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ANOMALY DETECTION USING GENERATIVE ADVERSARIAL
NETWORKS

SHIKHAR ASTHANA

ABSTRACT

Anomaly detection (AD) has emerged as a critical application across various domains,

especially where identifying abnormal behaviors or events is crucial. The advent of

deep learning techniques has significantly advanced AD methods, enabling the han-

dling of complex and high-dimensional data. However, these advancements pose the

challenge of explainability, requiring approaches that address the ’black box’ nature of

deep learning models. This thesis builds upon a comprehensive review of recent AD

techniques, emphasizing their explainability within the realm of Explainable AI (XAI).

Key insights include the importance of interpretability in AD systems, the versatility of

deep learning architectures, and emerging trends such as graph-based AD using deep

learning.

Building on this theoretical foundation, the thesis also explores practical enhance-

ments through the implementation of the Skip-GANomaly model with novel modifica-

tions to its loss function, incorporating contrastive learning to improve semi-supervised

AD. Contrastive learning involves training a model to distinguish between positive

and negative sample pairs, leading to robust representation learning. Experimental

results demonstrate that these modifications yield significant performance improve-

ments across various datasets. By integrating a thorough exploration of XAI in AD

and proposing an effective semi-supervised AD approach, this thesis aims to advance

the field, providing valuable insights and paving the way for future research and appli-

cations.
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Chapter 1

INTRODUCTION

The ever-changing and dynamic world is full of patterns and sequences waiting to
be detected. With these comes the opportunity to observe and detect anomalies in
these patterns which play a very vital role in the world. The field of Artificial Intel-
ligence (AI) which is concerned with the identification and observation of detecting
anomalies is called anomaly detection (AD). AD often is also coupled with a great
opportunity for business or industrial impacts like – pre-emptive detection of potential
threats or irregularities, better planning for inventory-based operations, and many oth-
ers, which are key in domains such as cybersecurity, finance, healthcare, and industrial
systems [1, 2, 3, 4, 5]. Modern datasets have increasing levels of complexity and di-
mensionality which are problem areas for the traditional AD approaches, which leads
to a growing interest in finding ways to leverage deep learning techniques for more
effective AD. However, the widespread adoption of deep learning approaches in AD
raises concerns about the interpretability and transparency of these models, often tok-
enized as a ”black box” problem. As a result, there is a pressing need for research de-
velopment, innovations and development efforts centered around improving the inter-
pretability of deep learning-based AD systems. In recent years, the landscape has also
witnessed the remarkable efficacy of generative models [6], particularly GANomaly
[7] and Skip-GANomaly [8], in the domain of semi-supervised AD. While these mod-
els have demonstrated significant success, the research work presented in this thesis
endeavors to amplify their capabilities by seamlessly integrating contrastive learning
into their frameworks. The fusion of the inherent strengths of generative adversarial
networks (GANs) and contrastive learning [9, 10] is poised to empower the models to
discern subtle distinctions between normal and anomalous instances, contributing to
the continuous evolution of robust anomaly detection methodologies.

As part of the introduction, it is essential to grasp a brief overview of traditional
methods in anomaly detection (AD). Traditional AD methods predominantly relied
on statistical-based techniques, encompassing clustering, density estimation, distance-
based methods, and others, to identify instances significantly deviating from the ma-
jority of the data [11]. While these approaches offer high explainability, being easy to
interpret and understand, they exhibit limitations in coping with the increasing com-
plexity and high dimensionality of modern datasets prevalent in industries. In such
scenarios, where anomalies may manifest subtly or in complex patterns, traditional
methods may falter. Moreover, traditional AD often includes a lot of extensive manual
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interventions in the machine learning pipeline, ranging from data pre-processing and
annotation to algorithm selection and hyperparameter tuning. These manual interven-
tions introduce the possibility of human errors, potentially affecting AD performance.

In recent times, with the trifactor rise in data, computational power, and better deep
learning algorithms, the industry has seen a huge boost in the adoption of deep learning
techniques and how these techniques have revolutionized the field of AD [12]. This
revolution was brought by offering more sophisticated and data-driven approaches to
scrutinize and search out anomalies in complex datasets [13]. Deep learning models,
over traditional AD methods, have demonstrated, in multiple scenarios, how remark-
able their capabilities are in automatically learning from unprocessed data, the hierar-
chical based representations, allowing them to seize baroque patterns and relationships
that may not be apparent if viewed from the lenses of the traditional methods [14].
These techniques are also more versatile in terms of data modalities on which AD can
be performed – including images, time series, text, and graph-structured data.

Real-world applications of social networks, biological networks, cybersecurity net-
works, and other such emerging fields have garnered considerable attention recently,
which brings with it a mounting heap of graph-structured data and a crucial need for
specialized AD methodology for these datasets – Graph Anomaly Detection (GAD), a
specialized area within AD is the answer [15]. The reason for a specialized approach
is because traditional AD techniques fail to consider inherent structural information
and relationships among entities which causes them to ineffectively handle graph data.
Graph Neural Networks (GNN), a deep learning based approach, have opened up new
avenues for AD in graph-based data [16]. GNNs can recognize complex structural
dependencies and node interactions in graphs, making them well-suited for AD tasks
in graph-structured data. This intersection of deep learning and graph anomaly detec-
tion holds great promise for addressing challenges in anomaly detection in complex
networked systems.

1.1 Problem Statement and Objective

Anomaly detection (AD) is a quintessential application in numerous domains where
identifying abnormal behaviors or events is crucial for maintaining security, safety, and
operational efficiency. The increasing complexity and high dimensionality of data have
necessitated the adoption of advanced deep learning techniques, which, despite their
effectiveness, often suffer from a lack of transparency and interpretability. This dual-
fold problem statement addresses two significant challenges in the field of anomaly
detection: the need for explainable AI (XAI) in AD techniques and the enhancement
of AD models using generative adversarial networks (GANs). Let us explore these in
the below subsections.

1.1.1 Comprehensive Review of AD Techniques Using XAI

The first part of the problem addresses the challenge of explainability in anomaly
detection methods. While deep learning techniques have significantly advanced all
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the capabilities of AD, their ’black box’ nature poses a substantial barrier to their
widespread adoption and trust. There is a critical need for a comprehensive review of
current AD techniques with a focus on their explainability. This thesis aims to tackle
this by trying to achieve the following objectives:

• Provide an exploratory overview of recent advancements in AD techniques.

• Highlight the importance of XAI parameters in AD systems.

• Examine emerging trends, such as graph-based AD from the lens of XAI.

• Identify the challenges, evaluation metrics, and future directions in making AD
techniques more explainable and interpretable for practitioners and researchers.

1.1.2 Enhancing AD Using GAN-Based Model

The second part of the problem focuses on improving the performance of AD models,
especially in the area of Semi-supervised AD. Semi-supervised AD is vital in scenar-
ios where labeled data is scarce, and leveraging both labeled and unlabeled data can
significantly enhance model performance. This research specifically investigates the
enhancement of the Skip-GANomaly model, a GAN-based architecture, by incorpo-
rating novel modifications to its loss function through contrastive learning. This new
model has been termed ConGANomaly. The goals of this enhancement are to:

• Integrate contrastive learning into the Skip-GANomaly model to improve the
robustness and effectiveness of the learned representations.

• Implement the proposed modified ConGANomaly model practically and train it
across various datasets

• Evaluate the proposed modified ConGANomaly model’s performance across
various datasets and other AD models to validate the improvements and establish
its efficacy in semi-supervised AD tasks.

By addressing these two interrelated problems, this thesis aims to advance the field
of anomaly detection both theoretically and practically. The comprehensive review of
AD techniques with a focus on XAI will provide valuable insights for future research
and development. At the same time, the enhanced ConGANomaly model will offer a
novel and effective approach to semi-supervised anomaly detection.

1.2 Motivation

Motivating my pursuit is firsthand exposure to the burgeoning demands within the data
science industry. Drawing upon years of immersive experience in the industry, and wit-
nessing the dynamic landscape of data-driven decision-making, I, and my able mentor,
discern a growing need for robust anomaly detection methods. As organizations in-
creasingly leverage AI for complex tasks, ensuring the integrity of datasets becomes
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paramount. Anomalies, deviations from the norm, can carry crucial insights or sig-
nify potential issues, making their effective detection an imperative component in real-
world applications. The motivation to bridge the gap between industry demands and
cutting-edge research fuels our commitment to exploring innovative approaches in the
realm of generative anomaly detection. The motivation behind integrating contrastive
learning into anomaly detection models stems from its proven success in enhancing
feature representations and discriminative capabilities. Contrastive learning has exhib-
ited remarkable results in various implementations of machine learning based domains,
such as those relating to natural language processing and the highly popular computer
vision. By instilling the ability to learn from the differences between data points, con-
trastive learning complements the generative nature of GANs. This synergy aims to ad-
dress challenges associated with discerning nuanced anomalies, providing the models
with a more nuanced understanding of normal and abnormal patterns. The motivation
lies in harnessing the amalgamation of generative adversarial networks and contrastive
learning to propel anomaly detection models beyond their current capabilities.

The intersection of GANs and contrastive learning presents a promising avenue
for advancing the state-of-the-art in semi-supervised anomaly detection. I, under the
esteemed guidance of my mentor, aim to contribute to a more nuanced understanding
of normal and anomalous patterns by leveraging generative capabilities and refining
feature representations through contrastive learning. This exploration is not merely
an academic pursuit but a direct response to the evolving needs of industries seeking
robust solutions to the challenges posed by anomalies in diverse datasets. Thus, the
research presented through this thesis represents a strategic stride, fusing established
generative models with innovative contrastive learning paradigms. This synthesis not
only fortifies the foundations of anomaly detection but also promises to elevate its
applications across diverse domains, marking a significant advancement in the ongoing
pursuit of more sophisticated and adaptable anomaly detection methodologies.

The literature review is explained in Chapter 2 while Chapter 3 holistically presents
and explains the methodology, proposed approach, and experimental setup. Results
obtained, along with challenges faced, are analyzed in Chapter 4 and Chapter 5 con-
cludes the thesis.
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Chapter 2

LITERATURE REVIEW

Anomaly detection, a fundamental facet of machine learning, encompasses a diverse
array of techniques designed to identify deviations or irregularities within datasets [11].
Landscape of anomaly detection within the domain of machine learning has witnessed
significant evolution, driven by the continuous demand for robust methods capable of
identifying irregular patterns in diverse datasets. The integration of semi-supervised
learning techniques within the broader context of anomaly detection represents a key
paradigm shift in machine learning [17]. This chapter provides an insightful explo-
ration of the historical context and contemporary advancements in anomaly detec-
tion, laying the foundation for the subsequent examination of specific methodologies
and models. Notably, the rise of generative models, such as GANomaly and Skip-
GANomaly, has introduced novel dimensions to semi-supervised anomaly detection.
Additionally, this chapter will explore the paradigm of contrastive learning. Post lay-
ing a strong foundation in the understanding of AD techniques, we will also try to
tackle the first portion of our problem statement in this chapter.

2.1 Rise of Autoencoders

The ascendancy of autoencoders has been instrumental in reshaping the landscape of
unsupervised learning and feature representation. Autoencoders, a class of neural net-
works, are aimed to learn an efficient way of representing the input data by trying
to encode it into a lower-dimensional space and then reconstructing the same. In the
realm of anomaly detection, autoencoders have demonstrated efficacy in capturing un-
derlying patterns in both normal and anomalous instances.

One prominent variant of autoencoders is the Variational Autoencoder (VAE) [18,
19], which introduces a probabilistic element into the encoding process. VAEs learn
not just a deterministic representation but also a probability distribution over possi-
ble representation. This capability is particularly advantageous in applications such
as object detection. For instance, in object detection, VAEs can effectively model
the variability in object appearances, enabling more robust feature representation[20].
However, it is essential to note that while VAEs exhibit success in capturing intricate
patterns, their downfall lies in potentially over-smoothing learned representations, di-
minishing their discriminative power.
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2.2 Adversarial Autoencoders

Adversarial autoencoders (AAEs) [21] represent a fusion of generative adversarial net-
works (GANs) and autoencoders, introducing adversarial training to enhance the gen-
erative capabilities of the latter. The primary concept involves training an autoencoder
in conjunction with a discriminator that distinguishes between generated (fake) and
actual (real) data. This adversity in the process of training encourages the autoencoder
to generate realistic reconstructions, making AAEs particularly powerful in capturing
complex data distributions. A notable example of adversarial autoencoders is Bidirec-
tional Generative Adversarial Networks (BiGAN) [22]. BiGAN extends the concept
of AAEs by introducing an additional inference network that maps data points to their
latent representations. This bidirectional training further refines the learned representa-
tions, enhancing the discriminative capabilities of the model. Applications of adversar-
ial autoencoders span various domains, including image synthesis, anomaly detection,
and data generation. In the context of anomaly detection, the adversarial training in-
herent in AAEs facilitates the creation of more nuanced representations, enabling the
model to discern anomalies more effectively [23].

2.3 GANomaly

GANomaly, introduced by Akcay et al. [7], represents a pioneering model in the land-
scape of semi-supervised anomaly detection. The model leverages the power of Gen-
erative Adversarial Networks (GANs) to enhance anomaly detection capabilities. In
the GANomaly architecture, an autoencoder is combined with a GAN, consisting of
a generator and a discriminator. The data samples are created by the generator, both
normal and anomalous, while the distinction between real and generated samples is
handled by the discriminator. The autoencoder is simultaneously trained to reconstruct
the input data, reinforcing the learning of normal data patterns. The key contribu-
tion of GANomaly lies in its ability to leverage the adversarial form of training of
GANs to increase the robust nature of anomaly detection. By introducing adversarial
training, GANomaly refines the learned representations, enhancing the discrimination
between normal and anomalous instances. This integration of adversarial training and
autoencoder-based reconstruction sets GANomaly apart as a powerful tool in semi-
supervised anomaly detection.

2.4 Skip-GANomaly

Skip-GANomaly [8] represents a noteworthy extension and improvement upon the
GANomaly model, addressing limitations and further enhancing anomaly detection
capabilities. The key innovation introduced by Skip-GANomaly is the incorporation
of skip connections within the generator network. Skip connections facilitate straight
flow of information of initial layers to later ones, granting model the capability to cap-
ture hierarchical features more effectively. The inclusion of skip connections in Skip-
GANomaly contributes to improved feature learning and enables capturing of sophisti-
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Figure 2.1: Contrastive Learning Intuition

cated patterns present in data under question. By facilitating a straight transmission of
information across layers, Skip-GANomaly enhances the generator’s ability to gener-
ate realistic samples, both normal and anomalous. The extension to Skip-GANomaly
exemplifies the continuous evolution in the field of semi-supervised anomaly detec-
tion, demonstrating the importance of refining architectures to achieve more nuanced
and accurate anomaly discernment.

2.5 Contrastive Learning

Learning through contrast has come up as a powerful paradigm in machine learning
[9, 10], aiming to learn meaningful representations by scrutinizing and detailing dif-
ferences between unlikely (negative) and likely (positive) pairs. The underlying prin-
ciple is trying to group positive instances closer in the embedding or feature space
while pushing negative instances apart. Learning framework following this approach
has exhibited remarkable success in various domains, spanning computer vision, natu-
ral language processing, and representation learning. Figure 1 showcases a simplified
version of this learning methodology. The red and green arrows represent the negative
and positive pairings respectively.

Success of contrastive learning can be attributed to its competence of leveraging
huge amounts of unlabelled data effectively. In semi-supervised anomaly detection,
where obtaining labeled anomalous instances can be challenging, contrastive learning
becomes particularly valuable. By applying contrastive learning principles to anomaly
detection models like GANomaly and Skip-GANomaly, we can enhance their capacity
to learn meaningful embeddings for distinguishing between normal and anomalous
instances. Contrastive learning complements the generative nature of these models
by fostering a discriminative understanding of the data. The contrastive loss, applied
strategically within the architecture, encourages the model to capture subtle differences
in normal and anomalous instances, thereby improving the overall efficacy of semi-
supervised anomaly detection.

2.6 SOTA Techniques for Anomaly Detection

This sub-section, ‘State-of-the-Art Techniques for Anomaly Detection’, serves to pro-
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vide a comprehensive overview of the latest advancements in AD techniques. While
we will cover traditional techniques in brief, we will focus in depth on deep learning
based approaches, and emerging trends in graph-based anomaly detection. By ex-
amining these techniques, we aim to address the first part of the discussed problem
statement, and at the same time set the stage for subsequent discussions on challenges,
limitations, and future directions in the field. Traditional anomaly detection methods,
including statistical techniques, distance-based methods, and clustering methods, form
the foundation of anomaly detection and continue to play a crucial role in various do-
mains. Deep learning approaches on the other hand were the catalyst that catapulted
artificial intelligence into the limelight with AD techniques based on convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and especially, genera-
tive adversarial networks (GANs). Additionally, a potentially promising sub-field of
deep learning is Graph Neural Networks (GNNs), which from an AD perspective, will
majorly focus on anomalous node detection and anomalous edge detection.

2.6.1 Traditional Anomaly Detection Methods

Traditional AD methods have been the cornerstone of AD research, offering robust and
interpretable approaches for identifying outliers in data. Throughout this paper, we
have endeavored to select the most industry-prevalent techniques as the explainabil-
ity and interpretability of AD techniques would only be relevant if they are industry-
prevalent. Following in this stead, this subsection provides an overview of two state-of-
the-art techniques within each subcategory of traditional anomaly detection methods:
Statistical Techniques, Distance-based Methods, and Clustering Methods. A brief de-
scription about each of these techniques is given below.

Statistical Techniques

Z-Score (ZS)[24], also known as ’Standard Score,’ is a widely used statistical tech-
nique in AD. It involves calculating deviations from the mean of individual data points
based on the standard deviation and referencing these Z-scores against a predefined
threshold value to determine anomalies. This method demonstrates simple yet effec-
tive AD capabilities, particularly in univariate datasets[25].

zi =
xi −µ

σ
(2.1)

Grubb’s Test (GT)[26, 27], a classic method in AD, serves as an initial starting point
for normally distributed datasets[28] [29]. It compares the max deviation of data points
from the mean to the expected deviation based on the data distribution. Large devia-
tions are flagged as anomalies, making it a reliable technique for detecting outliers.

G =
|xi − x̄|

s
(2.2)
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Distance-Based Techniques

K-Nearest Neighbours (KNN)[30], is a widely used distance-based algorithm for AD.
It identifies anomalies by calculating distances between each data point and its nearest
neighbors in the feature space, with significantly distant points considered outliers.
KNN is versatile and applicable to both numerical and categorical data[31].√

(x2 − x1)2 +(y2 − y1)2 (2.3)

Local Outlier Factor (LOF)[32], assesses the local density of data points to their
neighbors. Anomalies are identified by deviations in a data point’s density from its
neighbors’ densities. Points with substantially lower densities compared to their neigh-
bors are flagged as outliers. LOF is particularly effective in detecting anomalies in
datasets with varying densities and non-linear distributions.

∑o∈N(p)
LRD(o)
LRD(p)

|N(p)|
(2.4)

Clustering Techniques

K-means Clustering (KMC)[33], is a popular unsupervised learning algorithm that
groups data points based on similarity, with outliers considered as anomalies. It’s
one of the most widely used clustering-based AD techniques due to its efficiency and
scalability, making it suitable for large-scale tasks[34].

k

∑
i=1

∑
x∈Ci

||x−µi||2 (2.5)

DBSCAN[35], Density-Based Spatial Clustering of Applications with Noise, identi-
fies clusters based on regions of high data density separated by low-density regions.
Anomalies are data points in low-density regions or not belonging to any cluster. Ro-
bust to noise and capable of detecting clusters of arbitrary shapes, it is suitable for
detecting anomalies in complex datasets.√

(x2 − x1)2 +(y2 − y1)2 (2.6)

While I have provided the objective functions of all the techniques, it is important to
note that distance parameters and objective functions for KNN, KMC, and DBSCAN
can change based on the specific implementation of algorithms.

2.6.2 Deep Learning Anomaly Detection Methods

Revolutionizing the AI world, deep learning approaches have become the go-to tool
for AD, leveraging complex neural networks to capture intricate patterns and anoma-
lies in data. Similar to traditional based approaches, let us go over some of the most
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prevalent deep learning based approaches.

Autoencoder-based Techniques

Variational Autoencoder (VAE)[18] [19] are widely used architectures for AD, fea-
turing encoder and decoder sub-modules. They map input data to a latent vector and
reconstruct it via the decoder. Anomalies are identified based on reconstruction er-
ror, with VAEs offering probabilistic interpretations and effectively capturing complex
data distributions[20].

−Ez∼q(z|x)[log p(x|z)]+KL(q(z|x)||p(z)) (2.7)

Sparse Autoencoder (SAE)[19] are widely used in AD, imposing sparsity constraints
on latent representations to learn compact, informative features. They identify anoma-
lies based on reconstruction error, offering robustness to noise and effectively capturing
subtle anomalies in high-dimensional data[36].

Lrecon +LsparsityReg (2.8)

CNN Based Techniques

DeepConvLSTM (DCLSTM)[37] is a deep learning architecture that combines CNNs
with LSTM networks for AD in sequential data. It extracts spatial features and captures
temporal dependencies using CNN and LSTM components, respectively. Anomalies
are detected based on deviations from learned patterns in sequential data. Widely used
in industry for detecting anomalies in time-series data, such as sensor readings and
network traffic.

− 1
N ∑

i
yi log(ŷi) (2.9)

Capsule Network (CapsNet)[38] addresses limitations of traditional CNNs by using
capsules, groups of neurons representing object parts and poses. CapsNet captures
spatial hierarchies and deformations, making it suitable for anomaly detection tasks
requiring an understanding of object structure and relationships.

Tc max(0,m+−||vc||)2 +λ (1−Tc)max(0, ||vc||−m−)2 (2.10)

RNN Based Techniques

LSTM[39] a type of RNN, are widely employed for anomaly detection in sequential
data due to their ability to capture long-range dependencies and temporal dynamics.
They excel at modeling complex sequential patterns, making them suitable for vari-
ous industrial applications in time-series data, natural language processing, and other
sequential data domains.

10



− 1
N ∑

i
yi log(ŷi) (2.11)

Gated Recurrent Unit (GRU)[40] a variation of LSTM, is commonly used for AD
tasks due to its simpler architecture, making it computationally efficient and easier to
train. With a memory state capturing dependencies across time steps, GRUs detect
anomalies in sequential data accurately and efficiently. Widely used in industry for
applications like fraud detection and cybersecurity.

− 1
N ∑

i
yi log(ŷi) (2.12)

GAN Based Techniques

GANomaly (GANM)[7], combines GANs with autoencoder architectures for semi-
supervised anomaly detection. A generator sub-network generates normal data sam-
ples, while an encoder-decoder network reconstructs input data. Anomalies are identi-
fied based on the network’s inability to accurately recreate them. GANomaly is versa-
tile, detecting anomalies in diverse data types like images, time-series data, and tabular
data.

W1 ∗Ladv +W2 ∗Lcon +W3 ∗Lenc (2.13)

Skip-GANomaly (SGANM) [8] improves upon GANM with skip connections and
enhanced adversarial training, enhancing overall AD performance. Skip connections
between encoder and decoder layers aid information flow and gradient propagation
during training. Skip-GANomaly is a semi-supervised AD framework capable of de-
tecting anomalies in various data modalities, showing promising results in practical
applications.

W1 ∗Ladv +W2 ∗Lcon +W3 ∗Llat (2.14)

While I have provided the objective functions of all the techniques, it is important
to note that objective functions for DCLSTM, LSTM, and GRU can change based on
the specific implementation of algorithms.

2.6.3 Graph Based Anomaly Detection Methods

Graph-based AD techniques leverage the inherent relationships and structures within
data represented as graphs to identify anomalous patterns. This subsection provides
an overview of two state-of-the-art techniques within each subcategory of graph-based
anomaly detection methods: Anomalous Node Detection and Anomalous Edge Detec-
tion.
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Anomalous Node Detection Techniques

NetWALK[41] uses random walks to traverse the graph structure. Anomaly scores are
assigned to nodes based on random walk frequencies, identifying anomalies as nodes
with unusual visitation patterns. Effective in capturing local and global anomalies in
graph-structured data, NetWALK finds applications in domains like social and biolog-
ical networks.

γLAE +LClique +λ ||W ||2F +βKL (2.15)

ResGCN[42] extends traditional graph convolutional networks (GCNs) by introducing
residual connections within the architecture. Learning node representations through
graph convolution operations, residual connections aid gradient propagation and alle-
viate the vanishing gradient problem. ResGCN detects anomalies based on deviations
from learned patterns, offering improved convergence and performance compared to
traditional GCNs, showing promising results in various anomaly detection tasks.

(1−α)ES +αEA (2.16)

Anomalous Edge Detection Techniques

DeepSphere (DS)[43] detects anomalous edges in graph-structured data using spher-
ical convolutions to capture geometric relationships between nodes. Learning repre-
sentations of edges, anomalies are identified based on deviations from learned edge
representations. Robust to noise, DS effectively detects anomalies in large-scale graph
datasets with high accuracy.

Lh +λLres (2.17)

DeepFD[44] DeepFD uses a deep autoencoder architecture to learn compact repre-
sentations of graph edges, detecting anomalies based on reconstruction errors where
higher errors indicate anomalous edges. Capable of capturing complex patterns, it
finds applications in network intrusion and fraud detection.

Lrecon +αLsim + γLreg (2.18)

2.7 Explainable AI for Anomaly Detection

Due to the critical roles AD plays across industries, the need for increased explainabil-
ity in current AD models has been at an all time high. Explainable AI (XAI) may sati-
ate this need by providing varied parameters for assessing AD models, through which,
traditionally intangible objectives like enhancing stakeholder’s trust and acceptance,
result validation, ethical compliance and many others may be accomplished. Through
examining the below XAI parameters across our 18 approaches, we aim to bring forth
valuable insights for enhancing understanding and trust in these AD systems.
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• Interpretability (INT): A vital cornerstone for enhancing confidence among
stakeholders and AI systems. Techniques with high INT can offer transparent
explanations, while medium INT struggles to balance interpretability and com-
plexity. Low INT, however, leads to skepticism of model decisions. For ensuring
trust and acceptance by stakeholders in AD models interpretability is essential.
GAN based models often lack proper interpretability [45].

• Feature Importance (FI): provides meaning to role of features in AD out-
comes. High FI techniques provide clear measures of feature importance, aiding
in stakeholder’s understanding of influential features and their impact on AD.
Low FI hinders understanding of AD systems. Cybersecurity and fraud detec-
tion are domains where FI can be critical for effective risk mitigation.

• Model Complexity (MC): Stakeholder’s understanding and trust in model de-
cisions are inversely proportional to MC. High MC methods, like deep learning,
can be intricate and challenging to comprehend. Low MC techniques, such as
traditional statistics, offer simplicity and transparency. Balancing sophistication
and transparency is crucial for effective AD.

• Visualization (VIZ): Pivotal for XAI in AD [46, 47], VIZ provides stakehold-
ers with intuitive representations of complex data patterns. VIZ capabilities give
exploration capabilities and a better understanding of model outputs through in-
teractive dashboards, heatmaps, or scatter plots.

• Human-Readable Outputs (HRO): Providing stakeholders with AD as read-
able outputs is a surefire way to improve explainability. Techniques with HRO
outputs, such as textual descriptions or visualizations, enhance interpretability
and facilitate collaboration. Conversely, methods lacking HRO may lead to am-
biguity [48].

• Robustness to Perturbations (RP): AD models in the actual world have their
dependability of applications directly correlated to RP. High RP demonstrates
resilience against variations of input data and tends to maintain consistent per-
formance across diverse datasets. On the other hand, low RP methods show
sensitivity to variations, resulting in unreliable performance [49]. Stakeholders
almost always prefer AD models with High RP.

2.8 SOTA Techniques Through Lens of Explainable AI

Having understood the 18 SOTA industry prevalent AD techniques and garnered the
foundations of the 6 XAI parameters, this thesis will now conclusively tackle the first
part of our problem statement. Using the XAI parameters, the SOTA techniques will
be evaluated. This evaluation will help provide a go-to tabular representation through
which one can decide which AD technique to select based on the explainability de-
mands of the problem domain. Tables 2.1 contain the final results of our evaluation of
18 SOTA techniques across the previously discussed XAI parameters.
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(ŷ

i)
PL

PR
E

D
L

ow
H

ig
h

H
ig

h
Y

es
Y

es
M

ed
C

ap
sN

et
T c

m
ax
(0
,m

+
−
||v

c||
)2
+

λ
(1

−
T c
)m

ax
(0
,||

v c
||
−

m
−
)2

M
L

R
E

C
L

ow
H

ig
h

H
ig

h
Y

es
Y

es
M

ed

R
N

N
L

ST
M

−
1 N

∑
iy

il
og
(ŷ
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It is important to note that KNN, KMC, DBSCAN Distance Parameters, DCLSTM,
LSTM, and GRU Objective Functions can change based on implementation. To pre-
serve table based spacing, the following abbreviations have been used: AE - Autoen-
coder, Ano-Node - Anomaloous Node, Ano-Edge - Anomalous Edge, ZSL - Z Score
List, GSL - G Score List, DKNN - Distance to KNN, LOFS - LOF Score, CM - Clus-
ter Members, DCM - Density Cluster Measure, AS - Anomaly Score, PL - Prediction
Loss, ML - Margin Loss, LES - Location in Embedding Space, SSA - Statistically
Significant Anomalies, FA - Flags Anomalies, CA - Cluster Assignment, PRED - Pre-
dictions, REC - Reconstruction, NDCC - Nearest Distance to Cluster Centre, AL -
Anomalous Label, Med - Medium.
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Chapter 3

METHODOLOGY

In the realm of anomaly detection (AD), numerous state-of-the-art approaches have
been developed, each offering distinct advantages and limitations - both, from the
perspective of the ability as well as explainability of the approaches. After a com-
prehensive evaluation of these approaches, it became evident that a semi-supervised
learning framework is particularly well-suited for practical applications in industry.
One of the primary challenges in real-world scenarios is the scarcity of labeled ab-
normal instances. Large datasets with sufficient labeled anomalies are rare, making
fully supervised learning impractical for many applications. Conversely, unsupervised
methods, while useful, often struggle with high false-positive rates due to their reliance
on assumptions about the underlying data distribution.

Semi-supervised learning provides a balanced solution by leveraging both labeled
and unlabeled data, making it more adaptable to the constraints of industrial settings.
This approach allows the model to learn from the limited labeled anomalies and a large
pool of unlabeled data, enhancing its ability to detect rare and subtle anomalies without
the need for an extensive labeled dataset.

3.1 Why Choose GAN Based Model?

To tackle the second part of the problem statement, it is essential to first understand the
reasons behind choosing GAN-based models. Within the semi-supervised AD frame-
work, various models have been explored, with Skip-GANomaly emerging as a partic-
ularly effective choice. Skip-GANomaly, and similar models, offer several advantages
over traditional deep learning models and Graph Neural Networks (GNNs) concerning
explainability and performance. These advantages are as follows:

• Interpretability of Outputs: Models based on Generative Adversarial Net-
works (GANs), inherently generate outputs that can be compared with the origi-
nal input data. This generation process facilitates a more intuitive understanding
of where and how anomalies occur, as discrepancies between the input and gen-
erated output highlight the anomalous regions. This is also further strengthened
by the ’Yes’ rating of GANM and SGANM approaches under HRO XAI param-
eter, as shown in Table 2.1.
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• Robust Representation Learning: The GAN-based structure of Skip-GANomaly,
and similar models, ensures robust learning of normal data patterns, which is cru-
cial for accurately identifying deviations. By capturing the complex distributions
of normal data, these models can more effectively detect anomalies, even when
they are subtle or rare. This is evident from the rating of ’High’ being achieved
by GAN based methods in XAI parameter RPO, as shown in Table 2.1.

• Model Complexity and Training Efficiency: While GNNs are powerful for
structured data and relational learning, they often come with higher computa-
tional complexity and longer training times. GAN based models, in contrast, of-
fer a more streamlined approach that balances complexity and efficiency, making
them more practical for real-time industrial applications.

• Applicability to Diverse Data Types: GAN based models are highly versa-
tile and can be applied to various data types, including time-series, image, and
tabular data, whereas GNNs are primarily suited for graph-structured data.

Thus, based on the above compelling factors, paired with the superior compatibil-
ity of GAN based models with semi-supervised problem conditions, choosing GAN
based models for research and improvements is the logical choice. By selecting the
Skip-GANomaly model and enhancing it with contrastive learning, this research aims
to develop a robust, explainable, and practical solution for semi-supervised anomaly
detection. This proposed modified model has been termed ConGANomaly. The fol-
lowing sections will detail the implementation process and the novel modifications
introduced to the model’s loss function, demonstrating how these enhancements con-
tribute to superior AD performance.

3.2 Proposed Approach

This and subsequent sections in the methodology chapter delineate the approach under-
taken to integrate contrastive learning into the GANomaly and Skip-GANomaly based
models, elucidating the steps to enhance their anomaly detection capabilities. Building
upon the foundation laid by these base models, the methodology encompasses a com-
prehensive overview of the integration of contrastive learning principles. The model
used for integration follows the design principles of the base models but introduces
changes in various parts to incorporate contrastive learning. The primary components
of the model are: a generator (G) and a DCGAN based classifier discriminator (C).
The generator synthesizes normal samples, while the classifier discriminator attempts
to distinguish between real and fake (generated) instances. Training in an adversarial
environment of this model encourages the classifier generator to produce realistic sam-
ples, enhancing the overall anomaly detection capabilities. The model’s objective loss
function combines adversarial loss, contextual loss, latent loss, and contrastive loss
providing a comprehensive loss metric for the overall model. Figure 3.1 showcases the
proposed architecture with contrastive learning data pairings. The subsequent sections
delve into the specifics of architecture used and foundational components. Equations
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accompany these descriptions to provide a clear understanding of the model formula-
tions.

Figure 3.1: Proposed Architecture with Contrastive Learning Data Pairings

3.2.1 Generator Sub-Network

For an isolated input image ‘x’, the image first goes through a bow tie autoencoder
network. This bow tie autoencoder is fundamentally a symmetric combination of an
encoder and a decoder which will help the network identify two main things – the
bottleneck features and the generated image x’. This specific sub-network is called
the Generator and is denoted by ‘G’. G network comprises 2 sub-networks called the
‘Encoder’ (represented by GE) and ‘Decoder’ (represented by GD). GE is designed
to efficiently capture hierarchical features from input data. The encoder processes the
input through convolutional layers, progressively reducing the spatial dimensions. The
encoded features are then transmitted through the skip connections to the correspond-
ing decoder layers, facilitating the preservation of detailed information. While GD in
Skip-GANomaly complements the encoder by reconstructing the input data from the
encoded features. The main novel addition in this model is the ‘Skip-connections’ in-
troduced in the GD. The skip connections help in directing the passage of information,
aiding in the recovery of intricate details. The decoder layers gradually up-sample the
features, reconstructing the input with a high level of fidelity. This bow-tie architecture,
with skip connections, enhances the model’s capacity to generate realistic samples.

3.2.2 Discriminator Sub-Network

The discriminator in network architecture performs a binary classification task, dis-
tinguishing between actual (input/real) and fake (generated) data. This network is
represented as ’C’. Trained adversarially, C guides the generator G to produce more
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authentic samples. This network is responsible for vital contributions in the overall
adversarial training process, contributing to the refinement of the generator’s ability to
generate realistic data instances. Additionally, C has the task of extracting features so
that the latent representations from x and x’ can be computed (nomenclature is as per
our discussion in previous sub-section). This particular extraction’s role will become
clearer when we discuss the loss functions.

3.2.3 Individual Loss Functions

This model employs the weighted summation of multiple individual losses where the
weights signify the relative importance of each loss and can be varied depending upon
the use cases. During our experimentation with different combinations of weights, we
found that this kind of customization allowed our model to be more robust and useful.
Each of the individual losses in the loss function has a specific purpose which we will
discuss in the following paragraphs. We have intentionally not discussed contrastive
loss in this sub-section as it would require much more discussion on pairing strategies,
embedding layer modifications, etc. Consequently, we will discuss contrastive loss in
its own subsection in detail.

Adversarial Loss

The adversarial loss (Ladv) [6] is fundamental to the adversarial training of the model.
It is formulated to encourage G to create samples that are indistinguishable from actual
input data. The adversarial loss is computed based on the standard GAN objective, pro-
moting a competitive interplay between the generator and the discriminator. Equation
for Ladv is represented as follows:

Ladv = Ex∼Px [log(D(x))]+Ex∼Px [log(1−D(x′))] (3.1)

Contextual Loss

The contextual loss Lcon focuses on the preservation of spatial structures in the recon-
structed samples. It measures the dissimilarity of given input data with obtained re-
constructed output, ensuring G captures both global and local contextual information.
This loss component contributes to the faithful reconstruction of the input. Equation
for Lcon is represented as follows:

Lcon = Ex∼Px |x− x′|1 (3.2)

Latent Loss

The latent loss (Llat) plays a pivotal role in encoding a notion of anomaly within the
architectural framework. It encourages the model in understanding of the discrimina-
tive representations in the latent space, aiding in the effective separation of normal and
anomalous instances. The latent loss is instrumental in refining the anomaly detection
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capabilities of the model. Equation for Llat is represented as follows:

Llat = Ex∼Px | f (x)− f (x′)|2 (3.3)

3.2.4 Contrastive Loss

The targeted novelty of our research work is aimed towards incorporating the concept
of contrastive learning [9, 10, 50, 51] into anomaly detection models. The incorpora-
tion of contrastive learning into the GANomaly and Skip-GANomaly models involves
a strategic modification of the architecture, with a primary focus on the embedding
layer and data pairs. The objective of Contrastive learning is to learn representations
so optimize the embedding space such that there exists maximum similarity between
positive pairs and minimum similarity for the negative ones. To achieve this, we in-
troduce a contrastive loss component into the overall loss function. Since this requires
multiple modifications to the architecture and how the data is processed, let us explore
all each of the modifications one by one.

Embedding Layer Enhancement

The embedding layer in both GANomaly and Skip-GANomaly is crucial for encod-
ing the input data into a latent space. To adapt the models for contrastive learning,
we enhance the utilization of the embedding layer by giving more focus to the im-
age obtained from the up-sampling of the latent representations – x’. The embedding
layers will update their representations based on the contrastive loss in the backward
propagation step. The modified embedding layer learns to map similar instances close
together while pushing dissimilar instances apart. And in order to compute the con-
trastive losses, we would require ’data pairs’.

Data Pairing Enhancement

The research work being encapsulated by this thesis will be introducing the data pairing
concept to facilitate the computation of the contrastive loss of the model. We have
devised certain potential pairing options that we believe would help the model better
adapt and learn the contrasting latent representations of different possible classes of
the training dataset. Let us explore them in detail.

• Positive Pairing Approach: The positive pairing approach results in the positive
pairs being formed which are used to guide the model to learn the features of the
latent distribution representation by providing it two samples from the same or
similar latent space. This helps the model compare the computed distribution
from input x to another input xalt through which it can learn to map similar
instances closer in the latent space. We hope to achieve this in the following
potential ways:
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– Pair the input with the reconstructed generated image:

PI = (xi,x′i);x′iεG(xi) (3.4)

where G(.) is the model generator function

– Pair the input with another input from the same class:

PII = (xi,x j);xi,x jεCk (3.5)

where Ck is any kth class of the dataset

– Pair the input with another reconstructed input from the same class:

PIII = (xi,x′j);xi,x jεCk,x′jεG(x j) (3.6)

where G(.) is the model generator function

• Negative Pairing Approach: The negative pairing approach results in the neg-
ative pairs being formed which are used to guide the model to contrast and learn
the distinction between features of the latent distribution representation by pro-
viding it two samples from two different latent spaces. This helps the model
compare the computed distribution from input x to an input xalt from another
class through which it can learn to push dissimilar instances apart in the latent
space. We hope to achieve this in the following potential ways:

– Pair the input with another input from a different class:

PIV = (x,y);xεCi,yεCk (3.7)

where Ci and Ck are any ith and kth classes of the dataset

– Pair the input with the reconstructed generated image of an input from a
different class:

PV = (x,y′);xεCi,y′εG(y) (3.8)

where G(.) is the model generator function

Contrastive Loss Function

The contrastive loss (Lcont) is introduced to explicitly account for the similarity in rela-
tionships between embeddings. It encourages the model to pull positive pairs close (zi,
z j) and while pushing negative pairs apart (zi, zk). Here, as discussed above, positive
pairs (zi, z j) ε PI , PII , PIII and negative pairs (zi, zk) ε PIV , PV . The contrastive loss
is defined as:

Lcont =− 1
N

N

∑
i=1

N

∑
j=1

1i ̸= jlog
exp(sim(zi,z j)/τ)

∑
N
k=1 1i̸= jexp(sim(zi,z j)/τ

(3.9)
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Where the sim(.) function is the function to compute the similarity measure be-
tween the positive pairs and 1 is the indicator function. This is one of the methods
of implementation of contrastive loss which we have currently, this can be modified
based on the experiences we have during implementation so as to better enhance and
capture the concept of contrastive learning.

Final Modified Loss Function

The modified architecture retains the key components of base models while incorporat-
ing the contrastive learning enhancements. Based on the model, the objective function
becomes a combination of adversarial loss, contextual loss, latent loss, and the newly
introduced contrastive loss. Thus the final loss function becomes:

L =Wadv ∗Ladv +Wcon ∗Lcon +Wlat ∗Llat +Wcont ∗Lcont (3.10)

The above loss function takes into consideration all the four different losses dis-
cussed previously. The incorporation of contrastive learning into the models aims to
refine the learned representations, fostering improved discrimination between normal
and anomalous instances in the embedding space.

3.3 Experimental Setup

3.3.1 Datasets

In our research, we leverage four datasets, for the training and evaluation of the pro-
posed contrastive learning enhanced model. These datasets are selected based on a
two-fold reasoning. The primary reason is that results on these datasets can be com-
pared with the other existing state-of-the-art GAN-based anomaly detection models.
Secondly, these datasets are widely and easily available which will enhance the repro-
ducibility of our results and findings further facilitating validations and further future
works built on top of our research.

CIFAR-10

For this dataset [52], we employed a similar leave-one-class-out approach [7, 8] which
converts dataset into 10 unique anomaly cases. Consequently, there would be approx-
imately 45,000 normal training samples. For testing, 3:2 ratio out of a total of 15,000
samples would be used for normal and abnormal respectively. Every time one anomaly
case is selected, the rest all will act as normal cases. Figure 3 (b) depicts sample im-
ages from this dataset.

MNIST

Approach for this dataset [53] will be similar to CIFAR-10 dataset. Each digit will
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Figure 3.2: Dataset Sample Images - (a) MNIST (b) CIFAR-10 (c) UBA (d) FFOB

serve as an anomaly case. Here also we will get 10 unique anomaly cases. Figure 3.2
(a) depicts sample images from this dataset.

Full Firearm vs. Operational Benign (FFOB)

Dataset [54] first introduced by UK government consisting of expertly concealed threats
(firearms) and non-threat (operational benign) items. With a total of 72,325 data sam-
ples, 4,680 are anomaly class (threats) while rest will be considered as a normal class.
Figure 3.2 (d) depicts sample images from this dataset.

University Baggage Anomaly Dataset (UBA)

Dataset [55] used in [7, 8] consists of 230,275 total samples in a 64 x 64 individual
sample size with 3 anomaly cases. Sample distribution of anomaly cases is 13,452,
45,855, and 63,496 which correspond to gun component, gun, and knife. Remaining
instances are normal cases. Figure 3.2 (c) depicts sample images from this dataset.

3.3.2 Setup Configurations

Utilization of dual avenues were used for implementing the model and running the training and testing.
The primary avenue was an AMD Ryzen 9 5900HX with Radeon Graphics - 3.30 GHz-based system
with overclocking available. This system was equipped with an NVIDIA GeForce RTX 3060 GPU
with 6 GB VRAM and 16GB system RAM. The software specifications included CUDA 12.1, CUDNN
12.x, Python 3.10.13, and PyTorch 2.1.1. The secondary avenue was Google colab based notebooks and
infrastructure.
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Chapter 4

RESULTS & ANALYSIS

4.1 Results Obtained

The evaluation performance of our proposed contrastive learning enhanced model is
evaluated by utilizing the concept of area under the curve (AUC) of the receiver oper-
ating characteristics (ROC) [56]. ROC is the graphical representation of the varying
performance of the model on the basis of true positive rate (TPR) and false positive
rate (FPR) across different threshold values. The decision of selecting this evaluation
metric is based on previous work in this field [7, 8, 5, 57].

Table 4.1 showcases the performance of the proposed contrastive learning enhanced
model in comparison to 4 other models - namely AnoGAN [5], EGBAD [57], GANomaly
[7], and Skip-GANomaly [8]. As evident from the results, the proposed modifications
have resulted in the model outperforming all of the other four models across all the
datasets. Performance in CIFAR-10 shows the highest increase from 0.730 (of Skip-
GANomaly) to 0.869. UBA shows the least improvement with an increase of 0.045 in
the evaluation metric. Let us now dwell deeper into performance across each dataset.

Figure 4.1 shows the performance of each model on the MNIST dataset. As dis-
cussed in the previous section, there were 10 anomaly cases that could be possible
using the leave-one-out strategy. As evident from analyzing the graph, the proposed
modifications have resulted in superior performance across 9 of the 10 anomaly cases.
Even in the case of Digit 2, for which the model under-performed, the drop in evalu-
ation metric was extremely small (0.01). The highest improvement can be seen in the
case where digit 9 was the anomaly - an improvement from the previous maximum
of 0.8 to 0.89. The overall improved evaluation metric across the whole dataset, as
reflected in Table 1 also, is 0.919 (from a previous maximum of 0.881).

Figure 4.2 showcases the performance of each model for the CIFAR-10 dataset. In
this dataset also, there was a possibility of 10 anomaly cases. However, unlike the

Datasets AnoGAN EGBAD GANomaly Skip-GANomaly ConGANomaly
MNIST 0.445 0.506 0.789 0.881 0.919

CIFAR-10 0.434 0.462 0.610 0.730 0.869
UBA 0.569 0.597 0.643 0.940 0.945

FFOB 0.703 0.712 0.882 0.903 0.944

Table 4.1: AUC Results Overview
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Figure 4.1: MNIST Performance Comparison

Figure 4.2: CIFAR-10 Performance Comparison

MNIST dataset where we saw a marginal increase in performance, here we can see a
relatively larger improvement in performance across the dataset. All 10 anomaly cases
have superior evaluation metric scores - with the highest improvement being seen in
the cases where bird, cat, or dog class was the anomaly.

Table 4.2 depicts the performance of the model on the UBA and FFOB datasets. In
UBA dataset, the Knife class case gained the highest improvement in the evaluation
metric followed closely by the gun class case. While there was a slight fall in the
evaluation metric for the gun parts class case from the previous maximum, the overall
performance on the UBA dataset was still an improvement. In FFOB, having only 1
anomaly case, we saw an overall improvement in the evaluation metric.

Model
UBA FFOB

gun gun-parts knife overall full-weapon
AnoGAN 0.598 0.511 0.599 0.569 0.703
EGBAD 0.614 0.591 0.587 0.597 0.712

GANomaly 0.747 0.662 0.520 0.643 0.882
Skip-GANomaly 0.972 0.945 0.904 0.940 0.903
ConGANomaly 0.981 0.933 0.923 0.945 0.944

Table 4.2: AUC results for UBA and FFOB dataset
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4.2 Analyzing Challenges Faced

While AD is vital across domains, deep learning based methods still face persistent
challenges. Through this section, an exploration of these challenges and future direc-
tions for advancing anomaly detection research and applications will be undertaken.

• Lack of Explainable Approaches: Deep learning models have a reputation of
working as black boxes, which makes comprehending their process of making
decisions in AD hard. Moreover, as evident from Table 2, none of the preva-
lent approaches are a one-stop solution which is positive across all parameters.
Addressing this challenge is crucial for enhancing anomaly detection models’
transparency and explainability, aligning with our research question’s objectives
on the importance of explainable AI techniques.

• Data Imbalance and Labeling Issues: AD datasets often exhibit class imbal-
ance, with normal instances outnumbering anomalies, as observed across the
reviewed papers and models. This imbalance poses challenges for deep learning
models, hindering their ability to learn from limited anomaly examples. While
models like GANomaly and Skip-GANomaly partly address this issue, effec-
tively managing data imbalance remains a critical need in the AD domain.

• Anomaly Generalization: Deep learning models, particularly supervised ones,
often struggle to generalize to all possible anomalies, as they tend to overfit
to the anomalies present in labeled datasets. Although semi-supervised mod-
els like GANomaly and Skip-GANomaly may offer partial solutions, they may
sacrifice feature importance and struggle with complex anomalies. Develop-
ing techniques to mitigate overfitting and enhance generalization is essential for
improving the robustness of deep learning-based anomaly detection systems, ad-
dressing our research question on the limitations of these approaches.

• Contrastive Learning Pairings: While contrastive learning has lots of benefits,
implementing the data pairings can be sometimes quite complex. Having too
many pairings can result in longer training times and an increase in computation
requirements. Whereas, having too dew pairings may not yield any significant
performance improvement. Thus, a trade-off exists and needs to be carefully
adjusted based on the features of the problem domain.

Addressing these challenges opens avenues for future research directions. This in-
cludes enhancing explainability in AD methods through improving existing approaches
or developing novel, more transparent methods. Additionally, efforts can focus on mit-
igating data imbalances through modifications to existing approaches, proposing new
methods, or introducing improved metrics.
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Chapter 5

CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT

5.1 Conclusion

The field of AD has seen significant advancements, driven by the increasing complex-
ity and volume of data across various domains. This thesis has thoroughly explored and
evaluated 18 SOTA AD techniques, focusing on their applicability and performance
within the framework of XAI. Through this comprehensive evaluation, it has been
demonstrated that while traditional and deep learning-based AD methods offer sub-
stantial capabilities, they often fall short in terms of explainability and interpretability
— key factors for real-world deployment and trustworthiness.

In response to these challenges, this research introduced a modified version of Skip-
GANomaly based model called ConGANomaly, enhanced with novel loss functions
and the incorporation of contrastive learning. The modifications were aimed at im-
proving the semi-supervised AD performance by better distinguishing between nor-
mal and anomalous samples. The proposed model was rigorously tested and evaluated
across multiple datasets, showcasing significant improvements in performance metrics.
These improvements were illustrated through detailed graphs and tables, underscoring
the model’s efficacy and robustness.

The integration of XAI parameters in the evaluation of AD techniques provided crit-
ical insights into how these models can be made more interpretable and reliable. The
results underscore the importance of balancing model complexity with explainability,
ensuring that AD systems not only perform well but also offer transparency in their
decision-making processes. This thesis contributes to the ongoing dialogue in the AI
community about the necessity of explainable and interpretable models, particularly in
high-stakes applications where understanding the reasoning behind anomaly detection
is crucial.

In conclusion, this research not only advances the technical boundaries of AD
through the proposed model enhancements but also emphasizes the critical role of
explainability in developing trustworthy AI systems. The findings of this thesis pave
the way for future research and practical applications, where both performance and
interpretability are paramount.
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5.2 Future Scope and Social Impact

The advancements and findings presented in this thesis open several avenues for future
research and development in the field of anomaly detection (AD). Key areas for future
work include:

• Enhanced Explainability: While this thesis has made strides in improving the
explainability of AD models, further work is needed to develop more sophis-
ticated techniques that can provide deeper insights into the model’s decision-
making processes. Future research could focus on integrating advanced XAI
methods such as SHAP (SHapley Additive exPlanations) and LIME (Local In-
terpretable Model-agnostic Explanations) with GAN-based AD models.

• Real-Time Anomaly Detection: Implementing the ConGANomaly model in
real-time systems presents a significant challenge and opportunity. Future re-
search should explore optimizing the model for real-time anomaly detection,
including reducing computational overhead and improving processing speeds
without compromising performance.

• Hybrid Models: Combining the strengths of various AD techniques, such as in-
tegrating graph-based methods with GAN-based models, could potentially yield
even more powerful and flexible AD systems. Future studies could investigate
hybrid models that leverage the unique advantages of multiple AD approaches.

• Adaptive Learning: Developing AD models that can adapt to evolving data pat-
terns and contexts is another promising area. Future work could explore adaptive
learning techniques that allow models to continuously learn and improve from
new data without requiring extensive retraining.

The advancements in AD, particularly through the lens of explainable AI, have
significant social implications across various sectors:

• Healthcare: Improved AD models can enhance the early detection of anomalies
in medical data, leading to faster diagnosis and treatment of diseases. The ex-
plainability of these models ensures that healthcare professionals can trust and
understand the AI’s recommendations, ultimately improving patient outcomes.

• Security and Surveillance: Enhanced AD systems can play a crucial role in
identifying security threats and suspicious activities in real-time, aiding in the
prevention of crimes and enhancing public safety. The transparency provided by
explainable models ensures that security personnel can make informed decisions
based on AI insights.

• Finance: In the financial sector, effective and explainable AD models can detect
fraudulent activities and irregular transactions, protecting consumers and insti-
tutions from financial losses. The interpretability of these models is critical for
regulatory compliance and maintaining trust among stakeholders.
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• Industrial Applications: AD models can be used to monitor the health and
performance of industrial machinery, predicting failures and reducing downtime.
Explainable AI ensures that maintenance teams understand the reasons behind
predictions, enabling more effective and timely interventions.

• Ethical AI Deployment: By prioritizing explainability, this research contributes
to the development of ethical AI systems. Transparent AD models promote ac-
countability and fairness, ensuring that AI-driven decisions can be audited and
understood by human operators.

Thus, the contributions of this thesis not only advance the technical capabilities
of anomaly detection but also emphasize the importance of explainability in fostering
trust and ethical deployment of AI systems. These advancements have the potential to
bring about significant positive social changes across various critical sectors, improv-
ing safety, security, and quality of life.
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[5] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised
anomaly detection with generative adversarial networks to guide marker discovery,” in Interna-

tional conference on information processing in medical imaging. Springer, 2017, pp. 146–157.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” Advances in neural information processing systems,
vol. 27, 2014.

[7] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: Semi-supervised anomaly
detection via adversarial training,” in Computer Vision–ACCV 2018: 14th Asian Conference on

Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part III 14.
Springer, 2019, pp. 622–637.
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