociation')

Add places

net.add_place(Place('Molecules', tokens=500)) # Starting with

500 molecules

net.add_place(Place('Synthesis', tokens=0))

net.add_place(Place('Dissociation', tokens=0))

Add transitions

net.add_transition(Transition('synthesize'))

net.add_transition(Transition('dissociate'))

54

Add arcs

net.add_input('Synthesis', 'synthesize', weight=1)

net.add_output('Molecules', 'synthesize', weight=1)

net.add_input('Molecules', 'dissociate', weight=1)

net.add_output('Dissociation', 'dissociate', weight=1)

55

Define the probabilities for synthesis and dissociation

synthesis_probability = 0.6 # Probability of synthesis

dissociation_probability = 0.4 # Probability of dissociation

Simulation parameters

steps = 100 # Number of simulation steps

molecule_counts = [] # To store the number of molecules at each

step

Run the simulation for step in range(steps): if

random.random() < synthesis_probability:

 if net.transitions['synthesize'].is_enabled(net,

net.input_arcs['synthesize']):

net.transitions['synthesize'].fire(net,

net.input_arcs['synthesize'], net.output_arcs['synthesize'])

if random.random() < dissociation_probability: if

net.transitions['dissociate'].is_enabled(net,

net.input_arcs['dissociate']):

net.transitions['dissociate'].fire(net,

net.input_arcs['dissociate'], net.output_arcs['dissociate'])

molecule_counts.append(net.places['Molecules'].tokens)

Plot the results plt.plot(molecule_counts)

plt.xlabel('Steps')

plt.ylabel('Number of Molecules')

plt.title('Evolution of Molecule Count in the System') plt.show()

56

CHAPTER-4

CONCLUSION

Winding up, we have given a definition of all the necessary and

required rules used for developing a model using PNET library in

python. We also come to a conclusion that it’s easier to build up a

Petri net complex model using PNET library in python and lesser

time is consumed to come to conclusions than understanding a

complex model and concluding from that model.

We did an exploration of Petri Net Theory (PNET) through it’s

practical applications such as baking a cake project, a model of

epidemiological illness, and a model of the evolution of molecule

count in a system which demonstrates the usefulness and power of

PNET for modeling complex systems. At this juncture, we

summarize the findings and insights gained from these projects.

1. Baking a Cake Project

Objective: To model the process of baking a cake in order to

understand the sequence of steps and resource dependencies.

Findings:

 Sequential and Parallel Processes: Effectively both sequential and

parallel processes involved in cake baking are captured by the Petri

Net model, such as mixing ingredients (sequential) and preheating

the oven while preparing the batter (parallel).

 Resource Management: Resource constraints, such as limited mixing

bowls or baking pans, are highlighted in the model and ensures these

resources are optimally utilized.

57

 Process Optimization: The simulation of the Petri Net leads to the

identification of bottlenecks in the process, which allows for

optimization of the workflow, such as reduction in idle time for

resources or streamlining steps to save time.

2. Model of Epidemiological Disease

Objective: Simulation of the spread of an infectious disease for

understandong the dynamics of infection and recovery in a

population.

Findings:

 Compartmental Modeling: For compartmental models in

epidemiology Petri Nets are well-suited, such as the SIR

(Susceptible-Infectious-Recovered) model. The transitions between

compartments are naturally represented by transitions in the Petri

Net.

 Stochastic Simulations: The stochastic nature of Petri Nets helps in

allowing the simulation of random events, such as the infection rate

and recovery rate, providing a realistic representation of spread of

disease.

 Intervention Strategies: The model can be used to test various

intervention strategies (e.g., vaccination, quarantine) by

adding/removing places and transitions, thus helping in planning

effective control measures.

3. Evolution of Molecule Count in a System

Objective: To model the dynamics of chemical reactions and the

evolution of molecule counts over time.

Findings:

 Reaction Dynamics: Petri Nets efficiently model chemical reaction

networks, capturing how the reactants transform to products through

transitions that represent chemical reactions.

58

 Conservation Laws: The model enforces laws of conversation,

ensuring that the total number of molecules is preserved, reflecting

real-world chemical processes.

 Complex Systems: For systems with more than one reactions and

intermediate compounds, Petri Nets provide a clear and manageable

way to analyze and visualize the complex interactions and

dependencies.

Overall Conclusion

The use of the PNET library in Python for these diverse projects

underscores its heftiness and elasticity in modeling various types of

systems. Main conclusions are:

 Versatility: Petri Nets can be applied to a wide range of fields, from

simple processes like cake baking to complex systems like

epidemiological spread and chemical reaction networks.

 Clarity and Manageability: A clear graphical representation is

offered by them, making it easier to understand, manage, and

communicate the modeled systems.

 Simulation and Optimization: The ability to simulate these models

allows for dynamic analysis and optimization, providing valuable

insights and aiding in decision-making.

 Real-World Applications: The insights gained from these models

have practical implications, such as improving efficiency in

workflows, planning public health interventions, and understanding

chemical processes.

Overall, the projects demonstrate that Petri Net Theory, implemented

through the PNET library in Python, is a powerful tool for analyzing,

modeling, and optimizing complex systems across various domains.

Hence, the entire paper demonstrates the power of PNET as a

versatile modeling framework in Python for simulating complex

systems, enabling researchers, engineers, and enthusiasts to gain

59

valuable insights, make informed decisions, and drive innovation

across various domains.

60

REFERENCES
[1] W. Reisig, “Petri Nets: An Introduction”, Springer– Verlag,

1985.

[2] W. Reisig, “Understanding Petri Nets: Modeling

Techniques, Analysis Methods, Case Studies”, Springer–

Verlag, 2013.

[3] Koutny, M. (2019). Petri Nets and Petri’s Nets: A Personal

Perspective. In: Reisig, W., Rozenberg, G. (eds) Carl

Adam Petri: Ideas, Personality, Impact. Springer, Cham.

[4] Bobbio, “System Modelling with Petri Nets”. Instituto

Elettrotecnico Nazionale Galileo Ferraris Strada Delle Cacce

91, 10135 Torino, Italy, 1990, 14-15.

[5] Koch I, Reisig W, Schreiber F (eds) (2011) Modeling in

systems biology. the Petri net approach. Computational

biology, vol 16. Springer, BerlinD. Gilbert and M. Heiner

M.

[6] C. Chaouiya, “Petri Net Modelling of Biological Networks”,

Briefings in Bioinformatics 8, 2007, pp 210219.

[7] H. Matsuno and A. Doi, “Hybrid Petri Net Representation of

Gene Regulatory Network”, Pacific Symposium on

Biocomputing 5, 2000, 338-349.

[8] Murata T (1989) Petri nets: properties, analysis and

applications. Proc IEEE 77(4):541–580S.

[9] Wingender E (ed) (2011) Biological Petri nets. Studies in

health technology and informatics.vol 162. IOS Press,

Lansdale
[10] M. Matcovschi, C. Popescu, and O. Pastravanu, A new

approach to hybrid system simulation: Development of a

simulink library for Petri net models," Journal of Control

Engineering and Applied Informatics 7, 2005, 55-62.

[11] F. Pommereau, “SNAKES: A Flexible High-Level Petri Nets

Library (Tool Paper)”, Proceedings of the 36th

International Conference on Petri Nets (PETRI NETS

2015), 2015, 254-265

[12] F. Brauer, “Compartmental Models in Epidemiology”, In

Lecture Notes in Mathematics 1945, 2008, 19-79.

[13] Silva M (2013) Half a century after Carl Adam Petri’s Ph.D.

thesis: a perspective on the field. Annu Rev Control

37(2):191–219M.

61

[14] J. Keeling and K. T.D. Eames, “Networks and epidemic

models”, Journal of the Royal Society Interface 2, 2005, 295-

307.

[15] C. Ozcaglar, A. Shabbeer, S. L. Vandenberg, B. Yener, K.

P. Bennett,“Epidemiological models of Mycobacterium

Tuberculosis complex infections”, Mathematical Biosciences

236, 2012, 77 – 96.

[16] P. Munz, I. Hudea, J. Imad and R. J. Smith, “When Zombies

Attack!: Mathematical Modelling of Outbreak of Zombie

Infection”, Infectious Disease Modelling Research Progress,

4, 2009, 133-150.

[17] M. Ling, “COPADS IV: Fixed Time-Step ODE Solvers for a

System of Equations Implemented as a Set of Python

Functions”, Advances in Computer Sciences 5, 2016, xxxxx.

[18] J.P. Aparicio and M. Pascual, “Building Epidemiological

Models from R(0): An Implicit Treatment of Transmission in

Networks”, Proceedings of the Royal Society B: Biological

Sciences 274, 2007, 505-512.

[19] L. Kong, J. Wang, W. Han and Z. Cao, “Modeling

Heterogeneity in Direct Infectious Disease Transmission in

a Compartmental Model”, International Journal of

Environmental Research and Public Health 13, 2016, 253.

[20] M. Ling, “Of (Biological) Models and Simulations”, MOJ

Proteomics & Bioinformatics 3, 2016, 00093.

[21] S. Soliman and M. Heiner M, “A Unique Transformation

from Ordinary Differential Equations to Reaction

Networks”, PLoS One 5, 2010, Article e14284.

[22] H.W. Hethcote and P. van den Driessche, “An SIS

Epidemic Model with Variable Population Size and a

Delay”, Journal of Mathematical Biology 34, 1995, 177194.

[23] “Facts about chickenpox”, Paediatrics & Child Health 10,

2005, 413-414.

[24] Murata, T.: Petri nets: properties, analysis and applications.

Proceedings IEEE 77(4), 541–580 (1989)
[25] https://johncarlosbaez.wordpress.com/2020/10/19/epidem

iologicalmodeling-with-structured-cospans/
[26] https://johncarlosbaez.wordpress.com/2012/10/01/petrinet-

programming/
[27] https://johncarlosbaez.wordpress.com/2012/12/20/petrinet-

programmingpart-2/
[28] Mathematical Modelling with Case Studies: A differential

equation approach using Maple and MATLAB

https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2020/10/19/epidemiological-modeling-with-structured-cospans/
https://johncarlosbaez.wordpress.com/2012/10/01/petri-net-programming/
https://johncarlosbaez.wordpress.com/2012/10/01/petri-net-programming/
https://johncarlosbaez.wordpress.com/2012/10/01/petri-net-programming/
https://johncarlosbaez.wordpress.com/2012/10/01/petri-net-programming/
https://johncarlosbaez.wordpress.com/2012/10/01/petri-net-programming/
https://johncarlosbaez.wordpress.com/2012/10/01/petri-net-programming/
https://johncarlosbaez.wordpress.com/2012/10/01/petri-net-programming/
https://johncarlosbaez.wordpress.com/2012/10/01/petri-net-programming/
https://johncarlosbaez.wordpress.com/2012/10/01/petri-net-programming/
https://johncarlosbaez.wordpress.com/2012/10/01/petri-net-programming/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/
https://johncarlosbaez.wordpress.com/2012/12/20/petri-net-programming-part-2/

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

PLAGIARISM VERIFICATION

Title of the thesis – PNet Module: Empowering Petri Net Modeling and Simulation

Total Pages 58

Name of Scholars – Charu Singh (2K22/MSCMAT/05) and Shefali (2K22/MSCMAT/36)

Supervisor- Dr. Payal

Department -Applied Mathematics

This is to report that the above thesis was scanned for similarity detection. Process

and outcome is given below:

Software used: Turnitin

Similarity Index: 8%

Total Word Count: 10263

Date: 3 June, 2024

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE OF FINAL THESIS SUBMISSION

1. Name: Charu Singh and Shefali

2. Roll No.: 2K22/MSCMAT/05 and 2K22/MSCMAT/36

3. Thesis title: “PNet Module: Empowering Petri Net Modeling And Simulation”.

4. Degree for which the thesis is submitted: M.Sc. Mathematics

5. Faculty of the University to which the thesis is submitted: Dr. Payal

6. Thesis Preparation Guide was referred to for preparing the thesis.

 YES NO

7. Specifications regarding thesis format have been closely followed.

 YES NO

8. The contents of the thesis have been organized based on the guidelines.

 YES NO

9. The thesis has been prepared without resorting to plagiarism. YES NO

10. All sources used have been cited appropriately. YES NO

11. The thesis has not been submitted elsewhere for a degree. YES NO

12. All the correction has been incorporated. YES NO

13. Submitted 2 hard bound copies plus one CD. YES NO

(Signature of Candidate(s))

Name(s): Charu Singh and Shefali

Roll No.: 2K22/MSCMAT/05 and 2K22/MSCMAT/36

