

SPARSE MATRICES IN DATA SCIENCE:

EFFICIENT ALGORITHMS AND

APPLICATIONS WITH CASE STUDY
A dissertation

Submitted in Partial Fulfilment of the Requirements

for the Degree of

MASTER OF SCIENCE
in

Applied mathematics
By

Mallika Bisht
(2K22/MSCMAT/61)

Niharika Srivastava
(2K22/MSCMAT/27)

Under the supervision of

Mr. Jamkhongam Touthang

Assistant Professor, Applied Mathematics

Delhi Technological University

Department of applied mathematics

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

June, 2024

i

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE’S DECLARATION

We, Mallika Bisht and Niharika Srivastava of MSc. Mathematics hereby

certify that the work which is being presented in the Dissertation entitled

Sparse matrices in data science: efficient algorithms and applications with

case study in partial fulfilment, of the requirement for the award of the

degree Masters of Mathematics, submitted in the Department of Applied

Mathematics, Delhi Technological University is an authentic record of my

own work carried out during the period from to under the supervision of

Mr. Jamkhongam Touthang.

The matter presented in the thesis has not been submitted by us for the award of

any other degree of this or any other Institute.

 Candidate’s Signature

This is to certify that the student has incorporated all the corrections suggested by the

examiners in the dissertation and the statement made by the candidate is correct to

the best of our knowledge.

Signature of Supervisor Signature of External Examiner

ii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE BY THE SUPERVISOR

Certified that Mallika Bisht and Niharika Srivastava has carried out their search

work presented in this dissertation entitled “Sparse matrices in data science:

efficient algorithms and applications with case study” for the award of Master of

science in Applied Mathematics from Department of Applied Mathematics, Delhi

Technological University, Delhi, under my supervision. The dissertation

embodies results of original work, and studies are carried out by the students

themselves and the contents of the dissertation do not form the basis for the

award of any other degree to the candidate or to anybody else from this or any

other University/Institution.

Signature

 Mr. JamkhongamTouthang

Assistant Professor

Delhi Technological University

Shahbad Daulatpur, Main Bawana Road, Delhi-110042

Date:

iii

SPARSE MATRICES IN DATA SCIENCE:

EFFICIENT ALGORITHMS AND APPLICATIONS

WITH CASE STUDY

Mallika Bisht and Niharika Srivastava

ABSTRACT

Sparse matrices in data structure are an important concept in data structure and

algorithms. They provide a good way to store and manipulate large matrices; They

are widely used in various fields for large matrices, like scientific computing,

machine learning, and image processing. Create multiple fields. Effective algorithms

for managing different matrices are important because they have the ability to reduce

the budget and increase performance. This article examines a variety of algorithms

and similar operations, including stored procedures (such as concatenated and

concatenated rows), matrix-vector multiplication, and solutions to return-to-system

problems. In addition, this article also examines the use of sparse matrices in

optimization and parallel computing. This research shows a significant improvement

in detail and insight using the technology matrix. The findings highlight the

importance of visual differentiation of matrix algorithms in big data processing,

highlighting their important role in the use of data science today. Effective

algorithms for processing and incorporating data research demonstrate their

implementation and quality.

iv

ACKNOWLEDGEMENTS

We want to express our appreciation to Mr. Jamkhongam Touthang, Department

of Applied Mathematics, Delhi Technological University (Formerly Delhi College

of Engineering), New Delhi, for his careful and knowledgeable guidance,

constructive criticism, patient hearing, and kind demean us throughout our ordeal

of the present report. We will always be appreciative of his kind, helpful demean

our and his insightful advice, which served as a catalyst for the effective

completion of our dissertation report. We are grateful to our Mathematics

department for their continuous motivation and involvement in this project work.

We are also thankful to all those who, in any way, have helped us in this journey.

Finally, we are thankful to the efforts of our parents and family members for

supporting us with this project.

 MALLIKA BISHT

 NIHARIKA SRIVASTAVA

v

LIST OF TABLES

Table 3.1: Velocity vs. time data…………………………………………………21

vi

LIST OF FIGURES

Fig. 1 Undirected graph……………………………………………………………30

Fig. 2 Directed graph……………………………………………………………...30

Fig. 3 An undirected graph of BFS, with the labels that shows the order in which we

chose the vertices. Vertices 1, 2 and 3 are placed on the same level 1 as their distance

is 1 from k. Similarly, vertices 4,5,6 and 7 are placed on second level…………….32

vii

LIST OF SYMBOLS AND ABBREVIATIONS

Symbol Symbol name Symbols meaning

+ Plus Addition

− Minus Subtraction

× Multiplication or Cross or

by

Multiplication or To show

the order of a matrix

= Equal sign Equality

* Asterisk Multiplication

/ Division slash Division

≤ Inequality Less than equals to

≥ Inequality Greater than equals to

√ Square Root Square Root

∈ Epsilon Belongs to

𝜋 Pi An irrational number

∑ Sigma Summation

→ Right arrow Directed graph

⟷ Left-Right arrow Undirected graph

Abbreviations Full form

COO Coordinate list

CSR Compressed Sparse Row

CSC Compressed Sparse Column

vi

CONTENTS

Title Page No.

Certificate ii

Abstract iii

Acknowledgements iv

List of Tables v

List of Figures v

List of Symbols and Abbreviations v

References viii

Plagiarism Verification ix-x

CHAPTER 1: INTRODUCTION 1-5

1 Introduction

1.1 Definition

1.2 Use of Sparse matrix

1.2.1 Sparse Matrices in Linear Algebra

1.2.2 Sparse Matrices in Data Learning

1.3 History of Sparse Matrices

1.3.1 Contributions of Mathematicians

1.4 Motivation

1.4.1. Advantages of Sparse Matrix

1.5. Summary

CHAPTER 2: MATHEMATICAL FOUNDATIONS AND

REPRESENTATIONS 6-14

2.1 Mathematical Foundations

2.1.1. Basic Concepts

2.1.2. Types of sparse matrix

2.1.3. Theoretical Properties of Sparse Matrices

2.2. Representation of sparse matrix

2.2.1. Coordinate list representation

2.2.2. Linked list representation

2.2.3. Compressed Sparse Row (CSR)

2.2.4. Compressed Sparse Column (CSC)

2.3 Comparison

2.4 Summary

CHAPTER 3: ALGORITHMS FOR SPARSE MATRIX 15-27

3.1 Basic Operations

3.1.1 Addition

3.1.2 Subtraction

3.1.3 Multiplication

3.1.4 Transpose

vii

3.2 Permutation and reordering

3.3 Solving sparse linear system

3.3.1 Direct Method

3.3.2 Iterative Method

3.4 Matrix Factorization

3.4.1 Cholesky Factorization

3.4.2 QR Factorization

CHAPTER 4: APPLICATIONS OF SPARSE MATRICES 28-32

4.1. Application of Sparse matrices in scientific computing
4.2. Application of Sparse matrices in PDEs

4.2.1. Finite Element Analysis (FEA)
4.2.2. Computational Fluid Dynamics (CFD)

4.3. Applications of sparse matrices in Data Science and Machine learning
4.3.1. Natural Language Processing
4.3.2. Recommendation Systems
4.3.3. Market Basket Analysis

4.4 Basics of Graphs

4.4.1 Definition

4.4.2 Basic terms

4.4.3 Adjacency Graphs

4.4.4 Graph searches

4.4.5 Breadth-First search

4.4.6 Depth-First search

CHAPTER 5: OPTIMIZATIONS, PARALLEL COMPUTING, CASE

STUDY AND FUTURE DIRECTIONS 33-40

5.1. Large-Scale Optimization

5.1.1. Sparse Matrix Factorization

5.1.2. Conjugate Gradient and Krylov Subspace Method

5.1.3. Application Example

5.2. Parallel Computing Using Sparse Matrices

5.2.1. Parallel Sparse Matrix Operation

5.2.2. Application Example

5.3. Case study

5.3.1. Social Network Graph

5.3.2. Results

5.4. Challenges and Future Directions

5.4.1. Challenges

5.4.2. Future Directions

CHAPTER 6: CONCLUSION 41-42

REFERENCES

1

CHAPTER 1

INTRODUCTION

Sparse matrices are an important concept in linear algebra and data science and play

an important role in managing and processing large data sets. “A sparse matrix is a

matrix in which most of its elements are zero.” This is in contrast to the velocity

method, where most elements are non-zero. Many of the zero elements in sparse

matrices allow the use of special storage and computation techniques to save

memory and processing time, making them especially important when working with

large data sets.

1.1. Definition

“Sparse matrix is a matrix with the majority of its elements equal to zero. However,

there is no fixed ratio of zeros to non-zero elements.” In a sparse matrix, the presence

of zero values compared to the presence of non-zero elements give some room for

information to be represented and stored, with less recent memory used.

Example 1.1: Let us take a matrix A =

[

1 0 0 0 0
0 0 1 0 0
0 6 0 0 0
0 5 0 0 8
0 0 4 0 0

]

 . Let's look at

the content of this matrix.

Solution: Here we can see that there are only 6 elements which are non-zero, the rest

are zero. It is an example of Sparse Matrix.

1.2. Use of Sparse matrix

Sparse matrices are used to reduce matrix filling.

Fill-ins: The entries of the matrix are the elements that change from zero to non-zero

when we apply the algorithm.

For reducing memory requirements and the arithmetic operations used during

processing, it’s necessary to reduce padding by changing the rows and rows in the

matrix.

2

1.2.1. Sparse Matrices in Linear Algebra

In linear algebra, matrices are used to show and solve systems of linear equations,

perform transformations, and model many physical and computational phenomena.

Sparse matrices appear in many applications:

• Graph Theory: An adjacency matrix represents a large graph where most nodes

are not directly connected.

• Numerical Solutions of Partial Differential Equations (PDEs): A separate part

of the equation often results in different systems due to local interactions.

• Optimization Problems: Many large-scale optimization problems give sparse

constraint matrices.

Manipulating matrices, including using their formulas, is less useful. Representations

such as Compressed Sparse Row (CSR) or Compressed Sparse Column (CSC)

models, as well as specific techniques for matrix operations such as sparse matrix-

vector multiplication, have been developed using sparsity. This technique reduces

computational complexity and memory usage. We will introduce this notation in the

following section.

1.2.2. Sparse Matrices in Data Learning

Sparse matrices are also important in data learning, especially machine learning and

statistics. There are several situations that normally cause data to be

underrepresented:

• Text Mining and Natural Language Processing (NLP): Term document

matrices (in which each document is represented by a term frequency vector) are

generally rare because one of the documents contains only a small fraction of the

total content.

• Recommender Systems: The user interaction matrix is sparse because the user

interacts with only a few functions on a large laptop.

• Feature Selection in Machine Learning: Many features in high-dimensional

data are irrelevant or repeated, often resulting in little difference after applying

dimensionality reduction techniques.

Using sparse matrices in data learning allows algorithms to scale well. Regular

methods like lasso (minimum shrinkage and operator selection) use variables to

improve model interpretation and performance. Libraries like SciPy in Python

provide strong support for small matrix operations, improving the performance of

complex processes on large datasets.

1.3. History of Sparse Matrices

Sparse matrices have been an important concept since their inception, but their

importance increased in the mid-20th century with the development of science and

engineering. Thanks to the continuous efforts of scientists and advances in computer

science and technology, significant advances have been made in recent years. This

success has led to many new benefits in the field. Some of them are as follows:

• 1950s-1960s: The first developments in matrix technology can rarely be traced

back to this period and the advent of digital computers. Scientists began looking

3

for ways to effectively represent and control matrices containing many zeros,

often found in scientific and engineering calculations.

• 1970s-1980s: During this period, significant growth was made in the

development of algorithms, representations and data structures for sparse

matrices due to the increasing need for effective numerical methods in many

fields such as finite element analysis, optimization, and scientific computing.

Researchers such as Alphonse Buja and Iain Duff carried out important work in

this field during this period.

• 1990s to present: Advances in parallel and distributed computing models further

stimulate research on differential matrix algorithms and applications. Efforts have

been made to develop similar methods for sparse matrix operations, and the

emergence of libraries such as PETSc (Portable and Extensible Scientific

Computing Toolkit) and Trilinos have provided solutions to serious problems in

solving inequality problems and eigenvalue problems.

1.3.1. Contributions of Mathematicians

Some important contributions to the development and use of sparse matrices include:

• Alphonse Buja: Published one of the first works on sparse matrices in 1959; this

introduced a method for representing and managing sparse matrices in

computing.

• Hans Schneider and Arnold Neumaier: In the late 1970s and early 1980s, they

made important contributions to rarefied algebra, especially eigenvalue

calculations.

• Yousef Saad: His work on iterative methods for linear nonlinearities (such as the

gradient method) had an impact on the field of linear algebra.

• James W. Demmel and Jack Dongarra: For their significant contributions to the

development of algorithms of sparse matrix and their use in parallel and

distributed computing.

• Gilbert Strang: His work on sparse matrix techniques, especially in the context of

finite element methods, was very influential.

1.4. Motivation

Sparse matrix has become an important area of research due to its unique properties

and implications for many computational operations. The main motivation for

studying sparse matrices is as follows.

1. Memory Efficiency: Sparse matrices require more memory storage space due to

zero element majority. This is crucial for solving large problems that would be

bad for thick matrices.

2. Computational Speed: The operation of sparse matrices can be optimized to

skip zero elements, thus reducing computation time. This performance is

important for applications that require immediate or short-term processing.

3. Scalability: The reduced memory and computational requirements of sparse

matrices make it possible to solve very large data and complex problems that are

required for big data today.

4

4. Algorithm Optimization: Special algorithms for sparse matrices, such as sparse

matrix-vector multiplication and sparse solvers, can improve performance,

making these algorithms suitable for commercial success.

5. Relevance to Real-World Data: Most forms of data in the world are always

different matrices. For example, in networks, consensus, and computational

sciences, the outcome varies due to the nature of the data.

6. Energy Efficiency: Reduced computing and memory requirements directly

translate into lower power consumption; This is important for extending battery

life in business computing and mobile devices and equipment.

7. Enabling New Technologies: Sparse matrices form the basis for the

development of new technologies in areas such as machine learning, optimization

and signal processing. Their research has led to new innovations that can

efficiently process large and complex data.

8. Improving Accuracy and Precision: Technique’s of Sparse matrix can help to

reduce the number of errors in calculations by focusing resources on important

points, thus increasing the accuracy and precision of results.

1.4.1. Advantages of Sparse Matrix

1. Memory operation:

Sparse matrices store only the elements which are non-zero and their values. It

should be less remembered than the density matrix, especially for large matrices with

low density. Since files are in both large and small formats, storing them in a smaller

format will save a lot of memory and allow larger files to be processed within

available limits. It becomes most important in the finite process, finite difference

method or notation.

2. Faster calculations:

Faster calculations are possible. This is especially useful for operations such as

matrix-vector multiplication and the solving systems. Methods for solving problems,

such as the gradient network method or GMRES, generally converge faster when

applied to matrices sparser than 1, thus saving all effort.

Now the question arises: What is the property of this sparse matrix? Why do we need

them? How do they differ from dense matrices? What if we never discovered them?

There are many. Before summarizing the use of sparse matrices in various fields. Let

us see one example which will tell us the basic difference between the sparse matrix

and dense matrix.

Example 1.2: Take the same matrix A =

[

1 0 0 0 0
0 0 1 0 0
0 6 0 0 0
0 5 0 0 8
0 0 4 0 0

]

 . Let's see

the storage of this matrix in each case of dense matrix and sparse matrix.

Solution: The first case where we used a Dense matrix:

5

In this case, all details will be kept open. Here we see that the entries of the matrix

are integers that store 4 bytes.

Total memory for dense matrix = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ×
 𝑆𝑖𝑧𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

= 25 × 4 𝑏𝑦𝑡𝑒𝑠

= 100 𝑏𝑦𝑡𝑒𝑠

Taking the first case of given Sparse matrix:

Here, the non-zero elements and their indices are:

• (0,0): 1

• (1,2): 1

• (2,1): 6

• (3,1): 5

• (3,4): 8

• (4,2): 4

Total memory for sparse matrix = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ×
 (Size of row index + Size of column index + Size of element value)

= 6 × (4 + 4 + 4) 𝑏𝑦𝑡𝑒𝑠

= 72 𝑏𝑦𝑡𝑒𝑠

This illustrates an important aspect of using a sparse matrix; difference matrix

representation requires less memory than dense representation.

Note: If you use a small matrix, the sparse matrix will use more memory compared

to the dense matrix; therefore, sparse matrices are useful for large matrices.

1.5. Summary

In Chapter 1, we introduced the definition of sparse matrix and highlighted its

importance in various fields such as mathematics, engineering, and information

science. We also discussed the motivations behind examining sparse matrices for

their performance and applicability in solving real-world problems. Additionally, we

provided background information on the development of sparse matrix theory and

algorithms, acknowledging the seminal work that underpins current research and

applications. Strong mathematical foundation. In the next section, we will examine

the mathematical concepts and properties of different matrices, including various

notations for storage and efficiency. This understanding will provide a solid

foundation for the algorithms and applications discussed in the next section.

6

CHAPTER 2

MATHEMATICAL FOUNDATIONS AND

REPRESENTATIONS

2.1. Mathematical Foundations

This section discusses the basic mathematical concepts and properties that support

the study of sparse matrices. By establishing a solid foundation, we can better

understand the algorithms and applications discussed in the next section.

2.1.1. Basic Concepts

• Sparsity and Density: Sparsity is the proportion of zero elements to all

elements in the matrix. Instead, density is proportion of elements that are

non-zero. The concept of sparsity is important because it determines the

specific storage and computation methods required to handle sparse matrices

efficiently.

• Sparsity Patterns: It describes the arrangement of non-zero elements in the

matrix. This model can influence the choice of storage methods and

algorithms. Examples include diagonal matrices, banded matrices, and block

sparse matrices.

2.1.2. Types of sparse matrix

Matrices do not necessarily have to have the same form. They can be mainly

categorized into two groups:

a) Regular Sparse Matrices

b) Irregular Sparse Matrices

Let us understand it one by one.

a) Regular Sparse Matrices

A sparse matrix is said to be regular if there is a pattern or pattern among its elements

or if there is some degree of regularity throughout the matrix.

We can further divide regular matrix as follows:

i. Diagonal Matrix:

7

The non-zero elements are on the main diagonal.

Example: A = [

𝑑1 0 0
0 𝑑2 0
0 0 𝑑3

]

ii. Banded Matrix:

“Non-zero elements are restricted to the diagonal line containing the main

diagonal and the possibility of additional diagonals on either side.”

Example: A =

[

𝑎 𝑏 𝑐 0 0
𝑑 𝑒 𝑓 𝑔 0
ℎ 𝑖 𝑗 𝑘 𝑙
0 𝑚 𝑛 𝑜 𝑝
0 0 𝑞 𝑟 𝑠

]

Here the name suggests, the elements form a band around the diagonal. Below is

a special case of banded matrix.

a) Tridiagonal Matrix:

“Here the non-zero elements are constricted to the main diagonal, the diagonal

above and below it.”

Example: B =

[

𝑎 𝑏 0 0 0
𝑐 𝑑 𝑒 0 0
0 𝑓 𝑔 ℎ 0
0 0 𝑖 𝑗 𝑘
0 0 0 𝑙 𝑚

]

iii. Block Sparse Matrix:

When a matrix is divided into smaller submatrices, some of which are sparse or

zero matrices.

Example: A = [
𝐴 0 0
0 𝐵 0
0 0 𝐶

]

Here A, B and C are sparse matrices or sometimes dense.

iv. Sparse Symmetric Matrix:

A Sparse Matrix is known as symmetric if 𝐴𝑖𝑗 = 𝐴𝑗𝑖 . The non-zero elements are

symmetrical across the main diagonal.

Example: A = [
𝑎 𝑑 0
𝑑 𝑏 𝑒
0 𝑒 𝑐

]

v. Lower and Upper Triangular Matrix:

8

“All the non-zero elements are on the main and below the main diagonal then

that matrix is known as Lower Triangular Matrix.”

Example: C = [
𝑎 0 0
𝑑 𝑏 0
𝑓 𝑒 𝑐

]

“All the non-zero elements are on the main and above the main diagonal then that

matrix is known as Upper Triangular Matrix.”

Example: B = [
𝑎 𝑑 𝑓
0 𝑏 𝑒
0 0 𝑐

]

b) Irregular Sparse Matrices

A matrix with no particular structure or pattern among its elements is known as Irregular

matrix. There are no such types of this matrix, as classifying any matrix requires a pattern,

which is not found in this case.

2.1.3. Theoretical Properties of Sparse Matrices

Sparse matrices have many theoretical properties that are important for

understanding their behaviour and designing effective algorithms to manipulate

them. Here we discuss their rank, determinant and eigenvalues.

a) Rank

“The rank of a matrix is the maximum number of linearly independent rows or

columns.”

Properties:

• Linearly Independent Rows/Columns: The row of a matrix represents the

size of the vector space spanned by its rows or columns. The distribution of

nonzero elements in a sparse matrix determines the linear independence of

rows and columns.

• Efficient Computation: Sparse matrices allow decision algorithms to be

more efficient, thus avoiding unnecessary operations on zero elements.

Techniques such as sparse LU decomposition and iterative problem solving

make use of different models.

• Impact on Solutions: Level is important in determining the solution of the

system Ax =b. If the system is uniform, the fully ranked matrix (if rank is

equal to the smallest of the matrix) means that it’s a single solution.

9

b) Determinant

Properties:

• Invertibility: A non-zero determinant means that the matrix is invertible. For

sparse matrices, it is often impractical to calculate the determinant directly

due to computational complexity.

• Determinant Calculation: Use special methods such as matrix factorization

(LU factorization) to calculate the rank of the difference matrix. This strategy

aims to preserve sparsity and avoid padding (generating non-zeroes in the

first place).

• Sparse-Specific Methods: In some cases, combining techniques or the use of

non-uniform matrix models (e.g. block matrices, banded matrices) can be

used to simplify the decision. For example, “the determinant of a diagonal or

triangular matrix is the product of the diagonals it contains.”

c) Eigenvalues

Properties:

• Spectral Properties: Eigenvalues provide information about the stability and

function of the system represented by the matrix. In a sparse matrix, pattern

sparsity affects the distribution of eigenvalues.

• Computation: Good algorithms for calculating the eigenvalues of sparse

matrices include the Lanczos algorithm and Arnoldi iteration. This technique

focuses on a few eigenvalues and eigenvectors, which is usually sufficient for

many applications.

2.2. Representation of sparse matrix

In most real-world problems, data always forms sparse matrices. For example, in

graph theory, the adjacency matrix has numerous zeros for a large sparse graph,

indicating that there are no edges between nodes. Likewise, matrices representing

objects in simulations such as finite element analysis often have a structure that

causes sparsity. Efficient representation and control of these sparse matrices are

important for the efficiency and development of computational algorithms.

Sparse matrices can be represented efficiently using special formulas to save memory

and computational resources. Below are three representations of sparse matrices:

2.2.1. Coordinate list representation (COO)

To represent the sparse matrix, a 2-dimensional array is used with three rows written

as follows:

• Row: The row index of the non-zero element.

• Column: The column index of the non-zero element.

• Value: The value of the non-zero element located at the corresponding index.

10

Example 2.1: Taking the same matrix A =

[

1 0 0 0 0
0 0 1 0 0
0 6 0 0 0
0 5 0 0 8
0 0 4 0 0

]

 .

Represent this matrix using a Coordinate list representation.

Solution: For the given matrix, the non-zero elements are 1, 1, 6, 5, 8, and 4. We will

store only these elements, organizing them into 3 rows: Row, Column, and Value.

Below is the tabular representation as an array.

ROW 0 1 2 3 3 4

COLUMN 0 2 1 1 4 2

VALUE 1 1 6 5 8 4

2.2.2. Linked list representation

To represent a sparse matrix using a linked list, you need to define nodes that will

store only elements (non-zero) and their row and column indices. Using linked

names we can represent a matrix mathematically as follows:

• Row: The row index of the non-zero element.

• Column: The column index of the non-zero element.

• Value: The value of the non-zero element located at the corresponding index.

• Next node: Told the location of the next node.

NODE
STRUCTURE

ROW COLUMN VALUE
ADDRESS OF THE NEXT

NODE

Example 2.2: Taking the same matrix A =

[

1 0 0 0 0
0 0 1 0 0
0 6 0 0 0
0 5 0 0 8
0 0 4 0 0

]

 .

Represent this matrix using linked list representation.

Solution: As mentioned before, non-zero elements are 1, 1, 6, 5, 8, and 4. We start by

creating the first node using the first non-zero element, then move on to the next

node, and so on.

11

Here, we can see that in row 3 there are two elements in the same row which means

we are storing one more element in the row in the above two representations. Do we

have such representation through which we can save the space of this extra entry?

Indeed, the answer is yes. Another representation is used to avoid duplication of row

indices.

2.2.3. Compressed Sparse Row (CSR)

As the name suggests, this representation stores a sparse matrix by compressing the

row data. We can represent it in the below 3 rows named as follows:

• Value: The value of the non-zero element located at the corresponding index.

• Column: The column index of the non-zero element.

• Row Pointers: It shows from where each row begins in the column and value

indices arrays.

Note: If we have an n × m matrix, the size of the row pointers or the length is

n + 1.

Example 2.3: Consider the same matrix A =

[

1 0 0 0 0
0 0 1 0 0
0 6 0 0 0
0 5 0 0 8
0 0 4 0 0

]

 .

Represent this matrix using Compressed Sparse Row representation.

Solution: We start with the 3 rows as mentioned above. The value and column

indices will remain the same so move to the row pointer row.

The first-row pointer is shown as:

• Row Pointers: [0]

First row begins at the index ‘0’ so the first element in row pointer is ‘0’.

• Row Pointers: [0, 1]

Second row begins at the index ‘1’ so the second element in row pointer is ‘1’.

• Row Pointers: [0, 1, 2]

Third row begins at the index ‘2’ so the third element in row pointer is ‘2’.

0 0 1

1 2 1

2 1 6

3 1 5

3 4 8

4 2 4 NULL

12

• Row Pointers: [0, 1, 2, 3]

The fourth row starts at the index ‘3’ so the fourth element in the row pointer is ‘3’.

• Row Pointers: [0, 1, 2, 3, 5]

The fifth row starts at the index ‘5’ so the fifth element in the row pointer is ‘5’. In

other words, the element ‘8’ is in the same row with element ‘5’ so we will skip

index ‘4’ and go to index ‘5’.

• Row Pointers: [0, 1, 2, 3, 5, 6]

The last element ‘6’ indicates the end of the last row also it shows the total number of

non-zero elements.

The final representation is as follows:

This example illustrates a

single row containing two non-zero elements, highlighting the usefulness of CSR

representation, particularly in scenarios where such multiple rows are there.

Similarly, as CSR we have Compressed Sparse Column (CSC) representation which

compresses the column data.

2.2.4. Compressed Sparse Column (CSC)

We show the matrix through 3 rows named as follows:

• Value: The value of the non-zero element located at the corresponding index.

• Row: The row index of the non-zero element.

• Column Pointers: It shows from where each column begins in the row and

value indices arrays.

Note: If we have an n × m matrix, the size of the row pointers or the length is

n + 1.

Example 2.4: Let us take the same example 5.

 Solution: The value and row indices will remain the same so move to the row

pointer row.

• The first column, there is a non-zero element at index 0 in values array.

• Second column, there are non-zero elements at indices 2 and 3 in the values

array.

• The third column, there are non-zero elements at indices 1 and 4 in the values

array.

• The fourth column, there is no non-zero element. Hence, we will use the

index ‘5’.

• The fifth column, there is a non-zero element at index 4 in values array.

The final representation is as follows:

• Value: [1, 1, 6, 5, 8, 4]

• Column: [0, 2, 1, 1, 4, 2]

• Row Pointers: [0, 1, 2, 3, 5, 6]

13

There are various other representations such as Diagonal, Block compressed sparse

Row, Ellpack – Itpack, Jagged Diagonal storage. However, we have discussed the

one which is used most commonly. In practice, the choice of variable matrix

representation depends on the particular attributes of the problem and the operations

to be performed. So, chose wisely as per the scenario.

2.3. Comparison

The below table provides a quick comparison of four common sparse matrix

representations, highlighting their structural properties, memory usage, construction

complexity, efficiency in row and column access, ease of insertion and deletion, and

ease of conversion to other formats.

Feature
Coordinate

list (COO)

Linked list

Compressed

Sparse Row

(CSR)

Compressed

Sparse

Column

(CSC)

Structure

List of (row,

col, value)

tuples

Nodes with

pointers

values, col

indices, row

pointer

values, row

indices, col

pointer

Memory Usage Three arrays
High due to

pointers
Efficient Efficient

Construction Simple Flexible Complex Complex

Row Access Moderate Efficient Fast Moderate

Column Access Moderate Efficient Moderate Fast

Insertion/Deletion Easy Easy Complex Complex

Conversion
Easy to

convert

Harder to

convert

Specific to

row

operations

Specific to

column

operations

2.4. Summary

A solid foundation is laid by introducing the basic concepts and theoretical properties

of sparse matrices. We explored different types of sparse matrices and examined their

special properties, such as rank, determinant, and eigenvalues. Additionally, we

examined different representations such as Coordinate list (COO), Linked List,

• Value: [1, 6, 5, 1, 4, 8]

• Row: [0, 2, 3, 1, 4, 3]

• Row Pointers: [0, 1, 3, 5, 5, 6]

14

Compressed Sparse Row (CSR), and Compressed Sparse Column (CSC). Also

compared their performance and suitability for different tasks. With a better

understanding of these important concepts, we are now ready to move on to Chapter

3, where we will explore algorithms for optimizing the performance of different

matrices, starting with the simple operations which shape the foundation of more

complex computational methods.

15

Chapter 3

ALGORITHMS FOR SPARSE MATRIX

3.1 Basic Operations

Simple operations are ubiquitous when working with matrices and will be used in the

next section of this paper. Sparse matrices are easier to work with than other matrices

because most of the elements are zero. Here we will discuss adding, subtracting,

multiplying matrices and finding the transformation of a matrix.

Example 3.1: Let us take A = [

1 0 0 2
0 3 0 0
0 0 4 0
5 0 0 6

] and B = [

0 7 0 0
8 0 0 0
0 0 0 9
0 0 10 0

]. Apply

operations like addition, subtraction, multiplication of matrices and also find

Transpose of a matrix.

Solution: Representing the given matrices in Coordinate representation (COO). I

chose this representation, but the reader is free to use his or her preference.

COO representation of matrix A is as follows.

ROW 0 0 1 2 3 3

COLUMN 0 3 1 2 0 3

VALUE 1 2 3 4 5 6

3.1.1 Addition

COO representation of matrix B is as follows.

ROW 0 1 2 3

COLUMN 1 0 3 2

VALUE 7 8 9 10

Addition of A and B matrices: We will add only those entries whose corresponding

row and value indices are same. For rest of the row and column indices, we will just

note it down as it is. COO representation of (A + B) is as follows.

16

ROW 0 0 0 1 1 2 2 3 3 3

COLUMN 0 1 3 0 1 2 3 0 2 3

VALUE 1 7 2 8 3 4 9 5 10 6

3.1.2 Subtraction

Similarly, COO representation of (A - B) is as follows.

ROW 0 0 0 1 1 2 2 3 3 3

COLUMN 0 1 3 0 1 2 3 0 2 3

VALUE 1 -7 2 -8 3 4 -9 5 -10 6

3.1.3 Multiplication

COO representation of (A * B) is as follows.

Here, for each non-zero element of A (i,k) get an element of B (k,j) such that column

index k of A matches the row index k of B. Calculate the product:

A (i,k) * B (k,j) and then add it result matrix as C (i,j).Representing the

multiplication of (A * B).

ROW 0 0 1 2 3

COLUMN 1 2 0 3 1

VALUE 7 20 24 36 35

3.1.4 Transpose

For transposition of matrix, we will simply swap the row indices with column

indices. COO representation of (AT) is as follows.

ROW 0 3 1 2 0 3

COLUMN 0 0 1 2 3 3

VALUE 1 5 3 4 2 6

17

It's similar to what we do with simple matrices, but it's very important when we deal

with large matrices as here, we are only dealing with non-zero matrices.

3.2 Permutations and Reordering: Permuting the rows or columns (or rows and

columns) of a sparse matrix is a common task. In fact, reordering rows and columns

is one of the most important components used in parallel implementation of direct

and iterative solution methods.

Let A be a matrix and π = {i1, i2, . . . , in} a permutation of the set {1, 2, . . . , n}. Then

the matrices:

Aπ,∗ = {aπ(i),j} i = 1,...,n; j = 1,...,m,

 A∗,π = {ai,π(j)} i = 1,...,n; j = 1,...,m

are called row π-permutation and column π-permutation of A respectively.

The set {1, 2, . . ., n} is obtained as a result of n or fewer permutations, that is, the

fundamental permutations in which only two entries are exchanged. The exchanged

matrix is the identity matrix in which two rows are exchanged. Let us denote these

matrices as Xij. where i and j are the number of rearranged rows.

b) Permutation basically rearranges the rows and/or columns of a matrix.

c) Purpose: To change the sparsity pattern, often to improve computational

efficiency.

d) Mathematical Representation: If 𝑃P and 𝑄Q are permutation matrices, the

permuted matrix 𝐴′ is given by A′=PAQ.

P permutes the rows of A.

Q permutes the columns of 𝐴

Sparse matrix reordering is an optimization technique used to improve the efficiency

of operations on sparse matrices by rearranging their rows and columns. Matrix

reordering has a variety of uses.

Changing the order of the rows and columns of a sparse matrix can affect the speed

and memory requirements of matrix operations.

By rearranging the rows and columns of a matrix, we can reduce the number of fill-

ins produced by factorization, thus reducing the time and storage cost of subsequent

calculations.

3.3 Solving sparse linear system: Solving sparse matrix is basically about solving a

system of equations given as:

Ax=b

Where x and b belong to Rn and A is our nxn sparse matrix.

There are two methods to solve the sparse linear equations first is direct method and

the second is iterative method.

18

For iterative algorithm, there are some famous methods as Gauss-seidel and Jacobi

method and etc. For direct algorithm the famous methods are Gaussian elimination,

LU decomposition, etc.

3.3.1 Direct Method: Direct methods solve a system by performing a finite series of

operations to transform a matrix into a simpler form from which the solution can be

derived directly.

Gaussian Elimination Method: Gaussian elimination is a direct method for solving

systems of linear equations. This involves converting the system to upper triangular

matrix form, where the solution can be easily found by back substitution. The

Gaussian elimination method is simple and effective for dense matrices.

Steps involve in above method,

• Forward Elimination: Convert matrix A to an upper triangular matrix U

using a series of row operations.

• Back Substitution: Solve the triangular system 𝑈𝑥=𝑏 to find the solution

vector 𝑥.

• Sparse Gaussian Elimination: This approach extends Gaussian

elimination to sparse matrices, carefully managing fill-in during the

elimination process. Pivoting strategies and data structures optimized for

sparse matrices are used to minimize fill-in.

Example 3.2: Solve the given system by Gaussian elimination.

2x+3y=6

x−y=1/2

Solution: First, we write this as an augmented matrix.

[
2 3
1 −1

| 6
1/2

]

R1↔R2 → [
1 −1
2 3

 |1/2
6

]

−2R1+R2 = R2 → [
1 −1
0 5

 |1/2
5

]

 multiply row 2 by 1/5.

1/5 R2 = R2 → [
1 −1
0 1

 |1/2
1

]

Using back-substitution, the second row of the matrix represents y=1.

19

Back-substitute y=1 into the first equation.

x−1 = 1/2

𝑥=3/2

The solution is the point (3/2,1).

LU Decomposition Method: For sparse matrices, LU decomposition aims to

preserve sparsity while factorizing the matrix. Several methods have been developed

to achieve this, including:

Sparse LU Factorization Algorithms: Specialized algorithms, such as the

multifrontal method and nested dissection, exploit the sparsity pattern of the matrix

to perform LU decomposition efficiently. These algorithms typically divide the

matrix into smaller blocks and factorize them independently, reducing the

computational complexity.

For a non-singular matrix [A] one can always write it as

[A]=[L][U]

Where

 [L]=Lower triangular matrix

 [U]=Upper triangular matrix

Then if one is solving a set of equations

[A][X]=[C]

then

[L][U][X]=[C] as ([A]=[L][U])

Multiplying both sides by [L]−1,

[L]−1[L][U][X]=[L]−1[C]

[I][U][X] = [L]−1[C] as ([L]−1[L] = [I])

[U][X]=[L]−1[C] as ([I] [U]=[U])

Let

[L]−1[C]=[Z]

then

20

[L][Z]=[C] (1)

and

[U][X]=[Z] (2)

So we can solve Equation (1) first for [Z] by using forward substitution and then use

Equation (2) to calculate the solution vector [X] by back substitution.

Example 3.3: Find the LU decomposition of the matrix

[A] = [
25 5 1
64 8 1
144 12 1

]

Solution: [A]=[L][U]

 =[
1 0 0

𝑙21 1 0
𝑙31 𝑙32 1

] [
𝑢11 𝑢12 𝑢13
0 𝑢22 𝑢23
0 0 𝑢33

]

The [U] matrix is the same as found at the end of the forward elimination of Naïve

Gauss elimination method, that is

[U] = [
25 5 1
0 −4.8 −1.56
0 0 0.7

]

To find 𝑙21 and 𝑙31, find the multiplier that was used to make the 𝑎21 and 𝑎31 elements

zero in the first step of forward elimination of the Naïve Gauss elimination method.

It was

l21 = 64/25

= 2.56

l31 = 144/25

= 5.76

To find 𝑙32,

[
25 5 1
0 −4.8 −1.56
0 −16.8 −4.76

]

So

l32 = −16.8/−4.8

= 3.5

Hence,

21

 [L] = [
1 0 0

2.56 1 0
5.76 3.5 1

]

Confirm [𝐿][𝑈]=[𝐴].

[L][U] = [
1 0 0

2.56 1 0
5.76 3.5 1

] [
25 5 1
0 −4.8 −1.56
0 0 0.7

]

 = [
25 5 1
64 8 1
144 12 1

]

3.3.2 Iterative Methods: Iterative methods solve a system by starting with an initial

guess and iteratively improving it to get closer to the solution.

Gauss-Siedel Method: The Gauss-Seidel method is an iterative method used to

solve systems of linear equations and is particularly useful for sparse matrices. This

method is an improvement over the Jacobi method and can be more efficient in many

cases. Here is a detailed explanation of the Gauss-Seidel method, its application to

sparse matrices, and its advantages and disadvantages.

Gauss-Seidel Method Overview:

The Gauss-Seidel method iteratively updates the solution of the system of linear

equations 𝐴𝑥=𝑏 by using the latest available values for each variable. The algorithm

can be summarized as follows:

Initialization: Starting with an initial guess for the solution vector x(0).

Iterative Update: For each iteration 𝑘:

Here, aij are the elements of the matrix 𝐴, xi(k+1) is the updated value of the 𝑖-th

component, and 𝑥𝑗(𝑘) are the values from the previous iteration.

Example 3.4: The upward velocity of a rocket is given at three different times in the

following table

Table 3.1: Velocity vs. time data.

Time,t(s)

Velocity, v(m/s)

5 106.8

8 177.2

12 279.2

22

The velocity data is approximated by a polynomial as

v(t) = a1t
2+a2t+a3, 5≤t≤12

Find the values of a1, a2, and a3 using the Gauss-Seidel method. Assume an initial

guess of the solution as

[a1, a2, a3] = [1, 2, 5]

and conduct two iterations.

Solution: The polynomial is going through three data points (t1,v1), (t2,v2) and

where from the above table

t1 = 5, v1 = 106.8

t2 = 8, v2 = 177.2

t3 = 12 ,v3 = 279.2

Requiring that v(t)=a1t
2+a2t+a3 passes through the three data points gives

v(t1) = v1 = a1t
2
1+a2t1+a3

v(t2) = v2 = a1t2
2+a2t2+a3

v(t3) = v3 = a1t
2
3+a2t3+a3

Substituting the data (t1,v1),(t2,v2),and(t3,v3) gives

a1(5
2)+a2(5)+a3 = 106.8

a1(8
2)+a2(8)+a3 = 177.2

a1(122)+a2(12)+a3 = 279.2

or

25a1+5a2+a3=106.8

64a1+8a2+a3=177.26

144a1+12a2+a3=279.2

The coefficients a1, a2, and a3 for the above expression are given by

[
25 5 1
64 8 1
144 12 1

] [
𝑎1
𝑎2
𝑎3
] = [

106.8
177.2
279.2

]

23

Rewriting the equations gives

a1=
106.8−5a2−a3

25

a2=
177.2−64a1−a3

8

 a3=
279.2−144a1−12a2

1

Convergence Check: Repeat the iterative update until the solution converges, i.e.,

the change in the solution vector 𝑥 between iterations is smaller than a predefined

tolerance.

Jacobi Method: The Jacobi method is another iterative method used for solving

systems of linear equations, particularly suitable for sparse matrices. It is simpler

than the Gauss-Seidel method and can be parallelized more easily, although it may

converge more slowly. Here's a detailed explanation of the Jacobi method, its

application to sparse matrices, and its advantages and disadvantages.

Jacobi Method Overview

The Jacobi method iteratively updates the solution of the system of linear equations

𝐴𝑥=𝑏 by using the values from the previous iteration for all variables. The algorithm

can be summarized as follows:

Initialization: Starting with an initial guess for the solution vector 𝑥(0).

Iterative Update: For each iteration 𝑘:

Here, 𝑎𝑖𝑗 are the elements of the matrix 𝐴, 𝑥𝑖(𝑘+1) is the updated value of the i-th

component, and 𝑥𝑗(𝑘) are the values from the previous iteration.

Example 3.5: Express the following linear system in the Jacobi matrix notation.

 −2x1 + x2 + 1/2 x3 = 4

 x1 − 2x2 – 1/2 x3 = −4

x2 + 2x3 = 0

Solution: let A = [
−2 1 1/2
1 −2 −1/2
0 1 2

] and b = [
 4
−4
 0

]

24

 D = [
−2 0 0
0 −2 0
0 0 2

]

L + D = [
0 −1 −1/2

−1 0 1/2
0 −1 0

]

Tj = D-1(L+U) = [

0 1/2 1/4
1/2 0 −1/4
0 −1/2 0

]

Cj = D-1b =[
−2
2
0
]

D = [
−2 0 0
0 −2 0
0 0 2

]

L + U = [
0 −1 −1/2

−1 0 1/2
0 −1 0

]

Tj = D-1(L+U) = [

0 1/2 1/4
1/2 0 −1/4
0 −1/2 0

]

Cj = D-1b =[
−2
2
0

]

 [

X1(k)
x2(k)
 x3(k)

] = [

0 1/2 1/4
1/2 0 −1/4
0 −1/2 0

] [

𝑥1(𝑘 − 1)
𝑥2(𝑘 − 1)
𝑥3(𝑘 − 1)

] + [
−2
 2
 0

]

Convergence Check: Repeat the iterative update until the solution converges, i.e.,

the change in the solution vector 𝑥 between iterations is smaller than a predefined

tolerance.

3.4 Matrix Factorisation: Matrix factorizations are essential tools in numerical

linear algebra, providing ways to decompose matrices into products of simpler

matrices. This is especially useful in solving linear systems, optimization problems,

and understanding matrix properties. For sparse matrices, which contain many zero

elements, specialized algorithms take advantage of the sparsity to improve

computational efficiency and reduce storage requirements.

3.4.1 Cholesky factorization: Cholesky decomposition is especially effective for

sparse symmetric matrices and positive definite matrices. The goal is to factorize

matrix A into the product of the lower triangular matrix L and its transpose LT.

A=LLT

25

For sparse matrices, it is crucial to maintain the sparsity pattern to save

computational resources and memory. Let's delve into the details of Cholesky

factorization for sparse matrices, including some techniques and considerations.

Steps and Techniques

1. Reordering for Reduced Fill-In:

• Fill-ins means introducing non-zero elements into the matrix at positions that

were originally zero during the factorization process. Various reordering

techniques are used to minimize fill-ins.

• Minimum Degree Ordering: This heuristic reduces the amount of fill-in by

reordering the matrix so that nodes with the smallest degree (number of

edges) are processed first.

• Nested Dissection: This method recursively divides the graph representation

of the matrix into smaller subgraphs, which can reduce fill-in by minimizing

edge cuts.

2. Symbolic Analysis:

Before performing numerical factorization, we perform symbolic analysis to

determine the sparsity pattern of the factor L. This step does not involve any

actual numerical computation, but it establishes the structure of L.

3. Numerical Factorization:

• Using the sparsity pattern from the symbolic analysis, the numerical values of

L are computed. Efficient data structures, such as compressed sparse row or

compressed sparse column, are often used to store the sparse matrix and its

factors.

4. Multifrontal and Supernodal Methods:

• Multifrontal Method: This technique constructs a series of smaller dense

subproblems (frontal matrices) that are solved independently. These solutions

are then combined to build the final factor.

• Supernodal Method: This method groups columns of the matrix into

supernodes, allowing for more efficient use of dense matrix operations within

each supernode.

Example 3.6: Find the Cholesky decomposition for a matrix X whose lower

triangular matrix is given by L = [
2 0

2 − 5𝑖 1
]

Solution: the lower triangular matrix is given as

 L = [
2 0

2 − 5𝑖 1
]

The conjugate transpose of the above lower triangular matrix is:

L* = [
2 2 + 5𝑖
0 1

]

From the Cholesky decomposition X can be written as:

X = LL*

26

X = [
2 0

2 − 5𝑖 1
] [

2 2 + 5𝑖
0 1

]

X = [
4 4 + 10𝑖

4 − 10𝑖 29
]

3.4.2 QR factorization: QR factorization is a matrix factorization method in which a

given matrix A is factorized into the product of two matrices Q and R. Matrix Q is an

orthogonal (or unitary for complex numbers) matrix and R is an upper triangular

matrix. This extension is particularly useful for solving linear systems, least squares

problems, and eigenvalue calculations.

There are several methods for actually computing the QR decomposition. One of

such method is the Gram-Schmidt process.

Consider the Gram-Schmidt procedure, with the vectors to be considered in the

process as columns of the matrix A. That is,

A = [a1|a2|a3|……. |an]

Then, u1 = a1, e1 = u1 /||u1||,

 u2 = a2 − (a2 · e1) e1,

 e2 = u2 /||u2||

 uk+1 = ak+1 − (ak+1 · e1) e1 − · · · − (ak+1 · ek) ek,

 ek+1 = uk+1/ ||uk+1||

 Note that || · || is the L2 norm.

Example 3.7: Consider the matrix

A = [
1 1 0
1 0 1
0 1 1

]

with the vectors a1 = (1, 1, 0)T , a2 = (1, 0, 1)T , a3 = (0, 1, 1)T .

Performing the Gram-Schmidt procedure,

u1 = a1 = (1, 1, 0),

e1 = u1 /||u1|| = 1/√2 (1, 1, 0) = (1/√2, 1/√2, 0),

u2 = a2 − (a2 · e1) e1 = (1, 0, 1) – 1/√2 (1/√2, 1/√2, 0) = (1/ 2, − 1/ 2, 1),

e2 = u2/ ||u2|| = 1/√(3/)2 (1/ 2, − 1/ 2, 1) = (1/√6, − 1 /√6, 2 /√6),

u3 = a3 − (a3 · e1) e1 − (a3 · e2) e2

27

 = (0, 1, 1) – 1/√2 (1/√2, 1/√2, 0) − 1 /√6(1/√6, − 1 /√ 6, 2 /√ 6) = (− 1/√3, 1/√3,

1/√3)

e3 = u3 /||u3|| = (− 1 /√3, 1 /√3, 1 /√3).

Thus,

Q = [e1 |e2 |……. |en] = [

1/√2 1/√6 −1/√3

1/√2 −1/√6 1/√3

0 2/√6 1/√3

]

R = [
𝑎1. 𝑒1 𝑎2. 𝑒1 𝑎3. 𝑒1

0 𝑎2. 𝑒2 𝑎3. 𝑒2
0 0 𝑎3. 𝑒3

] = [

2/√2 1/√2 1/√2

0 3/√6 1/√6

0 0 2/√3

]

All these algorithms are very useful. In the next chapter, we are going to understand

the applications in deep.

28

CHAPTER 4

APPLICATIONS OF SPARSE MATRICES

Sparse matrices are particularly vital in scientific computing, where large-scale

problems often involve matrices with a prominent number of zero elements.

Applications in Scientific computing and its application in solving partial differential

equations, finite element analysis, and computational fluid dynamics and in data

science and machine learning and graph theory are discussed in detail below.

4.1. Application of Sparse Matrices in Scientific Computing: Computational

science, also known as scientific computing or scientific computation, is a

rapidly growing multidisciplinary field that uses advanced computing

capabilities to understand and solve complex problems. It is a field of research

that spans many disciplines, but at its core it is concerned with the development

of models and simulations to understand natural processes.

sparse matrix computation as an important parallel pattern. There are many real-

world applications of sparse matrix that involve modelling complicated

phenomenon. In addition, sparse matrix computation is a simple example of

data-dependent performance behaviour of many large real-world applications.

Since the number of zero elements is large, compaction techniques are used to

reduce the amount of accessing memory, storing, and calculating zero points.

4.2. Application of Sparse Matrices in PDEs

1. Discretization:

Discretization is the simpler way to solve PDEs. Discretization of PDEs

approximates them by equations that involve a finite number of unknowns.

Generally, we get after large and sparse matrices after discretization; i.e., they

have very few nonzero entries.

1. Efficiency:

Utilizing sparse matrix techniques reduces the memory footprint and

computational cost, enabling the solution of very large systems that would

otherwise be infeasible with dense matrix techniques.

2. Example:

• Consider the 2D Poisson equation Δ𝑢=𝑓 on a rectangular domain, discretized

using a finite difference method. This results in a large sparse matrix representing

the Laplacian operator. Efficient sparse solvers like Conjugate Gradient or

Multigrid methods are then used to solve the system.

4.2.1. Finite Element Analysis

Finite Element Analysis is a numerical method for finding approximate solutions to

boundary value problems in PDEs. Discretization approximates the PDEs with large

sparse systems or numerical model equations, which can be solved using numerical

https://www.sciencedirect.com/topics/computer-science/computation-matrix

29

methods. The solution to the numerical model equations is an approximation of the

real solution to the PDEs. The finite element method is used in the calculation of

these approximations.

4.2.2 Computational Fluid Dynamics

Computational Fluid Dynamics involves the numerical simulation of fluid flows

governed by the Navier-Stokes equations. These simulations are essential in fields

like aerospace, automotive engineering, and weather forecasting.

Conclusion:

Sparse matrices are indispensable in scientific computing for solving PDEs,

performing finite element analysis, and conducting computational fluid dynamics

simulations. By leveraging the sparsity of matrices, computational efficiency and

scalability are greatly enhanced, allowing for the solution of large-scale and complex

problems in numerous scientific and engineering fields.

4.3 Applications of sparse matrix in Machine learning and Data Science:

Sparse matrices, which are matrices predominantly composed of zero elements, are

widely used in data science and machine learning for a variety of applications. Their

efficient storage and computational benefits are leveraged to handle large-scale data

and complex models. Here are some key applications:

4.3.1. Natural Language Processing: The occurrence of words in a document can

be represented as a sparse matrix, where the words in the document are only a

small fraction of the words in the language. If we have a row for every

document and a column for every word, each column stores the number of

words that appear in the document with high percentage of zero.

4.3.2. Recommendation Systems: A sparse matrix can be used to represent which

user watched the video.

4.3.3. Market Basket Analysis: Since the number of purchased items is tiny

compared to the number of non-purchased items, a sparse matrix is used to

represent all products and customers.

4.4. Basics of Graphs

Graphs and sparse matrices are used in computer science, especially networks. It is

closely related to the representation of information networks such as here we explore

the fundamentals of graphs and their representation using sparse matrices.

4.4.1. Definition

“A Graph is a finite set represented as 𝐺 = (𝑉, 𝐸) where V is the set of vertices

(nodes) and set E of edges defined as pairs of distinct vertices.”

“If there is no distinction between the pair of vertices (𝑢, 𝑣) and (𝑣, 𝑢), the edges are

represented by unordered pairs then the graph is undirected graph. If the pairs are

ordered the graph is set to be directed graph (Digraph).” [7]

30

Example 4.1: The following graph shows the undirected and directed graph.

In directed graph, there is an edge (3 → 5) and another edge (5 → 3).

In the Fig. 1, vertices 1 and 2, 2 and 3, 3 and 4 and so on are adjacent as there is an

edge 𝑒 = (𝑢, 𝑣) connecting the vertices 𝑢 and 𝑣. We show the edge as (𝑢 ↔ 𝑣) or

(𝑢
𝐺
↔ 𝑣). The adjacency set 𝑎𝑑𝑗𝐺{𝑢} is the set of all the adjacent vertices, and the

number of vertices belonging to V that are adjacent to 𝑢 ∈ 𝑉 is said to be degree of u

and can be written as 𝑑𝑒𝑔𝐺(𝑢). [7]

Similarly, In the Fig. 2, here the notation is different to show the edge. We show the

edge as (𝑢 → 𝑣) or (𝑢
𝐺
→ 𝑣) for a direct edge as there can be an edge (𝑢 → 𝑣) but not

(𝑣 → 𝑢). As in this case, two directions can exist so the adjacent set will split into

two parts as follows.

𝑎𝑑𝑗𝐺
+{𝑢} = { 𝑣 | (𝑢 → 𝑣) ∈ E} and 𝑎𝑑𝑗𝐺

−{𝑢} = { 𝑣 | (𝑣 → 𝑢) ∈ E} [7]

For the vertex 2 in Fig. 2, 𝑎𝑑𝑗𝐺
+{2} = {3,4} and 𝑎𝑑𝑗𝐺

−{2} =1.

4.4.2. Basic terms

Before moving to the Graph Search Algorithms, let us understand some basic

terminologies.

a) Walk: “When there is an undirected graph G a sequence of k edges is called the

walk of length k.”

𝑢0 ↔ 𝑢1 ↔ ↔ 𝑢𝑘−1 ↔ 𝑢𝑘

 When the G is a diagraph then the sequence is known as Direct walk.

𝑢0 → 𝑢1 → → 𝑢𝑘−1 → 𝑢𝑘

1

2

3

4

5

6

7

Fig. 1 Undirected

graph

1 2

3

4

5

6

7

Fig. 2 Directed graph

31

b) Reachable: “If the vertices 𝑢0 and 𝑢𝑘 are connected by the walk for k > 0, 𝑢𝑘 is

said to be reachable from 𝑢0. The set of the vertices that reachable from 𝑢0 is

denoted by 𝑹𝒆𝒂𝒄𝒉(𝒖𝟎). “

c) Cyclic and Acyclic: “A walk is said to be cyclic if it is closed (𝑢0 = 𝑢𝑘). If a

graph does not have cycles, then it is acyclic.” [7]

d) Trail and Path: “A walk in which all the edges are distinct then it is a trail and if a

trail has all the vertices are distinct.” It can be represented as

𝑖 ⇔ 𝑗 (Undirect graph) and 𝑖 ⟹ 𝑗 (Diagraph) [7]

e) Length of the path: “The length is the no. of edges in the shortest path

connecting the two vertices.” [7]

f) DAG: “A directed acyclic graph is called DAG. In case of DAG, if there is a path

𝑢 ⟹ 𝑣, then 𝑢 is called an ancestor of 𝑣 and 𝑣 is called a descendant of 𝑢.”

g) Connected: “An undirect graph is connected if every pair of vertices is

connected by a path.”

h) Tree: “A tree is an undirected graph in which any two vertices are connected by

exactly one path.” [7] It can be represented as 𝑇.

i) Leaf: “In a tree if we have at least two vertices of degree 1, then such vertices are

known as leaf.”

j) Forest: It is a graph which consists of disjoint union of trees.

Let us take an undirected tree 𝑇 = (𝑉, 𝐸) can be changed to Direct rooted tree let

say 𝑇′ = (𝑉, 𝐸′) by taking a vertex r as root vertex. “An edge (𝑢, 𝑣) 𝜖 𝐸 becomes

direct edge (𝑢 → 𝑣) 𝜖 𝐸′ if there is a path from 𝑢 to 𝑟 such that the first edge of this

path is from 𝑢 to 𝑣. Consider, a directed edge (𝑢 → 𝑣) 𝜖 𝐸′, 𝑢 is said to be a child of

𝑣 and 𝑣 is said to be parent of 𝑢. Also, if two vertices in case of a rooted tree have

same parent then they are said to be siblings. [7]

4.4.3. Adjacency Graphs

These graphs are highly important in order to get a clarity on the upcoming topics.

Let a sparse matrix A of order n, “then the adjacency graphs 𝐺(𝐴) = (𝑉(𝐴), 𝐸(𝐴))

with n vertices can be associated with it.” [7]

In case of structurally symmetric matrix A, then the edge set can be represented as

𝐸(𝐴) = {(𝑖, 𝑗) | 𝑎𝑖𝑗 ≠ 0, 𝑖 ≠ 𝑗}

In case of a Diagraph when we are taking nonsymmetric A by using

𝐸(𝐴) = {(𝑖 → 𝑗) | 𝑎𝑖𝑗 ≠ 0, 𝑖 ≠ 𝑗}

4.4.4. Graph searches

“A graph search is basically used to perform step by step exploration of vertices and

edges of G(A), and generates sets of visited vertices and explored edges. Let 𝑉𝑣 be

the set of vertices which we visited and 𝑉𝑛 be the set of vertices which we have not

visited yet.” In the search we explore the edges and whose one vertex should belong

to 𝑉𝑣 and if another vertex belongs to 𝑉𝑛, then this vertex is moved into 𝑉𝑣, and the

edge is marked as explored so that we would not visit that edge again.

We will below discuss some of the search methods here.

32

4.4.5. Breadth-First search

For understanding, let us choose a start vertex k. In the Breadth-first search (BFS),

we explore all the vertices adjacent to k. Then we will explore all those vertices

whose distance from k is 2 and then we will choose vertices with distance 3 from k

and so on until there are no unexplored edges (𝑢, 𝑣) where 𝑢 ∈ 𝑉𝑣 and 𝑣 ∈ 𝑉𝑛 that

are reachable from k. All the vertices which are at the same distance from the vertex

k are placed at the same level say level 1,2,3…. and so on. For visiting a vertex there

is no fixed order. [7]

4.4.6. Depth-First search

In depth search (DFS) of graph G, we first visit the children and then reach the

sibling vertices. We have two access rows to vertices:

1. Pre-order DFS:

In pre-order DFS, the node is processed before its children. We process the

current node first and then the adjacent nodes. Let us choose a start vertex k, then

we choose the first adjacent vertex to k until we reach to an unvisited node. Once

we reach to an unvisited node, we move back to the previous node and check of

there is any unvisited adjacent node if not then move back to k. This process will

continue until there is no unvisited vertex left.

2. Post-order DFS:

In post-order DFS, the node is processed after its children. We process the

adjacent node first and then the current nodes. Here, the process remains the

same, but in order we will mention those vertices where there are no further

children.

1

k

2 3

4 5 6 7

Fig. 3 An undirected graph of BFS, with the labels that shows the order in which we chose the

vertices. Vertices 1, 2 and 3 are placed on the same level 1 as their distance is 1 from k. Similarly,

vertices 4,5,6 and 7 are placed on second level.

33

CHAPTER 5

OPTIMIZATIONS, PARALLEL COMPUTING, CASE STUDY

AND FUTURE DIRECTIONS

Optimization and parallel computing are two critical areas where sparse matrices

play a significant role. The efficient handling of sparse matrices allows for solving

large-scale optimization problems and leveraging parallel computing architectures to

speed up computations. Here’s a detailed look at how sparse matrices are utilized in

these contexts.

Optimization problems often involve large-scale systems where many variables and

constraints lead to sparse matrices. Efficiently managing and solving these sparse

systems is key to practical optimization.

5.1 Large-Scale Optimization

5.1.1 Sparse Matrix Factorization:

Sparse Cholesky and LU factorizations are used to solve the linear systems

arising in optimization problems. These factorizations take advantage of sparsity

to reduce computational complexity and memory usage.

5.1.2 Conjugate Gradient and Krylov Subspace Methods:

A Krylov subspace, denoted as Km(A,b), is a subspace of a vector space generated

by applying the sparse matrix A to a starting vector b and iteratively building the

subspace. The Krylov subspace is defined as

 Km(A,b) = span{b,A1b,A2b,…,Am−1b}

The Krylov subspace is often used in iterative methods for solving linear systems and

eigenvalue problems. Common iterative methods like the Conjugate Gradient (CG)

method and GMRES (Generalized Minimal Residual) method utilize Krylov

subspaces.

Conjugate Gradients for Sx=b Compute the matrix-vector product Spk. Compute the

step size αk using the formula αk = pkTSpkrkTrk. Update the solution: xk+1 = xk + αkpk.

Update the residual: rk+1 = rk−αkSpk. Check for convergence. If the solution is

accurate enough, stop the iterations. Compute the beta value: βk+1=rkTrkrk+1Trk+1.

Update the search direction: pk+1=rk+1+βk+1pk.

5.1.3 Application Example:

Network Flow Optimization: In telecommunications and transportation,

network flow problems involve optimizing the flow through a network. The

incidence matrix representing the network is sparse, and solving these

optimization problems requires efficient sparse matrix techniques.

34

5.2 Parallel Computing Using Sparse Matrices

sparse matrix computation is a simple example of data-dependent performance

behaviour of many large real-world applications. Because of the large amount of zero

elements, compaction techniques are used to reduce the amount of storage, memory

accesses, and computation performed on these zero elements and Parallel computing

is a computing technique that breaks a problem into smaller tasks and runs them

simultaneously. Its ability to handle multiple tasks simultaneously makes it faster

than a sequential computer. Parallel computing helps solve large and complex

problems in less time.

5.2.1 Parallel Sparse Matrix Operations

1. Decomposition and Distribution:

Sparse matrices are decomposed into submatrices that can be distributed across

multiple processors. Techniques like domain decomposition are used in finite

element methods to partition the problem domain.

2. Parallel Solvers:

Multigrid Methods: These methods solve large sparse linear systems efficiently by

operating on multiple levels of grid resolution and are highly parallelizable.

Iterative Solvers: Parallel implementations of iterative methods like Conjugate

Gradient, GMRES, and BiCGSTAB exploit sparse matrix-vector multiplication

(SpMV), which can be parallelized.

3. Libraries and Frameworks:

• PETSc: The Portable, Extensible Toolkit for Scientific Computation supports

parallel sparse matrix operations and solvers, providing scalability and

efficiency for large-scale scientific computations.

• Trilinos: Offers a suite of parallel algorithms for sparse linear algebra and

optimization, enabling scalable computations on distributed memory systems.

• Intel MKL: The Math Kernel Library includes optimized routines for sparse

matrix operations that are parallelized to take advantage of multi-core and

many-core processors.

5.2.2 Application Example

1. Computational Fluid Dynamics (CFD):

• Simulating fluid flow involves solving large sparse linear systems derived

from discretizing the Navier-Stokes equations. Parallel sparse matrix solvers

enable efficient handling of these large systems, allowing for detailed

simulations in aerospace and automotive industries.

2. Finite Element Analysis (FEA):

• Structural analysis using FEA generates large sparse stiffness matrices.

Parallel computing techniques distribute the computation of element matrices

and the assembly of the global stiffness matrix across multiple processors,

significantly speeding up the analysis process.

35

Conclusion

In optimization, they enable the handling of vast systems of equations with numerous

variables and constraints. In parallel computing, their structure allows for effective

decomposition and distribution of computational tasks, harnessing the power of

modern multi-core and distributed computing environments. Leveraging specialized

algorithms and libraries, sparse matrices facilitate scalable and efficient solutions

across various scientific and engineering applications.

5.3. Case study

The algorithms and representations that we studied in earlier sections are important

when case study is considered.

5.3.1. Social Network Graph

In this section, we are considering the applications: Friend recommendation and

Community detection.

Foundation:

a) User and Nodes: 1000 users represented as nodes.

b) Friendship and Edges: Represented as edges between nodes.

c) Adjacency Matrix: To represent the social network as a graph, we can use the

adjacency matrix.

Elements: Each element of the matrix Aij is:

a) 0 if there is no relationship between user i and j, i.e. there is no edge.

b) 1 if there is a friendship between user i and j, i.e. there is an edge between nodes i

and j.

For simplicity, let us create a small graph:

Let's illustrate the creation of the adjacency matrix for the given social network with

1000 users, and then discuss how breadth-first search (BFS) can be applied to

explore the network structure.

Step 1: Creating the Adjacency Matrix

Given that there are 1000 users in the social network, we'll have a 1000x1000

adjacency matrix to represent the connections between users. Initially, all entries in

the matrix will be zero, indicating no friendships.

To populate the matrix, we would need additional information about the friendships

among users. For simplicity, let's assume we have the following information:

• Each user is randomly connected to an average of 10 other users (friends).

• Friendships are bidirectional (If User A is a friend of User B, then User B is

also a friend of User A).

We can then randomly generate the friendships and fill in the adjacency matrix

accordingly.

For simplicity, let's assume we start the BFS from User 1.

36

Step 1: Initialization

• Start with User 1 as the initial node.

• Enqueue User 1 into the BFS queue.

• Mark User 1 as visited.

Step 2: BFS Iterations

Iteration 1: Explore User 1's Friends

• Dequeue User 1 from the queue.

• Look at User 1's row in the adjacency matrix to find its friends (nodes

connected to User 1).

• Enqueue all unvisited friends of User 1 into the queue.

• From User 1's row, we see that User 1 is friends with Users 2 and 3.

• Enqueue Users 2 and 3 into the queue.

• Mark Users 2 and 3 as visited.

Iteration 2: Explore User 2 and User 3's Friends

• Dequeue User 2 from the queue.

• Look at User 2's row in the adjacency matrix to find its unvisited friends.

• Enqueue User 4 and User 5 into the queue (User 1 has already been visited).

• Dequeue User 3 from the queue.

• Look at User 3's row in the adjacency matrix to find its unvisited friends.

• Enqueue User 5 into the queue (User 1 has already been visited).

Iteration 3: Explore User 4 and User 5's Friends

• Dequeue User 4 from the queue.

• Look at User 4's row in the adjacency matrix to find its unvisited friends.

• Enqueue User 2 and User 5 into the queue (User 1 and User 3 have already

been visited).

• Dequeue User 5 from the queue.

• Look at User 5's row in the adjacency matrix to find its unvisited friends.

• Enqueue User 2, User 3, and User 4 into the queue (User 1 has already been

visited).

Iteration 4: Explore User 2, User 3, and User 4's Friends

• Dequeue User 2 from the queue.

• User 2's friends have already been visited, so no new nodes are enqueued.

• Dequeue User 3 from the queue.

• User 3's friend User 5 has already been visited, so no new nodes are

enqueued.

• Dequeue User 4 from the queue.

37

• User 4's friend User 2 has already been visited, so no new nodes are

enqueued.

Iteration 5: Explore User 5's Friends

• Dequeue User 5 from the queue.

• Look at User 5's row in the adjacency matrix to find its unvisited friends.

• Enqueue User 3 and User 4 into the queue (User 1 and User 2 have already

been visited).

Iteration 6: Explore User 3 and User 4's Friends (Again)

• Dequeue User 3 from the queue.

• User 3's friend User 1 has already been visited, so no new nodes are

enqueued.

• Dequeue User 4 from the queue.

• User 4's friend User 2 has already been visited, so no new nodes are

enqueued.

Iteration 7: Explore User 3's Friend

• Dequeue User 3 from the queue.

• User 3's friend User 5 has already been visited, so no new nodes are

enqueued.

Iteration 8: Explore User 4's Friend

• Dequeue User 4 from the queue.

• User 4's friend User 5 has already been visited, so no new nodes are

enqueued.

Step 3: Termination

• The BFS algorithm terminates because all reachable nodes have been visited,

and the queue is empty.

At this point, all nodes in the social network graph have been visited, and the BFS

algorithm has explored the network starting from User 1, systematically traversing

through the graph to discover its structure and relationships. This process helps us

understand the connectivity patterns and identify communities or clusters within the

social network.

38

5.3.2. Results

The result of applying BFS to the social network graph starting from User 1 is a

traversal of the graph that systematically explores the network structure, identifying

users who are directly or indirectly connected to User 1.

In this specific example, the BFS algorithm visited the following users:

a) User 1

b) User 2

c) User 3

d) User 4

e) User 5

This traversal indicates that User 1 is directly connected to Users 2 and 3, who in

turn are connected to Users 4 and 5. Through this exploration, we have identified the

immediate friends of User 1 and indirectly discovered the friends of User 2 and User

3.

Furthermore, we have also observed that Users 4 and 5 are indirectly connected to

each other through mutual friendships with Users 2 and 3. This connectivity

information can be valuable for various purposes, such as friend recommendation

systems, community detection, or understanding the general composition of the

social network.

Overall, result of the BFS traversal provides insights into the relationships and

connectivity patterns within the social network, allowing us to understand how users

are interconnected and how information or influence might propagate through the

network.

5.4. Challenges and Future Directions

As we dive into the complex world of sparse matrices and their applications, it is imp

ortant to recognize the challenges and consider the future directions of the field. Belo

w is an introduction to the challenges and prospects for further research.

Sparse matrices have improved the technology by providing good solutions to proble

ms related to big data and complex processes. However, many challenges remain that

 prevent their full use and require continued research.

5.4.1. Challenges

Scalability means the ability of a system or algorithm to manage increasing amounts

of data or computing resources without sacrificing performance. In the context of

sparse matrices, as datasets grow and computational requirements continue to

increase, it is important to ensure that algorithms and systems can scale appropriately

to these growing needs. and data processing are crucial to achieve high performance

in low-matrix operations, especially distributed computing and high-performance

computing (HPC). Parallel algorithms reduce computational time by allowing

multiple computers to perform different operations on a problem simultaneously.

However, it may be difficult to achieve similar results because of the irregular

composition of sparse matrices and the memory access structure. These algorithms

should effectively exploit the parallelism in matrix sparse operation while reducing

communication overhead and underload on computers. Additionally, efficient use of

39

distributed computing resources, such as clusters of connected systems in HPC

systems, is crucial to providing scalability for large matrices.

Efficient storage formats for sparse matrices are essential for minimizing memory

usage and optimizing computational performance. Sparse matrices typically hold a

large number of zero elements, makes it inefficient to store them explicitly. Various

storage formats address this issue by storing only the non-zero elements with their

corresponding row and column indices. Common formats include the Coordinate List

(COO), Compressed Sparse Row (CSR), and Compressed Sparse Column (CSC)

formats, each offering different trade-offs in terms of storage space and access

efficiency. COO stores all non-zero element with their row and column indices,

making it simple but potentially inefficient for certain operations. CSR and CSC

formats compress the row or column indices, respectively, reducing storage overhead

and enabling faster access to rows or columns. Choosing the most suitable storage

format hangs on factors like the matrix's sparsity pattern, the types of operations

performed, and memory constraints. Developing adaptive storage schemes that

dynamically select the optimal format based on runtime conditions is an ongoing

research area to further enhance storage efficiency for sparse matrices.

Algorithmic performance in the context of sparse matrices refers to the efficiency

and effectiveness of algorithms designed to operate on sparse matrix data structures.

Unlike dense matrices, which contain mostly non-zero elements, sparse matrices

have a significant number of zero elements, leading to specific challenges in

algorithm design and implementation. Improving algorithmic performance involves

developing specialized algorithms tailored to exploit the sparsity of matrices

efficiently. This includes designing data structures that minimize storage

requirements, optimizing computational complexity to reduce time and memory

overhead, and ensuring numerical stability and accuracy in computations.

Algorithmic performance also encompasses considerations such as parallelization for

efficient execution on multi-core CPUs or distributed computing platforms, as well

as adaptability to different matrix structures and problem domains. Enhancing

algorithmic performance in sparse matrix computations is essential for accelerating

scientific simulations, machine learning algorithms, and various other computational

tasks reliant on sparse data representations.

5.4.2. Future Directions

The field of sparse matrices continues to evolve with advancements in various

domains such as computational mathematics, computer science, machine learning,

and data science. Here are some potential future directions in this field:

Development of Sparse Neural Networks: As deep learning models become

increasingly larger and more complex, there is growing interest in leveraging sparse

matrices to decrease the computational and memory needs of neural networks.

Research in this area aims to develop techniques for training and deploying sparse

neural networks efficiently while maintaining high predictive performance.

40

Sparse Deep Learning Architectures: In addition to sparse neural networks, there

is also interest in developing sparse architectures for other deep learning models such

as convolutional neural networks (CNNs) and recurrent neural networks (RNNs).

Sparse architectures can help reduce the memory footprint and computing cost of

these models, makes them more practical for resource-constrained environments

such as mobile devices and edge devices.

Sparse Optimization Techniques: Sparse matrices are often encountered in

optimization problems arising in various fields such as machine learning, signal

processing, and operations research. Future research in this area may focus on

developing efficient optimization techniques specifically tailored for sparse matrices,

including algorithms for sparse convex optimization, sparse nonconvex optimization,

and distributed optimization on sparse data.

Sparse Graph Algorithms: Graphs are often represented using sparse matrices in

algorithms for tasks such as network analysis, social network analysis, and

recommendation systems. Future research in this area may focus on developing

efficient algorithms for graph-related tasks that take advantage of the sparsity

structure of the underlying matrices, including algorithms for graph traversal,

clustering, and community detection.

The future of sparse matrices holds great promise across a multitude of domains,

from machine learning and optimization to quantum computing and beyond. As

researchers continue to innovate and develop new algorithms, data structures, and

applications, we can expect to see further advancements that leverage the inherent

efficiency and scalability of sparse representations. By addressing the current

challenges and exploring new directions, the field of sparse matrices is poised to

make significant contributions to the advancement of computational science and

technology in the years to come.

41

CHAPTER 6

CONCLUSION

Sparse matrices are a fundamental concept in linear algebra and data science. They

play a crucial role in managing and processing large datasets efficiently. Unlike

dense matrices, where most elements have values, sparse matrices contain mostly

zeros. This sparsity allows for specialized storage techniques and computational

algorithms that significantly reduce memory usage and processing time.

Here's a breakdown of the key points covered in this chapter:

• Importance of Sparse Matrices:

o Efficient storage and manipulation of large datasets.

o Reduced memory requirements compared to dense matrices.

o Faster computations due to skipping zero elements.

• Properties of Sparse Matrices:

o Sparsity patterns: Arrangement of non-zero elements, influencing

storage and algorithms.

o Types of sparse matrices: Regular (diagonal, banded, block sparse)

and irregular.

o Theoretical properties: Rank, determinant, eigenvalues (impact

solution methods).

• Representations of Sparse Matrices:

o Coordinate list (COO): Stores row, column, and value for each non-

zero element.

o Linked list: Uses nodes to store element values, row/column indices,

and pointers.

o Compressed Sparse Row (CSR): Efficient for row-wise operations.

o Compressed Sparse Column (CSC): Efficient for column-wise

operations.

• Basic Operations on Sparse Matrices:

o Addition, subtraction, multiplication, and transpose are performed

efficiently by considering only non-zero elements.

• Permutations and Reordering:

o Rearranging rows or columns to improve sparsity patterns and

algorithm performance.

Sparse matrices are a powerful tool for handling large-scale data problems in various

fields, including:

• Machine Learning and Statistics: Feature selection, recommender systems,

text mining.

• Scientific Computing: Finite element analysis, graph theory, partial

differential equations.

42

• Signal Processing and Image Analysis: Image compression, filtering, data

reconstruction.

By understanding the concepts and techniques discussed in this chapter, you can

leverage the benefits of sparse matrices to solve complex computational problems

efficiently.

viii

References

[1] (Davis, 2006; O’Connor, 2021; Rose, 1982; S. et al., 1991; Saad, 2003; Scott & Tůma,

2023; Strang, 2013, 2019)

[2] Davis, T. A. (2006). Direct Methods for Sparse Linear Systems. In Direct Methods for

Sparse Linear Systems. https://doi.org/10.1137/1.9780898718881

[3] O’Connor, D. (2021). An introduction to Sparse Matrices. Irish Mathematical Society

Bulletin, 0015. https://doi.org/10.33232/bims.0015.6.30

[4] Rose, N. J. (1982). Linear Algebra and Its Applications (Gilbert Strang). SIAM Review,

24(4). https://doi.org/10.1137/1024124

[5] S., G. W., Golub, G. H., & Loan, C. F. Van. (1991). Matrix Computations. Mathematics

of Computation, 56(193). https://doi.org/10.2307/2008552

[6] Saad, Y. (2003). Iterative Methods for Sparse Linear Systems, Second Edition. In

Methods.

[7] Scott, J., & Tůma, M. (2023). Algorithms for Sparse Linear Systems. In Necas Center

Series: Vol. Part F1834.

[8] Strang, G. (2013). Linear Algebra and its applications fourth edition. Pressure Vessel

Design Manual.

[9] Strang, G. (2019). Linear Algebra and Learning from Data. In Wellesley-Cambridge.

ix

PLAGIARISM VERIFICATION

Title of the Thesis – Sparse matrices in data science: efficient algorithms and

applications with case study
Total Pages 40

 Name of Scholars – Mallika Bisht (2K22/MSCMAT/61) and Niharika Srivastava

(2K22/MSCMAT/27)

Supervisor- Mr. Jamkhongam Touthang

Department -Applied Mathematics

This is to report that the above thesis was scanned for similarity detection. Process and

outcome is given below:

Software used: Turnitin

Similarity Index: 14%

Total Word Count: 12867

Date:

Candidate’s Signature Signature of Supervisor

x

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE OF THESIS SUBMISSION FOR EVALUATION

1. Name: Mallika Bisht and Niharika Srivastava

2. Roll No.: 2K22/MSCMAT/61 and 2K22/MSCMAT/27

3. Thesis title: “Sparse Matrices in Data Science: Efficient Algorithms and Applications

with case study”.

4. Degree for which the thesis is submitted: M.Sc. Mathematics

5. Faculty of the University to which the thesis is submitted: Mr. Jamkhongam

Touthang.

6. Thesis Preparation Guide was referred to for preparing the thesis.

 YES NO

7. Specifications regarding thesis format have been closely followed.

 YES NO

8. The contents of the thesis have been organized based on the guidelines.

 YES NO

9. The thesis has been prepared without resorting to plagiarism. YES NO

10. All sources used have been cited appropriately. YES NO

11. The thesis has not been submitted elsewhere for a degree. YES NO

12. Submitted 2 hard bound copies plus one CD. YES NO

(Signature of Candidate)

Name(s): Mallika Bisht and Niharika Srivastava

Roll No.: 2K22/MSCMAT/61 and 2K22/MSCMAT/27

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE OF FINAL THESIS SUBMISSION

1. Name: Mallika Bisht and Niharika Srivastava

2. Roll No.: 2K22/MSCMAT/61 and 2K22/MSCMAT/27

3. Thesis title: “Sparse Matrices in Data Science: Efficient Algorithms and Applications

with case study”.

4. Degree for which the thesis is submitted: M.Sc. Mathematics

5. Faculty of the University to which the thesis is submitted: Mr. Jamkhongam

Touthang.

6. Thesis Preparation Guide was referred to for preparing the thesis.

 YES NO

7. Specifications regarding thesis format have been closely followed.

 YES NO

8. The contents of the thesis have been organized based on the guidelines.

 YES NO

9. The thesis has been prepared without resorting to plagiarism. YES NO

10. All sources used have been cited appropriately. YES NO

11. The thesis has not been submitted elsewhere for a degree. YES NO

12. All the correction has been incorporated. YES NO

13. Submitted 2 hard bound copies plus one CD. YES NO

(Signature of Candidate)

Name(s): Mallika Bisht and Niharika Srivastava

Roll No.: 2K22/MSCMAT/61 and 2K22/MSCMAT/27

