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Abstract

The main aim of this thesis is to study generalizations of UN and VNL rings, as well as

group rings. As an introduction to this thesis, the introductory chapter collects literature

and definitions relevant to each concept that are used throughout this thesis.

Călugăreanu in [7] introduced and investigated UN rings. A ring R is called UN ring

if every non unit of it can be written as product of a unit and a nilpotent element. We carry

his study of UN rings further. We have focused on UN group rings. In our study of UN

group rings, necessary and sufficient conditions for group ring RG to be UN have been

obtained.

We have studied a generalization of the class of UN rings, called UQ rings. A

ring R is called UQ ring if every non unit element of R can be represented as a product

of a unit and a quasiregular element. Various properties of these rings along with its

characterizations are obtained and examples are provided to show that the class of UQ

rings properly contains classes of UN rings, J-UN rings and 2-good rings. In study of UQ

group rings, necessary and sufficient conditions for commutative group ring RG to be UQ

have been established.

An element a of R is called SWR if a ∈ aRa2R. A ring R is called an almost SWR

if for any a ∈ R, either a or 1 − a is SWR. The class of almost SWR rings properly

contains the classes of SWR and abelian VNL rings. Various properties of almost SWR

are obtained. We provide characterizations of almost SWR rings. Further, we study SWR

group rings and almost SWR group rings.

If a ring, R, satisfies the condition that its every proper homomorphic image has a

certain property P, then the ring R is called restricted P ring. This has motivated us to

introduce and investigate a new class of rings called semiboolean neat rings. The ring R

is semiboolean neat provided that every proper homomorphic image of R is semiboolean.

The class of semiboolean neat rings lies strictly between the classes of nil neat and neat

rings. We obtain characterizations of semiboolean neat rings. Moreover, commutative

semiboolean neat group rings have also been studied.

xi



xii Abstract

A ring R is said to be weakly g(x)-invo clean if each element of R is either a sum

or difference of an involution and a root of g(x). This class is a proper subclass of

weakly g(x)-clean rings and a generalization of g(x)-invo clean rings. Various proper-

ties of weakly g(x)-invo clean rings are given. We determine necessary and sufficient

conditions for skew Hurwitz series ring (HR, α) to be weakly g(x)-invo clean, where α is

an endomorphism of R.

Finally, the last chapter summarizes the thesis with a brief conclusion and discusses

some future prospects.
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Chapter 1

Introduction

Group rings are very interesting algebraic structures. It is a meeting point of various

algebraic theories. Group ring is denoted by RG. In the group ring RG, R can be regarded

as a subring of RG and G a subgroup of U(RG), the group of units of RG. Thus group rings

is a generalization of both, rings and groups. Besides the obvious relationship with group

theory and ring theory, the study of group rings involves the theory of fields, linear algebra

and algebraic number theory. Group rings exhibits applications in algebraic coding theory.

Thus, the theory of group rings provides a subject where many branches of algebra come

to a rich interplay. The study of group rings for group representation and the structure

of group algebras was started in 1930’s. The subject gained importance of its own after

the inclusion of questions on group rings in I. Kaplansky’s famous list of problems in the

theory of rings ([30; 31]). Other important facts to stimulate the area were the paper by

I.G. Connell [17], the inclusion of chapters on group rings in the books on ring theory

by Lambek [40] and Ribenboim [56], and the two self contained books by Passman ([53;

54]). Since then, many survey articles have appeared and many books on the subject have

been published.

1.1 Chapter-wise overview of the thesis

In this section, we give a brief overview and organization of the thesis. In chapter 2, we

discuss basic definitions, some known results and other preliminaries which are necessary

for the development of the work done in the succeeding chapters.

In chapter 3, we study the structure of UN rings and group rings. We obtain certain

properties of UN rings. We discuss lifting properties of UN rings modulo an ideal I.

We discuss the question raised by Călugăreanu [7] that "is Mn(R) over a UN ring R, also

UN?". We obtain that if R is commutative, then Mn(R) is UN if and only if R is UN.

1



2 Introduction

Further, we investigate the structure of UN group rings. We first take up the case of group

algebra KG of a group G over a field K. It is obtained that if charK = 0, then KG can be

a UN ring if and only if G is trivial. If charK = p, then KG is a UN ring implies that the

group G must be a p-group and the converse holds if G is locally finite. We investigate

the structure of the group ring RG of a group G over an arbitrary ring R (which may not

necessarily be a field) and obtain the result that if RG is a UN ring then R is a UN ring, G

is a p-group and p ∈ J(R); and the converse holds if G is locally finite.

In chapter 4, we introduce a new class of rings called UQ rings. Various properties

of these rings are obtained and examples are given to show that the class of UQ rings

properly contains the classes of UN rings, J-UN rings and 2-good rings. We obtain a new

characterization of 2-good rings, and it turns out that UQ rings with 2-good identity are

equivalent to 2-good rings. We discuss extensions of matrix rings. It is proved that the

formal matrix ring Mn(R; s) over R is a UQ ring with quasiregular identity if and only

if R is a UQ ring with quasiregular identity and s ∈ J(R). We determine necessary and

sufficient conditions for a commutative group ring RG to be UQ. Let G be an abelian

p-group with p ∈ J(R) and R be a commutative ring. Then RG is a UQ ring if and only if

R is UQ. We also characterize UQ group ring if ring R is artinian.

In chapter 5, we introduce a new class of rings called almost SWR rings. This class

of rings is a generalization of SWR and abelian VNL rings. Various basic properties of

these rings are obtained and examples are given to show that the class of almost SWR rings

properly contains the classes of SWR, abelian VNL and weakly tripotent. It is proved that

a ring R is almost SWR if and only if, for any SWR ideal I of R, R/I is almost SWR. We

characterize abelian almost SWR rings. It is proved that if e is an idempotent in an abelian

almost SWR ring R, then either eRe or (1 − e)R(1 − e) is SWR, but the converse holds if

R is an exchange ring. We prove that if RH is almost SWR for every finitely generated

subgroup H of G, then RG is almost SWR, but the converse of this result partially holds.

It is proved that if G = H ⋊ K is a semidirect product of finite subgroup H by a subgroup

K, then almost s-weakly regularity of RG implies almost s-weakly regularity of RK.

In chapter 6, we have investigated that, what happens if every proper homomorphic

image of R is semiboolean. So in this chapter, we introduce the concept of semiboolean

neat rings. Various properties of semiboolean rings have been investigated. It is proved

that a semiboolean neat ring which is not semiboolean is reduced. We prove that matrix

ring Mn(A) is semiboolean neat if and only if A is a radical ring. We determine the

necessary and sufficient conditions for a commutative group ring RG to be semiboolean

neat.
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In chapter 7, we introduce a new class of rings called weakly g(x)-invo clean rings.

This class of rings is a proper subclass of weakly g(x)-clean rings and a generalization of

g(x)-invo clean rings. We obtain various properties of weakly g(x)-invo clean rings. Let

R be a commutative ring with 2N = 0. Then it is proved that R ⊙ N is weakly g(x)-invo

clean if and only if R is weakly g(x)-invo clean. We characterize weakly invo-clean rings

as weakly g(x)-invo clean rings where g(x) = x(x−a), a ∈ C(R)∩ Inv(R). It is proved that

the ring of skew Hurwitz series (HR, α) is weakly g(x)-invo clean ring if and only if R is

weakly g(x)-invo clean ring. If we take identity endomorphism in skew Hurwitz series

ring, then we obtain ring of Hurwitz series to be weakly g(x)-invo clean ring.

The last chapter, chapter 8, summarises the thesis and then offers some insight into

the author’s views regarding the future direction of our research.





Chapter 2

Preliminaries

Throughout the thesis, R will denote an associative ring with identity 1 , 0, J(R) the Ja-

cobson radical of R and G a non-trivial group. Also all modules are unitary left R-modules

unless otherwise indicated. In this chapter, we provide some prerequisite material which

is required to understand the rest of the text. We use the notation and terminology of

Lam’s book [39], which we refer for noncommutative rings. And for group rings, we

refer to Connell [17] and Passman [54].

2.1 Ring Theory

The Jacobson Radical, J(R), of a ring R is the intersection of all maximal left (or right)

ideals of R. It is in fact a two sided ideal of R. Some of the properties of the Jacobson

radical are as follows.

• For x ∈ R, the following statements are equivalent:

(i) x ∈ J(R),

(ii) 1 − xyz ∈ U(R), the group of units of R, for any x, z ∈ R.

• An element x ∈ R is a unit of R if and only if x + J is a unit of R/J.

• Let f : R→ S be a surjective ring homomorphism, then

f (J(R)) ⊆ J(S ),

with equality if ker f ⊆ J(R).

• Let I be an ideal of R and I ⊆ J(R), then J(R/I) = J(R)/I. In particular, J(R/J(R)) =

0.

5



6 Preliminaries

• For any direct product of rings
∏

Ri,

J
(∏

Ri

)
=

∏
J(Ri).

• For any ring R and any n ∈ N,

J(Mn(R)) = Mn(J(R)).

For proof of the above properties, an interested reader should see Lam [39]. We now

mention different types of nilpotency of an ideal I of a ring R.

Definition 2.1.1. An ideal I, of a ring R is called

(1) nilpotent, if In = 0 for some n ∈ N.

(2) locally nilpotent, if every finitely generated subring of I is nilpotent.

(3) nil, if every element of I is nilpotent.

The chain of containments is as follows:

nilpotent ⊆ locally nilpotent ⊆ nil ⊆ J(R).

Definition 2.1.2. A ring R is said to be

(1) left (right) artinian, if every descending chain of left (right) ideals in R has a mini-

mal element.

(2) semiprimary, if R/J(R) is artinian and J(R) is nilpotent.

(3) semilocal, if R/J(R) is artinian.

The chain of inclusions is as follows:

left (right) artinian ⊆ semiprimary ⊆ semilocal.

Definition 2.1.3. An ideal I of a ring R is said to be

(1) prime ideal, if I , R and for any ideals I1, I2 of R,

I1I2 ⊆ I implies that either I1 ⊆ I or I2 ⊆ I.

(2) semiprime ideal, if for any ideal I1 of R,

I1
2 ⊆ I implies that I1 ⊆ I.
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A prime ideal is always semiprime.

Definition 2.1.4. A ring R is said to be

(1) prime, if I1I2 = 0 implies that either I1 = 0 or I2 = 0, for any ideals I1 and I2 of R.

The above definition is equivalent to the definition of prime ring given by Lam as:

A ring R is prime if the (0) ideal is prime (see Lam [39, § 10]).

(2) semiprime, if R has no non-zero nilpotent ideal, or equivalently, if (0) is a

semiprime ideal (see Lam [39, § 10]).

Every prime ring is semiprime. The prime radical, P(R), of a ring R is the inter-

section of all prime ideals of R. An element a ∈ R is called strongly nilpotent, if every

sequence a1, a2, a3, ... such that a1 = a and ai+1 ∈ aiRai (for all i) is ultimately zero.

Proposition 2.1.5. The prime radical, P(R), of a ring R is precisely the set of all strongly

nilpotent elements of R.

Proof. See Lambek [40, Proposition 1, page 56]. □

So P(R) is a nil ideal, and hence P(R) ⊆ J(R).

2.2 UN Rings

An element e ∈ R is said to be an idempotent, if e2 = e. A ring R always has two trivial

idempotents namely 0 and 1. A ring R is called boolean, if every element of it is an

idempotent. Let I be an ideal of R, then we say that idempotents lift modulo I, if for an

idempotent r ∈ R/I there exists an idempotent e ∈ R such that r = e.

Proposition 2.2.1. Let I be a nil ideal in R, then idempotents can be lifted modulo I.

Proof. See Lam [39, Theorem 21.28] □

One of the active areas of research have been the rings whose elements can be written

as a sum/product of units/ idempotents/ nilpotent elements. Nicholson [48] developed the

idea of clean rings while studing the lifting of idempotents. An element a ∈ R is called

clean, if it can be represented as a sum of an idempotent and a unit. A ring R is said to

be clean ring, if every element of it is clean. The homomorphic image of a clean ring is

clean and direct product of clean rings is clean. If R is clean, then the matrix ring Mn(R)

is also clean (see [29, Corollary 1]). Some subclasses of clean rings are as follows.

Definition 2.2.2. A ring R is said to be
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(1) uniquely clean, if every element of it can be written uniquely as the sum of an

idempotent and a unit.

(2) strongly clean, if every element of it can be written as a sum of an idempotent and

a unit that commute.

(3) semiboolean, if R/J(R) is boolean and idempotents lift modulo J(R).

(4) nil clean, if its every element can be represented as a sum of an idempotent and a

nilpotent element.

(5) strongly nil clean, if its every element can be represented as a sum of an idempotent

and a nilpotent element that commute.

uniquely clean ⊆ semiboolean ⊆ clean.

strongly nil clean ⊆ nil clean ⊆ semiboolean ⊆ clean.

strongly nil clean ⊆ strongly clean ⊆ clean.

In clean ring, if we take the multiplication in place of addition, i.e., if every element

of a ring R can be represented as product of a unit and an idempotent, then we obtain the

well known class of unit regular rings. One can think of a multiplicatively analogue for

nil-clean rings, that is, rings in which every element is a product of an idempotent and a

nilpotent element. If we restrict ourselves to rings with identity, this class has no interest:

indeed, it is readily seen that such a ring cannot have identity (unless zero). Taking into

consideration the unit and nilpotent elements, Calugareanu and Lam in [8] defined a ring

as fine ring, if every non zero element of a ring R can be written as a sum of a unit and a

nilpotent element. They proved that the class of fine rings is a proper subclass of simple

rings. Now, if in place of addition, the multiplication of unit and nilpotent elements is

taken into consideration, then, Calugareanu in [7] defined UN ring. The simple artinian

rings are UN rings.

Definition 2.2.3. A ring R is called UN if every non-unit element of R is product of a unit

and a nilpotent element.

Any homomorphic image of a clean ring is again clean leads to the definition of a

neat ring. McGovern in [44] defined neat ring.

Definition 2.2.4. A ring R is said to be neat, if every non-trivial homomorphic image of

it is clean.
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Proposition 2.2.5. The following are equivalent for a ring R.

(1) R is neat.

(2) R/aR is clean for every nonzero a ∈ R.

(3) For any collection of nonzero prime ideals {P j} j∈J of R with I = ∩ j∈JP j different

than 0 we have R/I is clean.

(4) R/aR is neat for every a ∈ R.

(5) R/I is clean for every nonzero semiprime ideal.

Moreover, a homomorphic image of a neat ring is neat.

Proof. See [44, Proposition 2.1]. □

2.3 VNR Rings

Around 1935, John von Neumann in connection with his work on continuous geometry

and operator algebras, discovered von Neumann regular rings. For general background

and detailed information of von Neumann regular rings, one can see [26] and [32]. The

class of von Neumann regular rings is closed under homomorphic images, direct products,

and direct limits.

Definition 2.3.1. A ring R is said to be

(1) von Neumann regular (VNR) if for any a ∈ R, there exists x ∈ R such that a = axa;

(2) unit-regular if for any a ∈ R, there exists an invertible u ∈ U(R) such that a = aua;

(3) semiregular if for any a ∈ R, there exist a regular element b ∈ R such that a − b ∈

J(R) or equivalently, if R/J(R) is regular and idempotents lift modulo J(R);

(4) right (left) weakly regular if for any a ∈ R, there exist x, y ∈ R such that a =

axay(xaya);

(5) s-weakly regular (SWR) if for any a ∈ R, there exist x, y ∈ R such that a = axa2y.

A ring R is said to be semiprimitive if J(R) = 0; and R is semisimple if R is artinian

and semiprimitive. We list below the well known inclusions:
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semisimple

⇓

unit-regular =⇒ VNR =⇒ semiregular.

⇓

semiprimitive

strongly regular =⇒ VNR =⇒ weakly regular.

Theorem 2.3.2. For any ring R, the following are equivalent:

(1) For any a ∈ R, there exists x ∈ R such that x = xax.

(2) Every principal left ideal is generated by an idempotent.

(3) Every principal left ideal is a direct summand of RR.

(4) Every finitely generated left ideal is generated by an idempotent.

(5) Every finitely generated left ideal is a direct summand of RR.

Proof. See [39, Theorem 4.23]. □

Since the condition given in Defintion 2.3.1(1) is left-right symmetric, the last four

conditions are still valid if we replace the word ‘left’ by ‘right’.

Definition 2.3.3. A ring R is called local if for any a ∈ R, either a or 1 − a is invertible.

or equivalently, it has a unique maximal left (right) ideal.

A commutative ring with identity in which every prime ideal is contained in a unique

maximal ideal is called pm-ring. While studying pm-rings, Contessa discovered that a

commutative ring R with the property that for every a ∈ R, either a or 1 − a is VNR,

is a pm-ring. She called the commutative rings with this property as von Neumann local

rings. Later noncommutative rings with this property were also called von Neumann local

rings. After Contessa, von Neumann local rings were studied by many authors, one can

see [11; 15; 27] and [51].

Definition 2.3.4. A ring R is said to be:

(1) Von Neumann local (VNL) if for any a ∈ R, either a or 1 − a is VNR.

(2) almost unit regular if for any a ∈ R, either a or 1 − a is unit regular.

(3) feckly semiregular, if for any a ∈ R, either a or 1 − a is semiregular.
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abelian VNL =⇒ almost unit regular =⇒ VNL.

semiregular =⇒ feckly semiregular

⇑

VNL.

2.4 Hurwitz Series and Skew Hurwitz Series Rings

Following F. keigher [33], Hurwitz series ring over R is denoted by HR and the elements

of HR are functions f : N→ R, where N is the set of natural numbers and f is a sequence

of the form (an), with componentwise addition and the multiplication for each f = (an),

g = (bn) ∈ HR is defined as (an)(bn) = (cn) where cn =

n∑
m=0

 n

m

 ambn−m for all n ∈ N.

Clearly, HR is a ring with identity 1 = (1, 0, 0, . . . ). The concept of Hurwitz series rings

were extended by K. Paykan (see [55]). The skew Hurwitz series ring A = (HR, α) over

R and α ∈ End(R) is defined as follows: the elements of A = (HR, α) are the ordinary

function f : N→ R with componentwise addition and the operation of multiplication for

each f , h ∈ A is defined as

( f h)(n) =
n∑

m=0

 n

m

 f (m)αm(h(n − m))

for all n ∈ N, where

 n

m

 is the binomial coefficient.

Define the mappings ln : N→ R and l
′

r : N→ R by

ln(x) =


1 x = n − 1

0 x , n − 1
, l

′

r(x) =


r x = 0

0 x , 0

respectively. It can be easily shown that A = (HR, α) is a ring with identity l1 : N → R

defined as l1(0) = 1 and l1(n) = 0 for all n ≥ 1.

Let GR : R → A is a ring homomorphism defined as GR(r) = l
′

r for any r ∈ R. The ring R

is then canonically embedded as a subring of A via r ∈ A 7→ l
′

r ∈ A. Also, let ER : A→ R

is a ring homomorphism defined as ER( f ) = f (0) for any f ∈ A. Note that ER ◦ GR = 0.

2.5 Group Theory

In this section, we will take a look at some preliminary aspects of group theory.

Definition 2.5.1. A group G is called



12 Preliminaries

(1) periodic or torsion, if every element of it is of finite order.

(2) locally finite, if every finitely generated subgroup of it is finite.

Obviously, every locally finite group is periodic; whether the converse holds is the

famous Burnside’s problem. A more stronger condition than local finiteness is locally

normal. A group G is called locally normal, if every finite subset of it is contained in

a finite normal subgroup of G. A group G in which all the elements, except the identity

element, have infinite order is called torsion free, e.g., infinite cyclic group, C∞, is a

torsion free group.

Definition 2.5.2. A group G is called a p-group, if the order of every element of G is a

power of the fixed prime p.

Note that every p-group is a torsion group.

Theorem 2.5.3. [57] If G is an abelian torsion group, then G is finitely generated.

Definition 2.5.4. The FC-center or FC-subgroup of a group G is the set of all elements

of G that have finitely many conjugates in G.

We denote the FC-center of G by ∆(G). It is easy to see that ∆(G) = {x ∈ G||G :

CG(x)| < ∞}. If G = ∆(G), then G is said to be an FC-group. We denote the torsion

FC-group by ∆+(G), so ∆+(G) = {x ∈ G||G : CG(x)| < ∞ and o(x) < ∞}. If G = ∆+(G),

then G is locally normal.

2.6 Group Rings

The group ring, RG, of a group G over a ring R is the set of all formal linear combinations

of the form

α =
∑
g∈G

agg

where ag ∈ R and ag = 0 for all but finitely many, that is , only a finite number of

coefficients are different from 0 in each of these sums. Sum of two elements in RG is

defined componentwise

α + β =
∑
g∈G

(ag + bg)g.

And product is given by

αβ =
∑
g,h∈G

agbhgh.
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We can write the product αβ also as:

αβ =
∑
q∈G

cqq

where

cq =
∑
gh=q

agbh.

It is easy to verify that, with the operations defined above RG is a ring with identity;

namely the element

1 =
∑
g=G

ugg,

where the coefficient corresponding to the identity element of the group is equal to 1 and

ug = 0 for every other element g ∈ G.

A product of elements in RG by an element λ ∈ R is defined as:

λ
(∑
g∈G

agg
)
=

∑
g∈G

(λag)g.

Again, with the operations defined above RG is an R-module. If R is commutative, then

RG is called the group algebra of G over R.

(1) Given an element α =
∑
g∈G agg in RG, support of α, denoted by supp(α), is the

subset of elements in G that have nonzero coefficient in the expression of α, i.e.,

supp(α) = {g ∈ G : ag , 0}.

(2) The homomorphism ω : RG → R given by

ω
(∑
g∈G

agg
)
=

∑
g∈G

ag

is called the augmentation map and its kernel, denoted by ωG, is called the aug-
mentation ideal of RG. So we have RG/ωG � R.

(3) Notice that if an element α =
∑
g∈G agg belongs to ωG then ω

(∑
g∈G agg

)
=∑

g∈G ag = 0. So, we can write α in the form

α =
∑
g∈G

agg −
∑
g∈G

ag =
∑
g∈G

ag(g − 1).

Thus the ideal ωG is generated by the set {g − 1 : g ∈ G, g , 1}.

If H is a subgroup of G, then we define ωH as the left ideal of RG generated by

{1−h : h ∈ H}. In particular, if H is a normal subgroup of G, then ωH is a two sided ideal

of RG. For more results related to group rings, one can see [17; 45] and [54].
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Lemma 2.6.1. Let H be a normal subgroup of G, then RG/ωH � R(G/H).

Proof. Let us define the mapping ξ : RG → R(G/H), as follows:

ξ(
∑
g∈G

agg) =
∑
g∈G

ag(gH).

Clearly it is an epimorphism. First we show that ωH ⊆ ker(ξ). We have ξ[g(1 − h)] =

gH − ghH = 0. So g(1 − h) ∈ ker(ξ) for all g ∈ G, h ∈ H. Thus, ωH ⊆ ker(ξ).

Conversely, let α = Σg∈Gagg ∈ ker(ξ). Let T be a transversal of H in G. We denote

by tH the image of t ∈ T in the quotient group G/H. So we have

0 = ξ(α) =
∑
g∈G

aggH =
∑
t∈T

[∑
h∈H

ath

]
tH.

So, for all t ∈ T we get Σh∈Hath = 0, and hence Σh∈Hatht = 0. Thus we have

α =
∑
g∈G

agg =
∑
t∈T

∑
h∈H

athth =
∑
t∈T

∑
h∈H

athth −
∑
h∈H

atht =
∑
t∈T

∑
h∈H

atht(h − 1) ∈ ωH.

From above we get ker(ξ) ⊆ ωH. Therefore, ker(ξ) ⊆ ωH, and hence RG/ωH � R(G/H).

□

Lemma 2.6.2. Let I be a two sided ideal of a ring R. Then IG = {
∑
g∈G agg ∈ RG : ag ∈ I}

is a two sided ideal of RG and RG/IG � (R/I)G.

Proof. Any element in (IG)(RG) is of the form αβ, for some α =
∑
g∈G agg ∈ IG and

β =
∑

h∈G rhh ∈ RG, where ag ∈ I and rh ∈ R. Now

αβ =
∑
q∈G

cqq.

where, cq =
∑
gh=q agrh ∈ I, because I is an ideal of R. So αβ ∈ IG, and hence (IG)(RG) ⊆

IG. Similarly, we can show that (RG)(IG) ⊆ IG. Therefore, IG is a two sided ideal of

RG.

The mapping θ : RG → (R/I)G, induced from the natural map ϕ : R→ R/I gives us

that

θ(
∑
g∈G

agg) =
∑
g∈G

(ag + I)g =
∑
g∈G

agg + IG.

So the ker(θ) = IG, and hence RG/IG � (R/I)G. □

Proposition 2.6.3. The group ring RG is VNR if and only if

(1) R is VNR,

(2) G is locally finite, and

(3) the order of every element of G is invertible in R.

Proof. See Connell [17, Theorem 3]. □



Chapter 3

UN Rings and Group Rings

A ring R is called UN ring if every non-unit of it can be written as product of a unit and

a nilpotent element. We obtain results about lifting of conjugate idempotents and unit

regular elements modulo an ideal I of a UN ring R. Matrix rings over UN rings are

discussed and it is obtained that for a commutative ring R, a matrix ring Mn(R) is UN if

and only if R is UN. Lastly, UN group rings are investigated and we obtain the conditions

on a group G and a field K for the group algebra KG to be UN. Then we extend the

results obtained for KG to the group ring RG over a ring R (which may not necessarily

be a field).

3.1 Introduction

In last two decades one of the active areas of research have been the rings whose elements

can be written as a sum/product of units/ idempotents/ nilpotent elements. For example,

clean rings are those in which every element of the ring R can be written as sum of a

unit and an idempotent. If in place of addition, we take the multiplication, i.e., if every

element of a ring R can be written as product of a unit and an idempotent, then we obtain

the well known class of unit regular rings. Taking into consideration the unit and nilpotent

elements, Călugăreanu and Lam in [8] defined a ring as fine ring, if every non zero element

of a ring R can be written as a sum of a unit and a nilpotent element. They proved that

the class of fine rings is a proper subclass of that of simple rings. Now, if in place of

addition, the multiplication of unit and nilpotent elements is taken into consideration,

then, Călugăreanu in [7] defined a ring R to be UN ring if every non-unit of R can be

15
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written as product of a unit and a nilpotent element. A non unit element x ∈ R is called

Strongly UN if in its UN-decomposition, the unit and nilpotent commute.

In section 3.2, we discuss certain properties of UN rings. Lifting of various types

of elements modulo an ideal I have been studied by Khurana, Lam and Nielsen in [35].

We discuss lifting properties of UN rings modulo an ideal I. It is pertinent to mention

here that the lifting properties like conjugate idempotent lifting and unit regular elements

lifting are considered modulo a two sided ideal in contrast to the exchange rings, where

idempotents lift modulo each left (right) ideal. Then we discuss the question raised by

Călugăreanu [7] that "is Mn(R) over a UN ring R, also UN?". We obtain that if R is

commutative, then Mn(R) is UN if and only if R is UN.

In section 3.3, we focus on UN group rings. The group rings involving units and

idempotents to represent every element as sum (clean ring)/product (unit regular ring) of

these elements have been studied by many authors. So, our focus is on the group rings

involving units and nilpotent elements, i.e., fine rings and UN rings. A group ring RG can

never be a fine ring, because a fine ring is a simple ring and RG always has ω(G) as its

proper ideal. So, we investigate the structure of UN group rings. We first take up the case

of group algebra KG of a group G over a field K. We obtain the result that if charK = 0,

then KG can be a UN ring if and only if G is trivial. If charK = p, then KG is a UN ring

implies that the group G must be a p-group and the converse holds if G is locally finite.

Next we investigate that what could be the characteristic of a UN ring R. We arrive at the

conclusion that the charR of a UN ring can be either 0 or pα and particularly in case of

group ring RG, the characteristic of R can not be 0. Then we investigate the structure of

the group ring RG of a group G over an arbitrary ring R (which may not necessarily be a

field) and obtain the result that if RG is a UN ring then R is a UN ring, G is a p-group and

p ∈ J(R); and the converse holds if G is locally finite.

3.2 UN Rings

We list below some of the properties of UN rings in the form of the Lemma, which we

will require in the following sections.

Lemma 3.2.1. Let R be a ring, then the following statements hold:

(1) A UN ring is left-right symmetric ([7], Proposition 1(3)).

(2) Homomorphic image of a UN ring is UN ([7], Proposition 3(1)).

(3) Let I be a nil ideal of R, then R is UN if and only if R/I is UN ([67], Proposition

0(a)).
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(4) A UN ring has no nontrivial central idempotents ([67], Proposition 0(c)).

(5) Every left or right regular element of a UN ring R is invertible, i.e., R is its own

classical ring of quotients ([67], Proposition 0(f)).

The classes of local rings and UN rings are separate, some examples to this effect

can be found in [7]. We prove a theorem below and using it we get a result somewhat in

line with local rings.

Theorem 3.2.2. Let I ◁ R, then the following are equivalent:

(1) R/I is UN.

(2) R/In is UN for all n ∈ N.

(3) R/In is UN for some n ∈ N.

Proof. (1)⇒(2) Let I ◁ R and R/I be UN. It can be seen that

R/I � (R/In)/(I/In).

Since (I/In) is nilpotent in (R/In), the result follows by Lemma 3.2.1(c).

(2)⇒(3) is evident.

(3)⇒(1) Let R/In be UN for some n ∈ N. As homomorphic image of a UN ring is UN

and

R/I � (R/In)/(I/In).

So we get that R/I is UN. □

By using the above Theorem we get a result for UN rings similar to the local rings

([39], Ex. 19.5).

Corollary 3.2.3. Let I ◁ R such that I is maximal as a left ideal, then R/In is a UN ring

for all n ∈ N.

3.2.1 Lifting Properties

In this subsection we discuss about lifting properties of UN rings. We start with the

definition of isomorphic and conjugate idempotents in R.

Definition 3.2.4. Two idempotents e ∈ R and f ∈ R are called

• conjugate (written as e ∼ f ), if f = u−1eu for some u ∈ U(R).

• isomorphic (written as e � f ), if eR � f R as right R-modules.
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The well known results about isomorphic and conjugate idempotents are mentioned

below in the form of Lemmas.

Lemma 3.2.5. Let e and f be idempotents in a ring R, then following are equivalent

(1) e ∼ f .

(2) e � f and (1 − e) � (1 − f ).

Lemma 3.2.6. Let e and f be idempotents in a ring R, then following are equivalent

(1) e � f .

(2) eR � f R as right R-modules.

(3) Re � R f as left R-modules.

(4) e = ab and f = ba for some a, b ∈ R.

We observe that if e be a non trivial idempotent in a UN ring R with e = ut for

some u ∈ U(R) and t ∈ N(R), then t is unit regular with t = tut. And also f = tu is an

idempotent isomorphic as well as conjugate to e.

Let I ◁ R, we say that idempotents lift modulo I if for any idempotent ē ∈ R/I there

exists an idempotent x ∈ R such that x̄ = ē. And conjugate idempotents ē, f̄ ∈ R/I are

said to lift modulo I if there exit conjugate idempotents x and y in R such that x̄ = ē and

ȳ = f̄ .

Theorem 3.2.7. In a UN ring if idempotents lift modulo an ideal I, then conjugate idem-

potents lift modulo I.

Proof. Let R be a UN ring and I ◁ R such that idempotents lift modulo I. Let ē, f̄ ∈ R/I

be conjugate idempotents in R/I such that f̄ = u−1ēū for some unit ū ∈ U(R/I). Since

idempotents lift modulo I, there exit idempotents x and y ∈ R such that x̄ = ē and ȳ = f̄ .

Let pre image of ū in R be v. As R is UN, so if v < U(R), then v = wt for some w ∈ U(R)

and t ∈ N(R). So,

ū = v̄ = w̄t̄ =⇒ t̄ = w−1v̄ ∈ U(R/I)

which is not possible. Thus, v ∈ U(R) and hence pre-image of u−1ēū is v−1xv = z (say),

which is an idempotent conjugate to x and z̄ = f̄ . □

Theorem 3.2.8. Let R be a UN ring and I ◁ R. Then unit regular elements lift modulo I

if and only if idempotents lift modulo I.
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Proof. Let R be UN and unit regular elements lift modulo I. Let ē be an idempotent in

R/I. As idempotents are unit regular elements, so ē lifts to a unit regular element, say

x ∈ R, such that x = xvx for some v ∈ U(R). By using the fact that x = xvx, it is a routine

calculation to check that

(x − v(x2 − x))2 = x − v(x2 − x).

So y := x − v(x2 − x) is an idempotent in R. Also as x̄ = ē, it can be easily seen that

x2 = x.1.x = x̄1̄x̄ = ē1̄ē = ē.

Thus, we get (x2 − x) ∈ I, which implies that ȳ = x̄ = ē. Hence ē lifts to an idempotent in

R.

Conversely, let idempotents lift modulo I. Let a ∈ R/I be unit regular. It is well

known that a unit regular element is a multiple of a unit and an idempotent. So ā = ūē for

some ū ∈ U(R/I) and ē2 = ē. By following the proof of above Theorem 3.2.7, we get that

ū lifts to some v ∈ U(R) and by given hypothesis ē lifts to some idempotent z ∈ R. Thus,

ā lifts to a unit regular element vz. □

3.2.2 UN Matrix Rings

In this subsection we discuss the question raised by Călugăreanu in [7] that "is Mn(R)

over a UN ring R, also UN?". As introduced in [63], a ring R is called a US-ring if every

non unit element of it can be written as product of a unit and a strongly nilpotent element.

An element x ∈ R is called strongly nilpotent, if every sequence x = x0, x1, x2, · · · such

that xi+1 ∈ xiRxi converges to zero. It is evident that every strongly nilpotent element is

nilpotent but the converse may not hold good ([63, Example 1]). In case of a commutative

ring R, an element is strongly nilpotent element iff it is nilpotent.

Theorem 3.2.9. Let R be ring.

(1) If R is a US-ring, then Mn(R) is UN.

(2) If Mn(R) is UN, then C(R) is a US-ring.

Proof. (1) It is well known that Mn(R)/J(Mn(R)) � Mn(R/J(R)). Since R is a US-ring, by

[63, Theorem 1] we get that R/P(R) is a division ring, and hence J(R) = P(R). Then by [7,

Corollary 7], Mn(R/J(R)) � Mn(R)/J(Mn(R)) is UN. By using the fact that P(Mn(R)) =

Mn(P(R)), we obtain that

J(Mn(R)) = Mn(J(R)) = Mn(P(R)) = P(Mn(R))



20 UN Rings and Group Rings

is nil. Thus, we have obtained that Mn(R)/J(Mn(R)) is UN and J(Mn(R)) is nil. By Lemma

3.2.1(c), we get that Mn(R) is UN.

(2) Let Mn(R) be UN. The center of Mn(R) is C(Mn(R)) = {aIn : a ∈ C(R)}, i.e., the

scalar matrices of the form aIn for a ∈ C(R). We have C(Mn(R)) � C(R) by the mapping

f : C(R) → C(Mn(R)) defined by f (a) = aIn, a ∈ C(R). Now the result follows from

[67, Proposition 0(b)] and the fact that in a commutative ring, the nilpotent and strongly

nilpotent elements coincide.

□

Corollary 3.2.10. Let R be a commutative ring, then Mn(R) is UN if and only if R is UN.

Corollary 3.2.11. [72] Let R be a commutative ring, then Mn(R) is UN if and only if R is

a local ring with J(R) nil.

A ring R is called 2-primal if R/I is a domain for every minimal prime ideal I of R.

It is well known in literature that for 2-primal rings P(R) = N(R).

Corollary 3.2.12. Let R be a 2-primal UN ring, then Mn(R) is UN.

Since a reduced UN ring is a division ring, we get the result obtained by Călugăreanu

in [7] as a corollary of the above Theorem.

Corollary 3.2.13. A simple Artinian ring is UN.

3.3 UN Group Rings

3.3.1 Group Algebra

First we take up the case of group algebra of a group G over a field K. If G is a finite

group, then let us denote by Ĝ, the following element of KG, Ĝ =
∑
g∈G g.

Theorem 3.3.1. Let K be a field and G be a group.

(1) If charK = 0, then KG is UN if and only if G = (1).

(2) If charK = p, then KG is UN implies that G is a p-group; the converse holds if G

is locally finite.

Proof. First of all we see that if KG is UN, then G is a torsion group irrespective of

whether characteristic of field K is 0 or p. Let g ∈ G, then 1 − g < U(KG). So 1 − g = ut

for some u ∈ U(KG) and t ∈ N(KG). If g , 1, then t , 0 and we can choose a positive
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integer k such that tk = 0 but t(k−1) , 0. Thus, we have (1 − g)t(k−1) = utk = 0. So 1 − g is

a zero divisor in KG. Hence, the order of g is finite ([17], Proposition 6).

(1) Let charK = 0. If G is a finite group, then |G|−1 ∈ K. So there would exist a

central idempotent 1
|G|Ĝ in KG, which is a contradiction to Lemma 3.2.1(d). Hence, KG

can not be UN for a nontrivial finite group G. Now, let us consider the case of infinite

group. We observe that, again in light of Lemma 3.2.1(d), G can not be an abelian group.

So the only case left out is that G be a non abelian group. In view of Lemma 3.2.1(e) and

[[54], Theorem 3.13, page 54] G must be a locally finite group. As G is locally finite,

so KG is VNR ring and in particular J(KG) = 0. So, ω(G) is not a quasi regular ideal.

Thus, there must exist an α ∈ ω(G) such that 1 − α < U(KG). Since KG is UN, we get

1 − α = ut for some u ∈ U(KG) and t ∈ N(KG). Applying augmentation map we get

ω(1 − α) = ω(ut) =⇒ 1 = ω(u)ω(t) =⇒ ω(t) = ω(u)−1, which is absurd. Thus in all the

above cases, for KG to be a UN ring, the group G must be trivial.

The converse part is straight forward, since every field is a UN ring.

(2) Let charK = p. If G is a finite group, then |G| , p′, because if it is so then

there would exist a central idempotent 1
|G|Ĝ and hence contradicting Lemma 3.2.1(d).

So, let |G| = pkm with (p,m) = 1. By Cauchy’s Theorem there exists an element g ∈

G of order p′ such that p′|m. As (1 + g + g2 + .... + g(p′−1))(1 − g) = 0, so we get

(1+g+g2+ ....+g(p′−1)) = ut for some u ∈ U(KG) and t ∈ N(KG). Applying augmentation

map we get ω(1 + g + g2 + .... + g(p′−1)) = ω(ut) =⇒ p′ = ω(u)ω(t) =⇒ ω(t) = p′ω(u)−1,

which is a contradiction, since p′ ∈ U(K). Thus, G must be a p-group. Now let us

consider G to be an infinite group. If G is abelian, then G should be p-group, because

otherwise there would exist non trivial central idempotents in KG. If G is non abelian,

then following the method adopted for finite group, it can be shown that G is a p-group,

as desired.

Conversely, let G be a locally finite p-group and K be a field of characteristic p. By

[17, Proposition 16(ii)], ω(G) is a nil ideal. As is well known that KG/ω(G) � K, so

following Lemma 3.2.1(c) we get that KG is a UN ring. □

3.3.2 Group Ring

Before taking up the group ring case, we discuss the characteristic of a UN ring and

obtain the following results below.

Lemma 3.3.2. Let R be a UN ring and n ∈ Z, the set of integers. Then for an element

n ∈ R, either n ∈ U(R) or n ∈ N(R).
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Proof. If n < U(R), then n = ut for some u ∈ U(R) and t ∈ N(R). This amounts to

u−1nu = tu =⇒ u−1(1 + 1 + .... + 1︸            ︷︷            ︸
n times

)u = tu =⇒ n = tu. Thus, n is strongly UN and in

particular n ∈ N(R). □

Lemma 3.3.3. Let R be a UN ring and charR = n, then either n = 0 or n = pα, for some

prime p and in this case p ∈ J(R).

Proof. If n , 0, then we can write n = pα1
1 pα2

2 ....p
αk
k , where pi’s are primes. Since n = 0 in

R, at least one of the pi’s is nilpotent in R. It can be easily seen that this is possible only

when k = 1. Thus, charR = pα. Now, if charR = pα, then p ∈ N(R). Since, xp = px for

all x ∈ R, we get xp ∈ N(R) for all x ∈ R. So, 1− xp ∈ U(R) for all x ∈ R. Thus, p ∈ J(R)

([39], Lemma 4.1). □

Now let us consider the group ring of a group G over an arbitrary ring R (which may

not necessarily be a field).

Theorem 3.3.4. Let R be a ring and G be a non trivial group. If RG is UN, then R is UN

of characteristic pα, G is a p-group and p ∈ J(R); the converse holds if G is locally finite.

Proof. Let RG be UN, then by augmentation map ω : RG → R, we obtain that R is a

homomorphic image of RG. So, by Lemma 3.2.1(b), R is UN. Going by the proof of

Theorem 3.3.1, it can be seen that G is a torsion group. Now let if possible charR = 0,

then by Lemma 3.3.2 all n(, 0) ∈ Z are invertible in R. Thus |g|−1 ∈ R for all g ∈ G.

Following the proof of Theorem 3.3.1, G can neither be a finite group nor an infinite

abelian group. Now, let G be an infinite non abelian group and let the order of an element

g(, 1) ∈ G be m, for some positive integer m. So, we have that (1 + g + g2 + .... +

g(m−1))(1 − g) = 0 =⇒ 1 + g + g2 + .... + g(m−1) = ut for some u ∈ U(RG) and t ∈ N(RG)

=⇒ ω(1 + g + g2 + .... + g(m−1)) = ω(ut) =⇒ m = ω(u)ω(t) =⇒ ω(t) = mω(u)−1, which

is not possible, since m ∈ U(R). Thus, charR , 0. By Lemma 3.3.3, if charR , 0, then

charR = pα. In this case also following the proof of Theorem 3.3.1, we can arrive at the

result that G can not have p′ elements and hence, G is a p-group. By Lemma 3.3.3, we

get p ∈ J(R).

Conversely, let R be a UN ring of characteristic pα, G a locally finite p-group and

p ∈ J(R). By [17, Proposition 16(ii)], ω(G) is a nil ideal. By augmentation map ω :

RG → R, we observe that RG/ω(G) � R. Because R is UN, we get RG is UN (by

Lemma 3.2.1(c)). □

Since an abelian torsion group is locally finite, for the commutative group rings we

get:



3.3 UN Group Rings 23

Corollary 3.3.5. Let R be a commutative ring and G be a non trivial abelian group. Then,

RG is UN if and only if R is UN of characteristic pα, G is a p-group and p ∈ J(R).

The above results resemble to the result obtained for local group rings by Nicholson

in [47]. But we give below group ring specific examples which show that a UN group

ring may not be local and a local group ring may not be UN.

Example 3.3.6. Let us consider the group ring RG, where R = M2(Z2) (Z2 be the ring

of integers modulo 2) and G = C2 be a cyclic group of order 2. By the mapping ϕ :

M2(Z2)C2 → M2(Z2C2) defined by

ϕ
(
Σk

i=1(Aigi)
)
= (ci j),

where ci j = Σ
k
t=1a(m)

i j gm and a(l)
i j is the i-th row and j-th column entry of At; it can be seen

that M2(Z2)C2 � M2(Z2C2).

Now e =

 1 1 + g

0 0

 is a non zero idempotent in M2(Z2C2). And hence,

M2(Z2C2) � M2(Z2)C2 = RG is not local. By [7, Corollary 7], M2(Z2) is UN and thus by

Theorem 3.3.4 it follows that RG = M2(Z2)C2 is a UN ring.

Example 3.3.7. Let R = Z(p), i.e., the localization of the ring of integers at a prime ideal

generated by p and G = Cp be a cyclic group of order p, where p is a prime. We consider

the group ring RG. By [47, Theorem], RG is a local ring.

It is well known that R is a domain and hence a reduced ring; but R is not a field.

Since a reduced UN ring is a division ring, we get that R is not UN. Thus, by Theorem

3.3.4, RG is not UN.





Chapter 4

On UQ rings

In this chapter, we introduce UQ rings. A ring R is called UQ if every non-unit element

of R can be represented as a product of a unit and a quasiregular element. We provide

various properties of UQ rings along with its characterizations. We give a new char-

acterization of 2-good rings, and it turns out that 2-good rings are precisely the rings in

which every element is a product of a unit and a quasiregular element. We discuss various

extensions of UQ rings such as Morita contexts, generalized matrix rings, formal matrix

rings, group rings etc.

4.1 Introduction

The class of UN rings has investigated in depth in [7] and [67]. In [66], 2-good rings

were introduced by Vámos. A ring in which every element is a sum of two units is called

2-good. In [7], it has been observed that UN rings with 2-good identity are 2-good, and

asked a question to refine the inclusion {UN rings with 2-good identity}⊂{2-good rings},

i.e., find the classes C of rings such that {UN rings with 2-good identity}⊂ C ⊂{2-good

identity}. Responding to this question, Zhou in [72] gave an example that refines the

above inclusion by taking C = {rings: R/J(R) is UN}. For convenience, we call such a

class of rings a J-UN ring.

Motivated by papers [7; 72], here, we introduce a new class of rings called UQ rings.

An element a ∈ R is called quasiregular if 1 + a is a unit in R.

Definition 4.1.1. A ring R is called UQ if every non-unit element of R can be represented

as a product of a unit and a quasiregular element.

25
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In section 4.2, we obtain various properties of UQ rings and examples are provided

to show that the class of UQ rings properly contains classes of UN rings, J-UN rings and

2-good rings. The subring of a UQ ring may not be UQ. It is shown that if R is UQ,

then the corner ring eRe is UQ for every idempotent e ∈ R. But if corner rings eRe and

(1 − e)R(1 − e) are UQ, then R need not be UQ. We provide various characterizations of

UQ rings. We obtain a new characterization of 2-good rings, and it turns out that UQ rings

with 2-good identity are equivalent to 2-good rings. In section 4.3, we discuss extensions

of matrix rings. For a ring R and s ∈ C(R), we characterize the generalized matrix ring

Ks(R) over R to be UQ ring with quasiregular identity. Moreover, we discuss that the

formal matrix ring Mn(R; s) over R is a UQ ring with quasiregular identity if and only if

R is a UQ ring with quasiregular identity and s ∈ J(R). If s = 1, then the matrix ring

Mn(R) is a special case of the formal matrix ring Mn(R; s). Section 4.4 is devoted for

the discussion of group ring RG to be UQ ring. We determine necessary and sufficient

conditions for a commutative group ring RG to be UQ. It is proved that for a commutative

ring R and an abelian group G, if RG is UQ, then R is UQ and G is torsion. The converse

holds if G is locally finite p-group where p ∈ J(R) is a prime number. We prove that for

a ring R with Q(R) identity and a finite abelian group G of exponent 2, the group ring RG

is UQ if and only if RC2 is UQ. Also, we determine when the group ring is UQ for an

artinian ring.

4.2 On UQ Rings

We first recall some definitions. A ring R whose units are sums 1+n for a suitable nilpotent

element n, is called UU ring. A ring R is UU if and only if every quasiregular element is

nilpotent. Recall that J(R) is the unique maximal left quasiregular ideal of R.

Example 4.2.1. (1) Every element in J(R) is UQ.

(2) Every element in N(R) is UQ.

(3) A local ring is a UQ ring.

(4) If R is UU ring, then R is UQ if and only if R is UN.

(5) Simple artinian ring is a UQ ring.

(6) A semilocal ring R with Q(R) identity is UQ.
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If a ∈ R is a quasiregular element, then a = (1 + a) − 1 is 2-good. Since units can be

quasiregular, a quasiregular element may not be UQ: 0 1

1 1

 = I2 +

 −1 1

1 0

 .
Conversely, UQ elements may not be quasiregular: −1 −1

0 0

 =
 2 1

1 1


 −1 −1

1 1


is UQ but not quasiregular since

I2 +

 −1 −1

0 0

 =
 0 −1

0 1


is not a unit.

If R is a UQ ring, then for any non-unit element a ∈ R we have a = uq where

u ∈ U(R) and q ∈ Q(R). Since qu = u(u−1qu) where u ∈ U(R) and u−1qu ∈ Q(R), so the

left-right symmetric definition is equivalent in a UQ ring.

Proposition 4.2.2. If a ∈ R is a UQ element, then uav is UQ for any u, v ∈ U(R).

Proof. Since a is UQ, a = wq where w ∈ U(R) and q ∈ Q(R). Then uav = (uwv)(v−1qv)

with uwv ∈ U(R) and v−1qv ∈ Q(R). □

Lemma 4.2.3. (1) Any homomorphic image of a UQ ring is UQ.

(2) Any homomorphic image of a UQ ring with quasiregular identity is a UQ ring with

quasiregular identity.

Proof. (1) The result follows from the fact that every homomorphic image of a unit and a

quasiregular element is again a unit and a quasiregular element, respectively.

(2) It is similar to the proof of (1). □

Lemma 4.2.4. Let {Rλ}λ∈Λ be a family of rings and R =
∏

λ∈Λ Rλ.

(1) The direct product R is a UQ ring with quasiregular identity if and only if Rλ, for

all λ ∈ Λ, is a UQ ring with quasiregular identity.

(2) The direct product R is UQ if each Rλ, λ ∈ Λ, is a UQ ring with quasiregular

identity.
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Proof. (1) (⇒) It follows from Lemma 4.2.3.

(⇐) Suppose that for all λ ∈ Λ, Rλ is a UQ ring with quasiregular identity. Then

for a non-unit element aλ ∈ Rλ, we have aλ = uλqλ for some uλ ∈ U(Rλ)

and qλ ∈ Q(Rλ). Let (a1, a2, . . . , aλ, . . . ) be an element in R. If each aλ is

a non-unit, then (a1, a2, . . . , aλ, . . . ) is a non-unit element in R. Thus we have

(a1, a2, . . . , aλ, . . . ) = (u1q1, u2q2, . . . , uλqλ, . . . ) = (u1, u2, . . . , uλ, . . . )(q1, q2, . . . , qλ, . . . )

where (u1, u2, . . . , uλ, . . . ) ∈ U(R) and (q1, q2, . . . , qλ, . . . ) ∈ Q(R). If some aλ is a unit,

then (a1, a2, . . . , aλ, . . . ) is a non-unit in R. Since each Rλ is a UQ ring with quasiregu-

lar identity, so unit element aλ = aλ1 where aλ ∈ U(Rλ) and 1 is quasiregular identity.

Thus we obtain that (a1, a2, . . . , aλ, . . . ) = (u1, u2, . . . , aλ, . . . )(q1, q2, . . . , 1, . . . ) where

(u1, u2, . . . , aλ, . . . ) ∈ U(R). As (1, 1, . . . , 1, . . . ) + (q1, q2, . . . , 1, . . . ) = (1 + q1, 1 +

q2, . . . , 2, . . . ) ∈ U(R), (q1, q2, . . . , 1, . . . ) ∈ Q(R). Hence, R is a UQ ring with quasiregular

identity.

(2) It follows from (1) and by the fact that a UQ ring with quasiregular identity is a UQ

ring. □

If ring Rλ in Lemma 4.2.4 is a UQ ring without quasiregular identity, then the fol-

lowing example shows that Lemma 4.2.4 need not be true.

Example 4.2.5. Let R = Z4 × Z4. Here, Z4 is a UQ ring without quasiregular identity.

Then R is not UQ because non-unit element (2, 3) cannot be written as the product of a

unit and a quasiregular element in R.

Remark 4.2.6. (1) From above Example 4.2.5, we also conclude that if corner rings

eRe and (1 − e)R(1 − e) are UQ, then R may not be UQ.

(2) The triangular matrix ring is not UQ. For example, T2(Z2).

(3) The subring of a UQ ring need not be UQ. For example, M2(Z2) is a UQ ring by

Example 4.2.1. However, the subring T2(Z2) is not UQ.

A ring R is called strongly π-regular if for every element a ∈ R there exists a positive

integer n (depending on a) and an element x ∈ R such that an = an+1x.

Proposition 4.2.7. Let R be a strongly π-regular ring with trivial idempotents. Then R is

a UQ ring.

Proof. Suppose that R is a strongly π-regular ring. Then by [6, Proposition 2.6], R is a

strongly clean ring. So R being strongly clean with trivial idempotents implies that R is

local. Thus R is a UQ ring. □
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In general, the converse of above Proposition 4.2.7 is false which is shown in the

following example.

Example 4.2.8. Let R = {mn ∈ Q | n is odd }. Then R is local. It follows that R is UQ.

However, since J(R) is not nil, R is not strongly π-regular.

Remark 4.2.9. If R is strongly π-regular ring R with Q(R) identity, then by [25, Theo-

rem 3], every element of R can be written as a sum of two units. Thus R is a 2-good ring.

Hence, R is a UQ ring.

Theorem 4.2.10. Let R be a ring. Then R is a UQ ring if and only if R/J(R) is UQ.

Proof. (⇒) By Lemma 4.2.3, it is obvious.

(⇐) Let R = R/J(R) be a UQ ring and a ∈ R\U(R). Then a = uq where u ∈ U(R)

and q ∈ Q(R). We can write a = uq + j for some j ∈ J(R). Then a = u(q + u−1 j) where

u ∈ U(R) and q + u−1 j ∈ Q(R) since 1 + q + u−1 j ∈ U(R) + J(R) = U(R). □

Let I be an ideal of a ring R. If R is UQ, then the factor ring R/I is also UQ. In

general, however, the converse is not true. For example, let R = Z. Then for any prime p,

R/I = Z/pZ � Zp is UQ but Z is not UQ. The following corollary shows that this result

is true if I is contained in J(R).

Corollary 4.2.11. Let I be an ideal of a ring R with I ⊆ J(R). Then R is a UQ ring if and

only if R/I is UQ.

Let P(R) represents prime radical of R. The ideal P(R) is a nil ideal in R and so

P(R) ⊆ J(R). As a result, we may immediately come to the following corollary.

Corollary 4.2.12. Let P(R) be a prime radical of R. Then R is UQ if and only if R/P(R)

is UQ.

Corollary 4.2.13. Let R be a ring. Then R[[x]] is a UQ ring if and only if R is UQ.

Proof. (⇒) Suppose that R[[x]] is a UQ ring. It is evident that R[[x]]/(x) � R. By

Lemma 4.2.3, it follows that R is UQ.

(⇐) It is easy to show that R[[x]]/J(R[[x]]) � R/J(R). Since R is a UQ ring, R/J(R) is

UQ by Theorem 4.2.10. Then we obtain that R[[x]]/J(R[[x]]) is UQ. Hence, by Theo-

rem 4.2.10, R[[x]] is UQ. □

Theorem 4.2.14. Let R be a ring. Then R is a UQ ring with quasiregular identity if and

only if so is R/J(R).

Proof. It is similar to the proof of Theorem 4.2.10. □
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Proposition 4.2.15. Let e2 = e ∈ R. If R is a UQ ring, then eRe is UQ.

Proof. Note that eRe/J(eRe) � eRe ⊆ R where R = R/J(R). Since R is UQ, R/J(R) is

UQ by Theorem 4.2.10. Then we get that eRe/J(eRe) is UQ. Thus by Theorem 4.2.10

again, eRe is UQ. □

Remark 4.2.16. The converse of Proposition 4.2.15 is not true since by Remark 4.2.6(1),

if corner rings eRe and (1 − e)R(1 − e) is UQ, then R may not be UQ.

If R is a UQ ring with quasiregular identity, then it is easy to see that R is a UQ ring

with a 2-good identity but the converse is not true. For example, consider M2(Z2). Then

the identity

 1 0

0 1

 ∈ M2(Z2) is the sum of two units, i.e.

 1 0

0 1

 =
 1 1

0 1

+
 0 1

1 1


but

 2 0

0 2

 is not a unit in M2(Z2). Thus M2(Z2) is a UQ ring with a 2-good identity

but not a UQ ring with quasiregular identity. The following theorem provides a new

characterization of 2-good rings.

Theorem 4.2.17. Let R be a ring. Then the following statements are equivalent:

(1) R is a UQ ring with a 2-good identity.

(2) R is a 2-good ring.

(3) Every element in R can be represented as a product of a unit and a quasiregular

element.

Proof. (1) ⇒ (2) Let a ∈ R be a non-unit element. Then a = uq where u ∈ U(R) and

q ∈ Q(R). So a = u(1 + q) − u = uv − u where v := 1 + q ∈ U(R). By hypothesis, we have

that the identity 1 = u+ v. So u = u1 = u2 + uv where u2, uv ∈ U(R). Hence, R is a 2-good

ring.

(2) ⇒ (1) Suppose that R is a 2-good ring. Then for a non-unit element a ∈ R, we

have a = u + v where u, v ∈ U(R). Then we can write a = −v(−v−1u − 1) = −vx where

x := −v−1u − 1. Now we only need to show that x is quasiregular in R. Since u, v ∈ U(R),

1 + x = −v−1u ∈ U(R). Thus R is a UQ ring.

(2)⇒ (3) It follows from the proof (2)⇒ (1) by taking an arbitrary element a ∈ R.

(3) ⇒ (2) If a ∈ R is an arbitrary element in the proof (1) ⇒ (2), then the result follows.

□

Now we prove that UQ rings are the generalization of J-UN rings.

Theorem 4.2.18. Let R be a ring. If R is a J-UN ring, then R is UQ.
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Proof. For any a ∈ R, write a = a + J(R) ∈ R. Suppose that a is a non-unit in R, then

a = ut where u ∈ U(R) and t ∈ N(R). So a = ut+ j for some j ∈ J(R). Thus a = u(t+u−1 j)

with u ∈ U(R) and t ∈ N(R). Note that 1 + t + u−1 j ∈ U(R) + J(R) = U(R). It implies that

t + u−1 j ∈ Q(R). Hence, R is a UQ ring. □

Remark 4.2.19. The converse of Theorem 4.2.18 is not true which is shown below in

Example 4.2.20(2).

We now obtain the following relation between rings.

UN ring =⇒ J-UN ring =⇒ UQ ring (� R
J(R) UQ)~www ~www ~www

UN ring with =⇒ J-UN ring with =⇒ UQ ring with 2-good

2-good identity 2-good identity identity (2-good ring)

The following examples illustrate that the reverse implications of the above need not

be true.

Example 4.2.20. (1) Let R = Z(p) is the localization of Z at the prime ideal generated

by p. Then R/J(R) � Zp is UN. Thus, R is J-UN. But R is not UN.

(2) Let R = Z5 × Z5. Since Z5 is a UQ ring with a quasiregular identity, so its direct

product is a UQ ring with quasiregular identity by Lemma 4.2.4. Thus R is UQ. But

Z5 × Z5/J(Z5 × Z5) � Z5 × Z5 is not UN. Hence, R is not J-UN.

(3) Let R = Z4. Then R is UQ ( J-UN, UN). But since the identity 1 cannot be written

as the sum of two units in R, R is a UQ (J-UN, UN) ring without 2-good identity.

(4) [72, Example 1] Let R = Q[[x]]. Then R is a J-UN ring with 2-good identity but R

is not UN with 2-good identity.

(5) [72, Example 1] Let R = Mn(Z)(n ≥ 2) is a UQ ring with 2-good identity (2-good

ring) but not J-UN ring with 2-good identity.

Remark 4.2.21. We now determine whether or not a UQ ring is Morita invariant, i.e.

whether the property of being a UQ ring is preserved by the Morita equivalence of rings.

Consider R = Z4 and S := M2(Z4). Then R is a UQ ring. By the Pierce decomposition,

S = eS e ⊕ eS (1 − e) ⊕ (1 − e)S e ⊕ (1 − e)S (1 − e). If e =

 1 0

0 0

 and 1 − e =

 0 0

0 1

,
then eS e � Z4 � eS (1 − e) = (1 − e)S e = (1 − e)S (1 − e). So by Lemma 4.2.4, the matrix

ring S is not a UQ ring. Thus, UQ rings are not Morita invariant.
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4.3 Extensions of Matrix Rings

Recall that a Morita context is a 4-tuple

 R M

N S

 where R and S are rings, RMS and S NR

are bimodules, and there exist context products M × N → R and N × M → S written

multiplicatively as (m, n) = mn and (n,m) = nm such that

 R M

N S

 is an associative ring

with the obvious matrix operations. Morita contexts were introduced in 1958 by Morita

[46]. The readers are referred to [41; 59; 60] as well as the references there for detailed

information on the study on Morita contexts. A Morita context

 R M

N S

 is called trivial

if the context products are trivial, i.e., MN = 0 and NM = 0 (see[43]). A trivial Morita

context is also called the ring of a Morita context with zero pairings. The class of rings

of Morita contexts includes all 2 × 2 matrix rings and all triangular matrix rings. The

following example shows that the UQ property for Morita context with MN ⊆ J(R) and

NM ⊆ J(S ) is not true.

Example 4.3.1. Let R =

 Z4 Z4

2Z4 Z4

. Then R/J(R) � Z2 × Z2. Here, Z2 is a UQ ring but

its direct product Z2 × Z2 is not UQ. It follows that R/J(R) is not UQ. Thus R is not UQ.

Theorem 4.3.2. Let T =

 R M

N S

 be a Morita context such that MN ⊆ J(R) and

NM ⊆ J(S ). Then T is a UQ ring with quasiregular identity if and only if both R and S

are UQ rings with quasiregular identity.

Proof. (⇒) Suppose that T is a UQ ring with quasiregular identity. Then by Theo-

rem 4.2.14, T/J(T ) is a UQ ring with quasiregular identity. By [60, Lemma 3.1], we have

that T/J(T ) � R/J(R) × S/J(S ). Thus R/J(R) × S/J(S ) is a UQ ring with quasiregular

identity. Then by Lemma 4.2.4, both R/J(R) and S/J(S ) are UQ rings with quasiregular

identity and so are R and S by Theorem 4.2.14.

(⇐) If R and S are UQ rings with quasiregular identity, then using the similar theo-

rems, T is a UQ ring with quasiregular identity. □

Corollary 4.3.3. Let E = T (R, S ,M) =

 R M

0 S

 be a formal triangular matrix ring.

Then E is a UQ ring with quasiregular identity if and only if both R and S are UQ rings

with quasiregular identity.

Corollary 4.3.4. For n ≥ 2, Tn(R) is a UQ ring with quasiregular identity if and only if R

is a UQ ring with quasiregular identity.



4.3 Extensions of Matrix Rings 33

Proof. (⇐) Suppose that R is a UQ ring with quasiregular identity. Then by Theo-

rem 4.2.14, R/J(R) is a UQ ring with quasiregular identity. It is easy to see that

Tn(R)/J(Tn(R)) � R/J(R) ⊕ R/J(R) ⊕ · · · ⊕ R/J(R)︸                                    ︷︷                                    ︸
n

. (⋆)

By Lemma 4.2.4, the right hand side of (⋆) is UQ with quasiregular identity. Then

Tn(R)/J(Tn(R)) is UQ with quasiregular identity. Thus by Theorem 4.2.14, Tn(R) is a

UQ ring with quasiregular identity.

(⇒) Suppose that Tn(R) is UQ with quasiregular identity. Then by similar theorems, R is

UQ with quasiregular identity. □

Consider R to be a ring and M to be a bimodule over R. Write T (R,M) =
 a m

0 a

 | a ∈ R,m ∈ M

, then T (R,M) is a subring of T (R,R,M). The trivial extension

of R and M is R ∝ M = {(a,m) | a ∈ R,m ∈ M} with addition defined componentwise

and multiplication defined by (a,m)(b, n) = (ab, an + mb). Then T (R,M) � R ∝ M

and T (R,R) � R[x]/(x2) where (x2) is an ideal generated by x2 in R[x]. Note that

J(R ∝ M) = {(a,m) | a ∈ J(R),m ∈ M} and U(R ∝ M) = {(a,m) | a ∈ U(R),m ∈ M}.

Corollary 4.3.5. Let R be a ring and M a bimodule over R. Then the following statements

are equivalent:

(1) R is a UQ ring.

(2) R ∝ M is a UQ ring.

(3) T (R,M) is a UQ ring.

(4) R ∝ R is a UQ ring.

(5) T (R,R) is a UQ ring.

(6) R[x]/(x2) is a UQ ring.

Proof. (1) ⇒ (2) Suppose that R is a UQ ring. Then in view of Theorem 4.2.10, R/J(R)

is UQ. Since R ∝ M/J(R ∝ M) = R ∝ M/J(R) ∝ M � R/J(R), we get that R ∝ M/J(R ∝

M) is UQ. Thus by Theorem 4.2.10 again, R ∝ M is UQ.

(2)⇒ (1) Note that R � R ∝ M/(0 ∝ M). Since R ∝ M is UQ, R is UQ by Lemma 4.2.3.

(1)⇔ (4) It follows from (1)⇔ (2).

(2)⇔ (3) Note that T (R,M) � R ∝ M.

(4)⇔ (5)⇔ (6) Note that R ∝ R � T (R,R) � R[x]/(x2). □
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Consider R to be a ring and M to be a bimodule over R. Let R ▷◁ M = {(a,m, b, n) |

a, b ∈ R,m, n ∈ M} with addition defined componentwise and multiplication defined by

(a1,m1, b1, n1)(a2,m2, b2, n2) = (a1a2, a1m2+m1a2, a1b2+b1a2, a1n2+m1b2+b1m2+n1a2).

Then R ▷◁ M is a ring which is isomorphic to (R ∝ M) ∝ (R ∝ M). Let

BT (R,M) =




a m b n

0 a 0 b

0 0 a m

0 0 0 a


| a, b ∈ R,m, n ∈ M


.

Then BT (R,M) � T (T (R,M),T (R,M)), and we have the following isomorphism as rings:

R[x, y]/(x2, y2)→ BT (R,R) defined by

a + bx + cy + dxy 7−→


a b c d

0 a 0 c

0 0 a b

0 0 0 a


.

Corollary 4.3.6. Let R be a ring and M a bimodule over R. Then the following statements

are equivalent:

(1) R is a UQ ring.

(2) R ▷◁ M is a UQ ring.

(3) BT (R,M) is a UQ ring.

(4) BT (R,R) is a UQ ring.

(5) R[x, y]/(x2, y2) is a UQ ring.

(6) R ▷◁ R is a UQ ring.

Given a ring R and an element s ∈ C(R), the 4-tuple

 R R

R R

 becomes

a ring with addition defined componentwise and with multiplication defined by a1 x1

y1 b1


 a2 x2

y2 b2

 =
 a1a2 + sx1y2 a1x2 + x1b2

y1a2 + b1y2 sy1x2 + b1b2

. The ring is denoted by Ks(R).

The element s is called the multiplier of Ks(R). The ring Ks(R) can be described as a spe-

cial kind of Morita context. A Morita context

 R M

N S

 with R = M = N = S is called a

generalized matrix ring over R. As observed by Krylov [38], the generalized matrix rings

over R are determined by their multipliers, i.e., the central elements of the ring R. We
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prove that Ks(R) is a UQ ring with quasiregular identity if and only if R is a UQ ring with

quasiregular identity. If s = 1, then K1(R) is exactly the matrix ring M2(R) but Ks(R) can

be significantly different from M2(R).

Lemma 4.3.7. (1) [61, Lemma 2] Let R be a ring with s ∈ C(R). Then J(Ks(R)) = J(R) M

M J(R)

 where M = {x ∈ R | sx ∈ J(R)}.

(2) [61, Lemma 14] Let R be a commutative ring with s ∈ R and let A ∈ Ks(R). Then A is

a unit of Ks(R) iff dets(A) is a unit of R.

Theorem 4.3.8. Let R be a commutative ring with s ∈ J(R). Then the following statements

are equivalent:

(1) R is a UQ ring with quasiregular identity.

(2) Ks(R) is a UQ ring with quasiregular identity.

Proof. (2) ⇒ (1) For a ∈ R, let

 a 0

0 0

 be a non-unit in Ks(R). Suppose that Ks(R) is

a UQ ring with quasiregular identity. Then there exist a unit

 u 0

0 1

 and a quasiregular

element

 q 0

0 0

 in Ks(R) such that

 a 0

0 0

 =
 u 0

0 1


 q 0

0 0

. By Lemma 4.3.7,

u ∈ U(R) and 1 + q ∈ U(R). Thus a = uq where u ∈ U(R) and q ∈ Q(R). Hence, R is a

UQ ring with quasiregular identity.

(1)⇒ (2) Consider a map ϕ : Ks(R)→ R/J(R) × R/J(R) defined by a x

y b

 7−→ (a, b).

Since s ∈ J(R), we can easily verify that ϕ is a ring epimorphism. Thus Ks(R)/J(Ks(R)) �

R/J(R) × R/J(R). In view of Theorem 4.2.14 and Lemma 4.2.4, R/J(R) × R/J(R) is a

UQ ring with quasiregular identity, so is Ks(R)/J(Ks(R)). Thus by Theorem 4.2.14 again,

Ks(R) is a UQ ring with quasiregular identity. □

According to Tang and Zhou [62], for n ≥ 2 and s ∈ C(R), the n × n formal matrix

ring over R defined by s, denoted as Mn(R; s), is the set of all n × n matrices over R with

usual addition of matrices and with multiplication defined as follows: for (ai j) and (bi j) in

Mn(R; s),

(ai j)(bi j) = (ci j), where ci j =

n∑
k=1

sδik jaikbk j.
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Here δi jk = 1 + δik − δi j − δ jk with δik, δi j, δ jk the Kronecker delta symbols. If s = 1,

Mn(R; s) is exactly the matrix ring, although generally it can be significantly different

from Mn(R). We obtain necessary and sufficient conditions for Mn(R; s) to be UQ ring

with quasiregular identity.

Lemma 4.3.9. [62, Proposition 32] Let A ∈ Mn(R; s). Then A is a unit in Mn(R; s) if and

only if detsA ∈ U(R).

Theorem 4.3.10. Let R be a ring with s ∈ C(R)∩ J(R). Then the following statements are

equivalent:

(1) R is a UQ ring with quasiregular identity.

(2) Mn(R; s) is a UQ ring with quasiregular identity.

Proof. (2)⇒ (1) For a ∈ R, let

 a 0

0 0

 be a non-unit in Mn(R; s). Suppose that Mn(R; s)

is a UQ ring with quasiregular identity. Then there exist a unit

 u 0

0 1

 and a quasireg-

ular element

 q 0

0 0

 in Mn(R; s) such that

 a 0

0 0

 =
 u 0

0 1


 q 0

0 0

. Following

Lemma 4.3.9 we obtain that u ∈ U(R) and 1 + q ∈ U(R). Then a = uq where u ∈ U(R)

and q ∈ Q(R). Hence, R is a UQ ring with quasiregular identity.

(1)⇒ (2) If n = 1, then Mn(R; s) = R. So in this case, there is nothing to prove. Suppose

that n > 1, and the result holds for Mn−1(R; s). Let A = Mn−1(R; s). Then Mn(R; s) = A M

N R

 is a Morita context where M =


M1n
...

Mn−1,n

 and N =
(

Mn1 . . . Mn,n−1

)
with

Min = Mni for all i = 1, 2, . . . , n − 1. For x =


x1n
...

xn−1,n

 ∈ M and y =
(
yn1 . . . yn,n−1

)
∈ N,

we have

xy =


s2x1nyn1 sx1nyn2 · · · sx1nyn,n−1

sx2nyn1 s2x2nyn2 · · · sx2nyn,n−1
...

...
. . .

...

sxn−1,nyn1 sxn−1,nyn2 · · · s2xn−1,nyn,n−1


∈ J(A)

and

yx = s2yn1x1n + s2yn2x2n + · · · + s2yn,n−1xn−1,n ∈ s2R ∈ J(R).
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Thus we get that MN ⊆ J(A) and NM ⊆ J(R). Then we obtain that

Mn(R; s)/J(Mn(R; s)) � A/J(A) × R/J(R). Since A and R are UQ rings with quasireg-

ular identity, by Theorem 4.2.14 and Lemma 4.2.4, A/J(A) × R/J(R) is a UQ ring with

quasiregular identity. Thus Mn(R; s)/J(Mn(R; s)) is a UQ ring with quasiregular identity,

and so is Mn(R; s) by Theorem 4.2.14. □

Corollary 4.3.11. Let R be a ring. Then the following statements are equivalent:

(1) R is a UQ ring with quasiregular identity.

(2) Mn(R[[x]]/(xm); x) is a UQ ring with quasiregular identity.

Proof. (1) ⇒ (2) Note that (R[[x]]/(xm))/J(R[[x]]/(xm)) � R/J(R). Since R is a UQ ring

with quasiregular identity, R/J(R) is UQ with quasiregular identity by Theorem 4.2.14.

It follows that (R[[x]]/(xm))/J(R[[x]]/(xm)) is UQ with quasiregular identity, and so is

R[[x]]/(xm) by Theorem 4.2.14. Thus by Theorem 4.3.10, (2) is proved.

(2) ⇒ (1) Consider a map ψ : R[[x]]/(xm) → R defined by ψ( f ) = f (0). It can be easily

shown that ψ is a ring epimorphism. So R is a homomorphic image of R[[x]]/(xm). Since

Mn(R[[x]]/(xm); x) is UQ with quasiregular identity, R[[x]]/(xm) is UQ with quasiregular

identity by Theorem 4.3.10. Hence, R is a UQ ring with quasiregular identity. □

4.4 Group Rings

In this section, we discuss group rings to be UQ rings. For a commutative ring and an

abelian group, we obtain the necessary conditions for group rings to be UQ.

Theorem 4.4.1. If RG is a UQ ring, then R is a UQ ring and G a torsion group.

Proof. First, we show that for a field K and a torsion-free group H, if KH is UQ, then H is

the trivial group. We prove this by contradiction, suppose that H is non-trivial and let h be

a non-identity element. So 1, h, and h2 are the distinct elements in H. It is known that KH

has only trivial units and are of the form kh
′

where k ∈ K, k , 0, h
′

∈ H, so quasiregular

elements of KH will be of form kh
′

− 1. The element 1+ h+ h2 ∈ KH is a non-unit. Then

there exist k1h
′

1 ∈ U(KG) where k1 ∈ K, h
′

1 ∈ H and k2h
′

2 − 1 ∈ Q(KG) where k2 ∈ K,

h
′

2 ∈ H such that 1 + h + h2 = k1h
′

1(k2h
′

2 − 1) = k3h
′

3 − k1h
′

1 where k3 = k1k2 ∈ K and

h
′

3 = h
′

1h
′

2 ∈ H but it is not possible since the K-linear sum of three distinct elements of H

can not be written as the K-linear sum of two elements of H. Thus, it follows that KH is

not UQ.

Now for proving the theorem, suppose that RG is UQ. Since R is a homomorphic

image of RG, R is UQ by Lemma 4.2.3. Let M be a maximal ideal of R and let τ(G)
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denotes the torsion subgroup of G. So R/M is a field and G/τ(G) is a torsion-free group.

Since (R/M)(G/τ(G)) is a homomorphic image of RG, so it is UQ by Lemma 4.2.3. Then

by the above claim, we have that G/τ(G) is the trivial group. So G = τ(G) is a torsion

group. □

The converse of Theorem 4.4.1 is not true.

Example 4.4.2. Let RG = Z2C3 = {0, 1, x, x2, 1 + x, 1 + x2, x + x2, 1 + x + x2}. Here,

R = Z2 is a UQ ring and G = C3 is a torsion group. However, RG is not a UQ ring since

the non-unit element 1 + x + x2 ∈ RG can not be written as a product of a unit and a

quasiregular element in RG.

If G is a locally finite p-group with p ∈ J(R), then the converse of the above Theo-

rem 4.4.1 holds.

Theorem 4.4.3. Let p ∈ J(R) be a prime number. If R is a UQ ring and G a locally finite

p-group, then RG is UQ.

Proof. Suppose that G is a locally finite p-group with p ∈ J(R). Then by [71, Lemma 2]

we have that ωG ⊆ J(RG). Since R is UQ, and it is well known that RG/ωG � R, RG/ωG

is UQ. Then in view of Corollary 4.2.11, RG is UQ. □

Combining the above Theorem 4.4.1 and Theorem 4.4.3, we obtain the following

characterization for a commutative group ring RG to be UQ.

Theorem 4.4.4. Let G be an abelian p-group with p ∈ J(R) and R be a commutative ring.

Then RG is a UQ ring if and only if R is UQ.

Remark 4.4.5. For any non-trivial finite group G, the group ring ZG is not UQ.

If G is a finite abelian group with exponent 2, then the following theorem states that

RG is UQ if and only if RC2 is UQ. To show this statement, however, we must first prove

a lemma.

Lemma 4.4.6. Let R be a ring with Q(R) identity. Then RC2 is a UQ ring if and only if R

is UQ.

Proof. Since R is a ring with Q(R) identity, 2 ∈ U(R). Then RC2 � R × R. Following

Lemma 4.2.4 we get that RC2 is a UQ ring with quasiregular identity. Hence, RC2 is a

UQ ring. □

Theorem 4.4.7. Let G be a finite abelian group of exponent 2 and R be a ring with Q(R)

identity. Then RG is UQ if and only if RC2 is UQ.
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Proof. (⇒) Since RC2 is a homomorphic image of RG, by Lemma 4.2.3, RC2 is UQ.

(⇐) Suppose that RC2 is a UQ ring. If n > 1, then RC2n � (RC2n−1)C2 and RC2n−1 �

(RC2n−2)C2. Thus by induction and Lemma 4.4.6, RC2n is UQ for all n > 0. Since RG is a

homomorphic image of RC2n for some n. Thus RG is UQ. □

We now obtain another characterization for a group ring to be UQ as follows:

Theorem 4.4.8. Let R be an artinian ring. Then RG is UQ if and only if (R/J(R))G is

UQ.

Proof. (⇒) Since (R/J(R))G is a homomorphic image of RG, by Lemma 4.2.3, (R/J(R))G

is a UQ ring.

(⇐) Let (R/J(R))G be a UQ ring. Then RG/J(R)G � (R/J(R))G is UQ. Since R is

an artinian ring, following [17, Proposition 3] we have J(R)G ⊆ J(RG). We consider a

ring epimorphism ψ : RG/J(R)G → RG/J(RG) defined as:

ψ(α + J(R)G) = α + J(RG), α ∈ RG.

Then by Lemma 4.2.3, RG/J(RG) is UQ. Thus by Theorem 4.2.10, RG is UQ. □

If G is a finite p-group and K is a field of char(K) = p > 0. Then in view of [39],

group algebra KG is local. Thus KG is UQ. The following proposition shows that group

algebra KG for a finite abelian group such that char(K) ∤ |G| is a UQ ring.

Proposition 4.4.9. Let G be a finite abelian group. If K is an algebraic closed field with

quasiregular identity and char(K) ∤ |G|, then KG is UQ.

Proof. Following [54] we have

KG ≃ K ⊕ K ⊕ · · · ⊕ K︸              ︷︷              ︸
|G|

.

Since K is a UQ ring with quasiregular identity, and by Lemma 4.2.4, the direct product

of UQ rings with quasiregular identity is UQ, we obtain that K ⊕ K ⊕ · · · ⊕ K︸              ︷︷              ︸
|G|

is UQ. It

follows that KG is UQ. □

If, in the above Proposition 4.4.9, K is without quasiregular identity, then group

algebra KG may not be UQ.

Example 4.4.10. By Example 4.4.2, consider RG = Z2C3. Then Z2 is UQ without

quasiregular identity and RG is not UQ.





Chapter 5

On Almost s-Weakly Regular Rings

We introduce almost s-weakly regular (SWR) rings. An element a of R is called SWR if

a ∈ aRa2R. A ring R is called an almost SWR if for any a ∈ R, either a or 1 − a is

SWR. We introduce almost SWR rings as the generalization of abelian VNL rings and

SWR rings. We provide various properties and characterizations of almost SWR rings.

We discuss various extension rings to be almost SWR. Further, we discuss SWR group

rings and almost SWR group rings.

5.1 Introduction

An element a ∈ R is (strongly) VNR if there exists an element b ∈ R such that a = aba

(ab = ba). A ring R is called (strongly) VNR if every element of R is (strongly) VNR.

Camillo and Xiao [9] investigated weakly regular rings. A ring R is weakly regular if

it is both right and left weakly regular. As a generalization of strongly VNR rings, in

[28], Gupta introduced SWR rings. The class of SWR rings lies strictly between the class

of right (or left) weakly regular rings and strongly VNR rings. Contessa in [18], as a

common generalization of regular rings and local rings, introduced VNL rings for com-

mutative rings. VNL rings for noncommutative rings were studied by Chen and Tong [15].

Moreover, Grover and Khurana [27] characterized VNL rings in the sense of relating them

to some other familiar classes of rings. For more information about VNL rings and their

related rings, one can see [13; 15; 18; 51]and [69].

The concept of SWR rings together with the notion of local rings gives motivation

for this chapter. In the present chapter, we discuss those elements where either a or 1 − a

is SWR. We introduce a new class of rings called almost SWR rings. The class of almost

41
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SWR rings is a proper generalization of the class of abelian VNL rings and SWR rings.

Our investigation is motivated by papers [15; 28].

Definition 5.1.1. A ring R is said to be an almost SWR ring if, for any a ∈ R, either a or

1 − a is SWR.

In section 5.2, we prove various properties of almost SWR rings, and some examples

are provided to show that the class of almost SWR rings properly contains the classes of

SWR, abelian VNL, and weakly tripotent rings. A two sided ideal I in a ring R is said to

be SWR ideal if each of its elements is SWR. We prove that a ring R is almost SWR if

and only if, for any SWR ideal I of R, R/I is almost SWR. We characterize abelian almost

SWR rings. It is proved that if e is an idempotent in an abelian almost SWR ring R, then

either eRe or (1 − e)R(1 − e) is SWR, but the converse holds if R is an exchange ring. In

section 5.3, we consider extensions of almost SWR rings such as triangular matrix rings,

trivial extensions, and so on. In section 5.4, we study semiperfect almost SWR rings. In

section 5.5, we prove that if RG is a commutative ring, then RG is SWR if and only if R

is SWR, G is locally finite and n ∈ o(G) is a unit in R where o(G) is the set of orders of

all finite subgroups of G. Let KG be a group algebra over a field K satisfying a nontrivial

polynomial identity. If KG is SWR, then K is SWR and G is locally finite. It is proved

that if RH is almost SWR for every finitely generated subgroup H of G, then RG is almost

SWR, but the converse of this result partially holds. We prove that if G = H ⋊ K is a

semidirect product of finite subgroup H by a subgroup K, then almost s-weakly regularity

of RG implies almost s-weakly regularity of RK. We show that for a finite group G, the

group ring RG need not be almost SWR. It is also proved that if R is a commutative local

ring and G an abelian p-group with p ∈ J(R), then RG is almost SWR.

5.2 Basic Properties and Examples

We first recall some definitions. An element a of R is called tripotent if a3 = a and a ring R

is tripotent if all elements in R are tripotent. In [23], Danchev introduced weakly tripotent

rings. A ring R is weakly tripotent if any of its element a ∈ R satisfies the equations a3 = a

or a3 = −a. Recall that a ring R is called abelian if each idempotent in R is central.

Remark 5.2.1. (1) Clearly, SWR and local rings are almost SWR rings.

(2) Every abelian VNL ring is an almost SWR ring.

(3) Every tripotent ring and weakly tripotent ring is an almost SWR ring.

(4) For a commutative ring, R[[x]] is almost SWR if and only if R is local.
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(5) For n ≥ 2 and n =
∏m

i=1 pi
ki is a prime power decomposition, the ring Zn of integers

mod n is almost SWR if and only if (pq)2 does not divide n, where p and q are

distinct primes.

(6) If R = {(q1, q2, . . . , qn, a, a, . . . ) | n ≥ 1, qi ∈ Q, a ∈ Z(2)}, where Z(2) is the localiza-

tion of Z at prime ideal generated by 2, then R is an abelian VNL-ring with J(R) = 0

but not regular. Thus, R is almost SWR but not semiregular.

Thus, the class of almost SWR rings contains the classes of SWR, abelian VNL, and

weakly tripotent rings. Then, we have

Abelian VNL

⇓

SWR =⇒ Almost SWR

⇑

Weakly Tripotent

However, the following examples show that the reverse implication is not true.

Example 5.2.2. (1) Let R = Z4 be the ring of intergers modulo 4. Then, R is an almost

SWR ring but not SWR.

(2) Let R =


 a b

0 a

 | a, b ∈ Z2

. Then,

R =


 0 0

0 0

 ,
 1 0

0 1

 ,
 0 1

0 0

 ,
 1 1

0 1


 .

If r =

 0 1

0 0

, we can not find x, y in R such that r = rxr2y but we can easily verify

that 1 − r =

 1 1

0 1

 is SWR. Thus, R is an almost SWR ring but not SWR.

(3) Let R = T2(Z2). Then, R is an almost SWR ring but not an abelian VNL because

idempotents are not central in R.

(4) Consider R = Z4. Then, R is an almost SWR ring but not weakly tripotent.

Example 5.2.3. Let RMS be a bimodule. If R is SWR and S is local, then T =

 R M

0 S


is an almost SWR ring.
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Proof. Let β =

 a m

0 b

 ∈ T . Since S is local, b or 1S − b is invertible. Assume that b is

invertible. By hypothesis, a is SWR in R. So, we have a = axa2y for some x, y ∈ R. Thus, a m

0 b

 =
 a m

0 b


 x −x(am + mb)b−2

0 b−2


 a m

0 b


2  y 0

0 1

 .
It implies that β is SWR.

Assume that 1S−b is invertible. Since 1R−a is SWR, we have 1−a = (1−a)z(1−a)2w

for some z, w in R. Similarly, 1T − β =

 1 − a −m

0 1 − b

 is SWR in T . □

Now we elaborate some properties of almost SWR rings.

Proposition 5.2.4. The following statements are true for an almost SWR ring R.

(1) Every homomorphic image of R is almost SWR.

(2) The center of R is a VNL-ring.

(3) The corner ring eRe is almost SWR for every e2 = e ∈ R.

Proof. (1) It is straightforward.

(2) Let C(R) be the center of R and x ∈ C(R). Since R is an almost SWR ring, either

x or 1−x is an SWR element. If x is SWR, we have x ∈ xRx2R = x3R implies immediately

that x = x(xky)x with y ∈ R and k ≥ 1. Moreover, for every a ∈ R, a(xky) = xk−1(xa)y =

xk−1(xk+1yx)ay = xk−1ya(xk+1yx) = xk−1y(ax) = (xky)a. Hence, xky ∈ C(R). Similarly, if

1 − x ∈ C(R) is an SWR element in R, then 1 − x is regular in C(R).

(3) Let a ∈ eRe. Since R is an almost SWR ring, either a or 1 − a is SWR. If a is

SWR, we have a = axa2y for some x, y ∈ R. Thus, a = eae = eaxa2ye = aexea2eye. It

follows that a is SWR in eRe. Similarly, if 1 − a is SWR in R, then e − a is SWR in eRe.

Hence, eRe is an almost SWR ring. □

The following result follows immediately from Proposition 7.3.2(2).

Corollary 5.2.5. Let R be an almost SWR ring. Then, R is indecomposable as a ring if

and only if its center is local.

Remark 5.2.6. In [4], r-clean rings were studied by Ashrafi. A ring R is called r-clean

if for any element a ∈ R, we have a = e + r where e is an idempotent and r is a regular

element in R. If R is an r-clean ring with no zero divisor, then by [4, Corollary 2.10], R is

local. Thus, R is an almost SWR ring.
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It can be easily verified that direct product of SWR rings is SWR if and only if all

factors are SWR. But we observe that the direct product of almost SWR rings may not be

an almost SWR ring.

Example 5.2.7. The ring Z4 of integers modulo 4 is an almost SWR ring. But Z4 × Z4 is

not an almost SWR ring. By choosing a = (2̄, 3̄), we can easily show that neither a nor

1 − a is SWR, and we are done.

For the direct product of rings to be almost SWR, we prove the following theorem.

Theorem 5.2.8. Let R =
∏

λ∈Λ Rλ. Then, R is an almost SWR ring if and only if there

exists λ0 ∈ Λ such that Rλ0 is an almost SWR ring and for each λ ∈ Λ\λ0, Rλ is an SWR

ring.

Proof. Let x = (xλ) ∈ R, λ ∈ Λ. By hypothesis, xλ0 or 1Rλ0
− xλ0 is SWR in Rλ0 . Assume

that xλ0 is SWR in Rλ0 , then x is SWR. If 1Rλ0
− xλ0 is SWR in Rλ0 , then 1− x is SWR in R.

Conversely, suppose that R is an almost SWR ring. Then, Rλ is also an almost SWR

ring for every λ ∈ Λ by Proposition 7.3.2(1). Write R = Rλ0 × S , where S =
∏

Rλ,

λ ∈ I\λ0. If neither Rλ0 nor S is SWR, then there exist non SWR elements a ∈ Rλ0 and

b ∈ S . Now choose r = (1Rλ0
− a, b). Then, neither r nor 1 − r = (a, 1S − b) is SWR in R,

a contradiction. Thus, either Rλ0 or S is SWR. If S is an SWR ring, we are done. If S is

an almost SWR ring, the iteration of the previous technique completes the proof. □

Lemma 5.2.9. Let R be an abelian almost SWR ring. Then for every idempotent e ∈ R,

either eRe or (1 − e)R(1 − e) is SWR.

Proof. Consider the Pierce decomposition

R �

 eRe eR(1 − e)

(1 − e)Re (1 − e)R(1 − e)

 .
Suppose that a ∈ eRe and b ∈ (1−e)R(1−e) are not SWR. Then neither r :=

 a 0

0 1 − b


nor (1 − r) =

 1 − a 0

0 b

 is an SWR element in R, which is a contradiction. □

The example given below reveals that the converse of the Lemma 5.2.9 is false.

Example 5.2.10. Let R = {(q1, q2, . . . , qn, z, z . . . ) | qi ∈ Q, z ∈ Z, n ≥ 1}. Clearly, either

eRe or (1 − e)R(1 − e) is SWR for every e2 = e ∈ R. But R is not an almost SWR ring

because the homomorphic image Z of R is not almost SWR.
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An element a of R is said to be an exchange [48] if there exists an idempotent e ∈ R

such that e ∈ Ra and 1 − e ∈ R(1 − a). A ring R is an exchange ring if and only if each

element of R is exchange. It is easy to show that a commutative almost SWR ring is an

exchange ring. The next result shows that the converse of Lemma 5.2.9 is true for an

exchange ring.

Theorem 5.2.11. Let R be an abelian exchange ring. Then R is almost SWR if and only if

either eRe or (1 − e)R(1 − e) is SWR for every e2 = e ∈ R.

Proof. The ‘only if’ part follows by Lemma 5.2.9.

Conversely, suppose that R is an exchange ring. Then, for any a ∈ R, we have an

idempotent e ∈ R such that e ∈ Ra and 1 − e ∈ R(1 − a). Then Ra + R(1 − e) = R and

Re + R(1 − a) = R. Thus, Rae = Re and R(1 − a)(1 − e) = R(1 − e). So, both ae and

(1 − a)(1 − e) are SWR. Since R is an abelian, eRe = Re. By hypothesis, if eRe is SWR,

then (1 − a)e is SWR. Therefore, 1 − a = (1 − a)e + (1 − a)(1 − e) is SWR. Similarly, if

(1 − e)R(1 − e) is SWR, then we can prove that a is SWR. □

Proposition 5.2.12. Let R be a commutative ring. Then R[x] is not an almost SWR ring.

Proof. Assume that R[x] is an almost SWR ring. Then R[x] being a commutative almost

SWR ring implies that R[x] is a VNL-ring, which contradicts [51, Corollary 4.8]. □

Lemma 5.2.13. Let R be a ring. If a − aza2w is SWR for some z, w ∈ R, then a is SWR.

Proof. If a − aza2w is SWR, then there exist s, t ∈ R such that

(a − aza2w)s(a − aza2w)2t = a − aza2w.

If we set x = saz−s+z and y = t−wsa2t+waza2wt−wsaza2waza2wt−za2wt+wsa2za2wt+w,

then it can be verified that axa2y = a. Thus, a is SWR. □

Let R be an almost SWR ring and I an ideal of R. Then, clearly, R/I is almost SWR.

But in general, the converse of this result is not true (for example, let R = Zp where p is a

prime number, then R is almost SWR but Z is not almost SWR). The following theorem

gives another characterization of almost SWR rings.

Theorem 5.2.14. Let I be an SWR ideal of a ring R. Then, R is an almost SWR ring if

and only if R/I is almost SWR.

Proof. Suppose that R is an almost SWR ring. Then, by Proposition 7.3.2(1), R/I is

almost SWR.
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Conversely, suppose that R/I is almost SWR. Then, either a+ I or 1− a+ I is SWR.

Thus, there exist x, y, z, w ∈ R such that either a−axa2y ∈ I or (1−a)−(1−a)z(1−a)2w ∈ I.

Since I is an SWR ideal, either a−axa2y or (1−a)− (1−a)z(1−a)2w is an SWR element

of R. If a − axa2y is SWR, then we have (a − axa2y) = (a − axa2y)t(a − axa2y)2s for

some t, s ∈ R. By Lemma 5.2.13, it follows that a = aga2h for some g, h ∈ R. Similarly,

if (1 − a) − (1 − a)z(1 − a)2w is SWR, then we can show that 1 − a is SWR. □

In [28], Gupta introduced S (R) = {a ∈ R | (a) is a SWR ideal in R}, which is the

unique maximal two sided SWR ideal of R, where (a) is the principal ideal of R generated

by a ∈ R and proved that S (R/S (R)) = 0. Following [5], M(R) = {a ∈ R | (a) is a

regular ideal in R} is the unique maximal two sided regular ideal of R. In [15], Chen and

Tong gave a characterization of abelian VNL rings through local rings. Analogously, we

characterize commutative almost SWR rings through local rings.

Proposition 5.2.15. Let R be a commutative ring. Then, R is an almost SWR ring if and

only if R/S (R) is a local ring.

Proof. Suppose that R/S (R) is a local ring. Then R/S (R) is an almost SWR ring. Thus,

by Theorem 5.2.14, R is an almost SWR ring.

Conversely, it is easy to see that a commutative almost SWR ring R is a VNL-ring.

Let I be a SWR ideal in R. Then, we have

S (R) = {a ∈ R | ar ∈ I, r ∈ R}

= {a ∈ R | ar = (ar)x(ar)2y, x, y ∈ I}

= {a ∈ R | ar = (ar)z(ar), z = x(ar)y ∈ I}

= M(R).

Then, in view of [15, Lemma 2.7], R/S (R) is local. □

The necessary conditions of Theorem 5.2.15 is not true for arbitrary rings, as shown

in the following example.

Example 5.2.16. Let R = T2(Z2). Then R is an almost SWR ring but R/S (R) is not local.

Since in view of [28, Theorem 10(4)], S (T2(Z2)) = 0. Then, R/S (R) = T2(Z2) is not local.

Proposition 5.2.17. Let L be some nonempty subset of R and (L)r be a right ideal gener-

ated by L. Then, for a commutative ring R, the following are equivalent:

(1) R is a almost SWR ring;

(2) At least one of the element in L is SWR, whenever (L)r = R.
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Proof. For any a ∈ R, let L = {a, 1− a}. Since 1 = a+ 1− a ∈ (L)r, (L)r = R. Thus, either

a or 1 − a is SWR.

Conversely, if R is SWR, the result follows. Otherwise, suppose that R is an almost

SWR ring which is not SWR. Now there exist l1, l2, . . . , lt in any nonempty subset L of

R with (L)r = R such that l1R + l2R + · · · + ltR = R. Then, there exist r1, r2, . . . , rt ∈ R

satisfying l1r1+l2r2+· · ·+ltrt = 1, and thus l̄1r̄1+ l̄2r̄2+· · ·+ l̄tr̄t = 1̄ in R = R/S (R). And by

Proposition 5.2.15, R is a local ring. It follows that there exists an l̄k such that l̄k ∈ U(R);

thus, l̄k is SWR in R. So, l̄k = l̄k x̄k(l̄k)2ȳk for some x̄k, ȳk ∈ R. Then lk − lkxk(lk)2yk ∈ S (R),

it implies that lk − lkxk(lk)2yk = (lk − lkxk(lk)2yk)ak(lk − lkxk(lk)2yk)2bk for some ak, bk ∈ R.

Thus, lk is an SWR element by Lemma 5.2.13. □

The following proposition shows that an almost SWR ring R is the direct summand

of either r(a) or r(1 − a) for all a ∈ R.

Proposition 5.2.18. If r(a) = r(b) and r(1 − a) = r(1 − b), for each a ∈ R and b ∈ Ra2R.

Then R is almost SWR if and only if either r(a) or r(1 − a) is direct summand.

Proof. Let a ∈ R and r(a) be the direct summand. Then, we have an ideal I ⊂ R such that

R = r(a)⊕ I. So, there exist d ∈ r(a) and b ∈ I such that d+ b = 1 and hence, a = ad+ ab.

Thus, a = ab. Since Ra2R is a two sided ideal of R, b ∈ Ra2R. Thus, a is SWR. If r(1− a)

is direct summand. There exists an ideal J ⊂ R such that R = r(1 − a) ⊕ J, then we can

prove that 1 − a is SWR.

Conversely, let for any a ∈ R, either a or 1 − a is SWR. If a is SWR, then there

exists b = ta2s ∈ Ra2R such that a = ata2s for some t, s ∈ R. Then, a(1 − ta2s) = 0, so

(1 − ta2s) ∈ r(a). Thus, 1 = (1 − ta2s) + ta2s. Hence, R = r(a) + Ra2R. Now suppose that

x ∈ r(a) ∩ Ra2R, then ax = 0 and x = ta2s for some t, s ∈ R. Thus, ta2s ∈ r(a) = r(b),

so bta2s = 0. Then, bx = 0 and so, x = 0. Therefore, r(a) ∩ Ra2R = 0. Hence,

R = r(a)⊕Ra2R. Similarly, if 1−a is SWR, then we can deduce that R = r(1−a)+R(1−a)2R

and r(1 − a) ∩ R(1 − a)2R = 0. Hence, R = r(1 − a) ⊕ R(1 − a)2R. □

5.3 Extension Rings

We start this section with the necessary conditions for an upper triangular matrix ring to

be almost SWR.

The proof of the following lemma is easy.

Lemma 5.3.1. Let diag(a1, a2, . . . , an) be the n×n diagonal matrix with ai in each entry on

the main diagonal. Then, diag(a1, a2, . . . , an) is SWR in Tn(R) if and only if a1, a2, . . . , an

are all SWR in R.
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Theorem 5.3.2. If Tn(R) is an almost SWR ring for some n ≥ 2, then R is an SWR ring.

Proof. Let A =diag(a, 1−a, 1, . . . , 1) ∈ Tn(R). Then In−A =diag(1−a, a, 0, . . . , 0). Since

Tn(R) is an almost SWR ring, either A or In − A is SWR. For any case, by Lemma 5.3.1,

a is SWR. Thus, R is SWR. □

The example given below shows that the converse of above Theorem 5.3.2 may not

be true.

Example 5.3.3. The ring T2(Z6) is not almost SWR because neither

 3 1

0 3

 nor 1 0

0 1

 −
 3 1

0 3

 is SWR although Z6 is an SWR ring.

Proposition 5.3.4. For any ring R and n ≥ 4,Tn(R) is not an almost SWR ring.

Proof. By applying Proposition 7.3.2(3), we may assume that n = 4. Let C = 0 a

0 0

, then neither diag(C, I2 − C) =


 0 a

0 0

 ,
 1 −a

0 1


 nor diag(I2 − C,C) =

 1 −a

0 1

 ,
 0 a

0 0


 is SWR. Hence, Tn(R) is not an almost SWR ring for any n ≥

4. □

Let A be a ring and B a subring of ring A with 1A ∈ B. We set

R[A, B] = {(c1, c2 . . . , cn, d, d . . . )|ci ∈ A, d ∈ B, n ≥ 1}

with addition and multiplication defined componentwise.

Theorem 5.3.5. The following statements are equivalent:

(1) R[A, B] is an almost SWR ring.

(2) A is an SWR ring and B is an almost SWR ring.

Proof. Construct a homomorphism f : R[A, B] → B defined by

f (c1, c2, . . . , cn, d, d . . . ) = d. Then, R[A, B]/ker f � B. Thus, B is an almost SWR ring by

using Proposition 7.3.2(1). If A is not an SWR ring, we have a non SWR element α ∈ A.

Let x = (α, 1− α, 1, 1, . . . ) ∈ R[A, B]. So, either x or 1− x = (1− α, α, 0, 0, . . . ) ∈ R[A, B]

is SWR. If x is SWR, so is α ∈ A, a contradiction. Hence, we conclude that A is an SWR

ring.

Conversely, for any (c1, c2, . . . , cn, d, d, . . . ) ∈ R[A, B] with each ci ∈ A and

d ∈ B. Since A is an SWR ring, we have ci = citici
2si for some ti, si in A



50 On Almost s-Weakly Regular Rings

and B is an almost SWR ring, then either d or 1 − d is SWR. If d is SWR, we

can find some g, h in B such that d = dgd2h. Thus, (c1, c2, . . . , cn, d, d . . . ) =

(c1, c2, . . . , cn, d, d, . . . )(t1, t2, . . . , tn, g, g, . . . )(c1, c2, . . . , cn, d, d, . . . )2(s1, s2, . . . , sn, h, h, . . . ).

This implies that (c1, c2, . . . , cn, d, d, . . . ) ∈ R[A, B] is SWR. If 1 − d is SWR,

we have 1 − d = (1 − d)y(1 − d)2z for some y, z in B. Thus, we get

(1, 1, . . . , 1, 1, 1, . . . )− (c1, c2, . . . , cn, d, d, . . . )=(1−c1, 1−c2, . . . , 1−cn, 1−d, 1−d, . . . ) ∈

R[A, B] is SWR. Therefore, R[A, B] is an almost SWR ring. □

Corollary 5.3.6. R[A, A] is an almost SWR ring if and only if A is an SWR ring.

Let R be a ring, then the trivial extension of R over R is

RΘR = {(s, n) | s ∈ R, n ∈ R}

with componentwise addition and multiplication defined by (s1, n1)(s2, n2) = (s1s2, n1s2 +

s1n2). Then, RΘR is isomorphic to subring


 a b

0 a

 | a, b ∈ R

 of T2(R).

Theorem 5.3.7. Let R be a ring. If RΘR is an almost SWR ring, then R is almost SWR.

Proof. Let θ : RΘR → R be a canonical epimorphism. Then, we have RΘR/0ΘR � R.

Hence, R is an almost SWR ring by Proposition 7.3.2(1). □

Proposition 5.3.8. For a ring S and n ≥ 2, R = Tn(S ). Then, RΘR is not an almost SWR

ring.

Proof. Assume that n = 2. Let A = (C, I2) ∈ RΘR, where C =

 1 1

0 0

.
Suppose that A is SWR, then there exist (X,Y), (V,W) ∈ RΘR such that

(C, I2) = (C, I2)(X,Y)(C, I2)2(V,W). Thus (X + CY)C2V + 2CXCV + CXC2W =

I2. Write X =

 x1 x2

0 x3

 ,Y =

 y1 y2

0 y3

 ,V =

 v1 v2

0 v3

 and W = w1 w2

0 w3

. Then we obtain


 x1 x2

0 x3

 +
 1 1

0 0


 y1 y2

0 y3



 1 1

0 0


2  v1 v2

0 v3

 +
2

 1 1

0 0


 x1 x2

0 x3


 1 1

0 0


 v1 v2

0 v3

 +
 1 1

0 0


 x1 x2

0 x3


 1 1

0 0


2  w1 w2

0 w3

 = 1 0

0 1

, we get a contradiction by comparing the (2, 2) entry of matrices on both side.

Similarly, we can also show that (I2, 0) − A is not SWR. Hence, T2(S )ΘT2(S ) is not an

almost SWR ring.
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Suppose that n ≥ 3. Let C =

 C1 α

0 C2

 ,D =

 D1 β

0 D2

 ∈ R, where

C1,D1 ∈ T2(S ). If (C,D) is SWR ring in RΘR, then (C1,D1) is SWR in T2(S )ΘT2(S ). As

T2(S )ΘT2(S ) is not almost SWR, neither is RΘR. □

The converse of Theorem 5.3.7 does not hold, which is shown in the following

corollary.

Corollary 5.3.9. Let R = T2(Z2) be an almost SWR ring. Then, RΘR is not almost SWR.

Proof. From Proposition 5.3.8, RΘR = T2(Z2)ΘT2(Z2) is not almost SWR. □

5.4 Semiperfect Almost SWR Rings

In this section, we consider the structure of semiperfect (see [10]) almost SWR rings.

Recall that a ring R is called reduced if R has no nonzero nilpotent elements.

Lemma 5.4.1. [27, Lemma 4.2]. Let e1 and e2 be two local idempotents of a ring R. Then,

either e1R � e2R, or e1Re2 ⊆ J(R) and e2Re1 ⊆ J(R).

Proposition 5.4.2. Let R be a semiperfect ring with 1 = e1 + e2, where e1, e2 are or-

thogonal primitive idempotents. If R is almost SWR, then R is isomorphic to either of the

following:

(1) M2(C) for some reduced ring C.

(2)

 A X

Y B

 where A is a reduced ring, B is a local ring and XY ⊆ J(A), YX ⊆ J(B).

In particular, if J(R) = 0. Then, R is isomorphic to either M2(C) or

 A1 0

0 A2

 where A1,

C are reduced and A2 is a local ring.

Proof. Consider the Pierce decomposition

R �

 e1Re1 e1Re2

e2Re1 e2Re2


If e1R � e2R, then R � M2(e1Re1), where e1Re1 is a local ring. By using Lemma 5.2.9,

e1Re1 is an SWR ring. Then in view of [28, Theorem 5], e1Re1 is reduced. If e1R � e2R,

then e1Re2 and e2Re1 are contained in J(R) by Lemma 5.4.1. Again by Lemma 5.2.9,

either e1Re1 or e2Re2 is SWR. It follows that either e1Re1 or e2Re2 is a reduced ring. We

assume that e1Re1 is a reduced ring. Note that e1Re2Re1 ⊆ J(R) ∩ e1Re1 = J(e1Re1) and
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e2Re1Re2 ⊆ J(R) ∩ e2Re2 = J(e2Re2). So take A = e1Re1, B = e2Re2, X = e1Re2 and

Y = e2Re1, we obtain that R �

 A X

Y B

. □

Proposition 5.4.3. Let R be a semiperfect ring with 1 = e1 + e2 + e3, where {e1, e2, e3} is a

orthogonal set of primitive idempotents. If R is almost SWR, then R is isomorphic to one

of the followings:

(1) M3(C) for some reduced ring C.

(2)

 R1 X

Y R2

 where R1 is a reduced ring, R2 is a local ring and XY ⊆ J(R1), YX ⊆

J(R2).

(3)

 R1 X

Y R2

 where R1 is semiprime, R2 is a local ring and XY ⊆ J(R1), YX ⊆ J(R2).

(4)

 A X

Y C

 with A �

 R1 X1

Y1 R2

 and R1,R2,C are reduced rings, X1Y1 ⊆ J(R1),

Y1X1 ⊆ J(R2).

Proof. Case 1. If eiR � e jR for all i, j, then R � M3(e1Re1) where e1Re1 is a local ring.

By Lemma 5.2.9, e1Re1 is a reduced ring.

Now we consider Pierce decomposition

R �

 (1 − e1)R(1 − e1) (1 − e1)Re1

e1R(1 − e1) e1Re1


Case 2. Assume that e1Re1 is local but not a reduced ring, then (1 − e1)R(1 −

e1) is a reduced ring by [28, Theorem 5]. Thus, e2Re2 and e3Re3 are reduced rings.

So by Lemma 5.4.1, e1Re2, e2Re1, e1Re3 and e3Re1 are all contained in J(R). Thus (1 −

e1)Re1R(1 − e1) ⊆ J(R) ∩ (1 − e1)R(1 − e1) = J((1 − e1)R(1 − e1)) and e1R(1 − e1)Re1 ⊆

J(R) ∩ e1Re1 = J(e1Re1). Hence, R is as in (2) above.

Case 3. Suppose that all eiRei are reduced rings. If e2R � e3R but e1R � e2R, then

(1 − e1)R(1 − e1) � M2(C) for some reduced ring C, and so C is a semiprime ring. Then

M2(C) is semiprime by [39, Proposition 10.20]. Hence, (1−e1)R(1−e1) is semiprime. By

Lemma 5.4.1, (1 − e1)Re1R(1 − e1) ⊆ J((1 − e1)R(1 − e1)) and e1R(1 − e1)Re1 ⊆ J(e1Re1).

Thus, R is as in (3).

Case 4. Suppose that eiRei is a reduced ring for all i=1,2,3 and e1R � e2R � e3R.

Then

(1 − e1)R(1 − e1) �

 e2Re2 e2Re3

e3Re2 e3Re3

 ,
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where e2Re3Re2 ⊆ J(e2Re2) and e3Re2Re3 ⊆ J(e3Re3). Now note that (1−e1)Re1R(1−e1) ⊆

J(R)∩(1−e1)R(1−e1) = J((1−e1)R(1−e1)). So by taking e2Re2 = R1, e3Re3 = R2, e3Re2 =

Y1, e2Re3 = X1, e1Re1 = C, (1 − e1)Re1 = Y, e1R(1 − e1) = X. Thus (3) follows. □

5.5 Almost SWR Group Rings

We start this section with the necessary conditions for RG to be SWR.

Theorem 5.5.1. If RG is an SWR ring. Then, R is an SWR ring and G is a torsion group.

Proof. By the augmentation map, R is an image of RG. Since homomorphic image of

an SWR ring is SWR, R is SWR. Let g(, 1) ∈ G. Since RG is SWR, 1 − g = (1 − g)x

where x ∈ ((1 − g)2). Then, (1 − g)(1 − x) = 0. This implies that 1 = x ∈ ωG, which

is a contradiction. Thus, 1 − g is a zero divisor, and hence g is of finite order by [17,

Proposition 6]. Thus, G is a torsion group. □

Recall that an abelian torsion group is locally finite.

Corollary 5.5.2. Let G be an abelian group. If RG is SWR, then R is SWR, and G is

locally finite.

Theorem 5.5.3. If RG is an SWR ring. Then for each n ∈ o(G), n is a unit in R, where

o(G) denotes the set of orders of all finite subgroups of G.

Proof. Let n be the order of g ∈ G. We will show that n is a unit in R. Since RG is SWR,

there exist x, y ∈ RG such that (1 − g)(1 − x(1 − g)2y) = 0. By using [17, Proposition 6],

(1− x(1−g)2y) = (1+g+g2+ · · ·+gn−1)r for some r ∈ RG and by applying augmentation

map ω : RG → R on above equation, we get 1 = nω(r), where ω(r) ∈ R. □

The following example shows that the converse of Theorem 5.5.1 is not true.

Example 5.5.4. Let R = Z2C2. Then, Z2 is SWR and C2 is torsion but R is not SWR.

If RG is commutative, then we have necessary and sufficient conditions for RG to be

SWR.

Theorem 5.5.5. Let RG be a commutative ring. Then RG is SWR if and only if

(1) R is SWR.

(2) G is locally finite.

(3) for each n ∈ o(G), n is a unit in R.
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Proof. The necessity follows from Theorem 5.5.1 and Theorem 5.5.3, and the sufficiency

follows from the fact that commutative SWR rings are VNR and by [17, Theorem 3]. □

The next result gives necessary conditions for group algebra KG over a field K

satisfying a nontrivial polynomial identity to be SWR.

Theorem 5.5.6. Let KG be a group algebra over a field K satisfying a nontrivial polyno-

mial identity. If KG is SWR, then K is SWR, and G is locally finite.

Proof. Suppose that KG is SWR. Then, since homomorphic image of an SWR ring is

SWR, K is SWR. In view of Theorem 5.5.1, G is a torsion group, and by [53, Theo-

rem 5.5], we have |G : ∆(G)| < ∞. Let H be a finitely generated subgroup of G. Then

|H : H ∩ ∆(G)| < ∞, and in view of [53, Lemma 6.1], H ∩ ∆(G) is a finitely generated

subgroup of ∆(G). Since by [53, Lemma 2.2], the center C(H ∩ ∆(G)) of H ∩ ∆(G) is

a subgroup of finite index, |H : C(H ∩ ∆(G))| < ∞. Thus, again, by [53, Lemma 6.1],

C(H ∩ ∆(G)) is a finitely generated torsion group. So, C(H ∩ ∆(G)) is finite. Hence, H is

finite. □

Remark 5.5.7. The condition in Theorem 5.5.3 is not necessary for RG to be almost SWR

since R = Z4C2 is almost SWR, but 2 is not a unit in Z4.

Theorem 5.5.8. Let R be a commutative local ring and G an abelian p-group with p ∈

J(R). Then, RG is an almost SWR ring.

Proof. Suppose that R is a commutative ring and G an abelian p-group with p ∈ J(R).

Following [68, Lemma 2.1] we get that ωG ⊆ J(RG). Then, R being local implies that

RG is local by [47]. Hence, RG is an almost SWR ring. □

Example 5.5.9. Let R = Z(p) =

{
b
a
| b, a ∈ Z, gcd(a, p) = 1

}
and G = Cp. The group ring

RG is almost SWR.

Lemma 5.5.10. Let G be a group. If RH is almost SWR for every finitely generated

subgroup H of G, then RG is almost SWR.

Proof. Let α ∈ RG and H be a subgroup generated by the support of α. Then H is a

finitely generated subgroup of G. Thus, either α or 1 − α is SWR in RH. Assume that

α is SWR, then we have α ∈ αRHα2RH ⊆ αRGα2RG. It follows that α is SWR in RG.

Similarly, if 1−α is SWR in RH, then 1−α ∈ (1−α)RH(1−α)2RH ⊆ (1−α)RG(1−α)2RG.

Thus, 1 − α is an SWR element in RG. Hence, RG is an almost SWR ring. □

If H and K are subgroups of G such that: H ◁G,H ∩ K = {1} and HK = G, then G

is called a semidirect product of H by K, denoted by G = H ⋊ K. The following result

shows that the converse of Lemma 5.5.10 partially holds.
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Theorem 5.5.11. Let G = H ⋊ K, |H| < ∞. If RG is an almost SWR ring, then RK is an

almost SWR ring.

Proof. For any α ∈ RK, either α or 1 − α is SWR in RG. Assume that α is SWR, then we

have α = αaα2b for some a, b ∈ RG. Let a =
∑

aiki and b =
∑

biki, where ai, bi ∈ RH,

ki ∈ K and let α =
∑
α jk j, where α j ∈ R. Denote x =

∑
ω(ai)ki, y =

∑
ω(bi)ki, so

x, y ∈ RK. We will show that α = αxα2y for some x, y ∈ RK.

Let ξ : G → G/H stand for the natural group homomorphism and then extend ξ to

a ring homomorphism ξ : RG → R(G/H), defined by ξ(
∑
αigi) =

∑
αiξ(gi). Obviously,

Ker(ξ) ∩ RK = 0 and ξ(z) = ω(z) for all z ∈ RH.

Since 0 = α − αaα2b, we have

0 = ξ(α) − ξ(α)ξ(a)ξ(α2)ξ(b)

= ξ(α) − ξ(α)ξ(
∑

aiki)ξ(α2)ξ(
∑

biki)

= ξ(α) − ξ(α)
∑

ω(ai)ξ(ki)ξ(α2)
∑

ω(bi)ξ(ki)

= ξ(α) − ξ(α)ξ(
∑

ω(ai)ki)ξ(α2)ξ(
∑

ω(bi)ki)

= ξ(α) − ξ(α)ξ(x)ξ(α2)ξ(y)

= ξ(α − αxα2y).

Then, α − αxα2y ∈ Ker(ξ) ∩ RK = 0, so we have α = αxα2y. Similarly, if 1 − α

is SWR, then we can find t =
∑
ω(ti)ki and s =

∑
ω(si)ki in RK such that 1 − α =

(1 − α)t(1 − α)2s. □

Remark 5.5.12. An artinian ring RG may not be an almost SWR ring.

Example 5.5.13. The group ring (Z4 × Z4)C2 is artinian but not almost SWR.

For any nontrivial finite group G, group ring RG may or may not be an almost SWR

ring.

Example 5.5.14. ZG is not almost SWR for any nontrivial finite group G.

Example 5.5.15. Let Z2 = {0, 1} and G = (g|g2 = 1). An element 1 + g ∈ Z2G is not SWR

but 1 − (1 + g) is SWR. So, Z2G is an almost SWR ring.

Proposition 5.5.16. Let K be a field of char(K) = p > 0 and G a finite p-group. Then

group algebra KG is almost SWR.

Proof. Suppose that K be a field of char(K) = p > 0 and G a finite p-group. Then by [39,

Corollary 8.8], jacobson radical of group algebra J(KG) is equal to augmentation ideal

ωG with J(KG)|G| = 0. It follows that KG/J(KG) � K. Since K is a division ring, KG is

local. Thus, KG is an almost SWR ring. □





Chapter 6

On Semiboolean Neat Rings

In this chapter, we introduce a new class of ring called semiboolean neat ring. A ring R

is said to be semiboolean neat if every proper homomorphic image of R is semiboolean.

Semiboolean neat rings are the proper subclass of neat rings and proper generalization of

semiboolean and nil neat rings. A commutative semiboolean neat ring which is not semi-

boolean is reduced. Further, we discuss commutative group ring RG to be semiboolean

neat.

6.1 Introduction

Nicholson and Zhou [50] introduced and investigated semiboolean rings. The class of

semiboolean rings is strictly between the classes nil clean and clean rings. On the other

hand, the class of commutative neat rings was defined and investigated by McGovern [44].

The ring of integers, Z, and any nonlocal PID are example of a neat ring that is not clean.

The class of commutative nil neat rings was investigated by Samiei [58]. A ring R is called

nil neat if every proper homomorphic image of R is nil clean. The class of nil clean rings is

nil neat, but the converse containment is not valid, as shown in [58, Example 2.10]. In this

chapter, we introduced semiboolean neat rings. The ring R is semiboolean neat provided

that every proper homomorphic image of R is semiboolean. The class of semiboolean

neat rings is a proper subclass of the class of neat rings because every semiboolean ring is

clean. And since every nil clean ring is semiboolean, the class of semiboolean neat rings

is a proper generalization of class of nil neat rings. Thus, the class of semiboolean neat

rings is strictly between the classes nil neat and neat rings.
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So, here, our motivation is to refine the class of neat rings. We provide various

properties of semiboolean neat rings. It is proved that a semiboolean neat ring which is

not semiboolean is reduced. If ring R is semiboolean neat, then the matrix ring Mn(R)

may not be semiboolean neat see remark 6.2.13. Recall that a ring A is called radical

if J(A) = A. We prove that matrix ring Mn(A) is semiboolean neat if and only if A is

a radical ring. It is proved that if J(R) , 0 is a nil ideal, then R is semiboolean neat if

and only if R is semiboolean. We determine the necessary and sufficient conditions for a

commutative group ring RG to be semiboolean neat.

6.2 Semiboolean Neat Rings

We start this section with some observations about semiboolean neat rings.

Remark 6.2.1. (1) Every semiboolean ring is semiboolean neat ring.

(2) Every nil neat ring is semiboolean neat ring.

Nil clean ring =⇒ Semiboolean ring =⇒ Clean ringwww� www� www�
Nil neat ring =⇒ Semiboolean neat ring =⇒ Neat ring

The following examples demonstrate that the reverse implication of aforementioned

is not true.

Example 6.2.2. (1) If R = Z2 and G is a universal locally finite group, then G is a

simple group, ∆(G) = {1} and RG is prime ([54, Theorem 9.4.9] ). According to

Passman [54, Corollary 9.4.10], ωG is the unique proper ideal of RG. Because

RG/ωG � R, R is the only proper homomorphic image of RG. As a result, RG is

a semiboolean neat ring but not semiboolean. Assume that Z2G is semiboolean.

Then, according to [65, Theorem 3.1], G is a 2-group but a universal locally finite

group does not have to be a 2-group ([54, Theorem 9.4.8]).

(2) Let R = Z(2) × Z4 or R = Z2[[x]] × Z4. Since every proper homomorphic image of

R is semiboolean, R is a semiboolean neat ring. But homomorphic image Z(2) or

Z2[[x]] respectively of R is not nil clean, so R is not a nil neat ring.

(3) Let R = Z or R = Z2×Z3 or R = Z3×Z3. Then, R is a neat ring but not semiboolean

neat since homomorphic image Z3 of R is not semiboolean.

Proposition 6.2.3. (1) A homomorphic image of a semiboolean neat ring is a semi-

boolean neat ring.
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(2) The direct product of semiboolean neat rings does not have to be semiboolean neat.

(3) Polynomial ring is not semiboolean neat.

Proof. (1) It follows from the fact that homomorphic image of a semiboolean ring is

semiboolean.

(2) Let R = Z2G × Z4, where G is a universal locally finite group. Then, both Z2G

and Z4 are semiboolean neat since every proper homomorphic image of Z2G and Z4 is

semiboolean. But proper homomorphic image Z2G of Z2G × Z4 is not semiboolean, so R

is not semiboolean neat.

(3) Consider F is a field and R = F[x, y]. Then, R is not semiboolean neat since

R/yR � F[x] is not clean. It follows that F[x] is not semiboolean. Thus R is not semi-

boolean neat. □

Proposition 6.2.4. Let R be a decomposable ring. Then, R is a semiboolean neat ring if

and only if R is semiboolean.

Proof. Suppose that R is a decomposable ring. Then, there are ideals I and J such that

R = I ⊕ J. Now, if R is semiboolean neat, then J � R/I (respectively I � R/J) is also

semiboolean. Thus, R being a direct product of semiboolean rings is semiboolean by [50,

Example 25(3)]. □

Lemma 6.2.5. [50, Theorem 29] Let A be a general ring and let I ◁ A. Then, A is

semiboolean if and only if the following conditions hold:

(1) I and A/I are semiboolean.

(2) Every idempotent of A/I can be lifted to an idempotent of A.

(3) J(A/I) = (I + J(A))/I.

Theorem 6.2.6. The following statements are equivalent for any commutative ring R:

(1) R is semiboolean neat.

(2) R/aR is semiboolean for every nonzero a ∈ R.

(3) For any collection of nonzero prime ideals {P j} j∈J of R with I = ∩ j∈JP j different

than 0 we have R/I is semiboolean.

(4) R/aR is semiboolean neat for every a ∈ R.

(5) R/I is semiboolean for every nonzero semiprime ideal.



60 On Semiboolean Neat Rings

Proof. (1)⇒ (2) It follows from the fact that homomorphic image of a semiboolean ring

is semiboolean.

(2) ⇒ (1) Let J be an ideal of R and a ∈ J. Now, consider I = aR, clearly I ⊆ J.

Then, J/I is an ideal of R/I. In view of third ring isomorphism theorem (R/I)/(J/I) �

R/J. Since R/I is semiboolean, R/J is semiboolean by [50, Example 25(2)]. Thus, R is a

semiboolean neat ring.

(3)⇔ (5) It is straightforward.

(1) ⇒ (4) Since R is semiboolean neat, R/aR is a semiboolean ring, where a is a

nonzero element of R. Thus, R/aR is semiboolean neat for every a ∈ R.

(4)⇒ (1) It is true by using a = 0.

(1)⇒ (5) It is obvious.

(5)⇒ (1) It is well known that P(R) is a semiprime ideal.

Case 1: Suppose that P(R) , 0. As P(R) ⊆ J(R), by [39, Example 10.17(d)] there

exist a surjective homomorphism ϕ : R/P(R)→ R/J(R). By hypothesis, we have R/P(R)

is semiboolean, then R/P(R) is clean. Thus, R is clean by the fact that R is clean if and

only if R/P(R) is clean. Since homomorphic image of a semiboolean ring is semiboolean,

R/J(R) is semiboolean. It follows that R/J(R) is boolean. In view of [65, Lemma 3.2], R

is semiboolean. Hence R is semiboolean neat.

Case 2: Suppose that P(R) = 0. Let S be a proper homomorphic image of R, i.e.,

φ : R → S . Then, φ induces a surjection of semiprime rings φ : R/P(R) → S/P(S ).

Since P(R) = 0, φ : R → S/P(S ). By hypothesis, S/P(S ) is semiboolean, then S/P(S )

is clean. Thus, S is clean by the fact that S is clean if and only if S/P(S ) is clean. Since

P(S ) ⊆ J(S ), by [39, Example 10.17(d)] we have f : S/P(S ) → S/J(S ). It follows

that S/J(S ) is semiboolean. So S/J(S ) is boolean. In view of [65, Lemma 3.2], S is

semiboolean. Thus, R is semiboolean neat. □

We use N(R) to represent the set of all nilpotent elements in R.

Theorem 6.2.7. Let R be a commutative ring. If R is a semiboolean neat ring but not

semiboolean, then R is reduced.

Proof. Suppose that N(R) , 0. Then, R/N(R) is semiboolean. Note that N(R) is semi-

boolean. Since N(R) is a nil ideal, the idempotents of R/N(R) can be lifted to R by [39,

Theorem 21.28]. Note that since N(R) ⊆ J(R),

J(R/N(R))
(J(R) + N(R))/N(R)

= J
(

R/N(R)
(J(R) + N(R))/N(R)

)
= J

(
R

J(R) + N(R)

)
= J

(
R

J(R)

)
= 0.

This means that J(R/N(R)) = (J(R) + N(R))/N(R). Thus, by Lemma 6.2.5, R is semi-

boolean, which gives a contradiction. □
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Proposition 6.2.8. Let R be a ring with 0 , J(R) nil. Then, R is semiboolean neat if and

only if R is semiboolean.

Proof. (⇒) Suppose that R is a semiboolean neat ring. Then, R/J(R) is semiboolean. It

follows that R/J(R) is boolean. Since 0 , J(R) is nil, idempotents in R/J(R) can be lifted

to modulo J(R). Thus, R is semiboolean.

(⇐) It is trivial. □

Remark 6.2.9. If J(R) = 0, then above Proposition 6.2.8 may not be true. In Exam-

ple 6.2.2, Jacobson radical is 0 and RG is semiboolean neat but not semiboolean since G

need not to be a 2-group.

Corollary 6.2.10. Let 0 , J(R) be a nil ideal of a ring R. Then, R is clean UJ ring if and

only if R is semiboolean neat ring.

Proof. (⇒) It follows from [36, Theorem 4.2] and by the fact that semiboolean rings are

semiboolean neat.

(⇐) Suppose that R is a semiboolean neat ring. Then, by Proposition 6.2.8, R is

semiboolean. Thus, in view of [36, Theorem 4.2], R is a clean UJ ring. □

Proposition 6.2.11. Let R be a commutative semiboolean neat ring. Then, R/M � Z2 for

every nonzero maximal ideal.

Proof. Suppose that R is a semiboolean neat ring. Then, R/M is semiboolean. Since M

is a maximal ideal, R/M is field. A semiboolean field is isomorphic to Z2. □

Corollary 6.2.12. Let R be a commutative ring. If R is semiboolean neat, then R is a field

or R/J(R) is isomorphic to a subring of a product of copies of Z2.

Proof. Suppose that R is a semiboolean neat ring which is not a field. Then, R/J(R) is

embeddable inside of
∏

m∈Max(R)(R/M); which is isomorphic to a product of copies of Z2

by Proposition 6.2.11. It follows that R/J(R) is also isomorphic to a subring of product of

copies of Z2. □

Remark 6.2.13. If R is semiboolean neat ring, then the matrix ring Mn(R) need not be

semiboolean neat. For example: M2(Z4). Since Z4 , J(Z4) and Z2 , J(Z2), [50, Ex-

ample 25(5)] implies that M2(Z4) and M2(Z4)/J(M2(Z4)) � M2(Z2) are not semiboolean.

Thus, M2(Z4) is not semiboolean neat.

Alternatively, it is obvious that if J(R) , 0 and R is semiboolean neat, then R/J(R)

is boolean. At the same time M2(Z4)/J(M2(Z4)) � M2(Z2) is not boolean. It follows

that M2(Z4) is not semiboolean neat. Hence, semiboolean neat property is not Morita

invariant.
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Theorem 6.2.14. Let 0 , I ⊂ J(A) be an ideal of A. Then, Mn(A), n ≥ 2, is semiboolean

neat if and only if A is a radical ring.

Proof. (⇒) It follows from [50, Example 25(5)] and Remark 6.2.1.

(⇐) Suppose that Mn(A) is a semiboolean neat ring. It is well known that the map

I 7→ Mn(I) is a bijection between the sets of ideals of A and Mn(A). Then, Mn(A/I) �

Mn(A)/Mn(I) is semiboolean. Then, by using [50, Example 25(5)], we have that A/I is a

radical ring. So A/I = J(A/I). Since I ⊂ J(A), J(A/I) = J(A)/I. Hence, A = J(A). □

Theorem 6.2.15. Let R be a commutative ring and G an abelian group. If group ring RG

is semiboolean neat, then the following one condition holds

(1) G is trivial and R is semiboolean neat.

(2) G is non-trivial 2-group and R is semiboolean.

(3) G is a non-trivial torsion free locally cyclic group and R � Z2.

Moreover, if either condition (1) or (2) holds, then the converse implication is true.

Proof. If G is trivial, then R is semiboolean neat since RG � R. So we shall assume

hereafter that G is non-trivial.

Claim: If RG is clean, then RG is semiboolean neat if and only if RG is semiboolean

if and only if R is semiboolean and G is a 2-group.

Proof. If R is semiboolean and G is a 2-group, then RG is semiboolean by [65, Corol-

lary 3.11]. Thus, RG is semiboolean neat. So we will be concentrated on the inverse

implication. Assume on the contrary that RG is not semiboolean. Since RG is clean,

indecomposable clean ring is local. So J(RG) , 0. Since RG/J(RG) is semiboolean,

RG/J(RG) is boolean. Then, by [65, Lemma 3.2], RG is semiboolean, which is a contra-

diction. Thus RG must be semiboolean and so by [65, Corollary 3.2], R is semibooloean

and G is a 2-group. □

If RG is not clean, then RG is not semiboolean. By hypothesis, RG is semiboolean

neat. The augmentation map ω : RG → R is an onto homomorphism and RG/ωG � R.

Hence, R is a semiboolean ring. Let I , 0 be a proper ideal of R, then IG be a proper

ideal of RG. The map θ : RG → (R/I)G defined by

θ(
∑
g∈G

agg) =
∑
g∈G

(ag + I)g

maps naturally onto (R/I)G. Then, (R/I)G is semiboolean. In view of [65, Theorem 3.1],

G is a 2-group. Thus G is a torsion group. Since G is abelian, G is a locally finite 2-group.
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Then, by [65, Theorem 2.3], RG is semiboolean, a contradiction. It follows that I is not

a proper ideal of R. Thus, R being a commutative ring with only improper ideals implies

that R is a field. Hence, R is isomorphic to Z2. As RG is semiboolean neat, it follows that

RG is neat. Then, by [64, Theorem 2.7], G is a torsion free locally cyclic group. □





Chapter 7

On Weakly g(x)-Invo Clean Rings

In this chapter, we introduce weakly g(x)-invo clean rings. Let C(R) be the center of a

ring R and g(x) be a fixed polynomial in C(R)[x]. A ring R is said to be weakly g(x)-invo

clean if each element of R is either a sum or difference of an involution and a root of g(x).

This sort of class is a proper subclass of weakly g(x)-clean rings and a generalization of

g(x)-invo clean rings. We provide various properties of weakly g(x)-invo clean rings. We

characterize weakly invo-clean rings as weakly g(x)-invo clean rings where g(x) ∈ x(x −

a)C(R)[x], a ∈ C(R) ∩ Inv(R). We determine necessary and sufficient conditions for skew

Hurwitz series ring (HR, α) to be weakly g(x)-invo clean, where α is an endomorphism of

R. Also, we prove that the ring of skew Hurwitz series A = (HR, α) is weakly invo-clean

ring if and only if R is weakly invo-clean ring.

7.1 Introduction

The class of clean rings was introduced by Niholson in [48]. A ring R is called clean if

for any r ∈ R, we have r = u+ e where u ∈ U(R) and e ∈ Id(R). A ring R is strongly clean

if ue = eu. Following this, some stronger and special concepts of clean rings have been

considered (see [12; 49; 70]) and for weaker ones, see [2; 16]. The concept of invo-clean

rings were firstly introduced by Danchev [22]. A ring R called an invo-clean if for each

r ∈ R, there exist v ∈ Inv(R) and e ∈ Id(R) such that r = v + e. If the existing idempotent

e is unique, R is classified as a uniquely invo-clean ring. An invo-clean ring R is strongly

invo-clean if ve = ev. In [21], Danchev defined weakly invo-clean rings.
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Definition 7.1.1. A ring R is called weakly invo-clean if for any r ∈ R, either r = v + e or

r = v − e where v ∈ Inv(R) and e ∈ Id(R). If ve = ev, R is a weakly invo-clean ring with

strong property.

Let C(R) signifies the center of a ring R and g(x) be a fixed polynomial such that

g(x) ∈ C(R)[x]. In [24], g(x)-clean rings were introduced by Fan and Yang. g(x)-invo

clean rings are those in which every element is the sum of a unit and a root of a polynomial

g(x).

Further, weakly g(x)-clean rings were studied by Ashrafi and Ahmadi [3].

Definition 7.1.2. A ring R is weakly g(x)-clean if for any a ∈ R, either a = u + s or

a = u − s where u ∈ U(R) and g(s) = 0.

Recently, Maalmi and Mouanis [42] introduced and studied g(x)-invo clean rings as

a generalization of invo-clean rings. A ring R is g(x)-invo clean if for each r ∈ R, we have

r = v + s where v ∈ Inv(R) and g(s) = 0. They investigated various basic properties and

examples of g(x)-invo clean. In their paper, they characterized invo-clean rings as g(x)-

invo clean rings where g(x) = (x − a)(x − b), a, b ∈ C(R) and b − a ∈ Inv(R). Motivated

by papers [16] and [24], we introduce weakly g(x)-invo clean rings.

Definition 7.1.3. A ring R is called weakly g(x)-invo clean if for any r ∈ R, either r = v+ s

or r = v − s where v ∈ Inv(R) and g(s) = 0. If vs = sv, R is called weakly g(x)-invo clean

with strong property.

In section 7.2, we investigate weakly g(x)-invo clean rings as a proper subclass of

weakly g(x)-clean rings and a generalization of g(x)-invo clean rings. We obtain various

properties of weakly g(x)-invo clean rings. We show that a g(x)-invo clean ring is a weakly

g(x)-invo clean ring but its reverse implication is not true (see Example 7.3.1). Consider

M to be a R-module. We discuss when trivial extension R(M) is weakly g(x)-invo clean.

In section 7.3, we characterize weakly invo-clean rings as weakly g(x)-invo clean rings

where g(x) = x(x−a), a ∈ C(R)∩Inv(R). It is proved that skew Hurwitz series ring (HR, α)

is weakly invo-clean if and only if R is weakly invo-clean. We determine necessary and

sufficient conditions for the ring of skew Hurwitz series (HR, α) to be weakly invo-clean

with strong property, where α is an endomorphism of R. We prove that the ring of skew

Hurwitz series (HR, α) is weakly g(x)-invo clean ring if and only if R is weakly g(x)-invo

clean ring. If we take identity endomorphism in skew Hurwitz series ring, then we obtain

ring of Hurwitz series to be weakly g(x)-invo clean ring.



7.2 Necessary and Sufficient Conditions for Weakly Invo-Clean Rings 67

7.2 Necessary and Sufficient Conditions for Weakly

Invo-Clean Rings

In this Section, we further explore the concept of weakly invo-clean rings [21].

Let A be a ring and B a subring of ring A with 1A ∈ B. We set

R[A, B] = {(c1, c2 . . . , cn, d, d . . . )|ci ∈ A, d ∈ B, n ≥ 1}

with addition and multiplication defined componentwise.

Theorem 7.2.1. Let B be a subring of A, then R[A, B] is weakly invo-clean if and only if

A is invo-clean and B is weakly invo-clean.

Proof. Let (p1, p2, . . . , pn, d, d, . . . ) ∈ R[A, B] with each ci ∈ A and d ∈ B.

Since B is weakly invo-clean and A is invo-clean, so d = v ± e for some

v ∈ Inv(R) and idempotent e ∈ Id(R). If d = v + e, write ci = vi + ei

then (c1, c2, . . . , cn, d, d, . . . ) = (v1, v2, . . . , vn, v, v, . . . ) + (e1, e2, . . . , en, e, e, . . . )

where (v1, v2, . . . , vn, v, v, . . . ) ∈ Inv(R[A, B]) and (e1, e2, . . . , en, e, e, . . . )2 =

(e1, e2, . . . , en, e, e, . . . ) ∈ Id(R[A, B]). Hence, R[A, B] is weakly invo-clean.

Conversely, since homomorphic image of weakly invo-clean is weakly invo-clean

by [21, Lemma 4.1], B is weakly invo-clean. As R[A, B] = A ⊕ A so in view of [21,

Proposition 4.15], A is invo-clean. □

Theorem 7.2.2. Let α ∈ End(R). Then skew Hurwitz series ring A = (HR, α) is a weakly

invo-clean ring if and only if so is R.

Proof. Let f ∈ A and since R is weakly invo-clean ring, f (0) = v ± e where v ∈ Inv(R)

and e2 = e ∈ R. Define an element h ∈ A by

h(n) =


v n = 0

−v

n∑
m=1

h(m)αm(h(n − m)) n > 0.

Since h(0) is an involution in R, h is an involution in A by Lemma 7.4.13, so we have

h ∈ Inv(A). Thus f = h ± l
′

e where (l
′

e)
2 = l

′

e ∈ A.

Conversely, let I = { f ∈ A| f (0) = 0} is an ideal in A. Then, we have a map

σ : R → A/I by σ(r) = l
′

r + I. It is easy to compute that σ is a ring isomorphism. So

R � A/I. By hypothesis, A is weakly invo-clean ring. Then R is weakly invo-clean ring

by [21, Lemma 4.1]. □

If we take α = idR, then we have following corollary.
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Corollary 7.2.3. Let R be a ring. Then Hurwitz series ring HR is weakly invo-clean if

and only if R is a weakly invo-clean.

Theorem 7.2.4. Let α ∈ End(R) and e ∈ A is a central idempotent with α(e) = e. Then

A = (HR, α) is weakly invo-clean ring with strong property if and only if R is weakly

invo-clean ring with strong property.

Proof. Suppose that R is weakly invo-clean ring. Then A is weakly invo-clean ring by

Theorem 7.2.2. Thus, each f ∈ A can be written as f = ( f − l
′

e) + l
′

e or f = ( f + l
′

e) − l
′

e.

So, all that remains is to demonstrate that f l
′

e = l
′

e f . As e is central in R, ( f l
′

e)(n) =

f (n)αn(l
′

e(0)) = f (n)αn(e) = f (n)e = e f (n) = l
′

e(0) f (n) = (l
′

e f )(n) for all n ∈ supp( f l
′

e).

Hence, f l
′

e = l
′

e f .

Conversely, assume that A is weakly invo-clean ring, then R is weakly invo-clean

by Theorem 7.2.2. Thus, each r ∈ R can be written as r = f (0) ± h(0) where f is an

involution of A and h is an idempotent element of A. Now, its only remains to demonstrate

that f (0)h(0) = h(0) f (0). As f , h commute in A, f (0)h(0) = f (0)α0(h(0)) = ( f h)(0) =

(h f )(0) = h(0)α0( f (0)) = h(0) f (0). □

Corollary 7.2.5. Let R be a reduced ring, α ∈ End(R) and α(e) = e. Then A = (HR, α)

is a weakly invo-clean if and only if A = (HR, α) is a weakly invo-clean ring with strong

property.

Proof. It follows by Theorem 7.2.4 and the fact that a reduced ring R is abelian1. □

Proposition 7.2.6. Let e ∈ R be a central idempotent and R be a weakly invo-clean ring.

Then corner ring eRe is weakly invo-clean.

Proof. Consider φ : R → eRe defined by φ(r) = er. Since e be a central idempotent,

φ(r) = er = re = ere. So, eRe is homomorphic image of R. Hence, by [21, Lemma 4.1],

the result follows. □

In [29], Han and Nicholson proved that if e is an idempotent element in R such that

eRe and (1 − e)R(1 − e) are both clean rings, then R is clean. So n × n matrix ring Mn(R)

is clean. The analogous result for weakly invo-clean rings hold if e is central idempotent

in R.

Theorem 7.2.7. The following statements hold for a ring R.

(1) If corner ring eRe and (1− e)R(1− e) are both weakly invo-clean where e is central

idempotent in R, then R is weakly invo-clean.
1A ring R is called abelian if all idempotents of R are central.



7.2 Necessary and Sufficient Conditions for Weakly Invo-Clean Rings 69

(2) Let {e1, e2, . . . , en} be a family of orthogonal idempotents such that e1+e2+· · ·+en =

1. Then eiRei is weakly invo-clean if and only if so is R.

(3) If R is weakly invo-clean, then so is the matrix ring Mn(R) for every n ≥ 1.

(4) If N = N1 ⊕ N2 ⊕ · · · ⊕ Nn are modules and End(N) is weakly invo-clean for each i,

then End(N) is weakly invo-clean.

Proof. (1) Write ē = (1 − e). By Pierce decomposition

R = eRe ⊕ eRē ⊕ ēRe ⊕ ēRē.

Since e and ē are central idempotent, we have

R = eRe ⊕ ēRē =

 eRe 0

0 ēRē


Supoose A =

 x 0

0 y

 ∈ R, where x ∈ eRe and y ∈ ēRē. By hypothesis, x and y are

weakly invo-clean. Then there exist v1, v2 ∈ Inv(R) and idempotent e1 and e2 in R such

that x = v1 ± e1, y = v2 ± e2. Thus, x 0

0 y

 =
 v1 ± e1 0

0 v2 ± e2

 =
 v1 0

0 v2

 ±
 e1 0

0 e2

 .
Note that

 v1 0

0 v2


2

=

 1 0

0 1

 and

 e1 0

0 e2


2

=

 e1 0

0 e2

. Thus R is weakly invo-

clean. Hence, R is weakly invo-clean.

(2) The ‘if part’ follows from (1) by induction and ‘only if part’ by using the fact that

factor ring of weakly invo clean ring is weakly invo clean.

(3) Let Ei j denotes that the entry in ith row and jthth column is 1 and other are 0 and {Eii}
n
i=0

is a finite set of mutually orthogonal idempotents in the matrix ring Mn(R). The sum of

E11 + E22 + · · · + Enn is equal to n × n identity matrix. Thus, result follows from (2).

(4) It follows from the fact that End(Rn) � Mn(R) and by (3). □

A ring R is called weakly exchange if, for each x ∈ R, there exists e ∈ Id(R) such

that e ∈ xR and either 1 − e ∈ (1 − x)R or 1 − e ∈ (1 + x)R. The following theorem shows

the relation between weakly invo-clean ring and weakly exchange ring.

Theorem 7.2.8. Let R be a ring. If R is weakly invo-clean ring, then R is weakly exchange.
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Proof. By hypothesis, for any r ∈ R, we have r = v± e where v ∈ Inv(R) and e ∈ Id(R). If

r = v + e, then by the inclusion Inv(R) ⊆ U(R), so v ∈ U(R). Thus, r is clean element and

by [48], it satisfies the exchange property.

Suppose r = v − e where v ∈ Inv(R) and e ∈ Id(R). Consider f = v(1 − e)v, then

f 2 = f . Note that v(x + f ) = v(v − e + v(1 − e)v) = (v − e)2 + (v − e) = x2 + x. So

x + f ∈ R(x2 + x). Thus by [20, Lemma 2.1], x satisfies weakly exchange property. □

The converse of above Theorem 7.2.8 is not true, for which we have following ex-

ample.

Example 7.2.9. The ring Z7 is clean ring. This implies that Z7 is exchange ring by [48,

Proposition 1.8]. So, Z7 is weakly exchange but not weakly invo-clean ring.

7.3 General Properties of Weakly g(x)-Invo Clean Rings

In this section, the general properties of weakly g(x)-invo clean rings are discussed. We

start with the following observations:

(1) Every weakly g(x)-invo clean ring with strong property is weakly g(x)-invo clean.

Also, in the commutative case, the two definitions coincide. Although, the reverse

implication is not true for non commutative rings. For example, the upper triangular

matrix ring T2(Z2) is weakly (x4+ x2)-invo clean but not weakly (x4+ x2)-invo clean

with strong property.

(2) Every weakly g(x)-invo clean ring is weakly g(x)-clean but its converse is not true.

For example, consider g(x) = (x2 + x + 2), then Z7 is weakly g(x)-clean but not

weakly g(x)-invo clean.

(3) A g(x)-invo clean ring is a weakly g(x)-invo clean ring. But the following example

shows that its converse is not true.

Example 7.3.1. Consider R = Z5 and g(x) = x2 − x ∈ C(R)[x]. Then R is a weakly

g(x)-invo clean ring but not g(x)-invo clean ring. And non trivial example, it can be easily

compute that for a fixed polynomial g(x) = x4 + x, the ring Z5 is weakly g(x)-invo clean

but not g(x)-invo clean.

Let R1 and R2 be two rings, with a ring homomorphism ϕ : C(R1)→ C(R2) such that

ϕ(1R1) = 1R2 . If g(x) =
∑n

i=0 aixi ∈ C(R1)[x], we consider gϕ(x) =
∑n

i=0 ϕ(ai)xi ∈ C(R2)[x].

We note that if g(x) ∈ Z[x], then gϕ(x) = g(x).
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Theorem 7.3.2. Let ϕ : R1 → R2 be a ring epimorphism and g(x) ∈ C(R1)[x]. If R1 is

weakly g(x)-invo clean, then R2 is weakly gϕ(x)-invo clean.

Proof. Consider g(x) =
∑n

i=0 aixi and consider gϕ(x) =
∑n

i=0 ϕ(ai)xi ∈ C(R2)[x] For any

r2 ∈ R2, we have an element r1 ∈ R1 such that ϕ(r1) = r2. As R1 is weakly g(x)-invo clean,

there exist s ∈ R1 and v ∈ Inv(R1) such that r1 = v ± s and g(s) = 0. So r2 = ϕ(r1) =

ϕ(v ± s) = ϕ(v) ± ϕ(s) with ϕ(v) ∈ Inv(R2) and

gϕ(ϕ(s)) = ϕ(a0) + ϕ(a1)ϕ(s) + · · · + ϕ(an)(ϕ(s))n

= ϕ(a0 + a1s + · · · + ansn)

= a0 + a1s + · · · + ansn

= 0.

Hence, R2 is weakly gϕ(x)-invo clean. □

The converse of above Theorem 7.3.2 is false, which is shown by the following

example.

Example 7.3.3. Consider g(x) = x2− x, the ring Z5 � Z/(5) is weakly g(x)-invo clean but

Z is not weakly g(x)-invo clean.

Corollary 7.3.4. If I is any ideal of a weakly g(x)-invo clean ring R, then the factor ring

R/I is weakly g(x)-invo clean where g(x) ∈ C(R/I)[x].

Proof. Consider θ : R → R/I be a canonical epimorphism. So, the result follows by

Theorem 7.3.2. □

Considering I be an ideal of a ring R, we say that a root a of g(x) ∈ C(R/I)[x] can

be lifted to g(x) ∈ C(R)[x], if there exists b ∈ R such that g(b) = 0 and b − a ∈ I. For

g(x) = x2− x, this is the generalization of lifting idempotents modulo I. The next theorem

shows that the reverse of Corollary 7.3.4 is true if roots of g(x) can be lifted to g(x).

Theorem 7.3.5. Let I ⊆ J(R) be an ideal of R and g(x) =
∑n

i=0 aixi ∈ C(R)[x] with

g(x) =
∑n

i=0 aixi ∈ C(R/I)[x]. If R/I is weakly g(x)-invo clean and roots of g(x) can be

lifted to g(x), then R is weakly g(x)-invo clean.

Proof. For r ∈ R, let r = r+ I ∈ R/I. Since R/I is weakly g(x)-invo clean, then there exist

v ∈ Inv(R/I) and s with g(s̄) = 0 such that r = v ± s. Since roots of g(x) can be lifted to

g(x), so we have t ∈ R such that g(t) = 0 and s = t. Thus r̄ = v̄ ± t̄. Then for some i ∈ I,

r − (v ± t) = i. So a = (v + i) ± t with v + i ∈ Inv(R). Hence, R is a weakly g(x)-invo clean

ring. □
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The direct product of weakly g(x)-invo clean rings does not have a weakly g(x)-invo

clean. For g(x) = x2 − x, Z5 is weakly g(x)-invo clean but their direct product Z5 × Z5 is

not. Since, in Z5 × Z5, element (2, 3) and (3, 2) cannot be expressed as sum or difference

of involution and a root of g(x) .

Theorem 7.3.6. Let {Ri}
n
i=1 be a family of rings and g(x) ∈ Z[x]. Then the direct product

R =
n∏

i=1

Ri is weakly g(x)-invo clean if and only if there exist k ∈ {1, 2, . . . , n} such that Rk

is weakly g(x)-invo clean ring and R j is g(x)-invo clean for all j , k.

Proof. Under the projection homomorphism, for each i ∈ {1, 2, . . . , n}, Ri is a homo-

morphic image of R. Thus Ri is weakly g(x)-invo clean by Theorem 7.3.2. Assume that

neither R1 nor R2 is g(x)-invo clean. So, there are r1 ∈ R1 and r2 ∈ R2 such that r1 , v1+ s1

where v1 ∈ Inv(R1) and g(s1) = 0 and r2 , v2 − s2 where v2 ∈ Inv(R2) and g(s2) = 0. Thus,

(r1, r2) is not weakly g(x)-invo clean in R1 × R2, which contradicts.

Conversely, let r = (ri) ∈ R. For a fixed k ∈ {1, 2, . . . , n}, suppose Rk is weakly g(x)-

invo clean ring. So we have either rk = vk + sk or rk = vk − sk for some vk ∈ Inv(Rk) and

root sk of g(x). If rk = vk + sk, then write ri = vi + si for each i , k where vi ∈ Inv(Ri) and

g(si) = 0. Thus r = (vi)+ (si) is the sum of an involution and a root of g(x). If rk = vk − sk,

then write ri = vi − si for i , k where vi ∈ Inv(Ri) and g(si) = 0. So r = (vi) − (si) is the

difference of an involution and a root of g(x). Hence, R is weakly g(x)-invo clean ring.

Hence, as we required. □

Consider R to be a ring and N be a bimodule. The ideal extension I(R,N) of R by N is

defined as the additive abelian group I(R,N) = R⊕N with multiplication (r1, n1)(r2, n2) =

(r1r2, r1n2 + n1r2 + n1n2). If g(x) =
∑n

i=0(ri, ni)xi ∈ C(I(R,N))[x], then gR(x) =
∑n

i=0 rixi ∈

C(R)[x].

Theorem 7.3.7. Let R be a ring and N be a bimodule. If I(R,N) is a weakly g(x)-invo

clean ring, then R is a weakly g(x)-invo clean ring.

Proof. Consider ϑR : I(R,N)→ R defined by ϑR(r, n) = r. It can be easily verified that ϑR

is a ring epimorphism. Thus, by Theorem 7.3.2, R is a weakly g(x)-invo clean ring. □

The ring of skew power series in x with cofficients from R is denoted by R[[x, α]],

where α is a ring epimorphism, with multiplication xr = α(r)x for all r ∈ R. In particular,

if we take identity endomorphism, then R[[x]] = R[[x, 1R]] denotes the ring of formal

power series over R. In an analogous way, we can define skew polynomial ring R[x, α]. If

(x) is the ideal generated by x, then it can be proved that R[[x, α]] ≃ I(R, (x).
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Corollary 7.3.8. Let α ∈ End(R). If R[[x, α]](R[[x]]) is a weakly g(x)-invo clean ring,

then R is weakly g(x)-invo clean.

Proposition 7.3.9. Let R be a commutative ring. Then the polynomial ring R[x] is not

weakly g(x)-invo clean.

Proof. Suppose R[x] is weakly g(x)-invo clean. Then for any x ∈ R[x], we have x = v ± s

where v ∈ Inv(R) and g(s) = 0. So x ± s is an involution. Thus by [42, Lemma 3.6], 1 is

nilpotent element, which is a contradiction. □

We call T =

 R M

N S

 a Morita context ring. If g(x) =

 c0 n0

m0 d0

+
 c1 n1

m1 d1

 x+

· · · +

 cn nn

mn dn

 xn ∈ C(T )[x], then we get gR(x) =
∑n

i=0 cixi ∈ C(R)[x] and gS (x) =∑n
i=0 dixi ∈ C(S )[x].

Theorem 7.3.10. Let R, S be two rings and M,N be bimodule and let T =

 R M

N S


be a Morita Context with zero pairings. If T is weakly g(x)-invo clean, then R is weakly

gR(x)-invo clean and S is weakly gS (x)-invo clean.

Proof. Suppose T is weakly g(x)-invo clean with zero pairings. Consider I =

 0 M

N S


and J =

 R M

N 0

 are ideals of R, then T/I � R and T/J � S . In view of Theorem 7.3.2,

R is weakly gR(x)-invo clean and S is weakly gS (x)-invo clean. □

Corollary 7.3.11. Let R, S be two rings and M be a bimodule. If the formal triangular

matrix ring T =

 R M

0 S

 is weakly g(x)-invo clean, then R is weakly gS (x)-invo clean

and S is weakly gS (x)-invo clean.

The next theorem is the particular case of formal triangular matrix rings. The trivial

extension of a commutative ring R and an R-module M is the (commutative) ring

R(M) =


 r m

0 r

 : r ∈ R,m ∈ M


with the usual matrix addition and multiplication. If

 r m

0 r

 is an involution of R(M),

then r is an involution of R. Naturally, ring R embeds into R(M) via r →

 r 0

0 r

. So any
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polynomial g(x) =
∑n

i=0 aixi ∈ R[x] can be written as g(x) =
∑n

i=0

 ai 0

0 ai

 xi ∈ R(M)[x]

and conversely.

Theorem 7.3.12. Let R be a commutative ring and M an R-module such that 2M = 0.

Then the trivial extension R(M) of R and M is weakly g(x)-invo clean if and only if R is

weakly g(x)-invo clean.

Proof. For M̃ =


 0 m

0 0

 |m ∈ M

, we have R(M)/M̃ ≃ R. Hence, by Theorem 7.3.2,

R is a weakly g(x)-invo clean ring.

Conversely, let g(x) =
∑n

i=0 aixi ∈ R[x] and r ∈ R. Suppose R is weakly g(x)-invo

clean, then we have r = v ± s for some v ∈ Inv(R) and root s of g(x). Then for m ∈ M, r m

0 r

 =
 v m

0 v

 ±
 s 0

0 s

 for some

 v m

0 v

 ∈ Inv(R(M)). Also, note that

g(

 s 0

0 s

) = a0

 1 0

0 1

 + a1

 s 0

0 s

 + a2

 s2 0

0 s2

 + · · · + an

 sn 0

0 sn


=

 a0 + a1s + a2s2 + · · · + ansn 0

0 a0 + a1s + a2s2 + · · · + ansn


=

 0 0

0 0

 .
Hence, R(M) is a weakly g(x)-invo clean ring. □

7.4 Weakly g(x)-Invo Clean Rings

The weakly (x2 − x)-invo clean rings are precisely weakly invo clean rings. However,

weakly invo-clean rings are not weakly g(x)-invo clean rings.

Example 7.4.1. Let R be a boolean ring with |R| > 2 elements and c ∈ R with c < {0, 1}.

Consider g(x) = (x + 1)(x + c). Since e = (2e − 1) + (1 − e) with (2e − 1)2 = 1 and

(1 − e)2 = (1 − e), then R is weakly invo clean but not weakly g(x)-invo clean. Because,

if c = v ± s with v ∈ Inv(R) and g(s) = 0, then it must be v = 1 and s = ±(c − 1). But,

clearly, g(c − 1) , 0.

However, for some kind of polynomials, weakly invo-clean and weakly g(x)-invo

clean rings are equivalent.

Theorem 7.4.2. Let R be a ring and g(x) ∈ x(x − a)C(R)[x] where a ∈ C(R) ∩ Inv(R).

Then, we have following statement.
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(1) R is weakly invo-clean if and only if R is weakly x(x − a)-invo clean.

(2) If R is weakly invo-clean, then R is weakly g(x)-invo clean.

Proof. (1) Consider r ∈ R. Suppose that R is weakly x(x − a)-invo clean, then ra = v + s

or ra = v − s for some v ∈ Inv(R) and root s of g(x). Since a ∈ Inv(R), r = va ± sa then

va ∈ Inv(R) and as g(s) = s(s − a) = 0, (sa)2 = s(s − a − a)a2 = s(s − a) + sa = sa.

Therefore, R is a weakly invo-clean ring.

Conversely, suppose R is weakly invo-clean. Then for any r ∈ R, either ra = v + e

or ra = v − e where v ∈ Inv(R) and e2 = e ∈ R. Thus r = va ± ea. Since a ∈ C(R),

g(ea) = ea(ea − a) = e(e − 1)a2 = 0. Thus ea is a root of g(x) and as a ∈ Inv(R), then

va ∈ Inv(R). Hence, R is a weakly g(x)-invo clean ring.

(2) It is similar to the proof of (1). □

Corollary 7.4.3. Let R be a ring and g(x) = x(x − a) ∈ C(R)[x] where a ∈ C(R)∩ Inv(R).

If R is weakly g(x)-invo clean, then 30 ∈ Nil(R).

Proof. Since R is weakly g(x)-invo clean. Then by Theorem 7.4.2, R is weakly invo-clean.

Thus by [21, Lemma 4.2], the result follows. □

Remark 7.4.4. Although, every weakly invo clean ring is weakly (x2 + x)-invo clean but

this situation need not be true for elements. For example, let 2 ∈ Z, then 2 = 1 + 1 is

weakly invo clean but not weakly (x2 + x)-invo clean because 1 is not a root of x2 + x.

Theorem 7.4.5. Let n, k ∈ N and m be a fixed integer > 0. Then, for a ring R, the

following statements are equivalent:

(1) R is weakly (x2 − mnx)-invo clean.

(2) R is weakly (x2 + mkx)-invo clean.

(3) R is weakly (x2 − mx)-invo clean.

(4) R is weakly (x2 + mx)-invo clean.

(5) R is weakly invo-clean and m ∈ Inv(R).

Proof. (1) ⇒ (5). We will prove that m ∈ Inv(A). Suppose m < Inv(R). Then R =

R/(mnR) , 0. Let mn = v ± s where v ∈ Inv(R) and s2 − mns = 0. As 0 = mn = v + s, then

s = ±v ∈ Inv(R). But s2
= s2 = mns = 0, which is a contradiction. Thus m ∈ Inv(R).

(5)⇒ (1). By Theorem 7.4.2, R is weakly (x2 − mnx)-invo clean.

Similarly, it can be proved that (2)⇔ (5), (3)⇔ (5) and (4)⇔ (5). □



76 On Weakly g(x)-Invo Clean Rings

Proposition 7.4.6. Let R be a ring. Then we have the following equivalent statements:

(1) R is weakly (x2 − 1)-invo clean.

(2) Every element of R is the sum or difference of an involution and a square root of 1.

Proof. (1) ⇒ (2). Suppose R is weakly (x2 − 1)-invo clean, then we have v, s ∈ Inv(R)

such that r = v ± s with s2 = 1.

(2)⇒ (1). Let r ∈ R. Then r = v ± s where v ∈ Inv(R) and s2 = 1. Then s is the root

of (x2 − 1). Therefore, R is weakly (x2 − 1)-invo clean. □

Khashan and Handam in [34], defined weakly g(x)-nil clean rings. A ring R is called

weakly g(x)-nil clean if for each r ∈ R, we have r = n ± s where n ∈ Nil(R) and g(s) = 0.

Then, we have following proposition.

Proposition 7.4.7. Let R be a ring, 2 ∈ Nil(R) and g(x) ∈ C(R)[x]. If R is weakly g(x)-invo

clean, then R is weakly g(1 − x)-nil clean with bounded index of nilpotence.

Proof. Suppose R is weakly g(x)-invo clean. Then r = v ± s, where v ∈ Inv(R) and

g(s) = 0. Write r = (v + 1) − (1 − s), we have (v + 1)2 = 2v + 2 = 2(v + 1) and

(v + 1)3 = 2(v + 1)2 = 22(v + 1). Then by induction, we get that (v + 1)n+1 = 2n(v + 1)

for all n ∈ N. Since 2 ∈ Nil(R), then (v + 1)t = 0 for some t ∈ N. Thus (v + 1) ∈ Nil(R).

Similarly, write r = (v−1)+(1− s), we can derive that (v−1)n+1 = (−1)n2n(v−1) and since

2 ∈ Inv(R), (v−1)m = 0 for some m ∈ N. So (v−1) ∈ Nil(R) and g(1− (1− s)) = g(s) = 0.

Hence, as we required. □

Proposition 7.4.8. Let R be a ring with char(R) = 2. If R is weakly (xk − 1)-invo clean,

then R is weakly (xk − 1)-nil clean.

Proof. For any r ∈ R, since R is weakly (xk − 1)-invo clean, write r − 1 = v ± s, where

v ∈ Inv(R) and g(s) = 0. So r = (v + 1) ± s. Since char(R) = 2, (v + 1)2 = 2(1 + v) = 0.

This implies that (v + 1) ∈ Nil(R). Hence, R is weakly (xk − 1)-nil clean. □

Proposition 7.4.9. Let R be a ring and a, b ∈ R, n ∈ N. Then R is a weakly (ax2n−bx)-invo

clean ring if and only if R is a weakly (ax2n + bx)-invo clean ring.

Proof. Let r ∈ R. Assume that R is a weakly (ax2n − bx)-invo clean ring. Then, −r = v± s

where v ∈ Inv(R) and (as2n − bs) = 0. Thus r = (−v) ± (−s) where (−v) ∈ Inv(R) and

a(−s)2n + b(−s) = 0. So, r is weakly (ax2n + bx)-invo clean. Hence, R is a weakly

(ax2n + bx)-invo clean ring. Similarly, we can prove for converse. □

The following example shows that Proposition 7.4.9 is not true for odd powers.
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Example 7.4.10. The ring Z4 is weakly (x3 − x)-invo clean but not a weakly (x3 + x)-invo

clean ring.

Let R be a commutative ring and N be an R-module, then trivial extension of R by N

is defined by RΘN = {(r, n) : r ∈ R, n ∈ N} with usual addition and multiplication given

by (r1, n1)(r2, n2) = (r1r2, r1n2 + n1r2).

Theorem 7.4.11. Let R be a commutative ring and N an R-module such that 2N = 0.

Then RΘN is weakly g(x)-invo clean if and only if R is weakly g(x)-invo clean.

Proof. Let n ∈ N and g(x) =
∑n

i=0 aixi. Suppose R is weakly g(x)-invo clean, then for any

r ∈ R, we have r = v±s for some v ∈ Inv(R) and a root s of g(x). Thus (r, n) = (v, n)±(s, 0),

where (v, n) ∈ Inv(RΘN) (since 2N = 0) and g((s, 0)) =
∑n

i=0 ai(s, 0)i =
∑n

i=0 ai(si, 0) =∑n
i=0(aisi, 0) = (0, 0). Hence, RΘN is weakly g(x)-invo clean.

Conversely, since RΘN is weakly g(x)-invo clean, then R � (AΘN)/(0ΘN) is weakly

g(x)-invo clean. □

Let R be a commutative ring, let J be an ideal of R and ψ : R → R be a ring

homomorphism. The amalgamated duplication of the ring R along an ideal J is defined

as R ▷◁ψ J = {(r, r + j)|r ∈ R, j ∈ J}. This construction is a subring, with identity (1, 1),

of R × R (with the usual componentwise operations). For more information of R ▷◁ψ J,

one can see [19]. The following theorem gives characterization of R ▷◁ψ J to be weakly

g(x)-invo clean.

Theorem 7.4.12. Let R be a commutative ring with 2 = 0 and g(x) =
∑n

i=0 aixi ∈ R[x]. If

J be a nilpotent ideal of R with nilpotency index 2, then R ▷◁ψ J is weakly g(x)-invo clean

if and only if R is weakly g(x)-invo clean.

Proof. Let (r, r + j) ∈ R ▷◁ψ J. Suppose R is weakly g(x)-invo clean, then r = v ± s where

v ∈ Inv(R) and g(s) = 0. Thus (r, r+ j) = (v± s, v± s+ j) = (v, v+ j)±(s, s). By hypothesis,

for each j ∈ J, we have j2 = 0. So, (v, v+ j)2 = (v2, v2+2v j+ j2) = (1, 1). Hence, (v, v+ j) ∈

Inv(R ▷◁ψ J) and g((s, s)) =
∑n

i=0 ai(s, s)i =
∑n

i=0 ai(si, si) = (
∑n

i=0 aisi,
∑n

i=0 aisi) = (0, 0).

Therefore, R ▷◁ψ J is weakly g(x)-invo clean.

Conversely, let 0 ▷◁ψ J = {(0, j)| j ∈ J} is an ideal of R ▷◁ψ J. Note that R ▷◁ψ J/0 ▷◁ψ

J � R. Thus, R is weakly g(x)-invo clean by Theorem 7.3.2. □

Lemma 7.4.13. Let f be an element in A = (HR, α) defined by f (0) = a and f (n) =

−a
n∑

m=1

 n

m

 f (m)αm( f (n − m)) for all n ≥ 1. Then f is an involution in A if and only if

f (0) is an involution in R.
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Proof. Suppose f is an involution in A, then one can easily show that f (0) is an involution

in R. Conversely, assume f ∈ A such that f (0) is an involution in R. It can be computed

that for n = 0, f 2 = 1 and for all n ≥ 1,

f 2(n) =
n∑

m=0

 n

m

 f (m)αm( f (n − m))

= f (0) f (n) +
n∑

m=1

 n

m

 f (m)αm( f (n − m))

= 0.

So f 2 = l1. Hence, f is an involution in A. □

Theorem 7.4.14. Let α ∈ End(R) and g(x) = a0 + a1x + · · · + akxk ∈ C(R)[x]. Then

A = (HR, α) is weakly gL(x)-invo clean where gL(x) = l
′

a0
+ l

′

a1
x + · · · + l

′

ak
xk ∈ C(A)[x] if

and only if the ring R is weakly g(x)-invo clean.

Proof. Let f ∈ A and since R is a weakly g(x)-invo clean ring, f (0) = v ± s where

v ∈ Inv(R) and g(s) = 0. Hence, f = v
′

± l
′

s where v
′

∈ A defined as v
′

(0) = v and

v
′

(n) = −v
n∑

m=1

 n

m

 v′(m)αm(v
′

(n − m)) for all n ≥ 1. Since v
′

(0) is an involution of R, v
′

is an involution of A by Lemma 7.4.13. Now, gL(l
′

s) = l
′

a0
+ l

′

a1
l
′

s + · · · + l
′

ak
(l
′

s)
k = 0. It

follows that l
′

s is a root of polynomial gL(x). Thus, f is weakly gL(x)-invo clean in A.

Conversely, assume that A = (HR, α) is a weakly gL(x)-invo clean ring and r ∈ R,

then GR(r) ∈ A. Thus GR(r) = f ± p where f ∈ Inv(A) and gL(p) = 0. So ER( f ) ∈ Inv(R)

by Lemma 7.4.13 and g(ER(p)) = 0. Thus, r = ER( f ) ± ER(p). Hence, R is a weakly

g(x)-invo clean ring. □

The proof of the next lemma is similar to that of Lemma 7.4.13.

Lemma 7.4.15. Let sequence (an) in HR is defined by a0 = v and an =

−v

n∑
m=1

 n

m

 aman−m. Then (an) is an involution in HR if and only if a0 is an involution in

R.

Corollary 7.4.16. Let R be a ring and g(x) ∈ C(R)[x]. Then Hurwitz series ring HR is

weakly gL(x)-invo clean if and only if R is a weakly g(x)-invo clean.

Proof. We take identity endomorphism, i.e., α = idR in Theorem 7.4.14 and by using

Lemma 7.4.15, the result follows. □



Chapter 8

Conclusion and Future Research

This chapter concludes our thesis and shows some of the prospects that define our current

and future research endeavors in scientific research. This thesis is mainly a study of

generalizations of UN and VNL rings and group rings. The introductory chapter consists

of definitions and literature survey of concepts used throughout this thesis. In the third

chapter, we study UN rings and group rings. We have studied the question raised by

Călugăreanu [7] that "is Mn(R) over a UN ring R, also UN?". We have obtained that if R

is commutative, then Mn(R) is UN if and only if R is UN. We have focused on structure of

UN group rings. We have found necessary and sufficient conditions for RG to be UN. We

have obtained that if RG is a UN ring then R is a UN ring, G is a p-group and p ∈ J(R);

and the converse holds if G is locally finite. As a future scope, we have

Problem 8.0.1. Find necessary and sufficient conditions for a skew group ring R ∗θ G to

be UN.

In the fourth chapter, We have introduced and investigated a new class of rings which

is called UQ rings and establish their relation with already known rings. Various proper-

ties of UQ rings have been obtained. We have provided a new characterizations of 2-good

rings and discussed extensions of UQ rings such as Morita contexts, generalized matrix

rings, formal matrix rings, group rings etc. Further, necessary and sufficient conditions

for commutative RG to be UQ have been attained. Let G be an abelian p-group with

p ∈ J(R) and R be a commutative ring. Then RG is a UQ ring if and only if R is UQ. As

a future scope, we have

Problem 8.0.2. Find necessary and sufficient conditions

(1) for noncommutative group ring RG to be UQ.

(2) for a skew group ring R ∗θ G to be UQ.
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In the fifth chapter, we have introduced and investigated a new class of rings which

is called almost SWR rings and establish their relation with already known rings. Various

properties of almost SWR rings have been obtained. We have characterized almost SWR

rings. Also, we have discussed almost SWR group rings. It has been proved that if RH is

almost SWR for every finitely generated subgroup H of G, then RG is almost SWR, but

the converse of this result partially holds. Thus we have

Problem 8.0.3. Find the necessary conditions for RG to be almost SWR.

In the sixth chapter, we have introduced and investigated a new class of rings which

is called semiboolean neat rings and established their relation with already known rings.

Various properties of semiboolean neat rings have been obtained. It has been proved that

commutative semiboolean neat rings, which are not semiboolean, is reduced. We have

determined a characterization of group ring RG satisfying semiboolean neat property if R

is commutative and G is abelian. As a future scope, we have

Problem 8.0.4. (1) What is the structure of noncommutative semiboolean neat rings?

(2) Obtain a complete characterization of noncommutative group ring RG to be semi-

boolean neat.

Kosan et al. [37], studied rings whose elements are sum of a tripotent and an element

from the jacobson radical. An element a of a ring R is called a tripotent if a3 = a. Chen

and Sheibani [14], introduced a ring in which every element is the sum of two tripotents

and a nilpotent that commute. In future, we intend to study a class of rings for which

every element is a sum of an element from J(R) and two tripotents. We shall attempt to

determine necessary and sufficient conditions for group ring RG to be sum of a tripotent

and an element from the jacobson radical.

Abdolyousefi et al. [1], describe the structure of unit nil-clean rings. A ring R is

unit nil-clean if, for any a ∈ R, there exists a unit u ∈ R, such that ua is the sum of an

idempotent and a nilpotent. In future, we plan to investigate the ring in which square

of each unit is a sum of an idempotent and a nilpotent element. We intend to obtain

necessary and sufficient conditions for group ring RG to be square of each unit is a sum

of an idempotent and a nilpotent element.
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