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PNET MODULE: EMPOWERING PETRI NET MODELING AND SIMULATION 

(Charu Singh and Shefali) 

 

  

ABSTRACT  

  
Petri Nets provide a way of representing changes over time which is structured and is widely 

used for representing models of various systems. However, expertise in programming is required 

for working with Petri Nets and can often be complex. This is where PNet, a Python library that 

is intended to make working with Petri Nets much easier, is introduced. Without needing to be a 

coding expert using PNet, you can define your Petri Net using a simple text based language. You 

can use regular Python functions even if you need more complex rules for how things change. 

To demonstrate the simplicity of PNet, we provide three examples: one that shows you how to 

bake a cake, another that models the spread of diseases, and the last one that describes the 

evolution of molecule count in a system. With PNet, you can easily bring your ideas to life and 

simplify the process of working with Petri Nets.   
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CHAPTER 1 

 INTRODUCTION  

1.1 Introduction to Petri Net   

Petri nets, devised by Carl Adam Petri in the 1960s, are 

graphical and mathematical tools utilized for representing 

systems that exhibit concurrency, synchronization, and mutual 

exclusions. For understanding and analyzing systems Petri Nets 

are an invaluable tool. Petri net theory allows mathematical 

modeling of a system as a Petri Net. Analyzing the Petri net 

reveals significant details regarding the portrayed system's 

dynamic behavior and structure. This in turn, we can use to get 

access to the modeled system in order to suggest improvements 

or alterations. Therefore, the formation of a theory of Petri Net 

depends on the use of Petri nets for the purpose of designing and 

modeling systems.   

     

1.2 Modeling   

    
Petri Nets can be used to model a variety of phenomena. Sometimes, 

we create a model of a system  rather than studying it directly. A 

model is like a mathematically expressed, cut-down version, which 

gives us the important aspects of the thing we're studying. By 

working with this model, our main goal is to learn new things about 

the real phenomenon without having to deal with the challenges or 

expenses of directly manipulating it.   The majority of modeling 

activities require the utilization of mathematical principles. Many 

physical processes commonly employ numerical representations to 
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describe them, while inequalities or equations illustrate the 

relationship between different features. Mathematics can be used to 

define elementary concepts like location, mass, forces, and 

momentum in domains such as engineering and the natural sciences. 

In order to utilize modeling efficiently, it is important to have a 

comprehensive understanding of both the subject being modeled and 

the underlying principles of the modeling technique. A significant 

amount of importance has been acquired by mathematics due to its 

ability to facilitate the modeling of phenomena in several scientific 

disciplines. To analyze and represent phenomena that undergo 

continuous change, calculus was devised, such as the concepts of 

velocity, position and acceleration in the field of physics.    

The efficiency and prevalence of modeling have significantly 

increased due to the introduction of high-speed computers. The 

conversion of a system into a mathematical model and subsequently 

providing these instructions to a computer can lead to the conduction 

of simulations. As a result, we can now simulate larger and more 

intricate systems than ever before. Accordingly, extensive studies 

have been conducted on computer hardware and computer modeling 

methodologies. In modeling, computers have a dual purpose: they 

function as tools for modeling, and they are also subjects of 

modeling themselves.    

       

1.3 Components of a Petri Net   

   

A basic Petri net is made of the following elements:   

Places: Which are represented by circles and denote conditions 

or states of the system.    

Transitions: They are represented by rectangles or bars; 

transitions signify events or activities that can alter the system's 

state.    
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Tokens: They are placed inside the places, tokens 

indicate the presence or absence of certain conditions. 

Mathematically, we can think of them as markers of a 

place.    

Arcs: Places and transitions are related, and vice versa by Arcs. The 

flow of the system and the determination of the input and output 

conditions for transitions are defined by arcs.   

     

1.4 Operational Semantics   

The way a Petri net behaves is governed by the firing of transitions, 

which are as follows:   

Enabled Transitions: If all the input places (places     

connected to the transition by arcs that are incoming) 

have the required number of tokens, then it is said for 

a transition to be enabled.    

Firing: A transition fires when it consumes tokens from its input 

places and produces them in its output places.   

   
1.5 Execution Rules   

   

Initial Marking: The arrangement of tokens in the locations 

determines the starting condition of the system. We refer to this 

distribution as the initial marking.    

Enabling of Transitions:   

• For a transition to be considered enabled, every input place 

(a place with an arrow pointing towards the transition) 

should contain a minimum of one token.   

• In other words, we can define it as, the required conditions 

(represented by tokens in the places) that must be met for 

the event (transition) to potentially occur.   

Firing of Transitions:    
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• Triggering of an enabled transition leads to the removal 

when the transition takes one token from each input site 

and adds one token to each related output spot.   

• The happening of the event is represented by firing, which 

causes a change in the system's current condition.   

• The moving of tokens from the input places through the 

transition to the output places is described by this process.   

   

1.6 Properties of Petri Nets   

   

Several fundamental properties that can be derived from Petri 

net models are as follows:   

Boundedness: A Petri net is considered bounded if there exists a 

maximum limit on the amount of tokens that any spot can hold.    

Liveness: A Petri net is considered live if it is possible to fire 

any transition from any reachable state at any point.   Deadlock: 

It refers to a state in which the system halts due to the absence of 

enabled transitions.   

Conservation: The net is conservative if the total number of 

tokens remains constant throughout all possible firings.   

    

1.7 Variants of Petri Nets   

   

Colored Petri Nets (CPN): Extension of the basic model 

by assigning colors  to tokens, which allows the model to 

be more expressive and detailed.  Timed Petri Nets: 

Incorporates information related to timing and enables the 

modeling of systems with time- dependent behaviors.   

Stochastic Petri Nets (SPN): The introduction of 

probabilistic behavior is done in order to make them 
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suitable for performance dependability and assessment 

studies.   

   
1.8 Analysis Methods   

   

Petri Net Theory gives us various methods to analyze the 

properties of systems and their behavior. Here are the main analysis 

methods described:  

1. Reachability Analysis:  

What It Is: This method lets us know that by firing a 

sequence of transitions, a particular state (or marking) 

can be reached from the initial state.  

Why It Matters: It helps determine whether the system can enter 

undesirable states, such as unsafe conditions or deadlock.  

How It Works: The software produces a reachability graph that 

illustrates all the reachable markers from the initial state by 

executing transitions. This allows for a comprehensive view of 

all feasible system states.  

2. Invariant Analysis:  

What It Is: Using this method, we can identify invariants, which are 

the conditions that remain true and do not depend on how transitions 

fire.  

Types:  

• Place Invariants: The constant linear combinations of places. They 

aid in the verification of conservation properties, guaranteeing the 

absence of creation or destruction of certain resources.  

• Transition Invariants: These are defined as the sequences of 

transitions that leave the marking unchanged, indicating repeated 

patterns or cyclical behavior.  

Why It Matters: Invariants, help us verify the consistency and 

correctness of the system, ensuring its behavior as intended over 

time.  

3. Liveness Analysis:  
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What It Is: This method verifies whether the Petri net is live, 

implying that each transition has the potential to initiate from a 

reachable marker.  

Why It Matters: Liveness ensures that the system has no deadlocks 

and that all parts of the system can eventually be activated and 

remain operational.  

How It Works: By examining the reachability graph or using 

mathematical techniques like the rank theorem, we can get to know 

if all transitions have the potential to fire.  

4. Boundedness Analysis:  

What It Is: This method helps us determine if there is a restriction 

on the maximum amount of tokens that can accumulate in each 

location.  

Why It Matters: Ensuring boundedness helps manage system 

resources effectively by preventing resource overflow.  

How It Works: By calculating place invariants or examining the 

reachability graph, we can establish upper limits on the number of 

tokens for each place.  

5. Coverability Analysis:  

What It Is: This method determines whether a marking can be 

reached where the number of tokens in one or more places exceeds a 

certain threshold.  

Why It Matters: It helps identify situations where resources might 

be exhausted or overused.  

How It Works: By generating a coverability tree, which is a 

modified version of the reachability graph, we can see if and when 

certain token counts are exceeded.  

6. Performance Analysis:  

What It Is: This method helps to evaluate the efficiency and 

performance of the system modeled by the Petri net.  

Why It Matters: It helps to optimize resource usage, identify 

bottlenecks and improve overall performance of the system. How 

It Works: Techniques like timed Petri nets (where transitions have 

firing delays) and simulation are used to measure and analyze 

performance metrics like latency, utilization and throughput.  
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CHAPTER 2   

INTRODUCTION TO PNET   

2.1 Introduction    

Petri Nets have diverse uses in domains such as system 

modeling, biochemistry, and software engineering, signal 

transduction networks, gene control networks and namely in 

biochemical reactions. For instance, Liu and Heiner used Petri 

Nets to investigate biological reaction networks. A unified Petri 

Net framework was designed to model and analyze the networks 

created by them. Petri Nets are valuable for analyzing several 

process features, including reachability, termination, 

boundedness, safety, reversibility,  liveness, coverability, home 

state, fairness, and persistence. These features can be analyzed 

using techniques such as reachability graphs, coverability trees, 

state equations and  incidence matrices. Multiple libraries have 

been created to simulate Petri Nets, simplifying their utilization 

in various programming contexts. SimForge GUI is 

incorporated into OpenModelica, but MATLAB provides the 

Petri Net Simulink Block (PNSB) as an option. Python offers 

the SNAKES library, developed by Pommereau, which enables 

the implementation of Petri Nets using a sophisticated object 

oriented methodology. This approach involves representing 

transition rules and tokens as Python objects. This strategy gives 

adaptability but may necessitate a more challenging learning 

process, particularly for individuals who are not acquainted with 
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Python. Translating Convert a text-based definition of a Petri 

Net into a model using SNAKES can be a difficult task. In 

addition, SNAKES may not be capable of handling intricate 

transition rules that require implementation as functions. 

Nevertheless, SNAKES provides benefits such as the 

integration of plugins, , the ability to transform implemented 

Petri Nets into the C language and tools for Petri Net analysis.  

A package designed for Petri Net modeling is being presented in 

this paper. The main objective is to reduce the additional costs 

related to object-oriented programming by providing Python 

functions as an alternate form of transition rule. This approach 

helps to make it easier for beginners to get started with Petri 

Nets, serving as a stepping stone before moving on to more 

complex libraries like SNAKES. PNet is now part of COPADS, 

a Python library of data structures, and algorithms which 

doesn't rely on any third-party dependencies.  

   
2.2 Description of PNet   

   

In this section, we'll explain how to utilize PNet by delineating the 

necessary procedures to construct a simulation. There are five primary 

stages involved:   

 Setting up the Petri Net: This mainly involves creation of the 

structure of the Petri Net.   

 Adding places or states: These are the conditions or locations 

within the system.   

 Adding transition rules: These gives the definition of the 

actions that can occur between places/states.   

 Running the simulation: This involves execution of the Petri 

Net model to observe how it behaves over time.   

 Generating the results file: After simulation is done, the 

outcomes are recorded and saved for analysis.    

 To construct a Petri Net using PNet, we begin by importing the PNet 

module and thereafter instantiate the PNet class from the said module. Next, 
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you add states or places by using the add_places method to the Petri Net 

simulation.   

This method requires two parameters:   

⚫ A dictionary representing the initial tokens.   

⚫ The name of the place    

The dictionary consists of token names as keys and the number 

of tokens of each type as values. This enables locations to 

accommodate multiple varieties of tokens. For example, if you 

possess a container holding 1000 yellow seeds and 1000 green 

seeds, you can depict it as net.add_places('vessel',                      

{'yellow_seeds':1000,    

                     'green_seeds':1000})   

 The  value of  the  'green_seeds'  attribute is set  to 1000.    

Occasionally, we come across situations where an inexhaustible 

quantity or requirement is necessary, such as when 

contemplating an infinite number of births or the Earth as an 

infinite reservoir of charges in electronics. To handle this, we 

introduce a special place called ouroboros, named following 

the infinity symbol in math. This place is defined using a certain 

set of criteria or parameters having an unlimited number of "U" 

tokens to represent infinity.   

In order to complete the third phase, you need to incorporate 

transition rule(s) by utilizing the add_rules method. We now assign a 

name to each transition rule. Transitions serve as a pathway for 

tokens to transition between places, while the rules take care of the 

mechanics of this transition. A transition rule typically contains a 

destination place and a source place to define the movement of 

tokens. It also specifies source and destination token types to ensure 

clarity. The valuation of the transition processes is then conducted by 

employing logical operators, taking into consideration the present 
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token values. These operators are resolute by criteria, which 

represent the desired outcome after the transitions occur.  The five 

types of rules includes ratio, step, function, incubation, and delay 

rules. The implementation of transition rules is contingent upon the 

time interval. While it is preferable for each rule to specify only one 

transition, in practice, a single rule can trigger multiple transitions. 

This is because PNet enables the specification of many transitions 

within a rule, which serves as a simple and concise method.   

   

2.2.1 Step Rule   

A step rule operates in a step-by-step manner, triggering at each 

time-step. It requires specifying the origin place and the token at 

that place, as well as the destination place and the affected token 

there. This defines a single transition. For instance, consider a 

vessel containing yellow and green seeds. The given step rule 

outlines the process of exchanging a single seed at each time 

step. The rule is added to the network using the net.add_rules() 

function, using the parameters 'swap_seed', 'step', and the 

following seed exchange: 'B1.yellow_seed -> B2.yellow_seed; 

1'.    

The value of B2.green_seed is assigned to B1.green_seed with a 

weight of 1.  net.add_rules('swap_seed', 'step', ['B1.yellow_seed -> 

B2.yellow_seed; 1', 'B2.green_seed -> B1.green_seed; 1'])    

   

   
2.2.2 Ratio Rule   

The ratio rule also operates in a step-by-step manner, 

similar to the step rule. Both rules have similar 

parameters, but the key difference lies in how they 

determine when to trigger the execution. Instead of 

specifying a fixed number of tokens, the ratio rule uses 

a proportion of tokens to decide when to execute. This 
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proportion is compared against a specified limit using 

a logical operator. Based on a certain ratio the number 

of tokens moved can increase or decrease is useful for 

defining transitions. For instance, imagine we have 

two vesseles, one filled with yellow seeds and the other 

empty. We want to move 12% of the remaining yellow 

seeds from the first vessel to the second. This can be 

represented as,    

net.add_rules( 'swap_ratio', 'ratio',['B1.yellow_seeds   

-> B2.yellow_seeds; 0.12; \ B1.yellow_seeds < 1; 0' ])   

   
2.2.3 Delay Rule   

The delay rule is essentially a step rule that has a specific time 

period between each movement of a token. This means it can 

create a regular, intermittent pattern of token movement, akin to 

spiking. For instance, let us transfer 10 seeds from vessel B1 to 

B2 occurs once every 6th time step, and we can characterize this 

as thus.   

   

net.add_rules( 'interval_transfer’,  

'delay',['B1.seeds   

-> B2.seeds; 10; 6'])   

   
2.2.4 Incubation Rule   

  

The incubation rule represents a period of anticipation preceding a 

particular action  takes place. It involves specifying a timer and a 

value, which checks provided that   

the necessary requirements are fulfilled, one may travel to the  

intended destination.   

As an illustration,    
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if we want to soak a of seeds for 60 time steps 

(equivalent to 60 minutes) in a vessel after adding 

water, and then relocate the soaked seeds into a pot, we 

can define this using an incubation rule.   

net.add_rules('soak', 'incubate',   

['60; vessel.seeds -> pot.seeds; \ vessel.water 

> 0'])     

2.2.5 Function Rule   

The function rule is a customizable condition defined 

by the user. It's typically used when the predefined 

step, ratio, delay, or incubation rules don't meet the 

user's specific needs. However, all types of transition 

rules can be represented as function rules, making 

them a more flexible option. Another regular use of 

function rules is to alter tokens from one type to 

another. The main disparity among transition rules lie 

in the situations that activate them. To compute a 

function rule, you need to specify the source and end 

places, as well as the initial and final tokens involved. 

For instance, the earlier described ratio rule.   

   
net.add_rules( 'swap_ratio', 'ratio',['B1.yellow_seeds   

-> B2.yellow_seeds; 0.20; \ B1.yellow_seeds < 2; 1' ])   

 can be defined by the following function rule:   

 def seed_swap(places): place = places['B1']  n = 

place.attributes['yellow_seeds'] if n > 0.0: return 0.0 else:   

return 0.20 * n   

net.add_rules( 'swap_ratio', 'function',   

['B1.yellow_seeds -> B2.yellow_seeds’ , seed_swap, ‘B1.yellow_seeds >  

0' ])   
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Only one parameter is accepted in the function rule(s) that you're working 

with, which is a dictionary called places. This dictionary contains 

information about different states or places in a network (let's call it PNet). 

You can access each state or place by using its name as the key to the 

places dictionary.   

To access each state or place, simply use its name as the key in the 

places dictionary.    

Each place or state in the "places" collection is related with 

tokens, which are implemented as an attributes dictionary. The 

tokens can be accessed by their respective  names.   

The simulate method stores simulation results in memory. 

Therefore, increasing the reporting intervals will generate more 

reports and result in faster memory usage. On the other hand, 

there is a generator function “the simulate_yield method” in 

which there is no pre-storing of all the simulation results are 

stored in memory. The three parameters necessitated by the 

simulate method are: the period of time to simulate, the rise of 

time, and the rate of reporting. However, the simulate_yield 

method requires only two parameters: the duration of time steps 

and the time to simulate.   

   

Finally, PNet provides a method to convert the simulation outcomes into 

a format that is compatible with CSV file output. The current simulation's 

step count and the status of each token kept in memory will be provided 

by the reports. Furthermore, you have the option to construct a list that 

accurately represents the current state of the tokens either for a single step 

or for the entire simulation.  Simulation and reporting are frequently 

interconnected. An example of how simulation and report creation are 

coupled is demonstrated in the code given below, which utilizes either the 

simulate or simulate_yield method.   The length of the simulation is set to 
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100 units. Each timestep represents a unit of  time. The  simulation  will 

return  results every timestep.  Use the function net.simulate to run a 

simulation for a specific length of time, with a specified  timestep and 

report  frequency.    

To obtain the report tokens, use the net.report_tokens() method. This 

method is specifically designed for simulating yield.   The variable 

"status" is assigned a list comprehension that iterates over the results 

of the "simulate_yield" method of the "net" object. The method is 

called with the arguments "length_of_simulation" and "timestep".    

The code assigns the value of a list comprehension to the variable 

"status". The list comprehension iterates over each element "d" 

in the list "status" and creates a tuple with the first element of "d" 

and the result of calling the "report_tokens" method of the "net" 

object with the second element of "d".    

length_of_simulation = 90  

timestep = 1  report_frequency 

= 1   

# for simulate method   

net.simulate(length_of_simulation,timestep, 

report_frequency)  status = net.report_tokens() # 

for simulate_yield method status = [d for d in  

net.simulate_yield(length_of_simulation, timestep)]  

status = [(d[0], net.report_tokens(d[1])) for d in 

status]   

Framework for Petri Nets Typed Applications  

class Place(object):      

Class to represent a place or container in Petri nets. The 

tokens are represented as a dictionary where each 

token is represented as a key-value pair. The key 
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represents the type of token and the value represents 

the number of such tokens. This enables more than 

one type of tokens to be represented.   

def _init_(self, name):           

Contructor method.   

          self.name = str(name)          

self.attributes = {}           

class PNet(object):  

    Class to represent a Petri Net or Petri Net typed object.   

 The places and transition rules are represented as dictionary objects.  

Places dictionary will have the name of place as key and the Place 

(pnet.Place object) as value. Transition rules dictionary will have the 

name of rule appended with a number (in the format of <rule 

name>_<number> in order to ensure uniqueness) as key and the value is a 

dictionary to represent the transition rule (the structure of the transition 

rule dictionary is dependent on the type of rules).   

  Again recognizing the following types of transition rules are 

allowed:    

- step rule   

- delay rule   

- incubate rule   

- ratio rule   

- function rule   

Step rule is to be executed at each time step. For 

example, if 20g of flour is to be transferred from flour 

vessel to mixer vessel at each time step, this 'add_flour' 

rule can be defined as:   
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net.add_rules('add_flour','step',['flour.flour 

mixer.flour; 20'])   

A single step rule can trigger more than one token movement. 

For example, the following step rule simulates the mixing of 

ingredients into a flour dough:        

net.add_rules('blend', 'step', ['mixer.flour 

-> mixer.dough; 15', 'mixer.water -> 

mixer.dough; 10', 'mixer.sugar -> 

mixer.dough; 0.9', 'mixer.yeast -> 

mixer.dough; 1'])   

Delay rule acts as a time delay between each token 

movement. For example, the following rule simulates 

the transfer of 0.5g of yeast into the mixer vessel:   

net.add_rules('add_yeast', 'delay', ['yeast.yeast -> 

mixer.yeast; 0.5; 10'])   

Incubate rule is a variation of delay rule. While delay 

rule is not condition dependent, incubate rule starts a 

time delay when one or more conditions are met. For 

example,   

 net.add_rules('rise',  'incubate', ['10; 

mixer.dough -> pan.dough; mixer.flour == 0; 

mixer.water == 0; mixer.sugar == 0; 

mixer.yeast == 0'])   

sets a 10 time step delay when all flour, water, sugar, 

and yeast in the mixer vessel are used up, which 

simulates the complete mixing into a bread dough. The 

10 time step then simulates the time needed for the 

dough to rise. After 10 time steps, dough in the mixer 

is transfered into the pan.   
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Ratio rule is a variant of step rule. Instead of absolute 

number of tokens to move, the movement is a 

percentage of the number of tokens. For example,    

net.add_rules('bake', 'ratio', ['pan.dough -> 

pan.bread; 0.3; pan.dough < 1; 0'])   

will move 30% of the token value from dough in pan to bread in pan. If the 

token value of dough in pan is less than 1, then the token value of dough in 

pan will be set to 0.   

Function rule is a generic and free-form rule, that takes 

the form of a Python function. This is usually used 

when the transition cannot be represented by any other 

rules. Given a user-defined function, FUNC,  

net.add_rules('cool', 'function', ['table.temperature >  

air.temperature', FUNC, 'table.bread > 0;  table.temperature 

> 30'])                         FUNC will be 

executed when table.bread > 0 and table.temperature > 30. 

The returned result of FUNC will be the token transfer from 

table.temperature to air.temperature.    

FUNC takes all the places as a single parameter, such 

as FUNC(places), where 'places' is a dictionary with 

the name of each place as key. Token values in any 

place can be assessed. For example,   

 >>> place_names = places.keys()   

 >>> a_place = places[places_names[0]]   

>>> token_set = a_place.attributes.keys()   

>>> a_token_value = 

a_place.attributes[token_set[0]]   

    '''     def _init_(self, 

zerolowerbound=True):    



18       

        Contructor method.   

Zero lower bound boolean: flag to determine whether  number 

of tokens is bounded at zero. Default = True  

(the lowest number for tokens is zero)   

self.places = {}   

self.add_places(place_name:'ouroboros',to 

kens:{'U':flo at('inf')}) self.rules = {} 

self.report = {}  self.losses = {}  

self.zerolowerbound = zerolowerbound 

self.rulenumber = 1   

     def  

add_places(self, place_name, 

tokens):   

Method to add a place/container into the Petri Net.   

For example, the following adds a "flour" place containing    

1000 tokens of flour, which can be seen as a vessel of 1000g of flour:   

net.add_places('flour', {'flour':  

1000})   

place_name string: name of the place/container tokens dictionary:  

token(s) for the place/container  where key is the type of token and value is 

the quantity of tokens for the specific type  

self.places[place_name] = 

Place(place_name)  

self.places[place_name].attributes = 

tokens       def add_rules(self, 

rule_name, rule_type, actions):   

Method to add a transition rule into the Petri Net.   

rule_name string: name of the transition rule. This 

name need not be unique within the model as this 
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method will append a running rule number to the name 

to ensure internal uniqueness.   

rule_type string: type of rule. Allowable types are 'step' for 

step rule, 'delay' for delay rule, and 'incubate' for incubate 

rule. Please see module documentation for the description 

of rules.   

actions list: describe the action(s) of the transition rule   

if rule_type not in ['function']: For t 

in actions:   

       t = [x.strip() for x in  

t.split(';')] d = {'type': rule_type,              

'movement': None}    if rule_type == 

'step':           movement = [x.strip() 

for x in t[0].split('->')]       

d['movement']=[(loc.split('.')[0],loc.s 

plit('.')[1])                                       

for loc in movement]           

d['value'] = float(t[1]) if rule_type 

== 'delay':            movement = 

[x.strip() for x in t[0].split('->')]       

d['movement']=[(loc.split('.')[0],loc.s 

plit('.')[1])                                       

for loc in movement]   

         d['value'] = float(t[1])          

d['delay'] = int(t[2]) if rule_type == 

'incubate': d['value'] = float(t[0])           

movement = [x.strip() for x in 

t[1].split('->')]  

d['movement']=[(loc.split('.')[0],loc.s 

plit('.')[1])                                       

for loc in movement]           

d['conditions'] = [cond for cond in 
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t[2:]]          d['timer'] = 0 if 

rule_type == 'ratio':            

movement = [x.strip() for x in 

t[0].split('->')]       

d['movement']=[(loc.split('.')[0],loc.s 

plit('.')[1])                                       

for loc in movement]   

          d['ratio'] = float(t[1])           

d['limit_check'] = t[2]           

d['limit_set'] = float(t[3])       

self.rules[rule_name + '_' + 

str(self.rulenumber)] =d       

self.rulenumber = self.rulenumber + 1 

if rule_type in ['function']: d = 

{'type': rule_type, 'movement': None} 

if rule_type == 'function':        

movement = [x.strip() for x in 

actions[0].split('->')]   

   

d['movement']=[(loc.split('.')[0],loc.s 

plit('.')[1])                                   

for loc in movement] d['function'] = 

actions[1]   

     d['conditions'] = [cond.strip() for 

cond in actions[2].split(';')]  

self.rules[rule_name + '_' + 

str(self.rulenumber)] = d        

self.rulenumber = self.rulenumber  

+ 1   

             def _step_rule(self, 

movement, value, interval):   
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Private method which simulates a step rule action.  

movement string: defines the movement of a token type. 

Each movement is defined in the following format:   

<source place>.<source token> ->   

<destination 

place>.<destination 

token> value float: 

the number of tokens 

to move interval 

integer: simulation 

time interval   

'''  source_place = 

self.places[movement[0][0]] 

source_value = movement[0][1]  

destination_place = 

self.places[movement[1][0]] 

destination_value = movement[1][1] if  

source_place.attributes[source_value]<( 

value*interval)    and 

self.zerolowerbound == True:   

   value =  

source_place.attributes[source_value] 

source_place.attributes[source_value] = 

\     

source_place.attributes[source_value]-  

(value*interval) 

destination_place.attributes[destinatio 

n_value] = \      

destination_place.attributes[destinatio 

n_value] +  \ (value*interval)  def 
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_test_condition(self, place, token, 

operator, value):   

        '''!   

Private method used by rule processors for logical check 

of condition. For example, the condition   

'mixer.flour == 0' will be written as    

>>> _test_condition('mixer', 'flour',  

'==', 0)   

place string: name of place/container token string: 

name of token operator string: binary operator. 

Allowable values are '==' (equals to), '>' (more than), 

'>=' (more than or equals to), '<' (less than), '<=' (less 

than or equals to), and '!=' (not equals to).   

value: value to be checked   

@return 'passed' if test result is true, or 0 if test result is false   

        ''' value = float(value) 

if operator == '==' and \    

self.places[place].attributes[to 

ken] == value:     return 

'passed' elif operator == '>' and 

\      

self.places[place].attributes[tok 

en] > value: return 'passed' elif 

operator == '>=' and \      

self.places[place].attributes[tok 

en] >= value:   

     return 'passed' elif operator 

== '<' and \ 

self.places[place].attributes[tok 

en] < value:   
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     return 'passed' elif operator  

== '<=' and \      

self.places[place].attributes[toke 

n] <= value:   

     return 'passed' elif operator  

== '!=' and \      

self.places[place].attributes[toke 

n] != value:   

return 'passed' else:       

return 'failed' def 

_conditions_processor(self 

, conditions):          

conditions list: one or more logical conditions in the 

format of '<place>.<token> <binary operator>  

<criterion>', such as 'oven.heat > 300', for evaluation   

test = [0] * len(conditions)  for i in 

range(len(conditions)): cond = conditions[i]      if 

len(cond.split('==')) == 2: operator = '=='  cond = 

[c.strip() for c in cond.split('==')]      elif 

len(cond.split('>')) == 2: operator = '>' cond = 

[c.strip() for c in cond.split('>')]      elif  

len(cond.split('>=')) == 2:          operator = '>='           

cond = [c.strip() for c in cond.split('>=')]       elif 

len(cond.split('<=')) == 2:            operator  

= '<='            cond = [c.strip() for c in  

cond.split('<=')]       elif len(cond.split('!=')) == 

2:             operator = '!='             cond = 

[c.strip() for c in cond.split('!=')]       

source_place = cond[0].split('.')[0]       

source_value = cond[0].split('.')[1]       criterion = 

cond[1]        test[i] =  
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self._test_condition(source_place,   source_value, 

operator, criterion) return test          def 

_incubate_rule(self, rule, interval):    

  

        rule: a dictionary representing the incubate  

rule interval integer: simulation time interval   

   @return modified rule dictionary   

        value = rule['value']         timer =  

rule['timer']         conditions = rule['conditions']         

movement = rule['movement']   

        test = self._conditions_processor(conditions)         

if len(['failed' for t in test if t == 'failed']) == 

0:              if (timer + interval) < value:   

                rule['timer'] = timer + interval              

else:   

                source_place 

self.places[movement[0][0]]   

                source_value = movement[0][1]   

=  

                destination_place  

self.places[movement[1][0]]   

=  

                destination_value = movement[1][1]                   

destination_place.attributes[destination_value] = \   

                     

destination_place.attributes[destination_value] + \   

                     

source_place.attributes[source_value]                  

source_place.attributes[source_value]  

=   
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0                  rule['timer'] = 0         return 

rule   

          def _ratio_rule(self, movement, 

ratio, limit_check,                      

limit_set, interval):  movement string: defines the 

movement of a token type.    

        Each movement is defined in the following format:    

<source place>.<source  token> ->  

<destination place>.<destination token>   

ratio float: the ratio of tokens to move  

limit_check string: logical check for 

remainder value limit_set flaot: value to 

set token if token in          limit_check is 

true  interval integer: simulation time 

interval  source_place =  

self.places[movement[0][0]]         

source_value = movement[0][1]          

destination_place = 

self.places[movement[1][0]]         

destination_value = movement[1][1]   

 Step 1: Perform ratio rule operation   

        token_value  

source_place.attributes[source_value] *  

\                       ratio * interval          

source_place.attributes[source_value] =  

\   

             

=  

source_place.attributes[source_value]   -  

token_value   
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destination_place.attributes[destinatio 

n_value]   

= \  

destination_place.attributes[destinatio 

n_value]   + token_value   

# Step 2: Perform remaining checks and corrections           

if len(limit_check.split('>')) == 2:              

operator = '>'              limit_check 

= [c.strip() for c in 

limit_check.split('>')] if 

len(limit_check.split('<')) == 2:   

            operator = '<'   

            limit_check = [c.strip() for 

c in limit_check.split('<')]          

check_place = 

limit_check[0].split('.')[0]         

check_token =  

limit_check[0].split('.')[1]         

check_value = float(limit_check[1])         

if  

 self._test_condition(check_place, 

check_token,              operator, 

check_value) == 'passed':             if 

source_value in self.losses:  

self.losses[source_value] = 

self.losses[source_value] +   

\  source_place.attributes[source_value] 

- limit_set else:  

self.losses[source_value] =  
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\                 

source_place.attributes[source_value] - 

limit_set  

source_place.attributes[source_value] = 

limit_set           def 

_function_rule(self, movement, 

function, conditions):         '''!          

Private method which simulates a 

function rule action.   

movement string: defines the movement of a token type.   

Each movement is defined in the following format:    

<source place>.<source token> ->  

<destination place>.<destination token>   

function: a Python function to be executed when conditions are 

met. This function describes the transition of token.   

conditions list: one or more logical conditions in the format of   

'<place>.<token> <binary operator>  

<criterion>',          such as  

'oven.heat > 300', for evaluation   

        '''          

source_place = 

self.places[movement[0][0]]    

source_value = movement[0][1]   

        destination_place  = 

self.places[movement[1][0]]         

destination_value = movement[1][1]          

 test  =  

self._conditions_processor(conditions)         

if len(['failed' for t in test if t ==  
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'failed'])  ==  0:             

token_value = function(self.places)             

source_place.attributes[source_value] =  

\                  

source_place.attributes[source_value] - 

token_value              

destination_place.attributes[destinatio 

n_value] = \  

destination_place.attributes[destinatio 

n_value]   + token_value              

def _execute_rules(self, clock, 

interval):   

'''!   

        Method used by PNet.simulate() and    

        PNet.simulate_yield() to execute all the rules.   

clock cloat: wall time of the current simulation interval integer:  

simulation time interval   

        affected_places 

= []  for rName in 

self.rules.keys():   

# Step rule   

if self.rules[rName]['type'] == 'step': movement  = 

self.rules[rName]['movement']                  value 

=  

self.rules[rName]['value']                 

self._step_rule(movement,  value, 

interval)  # Delay rule   

            if  
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self.rules[rName]['type'] == 'delay' and 

\   

                (clock % 

self.rules[rName]['delay']) == 0:   

                 movement   =   

self.rules[rName]['movement']                  

value =  

self.rules[rName]['value']                 

self._step_rule(movement,  value, 

interval)   

# Incubate rule   

            if self.rules[rName]['type'] 

== 'incubate':   

                value = 

self.rules[rName]['value']   

                 rule   =   

self._incubate_rule(self.rules[rName], 

interval) self.rules[rName] = rule   

# Ratio rule   

            if self.rules[rName]['type'] 

== 'ratio':   

                 movement   =   

self.rules[rName]['movement']                  

ratio = self.rules[rName]['ratio']   

                 limit_check   =   

self.rules[rName]['limit_check']   

                 limit_set   =   
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self.rules[rName]['limit_set']   

                 

self._ratio_rule(movement,  ratio, 

limit_check,    

                                 

limit_set, interval)   

# Function rule   

            if  

self.rules[rName]['type'] ==  

'function':                 movement  

 =   

self.rules[rName]['movemen 

t'] conditions = 

self.rules[rName]['conditi 

ons']   

                 function   =   

self.rules[rName]['function']   

                 

self._function_rule(movement, function, 

conditions)              def simulate(self, 

end_time, interval=1.0, 

report_frequency=1.0):   

'''!   

        Method to simulate the Petri Net.  

This method stores the          generated report in 

memory; hence, not suitable for extended          

simulations as it can run out of memory. It is 

possible to          conserve memory by reducing the 

reporting frequency. Use          
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simulate_yield method for extended 

simulations.   

                  end_time integer: number of 

time steps to simulate. If          end_time = 

1000, it can be 1000 seconds or 1000 days, depending 

on the significance of each step interval float: number 

of intervals between each time step. Default = 1.0, 

simulate by time step interval report_frequency 

float: number of time steps between each reporting. 

Default = 1.0, each time step is reported   

        '''         

clock = 1         

end_time = 

int(end_time)         

while clock < (end_time 

+ 1):   

self._execute_rules(clock, 

interval)             if (clock % 

report_frequency) == 0:                  

self._generate_report(clock)             

clock = clock + interval       

def simulate_yield(self, 

end_time, interval=1.0):   

        '''!   

Method to simulate the Petri Net. This 

method runs as a generator, making it 

suitable for extended simulation.   

          end_time integer: number of time steps to 

simulate. If          end_time = 1000, it can be 

1000 seconds or 1000 days,          depending on the 

significance of each step interval float: number of 



32       

intervals between each time step. Default = 1.0, simulate 

by time step interval   

        '''         

clock = 1         

end_time = int(end_time 

)         while 

clock  

< end_time:              

self._execute_rules(clock, 

interval)              

self._generate_report(clock)             

rept = {}             for k in 

self.report[str(clock)].keys():                  

rept[k] =  

self.report[str(clock)][k]             

del self.report[str(clock)][k]             

yield (clock, rept)             clock 

= clock + interval   

                 def 

_generate_report(se 

lf, clock):   

Method to generate and store report in memory of each 

token status (the value of each token) in every 

place/container. clock float: step count of the current 

simulation   

        '''   rept = 

{}         for pName 

in self.places.keys():   

            for  aName   in 

self.places[pName].attributes.keys():   

                 value   =   
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self.places[pName].attributes 

[aName]                 name = 

'.'.join([pName, aName])                 

rept[name] = value         

self.report[str(clock)] = rept               

def report_tokens(self, 

reportdict=None):   

        '''!   

Method to report the status of each token(s) from each 

place as a list. This can be used in 2 different ways: to 

generate a list representation of a status from , one time 

step (such as from simulate_yield method), or to 

generate a list      representation of a status from entire 

simulation (such as from simulate method).   from 

simulate method   

net.simulate(65, 1, 1)         

status = net.report_tokens() from 

simulate_yield method status = [d 

for d in net.simulate_yield(65, 

1)]         status = [(d[0], 

net.report_tokens(d[1])) for d in 

status]  

reportdict dictionary: status from one time  

step.    

Default = None. If None, it will assume that simulate 

method had been executed and all status are stored in 

memory, and this method will generate a report from status 

 stored  in  memory  @return  tuple  of  

([<place.token name>], [([<place.token  

value>]]) if reportdict is given, or   

tuple of (time step, [<place.token name>],   
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[([<place.token value>]]) if reportdict is 

None.          if reportdict:   

            placetokens = 

reportdict.keys()              

tokenvalues =  

[reportdict[k] for k in placetokens]              

return (placetokens, tokenvalues)         

else:              timelist = 

list(self.report.keys())             

datalist = [0] * len(timelist)             

for i in range(len(timelist)):   

                placetokens  =  

list(self.report[timelist[i]].keys())   

                tokenvalues 

[self.report[timelist[i]][k] 

for k in placetokens]   

 =   

                datalist[i]   =   (timelist[i],   

placetokens, 

tokenvalues)             

return datalist   
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CHAPTER 3  

  

MODELING USING PNET  

   

   
   
3.1 Baking a Cake   

  

In this example, we modeled the recipe of baking a cake  (look at 

Appendix A for execution) and simulation was done for 120 time 

steps. We note that the recipe except the use of infinite tokens from 

Ouroboros, it utilizes all features of PNet. In the recipe used we call 

for 1000 g of flour, 6 eggs, 500 g of water and 200 g of butter in the 

following steps:    

1. First, we issue the command to activate the mixer. Then, we 

carefully incorporate 500 g of flour, 250 g of sugar, 3 eggs, and 100 

g of butter during each time step.   

2. In each time step, the mixer will now turn the mixer batter to 

800g of cake pan batter.  3. After thoroughly combining the 

ingredients, allow the dough to rise in the mixer for 60 time steps.    

4. Next, we'll transfer the dough into the pan and allow it to rise for an 

additional 60 time steps.    

5. Transfer the cake to the table for cooling.   

6. Enjoy your cake.   

The two Steps, we need to display the process of adding and 

mixing the ingredients into a cake batter. The rate at which dough 

forms is slower compared to the rate at which ingredients are 

added. For instance, during each time step, the mixer receives 

500 g of flour, 100 g of butter, 3 eggs, and 250 g of sugar and are 
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converted to a batter. After, completion of above steps, the cake 

is then transferred to a table and cooled down(Step 5).    

   

We described a baking process using a Petri net structure and firing 

rules. Now, let's explore its working and application in detail:   

   

Application using Petri Net Structure:   

   

1. Places: These represent different states or locations in the baking 

process:   

• flour, sugar, eggs, butter: Places represents the ingredients needed 

for baking.   

• mixer: Represents the mixing process where ingredients are 

combined to form a cake batter.   

• cake_pan: Represents the container where the batter is poured.   

• oven: Represents the oven where the cake is baked.   

   

2. Transitions: Transitions represent the actions or steps used in the 

baking process:   

• mix: Represents the mixing of ingredients in the mixer.   

• pour_into_pan: Represents pouring the batter from the mixer into the 

cake pan.   

• bake: Represents the baking process in the oven.   

   

Working using Firing Rules:   

   

1. Enabling Transitions: Before a transition can occur, it is important 

to be enabled. A transition gets enabled if all of its input places have 

enough tokens (ingredients) to assure their input arcs. In this 

simulation, each transition checks if there are enough ingredients 

available in the consequent places.   
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2. Firing Transitions: When a transition is triggered, it takes tokens 

from its input places and generates tokens in its output places 

according to the specified rules. For example:   

• The mix transition consumes ingredients from the flour, 

sugar, eggs, and butter places, mixes them, and produces 

batter in the mixer place.   

• The pour_into_pan transition consumes batter from the 

mixer place and pours it into the cake pan.   

• The bake transition consumes batter from the cake pan, 

bakes it in the oven for a specified time, and produces a 

cake.   

   

3. Simulation:   

• The simulation runs for a specified number of time steps.   

• At each time step, the transitions are evaluated for firing based on 

the availability of ingredients and the specified rules.   

• If a transition is enabled, it fires, updating the token counts in the 

places accordingly.   

• The process continues for the specified number of time steps, 

simulating the entire baking process from mixing to baking.   

  

   

 
Fig 1: Petri Net Diagram of Cake Baking Model  
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3.1.1 Appendix A: Code for Baking a Cake   

    

import pnet import  

copads  from copads 
import pnet # Create a 
Petri net object 
net=pnet.PNet()   

   

# Define ingredients   

net.add_places('flour', {'flour': 1000}) net.add_places('sugar',  

{'sugar': 500}) net.add_places('eggs', {'eggs': 6}) 
net.add_places('butter', {'butter': 200})   

   

# Define utensils   

net.add_places('mixer', {'flour': 0, 'sugar': 0, 'eggs': 0,   

'butter': 0, 'batter': 0})   

net.add_places('cake_pan', {'batter': 0}) net.add_places('oven', 
{'batter': 0, 'cake': 0})   

   

# Define steps   

net.add_rules('mix', 'step', [   

    'flour.flour -> mixer.flour; 500',   

    'sugar.sugar -> mixer.sugar; 250',   
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1. Introduction   

The above Python code implements a simulation of a baking process 

using Petri Nets, a mathematical modeling tool used in various fields 

including computer science and systems biology. The objective is to 

model the steps involved in baking a cake, including mixing 

ingredients, pouring the batter into a cake pan, and baking it in an 

oven.   

2. Petri Net Setup   

• Importing Modules: The code imports necessary modules including 

`pnet` for Petri Net simulation and `copads` for additional 

computational processes.   

• Creating Petri Net Object: An instance of a Petri Net is created using 

the `PNet` class.   

    'eggs.eggs -> mixer.eggs; 3',   

    'butter.butter -> mixer.butter; 100'   

])  net.add_rules('pour_into_pan', 'step', [      

'mixer.batter -> cake_pan.batter; 800'   

])    

net.add_rules('bake', 'incubate', [   

    '60; cake_pan.batter -> oven.batter; cake_pan.batter > 0' ])   

   

# Simulate the baking process net.simulate(120, 1, 1)   

   

# Generate results file data = net.report_tokens()   

headers = ['timestep'] + data[0][1]   

   

f = open('cake.csv', 'w')   

f.write(','.join(headers) + '\n') for 
tdata in data:   tdata = [tdata[0]] + 
\  [str(x) for x in tdata[2]]   

 f.write(','.join(tdata) + '\n')   

f.close()   
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3. Model Definition   

• Ingredients and Utensils: Places (nodes) representing ingredients like 

flour, sugar, eggs, and butter are defined along with their initial 

quantities. Additionally, places representing utensils such as mixer, 

cake pan, and oven are defined.   

• Steps: Various steps involved in the baking process are defined using 

rules. These steps include mixing ingredients in the mixer, pouring 

the batter into a cake pan, and baking the cake in an oven. Each step 

specifies the transition of tokens (quantities) between places.   

4. Simulation   

• Simulating the Baking Process: The baking process is simulated 

using the defined Petri Net model. The simulation runs for 120 time 

units with 1 repetition and 1 time step.   

5. Results Generation   

• Generating Results File: The results of the simulation are extracted 

and formatted into a CSV file named "cake.csv". The file contains 

information about the quantities of ingredients and the state of 

utensils at each time step during the baking process.   

6. Conclusion   

In conclusion, this code demonstrates the use of Petri Nets for 

modeling and simulating a real-world process—in this case, the 

baking of a cake. By defining ingredients, utensils, and steps, and 

simulating the process, it provides insights into the dynamics of the 

baking process and facilitates analysis and optimization.   

   

3.2 Model on Epidemiological Disease   

   

Epidemiological disease models are conceptual frameworks that 

analyze ecological and epidemiological events, specifically focusing 

on the interactions between a host and a disease. Epidemiological 

models have demonstrated their utility in studying the evolutionary  

dynamics and forecasting characteristics of pathogen dissemination, 

such as duration and prevalence. Alphabet models are conceptual 

frameworks that represent a population, where individuals who are 

vulnerable are assumed to be infected by a contagious pathogen. 

The population is categorized into three epidemiological subclasses: 

S represents persons who are vulnerable to disease we use the 

variable "I" to represent the  
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number of individuals who are infected, and "R" to represent the 

number of individuals who no longer contribute to the spread of 

diseases at a given moment. The Susceptible-Infectious-Susceptible 

(SIS) model is based on the premise that the pathogen infects 

individuals who are susceptible, leading to an infection. After 

recovering from the infection, these individuals return to the 

susceptible category once again. Hosts that are infected experience a 

consistent recovery rate per person, denoted as γ, whereas β 

represents the rate at which the susceptible class becomes infected. 

The SIS model is designed to simulate the spread of rapidly 

changing viruses and diseases that do not confer immunity. The 

Susceptible-Infectious-Recovered (SIR) model is analogous to the 

SIS model, with the distinction of the pathogen that results in 

permanent immunity. Those are immune to reinfection who have 

been infected and then recovered, exhibiting lasting immunity. This 

paradigm is engaged for viral illnesses including measles, mumps, 

and rubella. The SIRS model is similar to the SIR model, with the 

distinction that the acquired protection is transient. The ones who 

are not having immunity to reinfection are those who have been 

infected and then healed. TB is an example of an infection that can 

be modeled using the SIRS framework. Nevertheless, a set of 

ordinary differential equations (ODEs) can be used to execute the 

majority of epidemiological models and Petri Nets are widely used 

mathematical constructions in the field of mathematical modeling.  

Therefore, there is a requirement for a technique to express an  

Ordinary Differential Equation (ODE) using Petri Net notation. 

Soliman and Heiner have established a connection between ODEs 

and state-transition networks. In essence, an ordinary differential 

equation (ODE) represents the relationship between time progress 

and the evolution of a system's state, but a Petri Net captures the 

transitions that lead to changes in the system's condition w.r.t. time 

(Fig. 2). Within the framework of states (nodes) and transitions 
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(arcs), this implies that ODEs symbolize the nodes, while Petri Nets 

symbolize the transitions. Consequently, it becomes straightforward 

to convert ODE representations to Petri Net representations, 

provided that the time unit remains consistent in both 

representations.   

   

 
    

Fig 2: Petri Net Transition Rule and Ordinary Differential Equation 

Correspondence.   

   

   
Fig 3: The input-output diagram represents the influenza epidemic model in a 

school setting without reinfection.  
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Fig 4: Using numerical methods, we can solve the differential 

equations that describe the spread of an infectious disease in a 

hypothetical population of N = 106. The parameter values utilized 

were β = 10−6 susceptibles−1 day−1, γ = 1/3 years−1, b = a = 1/50 

years−1, with initial populations S(0) = 9 × 105 and I(0) = 105.   

  

Our simulation results are indicating that the ratio of the population 

that is infected  to the population that is susceptible stabilizes over 

time. Since, there is no immunity acquired after recovering from the 

infection, it is anticipated that there would be a consistent population 

of infected individuals, which is also referred to as an endemic 

population. This assumes that there are no births or deaths for the 

whole term, and that the sickness is not fatal. When individuals 

develop immunity after recovering from a disease, the SIS model 

transforms into the SIR model. In the SIR model, the population 

gradually becomes completely immune over time, assuming no new 

individuals are born. This is analogous to the situation with 

chickenpox, where most individuals who have recovered from the 

disease get lifetime immunity. As a result, children are more 
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susceptible to chickenpox, while most adults are immune. 

Nevertheless, the possibility of reinfection arises if the acquired 

immunity is of a limited duration, resulting in a evolution from the 

SIR model to the SIRS model. We come to know by our findings that 

in situations when there is a consistent population of infected 

individuals (known as endemic) the SIRS model exhibits similar 

behavior to the SIS model. However, there is also a consistent group 

of individuals with immunity who have recently recovered from the 

condition. This occurrence is anticipated when the infectious agent 

has the ability to re-infect an individual who has previously 

recovered from the infection.   

We are describing the dynamics of an epidemic using a Petri net 

structure and firing rules. Let's delve into its application and 

functioning:   

   

Application using Petri Net Structure:   

   

1. Places: These represent the different states of individuals within the 

population:   

 Susceptible: People who are vulnerable to the infection.   

 Infected: People who are presently contaminated with the illness.   

 Recovered: Individuals who have recovered from the disease and 

gained immunity.   

   

2. Transitions: Transitions represent the events or actions that occur in 

the epidemic:   

 Infection: Represents the transmission of the disease from 

susceptible individuals to infected individuals.   

 Recovery: Represents the recovery of infected individuals.   

 Resusceptible: Represents the loss of immunity in recovered 

individuals, making them susceptible again.   

   

Working using Firing Rules:   
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1. Enabling Transitions: Before a transition can occur, it must be 

enabled. A transition is considered enabled if there are a 

sufficient number of tokens available in the corresponding input 

places. In this simulation, a transition is enabled if there are 

sufficient susceptible individuals for infection, infected 

individuals for recovery, or recovered individuals for 

resusceptibility.   

   

2. Firing Transitions: The act of extracting tokens from input 

places and generating tokens in output places according to the 

specified rules happens when a transition is said to be fired. The 

infection transition leads to consumption of susceptible 

individuals and leads to production of infected individuals in 

this simulation, the recovery transition leads to consumption of 

infected individuals and production of recovered individuals, 

and the resusceptible transition consumes recovered individuals 

and produces susceptible individuals.   

  

3. Simulation:   

 The simulation operates for a specified number of time steps.   

 At each time step based on the conditions specified by the firing 

rules, the transitions are evaluated for firing.   

 The enabling of a transition leads to it’s firing, updating the token 

counts in the places accordingly.   

 For the specified number of time steps the process keeps on 

continuing which then allows the epidemic dynamics to unfold over 

time.   

 3.2.1 Appendix B: Code for SIRS Model  
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        from copads import pnet   

# Parameters  infection_rate 

= 0.01  recovery_rate = 

0.005  resusceptible_rate = 

0.01   

   

# Initialize Petri 

net net = pnet.PNet()   

net.add_places('susceptible', {'susceptible': 100}) 

net.add_places('infected', {'infected': 0}) 

net.add_places('recovered', {'recovered': 0})   

   

# Define transition functions def  

susceptible_to_infected(places 

):     susceptible =   

places['susceptible'].attributes['susceptible']     return 

infection_rate * susceptible   

 def infected_to_recovered(places):     infected = 

places['infected'].attributes['infected']     return 

recovery_rate * infected   

 def recovered_to_susceptible(places):     recovered = 

places['recovered'].attributes['recovered']     return 

resusceptible_rate * recovered   

   

# Add rules  net.add_rules('infection', 

'function', [   

    'susceptible.susceptible ->  

infected.infected',     susceptible_to_infected,      
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h'susceptible.susceptible > 0'   

] 

) 

   net.add_rules('recovery', 

'function', [   

    'infected.infected -> recovered.recovered',     

infected_to_recovered,      

'infected.infected > 0'   

] 

) 

    

net.add_rules('resusceptible', 'function', [   
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    'recovered.recovered -> susceptible.susceptible',      

recovered_to_susceptible,     'recovered.recovered  

> 0'   

])   

   

# Simulate the Petri net net.simulate(500, 

1, 1)   

   

# Report tokens and save to CSV 

data = net.report_tokens()  headers 

= ['timestep'] + data[0][1]   with 

open('sirs.csv', 'w') as f:   

    f.write(','.join(headers) + '\n')     for 

timestep_data in data:         row = [timestep_data[0]] 

+ [str(x) for x in timestep_data[2]]   

        f.write(','.join(row) + '\n')   

   

   

3.3 Evolution of Molecule Count in a System   

   

To simulate the evolution of molecule count in the system using a 

Petri net using python, we can write a custom implementation.  

Here's how we can do this:   

1. Describe the places, transitions, and arcs for the Petri net.   

2. Define functions to check transition enablement and firing.   
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3. Simulate the system over a number of steps, applying the 

transitions according to their probabilities.   

   

We are unfolding a simple chemical reaction process using a Petri  

Net structure and it’s firing rules. Let's break down its application 

and working using Petri nets:   

   

 Application using Petri Net Structure:   

   

1. Places: In the system, places symbolize different states or 

locations. In this simulation, there are three places:   

 Molecules: Represents the pool of molecules in the system.   

 Synthesis: Represents the process of synthesizing molecules.   

 Dissociation: Represents the process of dissociating molecules.   

   

2. Transitions:  In the system, events or actions that can occur 

are represented by Transitions. In this simulation, there are two 

transitions:   

 synthesize: Represents the synthesis process (combining different 

things).   

 dissociate: Represents the dissociation process(breakdown into 

smaller components).   

   

3. Arcs: The flow of tokens (molecules) between places and 

transitions is represented by Arcs. There are input arcs and output 

arcs:   

 Places to transitions are connected by Input Arcs, indicating the 

tokens required for the transition to fire.   

 Transitions to places are connected by Output Arcs, indicating 

where the tokens produced by the transition will go.   
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Working using Firing Rules:   

   

1. Enabling Transitions: Enabling is necessary to make a 

transition fire. A transition is considered enabled if all of its input 

spots have enough tokens to satisfy their input arcs. The 

`is_enabled` method in the `Transition` class checks if a 

transition is enabled.   

   

2. Firing Transitions: When a transition fires then the 

consumption of tokens from its input places according to the 

input arcs takes place which later produces tokens in its output 

places according to the output arcs. The `fire` method in the 

`Transition` class handles this process.   

   

3. Simulation:  The simulation executes for a predetermined 

amount of iterations.   

 At each step, there's a probability of synthesis and dissociation 

taking place.   

 If the conditions for synthesis or dissociation are met (based on 

random probabilities and transition enabling), the corresponding 

transition fires.   

 The number of molecules in the 'Molecules' place is recorded at 

each step to track the evolution of the system.   
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Fig 5: Evolution of molecule count in the system   

3.3.1 Appendix C: Code for evolution of molecule count in a system   
 

import random   

import matplotlib.pyplot as plt   

class Place:     def init(self, 

name, tokens=0):         

self.name = name         

self.tokens = tokens   class 

Transition:      

def init(self, name):         

self.name = name   

     def is_enabled(self, net, input_places):   

        return all(net.places[place].tokens >= weight for place, 

weight in input_places.items())       def fire(self, net, 

input_places, output_places):         for place, weight in 

input_places.items():   

            net.places[place].tokens -= weight          
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for place, weight in output_places.items():              

net.places[place].tokens += weight    
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class PetriNet:     def 

init(self, name):         

self.name = name         

self.places = {}         

self.transitions = {}         

self.input_arcs = {}         

self.output_arcs = {}       def 

add_place(self, place):          

self.places[place.name] = place       def 

add_transition(self, transition):          

self.transitions[transition.name] = transition          

self.input_arcs[transition.name] = {}         

self.output_arcs[transition.name] = {}       def 

add_input(self, place, transition, weight=1):          

self.input_arcs[transition][place] = weight       def 

add_output(self, place, transition, weight=1):          

self.output_arcs[transition][place] = weight   

   

# Define the Petri net   

net = PetriNet('MoleculeSynthesisDissociation')    

# Add places   

net.add_place(Place('Molecules', tokens=500))  # Starting with   

500 molecules   

net.add_place(Place('Synthesis', tokens=0)) 

net.add_place(Place('Dissociation', tokens=0))   

   

# Add transitions   

net.add_transition(Transition('synthesize')) 

net.add_transition(Transition('dissociate'))   
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# Add arcs   

net.add_input('Synthesis', 'synthesize', weight=1) 

net.add_output('Molecules', 'synthesize', weight=1) 

net.add_input('Molecules', 'dissociate', weight=1) 

net.add_output('Dissociation', 'dissociate', weight=1)   
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# Define the probabilities for synthesis and dissociation 

synthesis_probability = 0.6  # Probability of synthesis 

dissociation_probability = 0.4  # Probability of dissociation    

# Simulation parameters   

steps = 100  # Number of simulation steps   

molecule_counts = []  # To store the number of molecules at each 

step   

   

# Run the simulation for step in range(steps):     if 

random.random() < synthesis_probability:   

        if net.transitions['synthesize'].is_enabled(net, 

net.input_arcs['synthesize']):             

net.transitions['synthesize'].fire(net,  

net.input_arcs['synthesize'], net.output_arcs['synthesize'])     

if random.random() < dissociation_probability:         if 

net.transitions['dissociate'].is_enabled(net, 

net.input_arcs['dissociate']):             

net.transitions['dissociate'].fire(net,  

net.input_arcs['dissociate'], net.output_arcs['dissociate'])     

molecule_counts.append(net.places['Molecules'].tokens)    

# Plot the results plt.plot(molecule_counts) 

plt.xlabel('Steps')   

plt.ylabel('Number of Molecules')   

plt.title('Evolution of Molecule Count in the System') plt.show()   
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CHAPTER-4  

CONCLUSION  

   
Winding up, we have given a definition of all the necessary and 

required rules used for developing a model using PNET library in 

python. We also come to a conclusion that it’s easier to build up a 

Petri net complex model using PNET library in python and lesser 

time is consumed to come to conclusions than understanding a 

complex model and concluding from that model.   

   

We did an exploration of Petri Net Theory (PNET) through it’s 

practical applications such as baking a cake project, a model of 

epidemiological illness, and a model of the evolution of molecule 

count in a system which demonstrates the usefulness and power of 

PNET for modeling complex systems. At this juncture, we 

summarize the findings and insights gained from these projects.   

   

1. Baking a Cake Project   

   

Objective: To model the process of baking a cake in order to 

understand the sequence of steps and resource dependencies.   

Findings:   

 Sequential and Parallel Processes: Effectively both sequential and 

parallel processes involved in cake baking are captured by the Petri 

Net model, such as mixing ingredients (sequential) and preheating 

the oven while preparing the batter (parallel).   

 Resource Management: Resource constraints, such as limited mixing 

bowls or baking pans, are highlighted in the model and ensures these 

resources are optimally utilized.   
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 Process Optimization: The simulation of the Petri Net leads to the 

identification of bottlenecks in the process, which allows for 

optimization of the workflow, such as reduction in idle time for 

resources or streamlining steps to save time.   

   

2. Model of Epidemiological Disease   

   

Objective: Simulation of the spread of an infectious disease for 

understandong the dynamics of infection and recovery in a 

population.   

Findings:   

 Compartmental Modeling: For compartmental models in 

epidemiology Petri Nets are well-suited, such as the SIR 

(Susceptible-Infectious-Recovered) model. The transitions between 

compartments are naturally represented by transitions in the Petri 

Net.   

 Stochastic Simulations: The stochastic nature of Petri Nets helps in 

allowing the simulation of random events, such as the infection rate 

and recovery rate, providing a realistic representation of spread of 

disease.   

 Intervention Strategies: The model can be used to test various 

intervention strategies (e.g., vaccination, quarantine) by 

adding/removing places and transitions, thus helping in planning 

effective control measures.   

   

3. Evolution of Molecule Count in a System   

   

Objective: To model the dynamics of chemical reactions and the 

evolution of molecule counts over time.   

Findings:   

 Reaction Dynamics: Petri Nets efficiently model chemical reaction 

networks, capturing how the reactants transform to products through 

transitions that represent chemical reactions.   
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 Conservation Laws: The model enforces laws of conversation, 

ensuring that the total number of molecules is preserved, reflecting 

real-world chemical processes.   

 Complex Systems: For systems with more than one reactions and 

intermediate compounds, Petri Nets provide a clear and manageable 

way to analyze and visualize the complex interactions and 

dependencies.   

   

Overall Conclusion   

   

The use of the PNET library in Python for these diverse projects 

underscores its heftiness and elasticity in modeling various types of 

systems. Main conclusions are:   

   

 Versatility: Petri Nets can be applied to a wide range of fields, from 

simple processes like cake baking to complex systems like 

epidemiological spread and chemical reaction networks.   

 Clarity and Manageability: A clear graphical representation is 

offered by them, making it easier to understand, manage, and 

communicate the modeled systems.   

 Simulation and Optimization: The ability to simulate these models 

allows for dynamic analysis and optimization, providing valuable 

insights and aiding in decision-making.   

 Real-World Applications: The insights gained from these models 

have practical implications, such as improving efficiency in 

workflows, planning public health interventions, and understanding 

chemical processes.   

   

Overall, the projects demonstrate that Petri Net Theory, implemented 

through the PNET library in Python, is a powerful tool for analyzing, 

modeling,  and optimizing complex systems across various domains.  

Hence, the entire paper demonstrates the power of PNET as a 

versatile modeling framework in Python for simulating complex 

systems, enabling researchers, engineers, and enthusiasts to gain 



59       

valuable insights, make informed decisions, and drive innovation 

across various domains.     
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