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ABSTRACT 
 

Malaria is a disease that can be transferred from person to person through female 

Anopheles mosquito bites and is brought on by the Plasmodium parasite. A 

mathematical model is utilized to mathematical equations to describe the dynamics 

of malaria and the compartments in the human population. that capture the links 

between the pertinent compartmental properties. The goal of the study is to 

understand the key factors that influence the transmission and spread of the 

endemic malaria disease and to try to identify effective strategies and tactics for its 

prevention and control via the use of mathematical modelling. The malaria model 

is a system of ordinary differential equations (ODEs) developed using basic 

mathematical modelling methods. The study also looks at the stability of the 

equilibrium points for the model. The findings demonstrate that the sickness 

vanishes and the disease-free equilibrium point is stable if the reproduction 

number, R0, is smaller than 1. The disease-free equilibrium becomes unstable if 

R0 rises above 1. There, the endemic situation has a special balance, re-invasion is 

always possible, and human infection continues to spread. Matlab software was 

used to give the numerical results. These simulations aid in illuminating population 

behavior through time as well as the consistency of endemic and disease-free 

equilibrium points. 
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CHAPTER 1 

INTRODUCTION TO THE STUDY 

1.0. Introduction 

The infectious disease is carried by female Anopheles mosquitoes, which bite humans 

known as malaria, which is brought on by the Plasmodium parasite and spread from 

person to person. Despite being preventable and treatable, malaria infection causes 

illness and life-threatening symptoms, and it continues to be a global burden with a high 

estimated death rate in Sub-Saharan Africa, primarily among young infants and 

expectant mothers. 

Backdrop of malaria is a global hazard, the mosquito feeding cycle and its involvement 

in malaria transmission, the incidence of malaria in Tanzania, a statement of the issue 

that needs to be resolved, and the study's goal are all covered in this chapter. Finally, a 

project road map that follows the report section's format is provided. 

1.1. Study's Background 

Malaria is common and deadliest infections in the Sub-Saharan region, malaria 

accounts for the majority of the 3000 daily fatalities that occur there. Young children, 

especially those Specific population risk categories include children under five who 

have not yet acquired protective immunity, pregnant women (including HIV-infected 

pregnant women who are non-immune, semi-immune, and immune to HIV) and 

pregnant women. Fever is the most frequent sign of malaria which is frequently 

accompanied by other symptoms like exhaustion, shakiness, weakness, and excessive 

sleeping [1]. Cerebral malaria, which affects roughly 575000 children annually in 

Africa and has a 10–40% fatality rate, can be brought on by malaria. [3], [4],[5]. If left 
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untreated, cerebral malaria can harm the brain and cause brain damage. Learning 

difficulties are experienced by 5-20% of survivors.  

When malaria elimination is anticipated in the near future, mathematical models 

become even more crucial [11]. They have proved helpful in attempts to control 

malaria. Sir Ronald Ross was the person first to introduce a mathematical model for 

understanding the transmission and treatment of malaria [9]. He developed a model 

with a purely deterministic formula in 1916 [8]. The models have been employed in 

studies to fight malaria, and they have proven to be highly successful [10]. 

Understanding the dynamics of the disease is greatly aided by malaria transmission 

models [25]. They have been used for a very long time to evaluate potential intervention 

strategies [26, 27]. Numerous research have used deterministic models to study 

dynamics, whereas others have used stochastic models [28, 29]. [30, 31]. Some studies 

either ignore the effects of climate or take them into account by using the power of 

infection. Ronald Ross' work was improved upon by MacDonald in 1957. He developed 

the Ross-MacDonald model, which is known for having a latency time in both human 

and mosquito populations [14]. 

1.1.2 Malaria transmission. 

 Female Anopheles mosquitoes carry the Plasmodium-genus protozoan parasite that 

causes malaria [4]. Despite the fact that there are over a hundred distinct species, only 

four—P falciparum, P vivax, P malariae, and P ovale—are primarily at blame for all 

human ailments. Infections, the most severe illness, and the bulk of mortality in Africa 

are all brought on by P falciparum [19]. The parasites reproduce in the liver of the 

human body, infecting red blood cells [20]. Figure 1 depicts the life cycle of the malaria 
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parasite within the human body. 
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Fig 1. The life cycle of the malaria parasite can be seen in Figure 1 within the human 

body taken from Infectious Disease Book 5: Evolving Infections published by the Open 

University in 2003. 

The natural ecology of malaria involves serial infections of human, additionally, 

malaria parasites use female anopheles mosquitoes as hosts. Prior to infecting the red 

blood cells in humans, parasites reproduce and proliferate in the cells of the liver. In 

blood, parasites develop inside red blood cells, consume them, and then release 

merozoite offspring that continue the cycle by feeding on additional red blood cells. 

Gametocytes, a stage of the parasite known as malaria that lives in the blood, cause 

malaria symptoms. Female Anopheles mosquitoes pick up the when a mosquito 

consumes blood, gametocytes start a fresh cycle of expansion and reproduction. 

The parasites are discovered in mosquito salivary glands between 10 and 18 days later 

as sporozoites. Through the saliva of mosquitoes, the parasites inject themselves into 

people's bodies can spread illness. By transmitting disease from one person to another, 

the mosquito serves as a host vector for illness. 

1.1.3 Effective strategies for malaria control. 

To control the spread of malaria, numerous malaria vector control interventions have 

been put out and used. Most strategies concentrate on controlling vectors, adult 

mosquitoes. All stages of mosquito development are killed by them, deter adult 

mosquitoes from congregating in a particular area, and aggravate mosquitoes that come 

into touch with the interventions. In order to control and possibly eradicate malaria, In 

endemic areas, the World Health Organisation (WHO) has endorsed the use of long-
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lasting insecticide-treated nets (LLINs), indoor residual spraying (IRS), and anti-

malaria medications [21]. Another critical stage in managing the mosquito population 

is looking at environmental factors like temperature and rainfall, which are essential in 

anticipating disease epidemics. Accurate seasonal climatic forecasts of meteorological 

factors enable the use of malaria models that incorporate early warning systems in 

endemic areas [24]. 

1.2 Malaria in Tanzania 
 

East Africa's African Great Lakes region includes Tanzania, the United Republic of. It 

borders Uganda to the north; Kenya to the northeast; the Comoro Islands and the Indian 

Ocean to the east; Mozambique and Malawi to the south; Zambia to the southwest; 

Rwanda, Burundi, and the Democratic Republic of the Congo to the southwest; and the 

Comoro Islands and the Indian Ocean to the east. Africa's highest mountain, Mount 

Kilimanjaro, is located in northeastern Tanzania. Tanzania is the most populated nation 

wholly south of the equator, with a population of 63.59 million, according to the United 

Nations. 

The number of cases and fatalities from malaria reported in 2021 was greater than in 

2020, at over 4.5 million cases and 1920 deaths, respectively. 

1.3 Statement of the problem. 
 

Although it is avoidable and treated, malaria continues to be a health issue for the 

developing globe, with Tanzania bearing a disproportionately heavy burden of the 

disease. Anopheles gambiae has become malaria transmission over time. The species 

due to its fast capacity to adapt is resistant to a variety of methods used to reduce 

mosquito populations as well as to changing environmental conditions. The result is it 
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still contributes significantly to the transmission of malaria. Among the prevention 

strategies that Tanzania in particular, where malaria is widespread, has supported the 

use of insecticide-treated nets (ITNs, LLINs). Despite of Intervention malaria cases has 

still been recorded and the cases have now started to increase. 

1.4. Objectives of the study and Scope of the study. 
 

Studying mathematical modelling of malaria is the key goal. The SIR model is applied 

to the human-mosquito the spread of malaria. This study's primary objective is to 

undertake stability studies for endemic and disease-free environments, as well as to 

study key factors influencing malaria transmission and attempt to create efficient 

malaria control strategies. We suppose that neither mosquitoes nor humans recover 

from malaria, nor do the recovered human beings re-enter the vulnerable class. We look 

at how stable the DFE and EE equilibria are.  We describe the SIR model and determine 

the fundamental reproduction number in chapter 2. Discussion is had regarding the 

stability analysis of endemic and disease-free equilibria in a model. In the section titled 

"SIR model is applied to malaria transmission," model analysis that includes 

stability analyses of endemic with the discussion of disease-free equilibrium. I 

demonstrate the dynamical behaviour of our results in section 3 of chapter 3 using 

numerical simulation. 
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                                             CHAPTER 2 

2.1 Model Formulation 
 

The mathematical model of malaria used in this study was SIR in the human population 

and SI in the vector population. With a total population size of Nh(t) and Nv(t), 

respectively, the model is constructed to represent the spread of malaria in the human 

and mosquito populations. Sh(t) and Sv(t) are the classes of human and vector 

population at risk of getting the disease. Human populations are further divided into 

epidemiological classifications as susceptible Sh(t), infected Ih(t), and recovered Rh(t) 

human populations and vector population is devided in susceptible Sv(t) and Infected 

Iv(t). The model's vector component doesn't have an immune class because they never 

recover from infections, and their short lifespan means that their infectious time always 

ends in death. Therefore, the model can be applied to chronic diseases with vital 

dynamics that affect a population over a long period of time. The model's premises 

include the total population sizes of both people and mosquitoes are thought to be 

constant. The recovered individuals do not re-enter the vulnerable class and receive a 

lifetime immunity. The compartmentalized human and vector populations are both non-

negative. The infectious female mosquito that transmits malaria bites the human host, 

making all infants susceptible to infection. The infection does not cause the vectors to 

perish. 

2.2 Basic model description reproductive 
 

Susceptible Humans Pollution (S), Infectious Humans Population (I), and Removed 

Human Population (or Died) Humans (R) are the three compartments that make up 

the population in our model. 
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The interaction of the schematic diagram in Fig. 2.1 below displays compartments: 

 

 

      

  βSI αI 

 

 

 

 

µ µ  Ω µ 

           

Fig. 1. Flowchart of the Malaria Transmission 

The model equations are given by 

𝑑𝑆

𝑑𝑡
= ˄ − βSI − Sµ 

 (2.1) 

𝑑𝐼

𝑑𝑡
= βSI − ΩI − αI − Iµ  

 

𝑑𝑅

𝑑𝑡
= αI − µR  

It is possible to calculate the total population sizes N by 

          𝑆 + 𝐼 + 𝑅 = 𝑁 

 

with initial circumstances 

s I 
R 
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𝑆(0) > 0,  𝐼(0) ≥ 0 and 𝑅(0) ≥ 0 

 

Table 1. Descriptions of the SIR Model's parameters 

Parameter Name  

˄ Recruitment of susceptible individuals 

Β Infectious Rate 

Α  Rate of recover 

µ Rate of natural death 

Ω Rate of Induced Death 

                                             

2.3. Analysis of the Model. 
 

2.3.1 Disease free equilibrium  
 

By taking into account the ODES (1) system and setting the derivative to zero, I 

research the area geometrical characteristics of the equilibrium free from illness E0 in 

this section. 

Clearly the first equilibrium point (𝑆 𝐼 𝑅) = (˄/µ, 0,0) 

I acquire by using the Jacobian matrix. 

                                        𝐽(𝑆, 𝐼) = [
−𝛽𝑖 − µ −𝛽

𝛽𝑖 𝛽𝑆 − (𝛼 + µ)
]                (2.3.1) 
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The Jacobian matrix (3.1) can be used to assess the equilibrium's local stability. 

According to this, the Jacobian matrix for the equilibrium without illness is 

represented by        

                               𝐽(1,0) = [
−µ −𝛽

0 𝛽 − (𝛼 + µ)
]                                (2.3.2)     

To get Eugen Values, the determinant of (3.2) we obtain 

                                            | 𝐽((1,0) − 𝜆𝐼)| = |
−µ − 𝜆 −𝛽

0 𝛽 − (𝛼 + µ) − 𝜆
|      (2.3.3) 

The characteristics equation becomes: 

                                                (−µ − 𝜆)(𝛽 − (𝛼 + µ) − 𝜆) = 0    

                                                     𝜆1 = −µ, 𝜆2 = 𝛽 − (𝛼 + µ)           (2.3.4) 

And clearly, all eigenvalues may be seen to have only negative real components if. 

(𝛼 + µ) > 𝛽 

And hence it is locally asymptotic stable 

2.3.2 Endemic Equilibrium's presence 
 

In this part, I analyse a scenario in which malaria is present among a population. 

I indicate E*=(S,1,R) as  an endemic equilibrium point obtained as (2.3.5) 

 

𝑆 =
µ + 𝛼

𝛽
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𝐼 =
𝛽µ − µ(µ + 𝛼)

𝛽(µ + 𝛼)
  

  

𝑅 =
𝛼

µ
[
𝛽µ − µ(µ + 𝛼)

𝛽(µ + 𝛼)
] 

The Jacobian Matrix becomes

  

𝐽(𝐸 ∗) = [
−𝛽𝐼 − µ −𝛽𝑆

𝛽𝐼 𝛽𝑆 − (𝛼 + µ)
]  

Substituting the values of (3.4) we get 

𝐽(𝐸 ∗) =

[
 
 
 

𝛽µ

µ + 𝛼
−(µ + 𝛼)

𝛽µ

µ + 𝛼
− µ 0

]
 
 
 

  

We obtain 

|𝐽(𝐸 ∗ −𝜆𝐼)| = ||

𝛽µ

µ + 𝛼
− 𝜆 −(µ + 𝛼)

𝛽µ

µ + 𝛼
− µ 0 − 𝜆

|| = 0  

Note: for the system to be stable asymptotic stable (R>1) 

                        𝑡𝑟𝑎𝑐𝑒(|𝐽(𝐸 ∗ −𝜆𝐼)|) < 0 𝑎𝑛𝑑 det(|𝐽(𝐸 ∗ −𝜆𝐼)| > 0)               (2.3.6) 

and hence all the real part are negative 

2.4. Application of the Model to Study Malaria 

 

There are three groups that make up the human population: Susceptible Sh, Infected Ih, 

and Recovered Rh. The model is created for both the current human population and the 
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current number of mosquitoes t, additionally, the mosquito population is split into two 

groups Susceptible Sv, and Infected Iv. 

 

The interaction between Human and mosquito is shown in the figure below 

 µh µh µh 

 ˄h         βhShIv αhIh 

 Ωh 

   

 ˄v βvSvIh  

 µv µv                  

                  

Table 2. Parameters Descriptions for the SIR Model for malaria 

Transmission 

Parameter Parameter description 

Sh No of susceptible human at time t 

Ih No of infected human at time t 

Rh No of recovered human at time t 

Sv No of susceptible human at time t 

Iv No of infected human at time t 

Nh  Total human population at time t 

Nv Total mosquito population at time t 

˄h Human Recruitment rate at time t 

μh Per capital human population natural 

death rate 

αh Per capita recovery rate of human 

βh Human contact rate mosquito 

dimention 

Sh Ih Rh 

Sv Iv 
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Ωh Per capital disease induced rate for 

human at time t 

˄v Per capital birth rate of mosquito 

μv Per capital natura death rate of 

mosquito 

βv Mosquito contact rate human 

dimension 

 

 

The recruitment rates of humans and mosquitoes are indicated in this model by the 

letters ˄h and ˄v are respectively. The phrases used in our model as µhSh,, µhIh and µhRh 

refer to the amount of recovered, infected, and susceptible persons removed during a 

specified period of time. The phrases µvSv and µvIv represent the proportion of 

susceptible and diseased mosquito populations eliminated in a certain amount of time. 

The term ΩhIh represents the proportion of people who have been removed from society 

due to disease during a specified period of time. while αhIh represents the total number 

of recovered humans over a given period of time. The word βhShIv refers to the rate at 

which the mosquito vector Iv infects the human hosts Sh and βvSvIh the rate at which 

the human hosts Ih infect the susceptible mosquitoes Sv at time t. Thus, As a result, 

both of these concepts play crucial roles in the model that describes the interaction 

between the two populations. 

From our model, The Model equations are given as: 

𝑑𝑆ℎ

𝑑𝑡
=  ˄ℎ − 𝛽ℎ𝑆ℎ𝐼𝑣 − µℎ𝑆ℎ    

𝑑𝐼ℎ

𝑑𝑡
=  𝛽ℎ𝑆ℎ𝐼𝑣 − Ωℎ𝐼ℎ − µℎ𝐼ℎ − 𝛼ℎ𝐼ℎ                                (2.4.1)  

𝑑𝑅ℎ

𝑑𝑡
=  𝛼ℎ𝐼ℎ − µℎ𝑅ℎ 
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𝑑𝑆𝑣

𝑑𝑡
= ˄𝑣 − 𝛽𝑣𝑆𝑣𝐼ℎ − µ𝑣𝑆𝑣 

𝑑𝐼ℎ

𝑑𝑡
= 𝛽𝑣𝑆𝑣𝐼ℎ − µ𝑣𝐼𝑣 

 

It is possible to calculate population sizes overall of Nh and Nv which can be 

established 

𝑆ℎ + 𝐼ℎ + 𝑅ℎ = 𝑁ℎ                                                                                                                                               (2.4.2) 

𝑆v + 𝐼v = 𝑁v                                                                                                                                                             (2.4.3) 

Nh(𝑡) = 𝑆h(𝑡) + Ih(𝑡) + 𝑅h(𝑡) 

 

Afterward, the derivative of Nh(t) according to t is given by 

𝑑𝑁ℎ

𝑑𝑡
= ˄ℎ − µℎ𝑁ℎ − Ωℎ𝐼ℎ 

  

lim
𝑡→∞

𝑁ℎ(𝑡) ≤ 
˄ℎ

µℎ
 

Thus, the system is positively invariant with  

𝑆ℎ + 𝐼ℎ + 𝑅ℎ ≤  
˄ℎ

µℎ
, 𝑆ℎ > 0, 𝐼ℎ ≥ 0, 𝑅ℎ ≥ 0 

And let; 

𝑁𝑉(𝑡) = 𝑆𝑉(𝑡) + 𝐼𝑉(𝑡) 

following the derivative of Nv(t) according to t is given by 
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𝑑𝑁𝑣

𝑑𝑡
= ˄ℎ − µ𝑣𝑁𝑣 

lim
𝑡→∞

𝑁𝑣(𝑡) ≤ 
˄𝑣

µ𝑣
 

Again, Positive invariance of the system is with  

𝑆𝑣 + 𝐼𝑣 ≤  
˄𝑣

µ𝑣
, 𝑆ℎ > 0, 𝐼ℎ ≥ 0 

 

Hence the system's disease-free equilibrium is clearly seen at E0hv = (
˄ℎ

µℎ
, 0,0,

˄𝑣

µ𝑣
, 0). 

The essential reproductive number for people and mosquitoes will be produced using 

the next generation matrix R0. 

2.5 Basic Reproductive Number 

 

The amount of secondary illnesses that a single infected person may spread within a 

vulnerable community is calculated using the next-generation matrix, and denoted by 

the reproductive number R0. 

In the system of Ordinary Differential equation, we have two disease classes which are 

Ih and Iv. 

In these two equations, we Let F denote the disease class and V denote transfer class. 

 

Where F and V are given by 

𝐹 = [
𝛽ℎ𝑆ℎ𝐼𝑣
𝛽𝑣𝑆𝑣𝐼ℎ

] 
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𝑉 = [
(Ωℎ + µℎ + 𝛼ℎ)𝐼ℎ

µ𝑣𝐼𝑣
] 

 

The differentials of F and V with respect to Ih and Iv at the disease-free equilibrium 

E0hv = (
˄ℎ

µℎ
, 0,0,

˄𝑣

µ𝑣
, 0) is given by 

DF(E0) = [
0

𝛽ℎ˄ℎ

µℎ

𝛽𝑣˄𝑣

µ𝑣
0

] 

And 

DV(E0) = [
Ωℎ + µℎ + 𝛼ℎ 0

0 µ𝑣
] 

Ro = σ(FV-) 

This gives the basic reproductive number as 

R0 = √
𝛽ℎ˄ℎ𝛽𝑣˄𝑣

µℎµ𝑣2(Ωℎ + µℎ + 𝛼ℎ)
 

 Hence The disease-free equilibrium E0hv = (
˄ℎ

µℎ
, 0,0,

˄𝑣

µ𝑣
, 0) of the system (2.4.1) of 

Ordinary differential equations is asymptotically stable if Ro <1 and unstable if R0 ≥1. 

 

2.6 Analysis of the SIR Model 
 

2.6.1 Existence and stability of Disease-free equilibrium 
 

This section looked at the local characteristics of an equilibrium without sickness. 

E0hv = (
˄ℎ

µℎ
, 0,0,

˄𝑣

µ𝑣
, 0) 
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The disease-free equilibrium, E0 which is the steady state of the model in there is 

absence of infection. This is obtained from the system (2.4.1) by setting the right-

h a n d  side equal to 0, and assuming that ih = 0 and iv= 0, where ih and iv refer to the 

equilibrium points. The local stability of E0 is then determined from the signs of the 

eigenvalues of the Jacobian matrix. At the disease-free equilibrium, E0, the Jacobian 

matrix is given by 

𝐽(𝐸0) = [

−µℎ 0 −𝛽ℎ𝑆ℎ

0 −(Ω + 𝛼 + µ) 𝛽ℎ𝑆ℎ
0 𝛽𝑣𝑆𝑣 −µ𝑣

] 

The characteristic equation becomes 

𝐽(𝐸0 − 𝜆𝐼) = [

−µℎ − 𝜆 0 −𝛽ℎ𝑆ℎ

0 −(Ω + 𝛼 + µ) − 𝜆 𝛽ℎ𝑆ℎ
0 𝛽𝑣𝑆𝑣 −µ𝑣 − 𝜆

] 

This gives 

−(µℎ + 𝜆)((𝛼 + µ + Ω − 𝜆)(µ𝑣 − 𝜆) − 𝛽𝑣𝑆𝑣𝛽ℎ𝑆ℎ) = 0 

The roots of the characteristic equation are the eigenvalues of the Jacobian matrix. It is 

clear that the characteristic equation has the negative eigenvalue λ1 which is negative. 

It is again clear that the equation has some positive roots. As a result, we draw the 

conclusion that the disease-free equilibrium is unstable 

2.6.2 Existence and stability of endemic equilibrium 

An endemic equilibrium is a model's steady state with an infected human population 

and Infected vector population which is given by 𝐸 = (S I R) which follows the 

condition 𝑠ℎ∗ > 0, iℎ∗ > 0, i𝑣∗ > 0. 

From the system (2.4.1) of the ordinary differential equation we obtain 
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𝑆ℎ∗ = (
˄ℎ

µℎ
−

𝛽ℎ(Ωℎ + 𝛼ℎ + µℎ)

µℎ𝛽ℎ
) ∗ (

˄ℎ − µℎ(Ωh + αh + µh)

𝛽ℎ𝛽𝑣𝑆𝑣(˄ℎ − (Ωℎ + 𝛼ℎ + µℎ))
) 

𝐼ℎ∗ = (
˄ℎ − µℎ(Ω + α + µ)

𝛽ℎ𝛽𝑣𝑆𝑣(˄ℎ − (Ω + 𝛼 + µ))
) 

𝐼𝑣∗ =
Ωℎ + 𝛼ℎ + µℎ

𝛽ℎ(
˄ℎ − (Ω + 𝛼 + µ)

µℎ )
 

To determine the stability of the equilibrium at the steady state of the model we obtain 

the Jacobian matrix from the system (2.4.1) of ODS 

𝐽(𝐸1) = [

−𝛽ℎ𝐼𝑣 − µℎ 0 −𝛽ℎ𝑆ℎ

𝛽ℎ𝐼𝑣 −(Ω + 𝛼 + µ) 𝛽ℎ𝑆ℎ
0 𝛽𝑣𝑆𝑣 −µ𝑣

] 

Thus, the Characteristics equation of the Jacobian matrix can be written as 

𝐽(𝐸1 − 𝜆𝐼) = [

−𝛽ℎ𝐼𝑣 − µℎ − 𝜆 0 −𝛽ℎ𝑆ℎ

𝛽ℎ𝐼𝑣 −(Ω + 𝛼 + µ) − 𝜆 𝛽ℎ𝑆ℎ
0 𝛽𝑣𝑆𝑣 −µ𝑣 − 𝜆

] = 0 

This gives 

−(𝛽ℎ𝐼𝑣 + µℎ) − 𝜆 (((Ω + 𝛼 + µ + 𝜆)(µ𝑣 + 𝜆) − 𝛽ℎ𝑆ℎ𝛽𝑣𝑆𝑣) + 𝛽ℎ2𝛽𝑣𝑆ℎ𝑆𝑣𝐼𝑣)

= 0 

I can infer that the Endemic Equilibrium state is stable because it is obvious that all 

Eigenvalues have negative values. 
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CHAPTER 3 

3.0 Numerical Solution 
 

In this section, the SIR model's numerical solution for the spread of malaria is 

investigated, and the table contains a list of all the variables that were employed. Fig, 

Table for model 2 

Parameter Description Value Source 

˄h Human 

Recruitment rate 

at time t 

 

1.2 [32] 

𝛽h Human contact 

rate  

mosquito 

dimension 

 

0.00638 [35] 

αh Per capita 

recovery rate of 

human 

 

0.0035 [32] 

µh Per capital 

human 

population 

natural death rate 

0.01146 Assumption 

Ωh Per capital 

disease induced 

rate for human at 

time t 

 

0.0068 Assumption 

˄v 

 

𝛽v 

 

Per capital birth 

rate of mosquito 

at time t 

 

Mosquito contact 

rate human 

dimension 

0.7 

 

 

0.00696 

Assumption 

 

 

[35] 

µv    

 Per capital natura 

death rate of 

mosquito 

0.05 [34] 
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Nature of the models of the system of ODE (2.4.1) are investigated by conducting 

analysis of the basic reproductive number 

 

 

 

Fig4. Numerical solution of the SIR model with Time response and initial condition 

S0(0.89), I0(0.07), R0(0.02) 

Against time and R0= 0.57 

With parameters: ˄ = 1.2, Βh=0.0638, αh=0.0035, µh=0.01146, Ωh=0.0068 
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Fig 5. Numerical solution of the SIR model with Time response and initial condition 

S0h(0.89), I0h(0.07), R0h(0.02) against time with parameters: ˄ = 1.2, 𝛽h=0.638, 

αh=0.0035, µh=0.01146, Ωh=0.0068 and R0=2.4177 susceptible human increases and 

infected human decreases and infected vector increased with decreased time and 

remains constant over time hence endemic is unstable 
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Fig 7. Numerical solution of the SIR model with Time response and initial condition 

S0(0.89), I0(0.07), R0(0.02) against time with parameters: ˄ = 1.2, 𝛽h =0.00638, 𝛽v 

=0.0000696 αh=0.0035, µh=0.01146, Ωh=0.0068 and R0=0.18699 susceptible human 

and vector increases and infected human decreases and infected vector decreased with 

decreased time and approaches zero. Hence endemic equilibrium point is stable 

 

 

 

Fig 8. Numerical solution of the SIR model with Time response and initial condition 

S0(0.89), I0(0.07), R0(0.02) against time with parameters: ˄ = 1.2, 𝛽h = 𝛽v 0.08638, 

αh=0.0035, µh=0.01146, Ωh=0.0068 and R0>1 suspectable human are increasing in 

less time and infected human and vector increased with time and maintain constant. 

Hence the system is not stable 
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Fig 10. Numerical solution of the SIR model with Time response and initial condition 

S0(0.89), I0(0.07), R0(0.02) against time with parameters: ˄ = 1.2, 𝛽h =0.0059, 𝛽v 

=0.000069 and R0=0.1669 suspectable human are increasing in less time and infected 

human and vector increased with time and maintain constant. Hence the system is stable 
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Fig 10. Numerical solution of the SIR model with Time response and initial condition 

S0(0.89), I0(0.07), R0(0.02) against time with parameters: ˄ = 1.2, 𝛽h =0.0059, 𝛽v 

=0.0000696, αh=0.15 and R0=0.0815 suspectable human are increasing in less time and 

infected population is approximately zero. Hence the system equilibrium  is stable 

 

 3.1 Discussions and Conclusion 
 

In this section, the dynamic of SIR model in application to Malaria diseases 

transmission is studied between human and vector population. The model's 

fundamental reproduction number, stability, and equilibrium are discussed between 

human and vector population. 
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The analysis demonstrates that the disease-free equilibrium is stable and the disease 

dies out over time if the basic reproductive number is less than one, and unstable if the 

basic reproductive number is more than one. 

This has been shown by the numerical solution on figures 1,2,3… additionally, if the 

number is less than one, the endemic equilibrium is stable, and if the number is greater 

than one, the endemic equilibrium is unstable. This has been shown in figures. 

From the numerical solution we have seen that 𝛽 is the sensitive parameter such that 

the interaction between an infection-prone individual and a vector with parameter 𝛽h 

and the interaction between susceptible vector and infected human with parameter 𝛽v 

very sensitive. 

The numerical solution shows that in equilibrium point, both Infected human and vector 

population have existed with reproductive number g less than 1 and in Endemic 

equilibrium point the infected human and vector are approaching zero with reproductive 

number that and is smaller than one, which is consistent with the stability of the endemic 

equilibrium point. 

Additionally, it has been noted that as the interaction between susceptible vectors and 

infected humans decline and declines with the interaction between Infected vectors and 

susceptible humans and the increase of recovery. the disease's reproductive number 

decreases, and eventually it will go extinct
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