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ABSTRACT 

The prime objective of automatic generation control (AGC) is to adjust the active 

power generation in response to variable power demands and hence AGC is required 

to maintain scheduled system frequency and scheduled tie-line power flows with 

neighboring control areas at desired tolerance values. A sizeable fall in frequency 

might badly affect the timing of electric clocks, magnetizing currents in 

transformers/induction motors, constant speed of AC motors, continuous operation of 

processes and synchronous operation of various units in power system. Additionally, 

power system may face a serious instability problem at substantial drop in the 

frequency. In steady state, automatically these variations must be zero. Enhanced 

power system stability is achieved with the proper design of supplementary 

controller adopted in an AGC system. However, continuous growth in size and 

complexity, stochastically changing power demands, system modeling errors, 

alterations in electric power system structures and variations in the system 

parameters over the time has turned AGC task into a challenging one. Consequently, 

conventional control strategies may be incompetent to handle such unpredictable 

variations in an AGC system. Hence, the researchers over the world are trying to 

propose several novel control strategies that fuse knowledge, techniques and 

methodologies from varied sources to tackle AGC problem of power system 

effectively. The literature survey indicates that several researchers tried to tackle 

AGC issue in traditional system. It presents various types of controllers optimized 

using various conventional and intelligent soft computing techniques. The literature 

survey also unveils that the performance of AGC system depends chiefly on the sort 

of intelligent technique exploited and structure of the controller. Hence, the goal of 

the present study is to propose different types of new supplementary controller 

structures for various types of traditional power systems.  

The presented work is divided into ten chapters. Chapter 1 presents the introduction 

of AGC topic. Chapter 2 deals with a critical review of AGC schemes in power 

system. Chapter 3 stresses on the modeling of power systems under the study. The 

simulation work is presented in Chapter 4. 
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In Chapter 4, the AGC study is initially implemented on a single-area single-source 

thermal system. From the results attained in the study, it is authenticated that the 

single-area single-source non-reheat thermal system shows superior performances in 

comparison to the single-area single-source reheat thermal system. ALO and GNA 

tuned PI/PID controllers are employed in the thermal system and compared for the 

dynamic response. The values of overshoots, undershoots, settling times, and 

performance index, validated the dominance of GNA tuned controllers for single-

area thermal system. 

In Chapter 5, the study is conducted on two-area reheat/non-reheat thermal systems. 

GNA tuned PI/PID/2DOF-PID controllers are employed. The performance of GNA 

tuned controller is revealed significantly superior in terms of lesser numerical values 

compared to conventional controllers based on DE/TLBO/hSFS-PS optimization 

algorithms.  

In Chapter 6, the study is conducted on single-area multi-source thermal-hydro-gas 

interconnected system and two-area multi-source thermal-hydro-gas interconnected 

system. In first attempt, a new fractional order proportional tilt integral derivative 

(FOPTID)+1 controller optimized using GNA is proposed for different electric 

power system. The results of FOPTID+1 controller are found to be superior 

compared to FOPID/PID controller optimized with GNA algorithm. Yet, FOPTID+1 

controller has resulted superior performance compared to the published results with 

conventional controllers PI/PID. The performance of FOPTID+1 controller is 

revealed significantly superior in terms of lesser numerical values of settling times 

(STs), undershoots/overshoots and  ITAE compared to conventional controllers 

based on DE/TLBO/hSFS-PS optimization algorithms.  

Next, in Chapter 7, the study is conducted on single-area single-source nuclear 

system, single-area multi-source hydro-nuclear system, single-area multi-source 

hydro-nuclear-gas system. A new GNA optimized, FOPI-FOPTID controller is 

proposed for power system. It is observed that proposed controller shows superior 

results in terms of lesser values of STs/USs/OSs compared to GNA optimized FOPI-

FOPID/FOPID/PID controllers. To show the effectiveness of the method, the 
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approach is further extended to two-area multi-source hydro-nuclear system and two-

area multi-source hydro-nuclear-gas system. The proposed controller has revealed 

the superior performance in terms of lesser values of STs/ USs/OSs compared to 

GNA optimized FOPI-FOPID/FOPID/PID controllers. 

Next, in Chapter 8, the study is conducted on single-area multi-source and two-area 

multi-source interconnected traditional thermal-hydro-gas power system without 

nonlinearities. A new WHO optimized, FOID-FOPTID controller is proposed for 

power system. It is observed that proposed controller shows superior results in terms 

of lesser values of STs/USs/OSs compared to WHO optimized FOTID/TID/PID 

controllers. Further, results are superior with the proposed controller compared to the 

recently published DE/TLBO/hSFS-PS optimized conventional controllers. To show 

the effectiveness of the method, the approach is further extended to two-area multi-

source thermal-hydro-gas systems with nonlinearities. The analysis of the simulation 

results discloses the efficacy of WHO optimized FOID-FOPTID controller for power 

systems. 

In the next step of the study in Chapter 9, an attempt is made to propose efficacy of 

energy storage systems (ESS), for traditional single-area multi-source thermal-hydro-

gas system and two-area multi-source thermal-hydro-gas system. The critical 

analysis of the obtained results revealed the worth of ESS for the enhanced 

performance of dynamic responses in terms of less numerical value of STs/USs/OSs. 

It is also experienced that WHO optimized FOID-FOPTID controller is robust since 

it satisfies the AGC requirements when the system parameters are varied in regulated 

environment.  

Finally, Chapter 10 presents an overview of the major contributions made out of, the 

research work presented in the thesis. The scope for future work in the area of AGC 

of power systems is also presented. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Electricity is a basic commodity necessary for the people's overall development and 

welfare. One of the major objectives is to deliver good power quality and reliable 

electrical energy at a realistic price to the clients. It is a big challenge to control output 

power in large-scale power systems (PSs).  For abnormal conditions, the tie-lines [1] 

provide inter-area assistance to interlinked areas and are availed for contractual energy 

exchange among multiple areas. A coherent group of generators represents control areas 

or regions of a complex PS. During the busiest times of the day, there is a greater demand 

for a constant power supply, the real and reactive power demands consistently diverge 

with the rising or falling drift. There is a steady variation in generating the real and 

reactive power for matching the load fluctuations. The inconsistency occurs after the 

system frequency deviation from its nominal value, concerning the generated power and 

the load demand. Consequently, It would be useless to use manual control to keep 

an accurate power balance. A practical method for efficiently controlling the power 

generated by electric generators is Automatic Generation Control, or AGC. 

 The demand for power is increasing as the number of customers grows. To fulfill this 

demand with uninterrupted power, commercial, and superior quality of power, modern 

PSs are developing from controlled settings to intricate PSs. In the contemporary electric 

PSs, the goal of engineering is to control operations using intelligent techniques. As a 
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result, advanced AGC controllers are needed to manage frequency deviations, tie-line 

power flows, and power outputs. This study introduces both conventional controllers and 

new controller structures optimized using antlion optimization algorithm, global 

neighborhood algorithm, and wild horse optimization techniques.  

1.2 Automatic Generation Control (AGC) 

To ensure efficient as well as stable electric power, maintaining the nominal voltage and 

frequency is essential, to minimize wear-tear on consumer equipment. Mismatches in 

active power between the generator and load can lead to frequency variations, while 

voltage deviations are mainly caused by reactive power imbalances. Reactive power is 

not transmitted on lines to reduce transmission losses, involves only capital costs, and is 

generated close to the demand. By monitoring the generation active power balance can be 

realized. 

An imbalance in real power primarily affects system frequency for small load 

changes but keeps bus voltage levels constant, while an imbalance in reactive power 

primarily fluctuates bus voltage levels with persistent system frequency. Real power-

frequency (p-f) is an independent control issue as well as reactive power-voltage (q-v) is  

an identical control problem [1-6]. The goal of AGC is to keep various bus voltages and 

currents functioning at frequencies that are relatively close to designated nominal values. 

Tie-line power flows connecting linked locations sustain the designated nominal values. 

The total power commitment of the entire system is optimally shared by isolated 

generators. The planning of a true AGC controller ensures the two leading functionalities 

mentioned above. The third function is the active power dispatch, alternate set of control.   
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Fig. 1.1 Control loops in AGC system. 

1.3 Control Loops in AGC System  

In order to implement AGC in a PS, the primary and supplementary AGC loops perform 

several regulatory operations. Fig 1.1 illustrates the structure of the control loops. The 

primary AGC loop is responsible for generator speed control to regulate the real power 

generation. The supplementary AGC loop is essential for managing the frequency, units’ 

real power generation, and net interchange. The speed governor in this loop receives a 

signal from a feedback system called the area control error (ACE). Frequency deviation 

(ΔF) is combined with tie-line power deviation (ΔPtie) to form ACE. By use of ACE, this 

additional loop provides feedback, and the incremental change (US) incorporates it into 

the primary control loop through an appropriate controller. Generator determines the 

incremental change in power generation (ΔPGS), by input data fed through the primary 

(UP) or supplementary (US) control loops.  

In the event of a major fault, the rapid frequency oscillations are associated with a 

significant demand-generation discrepancy. The controller's capacity in AGC is limited to 
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rectify frequency changes through the supplementary control loop. To mitigate the risk of 

cascading incidents that could disrupt power supply, strategies for protection such as 

underfrequency load shedding (UFLS) and emergency control situations are introduced. 

Should the supplementary controller fail to control undesirable changes in operating 

conditions, the UFLS and protection systems act as tertiary controls. The Under 

Frequency Load Shedding (UFLS) control system is designed to monitor signals such as 

frequency and its rate of change. Based on this data, a proper increment function (ULS) 

for load shedding is created. In the meantime, the protection unit is in charge of 

generating an increment change (UTU) that will cause the PS network to trip, helping to 

restore the PS to its standard operating state.   

The operation and control of PSs involve a wide range of response times, which 

necessitates a hierarchical approach to implementing control functions. To address this 

issue, the problem is divided into smaller sub-problems using time decomposition 

methods [7]. The control of a PSs involves the following main groups classified by time 

perspective: Governor actions, which typically occur within a few seconds, are 

responsible for controlling the speed of generators and maintaining the stability of the 

PSs. AGC operates over several seconds and is responsible for adjusting the power output 

of generators to match the changing load and maintain system frequency. Economic 

dispatching, which occurs over a matter of minutes, involves optimizing the generation of 

power to meet demand at the lowest possible cost. Unit commitment, spanning hours, 

involves decisions about which generating units to start up, shut down, or run at varying 

output levels to meet anticipated demand while taking operating limits and fuel costs into 
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account. Additionally, it's worth noting that there are other functions with different 

response times. 

 For instance, maintenance scheduling follows a day-by-day schedule, involving 

planning for maintenance activities to ensure the reliability and availability of the PS. On 

the other hand, relay action is faster than governor action and is crucial for rapidly 

isolating faults and protecting the PS from harm. 

The temporal dynamics of control functions within PSs exhibit hierarchical 

characteristics. Control operations at higher levels, notably unified control (UC), are 

orchestrated across interconnected PS tiers, while those at lower levels, At the level of 

individual power plants, policies including governor action, AGC, and economic dispatch 

control are implemented. Nevertheless, this does not universally hold true. For instance, it 

is conceivable for boiler control at the power plant level to manifest a slower response 

time compared to system-level AGC. 

1.4 AGC Implementation 

For implementing AGC schemes, the control actions are usually determined for each 

control area of a PS at dispatch center. PSs frequency, data concerned with tie-line flows, 

and unit MW loadings is telemetered to dispatch center, where the control actions are 

evaluated by a digital computer. The control signals are transmitted via the same 

telemetered channels to the generating units for necessary actions. The normal practice is 

to transmit raise or lower pulses of varying lengths of the units. However, the control 

equipment at the power plants changes the reference set-points of the units up or down in 

proportion to the pulse length.  
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The interconnected PS involves some control areas, which are controlled independently 

but in a similar manner. In this system, generation control is decentralized within each 

control area. Power transfer between control areas is facilitated by tie-lines. Not all 

generators within a control area participate in AGC; only a select few contribute to this 

function. 

Earlier traditional schemes for controlling PSs like, proportional integral (PI)/PI 

derivative (PID) [9] were frequently employed in the AGC. However, recent studies have 

shown that fractional order (FO) controllers, such as FOPID [10], offer superior 

performance compared to traditional controllers. Additionally, controllers with two 

degrees of freedom, such as 2DOF-PID [11], have demonstrated improved dynamic 

responses over conventional controllers. 

The energy storage system (ESS) may permit flexible generation and delivery of 

stable electricity for meeting demands of customers. ESS has fast response time, high 

storage efficiency, flexible and reliable, complete charge and discharge, strengths; high 

power capacity, stability, and quality, no moving parts, and no environmental hazard [12- 

14]. ESS has been used in the lately published research such as flywheel energy storage 

(FES), superconducting magnetic energy storage (SMES), ultra capacitor (UC), redox 

flow battery (RFB), capacitive energy storage (CES), etc. The ESS has opportunities and 

potentials like large storage capacity, unique application and transmission characteristics, 

innovating room temperature super conductors, further R & D improvement, reduced 

costs, and enhancing power capacities of present grids.    

Multi-area thermal-hydro-gas (THG) and multi-area hydro-nuclear-gas (HNG) 

systems are examined, considering within several PS nonlinearities, including time delay 
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(TD), governor dead-band (GDB), and generation rate constraint (GRC). Despite being 

optimized for linear systems, the controller demonstrates robust performance including 

nonlinearities. But with these restrictions in place, the system's performance suffers 

greatly, particularly for PSs with GRC alone in contrast to linear PSs. 

1.5 Objectives of the Thesis 

Several articles have examined AGC and proposed various control strategies to enhance 

PSs' dynamic performance. The planning of AGC controllers has evolved over time, 

integrated classical, modern control, and intelligent techniques. However, there is still a 

need for further investigation into PSs to comprehensively address key issues. 

Most studies on optimal AGC for interconnected PSs rely on single-source models. 

It's important to assess the efficacy of optimal control approaches in multi-source PSs. 

Additionally, existing studies in AGC heavily favor conventional PI/PID controllers. This 

calls for the application of new controller structures with optimization algorithms, to both 

single-area and multi-area PSs, including testing of suitable evolutionary algorithms. such 

as global antlion optimization (ALO), neighborhood algorithm (GNA), and wild horse 

optimization (WHO).  

Given the above discussion, the reason behind this thesis and the primary objectives 

are described as follows: 

1. To design PI, PID, 2DOF-PID, FOPID, 2DOF-FOPID etc. controllers for AGC of 

various PSs.  
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2. To find the optimal controller parameters by employing antlion optimization (ALO), 

global neighbourhood algorithm (GNA), and wild horse optimization (WHO) 

algorithms.  

3. To compare the designed controllers and establish the superiority of suggested 

method over the existing controllers.  

4. To assess the robustness of the recommended controller.  

5. To assess the robustness of the suggested controller, it is necessary to investigate how 

system nonlinearities such as GRC, GDB, and TD affect the system's efficiency of 

single-area single-source, and multi-area multi-source PSs. 

6. To investigate how energy storage systems (ESS) impact AGC.   

1.6 Outline of the thesis  

The thesis structure is divided into ten chapters. The breakup of summary is chapter-wise 

as follows:   

Chapter 1: It provides a concise overview of operational and control aspects, with a focus 

on identifying primary, secondary, and emergency controls in PSs operating in 

interconnected environments. It also discusses Automatic Generation Control (AGC) and 

associated information.     

Chapter 2: It begins with a brief description of AGC schemes in PSs and then offers a 

comprehensive review of recent literature on AGC for interconnected PSs. The chapter 

covers advanced control concepts such as 2DOF-PID, FOPID, FOTID, cascaded control, 

and AGC schemes incorporating intellectual optimization algorithms.  
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Chapter 3: It focuses on developing transfer function models of THG PSs comprising of 

speed governor systems, turbines, and linked components. It includes the design of linear 

and non-linear models, considering practical aspects. The chapter also discusses the 

development of dynamic models for single/multi-area interconnected PSs incorporating 

single and multiple sources.   

Chapter 4: It stretches on the investigation of optimized PI/PID controllers for AGC in 

single-area thermal PSs, both with/without GRC. Utilizing Ant Lion Optimization (ALO) 

and Global Neighbourhood Algorithm (GNA) techniques, the optimized gains of AGC 

controllers are determined. The chapter discusses dynamic plots, overshoots, 

undershoots, and performance index values. A comparison between the two techniques is 

made to determine the best algorithm, and simulation results are obtained. 

Chapter 5: It delves on the investigation of Global Neighbourhood Algorithm (GNA) 

optimized PI/PID/FOPTID controllers for multi-area thermal PSs AGC. Superiority of 

GNA tuned FOPTID controller is established over PI/PID controllers in this chapter. 

Chapter 6: The GNA technique is employed to design a FOPTID+1 controller for multi-

area interconnected THG PSs with or without governor dead-band (GDB) and GRC 

nonlinearities. Simulation results are then compared for the FOPTID+1 controller with 

other recently published controllers.  

Chapter 7: It demonstrate the AGC studies on single-area single-source nuclear PS, 

single-area multi-source THG/HN/HNG, and multi-area multi-source hydro-

nuclear/HNG PSs employing GNA optimized cascade FOPI-FOPTID supplementary 

controller. Non-linearities GDB/GRC/TD, are also deliberated. The dominance of FOPI-
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FOPTID controller is demonstrated over GNA optimized PID/FOPID/FOPI-FOPID, and 

FOPTID+1 structured controllers. 

Chapter 8: A WHO tuned cascade fractional order ID-fractional order PTID (FOID-

FOPTID) supplementary controller is projected for investigations on single-area 

single/multi-source, and multi-area multi-source THG PS. Dynamic responses reflects 

that the proposed FOID-FOPTID controller outperforms WHO optimized 

PID/TID/FOTID/FOPID, GNA optimized FOPI-FOPTID/FOPTID+1 and many existing 

controllers.   

Chapter 9: A desirable performance is achieved using energy storage systems (ESSs) 

with WHO optimized FOID-FOPTID controller. To confirm its robustness, the controller 

is additionally tested with a extensive range of system parameters. Variation of ±25% of 

the system parameters reveals the controller is efficient. 

Chapter 10: The thesis demonstrates a review on synthesis of the significant findings 

derived from the research presented here. Additionally, it delineates the possibilities for 

future exploration and advancement in the field of AGC across diverse interconnected 

PSs.  
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CHAPTER 2 

LITERATURE SURVEY 

2.1 Introduction 

Over the years’ researchers have considered electrical energy as one of the main inputs. 

They have presented continuous growth and development in electric PSs all over the 

world. As the demand for electric power increases, parallel growths have been evident in 

the power industry structure to cope the situation with large size PSs. Researchers focus 

on the operation and control features of PSs as it needs to devise and develop more 

effective operation and control schemes. The utmost features of PSs discussed in Chapter 

1 are the AGC of PS.  

Initially mechanisms developed in the area of AGC are stated in [1‒3]. The 

controlling system of bulk power transfer in conventional system was the first to 

proposed by Cohn et al. in [4‒5] for interconnected PSs considering the frequency bias 

setting and utilizing the techniques for time error, tie-line bias control strategy and 

unplanned interchange rectification for large and multi-area PSs. Later in Quazza et al. 

[6], has proposed study on area control error; wide growth and extension of 

interconnected electric PSs, the related need to control generation in the essential areas, 

and the equitable, reliable power flow amongst them, economic system and area 

operation relating to the evolution of AGC. Elgerd and Fosha [7] have demonstrated and 

scrutinized the problem of optimal control scheme for AGC in the interconnected PSs.  

From the past five decades there has been a constant work in literature to propose 

optimal AGC schemes in the beginning of modern control theory including benefits in PS 
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control, to overcome several limitations of classical approaches [8‒9]. Various problems 

are faced for strategy and execution of control schemes for large and complex PSs. 

Fractional order [10] controllers have emerged to overcome the disadvantages of classical 

control schemes. To increase versatility, the controller design uses two degrees of 

freedom [11]. Addition of ESSs with advance controllers has demonstrated enrichment in 

the dynamic response of PSs. In various AGC studies, ESSs such as SMES, CES, UC, 

Battery Energy Storage, RFB, and others have been widely discussed in the literature 

[12‒15]. In addition to advancements in control concepts, significant operational and 

structural changes have occurred over the past two decades. This review comprehensively 

examines these advancements in the following sections.  

 Modern intelligent techniques such as fuzzy logic control [16‒17] approach have 

proven remarkable response. Over a period of more than five decades there has been an 

endless advancement in the power industry to design and implement some new AGC 

strategies [18]. The arrival of digital computers to manage huge interconnected structures 

of PS has further motivated power engineers to design and incorporate new control 

devices in AGC. Devices incorporating Gate Controlled Series Capacitor (GCSC)-High-

Voltage Direct Current (HVDC) link [19], Flexible Alternating Current Transmission 

System (FACTS) [20] devices/structures such as Thyristor Control Phase Shifter (TCPS) 

[21], has been considered in many studies. Recently, the design and implementation of 

AGC structures employing intelligent techniques have been witnessed in the attainment 

undisturbed output power. These ideas helped the power engineers to handle the PS 

models effectively which are connected with non-linearities, crude models with 

insufficient information.   
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Over the past twenty years, intelligent techniques have been increasingly employed to 

address the complexities associated with AGC (Automatic Generation Control) in PSs. 

Meta-heuristic algorithms have gained popularity in optimizing controller parameters in 

recent years. A thorough literature review on this topic can be found in various national 

and international publications such as journals, conferences, seminars, books, and 

magazines etcetera in [22‒25].  

The following features of PS involved in AGC have been discussed in order to 

review the relevant literature. 

 AGC study based on traditional system with RES 

 AGC study based on deregulated environment  

 AGC study based on secondary controllers 

 AGC study based on HVDC transmission 

 AGC study based on FACTs devices 

 AGC study based on various optimization techniques 

 AGC study based on energy storage system   

 AGC study based on hybrid PS 

2.2 AGC Study Based on Traditional System With RES 

It is extremely important to have a fairly accurate mathematical model of PSs for better 

insight into the dynamics and optimization aspects of AGC problem. The mathematical 

model of control area includes the Generator, energy source (i.e. boiler and combustion 

system) dynamics, load, speed governor, turbine, and tie-line interconnected to other 

areas. The AGC scheme is predominantly based on linearized models developed over 

decades [2,4]. Early research focused on deviation in frequency and tie-line power, 
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pioneered by Cohn [4‒5], however optimal control approaches were introduced by Elgerd 

and Fosha [7].   

The study of AGC began with traditional PSs models [8‒9] and the consideration 

of traditional PS configurations with conventional sources [1‒18] such as hydro, thermal, 

hydro-thermal, thermal-hydro-gas (THG), and others. Some studies have expanded to 

incorporate wind power alongside conventional sources [19‒21], with discussions on a 

THG-wind traditional PS created on full state feedback theory [21], employed an optimal 

AGC controller Some studies on conventional sources are implemented with optimization 

algorithms [22‒23]. Various strategies with different generating sources are prevalent in 

the literature [24‒28]. Other sources like dish-stirling solar and geothermal [29‒31]; 

diesel generator [32‒38] are included in PSs with other sources. Integration of distributed 

generation (DG) in modern PSs is incorporated with thermal-gas (TG) system using 

electric vehicles (EVs), and energy storage system (ESS) [39]. Further, THG [40,41]; 

electric vehicle [42‒44] are included to revolutionize the modern AGC system.  

PSs are typically categorized into four sets according to their levels of increasing 

areas: single/dual/three-area, and four-area PSs, the majority of research work studies are 

provided on dual area in the AGC of interconnected PSs. Numerous AGC techniques [45] 

for single-area single/multi-source, two-area single/multi-source, three-area single/multi-

source and with four-area single/multi-source PSs, are found in the literature [45–61]. 

The new investigations are carried out with hybrid energy systems, i.e., integrating 

the renewable energy sources (RES) [62‒69]. Some other RES are PV-wind [70‒75]; 

dish stirling thermal solar (DSTS) [73,76,77]; solar-thermal PS [78, 79] are utilized to 

generate pollution free electric power. RES have reduced the electric power load demand 
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and impact on environment [80]. AGC performance has improved with RES system as 

suggested by Bevrani et al. in [81]. Development of realistic PS models using RES are 

further explored in [82‒90].    

2.3  AGC Study Based on Deregulated Environment 

Previously, traditional control strategy was employed in dealing with AGC problem in 

PSs. The tie-line bias control scheme was implemented assuming that each area is 

operating in isolation so that the area control could be decided on the basis of the 

response characteristics of the area-decoupled to the other area. In [7], Fosha and Elgerd 

have presented a proportional plus integral controller expecting the load disturbances are 

known and deterministic while ignoring the compensation of load disturbances and 

steady state errors. The classic AGC PS, which consists of proper planning and operation, 

is modified to create the deregulated PS. In deregulated PS [88‒89], the independent 

contract administrator receives approves the contracts between generation companies 

(GENCOs) and distribution companies (DISCOs) to supply area regulation. It is required 

due to unscheduled generation and load changes and inconsistent frequency bias existing 

in the system.  

Every governor reacts instantly to a change in frequency brought about by variations 

in the load, irrespective of how they are selected for AGC. The governor response is 

defined as area regulation contracts, and the cost of area regulation is allocated among the 

players by the ratio of their participation. Besides addressing the operational structures 

likely to result in from deregulation, the possible approaches to AGC, and associated 

technical issues, i.e., standards and algorithms related to optimal and robust controller 
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were described by [90‒95] and later, they reported an AGC scheme for hybrid electric 

power markets. 

The AGC schemes in deregulated systems are investigated on solar-thermal, 

conventional thermal, wind, and EV is proposed in [96]. The approaches resulted in 

favorable effects in handling the increased strain of the system operator caused by the 

deregulated environment. In most of the literature reported so far, attempts have been 

made to adapt well-tested classical AGC schemes of deregulated PSs. A deregulated PS 

is comprised of three distinct entities, such as GENCOs, transmission companies 

(TRANSCOs), and DISCOs, however the bidding rules and protocols between GENCOs 

and DISCOs are provided by an independent system operator (ISO). The DISCOs and 

GENCOs belonging to the same/outside control area can interact each other [97‒98]. For 

contract violation DISCOs may demand more than the fixed price this can be managed by 

GENCOs in that control area. Such an additional claim is termed as local load instead of 

contracted load. Various techniques are implemented for deregulated PSs as prevalent in 

literature [99–113]. The relation between DISCOs and GENCOs is represented by 

DISCO participation matrix (DPM), with elements pronounced as the contract 

participation factor (cpf).  

2.4 AGC Study Based on Secondary Controllers 

Initially the classical control theory [2] studies were applied on AGC of single-input and 

single-output (SISO) type PS models. Due to the limitations of regulator designs based on 

classical control theory, new ideas were invited to deal this limitation.   

The classic control theory struggles to effectively manage the intricate PS structures 

inherent in multi-input and multi-output (MIMO) systems. Addressing these 
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complexities, modern control theory offers advanced strategies for optimal system 

control design. This includes the proposal of optimal AGC regulators depending on 

specific system performance criteria, made possible through the application of modern 

control theory.    

2.4.1  AGC Study Based on Classical Secondary Controllers  

The stability of a system is increased by minimizing the steady state error with classical 

controllers such as integer order (IO) includes integral (I) [114], I/proportional-integral 

(PI)/proportional integral derivative (PID) [115], however incorporating double-

derivative with integral constitutes IDD/PID/PIDD [116] controllers. Later on filter 

coefficient was added in PID to enhance the system stability with employing controllers 

like 2DOF-PIDN-PDN [117], FOPI-IDDN [118] etc. These controllers have proved 

better performance over PID controllers. The stability criterion improved more with 

fractional order (FO) controllers by adding extra parameters λ and μ as integral and 

differential operators, respectively. FO controllers have shown remarkable performance 

over IO controllers such as FOPID [119]. Later on MPC-FOPIDN [120] was designed 

with a filter coefficient N adding to FOPID for enhancement of the system stability. New 

FO tilt ID (FOTID) controller was proposed in [121]. Also, enhanced responses are 

demonstrated with FOTID controller over PID/TID controllers in [122].      

2.4.2  AGC Study Based on Modern and Intelligent Secondary 

Controllers 

Advanced and dedicated operation for AGC control schemes has motivated the power 

engineers to simplify the increasing complexity of modern PS, coupled with the 

economic and good quality of electricity requirement. Some of elements of a PS are 
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extremely complex and of non-linear category. The utmost significant factor required to 

develop such scheme is the most accurate modeling of the system elements. The precise 

modeling of such elements is possible under numerous operating conditions; therefore, 

from investigation point of view, their approximated models are developed.  

2.4.2.1 Intelligent Secondary Controllers 

In recent years, advanced control methods like fuzzy logic control, neural networks, 

degree of freedom (DOF), and the limitations of traditional control methods have led to 

an increased use of cascade control approaches. These sophisticated approaches are 

aimed at effectively managing the implementation, synthesis, and analysis of AGC 

schemes in PSs. Fuzzy logic control (FLC) leverages system experience and information, 

along with a comprehensive knowledge base, to tackle uncertainty issues. FLC is 

particularly effective in addressing uncertainty problems and has been successfully 

applied in AGC systems, are discussed in [123]. Later, FLC is applied along with RES 

[124] and with ESS unit [125]. Novel fuzzy theory-based control approaches [126-128], 

including type-2 FLC, have been proposed to enhance frequency capability and reduce 

oscillation damping in PSs AGC, as detailed in [129–131]. Additionally, researchers have 

explored the use of artificial neural networks (ANN) [132] to optimize AGC systems, 

with considerations for biological nervous system concepts and data classification 

techniques in a standalone PS AGC network. An optimal ANN for AGC system is 

proposed in [133]. Furthermore, a non-linear recurrent ANN structure has been 

demonstrated to enhance performance when applied to interconnected PS studies, as 

documented in [134].  
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2.4.2.2  Degrees-of-Freedom (DOF) Secondary Controllers  

The DOF controllers have two extra parameters for controlling the regulators with a 

reference and measured signals. Utilizing Degree of Freedom (DOF) analysis allows for 

better insight into system dynamics compared to traditional controllers. The 2DOF 

controller design is founded on the variance between reference and measured signals. By 

utilizing specified set points, the 2DOF controller calculates a weighted output variance, 

for each controller. Modified controller structures such as 2DOF-PID [135‒139], 2DOF-

TID [140] are prevalent in the literature for AGC studies. The 3DOF-PID [141, 142] 

controller was proposed for AGC study relating the perturbation abolition factor in a 

2DOF controller. The superior dynamic response is reveal  by 3DOF controller over 

2DOF and other conventional controllers.  

2.4.2.3 Advance Secondary Controllers 

Cascade controller has two loops: outer loop and inner loop. It offers extra advantages 

over single control loop system for disturbance cancelation rapidly. The outer controller 

loop PI cascaded with inner controller loop PIDN to form cascaded (CPI-PIDN) 

controller for a conventional LFC system [143]. Cascade controllers such as TID-PIλDμN 

[144] and IDN-FOPD [145] are proposed for AGC studies. An optimal cascaded 

2DOF(PI) and PDF i.e., CC-2DOF (PI)-PDF is projected as a new controller in [146]. 

Further, a cascaded 1+TD-FOTIDF is projected as an advance controller in [147] 

comprising of 1+TD and FO TID with a filter (FOTIDF). Various optimization 

techniques are employed in AGC to obtain systems responses with cascade control for 

superior dynamic responses compared to conventional/intelligent, and DOF controllers.  
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2.4.2.4 Other Control Techniques 

The text discusses various advanced control techniques used in PSs, specifically focusing 

on model predictive control (MPC). MPC involves predicting the plant's subsequent 

response depending on its recent output, and it is effectively applied to AGC problems in 

PSs and microgrids for enhanced performances [148-152]. The damping of oscillations 

are enhanced, with a bat-inspired algorithm (BIA)[153] proposed for PSs using optimal 

control MPC technique. Furthermore, the integration of MPC with new AI techniques is 

proposed for AGC study with ESS [154].  

On the other hand, sliding mode control (SMC) is employed for addressing 

uncertainties in power generation, characterized by discrete control signals. Full order 

SMC proves to be effective in solving AGC problems in PSs [155]. Double SMC is 

proposed for micro-grid system with RES in [156]. A time-delay dependent H-infinity 

based non-linear SMC is suggested in [157]. Further, improvement in the system 

dynamics are revealed in AGC schemes with advanced exponential SMC [158], adaptive 

control techniques [159], and centralized control scheme with  vehicle to grid (V2G) 

smart technique [160]. A centralized control scheme with communication time delay is 

presented in [161]. Researchers carried out the modern intelligent controllers employing 

soft computing techniques [162‒166] to increase AGC system stability as a whole. 

2.5 AGC Study Based on HVDC Transmission 

High Voltage Direct Current (HVDC) transmission appeared as a practical solution for 

transmitting large amounts of power over long distances due to its economic and 

technical advantages. Furthermore, integrating HVDC connections with existing AC lines 

resulting into additional profits relating PS stability. Analysis of a DC system's 
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dampening effects on linked AC systems has been the focus of determination. Virtual 

synchronous power strategies are developed for AGC study considering the HVDC links 

[167]. AGC works on HVDC links under conventional systems are proposed in 

[168‒169]. Inertia emulation control (IEC) strategy in Voltage Source Converter based 

HVDC (VSC-HVDC) system is explored for PS [170]. A VSC-HVDC system is 

presented with improved vector control method [171]. Transportation of power to the 

offshore wind farm using VSC-HVDC was explored in [172]. IEC based HVDC link for 

deregulated system incorporating DG and a FO cascaded controller is proposed in [173]. 

A static synchronous series compensator (SSSC) incorporating CES based HVDC link 

for conventional AGC system with PID controller is suggested in [174]. Other various 

HVDC studies are explored in AGC systems [31,36,48,55,57,102,118,131,143,146, 

175‒176]. 

2.6 AGC Study Based on FACTS Devices 

Power engineers are driven to simplify the modern PSs growing complexity due to 

advanced and focused operation for AGC control systems, as well as the need for 

affordable, high-quality electricity. The implementation of power electronic devices like 

Rectifiers, Inverters, Static Var Compensators (SVC), SSSC, and Thyristor-Controlled 

Phase Shifters (TCPS) etc etc, for PS control has gained widespread acceptance 

constituting Flexible AC Transmission Systems (FACTS). Enhanced versatility is offered 

by FACTS no matter how the PSs are operated and controlled.  

Studies in [177‒179] have indicated that with a variety of optimization strategies, the 

best location for FACTS devices to optimize power in interconnected PSs. Sahu et al. 

[180] conducted a study on AGC incorporating a TCSC with TIDF controller, 
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demonstrating improved AGC response. FACTS devices have been discussed in detail 

with new evolutionary algorithms for PSs in [181]. The FO controllers are employed to 

design an effective SSSC damping controller with optimization techniques in a 

deregulated PS [182]. Reactive power planning with SVC and TCSC techniques with 

optimized with whale optimizer algorithm (WOA) is presented to locate TCSC by 

determining the power flow analysis method and location of SVC via voltage collapse 

proximity indication (VCPI) method [183]. UPFC with SMES is proposed with 

optimized controller for AGC of hybrid deregulated environment [184]. Other studies on 

AGC with FACTS controllers is given in [20,22,32,50,53,145].  

2.7 AGC Study Based on Various Optimization Techniques 

Various  traditional algorithms such as gradient/random search are known for their slow 

convergence. Evolutionary algorithms (EAs) are widely used for solving nonlinear and 

complicated optimization problems. First EA used for optimizing parameters was genetic 

algorithm (GA) portrayed in AGC studies [185–186]. On the other hand, heuristic/meta-

heuristic algorithms, exhibit quicker convergence and require less iterations, leading to 

global optima solutions instead of local optima. Then various EAs like differential 

evolution (DE) [187], differential search algorithm (DSA) [188], hybrid bacterial 

foraging optimization algorithm (BFOA)-particle swarm optimization (PSO) [189], grey 

wolf optimization (GWO) [190], etc algorithms are carried out in the PSs’ AGC. Later 

on, numerous EAs are employed for optimization of controller parameters determined 

with meta-heuristic algorithms due to complexity, faster convergence. Some heuristic 

approaches were carried out like gases brownian motion optimization (GBMO) [191], 

opposition-based harmonic search (OHS) [192], multi-verse optimization (MVO) [193], 
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BFOA [194‒195], grasshopper optimization algorithm (GOA) [196], sine-cosine 

algorithm (SCA) [197], whale optimization algorithm (WOA) [198], ant colony 

optimization (ACO) [199] etc.  

Next, an interconnected PS is investigated [200‒201] by biogeography-based 

optimization (BBO) algorithm to enhance the PS performance impressively. Cuckoo 

search (CS) algorithm in three-area interconnected PS is investigated [202]. Imperialist 

competitive algorithm (ICA) [203‒204] is employed in single/multi-area PS. Spotted 

hyena optimizer (SHO) with a two stage controller in cascade is employed in [205]. A 

novel hybrid local unimodal sampling (hLUS) and TLBO algorithm is employed for 

tuning fuzzy/conventional PID controllers [206]. BAT algorithm optimized PI controller 

is suggested for reducing fluctuations in a multi-area PS [207]. Various optimization 

algorithms are proposed in the AGC studies in [208‒214]. Wild horse optimizer (WHO) 

is proposed as new meta-heuristic algorithm for solving complex problems [215]. WHO 

assisted cascaded controller is employed in multi-area IPS with nonlinearities has 

demonstrated enhanced performance [216].  

2.8 AGC Study Based on Energy Storage System 

The addition of an ESS enhances PS stability as well as performance by providing 

additional storage capacity and helping manage sudden load changes. Initial studies on 

ESS-AGC with lead-acid batteries have shown promising results. The high energy 

density and fast response time of battery energy systems (BES) demonstrate their 

effectiveness in AGC systems [217‒219] by swiftly supplying bulk power. Fly wheel 

energy storage (FES) because of its long life, minimal maintenance requirements, high 

power density, high round-trip efficiency, and lack of depth of discharge effects is found 
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beneficial for the frequency regulation of PS [220]. The flexibility of conventional 

thermal PS is enhanced with FES [221]. Unification of hydrogen aqua electrolyzer 

(HAE) to RFB is proposed for restructured hybrid PS [222]. HAE-fuel cell combination 

is proposed for IPS [223]. The fast response time and high efficiency caused the use of 

SMES for frequency regulation in [224‒226]. Next, UC with RFB is employed in PS 

with RES [227,228]. The use of UC offers high efficiency, extended lifespan, and 

substantial power capacity. In the context of AGC studies, CES is recommended since it 

exhibit rapid response to power variations, minimal energy losses, and low maintenance 

requirements [229‒231]. RFB has demonstrated better performance with disturbance 

rejection and quick storing action in the dual area IPS with RES [232]. A new intelligent 

fuzzy based controller is employed with RFB in [233]. Next, RFB is proposed in five-

area IPS with RES integration stabilizes the frequency [234]. Other applications of ESS 

in AGC of PS are given in [13,14,16,20,30,32,34,36,37,39,58,64,71‒73,90,97,110,131, 

143,145,154,174,186,192, 205].  

2.9 AGC Study Based on Hybrid Power System 

Recently, various research works are implemented on AGC with hybrid PS (HPS) having 

sources of energy in one control area. A Gaussian-interval type-2 fuzzy PID (GIT2-

FPID) is suggested as advance controller for HPSs in [235]. A coordinated frequency 

control between doubly fed induction generators (DFIGs)-Variable Speed Wind Turbines 

(VSWT) and BESS hybrid systems is presented in [236]. The split shaft gas turbine 

plants interconnected with thermal PS, solar photovoltaic-EV is presented in [237]. A 

four-area thermal-wind PS is studied in [238]. A cascaded PI-PD controller based two-

area system connected with thermal-hydro-wind-PV incorporating EVs is suggested in 
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[239].  A proportional-derivative (PD) proportional-integral (PDn-PI) with filter cascaded 

controller tuned with innovative coyote optimization algorithm (COA) interconnected 

with RESs was employed in multi-area PSs [240]. An optimized TID controller 

employed for a multi-area PS with the application of a PV-thermal environment HPS is 

proposed [241]. A tuned TDF-TIDF controller is employed in an isolated hybrid micro-

grid system [242]. An optimized PID controller is used in a modern PS with RESs and 

ESS [243]. A robust control approach with optimal fuel cells is utilized for the frequency 

stability of a diverse-sources PS including renewable source [245]. A novel cascade 

FOID and tilt controller is employed in interconnected hybrid PS with RESs and EV 

[246].  A modified TID-MPC controller works well in a hybrid PS with virtual inertia 

[247]. Various research papers have been published on HPSs for AGC based on new 

algorithms and optimization techniques in [248‒258]. 

2.10 Conclusion 

In this chapter, we have provided a thorough and evaluative overview of the existing 

literature on Automatic Generation Control (AGC). We have delved into recent 

advancements, particularly AGC methodologies utilizing artificial intelligence principles 

such as neural networks. Our analysis identifies multiple AGC approaches documented in 

the literature and examines their notable characteristics. 
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CHAPTER 3 
 

DEVELOPMENT OF MATHEMATICAL MODELS FOR 

AGC OF POWER SYSTEMS 
 

3.1 Introduction 

Massive numbers of generators connected by transmission line networks make up the 

electric PSs, which provides users with power at rated voltage and frequency. The upkeep 

of these parameters at the rated values is necessary for having high efficiency and 

minimum loss of the consumer machines. The power supply reliability and standard are 

determined by the voltage and frequency of a PS. Thus, PSs voltage and frequency are  

primary characteristics that need to be managed. Frequency deviations in a PS are caused 

by a real power difference across the generation and the load, whereas voltage 

fluctuations are the result of a difference in reactive power inside the system. In order to 

generate the required reactive power, only capital costs are required; fuel is not dispersed 

over the lines to prevent significant transmission losses. In a PS, generation control can 

be used to accomplish automatic AGC. As a result, it is believed that the voltage and 

frequency control loops are disconnected [1,2]. 

One of the major objective of an interconnected PS is to generate large-scale power 

to accomplish economic benefits at distant locations from the main load centers. In 

addition, interconnectivity reduces the reserve capacity of the individual generating 

stations and also increases consistency of the overall system through backup during 

emergencies. If a frequency deviation occurs in case of any disturbance in the system a 

coherent group of the generators in the system start swinging in unison with equal. 
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Control area is formed by a group of generators regardless of the energy source or utility. 

Therefore, it is expected on the presence of well-defined control area that typically relates 

to the geographical and electrical limitations of one or more standards. 

An interconnected power system's primary goal is to produce significant amounts of 

power in order to achieve financial gains at areas that are far from the main load centers. 

In addition, interconnectivity reduces the reserve capacity of the individual generating 

stations and also increases consistency of the overall system through backup during 

emergencies. If a frequency deviation occurs in case of any disturbance in the system a 

coherent group of the generators in the system start swinging in unison with equal. 

Control area is formed by a group of generators regardless of the energy source or utility. 

Therefore, it is expected on the presence of well-defined control area that typically relates 

to the geographical and electrical limitations of one or more standards.  

In addition to their own generations and to eliminate mismatch between generation 

and demand, there are tie-lines connecting these control zones, for providing contractual 

exchange of power under normal operating conditions. Therefore, maintaining frequency 

and power exchanges within the zones at their prescribed levels is a PS's primary control 

need. Variation in frequency/tie-line power cause sudden fluctuations in the side of load 

in control area. Frequency and tie-line power deviation combines to result in area control 

error (ACE), and processed in order to limit the fluctuations to zero level. Based on ACE 

signal the load frequency regulators are designed which are responsible to increase or 

decrease the generation by manipulation of speed changer of various generating units 

following to the action by speed governors.  
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The most often used natural energy sources in power plants include coal, oil, and natural 

gas. Other generating natural sources are nuclear energy, and falling water. Since fossil 

fuels are depleting day by day, therefore, a wide and growing variety of unconventional 

generation technologies and fuels have also been developed, including cogeneration, 

solar energy, wind generators, and waste materials. Therefore, the control zones in the 

current situation are expected to feature a variety of energy sources.  

This chapter develops mathematical models of interconnected PSs that are single-

area and multi-area, comprising power plants of different characteristics for power 

generation like, hydro, thermal, gas and nuclear turbines. The dynamic model of the 

system is established relating every part of the power plant.   

3.2 Mathematical Modeling of Power System 

Fig. 3.1. displays the generalized structure of two-area interconnected PS diverse/hybrid 

energy sources. In this model, interconnection of several control areas are demonstrated 

through a tie-line. Pri and Prj MW represents the power rating of ith and jth control area 

respectively.  

Suppose for ith control area Khi, Kti, and Kgi are sharing factors of hydro, thermal and 

gas power plant respectively for total power generation of ith control area.  Suppose PGhi, 

PGti, PGgi are power generation in MW by hydro, thermal and gas power plants in the ith 

control area, respectively. 

There is no difference between generation and load under typical operating 

conditions. THG power generations from power plants are given by Eqns. (3.1)-(3.3) [2]: 
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Fig. 3.1 Generalized model of multi-area interconnected PS. 

Ghi hi GiP =K P  (3.1) 

Gti ti GiP = K P
 (3.2) 

Ggi gi GiP = K P
 (3.3) 

Under nominal generation loading, the total power generated, PGi of ith area is given 

by Eqns. (3.4-3.5). 

Gi Ghi Gti GgiP = P + P + P  (3.4) 

Gi hi Gi ti Gi gi GiP = K P + K P + K P  (3.5) 

ti hi giK + K + K = 1 (3.6) 

For ith control area, the deviation in power generation (∆PGi) with small load 

perturbation can be framed using Eqn. (3.7); 

Gi Ghi Gti GgiΔP = ΔP + ΔP + ΔP  (3.7) 

Similarly, for jth area, ∆PGj is given by Eqn. (3.8); 

Gj Ghj Gtj GgjΔP = ΔP + ΔP + ΔP  (3.8) 

The load frequency characteristic (Di), PS gain constant (KPi), PS time constant (TPi), 

and bias constant (
i ) are specified by Eqns. (3.9-3.12) [2]. 

ith Control Area jth Control Area 
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Similarly, these parameters for jth area can be defined by Eqns. (3.13-3.16).  
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Synchronous generators in a PS are often powered by prime movers including hydro, 

thermal, and gas, among others. Every turbine has a speed controlling system installed in 

order to enable the turn on turbine, functioning at the proper speed, and operate on load in 

order to provide the necessary amount of power output. 

3.2.1 Modeling of Thermal Power System 

High-pressure and temperature steam is generated and stored in the boiler by fuel energy, 

used in coal-burning, oil-burning, and nuclear power plants. In axial flow steam turbines, 

the energy contained in the steam is subsequently converted into mechanical energy. 

Each turbine is made up of a collection of stationary, rotating blades arranged in groups/  

stages. The steam at high-pressure expands to a lower pressure as it passes through the set 
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of fixed, stationary blades, it gains kinetic energy and accelerates. Following this, when 

the fluid stream passes through the spinning blades, its momentum and direction change, 

applying a torque to the turbine shaft and a tangential force to the turbine blade. The 

pressure of the steam decreases as it moves axially up the turbine shaft, increasing its 

volume. To account for this shift, the blades’ dimension grows from beginning of steam 

inlet to exhaust. Whole steam turbine is usually separated into three or more stages, each 

of which is coupled to the others through a shared shaft. splitting the turbine into several 

stages to preheat the steam in between to boost its enthalpy and, in turn, the steam cycle's 

total efficiency.  

There are three types of steam turbines: non-reheat, single-reheat, and double-reheat 

systems. Typically designed for usage in units less than 100 MW, non-reheat turbines 

contain one turbine stage. The single tandem-reheat layout is the most widely utilized 

turbine configuration for big steam turbines. The controlling system regulates the steam 

flow in the turbine. The emergency stop valves remain completely open when the 

generator is matched and the turbine speed and power are adjusted by modifying the 

position of the valve. The speed measurement gadget provides the governor with a speed 

signal. An oil servomotor that is managed by the pilot valve serves as both the valve 

mover and the primary amplifier of the regulating system. The emergency stop valves, 

which are frequently employed to regulate the turbine's initial start-up, are only utilized 

to stop the generator in an emergency when the generator is synchronized. For small load 

perturbation, representation of governing system of steam turbine is given by Eqns. 

(3.17) [2]. 
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The steam turbine's output power variation in reaction to a change in the governor setting 

is shown by: 
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(3.18) 

The combination of Eqns. (3.17) & (3.18) results in the block diagram of reheated steam 

turbine shown in Fig. 3.2.  

 

Fig. 3.2 Transfer function model (TFM) of reheated steam turbine. 

3.2.2  Modeling of Hydro Power System 

Water energy is one of the earliest methods employed for producing electricity. 

Hydraulic turbines are driven by the force of falling water. Level of the turbine is 

separated from the upper reservoir by the vertical distance denoted as head. Although 

there is no clear isolation line, hydroelectric power amenities are classified as high/ 

medium/low-head (run-of-river) plants depending on the size of their heads. 

Francis turbines and other reaction turbines are used in the construction of low- and 

medium-head hydroelectric plants. Turbines usually utilize a lot of water, need wide 

water passageways, and run slowly due to the relatively low pressure head reaction. 
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Large diameter generators are the result of low rotating speed. When the turbine is 

operating, water enters through the spiral case from the intake tunnel or penstock, travels 

through the movable wicket gates and stay ring, and then exits onto the runner. The water 

enters the tail-water reservoir through the draft tube after exiting the runner. The movable 

wicket gates regulate the turbine's power output with their axes parallel to the main shaft. 

Francis turbine runners feature blades with lower ends fastened to a band and top ends 

fastened to a crown. The runner has no band or crown for low-head operation, exposing 

the blades. There are two types of blades: fixed and adjustable. The governor can alter the 

wicket gate opening and blade angle for runners with changeable blades (Kaplan-type 

turbine). A piston inside the main shaft that runs on oil is used to modify the blades. 

In hydroelectric power plants with high head, Pelton wheel impulse turbines are 

utilized. A series of fixed nozzles in these turbines transforms the HP water into high-

velocity jets of water. The high-velocity water jets strike a series of bowl-shaped buckets 

that are affixed around the runner's perimeter. These buckets reverse the water's flow, so 

affecting the entire impact of the water jet on the runner. A needle at the nozzle's center 

regulates the jet's size, which in turn affects the turbine's power output. The governor is in 

charge of the needle's movement. In the case of a sudden fall in load, a jet deflector 

situated just outside the nozzle tip will deflect the jet away from the buckets. For small 

load perturbation, the change in valve position (∆Xhi) is given by Eqn. (3.19) [2]. 

Ri i
hi Ci
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(3.19) 

Due to change in setting of governor, the corresponding change in output power from 

hydro turbine is represented by Eqn. (3.20). 
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The Eqns.  (3.19) and (3.20) can be represented by Fig. 3.3. 

 

Fig. 3.3 TFM of hydro turbine.   

3.2.3 Modeling of Gas Power System 

Gas turbines convert fuel's thermal energy into mechanical energy by means of the 

turbine's hot exhaust gases, negating the need for an intermediary working fluid. The fuel 

is either natural gas or fuel oil (heavy/medium) whereas working fluid is usually air. The 

most frequently used type of gas turbine system parts are turbine, compressor and 

combustion chamber. Air provided by the compressor helps in fuel ignition inside the 

combustion chamber, whereas fuel has to be transferred by the governor valve. Following 

the feeding of the hot, compressed air and combustion products into the turbine, the air 

expands and powers the rotating blades similarly to a steam turbine. After that, the 

compressor's air is heated using the exhaust gasses. In addition, there exist more intricate 

cycles that employ compressor cooling in addition with reheating. For small load 

perturbation, the change in setting of gas turbine governor (∆Xgi), valve positioner 

(∆PVPi), fuel & combustor system (∆PFCi) and gas turbine (∆PGgi) are given by following 

mathematical relations [2]; 
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 
 
   

(3.23) 

Combining Eqns. (3.21)-(3.23), the overall gas turbine model equation is expressed, with 

block diagram displayed in Fig. 3.4.  

3.2.4 Modeling of Tie-line 

The synchronization coefficient (Tij) for a tie-line connecting two PSs control areas is 

described by Eqn (3.24) [2]: 

)cos(PT jimaxijij 

  

(3.24) 

Eqn. (3.25) describes the deviation in tie-line flow (∆Ptieij) for a modest load 

fluctuation: 

ij

ij i j

2πT
ΔPtie (s) = ΔF (s)-ΔF (s)

s
  

  

(3.25) 

The block diagram can be designed by the Eqn. (3.25) is displayed in Fig. 3.5. 

 

Fig. 3.4 TFM of gas turbine.   
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Fig. 3.5 TFM of tie-line. 

 

3.3 Power System Models Under Investigation 

The PSs under investigation are modeled in a generalized manner using the Eqns. (3.1-

3.25). In this study, various conventional PS models are thoroughly examined. Figs. (3.6-

3.9) depict a single-area PS with one non-reheat/reheat PS without/with GRC in each 

area. Nevertheless, Fig. 3.10 depicts a single-area THG PS. Figs. 3.11 and 3.12 show 

single-area nuclear and hydro-nuclear (HN) PS respectively. A two-area (multi-area) 

thermal PS is  displayed by Fig. 3.13. THG PS (Two-area multi-source) is  displayed by 

Figs. 3.14 and 3.15 respectively. Two-area HN and HNG system are shown in Figs. 3.16 

and 3.17. The ACE is expressed by Eqns. (3.26-3.37) as: 

ACE1 (s) = β1ΔF1 (s) + ΔPtie12 (s),                                                                                                                (3.26) 

ACE2 (s) = β2ΔF2 (s) + α12ΔPtie12 (s).                                          (3.27) 

 
Fig. 3.6 TFM of single-area non-reheat thermal PS. 
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Fig. 3.7 TFM of single-area reheat thermal PS. 

 

Fig. 3.8 TFM of single-area non-reheat with GRC thermal PS. 

 

Fig. 3.9 TFM of single-area reheat with GRC thermal PS.  
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Fig. 3.10 TFM of single-area THG PS. 

 
Fig. 3.11 TFM of single-area nuclear PS. 

 
Fig. 3.12 TFM of single-area hydro-nuclear PS. 
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Fig. 3.13 TFM of multi-area thermal PS. 

 

 
Fig. 3.14 TFM of two-area THG PS. 
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Fig. 3.15 TFM of two-area THG PS with GRC/GDB. 
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Fig. 3.16 TFM of two-area hydro-nuclear PS. 
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Fig. 3.17 TFM of two-area HNG PS with GDB/GRC/TD. 

3.4 Conclusion 

This chapter develops the TFM for THG turbines connected with controlling systems, tie-

lines, and other parts. A variety of single/multi-area interconnected PSs, including multi-

source, multi-unit THG PSs, single-area reheat thermal PSs, and non-reheat thermal PSs, 

have their TF models constructed. This chapter also designs a number of models for 

∆Ptie12 (s)  

1 

R1 

 

 

β2 

 

 

a12 

 

 

PS-1 

KPS1 

1+sTPS1 

 

 

∆F1 (s) 

ΔPd2 (s) 

 

PS-2  

KPS2 

1+sTPS2 

 

 

ΔPd2 (s)  

 

2ᴫT12 

s 

 

 

a12 

 

 

∆Ptie12 (s)  

∆F2 (s) 

∆PG2 (s) 

 

Gas Power Plant-2 

1 

R2 

 

 ∆PC2 (s) 

1 

1+sTGH1 

 

 

1+sTRS1 

1+sTRH1 

 

 

1‒sTW1 

1+0.5sTW1 

 

 

β1 

 

 

∆F1 (s)  

∆F1 (s) 

∆F2 (s) 

Controller1 

 

 

ACE1 (s) 

ACE2 (s) 

∆F2 (s) 

ΔPC1 (s) 

Nuclear Power Plant-1 

Hydro Power Plant-1 

1 

1+sTGH2 

 

 

1+sTRS2 

1+sTRH2 

 

 

1‒sTW2 

1+0.5sTW2 

 

 

Hydro Power Plant-2 

Nuclear Power Plant-2 

1 

R1 

 

 

∆F1 (s) 

1 

R2 

 

 

∆F2 (s) 

Gas Power Plant-1 

1 

R1 

 

 

∆F1 (s)  

 

1 

R2 

 

 

∆F2 (s) 

KN1 

 

 

KH1 

 

 

KG1 

 

 

Controller2 

 

 

KH2 

 

 

KN2 

 

 

KG2 

 

 

1 

1+sTNR1 

 

 

KHN1 

1+sTN1 

 

 KRN1 

1+sTN21 

 

 

1 

1+sTRHN11 

 

 1+sTRHN21 

1+sTRHN31 

 

 

1 

1+sTN31 

 

 

1 

1+sTNR2 

 

 

KHN2 

1+sTN1 

 

 KRN2 

1+sTN22 

 

 

1 

1+sTRHN12 

 

 1+sTRHN22 

1+sTRHN32 

 

 

1 

1+sTN32 

 

 

a1 

c1+sb1 

 

 

1+sX1 

1+sY1 

 

 

1‒sTCR1 

1+sTF1 

 

 

1 

1+sTCD1 

 

 

a2 

c2+sb2 

 

 

1+sX2 

1+sY2 

 

 

1‒sTCR2 

1+sTF2 

 

 

1 

1+sTCD2 

 

 

∆PG1 (s)   

 

GRC 

 

 

GRC 

 

 

GRC 

 

 

GRC 

 

 

GDB 

 

 

GDB 

 

 

GDB 

 

 

GDB 

 

 

GDB 

 

 

GDB 

 

 

GRC 

 

 

GRC 

 

 

TD 

 

 

TD 

 

 



43 

 

nuclear single-source multi-unit single PSs, THG PSs (multi-source multi-unit), and 

HNG PSs (multi-source multi-unit). 
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CHAPTER 4 

AGC OF SINGLE-AREA THERMAL POWER SYSTEM 

USING ALO AND GNA OPTIMIZED PID CONTROLLERS 

 

4.1  Introduction 

The AGC of thermal PSs in a single-area is designed in this chapter. It can be seen from 

the literature review that the type of optimization technique and secondary controller 

architecture that are employed have a notable effect on the performance of the AGC 

systems. The literature contains a variety of clever structures and approaches that are 

used in relation to classical control schemes. Most research portrays the use of traditional 

PID controller in industrial processes because of its straightforward design, reliability, 

affordability, and efficacy for linear systems. An optimization algorithm based on 

modeling-behavior of antlion is presented here, known as antlion optimization (ALO) 

algorithm, which is applied for tuning of PI/PID controllers to determine the performance 

index. Several investigations are identified to demonstrate the dynamic performance of 

PS model under investigation with ALO tuned AGC regulators. Comparison of ALO 

optimized PID controllers with GNA optimized PID controllers is tested to prove the 

dynamic performance of PSs. 

4.2  Antlion Optimization (ALO) Algorithm 

Recently several intelligent algorithms are available in literature but the probability of 

best solution is more in evolutionary algorithms. ALO [259] is based on the intelligent 
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Fig. 4.1 (a) Geometrical shape of trap, (b) Cone shaped pit, (c) Random motion of ant, 

and (d) Antlion catching its prey [259]. 

behaviour of antlions naturally to hunt the ants.  Five primary processes in hunting prey 

such as ants roam randomly, traps are built, ants are trapped in traps, prey is caught, and 

traps are rebuilt. These steps are explained in section 4.2.1-4.2.7. 

4.2.1  Inspiration 

Antlions are the net-winged insects having two phases in lifecycle: larvae and adult. Total 

lifespan is up to 3 years. During the larvae phase it mostly hunts the prey while it does 

mating in the adulthood.  The larvae use its big massive jaw to dig a cone- shaped pit in 

the sand as shown in Fig. 4.1. The larvae try to catch its prey by hiding near the bottom of 

a pit. Usually insects (mostly ants) moving around the cone shaped pit fall in the trap 

easily as the edge of the pit is sharp. Antlion catches its prey and consumes it easily, then 

waits for the next hunt. 

4.2.2  Mathematical Model of the Behaviour of Antlions 

A random walk of the ants is chosen to move in a search space so that antlions can dig a 

fittest trap. For modeling of the movement of ants is described by Eqn. (4.1) as: 

  1 2W (t) = 0, (2 ( ) 1), (2 ( ) 1),..., (2 ( ) 1)ncsum x t csum x t csum x t  

                               

(4.1)  
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Where, t denotes the step of random walk (here iterations), cumulative sum is denoted as 

csum, highest number of iteration is denoted with n, and r(t) is defined as random number 

represented by Eqn. (4.2). 

1 0.5
r(t) = 

0 0.5

if rand

if rand




                                                                                                  

(4.2) 

A random number is denoted with rand in the range of [0,1]. The location of ants is 

saved and utilized during optimization of matrix denoted as Tant represented by Eqn. 

(4.3). 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

....
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... ... ... ...

....

d
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 

                                                                                  

(4.3) 

Here, Hp,q denotes the position value of the q-th variable of the p-th ant. n, d, 

respectively denotes the number of ants and the number of variables. Let us assign the 

fitness function in the matrix form represented by Eqn. (4.4).  

 

 

 

1,1 1,2 1,

2,1 2,2 2,
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    

                                                                               

(4.4) 

Where, TOA is the matrix which stores the best value of each ant position as Hp,q. 

Objective function is denoted by f. The positions of antlions which are hiding can be 

stored with best value in the matrix form as Tantlion is given by Eqn. (4.5). 
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(4.5) 
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Here, HLi,j is the q-th dimension value of p-th antlion. n, d, respectively denotes the 

number of antlions and the number of variables. The fitness of each antlion is saved in 

the matrix form as TOAL is given by Eqn. (4.6).  

 

 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,
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d

d
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T
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    

                                                                          

(4.6) 

4.2.3  Random Walk of Ants 

All the random walks are related to the Eqn. (4.1). Ants update their positions with 

random walk in each optimization step. This walk is limited in the search space using the 

min-max normalization represented by Eqn. (4.7). 

   

 
t

i
 = +  

t t

i i ii

it

i i

a b c
c

d a

w
w

  


                                                                                     

(4.7) 

Here the lowest and highest of random walks for p-th variable are denoted with 

ia and ib  respectively, and the lowest and highest of the p-th variable at the t-th iteration 

are denoted with t

ic and t

id , respectively.  

4.2.4 Trapping in Antlion’s Pits 

The mathematical equations can be given for the random walks of ants which are affected 

by antlion’s traps represented by Eqns. (4.8-4.9). 

 = +  t t t

i jc Antlion c

                                                                                                            

(4.8) 

 = +  t t t

i jd Antlion d

                                                                                                           

(4.9) 
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Where, t

jAntlion denotes the location of chosen q-th antlion at t-th iteration. The spherical 

behaviour of the movement of ants are defined by the vectors c and d around a selected 

antlion. 

4.2.5 Building Trap 

A roulette wheel is designed to model the antlion’s hunting capability.  ALO algorithm 

uses a roulette wheel for fittest antlions by optimization. This is shown in Fig. 4.1(a-d). 

4.2.6 Sliding Ants Towards Antlion 

Due to the random movement of ants it is more probability that ants will be trapped in a 

pit. Antlions try to build sharp corners of the traps so that ant cannot escape according to 

their fitness. This mathematical modeling can be described by the radius of a hyper-

sphere using Eqns. (4.10-4.11) 

 =  
t

t c
c

I
                                                                                                                        

(4.10) 

 =  
t

t d
d

I
                                                                                                                       

(4.11) 

Where, tc and td denotes the lowest and highest of all variables at  t-th iteration. I is a 

constant calculated by Eqn. (4.12). the current iteration is denoted with t while total 

iterations is denoted with N respectively, and p is a constant defined by Eqn. (4.13). 

 = 10  
t
N

p
I

                                                                                                                     

(4.12) 
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Fig. 4.2 Flowchart of ALO [259]. 
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4.2.7  Hunting the Prey and Re-building the Pit 

After hunting and consuming the ants body an antlion has to update the current position 

with a new fittest position to catch new ants in the pit. Assuming at t-th iteration, the spot 

of selected q-th antlion as t

qAntlion . t

pAnt  denotes at t-th iteration, the spot of p-th ant. 

This condition is given by Eqn. (4.14) as follows: 

    =   if   t t t t

q p p qAntlion Ant f Ant f Antlion

                                                              

(4.14) 

4.2.8 Elitism 

The main advantage of evolutionary algorithms is to maintain the best solution after 

optimization. Here the best antlion obtained in each iteration is saved and denoted as 

elite. As a result, each ant moves at random close to the elite group and the fittest antlion 

according to the roulette wheel is defined by the Eqn. (4.15) as: 

=   
2

t t
t A E
i

R R
Ant



                                                                                                           

(4.15) 

Where, t

AR  is the random walk near the fittest antlion by roulette wheel selection at  

t-th iteration.  

The random walk near the elite is t

ER  at t-th iteration. The advantages of ALO are, it 

ensures the exploration of search space by the random walk of ants around the antlions. 

ALO is a population-based algorithm so it rejects local optima and selects the global 

optima. Convergence of ALO algorithm is observed by the decreasing intensity of ant’s 

movement after specified iterations. The number of parameters to optimize in a PID 

controller (KP, KI, KD) = 3. Search space selected is 20 and number of iterations is 100. 

The lower and upper limits is in the range [0-5]. Flowchart of ALO is shown in Fig. 4.2. 
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4.3 Global Neighbourhood Algorithm (GNA) 

The GNA was induced by Allazam and Lewis [260].  To improve the controller 

parameters, a heuristic method known as the global neighbourhood algorithm (GNA) has 

been tested. There's a chance that this method will find the optimum values quickly. This 

kind of algorithm uses iteration to solve complicated issues. As another advantage, local 

optima avoidance is high due the stochastic nature of evolutionary algorithms. If an 

evolutionary algorithm is trapped in a local optimum, stochastic operator lead to random 

changes in the solution and eventually escaping from the local optimum. GNA is a 

population-based algorithm, so local optima avoidance is intrinsically high. Selecting the 

global and local search spaces at random ensures that the search space is thoroughly 

explored. The algorithm is explained as:  

1. GNA algorithm generates two sets of space from the random selection denoted as 

local search space and global search space. 

2. Creates T possible values of KP, KI, KD gains from random search space. 

3. Calculates objective function after first iteration i.e. minimum value of ITAE. 

4. Then optimal value is selected from the comparison with best value and stored as 

ITAE. 

5. After total iterations are over, minimum value of ITAE is best solution.  

Here, the controller gains (KP, KI, KD) and other parameters (ITAE, ST, OS, US) are 

simultaneously optimized using the Objective Function (OF). The number of parameters 

to optimize in a PID controller (KP, KI, KD) = 3. The initial step is to assign the random 

values = T/2= 50 and number of iterations is 100. Range of the lower limit and upper 

limit is 0 and 5, respectively. GNA flowchart is shown in Fig. 4.3. 
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Fig. 4.3 Flowchart of GNA [260]. 
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Fig. 4.4 Single-area reheat thermal PS with GRC and PID controller. 

 
Fig. 4.5 Structure of PID controller. 

4.4 Systems Investigated 

A single-area, single-source, non-reheat/reheat thermal PS with/without GRC is the 

subject of investigations. Each section has a 2000 MW rated capacity, with a 1000 MW 

initial loading. Fig. 4.4 displays the design of the PS that is being studied. The Appendix 

contains the systems' nominal parameters. Chapter 3 discusses the models that are the 

subject of the study in detail.  

4.5 PID Controller 

The derivative, integral, and proportional controllers' outputs are combined to create the 

PID controller's output. The controller gains are KP, KI, and KD. The PID controller 

minimizes the steady state error and boosts stability. Fig. 4.5 displays the parallel 

arrangement of the controller. 
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 GPI(s) and GPID(s) denote the TFs of PI and PID controllers defined by Eqns. (4.16-4.17) 

as: 

I
PI P

K
G (s) = K +  

s
                                                                                                        

(4.16) 

I
PID P D

K
G (s) = K + + K s  

s
                                                                                            

(4.17) 

The PSs under investigation have PI/PID controllers to overcome the AGC problem. 

PID controller receives the error input. To obtain the output U or ΔPC of the PID 

controller, the error is multiplied by gains and then summed. PC is the system's control 

input. By minimizing an objective function, the ALO/GNA method can be used to adjust 

the gains. 

4.6 Optimization Problem 

An optimization problem's primary aim is to reduce an objective function that has been 

chosen for the system while taking the proper performance index into account. The 

choice of an appropriate performance index has a major impact on how well an 

optimization approach performs. The integral time absolute error (ITAE) used to develop 

the ALO/GNA-PID controller serves as the study's performance index (PI) which is 

expressed as J, for single-area PS, is defined by Eqn. (4.18) as:  

t

0

J = t  ΔF dt
                                                                                                               

(4.18) 

The PI/PID controller gains within a few pre-established bounds are the optimization 

problem’s constraints. Therefore, using Eqn. (4.19), the subsequent optimization problem 

can be used to create the controller design challenge. 

min max min max min max

P P P I I I D D DK K K ,  K K K ,  K K K     

                                             

(4.19) 
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Table 4.1  
ALO optimized gain parameters of single-area thermal system for PI and PID controllers. 

Type of Single-area 

Thermal system  
Controller  used  KP KI KD ITAE 

Non-Reheat  

 

ALO:PI 0.34001 0.4802 0 0.031184 

ALO:PID 0.8268 0.999 0.13072 0.0088 

Reheat  

ALO:PI 1 0.67959 0 0.04849 

ALO:PID 1 1 0.14675 0.03547 

Non-Reheat with 
GRC 

ALO:PI 0.1778 0.071348 0 0.2872 

ALO:PID 0.51671 0.080816 0.56511 0.2346 

Reheat  with GRC 

ALO:PI 0.3148 0.08126 0 0.4653 

ALO:PID 0.67785 0.073781 0.552 0.2291 

The parameters have been set with a minimum of 0.0 and a maximum of 5.0, 

respectively. Table 4.1 shows the best final ideal outcomes for the several PS models that 

were studied. The program created in MATLAB software is used to calculate the 

numerical values of settling times (STs), undershoots (USs), and overshoots (OSs) of 

frequency deviation results under SLP in order to explore the comparative assessment 

between the suggested ALO adjusted PI and PID controllers. The dynamic response 

speed is shown by the STs, USs, and OSs numerical values. 

4.7. Simulation Results and Discussion 

4.7.1 Single-Area Thermal System with ALO Tuned PI/PID Controller 

At t = 0 sec considering a 1% step load perturbation (SLP) in area-1, single-area non-

reheat thermal PS is simulated for investigation.  Current study shows PI controllers are 

also constructed for comparison with the suggested PID controllers. A MATLAB 

algorithm designed for PI/PID controller optimization is accomplished using the system 

data provided in Appendix to produce the gain parameters displayed in Table 4.1. The 
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supremacy of the ALO:PID controllers is revealed from its performance obtained in the 

findings when compared to ALO:PI.  

 
(a)  (b) 

 
(c)  (d) 

Fig. 4.6 Single-area thermal system responses (∆F) with ALO tuned PI/PID controllers: (a) Non-

reheat, (b) Reheat, (c) Non-reheat with GRC, and (d) Reheat with GRC. 
 

Table 4.2  
System results (∆F) in terms of ST/OS/US/ITAE for single-area thermal system with ALO tuned PI and PID 

controllers at ΔPd = 0.01 puMW. 

Type of Single-area 

Thermal system 
Type of controller ST (sec) US (Hz) (‒ve) OS (Hz) ITAE 

Non-Reheat  
ALO:PI 4.74 0.021 0.00252 0.031184 

ALO:PID 2.53 0.013 0.00015 0.0088 

Reheat  
ALO:PI 11.1329 0.022 0.00175 0.04849 

ALO:PID 9.7492 0.018 0.00074 0.03547 

Non-Reheat with 

GRC 

ALO:PI 5.5556 0.056 0.00297 0.2872 

ALO:PID 5.1834 0.050 0.00315 0.2346 

Reheat with GRC 
ALO:PI 10.0110 0.057 0.0171 0.4653 

ALO:PID 4.5697 0.051 0.00042 0.2291 
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ALO:PID controller is better than those offered by ALO:PI as shown in Figs. 4.6(a-d). 

The settling times (STs) with mathematical values, undershoots (USs) and overshoots 

(OSs) for response of frequency deviation is shown in Table 4.2. ST is observed for a 

tolerance band of ±0.0005. The simulation time of 10 sec is considered for ITAE given 

by Eqn. (4.18). Analysis shows that, as compared to ALO:PI controller, the values of 

STs/USs/OSs and ITAE values are lowest with ALO:PID controller. Therefore, it can be 

said that PID controllers outperform PI controllers in terms of performance even at lower 

ST, US, and OS values. The values of STs, USs, OSs, and ITAE for the ALO:PID 

controller's ∆F response with reheat system are 2.53 sec, –0.013 Hz, 0.0015 Hz, and 

0.0088, in that order, and with reheat PS are 9.7492 sec, –0.018 Hz, 0.00074 Hz, and 

0.03547, respectively. For non-reheat PS using ALO:PI controller the values of ∆F 

response are ST=4.74 sec, US= –0.021 Hz, OS=0.00252 Hz and ITAE=0.031184, 

respectively, and with reheat PS values are 11.1329 sec, –0.022 Hz, 0.00175 Hz, and 

0.04849, respectively. It permits the reheat system's slower or less effective operation in 

comparison to the non-reheat system. The ∆F response values for the ALO:PID controller 

are 5.1834 sec, –0.050 Hz, 0.00315 Hz, and 0.2346 when using a non-reheat system with 

GRC, and 4.5697 sec, –0.051 Hz, 0.00042 Hz, and 0.2291 when using a reheat PS with 

GRC. The ∆F response values for the ALO:PI controller are 5.5556 sec, –0.056 Hz, 

0.00297 Hz, and 0.2872 when using a non-reheat system with GRC, and 10.011 sec, –

0.057 Hz, 0.0171 Hz, and 0.4653 when using a reheat PS with GRC. Hence, the 

performance of thermal PS with GRC degrades compared to thermal PS without GRC. 
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4.7.2  Single-Area Thermal System with GNA Tuned PI/PID Controller 

The gain parameters tuned via GNA foe PI/PID are shown in Table 4.3. To demonstrate 

the GNA:PID controller’s influence, over the GNA:PI controller, It is evident from the 

performance attained in results by the GNA:PID controller is better than those offered by 

GNA:PI controller displayed by Figs. 4.7(a-d). The numeric values of STs, USs and OSs 

for frequency deviation response is shown in Table 4.4. It is clearly evident from the 

findings that lowet values of STs/USs/OSs and ITAE are attained with GNA:PID 

controller in contrast to GNA:PI controller. 

Table 4.3 
GNA optimized gain parameters of single-area thermal system for PI and PID controllers. 

Type of Single-area 

Thermal system  
Controller  used  KP KI KD ITAE 

Non-Reheat  

 

GNA:PI 0.3075 0.4681 0 0.0314 

GNA:PID 2.2814 4.6887 0.4279 0.000647 

Reheat  
GNA:PI 1.5387 1.2359 0 0.0467 

GNA:PID 3.2531 4.5221 0.5535 0.0077 

Non-Reheat with 

GRC 

GNA:PI 0.2253 0.0705 0 1.0082 

GNA:PID 4.6970 0.0909 3.4192 0.2154 

Reheat  with GRC 
GNA:PI 0.2609 0.0753 0 0.3769 

GNA:PID 1.6215 0.1153 1.5082 0.3656 

 
Table 4.4 
System results (∆F) in terms of ST/OS/US/ITAE for single-area thermal system with GNA tuned PI and PID 

controllers at ∆Pd = 0.01 puMW. 

Type of Single- area 

Thermal system 

Type of controller ST (sec) US (Hz) (‒ve) OS (Hz) ITAE 

Non-Reheat  GNA:PI 4.85 0.0215 0.00241 0.0314 

GNA:PID 0.52 0.00682 0.000265 0.000647 

Reheat  GNA:PI 8.1 0.00508 0.0185 0.0467 

GNA:PID 0.73 0.0087 0.000241 0.0077 

Non-Reheat with 

GRC 

GNA:PI 24.37 0.054 0.027 0.7655 

GNA:PID 4.67 0.050 0.000064 0.2154 

Reheat with GRC GNA:PI 17.5 0.056 0.011 0.3769 

GNA:PID 16.7 0.051 0.00498 0.3656 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.7 Single-area thermal system response (∆F) with GNA tuned PI/PID controllers: (a) Non-

reheat, (b) Reheat, (c) Non-reheat with GRC, and (d) Reheat with GRC. 

Consequently, PID controllers can provide higher performance with lower ST, US, and 

OS values than PI controllers can. Table 4.4 provides the non-reheat thermal system 

values. The ∆F response values for the GNA:PID controller are as follows: 0.52 sec, –

0.00682 Hz, 0.000265 Hz, and 0.000647, respectively, for the non-reheat system; 0.73 

sec, –0.0087 Hz, 0.000241 Hz, and 0.0077, for the reheat PS. With no reheat PS, the 

GNA:PI controller's ∆F response STs, USs, OSs, and ITAE values are 4.85 sec, –0.0215 

Hz, 0.00241 Hz, and 0.0314, respectively; with reheat PS, these values are 8.1 sec, –

0.00508 Hz, 0.0185 Hz, and 0.0467, respectively. It illustrates how the performance of 

the reheat PS is slower or worse than that of the non-reheat system. The ∆F response 
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values for the GNA:PID controller are 4.67 sec, –0.050 Hz, 0.000064 Hz, and 0.2154 

when using a non-reheat system with GRC, and 16.7 sec, –0.051 Hz, 0.000498 Hz, and 

0.3656 when using a reheat PS with GRC. The ∆F response values for the GNA:PI 

controller are as follows: 24.37 sec, –0.054 Hz, 0.027 Hz, and 0.7655 for the non-reheat 

system with GRC, and 17.5 sec, –0.056 Hz, 0.011 Hz, and 0.3769 for the reheat PS with 

GRC. Therefore, PID outperforms PI, but system performance sharply declines when 

GRC is used. 

4.8 Comparison of ALO and GNA 

ΔF responses for single-area thermal system are displayed in Fig. 4.8(a-d) considering all 

cases. The STs, USs and OSs for ΔF responses are shown in Table 4.5. The results 

indicate that in the non-reheat PS, the GNA:PID controller’s responses are significantly 

better than ALO:PID controller's. Following study, it is abundantly clear that, for non-

reheat and reheat thermal systems without GRC, the values of STs/USs and ITAE values 

are least with GNA:PID controller compared to ALO:PID controller. The ∆F response 

values for the GNA:PID controller are as follows: 0.52 sec, –0.00682 Hz, 0.000265 Hz,  

Table 4.5 
System results (∆F) in terms of ST/OS/US/ITAE for single-area thermal system with ALO and GNA tuned PID 

controller at ∆Pd = 0.01 puMW. 

Type of Single- area 

Thermal system 

Type of controller ST (sec) US (Hz) (‒ve) OS (Hz) ITAE 

Non-Reheat  ALO:PID 2.53 0.013 0.00015 0.0088 

GNA:PID 0.52 0.00682 0.000265 0.000647 

Reheat  ALO:PID 9.7492 0.018 0.00074 0.03547 

GNA:PID 0.73 0.0087 0.000241 0.0077 

Non-Reheat with 
GRC 

ALO:PID 5.1834 0.050 0.000063 0.2346 

GNA:PID 4.67 0.050 0.000064 0.2154 

Reheat with GRC ALO:PID 4.5697 0.051 0.00042 0.2291 

GNA:PID 16.7 0.051 0.00498 0.3656 

 



61 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.8 Single-area thermal system response (∆F) with ALO and GNA tuned PID controller: (a) 
Non-reheat, (b) Reheat, (c) Non-reheat with GRC, and (d) Reheat with GRC. 

and 0.000647, respectively, for the non-reheat system; 0.73 sec, –0.0087 Hz, 0.000241 

Hz, and 0.0077, for the reheat PS. These values are lesser than ALO:PID controller. For 

non-reheat system with GRC values of the ∆F response using GNA:PID controller are 

ST=4.67 sec, US= –0.050Hz, OS=0.000064 Hz, and ITAE=0.2154 respectively, while 

reheat PS with GRC values are 16.7 sec, –0.051 Hz, 0.000498 Hz, and 0.3656 

respectively. Here, some values GNA:PID are greater than ALO:PID. Hence with GRC, 

ALO:PID performs somewhat better than GNA:PID. However, in overall cases it is 

concluded that GNA:PID controller is more capable of providing better performance. 
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4.9 Conclusion 

The outcomes of the ALO-tuned PID and PI controllers are compared for a single-area 

non-reheat thermal PS, and ST, US, Oss, and ITAE values are used in the comparison 

analysis. Performance analysis reveals the supremacy of ALO:PID controller over 

ALO:PI controller. Reheat thermal PSs, non-reheat thermal PSs without GRC, and reheat 

thermal PSs with GRC are all the subject of additional research. Comparatively speaking, 

the GNA optimized PID controller outperforms the GNA:PI controller. The performance 

of thermal PS with GRC degrades compared to thermal PS without GRC. 

It is analyzed that GNA optimized PID controllers work better in non-reheat and 

reheat thermal PSs without GRC than ALO optimized PID controllers. GNA optimized 

PID controller results minimum values of ST/US/OS/ITAE than ALO optimized PID 

controller. For non-reheat thermal PS with GRC GNA/ALO optimized PID controller 

show same value for OS, while ALO:PID controller show less values of OS, more value 

of ITAE compared to GNA:PID controller. ALO optimized PID controller has given 

minimum values of ST/OS/ITAE for reheat thermal PS with GRC. Overall the GNA 

optimized PID controller has proven better results in contrast to ALO optimized PID. 
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CHAPTER 5 
 

 AGC OF MULTI-AREA THERMAL POWER SYSTEM 

USING GNA OPTIMIZED 2DOF-PID CONTROLLER 

 

5.1 Introduction 

A review of the literature makes it evident that the controller's design and objective 

function choice, in addition to the artificial intelligence methods used, affect the system's 

performance. Occurrence of disturbance inputs, in two degree-of-freedom-PID (2DOF-

PID) controller achievements are better for set-point tracking and regulation than 

conventional PI/PID controllers. Nevertheless, 2DOF controller designs are less 

frequently used for AGC situations despite these benefits. In light of the aforementioned, 

a preliminary effort is carried out to employ a 2DOF-PID controller for the power 

system's AGC and examine results in this study. 

Given the foregoing, an attempt has been made to create the best possible GNA-

tuned 2DOF-PID controller design in the AGC of PSs by ITAE performance index 

minimization. The efficiency of the controller in giving adequate damping characteristics 

to system oscillations is demonstrated by the simulation results presented. 

5.2 Investigated System 

An analysis is conducted on a non-reheat thermal system with two areas. One governor, 

one controller, and one non-reheat turbine are owned by each area of PS. Studied PS has 

an initial loading capacity of 1000 MW, however each region has a rated capacity of 

2000 MW. Two-area PS block diagram that is being studied is displayed in  
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Fig. 5.1 Two-area non-reheat thermal system with 2DOF-PID controller. 

Fig. 5.1. The Appendix contains the system’s nominal parameters, whereas the 

Nomenclature part contains the list of symbols. 

5.3 Two Degree-of-Freedom-PID (2DOF-PID) Controller 

A control system's DOF can be summed up as several independently adjustable closed-

loop TFs. Since several performance requirements need to be met while designing a 

control system, a 2DOF controller has intrinsic advantages over a standard 1DOF control 

system. According to the variation among an actual data and reference data, the 2DOF 

controller produces output data (signal). Using the given set point weights, it calculates a 

weighted modified signal for individual three actions: derivative (D), integral (I), and 

proportional (P). The optimized gains of the suggested controller are attained. Fig. 5.2 

illustrates the construction of the 2DOF-PID controller [24], where reference signal is 

denoted by r(s), feedback from the measured system output is denoted by y(s), and output 

signal is denoted by U(s) whereas PW and DW are used to specify the proportional-

derivative set point weights. The P, I, and D gains are denoted by KP, KI, and KD,  
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Fig. 5.2 Structure of 2DOF-PID controller. 

respectively. For a 2DOF-PID, Errors ep, ei, and ed are given by Eqns. (5.1-5.3), where r 

and y are the two inputs and u is the output given by Eqns. (5.4-5.5) as follows: 

pe  = (PW)r y

                                                                                                               

(5.1) 

ie  = r y

                                                                                                                        

(5.2) 

de  = (DW)r y

                                                                                                              

(5.3) 

Output signal u is calculated by Eqns. (5.4-5.5) as follows: 

i
P p i d d

K
u = (K ) e + e (sK ) e

s

 
 

                                                                                       

(5.4) 

   I
P D

K
u = K (PW)r y + (r y) sK (DW)r y

s
   

                                                       

(5.5) 

5.4 Optimization Problem 

AGC problem under consideration is solved by minimization of the objective function (J) 

denoted with ITAE, defined by Eqn. (5.6). The bounds on the controller parameters are 

the problem constraints. Consequently, the following optimization problem can be used  
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Table 5.1 

Tuned parameters of two-area non-reheat thermal system. 

Controller type KPi KIi KDi PWi DWi 

GNA:PI KP1 KI1 KD1 PW1 DW1 

0.0073 0.6281 0 - - 

KP2 KI2 KD2 PW2 DW2 

0.8298 0.0176 0 - - 

GNA:PID KP1 KI1 KD1 PW1 DW1 

3.8152 4.9981 1.0257 - - 

KP2 KI2 KD2 PW2 DW2 

3.4277 1.1506 2.1627 - - 

GNA:2DOF-PID KP1 KI1 KD1 PW1 DW1 

1.9848 4.3370 1.1758 3.4277 0.0962 

KP2 KI2 KD2 PW2 DW2 

4.2074 0.1594 1.8262 3.9090 2.0366 

 1 2

0

J = t ΔF ΔF  ΔPtie dt

t

    
                                                                                    

(5.6) 

to formulate the design problem. Eqn. (5.7) provides the parameters' lowest and 

maximum values (KP, KI and KD, PW, DW). 0.0 and 5.0 are the chosen ranges, 

respectively. Table 5.1 shows the best final ideal outcomes for the different PS models 

that were studied. 

min max

P P P

min max

I I I

min max

D D D

min max

min max

K K K

K K K

K K K

PW PW PW

DW DW DW

 

 

 

 

 

                        (5.7) 

5.5 Simulation Results and Discussion 

Two-area non-reheat thermal PS is simulated for investigation considering a 1% SLP in 

area-1 at t = 0 sec. a A MATLAB application was created for the purpose of optimizing 

PI/PID and 2DOF-PID controllers using GNA, using the system data provided in the 

Appendix. The finally obtained optimal gain parameters are shown in Table 5.1. Results 

shown in Figs. 5.3(a-d), validates that GNA:2DOF-PID controller is better than 

GNA:PI/PID controllers. The mathematical values of STs, USs and OSs for response of 
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frequency deviation (∆F1/∆F2) and tie-line power deviation (∆Ptie12) are portrayed by 

Table 5.2. The ITAE performance index (J) given by Eqn. (5.6), is another basis for 

evaluating the controllers’ performance. The ST for ∆F1 is measured in a tolerance 

 
(a) 

 (b) 

 
(c)  (d) 

Fig. 5.3 Two-area thermal system responses: (a) Convergence curves, (b) ∆F1, (c) ∆F2, and (d) 

∆Ptie12. 

 
Table 5.2 

ST/OS/US/ITAE in two-area non-reheat thermal system at ∆Pd1 = 0.01 puMW with GNA optimized controllers 

Controller 

structure 

ST
 
(sec) US (–ve) (Hz) 

US (–ve) 

(puMW) 
OS

 
(Hz) 

OS 

(puMW) 
J 

∆F
1
 ∆F

2
 ∆Ptie

12
 ∆F

1
 ∆F

2
 ∆Ptie

12 
 ∆F

1
 ∆F

2
 ∆Ptie

12
 ITAE 

GNA:PI 5.3 6.2 4.17 0.022 0.015 0.0052 0.0042 0.0013 0.0000127 0.0798 

GNA:PID 1.02 1.86 1.13 0.00675 0.00202 0.00074 0.000127 0.0000053 0.0000036 0.0054 

GNA:2DOF-

PID  
0.62 2.2 1.65 0.00382 0.00049 0.000335 0.0000286 0.0000043 0.00000213 0.0040 
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band of ±0.0005 while ∆F2/∆Ptie12 both are measured with tolerance band of ±0.0002 

(2% band). Analysis shows that the values of ITAE, STs, USs, and OSs are the least, with 

GNA:2DOF-PID controller in contrast to GNA:PI/PID controllers. Therefore, in contrast 

to PI/PID controllers, 2DOF-PID controllers are further proficient to offer enhancement 

with lower STs, USs, and OSs values. 

For GNA:2DOF-PID controller the values of STs, USs, OSs and ITAE for ∆F1 

response with non-reheat thermal system are 0.62 sec, –0.00382 Hz, 0.0000286 Hz and 

0.0040, respectively, while these values for ∆F2 response are 2.2 sec, –0.00049 Hz, 

0.0000043 Hz and 0.0040, respectively. For ∆Ptie12 the STs, USs, OSs are 1.65 sec, –

0.000335 Hz, 0.00000213 Hz. For GNA:PID controller the values of STs, USs, OSs and 

ITAE for ∆F1 response are 1.02 sec, –0.00675 Hz, 0.000127  Hz and 0.0054, 

respectively, while these values for ∆F2 response in PS are 1.86 sec, –0.00202 Hz, 

0.0000053 Hz and 0.0054 respectively. For ∆Ptie12 the STs, USs, OSs are 1.13 sec, –

0.00074 Hz, 0.0000036 Hz. For GNA:PI biggest/worst values are obtained. We see that 

all values are better with 2DOF-PID compared to others except ST of ∆F2 and ∆Ptie12. 

Hence, in overall, 2DOF-PID can be recommended to offer a better outcome in AGC of 

multi-area thermal PSs. 

5.6 Conclusion 

For two-area PSs’ AGC a GNA tuned 2DOF-PID controller is employed. Dynamic 

response of ∆F1 with GNA:2DOF-PID has least ST/US/OS and ITAE compared to GNA 

optimized PI/PID controllers. Similarly dynamic response of ∆F2/∆Ptie12 has minimum 

US/OS compared to GNA optimized PI/PID controllers. It can be concluded from the 

AGC of multi-area thermal PSs that 2DOF-PID controller out performs the PI/PID. 
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CHAPTER 6 
 

  MULTI-SOURCE MULTI-AREA POWER SYSTEM WITH 

OPTIMIZED FOPTID+1 CONTROLLER 

 
6.1 Introduction 

Persistent evolution in size and complication of PSs, variation in load power demands, 

deviations in electric system structures and system modeling errors has made necessity of 

a stable AGC in PSs. As a result, researchers all around the world are working to actively 

address the AGC problem by recommending novel control mechanisms from a variety of 

sources. Numerous optimization and control methods, including the classical control, 

approach bacterial foraging optimization (BFOA) reliant I/PI/PID/IDD [9], differential 

evolution (DE) reliant PID [26], hybrid stochastic fractal search and pattern search 

(hSFS-PS) technique reliant PI/PID [27], The TLBO algorithm-tuned PID controller is 

utilized to efficiently regulate PS fluctuations [28], etc. 

Due to its exceptional design performance and added flexibility, fractional calculus 

(FC) based control techniques have garnered increasing attention in recent years for 

research. A mathematical idea is called fractional order calculus (FOC). Due to a lack of 

computational tools and limited physical restrictions over the past 20 years, FOC has not 

been widely used in control engineering. Researchers have observed in recent years that 

FO differential equations, as opposed to integer order ones, could more accurately 

simulate a variety of materials. Using FC, an extension of the integer order PID (IOPID) 

controller is the FOPID controller. Design of a FOPID controller involves obtaining 

differential, integrating/differential, integral, and proportional orders. The evolutionary 

algorithms like, ICA [17], hybrid ALO [19] were used to optimize FO controller. Some 
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fractional order controllers are implemented in cascaded form such as sine-cosine (SCA) 

[29] algorithm optimized FO cascade controller (FOPI-FOPID) and FOPI-FOPID in [30], 

whale optimization [39], improved particle swarm optimization (IPSO) [40] are used in 

tuning the FO controllers. In context to FO, a diversity of optimization algorithms are 

present in literature [41,47,51,54,55]. The FO controllers have been observed expedient 

in AGC incorporating RESs in [58,61]. When the FOC technique is used to regulate an 

industrial process, multiple advantages are seen, including: robustness to variations in the 

plant's gain, lack of steady-state error, good rejection of output fluctuations, robustness to 

high-frequency noise etc. 

Given the aforementioned, an effort has been implemented in this chapter to carry 

out a FOPTID+1 controller for multi-area, multi-source THG PSs’ AGC. The controller 

gains, such as the order of integrator (λ, n), and the order of differentiator (µ), are 

optimized through GNA.   

6.2 Systems Investigated 

Studies are accomplished on a multi-source multi-area THG PS without GDB/GRC using 

GNA tuned 2DOF-PID controller and GNA tuned FOPTID+1 controllers. Both areas of 

THG PS own one reheat thermal unit, one hydro unit, and one gas generating unit in its 

each area connected with tie-lines. Each section has a 2000 MW rated capacity, with a 

1000 MW initial loading. Further research is stretched on multi-source multi-area THG 

PS with GDB/GRC. The model of the PSs examined is shown in Fig. 6.2, Fig. 6.4, Fig. 

6.6. The Appendix contains the nominal parameters of the PSs, while the Nomenclature 

section includes the set of symbols.  
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6.3 FO Proportional Tilt Integral Derivative+1 (FOPTID+1) Controller 

FOPTID+1 controller is used in the AGC of PSs first time. The literature has documented 

numerous instances of the FOPID controller being used in the AGC of different systems. 

Through FC, the FO controller theory addresses differential equations. The literature has 

documented numerous instances of the FOPID controller being used in the AGC of 

different systems. Differential equations are applied through FC, in the FO controller 

theory. The Fractional Calculus (FC) is the name given to the elaboration of the ordinary 

calculus. The concept of dny(t)/dtn, which is an integer number, is expanded to dαy(t)/dtα, 

where α is a non-integer number, with the intention of becoming complex. Numerous 

definitions, including the Cauchy integral formula, the Riemann-Liouville definition, are 

available in the literature to illustrate the FO function. In FO calculus, however, the 

Riemann-Liouville formulation described in Eqn. (6.1) is typically applied [261]. 

 
n

t n α 1α

t n a

1 d
aD f(t) = t τ f(τ)dτ

Γ(n α) dt

 


 
                                                                    

(6.1) 

Where, n – 1 > α < n, n is an integer and symbol Γ(·) represents Euler’s gamma function 

and is described by Eqn. (6.2). 

t (x 1)

0
Γ(x)= e t dt,


 

 x > 0,                                                                                                (6.2) 

with unique case when x = n,  

Γ(n) = (n – 1) (n – 2) ∙∙∙ (2) (1) = (n – 1)!.                                                                      (6.3) 

For ease of understanding, the fractional differentiation-integration process is 

demonstrated using the Laplace domain idea. Eqn. (6.4) provides the Laplace 

transformation of Eqn. (6.1) for the fractional derivative under zero initial condition.  

 α st α

t t
0

L aD f(t)  = e aD f(t)dt




  
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n 1
α k α k 1

t t = 0

k = 0

= s F(s) s aD f(t)


 
                                                                                       

(6.4) 

The normal Laplace transform is denoted by L{f(t)}, while the Laplace transform of 

f(t) is represented by F(s). The PIλDμ is the generic form of FOPID, and Eqn. (6.5) 

provides its TF.  

μI
c P Dλ

K
G (s) = K + + K s

s                                                                                                 
(6.5) 

The FOPTID+1 controller TF is defined by Eqn. (6.6). 

I

D

μT
FOPTID+1 P 1/n λ

K K
 = + + K s

s s
G (s) 1 K   

  
   
  

                                                              (6.6) 

Where, proportional, integral, derivative, and tilt-integral gains are represented 

respectively by KP, KI, KD, and KT. The order of integration and differentiation is 

indicated by λ, μ, and n is a non zero real number. Therefore, instead of just five design 

parameters needed for a FOPID structured controller, seven design parameters are needed 

for a FOPTID+1 controller structure. The FOPTID+1 orders λ/μ/n and require the proper 

KP/KI/KD/KT design. In essence, the orders are any real number rather than an integer.  

An ordinary TF would designate poles and zeroes in order of infinite number to 

appropriately resemble a fractional transfer function. Nonetheless, to obtain an 

approximate solution using a finite number of poles-zeroes, Oustaloup's CRONE 

approximation [262] can be applied. Using a higher order filter with an order of 2N + 1, 

Oustaloup's recursive distribution gives an excellent estimation of the FO element sα 

specified by Eqn. (6.6) in a range of definite frequency band [ωL, ωH]. 

Gf (s) = sα = K
N

k

k = N k

s + ω

s + ω






                                                                                             

(6.6) 
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Where, α is the order of differentiation-integration and 0 < α < 1, The filter's order is (2N 

+ 1). The gain, denoted as K, kω
 and ωk are the zeros/poles of the analog filter, are 

derived iteratively in the following manner:  

K =
α

Hω
                                                                                                                            

(6.7) 

 
1

k + N + 1 α
2

2N + 1
H

k L

L

ω
ω   ω

ω





 
  

                                                                                              

(6.8) 

ωk = ωL

 
1

k + N + 1 α
2

2N + 1
H

L

ω

ω



 
 
 

.                                                                                             (6.9) 

K is changed to give the approximation of a unit gain at a frequency of one rad/s. An 

important factor that determines the success of the approximation is the selection of N. 

Low values of N can lead to easier hardware execution and simpler approximations, but 

the approximations deteriorate as a result of ripple generation in phase and magnitude 

responses. These waves are eliminated by in incrementing N, but doing so will convert 

the approximation more complex, thereby the hardware implementation is more difficult. 

The frequency range [ωL, ωH] is selected as [10–2, 102] and N = 3 to investigate this study. 

6.4 Optimization Problem 

According to Eqns. 5.10/(6.11) [26–27], AGC problem under consideration is solved by 

minimization of the objective function (J) denoted with ITAE.  

 1 2

0

J = t ΔF ΔF  ΔPtie dt

t

    
                                                                                    

(6.11) 

The controller parameter limitations are the problem restraints. Consequently, a 

challenge to design the FOPTID controller gains with optimization for problem solutions. 

Every multi-area system's FOPTID+1 controller has seven parameters that need to be  
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Fig. 6.1 Structure of FOPTID+1 controller. 

optimized. The following constraints can be used to define the optimization issue as 

minimizing J: 

P

I

D

T

min max

P P

min max

I I

min max

D D

min max

min max

min max

T T

min max

K K K

K K K

K K K

λ

K K K

n

λ λ

μ μ μ

n n

 

 

 

 

 

 

 

                                                                                                         (6.12) 

The minimum and maximum values of the parameters are KP [0 to 5], KI [0 to 5], KD [0 

to 5], λ [0 to 1], μ [0 to 1], KT [0 to 5], n [1 to 3], respectively. Errors in control areas-1 and 2, 

denoted with ACE1 and ACE2 respectively specified by Eqns. (6.13) and (6.14) [28]. 

1 1 1 12ACE (s) β ΔF (s)+ ΔPtie (s)                                                                                     (6.13) 

2 2 2 12 12ACE (s) β ΔF (s)+ a ΔPtie (s)                                                                               (6.14) 
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6.5 Simulation Results and Discussions 

6.5.1. Multi-Area Thermal-Hydro-Gas System with GNA Tuned 2DOF-

PID and FOPTID+1 Controllers 

Using the data in the Appendix, a multi-area i.e., two-area THG PS is simulated, taking 

into account a 1% SLP at t = 0 sec in each regions. Fig. 6.2 portrays the THG units in the 

PS and situation of SLP inputs. Fig. 6.3 portrays the comparison of proposed GNA tuned 

FOPTID+1 controller and GNA tuned 2DOF-PID controller investigated THG PS. Figs. 

6.3(a-c) portray the dynamic results of investigated PS for ΔF1, ΔF2 and ΔPtie12 

responses. Table 6.1 provides the tuned parameters of the recommended controller. It is 

abundantly evident through dynamic response that, in contrast to the GNA:2DOF-PID 

controller, the suggested GNA tuned FOPTID+1 controller exhibits significant 

improvements in PSs. The dynamic response mathematical values of ITAE performance 

index and STs/USs/OSs are shown in Table 6.2. Numerical values with the GNA 

optimized FOPTID+1 controller are evident from Table 6.2, smaller ITAE (0.0234), STs 

(ΔF1 = 1.095, ΔPtie12 = 2.20) and OSs (ΔF1 = 0.000077, ΔF2 = 0.0000207, ΔPtie12 = 

0.000008) are obtained compared to GNA optimized 2DOF-PID controller. However, ST 

(ΔF2 = 3.82) and USs (ΔF1 = –0.011, ΔF2 = –0.00427, ΔPtie12 = –0.00125) are inferior 

compared to GNA optimized 2DOF-PID controller. But, in overall, we can say that  
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Fig. 6.2 Two-area THG system with FOPTID+1 controller. 

Table 6.1 

Tuned parameters of two-area THG system without GDB/GRC with GNA optimized controllers. 

Controller type KPi KIi KDi PWi DWi λi μi KTi ni 

GNA:2DOF-PID KP1 KI1 KD1 PW1 DW1 λ1 μ1 KT1 n1 

1.4673 2.9375 2.1645 3.6640 1.3032 - - - - 

KP2 KI2 KD2 PW2 DW2 λ2 μ2 KT2 n2 

3.2259 2.7475 0.7883 3.4241 2.400 - - - - 

KP3 KI3 KD3 PW3 DW3 λ3 μ3 KT3 n3 

1.4096 3.8593 1.5284 4.9204 4.3314 - - - - 

GNA:FOPTID+1 KP1 KI1 KD1 PW1 DW1 λ1 μ1 KT1 n1 

4.7755 3.8004 4.4043 - - 0.2375 0.9397 2.5992 1.0272 

KP2 KI2 KD2 PW2 DW2 λ2 μ2 KT2 n2 

0.9156 4.4523 0.8350 - - 0.4252 0.3269 2.8076 1.5676 

KP3 KI3 KD3 PW3 DW3 λ3 μ3 KT3 n3 

3.3521 1.9584 3.1068 - - 0.9652 0.8285 4.1346 1.8134 
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(a) 

 
(b) 

 
(c) 

Fig. 6.3 Two-area THG system responses: (a) ∆F1, (b) ∆F2, and (c) ∆Ptie12. 

 
Table 6.2 

ST/OS/US/ITAE in two-area THG system at ΔPd1 = 0.01 puMW with GNA optimized controllers. 

Controller 

structure 

ST
 
(sec) US (–ve) (Hz) 

US (–ve) 

(puMW) 
OS

 
(Hz) 

OS 

(puMW) 
J 

∆F
1
 ∆F

2
 

∆Ptie
1

2
 

∆F
1
 ∆F

2
 ∆Ptie

12 
 ∆F

1
 ∆F

2
 ∆Ptie

12
 ITAE 

GNA:2DOF

-PID 

4.36 1.9

5 

2.31 0.009

9 

0.0018 0.00088 0.00181 0.000411 0.00002

9 

0.024

4 

GNA: 

FOPTID+1 
1.09

5 

3.8

2 
2.20 0.011 0.0042

7 

0.00125 0.00007

7 

0.000020

7 

0.00000

8 

0.023

4 

response with FOPTID+1 controller is enhanced over 2DOF-PID controller in terms of 

fast and oscillation less results and less ITAE. Hence, further study is conducted with 

GNA optimized FOPTID+1 controller. 
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6.5.2. Comparison with Other Controllers 

Research is stretched on a multi-source THG PS without nonlinearities with GNA 

optimized FOPTID+1 controller as shown in Fig. 6.2. Table 6.3 illustrates the optimized 

parameters of the suggested controller. Figs. 6.3(a-c) Portrays the dynamic results of PS 

studied for ΔF1, ΔF2, and ΔPtie12 responses. Critical scrutiny of responses clearly exposes 

that considerable improvement is observed with the projected GNA tuned FOPTID+1 

controller compared to DE:PID [26], hSFS-PS:PID [27], TLBO:PID [28], and GNA 

optimized PID/FOPID controllers.   

The controllers’ performance for a tolerance band of ±0.0005 is also investigated 

using performance index (PI) denoted with ITAE given in Table 6.4. It clearly depicts the 

mathematical values of STs/USs/OSs and performance index, ITAE. Table 6.4 depicts 

values of GNA optimized PID controller as ITAE (0.047), STs (ΔF1 = 4.9, ΔF2 = 2.40, 

ΔPtie12 = 2.32), USs (ΔF1 = –0.012, ΔF2 = –0.0047, ΔPtie12 = –0.00136) and OSs (ΔF1 = 

0.00122, ΔF2 = 0.000340, ΔPtie12 = 0.000118) while these values with GNA optimized 

Table 6.3  
Tuned parameters of two-area THG system with GNA optimized controllers. 

Controller type KTi ni KPi KIi KDi λ i µ i 

GNA:PID KT1 n1 KP1 KI1 KD1 λ 1 µ 1 

- - 4.7273 4.5144 4.6174 - - 

KT2 n2 KP2 KI2 KD2 λ 2 µ 2 

- - 4.7522 0.3409 1.6493 - - 

KT3 n3 KP3 KI3 KD3 λ 3 µ 3 

- - 4.6742 5.2648 1.3591 - - 

GNA:FOPID KT1 n1 KP1 KI1 KD1 λ 1 µ 1 

- - 4.3785 4.6327 4.1441 0.4962 0.9697 

KT2 n2 KP2 KI2 KD2 λ 2 µ 2 

- - 1.0035 4.6215 0.5661 0.9643 0.5380 

KT3 n3 KP3 KI3 KD3 λ 3 µ 3 

- - 4.5340 3.2785 0.0047 0.4701 0.5190 

GNA:FOPTID+1  KT1 n1 KP1 KI1 KD1 λ 1 µ 1 

2.5992 1.0272 4.7755 3.8004 4.4043 0.2375 0.9397 

KT2 n2 KP2 KI2 KD2 λ 2 µ 2 

2.8076 1.5676 0.9156 4.4523 0.8350 0.4252 0.3269 

KT3 n3 KP3 KI3 KD3 λ 3 µ 3 

4.1349 1.8134 3.3521 1.9584 3.1068 0.9652 0.8285 



79 

 

FOPID controller, ITAE (0.044), STs (ΔF1 = 2.85, ΔF2 = 4.95, ΔPtie12 = 3.67), USs (ΔF1 

= –0.011, ΔF2 = –0.00536, ΔPtie12 = –0.00158) and OSs (ΔF1 = 0.000059, ΔF2 = 

0.0000518, ΔPtie12= 0.000021). The lowest values are with GNA optimized FOPTID+1 

controller, ITAE (0.0234), STs (ΔF1 = 1.095, ΔF2 = 3.82, ΔPtie12 = 2.20), USs 

 
(a) 

 
(b) 

 
(c) 

Fig. 6.4 Two-area THG system responses: (a) ∆F1, (b) ∆F2, and (c) ∆Ptie12. 

 
Table 6.4 

ST/OS/US/ITAE in two-area THG system without GDB/GRC at ∆Pd1 = 0.01 puMW with GNA optimized FOPTID+1 

controller. 

Controller 

structure 

ST (sec) US (–ve) (Hz) 
US (–ve) 

(puMW) 
OS (Hz) 

OS 

(puMW) 
J 

∆F1 ∆F2 ∆Ptie12 ∆F1 ∆F2 ∆Ptie12  ∆F1 ∆F2 ∆Ptie12 ITAE 

DE:PID [26] 13.097 8.523 9.222 0.0258 0.0215 0.00471 0.00197 0.000764 0.000187 0.290 

hSFS:PID [27] 8.58 7.34 3.885 0.0202 0.0134 0.00325 0.00392 0.00218 0.000246 0.129 

TLBO:PID [28] 6.27 5.805 2.796 0.0139 0.0055 0.00155 0.00172 0.000825 0.000179 0.067 

GNA:PID 4.9 2.40 2.32 0.012 0.0047 0.00136 0.00122 0.000340 0.000118 0.047 

GNA:FOPID 2.85 4.95 3.67 0.011 0.00536 0.00158 0.000059 0.0000518 0.000021 0.044 

GNA:FOPTID+1 1.095 3.82 2.20 0.011 0.00427 0.00125 0.000077 0.0000207 0.000008 0.0234 
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(ΔF1 = –0.011, ΔF2 = –0.00427, ΔPtie12 = –0.00125) and OSs (ΔF1 = 0.000077, ΔF2 = 

0.0000207, ΔPtie12=0.000008). The GNA optimized FOPTID+1 controller outperforms 

the other techniques, according to the results. Table 6.4 shows that the following is the 

sequence in which the performance is improving: GNA:FOPTID+1→ GNA:FOPID → 

GNA:PID → TLBO:PID → h-SFS:PID→ DE:PID. 

6.5.3. Two-Area Thermal-Hydro-Gas System with GDB/GRC 

nonlinearities 

 Further research is stretched on a two-area THG system with nonlinearities like 

GDB/GRC as shown in Fig. 6.5. One hydro power plant, one gas plant, and one reheat 

thermal unit are owned by each control area. The closed loop GRC limitations for 

thermal units are set at ±10%/minute. For hydro units, the GRC (open loop) for raising 

and lowering the generation is 270%/minute and 360%/minute, respectively. For the 

hydro unit, 0.02% is selected as the GDB limit. The generalized TFM of the governor 

incorporates the GDB effect in the thermal unit while accounting for non-linearities. 

GDB and GRC modeling are described in detail in Chapter 3. The PS parameters are 

portrays in the Appendix. Tuned parameters of the suggested controller are given in 

Table 6.5. Figs. 6.6(a-c) portrays PS dynamic response for ΔF1, ΔF2, and ΔPtie12. A 

critical analysis of the answers makes it abundantly evident that, as compared to 

IPSO:PID/TID/FOPID [40] and PFA:PID/TID/FOTID [41] controllers, significant 

improvements are shown with the suggested GNA adjusted FOPTID+1 controller. The 

ITAE, as presented in Table 6.6, is used to evaluate the controller performance for a 

tolerance band of ±0.0005. It depicts the mathematical values of STs/USs/OSs and ITAE 

respectively. The values of ITAE, STs/USs/OSs with GNA optimized FOPTID+1  
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Fig. 6.5 Multi-area THG PS with GDB/GRC and FOPTID+1 controller.  

controller are ITAE (0.1107), STs (ΔF1 = 5.05, ΔF2 = 6.14, ΔPtie12 = 4.85), USs (ΔF1 = –

0.0200, ΔF2 = –0.0170, ΔPtie12 = –0.00292) and OSs (ΔF1 = 0.0042, ΔF2 = 0.0049, 

ΔPtie12 = 0.000021). While the values of ITAE, STs/USs/OSs with IPSO optimized 

FOPID controller are, ITAE (0.4677), STs (ΔF1 = 10.53, ΔF2 = 10.35, ΔPtie12 = 5.38), 

USs (ΔF1 = –0.034, ΔF2 = –0.031, ΔPtie12 = –0.0056) and OSs (ΔF1 = 0.0076, ΔF2 = 

0.0070, ΔPtie12= 0.00065). The values of ITAE, STs/USs/OSs with PFA optimized 

FOTID controller are, ITAE (0.4796), STs (ΔF1 = 11.32, ΔF2 = 10.8, ΔPtie12 = 8.14), USs 

(ΔF1 = –0.025, ΔF2 = –0.022, ΔPtie12 = –0.00435) and OSs (ΔF1 = 0.011, ΔF2 = 0.014, 
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ΔPtie12 = 0.00323). This proves the superiority of GNA optimized FOPTID+1 controller 

over the others. Table 6.6 depicts the improvement in the controller performance as: 

GNA:FOPTID+1 → PFA:FOTID → IPSO:FOPID.    

Table 6.5 

Tuned parameters of two-area THG system with GDB /GRC with GNA optimized FOPTID+1 controller. 

Controller type KTi ni KPi KIi KDi λ i µ i 

IPSO:FOPID [40] KT1 n1 KP1 KI1 KD1 λ 1 µ 1 

- - 0.8615 1.8463 1.9990 0.6494 0.9990 

KT2 n2 KP2 KI2 KD2 λ 2 µ 2 

- - 0.0510 0.3561 1.6478 0.4003 0.9826 

PFA:FOTID [ 41] KT1 n1 KP1 KI1 KD1 λ 1 µ 1 

2.0000 3.0000 - 1.9943 1.3884 1.0001 1.3646 

KT2 n2 KP2 KI2 KD2 λ 2 µ 2 

0.0012 2.9537 - 0.3572 1.9997 0.0008 1.2693 

GNA:FOPTID+1  KT1 n1 KP1 KI1 KD1 λ 1 µ 1 

1.5210 2.7448 1.7940 3.2377 2.9453 0.4890 1.3043 

KT2 n2 KP2 KI2 KD2 λ 2 µ 2 

1.3494 1.8519 1.9710 1.0164 2.8209 0.7161 1.1277 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6.6 Two-area THG system responses with GDB/GRC: (a) ∆F1, (b) ∆F2, and (c) ∆Ptie12. 
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Table 6.6 

ST/OS/US/ITAE in two-area THG system with GDB/GRC at ∆Pd1 = 0.01 puMW with GNA optimized FOPTID+1 
controller. 

Controller 

structure 

ST
 
(sec) US (–ve) (Hz) 

US (–ve) 

(puMW) 
OS

 
(Hz) 

OS 

(puMW) 
J 

∆F
1
 ∆F

2
 ∆Ptie

12
 ∆F

1
 ∆F

2
 ∆Ptie

12 
 ∆F

1
 ∆F

2
 ∆Ptie

12
 ITAE 

IPSO: PID [40] 24.46 24.7 24.2 0.039 0.045 0.0074 0.021 0.020 0.00183 1.176 

IPSO: TID [40] 14.28 13.75 21.8 0.040 0.049 0.0089 0.0078 0.0089 0.00017 0.9829 

IPSO: FOPID [40] 10.53 10.35 5.38 0.034 0.031 0.0056 0.0076 0.0070 0.00065 0.4677 

PFA: PID [41] 10.85 11.1 6.51 0.039 0.040 0.0067 0.019 0.023 0.00248 0.6469 

PFA: TID [41] 8.96 10.9 9.01 0.034 0.031 0.00563 0.011 0.012 0.00212 0.4382 

PFA: FOTID [41] 11.32 10.8 8.14 0.025 0.022 0.00435 0.011 0.014 0.00323 0.4796 

GNA:FOPTID+1 5.05 6.14 4.85 0.0200 0.0170 0.00292 0.0042 0.0049 0.000021 0.1107 

6.6 Conclusion 

The proposed GNA optimized FOPTID+1 controller is recommended for a two-area 

THG PS without/with GDB/GRC. The performance obtained by the GNA optimized 

FOPTID+1 controller is clearly superior to that of the GNA optimized 2DOF-PID 

controller, as evidenced from outcomes. The suggested controller ensures improved 

dynamic performance over existing IPSO tuned PID/TID/FOPID, PFA tuned 

PID/TID/FOTID controllers, and GNA tuned PID/FOPID controllers. Consequently, the 

results establish that the proposed control strategy is effective, robust, and suitable for 

multiple PSs.  
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CHAPTER 7 
 

 GNA OPTIMIZED FOPI-FOPTID CONTROLLER 

 
7.1 Introduction 

To deal with the AGC problem of multi-source PS, new and intelligent control strategies 

are obligatory. Due to its exceptional design performance and added flexibility, fractional 

calculus (FC) based control techniques have garnered increasing attention in recent years 

for research purposes. However, cascaded control approach has shown remarkable 

performance in the control of AGC to stabilize the disturbances. Hence, a innovative 

cascade FO controller is designed in this chapter specified as fractional order PI (FOPI)-

FO proportional tilt integral derivative (FOPI-FOPTID) controller to investigate the 

dynamic response of PSs. Single-area THG PS is employed initially with GNA optimized 

FOPTID+1 and FOPI-FOPTID controllers for comparison of frequency deviation 

response as well as tuning of controller gains. The analysis is focused on single-area and 

two-area HN/HNG PSs to demonstrate the quality and scalability of the strategy after a 

critical examination of single-area nuclear PS. The methodology's sovereignty is 

established for GNA optimized PID/FOPID/FOPI-FOPID controller by comparing the 

outcomes with PID controller optimized using ant colony optimization (ACO) [166]. 

Analyzing the data demonstrates that FOPI-FOPTID performs better in contrast to above 

controllers in terms of the smallest error criteria, OSs/USs/STs, and tie-line power 

variations during disturbances.  
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7.2 Systems Investigated 

Further research is probed on a multi-source single-area THG PS without GDB/GRC 

using GNA optimized FOPTID+1 controller and GNA optimized cascaded FOPI-

FOPTID controller. A THG PS own one THG unit in its single-area. Results for the 

dynamic response with GNA optimized cascaded FOPI-FOPTID controller are much 

better, so that it can be employed in multi-source single-area HN PS, single-area HNG, 

and two-area HN/HNG PS with / without GDB/GRC. Both areas of HNG PS own, one 

mechanical governor based hydro unit, one nuclear unit and one gas unit connected with 

tie-lines in its each area.  PS has an initial loading of 1000 MW. However, the rated 

capacity of each area is 2000 MW. Figs. 7.2, 7.4, 7.6, 7.8, Fig. 10, and 7.12 display block 

diagrams of the systems under study. The Appendix contains the systems' nominal 

parameters, and the Nomenclature section contains the list of symbols.   

7.3 Cascade FOPI-FOPTID Controller 

The cascaded controllers (CC) like PI-PD [27] and FOPI-FOPD [29] validated superior 

performance compared to I/PI/PID conventional controllers. PID with filter (PIDN)-

FOPD controller [47] validated superior performance compared to I/PI/PIDN controllers. 

An optimal cascaded fuzzy FOPI-FOPID (CFFOPI–FOPID) controller presented new 

stable and robust technique superior to other PID/FO controllers [203]. An optimized 

cascade form of tilt ID (TID) controller i.e., fractional-order ID-T (FID-T) controller for 

LFC of an interconnected PS incorporating RES in the form of distributed generation 

(DG) and EV is presented [246]. The FID-T works well over ID-T/I-TD/I-PD and TID 

controllers. The implementation of cascaded FOPI-FOPTID controller implemented in 

this study is used in the AGC of PSs first time.   
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Fig. 7.1 Cascade FOPI-FOPTID controller structure. 

The cascaded structure form of FOPI-FOPTID controller is shown in Fig. 7.1 and its 

TF of FOPI-FOPTID controller is defined by Eqn. (7.1).  

I1 I

P1 P D

μT
FOPI-FOPTID λ1 1/n λ

K K K
G (s) = K + K + + K s

s s s
F (s)   

     
       

     
                          (7.1) 

Where, gains proportional, integral, derivative and tilt-integral, are denoted as 

KP/KP1, KI/KI1, KD, KT, respectively. λ/λ1, μ, and n indicate order of integration, order of 

differentiation, and an unknown positive integer, respectively. It is desirable to optimize 

ten design parameters in FOPI-FOPTID controller structure. It requires the appropriate 

design of KP/KP1/KI/KI1/KD/KT and orders λ/λ1/μ/n. Any real numbers are assigned to the 

orders are however not integers.  

7.4 Optimization Problem 

The objective function (J) employed single/two-area PS is ITAE as stated in Eqns. 

(6.11)/(7.2). The controller parameter limitations are the problem restraints. AGC 

problem under consideration is solved by minimization of the objective function (J) 

denoted with ITAE.   

0

J = t ΔFdt

t

   (1-area)                           (7.2) 

ACE(s) 

KDsμ 

 

 

KI 

sλ 

 

∆PC (s)  

KP1
 

 
 

KI1 

sλ1 

∆F (s) 

FOPI 

KT 

s1/n 

KP
 

 

 

FOPTID 



87 

 

 1 2 12

0

J = t ΔF ΔF ΔPtie dt

t

     (2-area) 

The following limits can be used to define the optimization issue as minimizing J: 
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(7.3)                                                                  

 

The minimum and maximum values of the parameters are KP1 [0 to 5], KI1 [0 to 5], λ1 

[0 to 1], KP [0 to 5], KT [0 to 5], n [1 to 3], KI [0 to 5], KD [0 to 5], λ [0 to 1], μ [0 to 1], KT [0 to 

5], n [1 to 3], respectively. ACE1 and ACE2 of area-1 and area-2 are represented, 

respectively by Eqns. (6.13) and (6.14) in Chapter 6. 

7.5 Simulation Results and Discussion 

7.5.1. Single-Area Thermal-Hydro-Gas System  

Using the data in the Appendix and accounting for a 1% SLP at t = 0 sec in both areas, a 

single-area THG system is simulated. The PS block diagram displayed in Fig. 7.2 clearly 

depicts the connections of thermal unit, hydro unit, gas unit and position of SLP inputs. 

Three FOPI-FOPTID cascaded controllers are applied with each plant in this model. Fig. 

7.2 depicts the comparison of GNA optimized FOPTID+1 controller and GNA optimized 

FOPI-FOPTID controllers are presented in this section. Controller gains are depicted in 

Table 7.1. PS dynamic results of ΔF response are exposed in Fig. 7.3. It is inferred that  
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Fig. 7.2 Single-area THG system. 

Table 7.1 

Tuned parameters of single-area THG system with GNA optimized controllers. 

Controller type KIi KDi λi KTi ni KPi KIi KDi λi µi 

GNA:FOPTID+1 KP4 KI4 λ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - 4.3331 1.8018 0.0042 0.4014 4.5687 0.5655 0.8197 

KP5 KI5 λ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

- - - 3.9237 1.2135 0.0105 4.8913 3.9787 0.5139 0.1900 

KP6 KI6 λ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

- - - 1.1250 1.0184 2.3630 4.9787 4.4989 0.8484 0.5190 

GNA:FOPI- 

FOPTID 

KP4 KI4 λ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

0.5067 3.2856 0.0895 3.7045 1.7551 4.3714 2.5027 3.4571 0.8272 0.9999 

KP5 KI5 λ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

1.3277 3.9158 0.6931 0.8016 1.8535 1.5357 2.5558 0.7070 0.5988 0.9674 

KP6 KI6 λ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

2.6324 3.9439 0.2917 3.7142 1.9355 1.7651 4.4996 2.9474 0.768. 0.5431 

 
Fig. 7.3 Single-area THG system response (∆F). 
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Table 7.2 

ST/OS/US/ITAE in single-area THG system  at ∆Pd = 0.01 puMW. 

Type of controller ST (sec) US (Hz) (‒ve) OS (Hz) ITAE 

GNA:FOPTID+1  1.35 0.0096 0.0000386 0.0042 

GNA:FOPI-FOPTID 0.67 0.0049 0.000207 0.0022 

substantial enhancement is detected in the AGC of single-area THG PS with the FOPI-

FOPTID controller compared to FOPTID+1 controller.  

Table 7.2 depicts the dynamic responses of STs/USs/OSs and ITAE with the 

mathematical values. Table 7.2 infers that ITAE (0.0022), ST (0.67), US (0.0049) with 

FOPI-FOPTID controller are lesser than FOPTID+1 controller. This shows the 

superiority of the FOPI-FOPTID controller compared to FOPTID+1 controller. However, 

OS (0.000207) due to FOPI-FOPTID controller is more than FOPTID+1 controller. GNA 

optimized FOPI-FOPTID controller is proposed for single-area and multi-area PSs. This 

study is extended to single-area nuclear PSs and multi-area nuclear PSs. 

7.5.2 Single-Area Nuclear Power System  

The single-area nuclear PS model with one cascaded FOPI-FOPTID controller is 

displayed in Fig. 7.4. Table 7.4 infers the enhancement of responses with the suggested 

controller over existing ACO:PID structured controller [166].  

 
Fig. 7.4 Single-area nuclear system with GNA optimized FOPI-FOPTID controller. 
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Table 7.3 

Tuned parameters of single-area nuclear system with GNA optimized controllers.  

Controller type KP1 KI1 λ1 KP KI KD λ μ KT n 

ACO:PID [58] ‒ ‒ ‒ 0.5100 0.9800 0.2000 ‒ ‒ ‒ ‒ 

GNA:PID ‒ ‒ ‒ 3.4959 5.9049 1.4596 ‒ ‒ ‒ ‒ 

GNA:FOPID ‒ ‒ ‒ 1.6012 4.9801 1.6020 0.8125 0.8952 ‒ ‒ 

GNA:FOPI -
FOPID 

-3.0261 -0.1771 -0.1771 1.7308 3.5652 2.330 0.6026 0.6601 ‒ ‒ 

GNA:FOPI -
FOPTID 

-3.8303 -1.7536 -1.7536 0.6516 3.2888 0.8818 0.5195 0.9090 4.6179 1.8499 

 

 
(a) 

 
(b) 

Fig. 7.5 Single-area nuclear system response: (a) Convergence curve and (b) ∆F. 

 
Table 7.4 

ST/OS/US/ITAE in single-area nuclear system at ∆Pd = 0.001 puMW. 

Controller structure ST(sec) OS (Hz) US (‒ve) (Hz) ITAE  

ACO: PID [166] 0.858 0.0004573 0.009838 0.020000 

GNA: PID 0.775 0.00014700 0.0031680 0.003400 

GNA: FOPID 0.860 0.00011630 0.0038770 0.003800 

GNA: FOPI-FOPID 0.080 0.00038880 0.001668 0.00120 

GNA: FOPI-FOPTID 0.046 0.00001240 0.000885 0.000412 

It clearly depicts the connections of a nuclear unit and position of SLP input. The tuned 

parameters of the suggested, GNA:PID/FOPID/FOPI-FOPID, and ACO:PID [166] are 

given in Table 7.3. The convergence characteristic of ITAE with different controllers and 

system dynamic results of ΔF responses are shown in Figs. 7.5(a-b). It inferred with  
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Fig. 7.6 Single-area hydro-nuclear system.  

proposed GNA optimized FOPI-FOPTID controller that substantial enhancement is 

detected compared to the GNA optimized FOPI-FOPID/FOPID/PID and existing 

ACO:PID [166] controllers due to least values of ST (0.046), OS (0.00001240), US 

(0.000885), and ITAE (0.000412) as shown in Table 7.4. 

7.5.3. Single-Area Hydro-Nuclear System  

Further research is implemented on a single-area multi-source hydro-nuclear PS without 

nonlinearities as displayed by  Fig. 7.6. Each control area owns a mechanical governor 

dependent hydro power plant and a nuclear plant. Tuned gains of the suggested controller 

are specified in Table 7.5. and Fig. 7.7. portrays the PS dynamic results of PS for ΔF 

responses. 

 Table 7.5 

Tuned parameters of single-area hydro-nuclear system with GNA optimized controller. 

Controller 

type 
KP1 KI1 λ1 KP KI KD λ μ KT n 

GNA:PID ‒ ‒ ‒ 5.5028 5.8602 1.6925 ‒ ‒ ‒ ‒ 

GNA:FOPID ‒ ‒ ‒ 4.6348 4.7886 1.6772 0.6169 1.1231 ‒ ‒ 

GNA:FOPI-

FOPID 
‒3.7553 ‒1.7314 

-

0.5083 
3.4612 2.2067 0.5091 0.7542 1.0974 ‒ ‒ 

GNA:FOPI -

FOPTID 
‒4.808 ‒1.7315 

-

0.8513 
3.2159 4.5686 0.3892 0.6782 0.9864 3.9715 1.1295 
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Fig. 7.7 Single-area hydro-nuclear (HN) system frequency deviation response (∆F). 

Table 7.6 

ST/OS/US/ITAE in single-area hydro-nuclear system at ∆Pd = 0.01 puMW. 

Controller structure ST(sec) OS (Hz) US (‒ve) (Hz) ITAE 

GNA:PID 1.08 0.0002250 0.00483 0.00620 

GNA:FOPID 1.039 0.0000855 0.00414 0.00510 

GNA:FOPI-FOPID 0.250 0.0000351 0.00192 0.00191 

GNA:FOPI-FOPTID 0.145 0.0000156 0.00158 0.00064 

 

It is inferred by responses that substantial enhancement is detected with GNA optimized 

FOPI-FOPTID controller over GNA optimized FOPI-FOPID, FOPID, and PID 

controllers. Table 7.6 depicts the mathematical values of the STs/USs/OSs, and ITAE. 

Table 7.6 reveals that with GNA optimized PID controller values are ST = 1.08 sec, OS = 

0.0002250, US = 0.00483, ITAE = 0.00620, while these values with GNA optimized 

FOPID controller values are ST = 1.039 sec, OS = 0.0000855, US = 0.00414, ITAE = 

0.00510.  

GNA optimized FOPI-FOPID controller values are ST = 0.25 sec, OS = 0.0000351, 

US = 0.00192, ITAE = 0.00191. The values for GNA optimized FOPI-FOPTID 

controller are ST = 0.15 sec, OS = 0.0000156, US = 0.00158, ITAE = 0.00164. The 

dominance of the GNA optimized FOPI-FOPTID controller is revealed over the others. It 

is observed that the  
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Fig. 7.8 Single-area HNG system.  

Table 7.7 

Tuned parameters of single-area HNG PS with GNA optimized FOPI-FOPTID controller. 

Controller used KP1 KI1 λ1 KP KI KD λ μ KT n 

GNA:PID ‒ ‒ ‒ 4.8587 5.0392 1.8089 ‒ ‒ ‒ ‒ 

GNA:FOPID ‒ ‒ ‒ 3.2096 5.1775 1.6822 0.6008 1.1891 ‒ ‒ 

GNA:FOPI- 

FOPID 
-0.2282 -2.0300 -0.0122 1.9026 3.5176 0.9770 0.6664 1.1150 ‒ ‒ 

GNA:FOPI- 
FOPTID 

-4.7510 -2.6781 -0.8388 0.6771 3.2034 0.4667 0.5602 0.7242 0.8092 1.1653 

performance is decreasing in the order: GNA:FOPI-FOPTID→ GNA:FOPI-FOPID → 

GNA:FOPID → GNA:PID. 

7.5.4. Single-Area Hydro-Nuclear-Gas System  

Further research is carried on a single-area multi-source HNG PS displayed by Fig. 7.8. 

Each control area owns one mechanical governor dependent hydro power plant, one 

nuclear plant and one gas plant. One cascaded FOPI-FOPTID controller is applied in this 

model. The significant parameters are presented in Appendix. Table 7.7 portrays tuned 

gains of the designed controllers.  
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Fig. 7.9 Single-area HNG system frequency deviation response (∆F). 

Table 7.8 

ST/OS/US/ITAE in single-area HNG system at ∆Pd = 0.01 puMW. 

Controller structure ST(sec) OS (Hz) US (‒ve) (Hz) ITAE 

GNA:PID 1.440 0.000633 0.00752 0.00834 

GNA:FOPID 1.123 0.000045 0.00579 0.0051 

GNA:FOPI-FOPID 0.875 0.0000762 0.00472 0.0023 

GNA:FOPI-FOPTID 0.373 0.0000243 0.00338 0.0013 

The system dynamic results of ΔF responses are portrayed by Fig. 7.9. It is inferred that 

substantial enhancement is detected with the suggested GNA optimized FOPI-FOPTID 

controller over GNA optimized FOPI-FOPID, FOPID, and PID controllers. The 

mathematical values of the dynamic responses are depicted in Table 7.8 in terms of 

STs/USs/OSs and ITAE. Table 7.8 reveals that with GNA optimized PID controller 

values are ST = 1.440 sec, OS = 0.000633, US = 0.00752, ITAE = 0.00834, while these 

values with GNA optimized FOPID controller are ST = 1.123 sec, OS = 0.000045, US = 

0.00579, ITAE =0.0051. The values for GNA optimized FOPI-FOPID controller are ST 

= 0.875 sec, OS = 0.0000762, US = 0.00472, and ITAE = 0.0023. The values for GNA 

optimized FOPI-FOPTID controller are ST = 0.373 sec, OS = 0.0000243, US = 0.00338, 

and ITAE = 0.0013. Supremacy of the GNA optimized FOPI-FOPTID controller is 

revealed over the others in terms of least values of STs, USs, OSs, and ITAE. Table 7.8  
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Fig. 7.10 Two-area HN PS with optimized FOPI-FOPTID controller.   

and Fig. 7.9 reveals that the performance is diminishing in the order: GNA:FOPI-

FOPTID→ GNA:FOPI-FOPID → GNA:FOPID → GNA:PID. 

7.5.5. Two-Area Hydro-Nuclear System  

Further research is stretched on a two-area multi-source HN PS, displayed by Fig. 7.10. 

Each control area owns one hydro power plant and one nuclear plant in both areas. One 

cascaded FOPI-FOPTID controller is applied in each area in this model. Table 7.9 

portrays tuned gains for projected controller. PS dynamic results for ΔF1/ΔF2/ΔPtie12 

responses are displayed by Figs. 7.11(a-c). It is inferred that substantial enhancement is 

detected with the proposed GNA tuned FOPI-FOPTID controller against the GNA 
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optimized FOPI-FOPID/FOPID/PID controllers.  Table 7.10 portrays the mathematical 

values of STs/USs/OSs, and ITAE. Table 7.10 interprets that with GNA optimized PID 

controller, the values of ITAE, STs/USs/OSs are ITAE (0.0214), STs (ΔF1 = 1.647, ΔF2 = 

1.580, ΔPtie12 = 0.720) and USs (ΔF1 = –0.0078, ΔF2 = –0.00357, ΔPtie12 = –0.001073), 

OSs (ΔF1 = 0.001429, ΔF2 = 0.000194, ΔPtie12 = 0.0000857). For GNA optimized FOPID 

controller the values are ITAE (0.0170), STs (ΔF1 = 0.921, ΔF2 = 0.912, ΔPtie12 = 0.833) 

and USs (ΔF1 = –0.0066, ΔF2 = –0.00662, ΔPtie12 = –0.000841), OSs (ΔF1 = 0.000155, 

ΔF2 = 0.000088, ΔPtie12 = 0.0000576). For GNA optimized FOPI-FOPID controller the 

values of are ITAE (0.0046), STs (ΔF1 = 0.541, ΔF2 = 1.651, ΔPtie12 = 1.337) USs (ΔF1 = 

–0.0025, ΔF2 = –0.00033, ΔPtie12 = –0.000245) and OSs (ΔF1 = 0.000012, ΔF2 = 

0.000015, ΔPtie12 = 0.0000129).  

Table 7.9 

Tuned parameters of two-area HNG system with GNA optimized controllers. 

Controller type  KP1 KI1 λ1 KP KI KD λ μ KT n 

GNA:PID ‒ ‒ ‒ 4.5783 5.5438 1.9989 ‒ ‒ ‒ ‒ 

GNA:FOPID ‒ ‒ ‒ 4.8174 5.1423 1.9598 0.8178 1.0459 ‒ ‒ 

GNA:FOPI-FOPID 2.0795 0.5382 0.1408 3.3448 4.3270 1.8119 0.4897 1.1820 ‒ ‒ 

GNA:FOPI-FOPTID 3.0645 2.7554 0.1728 4.8744 3.8542 1.0382 0.3984 1.2683 1.2402 1.2362 

    

 
(a) 

 
(b) 
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(c) 

Fig. 7.11   Two-area HN system response: (a) ∆F1, (b) ∆F2, and (c) ∆Ptie12. 

 

Table 7.10 
ST/OS/US/ITAE in two-area HN system at ∆Pd1 = 0.01 puMW with GNA optimized FOPI-FOPTID controller. 

Controller  

structure 

∆F1 ∆F2 ∆Ptie12 - 

ST(s) OS (Hz) 
US(‒ve) 

(Hz) 
ST (s) OS (Hz) 

US (‒ve) 

(Hz) 
ST (s) OS (Hz) 

US (‒ve) 

(Hz) 
ITAE 

GNA: PID 1.647 0.001429 0.0078 1.580 0.000194 0.00357 0.720 0.0000857 0.001073 0.0214 

GNA: FOPID 0.921 0.000155 0.0066 0.912 0.000088 0.00662 0.833 0.0000576 0.000841 0.0170 

GNA: FOPI- 
FOPID 

0.541 0.000012 0.0025 1.651 0.000015 0.00033 1.337 0.0000129 0.000245 0.0046 

GNA: FOPI- 

FOPTID 
0.278 0.000088 0.0023 0.553 0.000013 0.00025 0.652 0.0000064 0.000126 0.0020 

 For GNA optimized FOPI-FOPTID controller the values of ITAE, STs/USs/OSs are 

ITAE (0.0020), STs (ΔF1 = 0.278, ΔF2 = 0.553, ΔPtie12 = 0.652), USs (ΔF1 = –0.0023, 

ΔF2 = –0.00025, ΔPtie12 = –0.000126) and OSs (ΔF1 = 0.000088, ΔF2 = 0.000013, ΔPtie12 

= 0.0000064). It is observed from Table 7.10 that GNA:FOPI-FOPTID provides least 

STs/USs/USs/ITAE compared to others and performance is decreasing in the order: 

GNA:FOPI-FOPTID→ GNA:FOPI-FOPID → GNA:FOPID → GNA:PID.  

7.5.6. Two-Area Hydro-Nuclear-Gas System  

Further research is stretched on a two-area multi-source HNG PS displayed by Fig. 7.12. 

Each control area owns one hydro power plant, one nuclear plant and one gas plant in 

both areas. One cascaded FOPI-FOPTID controller is applied in each area in this model. 

Table 7.11 shows projected controllers’ tuned gains. Figs. 7.13(a-c) portrays 
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ΔF1/ΔF2/ΔPtie12 responses and it is inferred that significant enhancement is detected with 

the projected GNA optimized FOPI-FOPTID controller against GNA optimized FOPI-

FOPID/ FOPID/ PID controllers.  The controller’s efficiency is also evaluated using the 

performance index, ITAE for a tolerance range of ±0.0005 portrayed in Table 7.12. The 

ST is considered in the error band of ±0.0005 (∆F1 and ∆F2) and ±0.0002 (∆Ptie12) for 

final value of the result. Table 7.12 interprets the mathematical values of ΔF1/ΔF2/ΔPtie12  

 
Fig. 7.12 Two-area HNG system.   
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Table. 7.11 

Tuned parameters of two-area HNG system with GNA optimized controllers. 

Controller  

used 
KP1 KI1 λ1 KP KI KD λ μ KT n 

GNA:PID ‒ ‒ ‒ 4.0857 5.3365 2.6159 ‒ ‒ ‒ ‒ 

GNA:FOPID ‒ ‒ ‒ 4.4657 4.5949 1.8814 0.7178 1.239 ‒ ‒ 

GNA:FOPI- 
FOPID 

3.5831 2.2993 0.2718 2.8765 3.1021 1.0356 0.6473 1.2901 ‒ ‒ 

GNA:FOPI- 

FOPTID 
3.0401 1.1182 0.6569 5.4749 3.3350 1.3849 0.6170 1.3081 2.7166 1.6879 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 7.13 Two-area HNG system response: (a) ∆F1, (b) ∆F2, and (c) ∆Ptie12. 

 
Table 7.12  
ST/OS/US/ITAE in two-area HNG system at ∆Pd1 = 0.01 puMW. 

Controller  structure 

∆F1 ∆F2 ∆Ptie12 - 

ST 

(sec) 

OS 

(Hz) 

US (‒ve) 

(Hz) 

ST 

(sec) 
OS (Hz) 

US (‒ve) 

(Hz) 

ST 

(sec) 
OS (Hz) 

US (‒ve) 

(Hz) 
ITAE 

GNA:PID 1.212 0.00105 0.00861 1.635 0.000502 0.00421 1.395 0.000149 0.00123 0.0273 

GNA:FOPID 1.068 0.00039 0.00760 1.590 0.000103 0.00370 1.338 0.000042 0.00120 0.0172 

GNA:FOPI-FOPID 0.623 0.00025 0.00360 0.760 0.000023 0.00061 0.993 0.000021 0.00029 0.0039 

GNA:FOPI-FOPTID 0.571 0.00029 0.00342 0.948 0.000021 0.00044 0.656 0.000020 0.00024 0.0035 
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in terms of STs/USs/OSs and ITAE. Table 7.12 infers that with GNA optimized PID 

controller the values of ITAE, STs/USs/OSs are ITAE (0.0273), STs (ΔF1 = 1.212, ΔF2 = 

1.635, ΔPtie12 = 1.395), USs (ΔF1 = –0.00861, ΔF2 = –0.00421, ΔPtie12 = –0.00123) and 

OSs (ΔF1 = 0.00105, ΔF2 = 0.000502, ΔPtie12 = 0.000149). For GNA optimized FOPID 

controller, the values of ITAE, STs/USs/OSs are ITAE (0.0172), STs (ΔF1 = 1.068, ΔF2 = 

1.590, ΔPtie12 = 1.338), USs (ΔF1 = –0.00760, ΔF2 = –0.00370, ΔPtie12 = –0.00120) and  

 
Fig. 7.14 Two-area HNG system with GDB/GRC/Time-delay (TD). 
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OSs (ΔF1 = 0.00039, ΔF2 = 0.000103, ΔPtie12 = 0.000042). For GNA optimized FOPI-

FOPID controller, the values are ITAE (0.0039), STs (ΔF1 = 0.623, ΔF2 = 0.760, ΔPtie12 = 

0.993), USs (ΔF1 = –0.00360, ΔF2 = –0.00061, ΔPtie12 = –0.00029) and OSs (ΔF1 = 

0.00025, ΔF2 = 0.000023, ΔPtie12 = 0.000021). For FOPI-FOPTID controller, the values 

are ITAE (0.0035), STs (ΔF1 = 0.571, ΔF2 = 0.948, ΔPtie12 = 0.656), USs (ΔF1 = –

0.00342, ΔF2 = –0.00044, ΔPtie12 = –0.00024) and OSs (ΔF1 = 0.00029, ΔF2 = 0.000021, 

ΔPtie12 = 0.000020). It is interpreted from Table 7.12 that the best performance is 

delivered by GNA:FOPI-FOPTID controller as most of the values are least with it and the 

worst performance is delivered by GNA:PID. 

7.5.7. Two-Area Hydro-Nuclear-Gas System with GDB/GRC/TD 

Further research is carried out on a two-area multi-source HNG PS including 

nonlinearities (GDB, GRC, and TD) as shown in Fig. 7.14. Figs. 7.15(a-c) portrays ΔF1, 

ΔF2, and ΔPtie12 responses. They reveal that significant enhancement in the system  

 
(a) 

 
(b) 
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(c) 

Fig. 7.15 Two-area HNG system response with GDB/GRC/TD: (a) ∆F1, (b) ∆F2, and (c) 
∆Ptie12. 

performance is detected by the GNA optimized FOPI-FOPTID controller and stabilized 

results are obtained in the presence of GDB, GRC, and TD. 

The FOPI-FOPTID controller’s optimized gains match those listed in Table 7.11. For 

hydro, nuclear, and gas PS, the GDB values are ±0.002, ±0.025, and ±0.001, respectively. 

The hydro PS has an upper limit of +0.045 and a lower limit of −0.06, whereas the 

nuclear and gas PS have values of ±0.2 and ±0.0033, respectively. Delay in time (TD) = 

0.015 sec.   

It is observed that the performance of ∆F1/∆F2/∆Ptie12 responses is degraded after 

adding GRC against the response with/without GDB. The performance of 

∆F1/∆F2/∆Ptie12 response is deteriorating after adding GDB, GRC and TD when against 

the response with/without GDB/GRC/TD.  

7.6 Conclusion 

A GNA optimized cascade FOPI-FOPTID controller is proposed. Initially, the controller 

is scrutinized on a single-area THG PS. The results attained by the GNA optimized 

FOPI-FOPTID controller interprets its supremacy against GNA optimized FOPTID+1 

controller. Further, the study is extended to single-area nuclear/HN/HNG PSs. Research 
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is stretched on two-area HN/HNG PS models. It is observed that GNA optimized FOPI-

FOPTID ensures enhanced dynamic performance over GNA optimized PID, FOPID, and 

FOPI-FOPID controllers witnessed least mathematical values of STs/PUs/PIs and ITAE. 

Finally, the research is stretched on two-area HNG PS with GDB/GRC/TD nonlinearities. 

It is inferred that PS performance deteriorates in the presence of nonlinearities. However, 

FOPI-FOPTID controller tuned for linear case by GNA is enough capable to provide a 

stable performance in the attendance of GDB/GRC/TD nonlinearities. 
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CHAPTER 8 
 

  WHO OPTIMIZED FOID-FOPTID CONTROLLER 

 
8.1  Introduction 

In this chapter an effort is carried out for projecting a new cascade fractional order 

integral derivative-fractional order proportional tilt integral derivative (FOID-FOPTID) 

controller optimized with a modern wild horse optimization algorithm (WHO) for AGC 

of THG PSs in single/two-area multi-source.  

8.2  Wild Horse Optimization (WHO) Algorithm 

Recently several intelligent algorithms are available in literature but the probability of the 

best solution is more in evolutionary algorithms. The WHO was induced by Naruei and 

Keynia [215,216]. The WHO is classified into territorial and non-territorial groups. Here, 

our focus is on non-terrestrial horses. Non-terrestrial horses are herds consisting of stable 

family groups or harems that include a stallion and one or several mares and offspring. 

Also, there are single groups, including adult stallions and juvenile horses. Stallions are 

placed close to mares for communication, and at any instant mating may occur. Foals 

often begin grazing within their first week of life and, as they age, engage in greater 

grazing and less rest. The rationale behind the suggested optimization technique is the 

behavior of non-territorial horses. Here, the utilization of WHO simultaneously 

optimizes other parameters and controller gains. Five main steps are (1) creating an initial 

population and forming horse groups and selecting leaders, (2) grazing and mating of 

horses, (3) leadership and leading the group by the leader (stallion), (4) exchange and 

selection of leaders, and (5) save the best solution as explained in sections 8.2.1-8.2.7. 
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Fig. 8.1 Formation of groups from original population [215].  

8.2.1 Generate Initial Population  

Define random initial population is specified by Eqn. (8.1): 

   1 2 3 n, , ,...................x x x x x                                                                                       (8.1) 

The target function is used to evaluate this random population. Eqn. (8.2) is used to 

assess the target function as follows:  

   1 2 3O , , ,................... nO O O O                                                                                   (8.2) 

Firstly, to begin with, the population is split up into different categories. The control 

parameter in this algorithm is the number of groups formulated by  G N×PS , where N 



106 

 

denotes total members and PS denotes stallions’ percentage. Fig. 8.1 shows this 

population divide. The stallion is positioned in the middle of the grazing field, while 

other participants hunt all around it to capture the grazing activity. 

8.2.2 Grazing Behavior 

The grazing activity is formulated by Eqn. (8.3). 

   , ,2 cos 2
j j j j
i G i GX Z RZ Stallion X Stallion                                                       (8.3) 

Here, Stallionj denotes the group leader position, R denotes uniform distribution in 

[‒2, 2], ,

j

i GX  is the new place of group member while grazing, the up-to-date position of 

foal or mare is 
,

j

i GX , The grazing of horses at different angles (360°) of group leader, π is 

the same as the pi number equal to 3.14, The COS function by combining π and R causes 

the movement in different radius, Z denotes an adaptive mechanism evaluated by Eqn. 

(8.4), however P is a vector specified between 0 and 1. 

1 ;P R TDR    0 ;IDX P    2 3Z R IDX R IDX                                        (8.4) 

In the interval [0,1], 1R  and 3R  are random vectors with uniform distribution, 

random vector 2R is in the interval [0,1], IDX is the random vector's index  1R  that 

satisfies (P == 0), and TDR is an adaptive parameter that starts at 1 and drops to 0 as the 

algorithm begins to execute, as specified by Eqn. (8.5). 

1
1

max
TDR itr

iter

 
   

 
                                                                                              (8.5) 

Where, the term max iter refers to the total number of algorithm iterations and iter 

denotes the current iteration. 
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8.2.3 Horse Mating Behavior 

It is a unique conduct of horses is that foals separate from the groups and female foals 

join another family before reaching puberty and select their mate. This behavior prevents 

father horse to mate with their siblings. This method is implemented as: a male foal 

leaves group i and female foal leaves group j to join a temporary group. They don’t have 

any common family so their child can join another temporary group k. This behavior of 

mating is shown in Fig. 8.2 can be simulated using Eqn. (8.6) as: 

 , , ,,P q z

G K G i G jX Crossover X X        ,  ,   i j k p q end     Crossover = Mean          (8.6) 

,

P

G KX is the position of horse p from group k. It will leave the group and a horse will 

replace it whose parents have left groups i and j. 
,

q

G iX  is the position of foal q from group 

i, who left the group j to mate with the horse z having position 
,

z

G jX . 

 

Fig. 8.2 Departure of foals from a group, crossover and reproduction [215]. 
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Fig. 8.3 Flowchart of WHO [215]. 
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Nstallion= PS×nPop, Nfoal= nPop- Nstallion 

 

Start 

Create foal groups and select stallions 

 

 Fitness evaluation  

 

Calculate TDR by Eq. 8.5 

 

         i=1, j=1 

 

Calculate Z by Eq. 8.4 

 

Update the position of 

the foal by Eq. 8.3  

 

Rand>PC 

No 

Fitness evaluation 

 

Stop 

Yes 

Yes 

No 

Update the position of 

the foal by Eq. 8.6  

 

Update the position of 

the stallion by Eq. 8.7  

 

Fitness evaluation 

 

j<Nfoal 

Select the stallion by 

Eq. 8.8 

 

i<Nstallion 

Is termination 

criterion met? 

Output the best solution 

 

 j=j+1 

 

 i=i+1, j=1 

 

Yes 

No 

Yes 

No 



109 

 

8.2.4 Group Leadership 

The group leader will lead the horses to a suitable area having water. The group which 

dominates will have the water first and another group moves away. This method will be 

given by Eqn. (8.7). 

3

3

2 cos(2 ) ( ) 0.5

2 cos(2 ) ( ) 0.5

i

i

i

G

G

G

Z RZ WH Stallion WH if R
Stallion

Z RZ WH Stallion WH if R





     
  

     

                        (8.7) 

Where, 
iGStallion  and 

iGStallion denotes the next and current positions of the leader 

of group i, WH is the water hole position, R is a uniform random number exists within 

range [-2,2], π is the pi number equal to 3.14 and Z is an adaptive mechanism given by 

Eqn. (8.4). 

8.2.5 Selection and Exchange of Leaders 

Initially the leaders are selected from the groups randomly and later on selected based on 

the fitness. The position of the group leader and group members will be interchanged if 

one of the group members have better fitness than group leader. This method is given by 

Eqn. (8.8), and the flowchart is shown in Fig. 8.3 for WHO algorithm. 

, ,

,

cost( ) cost( )

cost( ) cost( )

i

i

i i

G i G i G

G

G G i G

X if X Stallion
Stallion

Stallion if X Stallion

  
  
 




                                         (8.8) 

8.3 Systems Investigated 

Examination of a single-area reheat/non-reheat thermal PS is carried out to compare the 

WHO and GNA optimization algorithms. Further research is stretched on a single-area 

multi-source THG PS without GDB/GRC using GNA optimized FOPTID+1 controller, 

GNA optimized FOPI-FOPTID controller and WHO optimized FOID-FOPTID 

controllers. Results prove the dominance of WHO optimized controllers over the GNA 
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tuned controllers. A THG PS components and rated capacity are discussed in chapter 6. 

Three controllers are connected, one with each plant. Further research is stretched out on 

a multi-source multi-area THG PS without GDB/GRC. One FOID-FOPTID controller is 

connected in each area. Both areas are connected with tie-lines. The PS block diagrams 

investigated are displayed in Fig. 8.5, Fig. 8.7, Fig. 8.9, Fig. 8.11, Fig. 8.13, Fig. 8.15. 

The PSs nominal parameters are portrayed in Appendix with nomenclature section 

displays the list of symbols. 

8.4 Cascade Fractional Order Integral Derivative-Fractional Order 

Proportional Tilt Integral Derivative (FOID-FOPTID) Controller 

Cascaded FOID-FOPTID controller is used for the AGC of PSs. Literature study reveals 

the wide employment of FOPID controller in various PSs. The FO controller theory is 

discussed in Chapter 6. However, the Riemann-Liouville definition used in Chapter 6 is 

stated in Eqn. (6.1) normally applied in FO calculus. The TF of FOID-FOPTID controller 

is specified by Eqn. (8.9) and structure displayed in Fig. 8.4. 

I1 I

D1 D

μ1 μT
FOID-FOPTID Pλ1 1/n λ

K K K
G (s) =  K s + + K s

s s s
F (s) K   

     
        

     
                   (8.9) 

Where, proportional, integral, derivative and tilt-integral gains of FOPTID controller 

are KP, KI, KD, KT while KI1, KD1 are integral and derivative gains of FOID controller 

respectively. λ1, μ1, λ, μ and n are the corresponding orders of integration and 

differentiation. FOID-FOPTID controller will optimize eleven design parameters against  
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Fig. 8.4 Structure of FOID-FOPTID controller. 

the seven parameters required in FOPTID+1 structured controller. The proposed FOID-

FOPTID controller involves the suitable design of gains KI1/KD1/KP/KI/KD/KT and orders 

λ/μ/n can be any real numbers.  

8.5 Optimization Problem 

For AGC problem under study, for single/multi-area PS, the objective function (J) 

employed is ITAE as stated in Eqns. 5.10/(6.11) Chapter 5.  

Consequently, a challenge to design the FOID-FOPTID controller gains with 

optimization for problem solutions with controller parameter restrictions. There are 

eleven parameters to optimize for the FOID-FOPTID controller in all areas of the multi-

area PSs. The lowest and highest values of the parameters given by Eqn. (8.10) are KI1 [0 

to 5], KD1 [0 to 5], λ1 [0 to 1], μ1 [0 to 1], KP [0 to 5], KI [0 to 5], KD [0 to 5], λ [0 to 1], μ 

[0 to 1], KT [0 to 5], and n [1 to 3]. ACE1 and ACE2 are represented by Eqns. (6.13/8.13) 

and Eqns. (6.14/8.14) [26-27]. The following constraints can be used to define the 

optimization issue as minimizing J: 
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                                                                                                        (8.10) 

8.6 Simulation Results and Discussions 

8.6.1 Single-Area Non-Reheat Thermal System 

The data provided in the Appendix is used to model a single-area non-reheat thermal PS 

while taking a 1% SLP at t = 0 sec into account. The relationships between the thermal 

unit and the location of the SLP inputs are clearly illustrated by the system model in Fig. 

8.5. The comparison of proposed WHO tuned PID controller and GNA tuned PID 

controller is shown here. Table 8.1 portrays the tuned gains of the suggested controller 

and Figs. 8.6(a-b) depicts ΔF responses STs/USs/OSs performance index ITAE. It is 

inferred that  

 
Fig. 8.5 Single-area non-reheat thermal system. 
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Table 8.1 

Tuned parameters of single-area non-reheat thermal system with GNA and WHO optimized PID controller. 

Thermal System Type   Controller Type KP KI KD 

Non-Reheat  
GNA:PID 2.2814 4.6887 0.4279 

WHO:PID 2.5762 5 0.4716 

 

 
(a) 

 
(b) 

Fig. 8.6 Single-area non-reheat thermal system response: (a) ∆F and (b) Convergence curve. 

 
Table 8.2 
ST/OS/US/ITAE in single-area non-reheat thermal system at ∆Pd = 0.01 puMW. 

Controller structure ST(sec) OS (Hz) US (‒ve) (Hz) ITAE 

GNA:PID 0.520 0.00682 0.000265 0.000647 

WHO:PID 0.506 0.00641 0.000085 0.000586 

substantial enhancement is detected with the WHO optimized PID controller against 

GNA optimized PID controller. 

Convergence curve reveals that WHO tuned PID controller shows fast 

convergence. Table 8.2 portrays the dynamic responses with mathematical values in 

terms of STs/USs/OSs and ITAE. It is evident from Table 8.2 that ΔF response with 

WHO optimized PID controller for a tolerance band of ±0.0005 is better in terms of 

smaller values of ITAE (0.000586), ST = 0.506 sec, OS = 0.00641, and US = 0.0085. 

While these values for GNA optimized PID controller are observed ITAE = 0.000647, ST 

= 0.520 sec, OS = 0.0068, and US = 0.00265. This infers the supremacy of the WHO 

optimized PID controller.  
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8.6.2 Single-Area Reheat Thermal System  

Further research is stretched to a single-area reheat thermal system. Considering a 1% 

SLP at t = 0 sec, the simulation is carried out on PS displayed in Fig. 8.7. It depicts the 

connections of thermal unit and location of SLP inputs. The comparison of proposed 

WHO tuned PID controller efficiency and GNA tuned PID controller is shown here. The 

tuned controller gains are portrayed in Table 8.3. and Fig. 8.8. depicts the system 

dynamic results for ΔF responses revealing that significant enhancement is detected with 

WHO optimized PID controller against GNA optimized PID controller in single-area.   

 

Fig. 8.7 Single-area reheat thermal system. 

Table 8.3 

Tuned parameters of single-area reheat thermal system without GRC with GNA and WHO optimized PID 

controller. 

Thermal System Type   Type of Controller used KP KI KD 

Reheat  
GNA:PID 3.2531 4.5221 0.5535 

WHO:PID 3.6531 4.9989 0.6335 

 
Fig. 8.8 Single-area reheat thermal system response (∆F). 
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Table 8.4 
ST/OS/US/ITAE in single-area reheat thermal system at ∆Pd = 0.01 puMW. 

Controller structure ST(sec) OS (Hz) US (‒ve) (Hz) ITAE 

GNA:PID 0.73 0.000241 0.00877 0.0077 

WHO:PID 0.70 0.000203 0.00815 0.0070 

 

Fig. 8.9 Single-area THG system. 

Table 8.4 portrays the mathematical values of STs/USs/OSs and ITAE. In the tolerance 

band of ±0.0005, Table 8.4 infers that ΔF response has lesser ITAE = 0.0070, ST = 0.70 

sec, OS = 0.000203, and US = 0.00815 compared to GNA optimized PID controller. This 

shows the superiority of the WHO optimized PID controller. Further WHO optimization 

algorithm is suggested for other models. 

8.6.3 Single-Area Thermal-Hydro-Gas System  

Further research stretched on a single-area THG PS as displayed in Fig. 8.9. Each 

components of THG PS with rating capacity is discussed in chapter 6. Table 8.5 presents 

the tuned gains of the controller. For a tolerance band of ±0.0005, the system dynamic 

results are displayed in Fig. 8.10 and Table 8.6. It is inferred from Table 8.6 that, ΔF 

response for WHO optimized FOID-FOPTID controller has smaller ITAE = 0.0027, ST = 

0.82 sec, US = 0.0045, and OS = 0.000021, while these values for GNA optimized FOPI-

FOPTID controller are ITAE = 0.0022, ST = 0.67 sec, US = 0.0049, and OS = 0.000207.  
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Table 8.5 
Tuned parameters of single-area THG system with GNA and WHO optimized controllers. 

Controller type KPi KIi KDi λi µi KTi ni KPi KIi KDi λi µi 

GNA:FOPTID+1 

KP4 KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - - - 4.3331 1.8018 0.0042 0.4014 4.5687 0.5655 0.8197 

KP5 KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

- - - - - 3.9237 1.2135 0.0105 4.8913 3.9787 0.5139 0.1900 

KP6 KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

- - - - - 1.1250 1.0184 2.3630 4.9787 4.4989 0.8484 0.5190 

GNA:FOPI- 
FOPTID 

KP4 KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

0.5067 3.2856 - 0.0895 - 3.7045 1.7551 4.3714 2.5027 3.4571 0.8272 0.9999 

KP5 KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

1.3277 3.9158 - 0.6931 - 0.8016 1.8535 1.5357 2.5558 0.7070 0.5988 0.9674 

KP6 KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

2.6324 3.9439 - 0.2917 - 3.7142 1.9355 1.7651 4.4996 2.9474 0.768. 0.5431 

WHO:FOID- 

FOPTID 

KP4 K
I4
 K

D4
 λ

4
 µ

4
 K

T1
 n

1
 K

P1
 K

I1
 K

D1
 λ

1
 µ

1
 

- 2.2052 2.1573 0.5604 0.0137 0.8972 1.0894 2.7415 3.6027 2.4215 0.2053 0.3305 

KP5 K
I5
 K

D5
 λ

5
 µ

5
 K

T2
 n

2
 K

P2
 K

I2
 K

D2
 λ

2
 µ

2
 

- 2.5926 0.3364 0.1425 0.1106 0.9519 1.3771 3.6097 0.3087 0.0426 0.6247 0.1922 

KP6 K
I6
 K

D6
 λ

6
 µ

6
 K

T3
 n

3
 K

P3
 K

I3
 K

D3
 λ

3
 µ

3
 

- 3.3369 2.0921 0.5670 0.4114 3.9332 3.0674 3.4631 3.9705 4.9406 0.1220 1.1447 

 
Fig. 8.10 Single-area THG system response (∆F). 

Table 8.6 

 ST/OS/US/ITAE in single-area THG system at ∆Pd = 0.01 puMW. 

Type of controller ST (sec) US (Hz) (‒ve) OS (Hz) ITAE 

GNA: FOPTID+1  1.35 0.0096 0.0000386 0.0042 

GNA: FOPI-FOPTID 0.67 0.0049 0.000207 0.0022 

WHO: FOID-FOPTID  0.82 0.0045 0.000021 0.0027 
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Table 8.7 

Tuned parameters of single-area THG system with WHO optimized controllers. 

Controller type KIi KDi λi µi KTi ni KPi KIi KDi λi µi 

WHO:PID 

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - - - - 4.0155 1.1685 1.4347 - - 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

- - - - - - 2.9435 2.4371 0.7023 - - 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

- - - - - - 3.2554 4.5481 0.4396 - - 

WHO:TID 

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - - 4.2293 4.5945 - 0.5695 1.7656 - - 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

- - - - 3.1007 3.9187 - 0.5307 1.2121 - - 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

- - - - 1.9846 4.7319 - 3.0855 1.2781 - - 

WHO:FOTID 

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - - 3.9054 2.6671 - 5.2024 4.6864 0.6474 0.7876 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

- - - - 4.3885 1.1563 - 0.3336 2.8766 0.5677 0.3780 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

- - - - 4.7324 2.1505 - 1.8945 1.5149 0.7699 0.9249 

WHO:FOID-

FOPTID  

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

2.2052 2.1573 0.5604 0.0137 0.8972 1.0894 2.7415 3.6027 2.4215 0.2053 0.3305 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

2.5926 0.3364 0.1425 0.1106 0.9519 1.3771 3.6097 0.3087 0.0426 0.6247 0.1922 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

3.3369 2.0921 0.5670 0.4114 3.9332 3.0674 3.4631 3.9705 4.9406 0.1220 1.1447 

 
Fig. 8.11 Single-area THG system response (∆F) with optimized FOID-FOPTID controller. 

These values for GNA optimized FOPTID+1 controller are ITAE = 0.0042, ST = 

1.35 sec, US = 0.0096, and OS = 0.0000386.  
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Table 8.8 

ST/OS/US/ITAE in single-area THG system at ∆Pd = 0.01 puMW. 

Type of controller ST (sec) US (Hz) (‒ve) OS (Hz) ITAE 

DE:Integral [26] 10.35 0.0640 0.00060 0.439 

TLBO:Integral [28] 10.48 0.0638 0.00130 0.433 

hSFS-PS:Integral [27] 11.15 0.0640 0.00315 0.437 

hSFS-PS:PI [27] 6.57 0.0296 0.00280 0.0607 

hSFS-PS:PID [27] 4.19 0.0180 0.00027 0.0425 

WHO: PID 1.85 0.0140 0.00025 0.0154 

WHO: TID 1.81 0.0138 0.000081 0.0075 

WHO: FOTID 1.41 0.0095 0.000027 0.0037 

WHO: FOID-FOPTID  0.82 0.0045 0.000021 0.0027 

It is inferred that WHO:FOID-FOPTID controller considerably offers enhanced 

performance over FOPI-FOPTID and FOPTID+1 structured controllers. The order of 

performance is WHO:FOID-FOPTID → GNA:FOPI-FOPTID→GNA:FOPTID+1. 

Next, Table 8.7 shows WHO optimized parameters of PID, TID, and FOTID and 

suggested FOID-FOPTID controllers. FOID-FOPTID controller parameters are same as 

given in Table 8.5. System results of ΔF response due to these controllers along with a 

few existing methodologies are shown in Fig. 8.11 and Table 8.8, reveals that WHO 

optimized PID controller has supremacy over the published results of hSFS-

PS:PID/PI/Integral [27], TLBO:Integral [28], and DE:Integral [26] controllers in terms of 

lesser ITAE (0.0154), ST (1.85), US (0.0140), and OS (0.00025) values compared to 

them. It is also evident from Table 8.8, WHO optimized FOID-FOPTID controller has 

smallest ITAE (0.0027), ST (0.82), US (0.0045), and OS (0.000021), while these values 

for WHO optimized FOTID controller are ITAE = 0.0037, ST = 1.41 sec, US = 0.0095, 

and OS = 0.000027. These values for WHO optimized TID controller are ITAE = 0.0075, 

ST = 1.81 sec, US = 0.0138, and OS = 0.000081. WHO:FOID-FOPTID controller 

demonstrate considerably better performance than other controllers. Fig. 8.11 and Table 
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8.8 infers the controller performance decreases in the order WHO:FOID-FOPTID → 

WHO:FOTID → WHO:TID → WHO:PID → hSFS-PS:PID → hSFS-PS:PI → hSFS-

PS:Integral → TLBO:Integral→ DE:Integral.  

8.6.4  Two-area Thermal-Hydro-Gas System  

Further investigation is stretched on a multi-area THG system as displayed in Fig. 8.12. 

Each components of THG PS with rating capacity is discussed in chapter 6. Table 8.9 

depicts the tuned gains of the suggested controller. Figs. 8.13(a-c) portrays results for 

ΔF1, ΔF2 and ΔPtie12 responses at ΔPd1 = 0.01 puMW. Fig. 8.14 and Table 8.10 infers that  

 
Fig. 8.12 Two-area THG system. 
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STs/USs/OSs and ITAE. For WHO optimized PID controller the values of ITAE (0.052), 

the WHO tuned PID controller performance is enhanced over the published results of 

hSFS-PS:PID [27], TLBO:PID [28], and DE:PID [26] controllers in terms of lesser (ΔF1 

= 5.7, ΔF2 = 3.22, ΔPtie12 = 3.36), USs (ΔF1 = –0.0130, ΔF2 = –0.0065, ΔPtie12 = –

0.00179), and OSs (ΔF1 = 0.000742, ΔF2 = 0.000140, ΔPtie12 = 0.0000678) are small. 

However, with WHO:PID, some values like STs (ΔPtie12 = 3.36) and USs (ΔF2 = –

0.0065, ΔPtie12 = –0.00179) are slightly more than other PID controllers. But, in overall, 

WHO:PID is better than hSFS-PS:PID [27], TLBO:PID [28], and DE:PID [26] 

controllers. For WHO optimized FOID-FOPTID controller the values of ITAE (0.0079), 

STs (ΔF1 = 0.67, ΔF2 = 0.84, ΔPtie12 = 1.75), USs (ΔF1 = –0.0052, ΔF2 = –0.000735, 

ΔPtie12 = –0.000326), and OSs (ΔF1 = 0.000281, ΔF2 = 0.0000416, ΔPtie12 = 0.00000328)  

Table 8.9 

Tuned parameters of two-area THG system with WHO optimized controllers. 

Controller type KIi KDi λi µi KTi ni KPi KIi KDi λi µi 

WHO:PID  

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - - - - 4.9111 1.5206 2.1765 - - 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

- - - - - - 2.2865 0.1925 0.3670 - - 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

- - - - - - 3.2837 4.8443 2.7460 - - 

WHO:TID  

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - - 4.9568 2.6530 - 0.9850 4.1593 - - 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

- - - - 0.4396 1.5956 - 1.4009 0.7610 - - 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

- - - - 4.9746 2.6676 - 0.7487 0.7239 - - 

WHO:FOTID  

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - - 2.5294 1.6115 - 4.2698 4.6210 0.5182 0.9309 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

- - - - 0.3052 1.6281 - 1.4614 4.5922 0.9652 0.2338 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

- - - - 1.7188 2.3980 - 3.1729 3.5522 0.4415 1.0731 

WHO: FOID-

FOPTID  

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

4.0345 1.08 0.0059 0.8088 3.7526 1.5016 0.0469 4.6927 3.4767 0.8878 0.7653 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

1.2775 1.1930 0.3374 0.66220 2.8571 1.3715 0.7418 3.1687 4.4135 0.6400 0.4637 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

1.5308 0.2153 0.2153 0.6502 0.0922 2.2296 3.6093 1.1669 0.6423 0.5560 0.5580 
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(a) 

 
(b) 

 
(c) 

Fig. 8.13 Two-area THG system responses without GDB/GRC: (a) ∆F1, (b) ∆F2, and (c) ∆Ptie12. 

 
Table 8.10 

ST/OS/US/ITAE in two-area THG system at ∆Pd1 = 0.01 puMW. 

Controller 

structure 

ST (sec) US (–ve) (Hz) 
US (–ve) 

(puMW) 
OS (Hz) 

OS 

(puMW) 
J 

∆F
1
 ∆F

2
 ∆Ptie

12
 ∆F

1
 ∆F

2
 ∆Ptie

12 
 ∆F

1
 ∆F

2
 ∆Ptie

12
 ITAE 

DE: PID 13.097 8.523 9.222 0.0258 0.0215 0.00471 0.00197 0.000764 0.000187 0.290 

hSFS-PS: PID 

[27] 

8.58 7.34 3.885 0.0202 0.0134 0.00325 0.00392 0.00218 0.000246 0.129 

TLBO: PID [28] 6.27 5.805 2.796 0.0139 0.0055 0.00155 0.00172 0.000825 0.000179 0.067 

WHO: PID 5.7 3.22 3.36 0.0130 0.0065 0.00179 0.000742 0.000140 0.0000678 0.052 

WHO: TID 4.53 2.86 3.30 0.0118 0.00652 0.00191 0.000853 0.000304 0.0000147 0.050 

WHO: FOTID 1.86 2.89 3.25 0.0110 0.0055 0.00160 0.000348 0.000012 0.000011 0.0403 

WHO: FOID-

FOPTID 

0.67 0.84 1.75 0.0052 0.000735 0.000326 0.000281 0.0000416 0.0000328 0.0079 

are smallest compared to hSFS-PS:PID [27], TLBO:PID [28], DE:PID [26], and 

WHO:PID/TID/FOTID controllers. Hence, WHO optimized FOID-FOPTID controller is 
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enough capable to exhibit better performance than another considered controller. Finally, 

it is inferred from Table 8.10 and Fig. 8.13 that the performance is decreasing in the 

order: WHO:FOID-FOPTID→ WHO:FOTID → WHO:TID → WHO:PID→ 

TLBO:PID→ hSFS-PS:PID→ DE:PID. 

8.6.5  Two-Area Thermal-Hydro-Gas System with GDB/GRC  

Further investigation is stretched to a two-area THG PS including GDB/GRC 

nonlinearities is displayed by Fig. 8.14. Each components of THG PS with rating 

capacity is discussed in chapter 6. Three controllers are employed in each area. Both 

areas are connected with tie-lines. The GRC/GDB limits are discussed in Chapter 6. The  

 
Fig. 8.14 Two-area THG system with GDB/GRC. 
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significant parameters are presented in Appendix. Table 8.11 depicts the tuned gains of 

the suggested controller. The results for ΔF1, ΔF2, and ΔPtie12 responses are shown in 

Figs. 8.15(a-c) and Table 8.12. Fig. 8.15 and Table 8.12 infers that WHO tuned FOID-

FOPTID controller portrays supremacy over the recently published results of Pathfinder 

algorithm (PFA):PID/TID/FOTID [41] and improved particle swarm optimization 

(IPSO):PID/TID/FOPID [40] controllers. WHO:FOID-FOPTID tuned controller has 

minimum ITAE (0.0723), STs (ΔF1 = 8.72, ΔF2 = 8.21, ΔPtie12 = 4.95), USs (ΔF1 = –

0.0047, ΔF2 = –0.0030, ΔPtie12 = –0.00071), and OSs (ΔF1 = 0.0020, ΔF2 = 0.00097,  

Table 8.11 

Tuned parameters of two-area THG system with GDB /GRC with WHO optimized controllers. 

Controller type KIi KDi λi µi KTi ni KPi KIi KDi λi µi 

IPSO:PID [40] 

KI KD λ µ KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - - - - 0.8576 0.3189 0.6836 - - 

KI3 KD3 λ3 µ3 KT2 n2 KP2 KI2 KD2 λ2 µ2 

    - - 0.4334 0.3057 0.5059 - - 

IPSO:TID [40] 

KI KD λ µ KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - - 0.1884 3.0000 - 0.1238 0.4095 - - 

KI3 KD3 λ3 µ3 KT2 n2 KP2 KI2 KD2 λ2 µ2 

- - - - 0.2239 3.0000 - 0.1131 0.4990 - - 

IPSO:FOPID [40] 

KI KD λ µ KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - - - - 0.8615 1.8463 1.9990 0.6494 0.9990 

KI3 KD3 λ3 µ3 KT2 n2 KP2 KI2 KD2 λ2 µ2 

- - - - - - 0.0510 0.3561 1.6478 0.4003 0.9826 

PFA:PID [41] 

KI KD λ µ KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - - - - 1.6213 2.0000 0.8264 - - 

KI3 KD3 λ3 µ3 KT2 n2 KP2 KI2 KD2 λ2 µ2 

- - - - - - 1.2369 0.7627 2.0000 - - 

PFA:TID [41] 

KI KD λ µ KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - - 2.0000 2.3166 - 2.0000 2.0000 - - 

KI3 KD3 λ3 µ3 KT2 n2 KP2 KI2 KD2 λ2 µ2 

- - - - 0.08031 3.0000 - 0.0000 2.0000 - - 

PFA:FOTID [41] 

KI KD λ µ KT1 n1 KP1 KI1 KD1 λ1 µ1 

- - - - 2.0000 3.0000 - 1.9943 1.3884 1.0001 1.3646 

KI3 KD3 λ3 µ3 KT2 n2 KP2 KI2 KD2 λ2 µ2 

- - - - 0.0012 2.9537 - 0.3572 1.9997 0.0008 1.2693 

WHO:FOID-

FOPTID  

KI KD λ µ KT1 n1 KP1 KI1 KD1 λ1 µ1 

3.2462     1.9149     0.9759     0.9958     3.7816    2.8979     3.7498     4.4252     4.4953     0.7857    0.8252     

KI3 KD3 λ3 µ3 KT2 n2 KP2 KI2 KD2 λ2 µ2 

3.3278     2.3191     0.5794     0.8046 3.9934     1.2783 2.3320     0.2134     3.6897     1.5725     1.1493     

4.3355 2.6021 0.7358 0.9995 2.2108 1.4957 1.9712 3.4187 4.5780 0.4446 0.7894 

KI3 KD3 λ3 µ3 KT2 n2 KP2 KI2 KD2 λ2 µ2 

0.3094 3.8738 0.4267 0.1034 2.6594 1.1761 0.2693 2.0219 0.9446 0.7308 0.9932 
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(a) 

 
(b) 

 
(c) 

Fig. 8.15 Two-area THG system response with GDB/GRC: (a) ∆F1, (b) ∆F2, and (c) ∆Ptie12. 

 
Table 8.12 

ST/OS/US/ITAE in two-area THG system with GDB/GRC at ∆Pd1 = 0.01 puMW. 

Controller structure 
ST

 
(sec) US (–ve) (Hz) 

US (–ve) 

(puMW) 
OS

 
(Hz) 

OS 

(puMW) 
J 

∆F
1
 ∆F

2
 ∆Ptie

12
 ∆F

1
 ∆F

2
 ∆Ptie

12 
 ∆F

1
 ∆F

2
 ∆Ptie

12
 ITAE 

IPSO: PID [40] 24.46 24.7 24.2 0.039 0.045 0.0074 0.021 0.020 0.00183 1.176 

IPSO: TID [40] 14.28 13.75 21.8 0.040 0.049 0.0089 0.0078 0.0089 0.00017 0.9829 

IPSO: FOPID [40] 10.53 10.35 5.38 0.034 0.031 0.0056 0.0076 0.0070 0.00065 0.4677 

PFA: PID [41] 10.85 11.1 6.51 0.039 0.040 0.0067 0.019 0.023 0.00248 0.6469 

PFA: TID [41] 8.96 10.9 9.01 0.034 0.031 0.00563 0.011 0.012 0.00212 0.4382 

PFA: FOTID [41] 11.32 10.8 8.14 0.025 0.022 0.00435 0.011 0.014 0.00323 0.4796 

WHO: FOID-FOPTID 8.72 8.21 4.95 0.0047 0.0030 0.00071 0.0020 0.00097 0.00077 0.0723 

ΔPtie12 = 0.00077) compared to IPSO:PID [40], IPSO:TID [40], IPSO:FOPID [40], 

PFA:PID [41], PFA:TID [41], and PFA:FOTID [41] controllers. 
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8.7 Conclusion 

For a single-area reheat/non-reheat thermal PS the recommended WHO optimized PID 

controller has superior performance over the GNA optimized PID controller. Moreover, 

the dynamic response is enhanced. The research is stretched on a single-area THG PS and 

the responses of WHO optimized FOID-FOPTID controller are found better than GNA 

optimized FOPI-FOPTID/FOPTID+1 and WHO optimized PID/TID/FOTID controllers. 

Finally, then the advantage of WHO optimized FOID-FOPTID is established over WHO 

optimized PID/TID/FOTID for two-area multi-source THG PS and 

IPSO:PID/TID/FOPID and PFA:PID/TID/FOTID for two-area multi-source THG PS 

with nonlinearities.  
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CHAPTER 9 
 

  USE OF ENERGY STORAGE SYSTEMS 

 
9.1  Introduction 

Increasing load demand by the consumers has made, the researchers worldwide to 

recommend various new control strategies, and consider AGC problem actively. For 

efficient AGC in modern PSs, an extensive number of innovative optimization 

techniques, controllers, and algorithms have recently been given. But there is always 

research gap to find new methods for stabilizing power with AGC systems. Hence new 

ideas like energy storage systems are increasing every day to control the output power. 

Energy storage system (ESS) research has recently been introduced to PS in an effort 

to improve dynamic performance by lessening the impact of disruptions. AGC of various 

PS [12–16], multi-area multi-source renewable PS [20–30, 32], other systems [34, 36–

39], etc. have all seen the expediency of ESS influence. Using the ESS technique to 

regulate an industrial process has several benefits, including effective output disturbance 

rejection, robustness to deviations in the plant's gain, steady-state errors, and more.  

In light of the above, in this chapter an attempt has been made to investigate the 

impact of some ESSs and WHO tuned FOID-FOPTID controller employed in single/ 

two-area multi-source THG PS. 

9.2  Energy Storage Systems (ESSs) 

Recently, several ESSs are available in literature like capacitive ES (CES) 

[174,205,229‒231], superconducting magnetic ES (SMES) [93,112,209,224,225,250, 

256], redox flow battery (RFB) [15,16,25,38,48,49,66,94,113,142,228,234], battery ES 
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(BES) [14,217,254], ultra-capacitor (UC) [12,39,47,125,198], flywheel ES (FES) 

[220,221,254,255] etc. These ESSs have shown advantage with optimized controllers and 

intelligent algorithms. The impact of CES, SMES, and RFB are investigated on single-

area THG PS and two-area THG PS as explained in sections 9.2.1-9.2.3. 

9.2.1  Capacitive Energy Storage (CES)  

The CES [229–231] is becoming more and more popular in today's PS because to its 

high-power density and quick, efficient charging and discharging capabilities. One 

benefit of CES is its rapid response time and ability to supply power in large quantities as 

demand rises. It is less priced and simple to use. It is highly efficient and has a long 

service life. The primary unit of CES system is a super capacitor to store energy [230]. 

Static charge is stored as energy using capacitor plates. When there is an abrupt demand 

for power, CES returns stored energy to the grid. The CES model is depicted in Fig. 9.1 

[230],  

 
Fig. 9.1 Block CES linearized model [230].    

 

Fig. 9.2 SMES schematic diagram [226]. 
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Where KCES/TCES stand for the CES’s gain/time constant, respectively. The formula for 

the incremental power change of the CES is defined by Eqn. (9.1) [230].  

CES 31
CES i

CES 2 4

 =   
K 1+sT1+sT

ΔP   F
1+sT 1+sT 1+sT

     
     

    
                                                                  (9.1) 

Where, the phase compensation blocks’ time constants with dual-stage are denoted 

by the variables i = 1, 2, T1, T2, T3, and T4. All of the PS’s examined regions incorporate 

CES. Each CES unit receives the frequency deviation (ΔFi) of area-i as its input control 

signal. The range ∆Pmin ≤ ∆PCES ≤∆Pmax specifies the maximum and minimum power 

limits. Where, ∆Pmax = 0.01 puMW and ∆Pmin = −0.01puMW. 

9.2.2 Superconducting Magnetic Energy Storage (SMES) 

A coil’s magnetic field is used by the SMES device to store electrical power. With very 

little energy loss, the coil's magnetic field is produced by a superconducting wire. For a  

 

Fig. 9.3 RFB schematic diagram [16]. 
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brief period of time, the SMES [224,225] unit can produce and/or absorb electricity at its 

rated capacity. The SMES is protected by a cryogenic system and a power conditioning 

system that keeps its temperature below the superconductor's critical point. To prevent 

current conduction in the charged superconducting coil, it is submerged in low 

temperature liquid helium. The utility system supplies power to switching devices and the 

power conversion/conditioning system. The components of SMES are a step-down 

transformer, an AC/DC converter, and an inductor-converter unit containing a DC 

superconducting inductor. When a load demand occurs, the energy that the SMES has 

stored is released. Fig. 9.2 displays the SMES schematic diagram, and TF is given by the 

Eqn. (9.2) [225]. 

SMES

SMES

SMES

K
G (s) = 

1+ sT
                                                                                                      (9.2) 

9.2.3  Redox Flow Battery (RFB) 

These days, RFB is a quick-rechargeable battery. Electrochemical conversion is a step in 

the reduction-oxidation (redox) process. A dual converter performs the functions of the 

rectifier and inverter. When the governor reaction is lagging, rapid storing operation is 

completed because of the lag time in RFB. This benefit lessens the impact on the 

environment and gets rid of oscillations. Flow cells, electrolyte tanks, pipes, and pumps 

make up RFB. The pump moves electrolyte back and forth between the cells and tank. 

RFB's primary attributes include its adaptability, freed power capacity, abundant efficacy, 

etc. It has a long performance life, little losses, and ease of operation. When a load need 

arises, RFB delivers the energy it has stored during charging. Applications in storage 

durations of two to ten hours are appropriate for RFB [40], with power ratings range in 

kW to MW. The values of Pmax = 0.01 puMW and Pmin = −0.01 puMW, is permitted for 
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the base power of the power system. RFB is a better ESS due to these features. The 

schematic diagram is displayed in Fig. 9.3 [34,40] and TF is given by the Eqn. (9.3) [16]. 

RFB

RFB

RFB

K
G (s) = 

1+sT
                                                                                                          (9.3)  

9.3 Systems Investigated 

A single/two-area multi-source THG PS is examined without/with nonlinearities using 

WHO optimized FOID-FOPTID controller with energy storage systems (ESS). 

Components of THG PS is discussed earlier in chapter 6. The transfer function block 

diagrams of the PSs investigated are portrayed in Fig. 9.4, Fig. 9.6, and Fig. 9.8. 

9.4 Simulation Results and Discussions 

9.4.1 Single-Area Thermal-Hydro-Gas System with ESS 

Considering a 1% SLP at t = 0 sec, the data provided in the Appendix is used in 

modelling a single-area THG PS. The relationships between THG units and the location 

of SLP inputs are clearly illustrated by the PS model in Fig. 9.4. The ESS block with 

FOID-FOPTID controller is incorporated in Fig. 9.4. The tuned parameters of the 

suggested WHO:FOID-FOPTID controller with ESSs like SMES, CES,  

 

Fig. 9.4 Single-area THG system with ESSs.  
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Table 9.1 
Tuned parameters of single-area THG system with WHO optimized FOID-FOPTID controller and ESSs. 

Controller type KIi KDi λi µi KTi ni KPi KIi KDi λi µi 

WHO:FOID-
FOPTID with SMES 

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

4.1398 1.7187 0.1744 0.4259 2.8601 3.7555 0.1094 2.6657 2.3192 0.0902 0.9359 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

2.4656 0.9338 0.1487 0.1795 4.9900 2.8480 4.6549 4.9134 2.8006 0.9296 0.8955 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

4.5822 0.4795 0.4887 0.4003 0.9931 3.7127 2.0925 3.7768 1.2950 0.3289 0.2772 

WHO:FOID-

FOPTID with CES 

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

4.2210 2.8073 0.3047 0.2896 4.2881 3.9731 2.0502 4.3743 4.2340 0.0885 0.8947 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

3.3297 2.1692 0.6092 0.3707 0.0415 3.4894 2.1272 2.5152 4.9480 0.1234 0.0661 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

4.9868 0.0617 0.7859 0.8648 3.5392 3.6772 1.3680 0.6879 3.5034 0.6831 0.1747 

WHO:FOID-
FOPTID with RFB 

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

4.1531 2.2156 0.5008 0.8249 0.8456 3.0075 3.9816 2.6521 2.7456 0.2440 0.0171 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

3.6919 0.3487 0.3177 0.2017 1.9877 2.5174 4.5706 1.3636 1.6296 0.8798 0.3396 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

4.9990 1.6500 0.4364 0.2921 4.9895 3.6141 4.7684 0.8158 3.2594 0.4674 0.6080 

 

 
Fig. 9.5 Single-area THG system response (∆F) with ESS. 

and RFB are presented in Table 9.1 and the system dynamic results for ΔF response are 

shown in Fig. 9.5. Critical examination of responses Fig. 9.5 and Table 9.2 evidently 

interprets that substantial enhancements are witnessed with new WHO optimized FOID-

FOPTID controller against the existing DE:Integral [26], TLBO:Integral [28], hSFS-

PS:Integral [27], hSFS-PS:PI [27], hSFS-PS:PID [27], and WHO:PID, WHO:TID,  
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Table 9.2 
ST/OS/US/ITAE in single-area THG system at ∆Pd = 0.01 puMW. 

Type of controller ST (sec) US (Hz) (‒ve) OS (Hz) ITAE 

DE:Integral [26] 10.35 0.0640 0.00060 0.439 

TLBO:Integral [28] 10.48 0.0638 0.00130 0.433 

hSFS-PS:Integral [27] 11.15 0.0640 0.00315 0.437 

hSFS-PS:PI [27] 6.57 0.0296 0.00280 0.0607 

hSFS-PS:PID [27] 4.19 0.0180 0.00027 0.0425 

WHO:PID 1.85 0.0140 0.00025 0.0154 

WHO:TID 1.81 0.0138 0.000081 0.0075 

WHO:FOTID 1.41 0.0095 0.000027 0.0037 

WHO:FOID-FOPTID  0.82 0.0045 0.000021 0.0027 

WHO:FOID-FOPTID with SMES 0.78 0.0051 0.000109 0.00110 

WHO:FOID-FOPTID with CES 0.73 0.0026 0.0000208 0.00097 

WHO:FOID-FOPTID with RFB 0.75 0.00313 0.00000161 0.00086 

WHO:FOTID controllers. Next, WHO:FOID-FOPTID with ESSs (SMES/CES/RFB) 

provides better performance compared to WHO:FOID-FOPTID without ESSs. 

It is evident from Table 9.2 that ΔF response observed for WHO:FOID-FOPTID 

controller with RFB has ITAE = 0.00086, ST = 0.75, US = 0.00313, and OS = 

0.00000161, while these values with CES are ITAE = 0.00097, ST = 0.73, US = 0.00260, 

and OS = 0.0000208. These values for SMES are ITAE = 0.00110, ST = 0.78, US = 

0.0051, and OS = 0.000109. This shows the enhanced results are obtained with ESS 

(SMES, CES, or RFB) compared to WHO:FOID-FOPTID controller without ESS. 

Without ESS, WHO:FOID-FOPTID controller offers ITAE = 0.0027, ST = 0.82 , US = 

0.0045, and OS = 0.000021. Here, ITAE/ST values are higher and US/OS are lower than 

WHO:FOID-FOPTID controller with ESS. In overall, it is observed that the best 

performance is obtained with ESS specifically with RFB. 

9.4.2 Two-Area Thermal-Hydro-Gas System with ESS  

Further research is stretched on a two-area THG PS. At t = 0 sec, the PS is simulated with 

a 1% SLP in area-1. The relationships between THG units and the location of SLP inputs  
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Fig. 9.6 Two-area THG system with ESS.    

Table 9.3 
Tuned parameters of two-area THG system with ESSs. 

Controller type KIi KDi λi µi KTi ni KPi KIi KDi λi µi 

WHO:FOID-

FOPTID with 
CES 

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

4.6826 2.3770 0.1958 0.6408 4.6651 3.3200 2.3343 3.8221 3.9999 0.6890 0.7566 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

0.7161 2.9353 0.2751 0.2751 3.2480 1.8541 0.6520 0.5703 2.3975 0.3745 0.7698 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

0.4076 1.9402 0.4754 0.3757 2.2426 3.0201 4.6940 4.5684 3.7916 0.8749 0.0187 

WHO:FOID-
FOPTID with 

SMES 

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

2.5700 3.7657 0.4012 0.5060 4.9921 1.3480 3.3912 3.9792 3.6542 0.3572 0.7035 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

3.3984 3.5942 0.4874 0.1900 3.4821 1.5360 0.2277 3.6324 4.4268 0.3466 0.0625 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

1.7460 3.8885 0.7735 0.3131 3.4741 2.2026 2.6937 3.9116 1.0773 0.2768 0.5880 

WHO:FOID-

FOPTID with 
RFB 

KI4 KD4 λ4 µ4 KT1 n1 KP1 KI1 KD1 λ1 µ1 

4.5575 4.8144 0.0315 0.7254 4.3841 1.3868 3.8957 4.3919 0.9390 0.3698 0.8977 

KI5 KD5 λ5 µ5 KT2 n2 KP2 KI2 KD2 λ2 µ2 

3.9162 3.03309 0.4247 0.0507 0.4655 2.0857 4.3264 1.6041 3.3263 0.5088 0.4227 

KI6 KD6 λ6 µ6 KT3 n3 KP3 KI3 KD3 λ3 µ3 

0.6015 0.4253 0.7488 0.9209 4.4202 2.5211 3.3877 2.4279 4.2080 0.8766 0.9082 
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(a) 

 
(b) 

 
(c) 

Fig. 9.7 Two-area THG system response with ESS: (a) ∆F1, (b) ∆F2, and (c) ∆Ptie12. 

are clearly illustrated by the system model in Fig. 9.6. ESS is incorporated in both areas 

of the model. The impact of ESS with WHO:FOID-FOPTID controller on the dynamic  

results is shown here. The tuned parameters of the suggested WHO:FOID-FOPTID 

controller with ESSs are presented in Table 9.3 and Fig. 9.7(a-c) portrays the PS dynamic 

results for ΔF1/ΔF2/ΔPtie12, however the acute scrutiny interprets that significant 

enhancements are witnessed with new WHO:FOID-FOPTID controller over DE:PID 

[26], hSFS-PS:PID [27], TLBO:PID [28], WHO: PID, WHO: TID, and WHO:FOTID 

structured control methods. It is also observed that WHO:FOID-FOPTID controller with 

ESS offers better results than WHO:FOID-FOPTID controller without ESS as all values  
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Table 9.4 
ST/OS/US/ITAE in two-area THG system with ESS at ∆Pd1 = 0.01 puMW. 

Controller structure 
ST

 
(sec) US (–ve) (Hz) 

US (–ve) 

(puMW) 
OS

 
(Hz) 

OS 

(puMW) 
J 

∆F
1
 ∆F

2
 ∆Ptie

12
 ∆F

1
 ∆F

2
 ∆Ptie

12 
 ∆F

1
 ∆F

2
 ∆Ptie

12
 ITAE 

DE:PID [26] 13.097 8.523 9.222 0.0258 0.0215 0.00471 0.00197 0.000764 0.000187 0.290 

hSFS-PS:PID [27] 8.58 7.34 3.885 0.0202 0.0134 0.00325 0.00392 0.00218 0.000246 0.129 

TLBO:PID [28] 6.27 5.805 2.796 0.0139 0.0055 0.00155 0.00172 0.000825 0.000179 0.067 

WHO: PID 5.7 3.22 3.36 0.0130 0.0065 0.00179 0.000742 0.000140 0.0000678 0.052 

WHO: TID 4.53 2.86 3.30 0.0118 0.00652 0.00191 0.000853 0.000304 0.0000147 0.050 

WHO:FOTID 1.86 2.89 3.25 0.011 0.0055 0.0016 0.000348 0.000012 0.000011 0.0403 

WHO:FOID-FOPTID 0.67 0.84 1.75 0.0052 0.000735 0.000326 0.000281 0.0000416 0.0000328 0.0079 

WHO:FOID-FOPTID 

with CES 

0.58 2.26 3.0 0.0032 0.000271 0.000173 0.0000514 0.0000097 0.0000130 0.0052 

WHO:FOID-FOPTID 
with SMES 

0.48 1.28 1.98 0.0031 0.000355 0.000184 0.0000748 0.0000307 0.0000266 0.0055 

WHO:FOID-FOPTID 

with RFB 

0.50 1.94 2.77 0.0022 0.000290 0.000158 0.0000265 0.00000196 0.0000047 0.0043 

 

 

Fig. 9.8 Two-area THG system with GDB/GRC and ESS. 
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Table 9.5 

Optimized parameters of two-area THG system with GRC/GDB and ESS. 

Controller  

Type 
KIi KDi λi µi KTi ni KPi KIi KDi λi µi 

WHO:FOID-

FOPTID 

with SMES 

KI KD λ µ KT1 n1 KP1 KI1 KD1 λ1 µ1 

3.3506 0.9764 0.4810 1.2690 3.6155 2.3669 3.9516 1.9264 2.6892 0.7374 0.8144 

KI3 KD3 λ3 µ3 KT2 n2 KP2 KI2 KD2 λ2 µ2 

1.6053 3.0228 1.0463 0.6645 3.3324 0.8359 1.2068 2.0443 3.6492 0.1942 1.0782 

WHO:FOID-

FOPTID 

with CES 

KI KD λ µ KT1 n1 KP1 KI1 KD1 λ1 µ1 

3.6464 4.8467 0.6053 0.8663 3.2810 2.2551 0.8313 3.1271 1.1910 0.4775 1.0915 

KI3 KD3 λ3 µ3 KT2 n2 KP2 KI2 KD2 λ2 µ2 

3.7820 5.3515 0.3899 1.0469 3.1073 1.9182 5.0091 3.5846 1.3709 1.5878 0.7844 

WHO:FOID-

FOPTID 

with RFB 

KI KD λ µ KT1 n1 KP1 KI1 KD1 λ1 µ1 

4.3355 2.6021 0.7358 0.9995 2.2108 1.4957 1.9712 3.4187 4.5780 0.4446 0.7894 

KI3 KD3 λ3 µ3 KT2 n2 KP2 KI2 KD2 λ2 µ2 

0.3094 3.8738 0.4267 0.1034 2.6594 1.1761 0.2693 2.0219 0.9446 0.7308 0.9932 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9.9 Two-area THG system responses with GDB/GRC and ESS: (a) ∆F1, (b) ∆F2, and (c) ∆Ptie12. 
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Table 9.6 
ST/OS/US/ITAE in multi-area THG system with GDB/GRC and ESS at ∆Pd1 = 0.01 puMW. 

Controller structure 
ST

 
(sec) US (–ve) (Hz) 

US (–ve) 

(puMW) 
OS

 
(Hz) 

OS 

(puMW) 
J 

∆F
1
 ∆F

2
 ∆Ptie

12
 ∆F

1
 ∆F

2
 ∆Ptie

12 
 ∆F

1
 ∆F

2
 ∆Ptie

12
 ITAE 

IPSO: PID [40] 24.46 24.7 24.2 0.039 0.045 0.0074 0.021 0.020 0.00183 1.176 

IPSO: TID [40] 14.28 13.75 21.8 0.040 0.049 0.0089 0.0078 0.0089 0.00017 0.9829 

IPSO: FOPID [40] 10.53 10.35 5.38 0.034 0.031 0.0056 0.0076 0.0070 0.00065 0.4677 

PFA: PID [41] 10.85 11.1 6.51 0.039 0.040 0.0067 0.019 0.023 0.00248 0.6469 

PFA: TID [41] 8.96 10.9 9.01 0.034 0.031 0.00563 0.011 0.012 0.00212 0.4382 

PFA: FOTID [41] 11.32 10.8 8.14 0.025 0.022 0.00435 0.011 0.014 0.00323 0.4796 

WHO: FOID-FOPTID 8.72 8.21 4.95 0.0047 0.0030 0.00071 0.0020 0.00097 0.00077 0.0723 

WHO: FOID-FOPTID 
with SMES 

5.88 8.35 1.68 0.0058 0.0032 0.00087 0.00046 0.00105 0.000242 0.0638 

WHO: FOID-FOPTID 

with CES 

5.51 6.8 2.24 0.0044 0.0025 0.00071 0.00016 0.00047 0.0000085 0.0519 

WHO: FOID-FOPTID 

with RFB 
5.28 3.22 2.93 0.0035 0.0013 0.00077 0.00096 0.000054 0.0000276 0.0311 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9.10 Sensitivity analysis for two-area THG system with GDB/GRC and ESS: (a) ∆F1, (b) 

∆F2, and (c) ∆Ptie12. 
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of ITAE, STs, USs, and OSs are least compared to others except two values of STs of 

ΔF2 (= 0.48) and ΔPtie12 (= 1.75). As most of the values are favorable for WHO:FOID-

FOPTID with RFB, so the best performance is obtained with opting RFB as ESS in PS. 

9.4.3 Two-Area Thermal-Hydro-Gas System with GDB/GRC and ESS 

Further research is stretched on a two-area THG PS with GDB/GRC nonlinearities as 

shown in Fig. 9.8. Optimized parameters of the suggested WHO:FOID-FOPTID 

controller with ESSs are given in Table 9.5 while Table 9.6 depicts the mathematical 

values of of STs/USs/OSs and ITAE. Fig. 9.9 and Table 9.4 interprets that WHO:FOID-

FOPTID performs greatly compared to the existing IPSO:PID [40], IPSO:TID [40], 

IPSO:FOPID [40], PFA:PID [41], PFA:TID [41], and PFA:FOTID [41] controllers. Next, 

performance of WHO:FOID-FOPTID controller is enhanced incorporating ESSs 

specifically RFB. 

9.4.4  Sensitivity Analysis 

The study is further extended to investigate the system dynamic perfomance with 

WHO:FOID-FOPTID by varying all parameter of two-area THG PS with nonlinearities 

and ESSs (as shown in Fig. 9.8) by ±25%. Figs. 9.10(a-c) portray the response of ∆F1, 

∆F2, and ∆Ptie12. The acute analysis of Fig. 9.10(a-c) interprets that the performance of 

WHO tuned FOID-FOPTID controller is stable under wide variation of PS parameters. It 

indicates the robust behavior of the proposed controller. Hence, WHO assisted FOID-

FOPTID controller may be recommended for realistic two-area multi-source PSs to 

supply a reliable electric power the consumers. 
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9.5 Conclusion 

For a single/two-area THG PSs with/without nonlinearities, the ESSs have shown 

enhanced dynamic performance. The proposed WHO optimized FOID-FOPTID 

controller offers better performance compared to various published and 

WHO:PID/TID/FOTID controllers. The results with suggested controller interpret that 

RFB offers better performance compared to other ESSs like CES and SMES. In order to 

confirm that the recommended controller is robust under significant deviation in the 

system parameters, a sensitivity study is conducted. 
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CHAPTER 10 
 

CONCLUSIONS, FUTURE SCOPE, AND SOCIAL IMPACT 

 

10.1 Overview of the Work 

A summary of the developments made in the current thesis is given in this chapter. A 

variety of designs on single-area single-source, single-area multi-source, and multi-area-

multi-source PSs’ AGC are attempted to be presented in this thesis. This thesis proposes 

several new control mechanisms to address the AGC problem in PSs. The outcomes 

acquired are equated with results found in the literature to endorse the performance of the 

recommended controllers. The following summarizes the primary conclusions of the 

research included in this thesis: 

A.  AGC of Single-Area Thermal Power System using ALO and GNA 

Optimized PID Controller 

The optimized PID controllers are planned for single-area non-reheat/reheat thermal PSs 

with/without GRC. It is inferred that ALO optimized PID controller works satisfactorily 

with enhanced dynamic response against ALO optimized PI controller. Compared to 

GNA optimized PI controller, GNA optimized PID controller exhibits a stabilizing 

influence on PS performance. The dynamic response of reheat thermal PS is slow/poor 

compared to non-reheat thermal PS. The frequency deviation is found more in the 

dynamic response of reheat thermal PS with GRC. It is witnessed that the results of 

thermal PS degrade with nonlinearities. Finally, the results of GNA optimized PID 

controller is enhanced against ALO optimized PID controller. 
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B. AGC of Multi-Area Thermal Power System using GNA Optimized 

2DOF-PID Controller 

GNA optimized PI/PID controllers and 2DOF-PID controller gains are employed in 

multi-area non-reheat thermal PSs; to get the dynamic response and comparison is made 

with GNA optimized PI/PID controllers. It is interpreted that GNA optimized 2DOF-PID 

controller works satisfactorily with enhanced dynamic response in against GNA 

optimized PI/PID controllers.  

C. Multi-Source Multi-Area Power System with Optimized FOPTID+1 

Controller  

GNA optimized FOPTID+1 controller is projected to resolve AGC problem in multi-area 

reheat THG PS without GRC and multi-area reheat THG PS with GRC. The dynamic 

response is evaluated and compared with GNA optimized 2DOF-PID controller. PS 

system outcomes interpret GNA optimized FOPTID+1 controller outperforms GNA 

optimized 2DOF-PID controller. It is found that the GNA optimized FOPTID+1 

controller outperforms both the traditional and sophisticated control strategies that are 

often used in the literature. Further research is stretched on multi-area reheat THG PS 

with GRC with GNA optimized FOPTID+1 controller. Comparison is made with 

numerous intelligent algorithms optimized PI/PID controller present in the literature 

published recently. It is inferred that GNA optimized FOPTID+1 controller dominates 

various intelligent control approaches such as DE/hSFS-PS/TLBO tuned PID controllers 

in terms of enhanced response holding least mathematical records of STs, OSs, USs and 

performance index (ITAE).  



142 

 

D. GNA Optimized FOPI-FOPTID Controller 

For a multi-source single-area THG PS the research is performed using GNA optimized 

FOPTID+1 controller and GNA optimized cascaded FOPI-FOPTID controller. It is 

inferred that GNA optimized FOPI-FOPTID controller dominates the GNA optimized 

FOPTID+1 control approach. Therefore, GNA optimized FOPI-FOPTID controller is 

projected for multi-source single-area HN system, single-area HNG, and multi-area HN, 

multi-area HNG system with/without GDB/GRC PS models. It is inferred that GNA 

optimized FOPI-FOPTID outperforms GNA optimized FOPID and GNA optimized 

FOPI-FOPID/ PID controllers in the single-area and multi-area PSs. 

E. WHO Optimized FOID-FOPTID Controller 

The investigation is performed on a single-area reheat/non-reheat thermal system to 

compare the WHO and GNA optimization algorithms. The results depict the best 

performance with WHO optimized FOID-FOPTID controller, compared to GNA 

optimized FOPI-FOPTID/FOPTID+1 controllers. Then new projected controller is tested 

for efficacy on a single-area multi-source, two-area multi-source, two-area multi-source 

THG PS with GRC/GDB. It is inferred that new WHO tuned FOID-FOPTID controller 

portrays superior performance against the existing DE/TLBO/h-SFS:PS tuned PI/PID 

controllers. Also, the results with WHO tuned FOID-FOPTID controller are more 

superior than WHO optimized FOTID/TID/PID controllers. 

F. Use of Energy Storage Systems (ESSs) 

The study is conducted to check the influence of ESSs on the dynamic response of single-

area multi-source THG PS and two-area multi-source THG PS without/with GRC/GDB 

models with WHO optimized FOID-FOPTID controller. An improved performance is 
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obtained in the presence of ESS in the single-area and two-area THG PSs. It is inferred 

that more enhanced results are obtained with ESS such as SMES, CES, and RFB with 

WHO tuned FOID-FOPTID controller.  Further, results with ESS are more superior than 

WHO tuned FOTID/TID/PID controllers. Given its robustness, the suggested controller 

could be a good option for handling the AGC issue in a variety of PSs.  

10.2 Scope for the Future Research 

The current study aims to suggest some effective AGC controller architectures for PSs. 

The suggested controllers have shown extremely encouraging outcomes. Still, further 

study is needed to produce improved AGC controller designs for different PS models. 

The following is a list of these areas: 

1. The scope of the current study is restricted to single/multi-area interconnected 

PSs, but restructured PSs could be the subject of future extension. 

2. While GNA is used in this study to create the FOPI-FOPTID controller and WHO 

is used to design the FOID-FOPTID controllers, other emerging intelligent 

optimization techniques may yield more successful outcomes. 

3. Other types of supplemental controllers include fractional order PIDs with two 

degrees of freedom (2DOF-FOPID), 2-DOF-FOPTID etc., in addition to certain 

novel tuning strategies might be used in next research on both standard and 

restructured PSs.  

4. Although AGC controllers are currently designed in continuous mode, discrete 

mode design may be pursued with additional research. 

5. It is considered in this study that the power system's control areas include many 

power generation sources like thermal-hydro-gas in each area. However, further 
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studies may be done by considering diverse sources like hydro, thermal, gas, 

wind, diesel, nuclear, PV etc. in each control area of multi-area traditional/ 

restructured PS. 

6. Because of their inertial differences, the current study operates on the assumption 

that the automated voltage regulator (AVR) loop and the AGC loop do not 

interact. In future, AGC studies in PSs can be realized in the presence of AVR 

loop in each area. 

7. The AGC problem of multi-area multi-source multi-unit PSs can be solved by 

researching the effects of different FACTS and additional energy-storing devices.  

8. Social impact will be that applications of renewable energy system and ESSs in 

the AGC of PSs are pollution free. 
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Appendix - System Data:  

Chapter 4/Chapter 7 

Single-Area Non-Reheat Thermal System with/without GRC [1]: 

Pr = 2000 MW, 0

dΔP  = 1000 MW, Base power = 2000 MVA, F0 = 60 Hz, KPS = 120, TPS 

= 20 sec, TSG = 0.08 sec, Tt = 0.3 sec, R = 2.4 Hz/puMW, ∆Pd = 0.01 puMW, GRC = 0.1 

puMW/min 

Single-Area Reheat Thermal System with/without GRC [1,203]: 

Pr = 2000 MW, 0

dΔP  = 1000 MW, Base power = 2000 MVA, F0 = 60 Hz, KPS = 120, TPS 

= 20 sec, TSG = 0.08 sec, Tt = 0.3 sec, R = 2.4 Hz/puMW, ∆Pd = 0.01 puMW, Kr = 0.5, Tr 

= 10 sec, GRC = 0.1 puMW/min.  

Chapter 5 

Two-Area Non-Reheat Thermal System [188] 

Pr1 = Pr2= 2000 MW, 0

d1ΔP  = 0

d2ΔP  = 1000 MW, Base power = 2000 MVA, F0 = 60 Hz, 

KPS1 = KPS2 = 120, TPS1 = TPS2 = 20 sec, TSG1 = TSG2 = 0.08 sec, Tt1 = Tt2 = 0.3 sec, R1 = R2 

= 2.4 Hz/puMW, ∆Pd1 = ∆Pd2 = 0.01 puMW, β1 = β2 = 0.425 puMW/Hz, a12 = ‒1.  

Chapter 6/ Chapter 8/Chapter 9 

Two-Area Thermal-Hydro-Gas System with/without GDB/GRC [40,41]: 

Pr1 = Pr2= 2000 MW, 0

d1ΔP  = 0

d2ΔP  = 1000 MW, Base power = 2000 MVA, a12 = –1, F0 = 

60 Hz, Ptiemax = 200 MW, KPS1 = KPS2 = 68.9566 Hz , R1 = R2 = 2.4 Hz/puMW, β1 = β2 = 

0.4312 puMW/Hz, TPS1 = TPS2 = 11.49  sec, a1  = a2 = 1, cg1  = cg2 = 1, bg1  = bg2 = 0.05  sec,  
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Xg1 = Xg2 = 0.6  sec, Yg1 = Yg2 = 1 sec, TF1 = TF2 = 0.23 sec, TCR1 = TCR2 = 0.01 sec, TCD1 = 

TCD2 = 0.2 sec, Kr1  = Kr2 = 0.3, Tr1  = Tr2 = 10 sec, Tt1  = Tt2 = 0.3 sec, T12  = 0.0433, TRS1 

= TRS2 = 5 sec, TRH1 = TRH2 = 28.75 sec, TW1 = TW2 = 1 sec, TGH1 = TGH2 = 0.2 sec, KT1 = 

KT2 = 0.543478, KH1 = KH2 = 0.326084, KG1 = KG2 = 0.130438, ∆Pd1 = ∆Pd2 = 0.01 puMW.  

Chapter 7/ Chapter 8 

Single-Area Thermal-Hydro-Gas System without GDB/GRC [26,27,28]: 

Pr = 2000 MW, Base power = 2000 MVA, 0

dΔP  = 1000 MW, F0 = 60 Hz, TPS  = 11.49 

sec, KPS  = 68.9566 Hz/puMW, TSG = 0.08 sec, R = 2.4 Hz/puMW, a = 1, cg  = 1, bg  = 0.05 

sec, Xg = 0.6 sec, Yg = 1 sec, TF  = 0.23 sec, TCR = 0.0.01 sec, TCD  = 0.2 sec,  Kr  = 0.3, Tr  

=10 sec, Tt = 0.3 sec, TRS = 5 sec, TRH = 28.75 sec, TW = 1 sec, TGH = 0.2 sec, KT  = 

0.543478, KH  = 0.326084, , KG  = 0.130438, ∆Pd = 0.01puMW. 

Single-Area Nuclear System [166]: 

Pr = 2000 MW, Base power = 2000 MVA, 0

dΔP = 1000 MW, F0 = 60 Hz, R = 2.4 

Hz/puMW, KPS = 120 Hz/puMW, TPS = 20 sec, KHN = 2, TN1 = 0.5 sec, TNR = 0.08 sec, 

KRN = 0.3, TN2 = 0.5 sec, TRHN1 = 7 sec, TRHN2 = 6 sec, TRHN3 = 10 sec, TN3 = 9 sec, ∆Pd = 

0.01 puMW. 

Single-Area Hydro-Nuclear System [166]: 

Pr = 2000 MW, Base power = 2000 MVA, 0

dΔP = 1000 MW, F0 = 60 Hz, R = 2.4 

Hz/puMW, KPS = 120 Hz/puMW, TPS = 20 sec, KHN = 2, TN1 = 0.5 sec, TNR = 0.08 sec, 
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KRN = 0.3, TN2 = 0.5 sec, TRHN1 = 7 sec, TRHN2 = 6 sec, TRHN3 = 10 sec, TN3 = 9 sec, KN = 

0.5, ∆Pd = 0.01 puMW, TGH = 48.7 sec, TRS = 5 sec, TW = 1, TRH = 0.513 sec, KH = 0.5. 

Single-Area Hydro-Nuclear-Gas System [166]: 

Pr = 2000 MW, Base power = 2000 MVA, 0

dΔP = 1000 MW, F0 = 60 Hz, R = 2.4 

Hz/puMW, KPS = 120 Hz/puMW, TPS = 20 sec, KHN = 2, TN1 = 0.5 sec, TNR = 0.08 sec, 

KRN = 0.3, TN2 = 0.5 sec, TRHN1 = 7 sec, TRHN2 = 6 sec, TRHN3 = 10 sec, TN3 = 9 sec, KN = 

0.50, ∆Pd = 0.01 puMW, TGH = 48.7 sec, TRS = 5 sec, TW = 1, TRH = 0.513 sec, KH = 0.25, 

a = 1, c = 1, b = 0.05 sec, a = 1, X = 0.6 sec, Y = 1.1 sec, TF = 0.239 sec, TCR = 0.01 sec, 

TCD = 0.2 sec, KG = 0.25. 

Two-Area Hydro-Nuclear System [166]: 

Pr1 = Pr2 = 2000 MW, Ptiemax = 200 MW, Base power = 2000 MVA, 0

diΔP = 1000 MW, 

F0 = 60 Hz, R1 = R2 = 2.4 Hz/puMW, a12 = ‒1, KPS1 = KPS2 = 120 Hz/puMW, TPS1 = TPS2 = 

20 sec, KHN1 = 2,  KHN2 = 2,  TN1 = 0.5 sec, TNR1 = TNR2 = 0.08 sec,  KRN1 = KRN2 = 0.3, 

TN2 = TN2 = 0.5 sec, TRHN1 = TRHN2 = 10 sec, TRHN2 = 6 sec, TRHN3 = 10 sec, TN3 = 9 sec, 

KN1 = KN1 = 0.50, ∆Pd1 = 0.01 puMW, KN1 = KN2 = 0.25, TGH1 = TGH2 = 48.7 sec, TRS1 = 

TRS2 = 0.513 sec, TW1 = TW2 = 1 sec, TRH1 = TRH2 = 0.513 sec, KH1 = KH2 = 0.5. 

Two-Area Hydro-Nuclear-Gas System with GDB/GRC [166]: 

Pr1 = Pr2 = 2000 MW, Ptiemax = 200 MW, Base power = 2000 MVA, 0

diΔP = 1000 MW, 

F0 = 60 Hz, R1 = R2 = 2.4 Hz/puMW, a12 = ‒1, KPS1 = KPS2 =120 Hz/puMW, TPS1 = TPS2 = 

20 sec, KHN1 = 2,  KHN2 = 2,  TN1 = 0.5 sec, TNR1 = TNR2 = 0.08 sec,  KRN1 = KRN2 = 0.3, 
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TN2 = TN2 = 0.5 sec, TRHN1 = TRHN2 = 10 sec, TRHN2 = 6 sec, TRHN3 = 10 sec, TN3 = 9 sec, 

KN1 = KN2 = 0.50, ∆Pd1 = 0.01 puMW, KH1 = KH2 = 0.25, TGH1 = TGH2 = 48.7 sec, TRS1 = 

TRS2 = 0.513 sec, TW1 = TW2 = 1 sec, TRH1 = TRH2 = 0.513 sec, KH1 = KH2 = 0.5, a1  = a2 = 1, 

c1 = c2 = 1, b1 = b2 = 0.05 sec, a1 = a2 = 1, X1 = X2 = 0.6 sec, Y1 = Y2 = 1.1 sec, TF1 = TF2 = 

0.23 sec, TCR1 = TCR2 = 0.01 sec, TCD1 = TCD1 = 0.2 sec, KG1 = KG1 = 0.25. GDB – Hydro: 

±0.002, Nuclear: ±0.025, Gas: ±0.001. GRC – Hydro: +0.045 upper limit and ‒0.06 

lower limit. Nuclear and Gas: ±0.2 and ±0.0033, respectively. Time delay: 0.015 sec. 

Chapter 9  

ESS [16,225,230] 

KSMES = 0.12, TSMES = 0.03 sec, KRFB = 0.67, TRFB = 0 sec, KCES = 0.3, TCES = 0.046, T1 = 

0.280 sec, T2 = 0.025 sec, T3 = 0.0411 sec, T4 = 0.39 sec. 
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