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Abstract

This dissertation explores the spectral properties of differential and integral
operators in infinite-dimensional vector spaces, especially Hilbert spaces. It
starts by introducing fundamental concepts to understand how these opera-
tors behave in infinite dimensions. An overview of spectral theory is provided,
focusing on the importance of eigenvalues, eigenvectors, and spectral decom-
positions, with a discussion of the spectral theorem and its significance.
Subsequently, the spectral properties of linear differential and integral opera-
tors are explored, with particular emphasis on their role in solving differential
equations in Hilbert spaces. Various differential operators, including Sturm-
Liouville operators, are analyzed to understand their spectral behavior and
implications.
The practical importance of these theoretical results is illustrated through
numerous applications in physics, engineering, and other scientific fields. In-
stances include the application of spectral properties in quantum mechanics,
signal processing, and structural analysis, demonstrating the wide-ranging
real life applications of these ideas.
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Chapter 1

Introduction

Examining the spectral properties of differential and integral operators is a
key topic in functional analysis and engineering and science. These operators,
which appear in many fields like quantum mechanics, signal processing, and
differential equations, are crucial for understanding physical systems and
solving mathematical problems. Understanding their spectral properties, like
eigenvalues and eigenfunctions, offers valuable insights into how complex
systems behave and how different equations that arise in engineering and
sciences can be solved. Before we proceed further in our text, we will give
a brief review of some standard definitions which is necessary to have an
uninterrupted understanding for the rest of the content.

Preliminaries

Riemann and Lebesgue Integration

This section explores the distinctions between Riemann and Lebesgue Inte-
gration. In the context of Riemann integration, we start by dividing the in-
terval (a, b) into smaller subintervals denoted as (ti, ti +∆ti) for i = 1, . . . , n.
This partitioning leads to the construction of the upper and lower Darboux
sums, Dn

u and Dn
1 , respectively. The upper bound fu

i of f(t) in each subin-
terval (ti, ti +∆ti) is defined as fu

i = maxt f(t).
Similarly, the lower bound is defined as f ′

i = mint f(t). The upper Dar-
boux sum, which represents the total area of rectangles with height fu

i and
width ∆ti, is expressed as:

Dn
u =

n∑
i=1

fu
i ∆ti

The lower Darboux sum, representing the total area of rectangles with
height f 1

i and width ∆ti, is given by:
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Dn
1 =

n∑
i=1

f 1
i ∆ti

The Riemann integral is said to exist and be equal to the common limit
of the Darboux sums as the partitioning becomes finer, i.e., as n → ∞ and
∆ti → 0, if: ∫ b

a

f(t) dt = lim
n→∞

Dn
u = lim

n→∞
Dn

1

In Lebesgue’s integration theory, functions f(t) are approximated almost
everywhere by a sequence of step functions ψn(t). This approximation holds
everywhere except for a countable set of isolated points. The step functions
are defined by:

ψn(t) ≡ f̄n
i , ti < t < ti +∆ti

Here, f̄n
i represents the value of f(t) within the interval i, excluding

isolated points. The integral of these step functions is:∫ b

a

ψn(t) dt =
n∑

i=1

f̄n
i ∆ti

For the Lebesgue integral of f(t) to exist, it must satisfy:∣∣∣∣∫ b

a

ψn(t) dt

∣∣∣∣ < A ̸= ∞

and

f(t) = lim
n→∞

ψn(t)

almost everywhere. Thus, the Lebesgue integral is defined as:∫ b

a

f(t) dt = lim
n→∞

∫ b

a

ψn(t) dt

It is evident that if a Riemann integral exists, then the Lebesgue integral
will also exist.
An important concept, Linear Independence is defined below,
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Linear Independence

A set of p n-dimensional vectors {x1,x2, . . . ,xp} is said to be linearly inde-
pendent if there is no non-zero set of scalars {α1, α2, . . . , αp} (where not all
αi are zero) such that

p∑
i=1

αixi = 0. (1.1)

Norm

Consider a vector x in a vector space W . The norm of x, represented as ∥x∥,
is a function ∥ · ∥ : W → R adhering to the given conditions ∀ y,x ∈ W and
any scalar β ∈ R:

1. Non-negativity: ∥x∥ ≥ 0, and ∥x∥ = 0 if and only if x = 0.

2. Homogeneity: ∥βx∥ = |β|∥x∥.

3. Subadditivity: ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

These conditions ensure that the norm reflects an intuitive sense of mag-
nitude.

Inner Product

An inner product on a vector space W over R or C) is a function (·, ·) :
W ×W → K that meets the following criteria for all a,b, c ∈ W and β ∈ K:

1. Conjugate Symmetry: (a,b) = (b, a), where (b, a) : complex con-
jugate of (b, a).

2. Linearity in the first argument: (βa+ b, c) = β(a, c) + (b, c).

3. Positive-Definiteness: (b,b) ≥ 0, and (b,b) = 0 if and only if
b = 0.

These criteria ensure that the inner product generalizes the concept of
the dot product in Euclidean space.

Normed Linear Space and Inner Product Space

A linear space with a norm as the operation is referred to as a normed linear
space, while a linear space with an inner product as the operation is known
as an inner product space..
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Hilbert Space and Banach Space

A Hilbert Space is characterized as a complete space equipped with an inner
product, whereas a Banach Space is defined as a complete space with a norm.
Recall, a linear space is termed complete if every Cauchy sequence within it
converges.

Linear Operators

We define a linear operator L in a Hilbert space H as follows:
(1) if x,y ∈ H and Lx,Ly ∈ H and
(2) if

L(αx+ βy) = αLx+ βLy

where α and β are complex numbers, then we say L is a linear operator in
H.
Definition- We say that a vector x in H belongs to the domain D of the
linear operator L in H if Lx belongs to H.
Theorem- If L = I+K and ∥K∥ < γ, 0 < γ < 1, then the inverse of (I+K)
exists and can be represented as

(I+K)−1 = I+
∞∑
i=1

(−K)i

This also leads to the conclusion that the solution of

(I+K)u = f

always exists and is unique. It could be computed from the series

u = f +
∞∑
i=1

(−1)iKif

Infinite-Dimensional Linear Spaces

Function spaces form linear vector spaces which are, in fact, infinite dimen-
sional.
The dimension of a space is the no. of linearly independent vectors that the
space contains. Then, in the space C0(0, 1), the functions fn(t) = tn, n =
0, 1, 2, ..., are linearly independent vectors and so C(0, 1) is an infinite- di-
mensional vector space.
Hence, many such function spaces can be defined:
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1. Cn(a, b) : the space of functions f(t), g(t), . . . in the interval (a, b),
whose first n derivatives are continuous.

2. R(c, d) : g ∈ R(c, d) is the space of functions whose Riemann integral
exists ∫ d

c

f(s)ds

3. L1(c, d) is the space of functions whose Lebesgue integral exists.

Another Definition of Hilbert Spaces

In previous sections, we established that norms are definable independently
of inner products. However, in the subsequent discussion, we will focus solely
on spaces whose norm is defined by an inner product, namely, ∥x∥2 = ⟨x,x⟩.If
an inner product space, is a Banach space w.r.t the norm defined before, then
it is called a Hibert Space.

Perfect Operators

An operator in the Hilbert space H is termed perfect if its eigenvectors con-
stitute a complete basis set. Consider, for instance, the operator L in the
space L2(0, 1), defined by the differential operator

Lv(t) = −d
2v

dt2

subject to the boundary conditions

v(0) = v(1)

This operator is considered perfect because its eigenvectors

vn =
√
2 sin(nπt), n = 1, 2, . . .

with the their eigenvalues λn = (nπ)2 in the space L2(0, 1), forms its basis.
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Chapter 2

An overview of Spectral Theory

2.1 Review of Eigenvalues and Eigenvectors of
a Matrix

Consider a m-rowed square matrix M = (λij),

Mx = αx

We know that an eigenvalue of a square matrix M is a number ’ α ’ such
that Mx = αx has a solution x ̸= 0 and x is known as the eigenvector.

Eigenspace: The set of eigenvectors associated with the eigenvalue α (along
with the zero vector) constitutes a vector subspace of X. This subspace is
known as the eigenspace of M corresponding to the eigenvalue α.

Spectrum: The collection σ(M), which includes all the eigenvalues of M .

Resolvent set: The resolvent set is the complement of the spectrum, rep-
resented as ρ(M) = C \ σ(M).

Theorem 1 (Result from Fundamental Theorem of Algebra) The eigen-
values of a m-rowed matrix M = (λij) are given by the solution of the charac-
teristic eq" of M . Consequently, M has at least one eigenvalue (and atmost
m different eigenvalues).

2.2 From Matrix Theory to Operator Theory
Consider, L : X → X be a linear operator, with X as the finite dimensional
normed space.
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Then, wthe operator L can be represented as matrices. Infact, the spectral
theory of T is essentially the matrix eigenvalue theory.

If the normed space X has dimension n, and
(1) Let e = {e1, . . . , en} be any basis for X.
(2) Let Le = (λij)

Then, the eigenvalues of Le correspond to the eigenvalues of the operator
L. The spectrum and resolvent of Le are the same as the spectrum set and
resolvent set of the operator L.

Some Important Results

Theorem 2 All matrices that represent a linear operator L : X → X on a
finite-dimensional normed space X, when expressed with respect to different
bases of X, share the same eigenvalues.

Theorem 3 For a linear operator L on a complex normed space X ̸= {0}
(if X is finite-dimensional), there is at least one eigenvalue.

2.3 Spectrum
Let L : D(L) → X be a linear operator on X, where X ̸= {0} is a complex
normed space. Then for the operator defined as:

Lα = L− αI

where α is a complex number and I is an identity operator on D(L)
an inverse operator RαL is defined as:

Rα(L) = L−1
α = (L− αI)−1

and is called Resolvent Operator of L

Definition 4 Let X ̸= 0 be a complex normed space, and let L : D(L) → X
be a linear operator where D(L) ⊂ X. A regular value α of L is a complex
number that satisfies the following conditions:

5.1 Rα(L) exists,

5.2 Rα(L) is bounded,
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5.3 Rα(L) is defined on a subset that is dense in X.

From this, we can define the following important concepts:

Resolvent set ρ(L): The set of all regular values of L. When we gather all
such α values, we form the resolvent set ρ(L) of L.

Spectrum σ(L): The set of all spectral values of L. This set is the comple-
ment of the resolvent set.

Types of Spectrum

Point Spectrum: This is the collection of α values for which Rα(L) does
not exist. It is symbolized by σp(L), and α ∈ σp(L) is referred to as an
eigenvalue of L. This set is also known as the Discrete Spectrum.

Continuous Spectrum: This consists of α values for which Rα(L) ex-
ists and satisfies condition 5.3 but not condition 5.2, meaning Rα(L) is un-
bounded. It is represented by σc(L).

Residual Spectrum: This set contains α values for which Rα(L) exists
and may or may not be bounded, but the domain of Rα(L) is not dense in
X. It is denoted by σr(L).

It is crucial to observe that the sets ρ(L), σp(L), σc(L), and σr(L) are
mutually exclusive, and their union covers the entire complex plane: C =
ρ(L) ∪ σ(L) = ρ(L) ∪ σp(L) ∪ σc(L) ∪ σr(L).

2.3.1 Some Important Properties

1. If the resolvent operator Rα(L) exists, then it is linear.

2. Rα(L) : R (Lα) → D (Lα) exists if and only if null space of Lα = {0}
i.e. Lαx = 0 =⇒ x = 0.

3. If Lαx = (L−αI)x = 0 for some x ̸= 0, then α ∈ σp(L). By definition,
α is an eigenvalue of L. If x is the eigenvector corresponding to α then
all such vectors form the eigenspace of L corresponding to that α.

Theorem 5 Let L : X → X be a bounded linear operator, and let X be a
complete space. If there is some α such that the resolvent Rα(L) exists and
is defined over the entire space X, then for this α, the resolvent is bounded.
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Lemma: Let L : X → X be a linear operator and let α ∈ ρ(L), where X is
a complex Banach space. Assume that either (a) L is a closed operator, or
(b) L is a bounded operator. Then Rα(L) is defined on the entire space X
and is bounded.

2.4 Spectral Decomposition
Spectral decomposition (or spectral theorem) for matrices and operators is
a concept from linear algebra and deals with expressing a matrix in terms of
its eigenvalues and eigenvectors.

Spectral Theorem

The spectral theorem says that all diagonalizable square matrix M can be
decomposed. For any real symmetric matrix M , there exists an orthogonal
matrix P and a diagonal matrix Λ such that:

M = PΛP T

In this context, P is a matrix with columns that are the orthonormal eigen-
vectors of M , while Λ is a diagonal matrix with the eigenvalues of M on its
diagonal.

Spectral Decomposition Theorem

For a diagonalizable matrix M , the spectral decomposition is as follows:

M = UΛU−1

where:
U is a matrix composed of the linearly independent eigenvectors of M as its
columns,
Λ is a diagonal matrix with the eigenvalues of M as its diagonal entries.
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Chapter 3

Linear Integral Operators in Hilbert
Space

3.1 Integral Operators
Definition 6 Let F denote a space of functions. Consider two functions g
and L where g is the function to be transformed and L is known as the kernel
function. The integral operator J modifies g by integrating it with respect to
L.
The operator J acting on a function g is given by:

(J g)(y) =
∫ d

c

L(y, s)g(s) ds, (3.1)

where L(y, s) represents the kernel function, determining how g(s) contributes
to the outcome at each point y and g(s) is the function being transformed by
the integral operator.

3.1.1 Completely Continuous Operator

A completely continuous operator J is represented as:

Jm =
m∑
j=1

ujv
∗
j

Here, uj and vj are vectors, and v∗
j denotes the conjugate transpose of vj.

i.e, it is uniformly approximable by a sequence of finite-dimensional dyadic
operators. This implies:

∥(J − Jm)z∥ < δ∥z∥
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for allm > m(δ). The parameter δ is a small positive number that determines
the degree of approximation, and m(δ) is the corresponding number of terms
needed to achieve this level of accuracy.

3.1.2 Hilbert-Schmidt Operator

An operator T is classified as a Hilbert-Schmidt operator if it satisfies the
following conditions: T is bounded, and

∞∑
k=1

∥T φk∥2 <∞,

where {φk}, for k = 1, 2, . . ., is an orthonormal set in the Hilbert space X .

Theorem 7 A Hilbert-Schmidt operator is completely continuous.

Proof. Since, I =
∑∞

m=1ψmψ
†
m and use the identity x = Ix, or

x =
∞∑

m=1

ψmψ
†
mx

which gives

Kx =
∞∑

m=1

(Kψm)ψ
†
mx

As, ∥K∥ < M , where M < ∞), hence the series converges to Kx. Since
Kψm is a vector in H, the operator

Kn =
n∑

m=1

(Kψm)ψ
†
m

is an n-term dyadic operator and

(K−Kn)x =
∞∑

m=n+1

Kψmψ
†
mx

By the Triangle and Schwarz Inequalities, it follows that∥∥∥∥∥
∞∑

m=n+1

Kψm

(
ψ†

mx
)∥∥∥∥∥ ≤

∞∑
m=n+1

∥Kψm∥
∣∣ψ†

mx
∣∣

≤

(
∞∑

m=n+1

∥Kψm∥
2

∞∑
m=n+1

∣∣ψ†
mx
∣∣2)1/2

≤

(
∞∑

m=n+1

∥Kψm∥
2

)1/2

∥x∥
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which implies:
∞∑

m=n+1

∥Kψm∥2 < ϵ2

for n > for some positive integer. Thus, we conclude that

∥(K−Kn)x∥ < ϵ∥x∥

for n > n(ϵ). This proves the theorem.

Theorem 8 A Lebesgue square integrable kernel l(p⃗, q⃗) of an integral oper-
ator J, is completely continuous.

Proof. Let ψm be an orthonormal basis set. Recall, I =
∑∞

m=1 ψmψ
†
m, is

the identity integral operator whose kernel m(r⃗, s⃗) =
∑∞

m=1 ψm(r⃗)ψ
∗
m(s⃗) =

δ(r⃗ − s⃗), the Dirac delta function.
Therefore,

∞∑
m=1

∥Kψm∥2 =
∞∑

m=1

∫
dDr

∫
k∗(r⃗, s⃗)ψ∗

m(s⃗)d
Ds

∫
k(r⃗, s⃗′)ψm(s⃗

′)dDs′

=

∫
dDrdDsdDs′k∗(r⃗, s⃗)k(r⃗, s⃗′)

∞∑
m=1

ψm(s⃗
′)ψ∗

m(s⃗)

=

∫
dDrdDsdDs′k∗(r⃗, s⃗)k(r⃗, s⃗′)δ(s⃗′ − s⃗)

=

∫
dDrdDs |k(r⃗, s⃗)|2

Since
∫
dDrdDs|k(r⃗, s⃗)|2 <∞ by previous theorem, it follows J is completely

continuous.
It is important to note that Completely Continuous operators are important
because if they are self-adjoint or normal, then they obey the sepectral reso-
lution theorem (which reduces the complexity of solving various problems in
engineering and sciences). Another reason why they are of special interest is
because they obey the following:

Theorem 9 (Fredholm alternative theorem) Theorem. Suppose J is
a compact operator. If M = I + J or M = J , then

Mv = g (1)

has a solution if and only if

13



⟨w, g⟩ = 0 (2)

for every solution to the adjoint homogeneous equation

M∗w = 0. (3)

The equation (1) and the homogeneous equation

Mv = 0 (4)

have the same number of solutions. If equation (2) has no solution, then a
unique solution to equation (1) exists for any vector g in the Hilbert space H
in which J is defined. When equations (3) and (4) have nontrivial solutions,
the general solution to equation (1) is given by

v = vp +
m∑
i=1

βiv
i, (5)

where vp is a particular solution to the inhomogeneous equation (1) and vi,
i = 1, . . . ,m, are linearly independent solutions to (4).

3.1.3 Volterra Equations

First Kind

An integral of the form: ∫
ΩD

k(r⃗, s⃗)x(s⃗)dDs = f(r⃗)

where
k(r⃗, s⃗) = 0 if any sm > rm

and sm and rm are the independent components of s⃗ and r⃗.

Second Kind

An integral of the form:

x(t) +

∫ t

0

k(t, s)x(s)ds = f(t)

Theorem 10 The Volterra equation of the second kind has only one contin-
uous solution x(t), when f(t) and the kernel k(t, s) is continuous where, t
and s ∈ [a, b]

14



Proof. Consider the sequence of functions,

x1(t) = f(t)

x2(t) = f(t)−
∫ t

a

k(t, s)x1(s)ds

...

After successive substitution,

xn(t) =f(t)−
∫ t

a

k(t, v1)f(v1)ds1

+

∫ t

a

k(t, v1)

∫ v1

a

k(s1, s2)f(s2)ds1ds2 + · · ·

+ (−1)n−1

∫ t

a

k(t, s1)

∫ s1

a

k(s1, s2) · · ·
∫ sn−2

a

k(sn−2, sn−1)

× f(sn−1)ds1ds2 · · · dsn−1

or, in operator form,

xn = f −Kf +K2f + · · ·+ (−1)n−1Kn−1f

= Snf

where

Sn = I+
n−1∑
i=1

(−1)iKi

Since k and f are continuous, it follows that:∣∣∣∣∫ t

a

k(t, s1)f(s1)ds1

∣∣∣∣ ≤ AB

∫ t

a

ds1 = AB(t− a)

where vm is a solution to the homogeneous adjoint equation. In infinite-
dimensional vector spaces, there can be an infinite number m of solutions
to the homogeneous equation (as are the function spaces associated with
integral equations).

3.2 Spectral Theory of Integral Operators

3.2.1 Bessel’s Inequality

Theorem 11 Bessel’s Inequality is given as follows:∑
m

|⟨ϕm, f⟩|2 ≤ ∥f∥2

holds in a hilbert space when ϕ1, ϕ2, . . . is an orthonormal set.
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Proof. To prove the theorem, we define

αm = ⟨ϕm, f⟩

and note that ∥∥∥∥∥f −∑
m

αmϕm

∥∥∥∥∥
2

≥ 0

Using an inner product property, we get:

∥f∥2 −
∑
m

α∗
m ⟨ϕm, f⟩ −

∑
m

αm ⟨f , ϕm⟩+
∑
m

|αm|2 ≥ 0

where, ∥ϕm∥2 = 1. Since αm = ⟨ϕm, f⟩ and α∗
m = ⟨f , ϕm⟩, the above inequal-

ity can be rearranged to yield Bessel’s inequality:

∥f∥2 − 2
∑
m

|αm|2 +
∑
m

|αm|2 ≥ 0

Simplifying this, we get:
∥f∥2 ≥

∑
m

|αm|2

Hence, we have: ∑
m

|⟨ϕm, f⟩|2 ≤ ∥f∥2

This completes the proof of Bessel’s inequality.

3.2.2 Properties of Eigenvalue Multiplicity

Consider,
Kψm = λψm, m = 1, . . . , h

where h denotes the degeneracy (or multiplicity) of λ.
We have the follwing:

1. An operator J with a square integrable kernel in H, has eigenvectors
with finite number h.

2. For a completely continuous operator, the number of eigenvectors cor-
responding to non-zero λ is finite.

16



3.2.3 Eigenvectors of f(J)

Analogous to matrix theory, the eigenvector ϕ of the integral operator J is
also an eigenvector of f(J) i.e. the following is obeyed:

f(J)ϕm = f(λm)ϕm

3.2.4 Some Special Properties of Spectral Operators

From the definition of an integral operator,

⟨y,Jx⟩ =
〈
J†y,x

〉
∀y,x ∈ H

or that∫
dDry∗(r⃗)

∫
dDsk(r⃗, s⃗)x(s⃗) =

∫
dDs

[∫
dDrk∗(s⃗, r⃗)y(r⃗)

]∗
x(s⃗)

The following text gives some special properties of J:

1. A self-adjoint J has real eigenvalues (λm) and the set of their eigenvec-
tors (ϕm) are orthogonal.

2. The eigenvector of J† with eigenvalue λ∗m, is same as eigenvector of J,
provided J is a normal operator.

3. If J is a normal operator and if λm ̸= λn, then from

⟨ϕm,Jϕm⟩ =
〈
J†ϕm,ϕm

〉
it follows that

(λn − λm) ⟨ϕm, ϕn⟩ = 0,

and so ⟨ϕm, ϕn⟩ = 0, hence if λm ̸= λn, we get orthogonal eigenvectors.

3.3 Spectral Resolution Theorem
For any normal, completely continuous operator J , we have,

J =
∑
j

µjψjψ
†
j , ⟨ψj, ψk⟩ = δjk

17



Consequently, the function h(J ) of J also follows,

h(J ) =
∑
j

h(µj)ψjψ
†
j

Proof. Let v is an arbitrary vector in G , then we get a set of coefficients
β1, β2, . . . such that v =

∑
j βjψj, where

ψj, j = 1, 2, . . .

are the eigenvectors of J . Given that

⟨ψj, ψk⟩ = δjk,

it follows that βj = ⟨ψ†
j ,v⟩ = ψ†

jv, hence

v =
∑
j

ψj(ψ
†
jv) =

(∑
j

ψjψ
†
j

)
v

for any v ∈ G. Hence,
I =

∑
j

ψjψ
†
j

which gives the spectral resolution theorem.
This has an important implication in the following theorem:

Theorem 12 A self-adjoint, completely continuous operator is perfect i.e.
it has a complete set of orthonormal eigenvectors.

Proof. Let A be a linear self adjoint operator. Let u be a normalized vector.
If:

max
u

⟨u,Au⟩, ∥u∥2 = 1

then, u is an eigenvector of A. Expanding u in terms of an arbitrary or-
thonormal basis ϕ1, ϕ2, . . ., we get:

u =
∑
i

βiϕi

for g, hence we get:
g =

∑
i,j

aijβ
∗
i βj − µ

∑
i

β∗
i βi

where aij = ⟨ϕi,Aϕj⟩. This results in the eigenproblem:∑
j

aijβj = µβi, i = 1, 2, . . .

18



Equivalently:
Au = µu

If A has no positive eigenvalues, we consider −A to find a positive maximum,
as A and −A share the same eigenvectors. We know a completely continuous
operator is bounded, i.e., ∥A∥2 = maxv ̸=0⟨Av,Av⟩/⟨v,v⟩ = N2 < ∞. For
any normalized vector u in H:

⟨u,Au⟩ ≤ ∥u∥∥Au∥ ≤ N∥u∥2 = N

We get a sequence of normalized vectors, u1,u2, . . .:

lim
n→∞

⟨un,Aun⟩ = N

From the property of completely continuous, self-adjoint operators that un →
u, we have:

⟨u,Au⟩ = N

Thus, u is an eigenvector (ψ1) of A, with N as its eigenvalue (µ1). Consider
the self-adjoint operator:

Ã = A−
∑
i

µiψiψ
†
i

Let Ã is nonzero. Then, there exists a nonzero eigenvalue ν and its eigen-
vector φ:

Ãφ = νφ

However, the eigenvectors ψ1, ψ2, . . . of A are also eigenvectors of Ã with
zero eigenvalue. Thus, ⟨ψi, φ⟩ = 0, implying:

Ãφ = Aφ = νφ

Therefore, φ must be an eigenvector of A with a nonzero eigenvalue, which
contradicts the generation process of all eigenvectors of A with nonzero eigen-
values. Hence, Ã = 0, or:

A =
∑
i

µiψiψ
†
i

This establishes the theorem.
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3.4 Completely Continuous Operators
Theorem 13 Any completely continuous operator in H, can be expressed as

T =
∑

τkukv
†
k

where the τk are positive real numbers, and the vectors uk and vk for k =
1, 2, . . . form orthonormal sets in H. These vectors satisfy the following equa-
tions:

Tuk = τkvk

and
T†vk = τkuk

Proof. Given that T is a completely continuous operator inH, by the spec-
tral theorem, that T has a discrete spectrum with eigenvalues accumulating
only at zero.

Let {τk} denote the non-zero singular values of T. These τk are positive
real numbers. Let {uk} and {vk} be the corresponding orthonormal sets of
left and right singular vectors of T, respectively.
By SVD,

T =
∑
k

τkukv
†
k

where τk > 0, and {uk} and {vk} form orthonormal sets in H.
The vectors uk and vk fulfill the following equations due to the properties

of singular value decomposition:

Tuk = τkvk

and
T†vk = τkuk

To verify the orthonormality of {uk} and {vk}, we must show:

⟨uk,uj⟩ = δkj and ⟨vk,vj⟩ = δkj

where δkj is the Kronecker delta.
Since T is a completely continuous operator, it transforms orthonormal

sets into orthonormal sets under the transformation involving its singular
values and vectors. Therefore, the orthonormality conditions hold:

⟨uk,uj⟩ = δkj
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and
⟨vk,vj⟩ = δkj

Therefore, we have represented T as

T =
∑
k

τkukv
†
k

where τk are the positive singular values, and uk and vk are orthonormal sets
satisfying the given eigenvector equations.

Theorem 14 The eigenvectors of a completely continuous and normal inte-
gral operator has a complete orthonormal basis set.

Proof Given,A is a completely continuous integral operator in H and,

AA† = A†A,

we need to demonstrate that the eigenvectors u1,u2, . . . of A form a complete
orthonormal basis set in H. Since A is a normal operator, there exists an
orthonormal basis of H consisting of eigenvectors of A. Let {uk} be the set
of eigenvectors of A corresponding to eigenvalues {λk}. First, we show that
the eigenvectors {uk} are orthonormal. For k ̸= j, consider the eigenvalue
equations:

Auk = λkuk

and
Auj = λjuj.

Taking inner product in the following way, we obtain:

⟨Auk,uj⟩ = λk⟨uk,uj⟩

and
⟨Auj,uk⟩ = λj⟨uj,uk⟩.

Since A is normal, we have:

⟨Auk,uj⟩ = ⟨uk,A
†uj⟩ = λj⟨uk,uj⟩.

Equating the expressions for ⟨Auk,uj⟩, we get:

λk⟨uk,uj⟩ = λj⟨uk,uj⟩.

Since λk ̸= λj for k ̸= j, it follows that:

⟨uk,uj⟩ = 0 for k ̸= j.
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This shows that the eigenvectors {uk} are orthogonal. Normalizing them, we
obtain an orthonormal set. To demonstrate completeness, we need to show
that the set {uk} spans H. On the contrary, let there exists a vector w ∈ H
orthogonal to all uk:

⟨w,uk⟩ = 0 for all k.

Since A is a completely continuous operator, the spectral theorem for com-
pact operators ensures that the eigenvectors corresponding to nonzero eigen-
values form a complete basis in the closure of the range of A. Additionally,
for the zero eigenvalue, the eigenvectors corresponding to zero eigenvalue
also contribute to the basis for the null space of A. Since A is normal, its
range and null space are orthogonal complements in H. Thus, the union
of the eigenvectors associated with nonzero and zero eigenvalues spans H.
Therefore, any vector orthogonal to all eigenvectors must be the zero vector:

w = 0.

This proves that the set {uk} is complete. Consequently, the eigenvectors
u1,u2, . . . form a complete orthonormal basis set in H.
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Chapter 4

Linear Differential Operators in Hilbert
Space

4.1 The Differential Operator
Definition 15 A differential operator is a linear transformation D on H, of
the form

D(u) = u(n) + an−1u
(n−1) + · · ·+ a1u

′ + a0u

where a0, a1, . . . , an−1 are (can be complex) constants. The order of D is n.
H is hilbert space.

Linearity. A linear operator D is a linear transformation D on H such that,
1. D(x+ v) = D(x) +D(v)
2. D(cx) = cD(x)

Eigenfunctions. A non-zero function u is an eigenfunction for a differential
operator D, such that,

Du = λu

where the constant λ is the eigenvalue of u.

Consider a 3-Dimensional wave equation,

1

c2
∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

=⇒ ∂2u

∂t2
= c2∇2u =⇒ ∂2u

∂t2
− c2∇2u = 0 (4.1)

(
∂2

∂t2
− c2∇2)u = 0

23



Du = 0

Comparing with a generic matrix equation, D ≡ A, u ≡ x and b = 0 (in
this case homogenous), D is the Differential Operator and u is the solution.

D(αu+ βv) = (
∂2

∂t2
− c2∇2)(αu+ βv)

=
∂2(αu+ βv)

∂t2
− c2∇2(αu+ βv)

= α(
∂2u

∂t2
− c2∇2u) + β(

∂2v

∂t2
− c2∇2v)

= αD(u) + βD(v)

=⇒ D is a Linear Differential Operator.
Note that Differential Operator requires specific boundary conditions.
Consider the inhomogeneous equation,

Du(x) = g(x), x ∈ [a, b],

where D is a p th-order differential expression given by,

Du(x) =ap(x)
dpu(x)

dxp
+ ap−1(x)

dp−1u(x)

dxp−1
+ · · ·

+ a1(x)
du(x)

dx
+ a0(x)u(x)

Then boundary functions are given by:

B1u ≡
p∑

j=1

λ1ju
(j−1)(x) +

p∑
j=1

λ1,p+ju
(j−1)(y)

...

Bmu ≡
p∑

j=1

λmju
(j−1)(x) +

p∑
j=1

λm,p+ju
(j−1)(y),

where u(i) is the i th derivative of u (diu/dci, at c = x and y ). For the
matrix

B =

 α11 · · · α1,2p
...

αm1 · · · αm,2p


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the row vectors

αT
i = [λi1, . . . , λi,2p] , i = 1, . . . ,m

are linearly independent (rank of the matrix is m).
The above differential equation is called a "balanced problem". We can

find a unique solution for a balanced problem whereas sometimes it can fail
to have any solution at all. An unbalanced problem can also have a solution.

4.1.1 Unbounded Differential Operators

Definition 16 An operator, O on normed spaces is said to be bounded when
∥Ox∥ ≤ c∥x∥where c is a real number.

While some classes of integral operators are bounded, differential oper-
ators in Hilbert space are unbounded. Let us illustrate this with a simple
example,

Let D : C1
[a,b] → C0

[a,b] with a < b be the differential operator defined as
Dx = x′.

Taking, [a, b] = [0, 1], let n ∈ N be arbitrary. Now, consider the sequence
fn(t) = tn. Then, Tfn(t) = ntn−1. Equipping C1 with the infinity norm (sup
norm), then ∥Tfn∥∞ = n, but ∥fn∥∞ = 1. So,

∥Tfn∥∞
∥fn∥∞

= n

By assumption, this is true for any n. This means there is no c for which
∥Tfn∥∞ ≤ c ∥fn∥∞.

=⇒ Differential operator is unbounded.

4.1.2 The Adjoint of D
Definition 17 A differential operator D has an adjoint operator D∗ such
that

⟨g,Lf⟩ = ⟨f,L∗g⟩ ,

where f(t) and g(t) are arbitrary functions satisfying homogeneous bound-
ary conditions.
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The adjoint of a differential operator is similar to the transpose of a matrix.
Consider an m×m matrix B and arbitrary m× 1 vectors x and y. Then,

⟨y,Bx⟩ = yTBx,

=⇒ ⟨y,Bx⟩ =
(
BTy

)T
x.

In terms of the inner product, this means that

⟨y,Bx⟩ =
〈
x,BTy

〉
.

Determining the Adjoint of D

Consider the general second-order linear differential equation with variable
coefficients

Du =
1

w(x)
[a0(x)u

′′(x) + a1(x)u
′(x) + a2(x)u(x)] = 0, a ≤ x ≤ b, (4.2)

Consider an arbitrary function v(x), and take the inner product with Du,

⟨v,Du⟩ =
∫ b

a
w(x)v(x)

{
1

w(x)
[a0(x)u

′′(x) + a1(x)u
′(x) + a2(x)u(x)]

}
dx

=
∫ b

a
{a0vu′′ + a1vu

′ + a2vu} dx,
(4.3)

the inner product is taken w.r.t the weight function.
Integrating the second term by parts,∫ b

a

a1vu
′dx = a1vu|ba −

∫ b

a

u (a1v)
′ dx

where ∫
gdh = gh−

∫
hdg

with
g = a1v, h = u,
dg = (a1v)

′ dx, dg = u′dx

Integrating gives,∫ b

a

a0vu
′′dx = a0vu

′|ba−
∫ b

a

u′ (a0v)
′ dx =

[
a0vu

′ − (a0v)
′ u
]b
a
+

∫ b

a

u (a0v)
′′ dx

where,
g = a0v, h = u′,
dg = (a0v)

′ dx, dh = u′′dx,
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and,
g = (a0v)

′ , h = u,
dg = (a0v)

′′ dx, dh = u′dx

Substituting into (4.3),

⟨v,Du⟩ =
[
a0vu

′ − (a0v)
′ u+ a1vu

]b
a

+

∫ b

a

w(x)u(x)

{
1

w(x)

[
(a0v)

′′ − (a1v)
′ + a2v

]}
dx,

For homogeneous boundary conditions, we have,

⟨v,Du⟩ = ⟨u,D∗v⟩ ,

where the adjoint operator D∗ is:

D∗w =
1

v(x)

{
[a0(x)w]

′′ − [a1(x)w]
′ + a2(x)w

}
. (4.4)

We can use the same approach for finding the adjoint of higher order
derivatives.

4.2 Self-Adjoint Differential Operator
A matrix is symmetric if it is equivalent to its transpose and hermitian if
equal to its conjugate transpose and if its eigenvalues are distinct then it has
mutually orthogonal eigenvectors.

Analogously, if D = D∗, then the differential operator is self-adjoint (Her-
mitian).

Proof. Consider, D = D∗ and let u(x) and v(x) be two eigenfunctions
of the differential operator, i.e, Du = λ1u and Dv = λ1v. Then, by definition
of adjoint of a differential operator,

⟨u,Dv⟩ = ⟨v,D∗u⟩
⟨u,Dv⟩ = ⟨v,Du⟩
⟨u, λ2v⟩ = ⟨v, λ1u⟩
(λ1 − λ2) ⟨u, v⟩ = 0

=⇒ Thus, ifλ1 ̸= λ2then⟨u, v⟩ = 0, i.e, the corresponding eigenfunctions are orthogonal.
(4.5)

This implies that distinct eigenvalues of a self-adjoint differential operator
has orthogonal eigenvectors.
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4.3 Spectral Representation
Given a differential operator D with a set of eigenfunctions {un} and corre-
sponding eigenvalues {λn}, any function f can be expanded as:

f(x) =
∑
n

cnun(x)

where cn are coefficients determined by projecting f onto the eigenfunctions:

cn =

∫
f(x)un(x) dx

4.4 Sturm-Liouville Differential Operator
Recall eq.(4.2). Not all differential expressions give rise to self-adjoint differ-
ential operators. Let us find the self-adjoint subset of these equations.

The adjoint of a linear differential operator of second order with variable
coefficients is:

D∗v =
1

w(x)

{
[a0v]

′′ − [a1v]
′ + a2v

}
.

Expanding the differentiation terms via the product rule and collecting
terms as follows,

D∗v =
1

w(x)
{a0v′′ + [2a′0 − a1] v

′ + [a′′0 − a′1 + a2] v} (4.6)

For D to be self-adjoint, the operators D and D∗ must be the same.
Comparing (4.2) and (4.6),
First term is already identical, hence for equivalence of the second term,

a1(y) = 2a′0(y)− a1(y),

a1(y) = a′0(y). (4.7)

For the equivalence of the third term,

a2(x) = a′′0(x)− a′1(x) + a2(x),

which is true using (4.7).
Therefore,

Du =
1

w(x)
{a0u′′ + a′0u

′ + a2u} = 0
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This can be written as,

D =
1

w(x)

{
d

dx

[
a0(x)

d

dx

]
+ a2(x)

}
This is the Sturm-Liouville differential operator.

Therefore, the eigenfunctions associated with the Sturm-Liouville differen-
tial operator are orthogonal. Any second-order linear ordinary differential
equation can be transformed into Sturm-Liouville form. This approach can
also be generalized to higher-order differential equations.

4.5 Some General Spectral Properties of Dif-
ferential Operators

Theorem 18 If λ1 and u are eigen value and eigenfuntion of D and λ2 and
v are eigen value and eigenfuntion of D with λ1 ̸= λ2, then u is orthogonal
to v.

Proof. The proof is along the same lines as shown in (4.5).

Theorem 19 The eigenvalues of a self-adjoint D are real.

Proof. Since D is self-adjoint, clearly, ⟨u,Du⟩ = ⟨Du, u⟩ = λi ⟨u, u⟩ =
λ∗i ⟨u, u⟩.

Theorem 20 Consider D of pth-order.If ∃ a number β not equal to an eigen-
value of D and the coefficient ap(x) ̸= 0 and ai(x) is continuous in the finite
interval, then the number of eigenvectors λi is finite.

Proof. Let β not be an eigenvalue of a regular self-adjoint D. We know, the
eigenvalues of D will always be real.

Define the operator D as,

Dv =

q∑
m=0

am(x)
dmv

dxm
, Bnv = 0, n = 1, . . . , q,

where, v, Dv ∈ H.

We define a new operator, D′ ≡ D+ βI as,

D′v =

q∑
m=0

am(x)
dmv

dxm
+ αv, Bnv = 0, n = 1, . . . , q,
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where, v,D′v ∈ H.

Since the equation,
D′u = λ′u

can be rearranged as,
Du = (λ′ − β)u

both D and D′ have the same eigenvectors.
This implies, λ = λ′−β are eigenvalues of D. Now β is not an eigenvalue

of D so the homogenous equation D′u = 0 only has trivial solution and so
D′ exists. D′−1 is the integral G′ which has Green’s function for L′ as its
kernel, h̃(x, y).

Again, since the equation,

G′u = α′u

can be rearranged as,
D′u = α′−1u

the eigenvectors of G′ and D′ are same. Consequently, the eigenvectors of
G′ and D are same.

Now, the kernel h̃(x, y) is continuous, so on a finite interval it is square
integrable in a bounded rectangle.This implies, G′ has a finite number of
eigenvectors for a non-zero eigenvalue.

Theorem 21 If D is a differential operator of order p, the maximum number
of eigenvectors associated with any specific eigenvalue cannot exceed p.

Proof. Consider the eigenvalue problem:

Du− λu = 0,

where D is a differential operator of order p, subject to boundary conditions:

Biu = 0, i = 1, . . . , p.

Assume λ is an eigenvalue of D. This leads to the homogeneous equation:

D′u = ap(x)
dpu

dxp
+ · · ·+ a1(x)

du

dx
+ (a0(x)− λ)u = 0,

where D′ incorporates λ.
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A fundamental system of solutions to D′u = 0 consists of {u1, u2, . . . , up}.
Any solution u can thus be expressed as a linear combination:

u =

p∑
i=1

αiui.

The boundary conditions then determine the coefficients αi. By substi-
tuting this general solution into the boundary conditions, we obtain: B1u1 · · · B1up

...
...

Bpu1 · · · Bpup


 α1

...
αp

 = 0.

The rank r of the matrix [Biuj] determines the number of linearly inde-
pendent solutions {α1, . . . , αp} for this system. Since λ is assumed to be an
eigenvalue, the rank r must be between 0 and p − 1. The number linearly
independent solutions is p− r. This is also the number of eigenfuntions.

Definition 22 (Normal Differential Operator) D of order p and its ad-
joint, with the following:

Bju = B†
ju = 0, j = 1, . . . , q.

and satisfying:
DD†v = D†Dv.

is called a normal differential operator.

Theorem 23 If D is a normal differential operator and nonsingular, then
its eigenvectors vi, i = 1, 2, . . ., form a complete orthonormal set.

Proof. Consider D of order p and its adjoint, with:

Bju = B†
ju = 0, j = 1, . . . , q.

and satisfying:
DD†v = D†Dv.

D is called a normal differential operator.
We assume that the only solution to Du = 0 is trivial, u = 0.
We denote G as the inverse of D and G† as the inverse of L†. Then,

DD† = D†D or
(
D†)−1

D−1 = D−1
(
D†)−1

,

which implies:
G†G = GG†.

Since, the kernel of G is also square integrable. G is a normal, completely
continuous operator. And we already know, such operators have a complete
set of orthonormal eigenvectors. Hence the theorem is proved.
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4.6 Spectral properties of Sturm-Liouville Op-
erators

4.6.1 Regular Sturm-Liouville Operators

Consider the Regular Sturm-Liouville Operator:

Dy = − 1

r(x)

d

dx

(
m(x)

dy

dx

)
+
n(x)

r(x)
y, c < x < d

where [c, d] is a bounded interval; r(y),m(y),m′(y), and n(y) are real and
continuous functions; and r(y) andm(y) are positive within the interval [c, d].
For the sake of convenience, we will be defining D in L2(a, b; s).
The inner product here is defined as,

⟨y, z⟩ =
∫ d

c

r(x)y∗(x)z(x) dx

The formal adjoint differential expression D† of D is given by:∫ d

c

r(y)
[
x∗(y)Dz(y)− (D†x(y))∗z(y)

]
dy = m(y) [x∗(y)z′(y)− (x′(y))∗z(y)]

∣∣∣∣d
c

.

Since, D† = D, the Sturm-Liouville operator is formally self-adjoint.
The boundary conditions of D is given by:

B1y = β11y(c) + β12y
′(c) + β13y(d) + β14y

′(d) = 0

B2y = β21y(c) + β22y
′(c) + β23y(d) + β24y

′(d) = 0

where βij are reals.
D† is specified by D and bc: B†

1z = B†
2z = 0, derived from the condition:

m(x) [y∗(x)z′(x)− (y′(x))∗z(x)]

∣∣∣∣d
c

= 0, for all z ∈ D≀D

where

D≀D = {z,Dz ∈ L2(c, d; r);B1y = B2y = 0}

Theorem 24 The Sturm-Liouville operator is self-adjoint if and only if

m(c)

∣∣∣∣ β13 β14
β23 β24

∣∣∣∣ = m(d)

∣∣∣∣ β11 β12
β21 β22

∣∣∣∣
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Proof. Since D = D′, self-adjointness requires that B1u = B1v, i = 1, 2.
This requirement can be summarized by the matrix equation,(

B1u B1v
B2u B2v

)
=

(
0 0
0 0

)
, (1)

which can be rearranged to give

(
β11u(c) + β12u

′(c) β11v(c) + β12v
′(c)

β21u(c) + β22u
′(c) β21v(c) + β22v

′(c)

)
= −

(
β13u(d) + β14u

′(d) β13v(d) + β14v
′(d)

β23u(d) + β24u
′(d) β23v(d) + β24v

′(d)

)
.

(2)
Taking the determinant of each side of Eq. (2) and using the elementary

properties of determinants, we find that the expression∣∣∣∣β11 β12 u(c) v(c)
β21 β22 u′(c) v′(c)

∣∣∣∣ = ∣∣∣∣β13 β14 u(d) v(d)
β23 β24 u′(d) v′(d)

∣∣∣∣ (3)

is the condition that the boundary conditions of D and D′ are the same.
However, by the definition of D′, in Eq. (3), u and v satisfy

m(c)
(
v(c) v′(c)

)
= m(d)

(
v(d) v′(d)

)
. (4)

There are two possibilities to consider here. The first is that the determi-
nants β11β22 − β21β12 and β13β24 − β23β14 are not zero. The other possibility
is that the determinants β11β22−β21β12 and β13β24−β23β14 are both 0. If we
have one determinant is zero and the other is not then it will not produce a self
adjoint operator. Since the rank of the matrix [βij] (for i = 1, 2; j = 1, . . . , 4)
is 2, at least one of the determinants

R1 =

∣∣∣∣β11 β14
β21 β24

∣∣∣∣ , R2 =

∣∣∣∣β12 β14
β22 β24

∣∣∣∣ , (5)

R3 =

∣∣∣∣β11 β13
β21 β23

∣∣∣∣ , R4 =

∣∣∣∣β12 β13
β22 β23

∣∣∣∣
is nonzero since ∣∣∣∣β11 β12 β13 β14

β21 β22 β23 β24

∣∣∣∣ ̸= 0 (6)

for this case. From the linear combinations β21B1u−β11B2u = 0, β23B1u−
β13B2u = 0, and the relation β13β24 − β23β14 = 0, we obtain

R1u(c) +R2u
′(c) = 0R3u(c) +R4u

′(c) = 0 (7)
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Also,

R1v(c) +R2v
′(c) = 0R3v(c) +R4v

′(c) = 0 (8)

Consider R1, . . . , R4 to be unknowns of the four equations in Eqs. (7)
and (8). At least one of the Ri, i = 1, . . . , 4, is nonzero, hence,∣∣∣∣∣∣∣∣

v(c) v′(c) 0 0
v(c) v′(c) 0 0
0 0 v(c) v′(c)
0 0 v(c) v′(c)

∣∣∣∣∣∣∣∣ (9)

is 0, ∣∣∣∣v(c) v′(c)
v(c) v′(c)

∣∣∣∣2 = 0. (10)

Theorem 25 For a regular Sturm-Liouville operator D in L2(c, d; s), the
operator is bounded below if the bc are one of the following:

u(c) = u(d) = 0

u(c) = β11u(c) and u′(d) = −β21u(d)
where β11 and β21 are any real numbers.

Theorem 26 Consider

Dv = − 1

r(y)

d

dy

(
m(y)

dv

dy

)
+
n(y)

r(y)
v

where m(y),m′(y), n(y), and r(y), real-valued continuous functions on [a, b];
m(y) and r(y) being positive on [a, b]. The boundary conditions are given by

C1v ≡ γ11v(a) + γ12v
′(a) = 0

C2v ≡ γ21v(b) + γ22v
′(b) = 0

where the coefficients γij are real and satisfy γ211 + γ212 ̸= 0 and γ221 + γ222 ̸= 0.
Under these conditions, D is self-adjoint, and its eigenvalues can be ordered
as follows:

µ0 < µ1 < µ2 < · · · < µn < · · ·
with

|µ0| <∞ and lim
n→∞

µn = ∞
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4.6.2 Singular Sturm-Liouville Operators

Now we have already seen Regular Sturm-Liouville Operators. What is the
difference between the two? An operator is termed singular if either |c| or |d|
on the interval [c, d] is infinite, if u(x) or v(x) has a zero in [c, d], or if p(x)
becomes infinite at some point within [c, d]. The criterion for self-adjointness
matches that of a regular operator, specifically, D = D∗ and D≀D = D≀D∗ .
The domain D≀D is defined as those vectors w in H such that D∗w ∈ H and

(v,Du) = (D∗v, u) for all u ∈ D≀D. (1)

Given below are two important examples:
(i) The Legendre equation:

D1y = − d

dx

(
(1− x2)

dy

dx

)
= λy, −1 < x < 1. (2)

(ii) The Hermite equation:

D2y =
d2y

dx2
+ x2y = λy, −∞ < x <∞. (3)

The Legendre equation appears in the quantum mechanical analysis of
spherically symmetric potentials and angular momentum. The Hermite equa-
tion is relevant on the study of energy levels in quantum mechanics. Here, y
denotes the wave function and λ represents the energy in appropriate units.
The domain of the operator in Eq. (2) is

D≀D1
= {y,D1y ∈ L2(−1, 1), y(−1) = y(1), y′(−1) = y′(1)} , (4)

and the domain of the operator in Eq. (3) is

D≀D2
= {y,D2y ∈ L2(−∞,∞)} . (5)

It can be readily shown that D1 = D∗
1 and D≀L1

= D≀L∗
1
, D2 = D∗

2,
D≀L2

= D≀L∗
2
. Consequently, D1 and D2 are self-adjoint. Note, D1 is singular

because the function u(y) = 1 − y2 is zero at y = −1 and y = 1. Similarly,
D2 is singular since it is defined over the infinite interval (−∞,∞).

The eigenfunctions of Eq. (2) are the Legendre polynomials

Pk(y) =
1

2kk!

dk

dyk
(
y2 − 1

)k
, k = 0, 1, 2, . . . , (6)

with corresponding eigenvalues λk = k(k + 1). The eigenfunctions of Eq.
(3) are the Hermite functions
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vn(y) = Hn(y) exp

(
−y

2

2

)
, n = 0, 1, 2, . . . , (7)

where Hn is the Hermite polynomial defined by

Hn(y) = (−1)n exp(y2)
dn

dyn
[
exp(−y2)

]
. (8)

The eigenvalue corresponding to vn is µn = 2n+ 1
2
.

Note that the Legendre polynomials form a complete orthogonal set in
L2(−1, 1). While the Hermite functions form a complete orthogonal set in
L2(−∞,∞). Pk(y) has exactly k zeros in the interval (−1, 1). While vn
has exactly n zeros in the interval (−∞,∞). Moreover, the eigenvalues
corresponding to Pk and vn are ordered in the sequence

−∞ < µ0 < µ1 < µ2 < · · · . (9)

Thus, even though the Legendre and Hermite operators are singular self-
adjoint Sturm-Liouville operators, they have a complete set of orthogonal
eigenvectors, and their eigenfunctions and eigenvalues adhere to the the-
orems established for regular, self-adjoint Sturm-Liouville operators.These
operators are frequently encountered in quantum mechanics, where they re-
sult in discrete spectra.

Theorem 27 If D is a linear self-adjoint operator within a certain domain
D≀D in a Hilbert space, the following holds (for I):

j(z, w) =
mv∑
m=1

ψm(z)ψ
∗
m(w) +

∫ pb

pa

vp(z)v
∗
p(w) dp (19.1)

where ψm are eigenfunctions of D, and vp are functions that satisfy Dvp =
µpvp. mv, |pm|, and |pa| can be finite or infinite.

Equation (19.1), through the relation g(D) = g(D)I, gives:

g(z, w) =

pv∑
p=1

g(µp)ψp(z)ψ
∗
p(w) +

∫ rb

ra

g(µr)vr(z)v
∗
r(w) dr (19.2)

if g(t) exists for t = µp, and µp values. Here, g(z, w) is the spectral
decomposition of g(D). In the weighted Hilbert space L2(a, b; t) the inner
product is ⟨u,v⟩ =

∫ b

a
u∗(x)v(x)t(x) dx, and so
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Iv =

∫ b

a

j(z, y)s(y)v(y) dy (19.3)

and

g(D)v =

∫ b

a

g(z, y)s(y)v(y) dy. (19.4)
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Chapter 5

Applications

5.1 Differential Operators

5.1.1 Applications in Physics

Quantum Mechanics

A particle’s wavefunction in a one-dimensional box is described by the equa-
tion,

− ℏ2

2m

d2ϕ

dz2
= Eϕ, 0 < z < L,

where ℏ: Planck’s constant divided by 2π.
m: the particle’s mass.
L: the length of the box.
E : the particle’s energy.

This is the type of one-dimensional problem, Sv = µv, where S is the
self-adjoint Sturm-Liouville operator, specifically the Schrödinger operator,
that one often comes across in quantum mechanics and finding their eigen-
values is crucial as they represent the allowed energy levels of a quantum
system.
The boundary conditions ϕ(0) = ϕ(L) = 0 represent the confinement of the
particle within the box.
Quantum mechanics says that the energy of a confined particle can only at-
tain discrete values. This occurs because of the eigenvalue of Sturm-Liouville
operator.By introducing the notation

µ =
2mEL2

ℏ2
and η =

z

L
,

38



the equation becomes

−d
2ϕ

dη2
= µϕ, 0 < η < 1, ϕ(0) = ϕ(1) = 0.

The solution for this equation is given by v1 = sin(
√
µη) and v2 = cos(

√
µη).

Taking ϕ = k1v1+k2v2 and applying the boundary conditions ϕ(0) = ϕ(1) =
0, we determine that k2 = 0 and the condition

sin(
√
µ) = 0

This implies that √
µ = nπ for n = 1, 2, 3, . . ., and hence,

µ = (nπ)2.

We replace η by z/L and determine k1 from the normalization criterion,∫ 1

0
ϕ2
j dz = 1, hence we find the wavefunctions as,

ϕj =

√
2

L
sin

πjz

L
, j = 1, 2, . . . ,

The probability amplitude for finding the particle at a given point is repre-
sented by these wavefunctions ϕ.
and the particle energies as,

Ej =
ℏ2

2m

π2j2

L2
, j = 1, 2, . . .

Heat and Mass Transfer

In classical physics, like in the study of heat and mass transfer, we often deal
with equations such as:

∂v

∂τ
= −κMv, B1v = B2v = 0, α < ξ < β,

where v(ξ, τ) is a function of spatial and temporal variable respectively.We
consider initial conditions such as v(ξ, 0) = g(ξ). Here, κ is a positive trans-
port coefficient and the operator Mv = −d2v

dξ2
. The boundary conditions are

such that M is self-adjoint. Let us solve this equation:

∂v

∂τ
= κ

∂2v

∂ξ2
.

with BC:
v(α, τ) = 0, v(β, τ) = 0.
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and initial condition:
v(ξ, 0) = g(ξ).

Solving,

X(ξ)
dT

dτ
= κT (τ)

d2X

dξ2
.

Dividing both sides by κX(ξ)T (τ),

1

κT (τ)

dT

dτ
=

1

X(ξ)

d2X

dξ2
= −λ,

where λ is a separation constant. We get two ordinary differential equations
(ODEs) as follows:
1. Time-dependent ODE:

dT

dτ
+ κλT = 0

2. Space-dependent ODE:

d2X

dξ2
+ λX = 0

We solve the spatial ODE:

d2X

dξ2
+ λX = 0.

For λ > 0 :
X(ξ) = A cos(

√
λξ) +B sin(

√
λξ).

Using BC, X(α) = 0 and X(β) = 0,

A cos(
√
λα) +B sin(

√
λα) = 0,

A cos(
√
λβ) +B sin(

√
λβ) = 0.

since, √
λ =

nπ

β − α
, n = 1, 2, 3, . . .

Thus, the eigenvalues are,

λn =

(
nπ

β − α

)2

,

and the corresponding eigenfunctions are,

Xn(ξ) = sin

(
nπ(ξ − α)

β − α

)
.

40



Now, we solve the temporal ODE The time-dependent ODE is:

dT

dτ
+ κλT = 0

For each λn, we get:

dTn
dτ

+ κ

(
nπ

β − α

)2

Tn = 0.

This is a first-order linear ODE with the following solution,

Tn(τ) = Cn exp

(
−κ
(

nπ

β − α

)2

τ

)

Hence, combining the spatial and temporal solutions, we get,

v(ξ, τ) =
∞∑
n=1

Cn sin

(
nπ(ξ − α)

β − α

)
exp

(
−κ
(

nπ

β − α

)2

τ

)
.

Now, to find Cn, we use the initial condition v(ξ, 0) = g(ξ) :

g(ξ) =
∞∑
n=1

Cn sin

(
nπ(ξ − α)

β − α

)
This is a Fourier sine series expansion of g(ξ). Hence, the coefficients Cn are:

Cn =
2

β − α

∫ β

α

g(ξ) sin

(
nπ(ξ − α)

β − α

)
dξ.

Substituting Cn, we get the final solution as follows,

v(ξ, τ) =
∞∑
n=1

(
2

β − α

∫ β

α

g(ξ) sin

(
nπ(ξ − α)

β − α

)
dξ

)
sin

(
nπ(ξ − α)

β − α

)
exp

(
−κ
(

nπ

β − α

)2

τ

)
.

i.e.,

v(ξ) =
∑
n

exp (−τκλn)ψn(ξ)

∫ β

α

ψ∗
n(ξ)g(ξ)dξ,

where ψn and λn(n = 1, 2, . . .) represent the eigenfunctions and eigenvalues
of the operator M.
This solution represents the temperature distribution v(ξ, τ) over time in the
given spatial domain.
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5.1.2 Applications in Engineering

Fluid Dynamics

Navier-Stokes equation

In fluid dynamics, Navier-Stokes equation is a pde that describes the flow of
incompressible fluids. With some initial conditions, it is used to determine
the velocity vector applied to the fluid. In real situations, they form a system
of non-linear pde but however under certain simplifications, they can be
reduced to linear differential equations. Let us see how:
Consider the following Navier-Stokes equation, ignoring external forces and
assuming constant viscosity, in its simplest form:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u

∇ · u = 0

(5.1)

where, ρ: density.
u: velocity field.
p: pressure.
ν: kinematic viscosity.
Now we introduce a small perturbation u′ such that u = u0 + u′. We sub-
stitute this in above equation and linearize as follows:

∂u′

∂t
= − (u0 · ∇)u′ − (u′ · ∇)u0 −

1

ρ
∇p′ + ν∇2u′

∇ · u′ = 0

For simplicity, we ignore the nonlinear term (u′ · ∇)u0 and focus on the
Laplacian term ν∇2u′. Now we use spectral decomposition, for solving this
linearized equation. For a bounded domain, the solution u′ can be expressed
as a series of eigenfunctions ϕn of the Laplacian as follows:

u′(x, t) =
∑
n

an(t)ϕn(x)

Substituting u′ into the linearized Navier-Stokes equation, for each term of
the series we get:

dan
dt
ϕn = νλnanϕn

where λn are the eigenvalues associated with ϕn. Hence, this reduces the
problem to solving a set of ordinary differential equations for an(t) :

dan
dt

= νλnan
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The analysis of fluid flow dynamics becomes easier by the spectral decom-
position, as it reduces complicated partial differential equations into solv-
able ordinary differential equations.In applications ranging from aerospace
to maritime engineering, engineers use this technology to forecast flow be-
haviour under small perturbations, optimise systems, and create more stable
configurations.

5.1.3 Applications in Medicine

Diffusion Equation

In the field of medicine, the diffusion equation, is used to describe the rate at
which a drug spreads through a biological medium, such as tissue or blood:

∂v

∂t
= k

∂2v

∂z2
,

where k represents the diffusion coefficient.
This can be reformulated as:

∂v

∂t
= −kMv,

where Mφ = −d2φ
dz2

.
The initial distribution of the substance (at t = 0) is given by:

φ(z, 0) = φ0(z) (5.2)

with boundary conditions:

∂φ

∂z
(0, t) = 0 and

∂φ

∂z
(A, t) = 0 (5.3)

This describes a self-adjoint operation.
Thus, the solution can be expressed as:

v = exp(−tkM)v0 =
∑
i

exp(−tkµi)(ψi,v0⟩ψi,

where µi and ψi satisfy the eigenrelation Mψi = µiψi. Applying the bound-
ary conditions to φ(z) = a1 sin

√
µz + a2 cos

√
µz, we find a1 = 0 and the

eigenvalues must satisfy √
µ sin(

√
µA) = 0,
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resulting in µ0 = 0 and √
µiA = iπ, i = 1, 2, . . .. Hence, the eigenfunctions

are
ψ0 =

1√
A
,

ψi =

√
2

A
cos

πiz

A
, i = 1, 2, . . . ,

and the concentration v(z, t) is given by

v(z, t) =
1

A

∫ A

0

v0(z)dz +
∞∑
i=1

exp

(
−tkπ2i2

A2

)
⟨ψi,v0⟩

√
2

A
cos

πiz

A

with,

⟨ψi,v0⟩ =
√

2

A

∫ A

0

v0(z) cos
πiz

A
dz.

where v = A−1
∫ A

0
v0(z)dz, is the mean value of the initial concentration.

An understanding of drug diffusion through tissues is crucial in optimising
drug delivery specially for treatments like chemotherapy, where the effective-
ness of the treatment largely depends on the drug reaching all malignant cells
in appropriate quantities without overloading healthy tissues.

5.2 Integral Operators
Integral operators that exhibit linear integration are those in which the func-
tion is integrated in a linear manner against a kernel function. Because of
their adaptability and variety of uses, these operators are essential in many
different fields.
The following are some important applications of linear integral operators:

5.2.1 Applications in Mathematical Physics

In Quantum Mechanics: Schrödinger’s equation is solved with integral
operators; integral kernels are frequently needed to calculate the potential
function. In quantum mechanics, integral operators play a role in formulating
quantum states and observables.
Schrödinger Equation: The time-independent Schrödinger equation can
be formulated in terms of integral operators.
For example, the Green’s function approach involves solving-

ψ(u) =

∫
g(u, v)V (v)ψ(v)dv
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where g(u, v) : Green’s function, V (v) : potential, and ψ(u) : wave
function.
In Electromagnetics: Electromagnetic scattering problems often involve
solving integral equations derived from Maxwell’s equations. For instance,
the boundary integral equation for scattering by a perfectly conducting object
can be expressed using the following:
Electric Field Integral Equation (EFIE):

E(r) = Einc(r)−
∫
S

[L (r, r′) ·K (r′)] dS ′

where E(r) is the total electric field, Einc (r) is the incident electric field,
G (r, r′) is the dyadic Green’s function, J (r′) is the surface current density,
and the integration is performed over the surface S of the scatterer.
Magnetic Field Integral Equation (MFIE):

H(r) = Hinc(r) +
1

4π

∫
S

[K (r′)×∇′L (r, r′)] dS ′

where
H(r) : total magnetic field,
Hinc(r) : incident magnetic field,
G (r, r′) : scalar Green’s function, and
∇′ denotes gradient with respect to r′.

5.2.2 Applications in Engineering

Heat Transfer: While addressing heat conduction issues, particu-
larly in non-homogeneous materials, integral operators are applied.
Formulation of Integral Equations for Heat Conduction:
In one-dimensional heat conduction problems, the temperature distribution
t(x, t′) in a medium described using integral equations derived from the heat
equation.
The temperature distribution might be expressed as:

t(x, t′) =

∫ t

0

∫ ∞

−∞
g(x− σ, t− α)q(σ, α)dσdα

where
g(x− σ, t− α) : Green’s function for the heat conduction problem.
q(ξ, τ) : heat source distribution.
Structural Analysis : Integral equations can be used to formulate the
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study of stresses and strains in structures, especially in the setting of elas-
ticity theory.
Viscoelastic Stress Analysis
For certain polymers and plastics, traditional Newtonian models of stress and
strain fail to capture the time-dependent nature of their responses. These
materials often exhibit a viscoelastic behavior, where the stress response is
not instantaneous but evolves over time. Boltzmann’s viscoelastic model pro-
vides a framework for describing this behavior.

In isotropic materials, where the response to deformation is uniform in all
directions, the modulus E (analogous to the elastic modulus in purely elastic
materials) is the ratio of stress µ to strain β:

E =
µ

β

For perfectly elastic materials, this relationship holds instantaneously. How-
ever, viscoelastic materials require a more generalized form to account for
time-dependent effects:

E(β, t) =
µ(t)

β(t)

This formulation introduces the concept of a relaxation modulus E, which
decays over time under a constant strain. This decay can be attributed to
the internal molecular rearrangements within the material, leading to a more
complex stress-strain relationship.
Memory Functions and Stress Response: To model the time-dependent
behavior of viscoelastic materials, we introduce the concept of a memory
function N(t), which characterizes how past strains influence the current
stress state. The relationship between stress and strain can then be described
using an integral operator:

σ(t) = −
∫ t

−∞
N (ϵ, s− s′) ϵ (t′) ds′

Here, the memory function N(ϵ, s) is related to the time derivative of the
relaxation modulus:

N(ϵ, t) = −dE(ϵ, t)
dt

This integral formulation highlights how the entire history of strain impacts
the current stress, encapsulating the viscoelastic nature of the material.
Modeling Relaxation Behavior: One practical approach to model the
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relaxation behavior of viscoelastic materials is to consider a series of inde-
pendent relaxation modes. Each mode contributes to the overall relaxation
modulus:

E(t) =
m∑
j=1

Ej exp

(
−t
βj

)
In this representation, each term Ej and βj corresponds to a specific mode,
with Ej representing the nominal modulus and βj the relaxation time of
the j-th mode. This sum of exponential functions allows for a comprehen-
sive description of the relaxation behavior over time. The memory function
N(t − t′), integral to the viscoelastic model, can be expressed in terms of
these modes, providing a compact operator within, L2(−∞, c), herec is a
large finite time. This mathematical framework enables precise modeling
and prediction of the viscoelastic response under various loading conditions,
essential for structural analysis.

5.2.3 Applications in Signal Processing

In signal processing, integral transforms such as the Fourier and Laplace
transforms, which can be viewed as integral operators, are used for analyzing
signals.
Fourier Transform: The Fourier transform is an integral operator given
by

V (g) =

∫ ∞

−∞
v(t)e−j2πftdt

v(t) : original time-domain signal.
j : imaginary unit.
V (g) : Fourier transform of the signal x(t).
g : frequency variable.
The Fourier transform decomposes a signal into its constituent frequencies.
Convolution: Convolution operations, essential in filtering signals, can be
expressed using integral operators:

i(y) =

∫ ∞

−∞
g(t)h(y − t)dt

i(y) : output (filtered signal)
g(y) : input signal
h(y) : impulse response of the filter.
The filter modifies the input signal g(y) based on the characteristics of the
filter described by h(y).
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5.2.4 Applications in Economics and Finance

Economic Growth Models- Integral operators can describe the accumu-
lation of capital or other resources in growth models, helping to determine
optimal investment strategies.
The capital accumulation K(t) over time can be modeled as:

K(t) = K(0) +

∫ t

0

(I(s)− δK(s))ds

where: K(0) : initial capital
I(s) : investment at time s
δ : depreciation rate
Aggregation of Demand- Integral equations are used to describe equilib-
rium states in economics. As in consumer theory, integral operators can be
used to model aggregate demand.
If Di(p) is the demand function of the i-th individual at price p, the aggregate
demand D(p) can be written as:

D(p) =

∫ 1

0

Di(p)di

Present Value of Future Cash Flows- Integral operators are used to
calculate the present value of a continuous stream of future cash flows, which
is crucial for valuing investments, projects, or any financial assets.
The present value PV of a continuous cash flow C(t) over time t from 0 to
T is given by:

PV =

∫ T

0

C(t)e−rtdt

where- C(t) : cash flow at time t.
r : discount rate.
Dynamic Optimization Problems- Many economic models involve opti-
mizing an objective function over time, such as maximizing utility or mini-
mizing cost. These problems can often be expressed and solved using integral
operators.
In a consumption-savings model, the objective might be to maximize the
total utility U over a lifetime T :

max

∫ T

0

u(c(t))e−ρtdt

u(c(t)) : utility of consumption c(t).
ρ : subjective discount rate.
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Chapter 6

Conclusion

This dissertation has explored the important spectral characteristics of in-
tegral and differential operators in the context of infinite-dimensional vector
spaces, with a particularly on Hilbert spaces. The fundamental significance
of the spectral theorem on the analysis of these operators was discussed.
Further, we have discussed the spectrum properties of linear differential op-
erators. We examined their crucial function in solving differential equations
in Hilbert spaces, delving deeply into specific operators like Sturm-Liouville
operators. This allowed to shed a light on the intricate relationship between
the spectral features of the operators and their more general mathematical
and physical implications.
Although the results presented in this paper are well-established, we have
endeavored to present them with our own style in our proofs. Additionally,
we have explored the connections of these results to real-life applications,
particularly in engineering and science. We hope this paper offers a deeper
understanding and an engaging introduction to the rich theory of spectral
properties of operators and their practical implications.
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