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ABSTRACT 

 

Underwater image processing has received tremendous attention in few past years. 

In the last few years underwater image processing has attracted much attention 

because of its importance in marine engineering and aquatic robotics. The reason 

for increased research in this area is due to the process of image taken in under 

water. When we capture the image in under water then the quality of image is 

degraded. To address this problem, we need some other methods to increase the 

quality of image while capturing it under water. But capturing the image in normal 

circumstances as well as in under water are same, thus once we get an image, some 

mechanism to increase the quality of captured image will be required. Though 

some methods are already present in image enhancement and restoration, still some 

comparative and deep survey is required to improve the image quality. Various 

algorithms have been proposed for underwater image enhancement, but for their 

assessment either synthetic datasets or few selected real-world images are used. 

There are few latest underwater image enhancement methods based on deep 

learning and machine learning. These methods not only enhance the images but 

also provide better results as compared to enhancement and restoration method. 

These deep learning-based methods increasing the variety in underwater imaging, 

enhancing underwater image quality and providing wider scope in terms of 

improvisation. This research work presented the four significant contributions in 

the underwater image enhancement system. 
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First, we have conducted a literature review of underwater image enhancement 

systems to highlight the challenges of the existing work and identify some good 

quality works in the domain of underwater image enhancement. A complete and 

in-depth study of relevant accomplishments and developments, particularly the 

survey of underwater image methods and datasets, which are a critical issue in 

underwater image processing and intelligent application, has been done. In this, we 

first provide a review of more than 100 articles on the recent advancements in 

underwater image restoration methods, underwater image enhancement methods, 

and underwater image enhancement using deep learning algorithms, along with the 

techniques, data sets, and evaluation criteria. To provide a thorough grasp of 

underwater image restoration, enhancement, and enhancement using deep learning, 

we explore the strengths and limits of existing techniques. 

Second, we developed a robust model for improving the quality of underwater 

images using enhancement techniques. This technique is split into two sections. 

The first section focuses on boosting contrast, while the second section focuses on 

improving color. Our enhanced results stand out for their brilliant color, greater 

contrast, and enhanced features. When compared to other approaches this 

technique improves image quality by increasing entropy, peak signal to noise ratio 

(PSNR), and underwater color image quality evaluation (UCIQE) values while 

lowering mean square error (MSE). It is an entirely algorithm-based technique that 

is independent by image datasets. The images used to evaluate the results come 

from a variety of datasets, and their enhanced performance confirms their 

robustness. Because of its single image-based approach, our method is very 
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compelling in terms of processing speed. Comprehensive findings on a variety of 

underwater image datasets demonstrate that our approach outperforms the vast 

majority of them. 

Third, we designed an underwater image enhancement framework to recover deep 

sea images. In deep sea underwater images, the uneven attenuation of sunlight, 

when it spreads underwater, they have high color distortion and very low intensity. 

Furthermore, the amount of attenuation changes with wavelength, yielding in 

asymmetric color traversing. As the research, this framework demonstrates that 

assigning the appropriate context based on the color channel traversal range may 

result in a significant performance speedup for the objective of underwater image 

enhancement. Furthermore, it is critical to reduce irrelevant multi-contextual 

characteristics and improve the model's representational strength. Therefore, we 

included an important reduce method to dynamically modify the learnt multi-

contextual characteristics. DeepSeaNet, the suggested framework, is enhanced via 

conventional pixel-wise and feature-based estimation methods. Comprehensive 

tests were conducted to demonstrate the efficiency of the proposed technique with 

the best published paper on standard datasets. 

Fourth, we do a comparative result analysis of the developed models with the other 

existing techniques. The comparative analysis shows that the proposed system is 

better than the existing techniques. The experimental results, analysis, and 

performance evaluation demonstrate that the proposed work provides feasible and 

efficient techniques. Thus, this research work successfully provides an effective 

and optimal underwater image enhancement system. 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter begins with a general overview of the field of 

underwater image processing, laying the foundation for a thorough 

examination of the challenges. After presenting an overview, the chapter 

explores the issues of underwater imaging in depth and then presents several 

techniques designed to improve underwater images. This comprehensive 

discussion covers a range of methods intended to improve the detail and quality 

of underwater images. 

 

The chapter examines image enhancing techniques and then 

clarifies the requirements and conceptual structure of an underwater image 

improvement system. It outlines the main issues that the system aims to solve, 

explains the reasons behind its investigation, and emphasizes the unique 

contributions it makes in underwater image processing. 

 

Outlining the thesis's arrangement and structure is a crucial 

component of this chapter. Through the outline of the topics covered in the 

next several chapters and how they relate to each other, the chapter provides 

readers with a road map for understanding what's to come. It functions 

essentially as a thorough guide, getting the reader ready for a detailed 

examination of the subtle aspects of underwater image enhancement and 

processing, as well as the novel approach this thesis proposes. 
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1.1 Introduction 

 

This section covers the details of underwater image processing, 

explains the underwater image enhancement techniques, their background details, 

and identifies the associated challenges. 

 

 

1.1.1 Introduction to underwater image processing 

 

In recent years, there has been a lot of interest in underwater image 

processing. Because of its usefulness in marine engineering and aquatic robotics, 

underwater image processing has received a lot of attention in recent years. The 

reason for increased research in this area is due to the process of taking images 

under water. When we take images underwater, the image quality suffers. To 

overcome this issue, we need to find different ways to improve image quality while 

capturing it underwater. But capturing the image in normal circumstances as well 

as under water is the same; thus, once we get an image, some mechanism to 

increase the quality of the captured image will be required. Though some methods 

are already present in image enhancement and restoration, some comparative and 

deep survey is still required to improve the image quality. Various algorithms have 

been designed for underwater image enhancement, but for their assessment, we 

used either synthesized datasets or real-world image datasets. There are a few of 

the latest underwater image enhancement methods based on deep learning. These 

algorithms not only enhance the images but also provide better results as compared 

to enhancement and restoration methods. These deep learning-based algorithms are 

increasing the variety in underwater imaging, enhancing underwater image quality, 

and providing a wider scope in terms of improvisation.  
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1.1.2 Background 

 

These entire underwater image enhancement algorithms are 

differentiated as model-free and model-based image enhancement.  

 

 

1.1.2.1 Model Free Methods 

 

The model-free algorithms alter the values of pixels in an input image 

without intervening in the image generation process. The values of the pixels are 

adjusted either in the spatial domain or in the transformation domain. The methods 

based on spatial domains are the Gray World (GW) algorithm [1], histogram 

equalization (HE) [2], automatic white balance [3], contrast-limited adaptive 

histogram equalization (CLAHE) [4], color constancy [5], bilateral filtering, image 

fusion [6], and multi-scale retinex with color restoration [7]. The author, Iqbal et 

al., uses unsupervised color balance and histogram stretching enhancement 

techniques [8]. The author Hitman et al. defined mixture Red-Green-Blue (RGB) 

and Hue-Saturation-Value (HSV) CLAHE techniques based on model-free 

methods [9]. The author, Ghani et al., uses minimize under-enhanced and over-

enhanced area enhancement techniques based on real-world images [10]. The 

methods based on transformation domain map the image pixel values in a 

predefined, specific domain where we develop the physical properties to carry out 

modification. The most frequently used transformations are the wavelet 

transformation and the Fourier transformation. 

 

 

1.1.2.2 Model Based Methods 

 

The The algorithms based on model-based approaches openly 

distinguish the physical imaging development and assess the parameters of the 
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imaging model from the inspection and a variety of past experiences. The pure 

underwater view has been brought back by reversing the degradation procedure. 

Jaffe McGlamery defined one basic underwater imaging model [11].  

 

Various underwater image enhancement algorithms try to expand the 

preceding model-based dehazing methods for underwater scenes by notifying that 

the underwater imaging model shares basic features with one for hazy images. 

Several model-based underwater image enhancement algorithms use Dark Channel 

Prior (DCP) [12]. It is one of the best methods for measuring the transmission map 

in hazy images. The author, Chiang et al., changed the DCP method by 

compensating for the reduction to bring back the color balance [13]. The author, 

Drews Jr. et al., used the changed DCP in the green channel and the blue channel 

[14]. The author Galdran et al. defined Red Channel Prior (RCP) in DCP by 

differentiating the reduction in red channel [15]. 

 

Some researchers have defined other physical-prior underwater image 

enhancement approaches rather than DCP. The author, Nicholas et al., determines 

the underwater transmission by using features of channel discrepancies [16]. The 

author Wang et al. suggested a maximum attenuation identification model (MAI), 

which determines the atmospheric light and depth map by using red channel 

information [17]. The author, Peng et al., describe the depth estimation model with 

the help of light absorption and image blurriness [18]. The author Wang et al. also 

designed an adaptive attenuation curve, which is useful in underwater image 

enhancement and image dehazing [19]. One major problem with these prior-based 

approaches is that these prior algorithms are unacceptable for a specific 

environment or specific color cast. This is the reason that DCP is not applicable to 

white regions and objects. Due to this, we required some other mechanisms, like 

deep learning algorithms, for underwater image enhancement. As very little work 

has been done on underwater image enhancement algorithms using deep learning, 
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many researchers are now using these approaches and methods to achieve greater 

efficiency and accuracy. 

 

 

1.2 Motivation  

 

There is a different world under the ocean, and now there are many 

ways to explore it. In today’s world, there is very high-vision technology that has 

attracted attention for carrying high-quality and useful information [20]. 

Researchers are capturing very high-quality underwater images for enormous 

purposes and applications like robotics, ecological monitoring, tracking of sea 

organisms, artifact inspections that are present under water, rescue missions, and 

various real-time navigation [21].  

 

The underwater images are difficult to capture; the main constraints are 

light issues, capturing phenomena, dust particles, etc. An artificial mechanism that 

consists of an optical camera or some methods like spectral imaging, panoramic 

imaging, and polarization [22] is required, as under the sea, light is not as visible 

as it is in a normal environment. Other than optical cameras, each of these 

techniques has its own specific drawbacks, such as complex as well as professional 

operation, narrow field of view, limited depth, etc.  

 

Underwater images get affected by poor visibility of light, which 

significantly fades while traveling in the water, thus impacting the result in terms 

of haziness and poor contrast. The visibility of light gets affected under water by 

the distance travelled, i.e., around twenty meters in the case of normal clean water 

or approximately less than or equal to five meters in the case of cloudy water. 

Scattering and absorption affect the travel of light in water. In scattering, the 

direction of the light path is changed, while in absorption, light energy is reduced. 
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Hence, scattering and absorption influence the overall performance of underwater 

imaging systems.  

 

Scattering is basically of two types: forward scattering and backward 

scattering. A light deviating randomly while traveling from an object to the camera 

creates blurriness in the image, which is featured in forward scattering, while in 

the case of backward scattering, the contrast of the image is impacted. The 

scattering and absorption effects increase with water itself but are also affected by 

some other components, like small dust particles, organic particles, tiny observable 

floating particles, etc. The presence of all these particles will increase the effects 

of scattering and absorption. 

 

As light propagates in the sea, its amount is reduced, and the color 

present in the light gets decreased sequentially, depending on the color wavelength. 

Shorter is the wavelength, higher is the range or distance it covers in sea; similarly, 

higher is the wavelength, shorter is the range or distance it covers in sea. We all 

know that, in comparison to other colors, the wavelength of blue is the shortest, so 

it travels longest in the sea. Hence, the impact of the blue color on objects in the 

sea is higher than any other color. Therefore, the images on which we are interested 

in working can be affected by any one of the following reasons: dull contrast, 

constant range visibility, blurring, haziness, non-uniform light, color diminished, 

bluish appearance, and various types of noise. To work on these captured images, 

we require some mechanism so that we can increase the quality of these images.  

 

 

1.3 Problem Statements 

 

A lot of efforts are being made to improve underwater images. The 

concrete objective of our thesis is to design an underwater image enhancement 
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model for improved underwater images with their features. Following are the 

problem statements and research objectives addressed in this thesis: 

Problem Statement 1: To perform the systematic literature review of the models 

used for underwater image improvement. To achieve this, we required to explore 

most effective techniques used to enhance the underwater image quality. 

 

Research Objective 1: To perform the systematic literature review of the models 

used in underwater image enhancement. 

 

Problem Statement 2: For underwater image enhancement system, it does not 

provide robustness which not only enhances the images captures at different water 

level but also focuses on the different types of datasets. So, for this we require to 

develop a robust model for improving the quality of underwater image quality 

using enhancement algorithms. 

 

Research Objective 2: To develop a robust model for improving the quality of 

underwater images using enhancement techniques. 

 

Problem Statement 3: Enhancement on Deep Sea underwater images is very 

difficult because of the unavailability of light as well as uneven presence of 

artificial light. The use of deep learning-based methodology in this area is less 

explored. So here we are going to propose an underwater image enhancement 

framework to recover deep sea underwater images using deep learning approach. 

 

Research Objective 3: To design an underwater image enhancement framework 

to recover deep sea images. 

 

Problem Statement 4: Need to identify some common parameters to compare the 

result obtained from different algorithms. So, we do a comparative result analysis 

of developed models by comparing it with the other existing techniques. 
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Research Objective 4: To do a comparative result analysis of the developed model 

with the other existing techniques. 

 

 

1.4 Contribution of the thesis 

 

The primary goal of this thesis is to provide underwater image 

enhancement systems that will help improve the quality of underwater images 

while dealing with the challenges and constraints stated above. The suggested 

systems provide multiple strategies for color enhancement, contrast improvement, 

and feature value enrichment. 

 

1. The The literature survey on underwater image enhancement 

systems is conducted to represent the issues and challenges of the pre-existing work 

as well as to determine some good-quality works in the underwater image 

enhancement domain. A complete, in-depth study of relevant accomplishments and 

developments, particularly the literature review of underwater image methods and 

datasets, which is a critical challenge in underwater image enhancement, has been 

done. 

 

2. A robust model for increasing the quality of underwater images 

using enhancement techniques is developed. This technique is divided into two 

parts. The first part focuses on boosting contrast, while the second section focuses 

on improving color. Our enhanced results stand out for their brilliant color, greater 

contrast, and enhanced features. When compared to other approaches, this 

technique improves image quality by increasing peak signal-to-noise ratio (PSNR), 

entropy, and underwater color image quality evaluation (UCIQE) values while 

lowering mean square error (MSE). It is an entirely algorithm-based technique that 

is independent of image datasets. The images used to evaluate the results come 
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from a variety of datasets, and their enhanced performance confirms their 

robustness. 

 

3. An underwater image enhancement framework to recover deep sea 

images is designed. In deep-sea underwater images, the uneven attenuation of 

sunlight, when it spreads underwater, has high color distortion and very low 

intensity. Furthermore, the amount of attenuation changes with wavelength, 

resulting in asymmetric color movement. As research demonstrates, this 

framework demonstrates that assigning the appropriate context based on the color 

channel traversal range may result in a significant performance speedup for the 

objective of underwater image enhancement. 

 

4. A comparative result analysis of our developed models with other 

pre-existing techniques has been performed. The comparative result analysis 

illustrates how the suggested system outperforms the existing approaches. The 

results of the analysis, experiments, and performance assessment show that the 

suggested approach provides good, efficient, and improved models. As a result, 

this research effort delivers effective and ideal underwater image-enhancement 

models. 

 

1.5 Thesis Organization 

 

This section explains the overall structure of the thesis, which consists 

of six chapters, which are given below: 

 

Chapter 1: Introduction  

 

This chapter provides the work done by the researchers in the form of 

an introduction, background, motivation, problem statements (PS), and research 

objectives (RO). This chapter also provides a brief structure for the thesis. 



35 
 

Chapter 2: Literature Review  

 

This chapter summarizes prior research work by emphasizing and 

discussing the research problem thoroughly using formulated research questions. 

Furthermore, we provided a brief overview of popular underwater image 

enhancement approaches. This chapter concludes by highlighting research gaps 

based on previous research. The following research papers have been published 

based on this work: 

 

N. Singh and A. Bhat, “A systematic review of the methodologies for the 

processing and enhancement of the underwater images”, Multimedia Tools and 

Applications, vol. 82, pp. 38371-38396, 2023.  DOI: 10.1007/s11042-023-15156-

9. (SCIE, IF: 3.6) 

 

N. Singh and A. Bhat, “A Detailed Understanding of Underwater Image 

Enhancement using Deep Learning.” International Conference on Information 

Systems and Computer Networks (ISCON), pp. 1-6, 2021. DOI: 

10.1109/ISCON52037.2021.9702312. 

 

Chapter 3: Comparative Universal Stretching Model 

 

This chapter includes a detailed explanation of the proposed robust 

model. It includes a detailed discussion of the model, techniques, datasets, and 

results achieved by the proposed method. The following research papers have been 

published based on this work: 

 

N. Singh and A. Bhat, “A Robust Model for Improving the Quality of Underwater 

Images using Enhancement Techniques”, Multimedia Tools and Applications, vol. 

83, pp. 2267-2288, 2023.  DOI: 10.1007/s11042-023-15617-1. (SCIE, IF: 3.6) 



36 
 

N. Singh and A. Bhat, “Deep Sea Underwater Image Enhancement using 

Convolutional Module”, Expert System (2023). (Accepted for Publication) (SCIE, 

IF: 3.3) 

 

Chapter 4: DeepSeaNet Framework  

 

This chapter includes a detailed explanation of the proposed deep-sea 

image enhancement model. It includes a detailed discussion of the model, 

techniques, datasets, and results achieved by the proposed method. The following 

research papers have been published based on this work: 

 

N. Singh and A. Bhat, “Underwater Image Enhancement using Convolutional 

Block Attention Module”, International Conference on Information Systems and 

Computer Networks (ISCON), pp. 1-5, 2023. DOI: 

0.1109/ISCON57294.2023.10111974. 

 

Chapter 5: Comparative Result Analysis  

 

In this chapter, we do a comparative result analysis of our developed 

models by evaluating the performance of our suggested models by comparing them 

with other pre-existing techniques. 

 

N. Singh and A. Bhat, “Comparative Result Analysis of Underwater Image 

Enhancement methods”, International Conference on Computing, Communication 

and Networking Technologies (ICCCNT), pp. 1-5, 2023. DOI: 

10.1109/ICCCNT56998.2023.10307108. 
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Chapter 6: Conclusion  

 

The last chapter discusses the proposed research work's conclusion and 

future scope. It also considers the significance and importance of the stated 

underwater image enhancement models.  

 

List of Publications: This section contains the publications list related 

to our research work that has been published/accepted/communicated in reputed 

journals/conferences. 

 

References: This section contains the references used in our research. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents a broad overview of the terrain of 

traditional underwater image enhancing methods. These methods, which 

have been shown to greatly improve the quality of underwater images, are 

carefully examined, and assessed considering the findings of the research. 

The chapter identifies research issues that have surfaced during the process 

in addition to explaining the advantages made possible by these approaches. 

The chapter highlights areas in which further research and creativity are 

required to push the limits of underwater image enhancement by highlighting 

these barriers. 

 

In addition, the chapter adopts a critical perspective by focusing 

attention to the research gaps that remain in the field of underwater image 

enhancement. These gaps indicate potential areas for development or places 

where present approaches may fall short, giving researchers a path forward 

to investigate and contribute to the continuous advancement of underwater 

imaging techniques. 

 

This chapter lays the foundation for a deeper knowledge of the 

difficulties, and possible directions for future study and innovation in the field 

by providing an extensive summary of the status of the latest underwater 

image enhancement research. 
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2.1 Introduction 

 

In this literature survey, it plans to thoroughly review pre-existing 

research work, identify research gaps, and offer a solution to them. The four phases 

of the literature review are shown in Figure 2.1. It begins with planning the review 

process and identifying the review categories. Following that, research questions 

are developed to examine existing underwater image enhancement methods. The 

category-wise literature review report is then provided, and research gaps based on 

the study are demonstrated. At last, the literature survey concludes with 

recommendations for the future scope. 

 

 

 

 

 

 

Figure 2.1 Literature Review Steps 

 

2.2 Planning the review 

 

This phase describes the techniques that will be used throughout the 

literature review process. The current study uses the fundamental literature review 

technique to identify published articles on the development of underwater images. 

As a result, we divided the method of assessment into four categories: 

 

• The first category includes work using underwater image restoration 

methods. 

Planning 

the Review 

Conducting 

the Review 

Reporting 

the Review 

Concluding 

the Review 
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• The second category examines the different techniques for enhancement of 

underwater images. 

• The third category summarizes the underwater image enhancement 

algorithms using deep learning approaches. 

• The fourth category contains the overall information of various types of 

datasets which have been used in underwater images improvement and the 

evaluation metrics which have been used to measure the underwater image 

quality. 

 

 

2.3 Conducting the Review 

 

In this phase, the research questions must be defined as part of the 

survey process. The primary goal in the research is to provide an overview of the 

latest studies in the underwater image enhancement techniques. As a result, we 

discussed here some research questions. 

• Research Question 1: What are the most efficient models which have been 

used to improve the underwater images quality? 

To identify the present improvement methods used in the underwater 

image. This benefits the researchers to explore topics based on the underwater 

image enhancement algorithms. 

• Research Question 2: On what parameters we can achieve an efficient 

model in the underwater image enhancement? 

To identify various feature and parameter on which improvement can 

be done. 

 

• Research Question 3: Can we use the same enhancement algorithm for 

different applications? 
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To study and understand the robustness of the various pre-existing 

models. This benefits the researchers to differentiate the algorithms and models 

based on their real time applications. 

 

• Research Question 4: Is there any difference in the algorithms if we 

enhance the images at different sea level? 

To study and understand the robustness of the various pre-existing 

models. This benefits the researchers to differentiate the algorithms and models 

based on the standard datasets. As most of the models are very specific to same 

kind of datasets and few models are datasets independent.  

 

• Research Question 5: What enhancements are required in pre-existing 

models? 

To identify the different unique models which have been used in 

restoration and enhancement of underwater images. 

 

• Research Question 6: Is there any change in results if we apply the same 

model on different datasets? 

To identify and understand the behaviour of the enhancement model 

on different datasets. This helps the researcher understand that the underwater 

image improvement models will behave in a haphazard manner on different 

datasets. 

 

• Research Question 7: Which common methods are there to compare their 

results analysis obtained from various approaches? 

 

To explore and understand the methods of comparison utilized to carry 

out the result analysis on underwater image enhancement techniques. This helps 

academicians to identify the various result evaluations criteria. 
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2.4 Reporting the Review 

 

In this phase, we reviewed the three vast approaches and various 

underwater image datasets and their evaluation criteria, as mentioned in Section 

2.2. We subsequently identified the research gaps based on this literature review. 

 

 

2.4.1 Underwater Image Restoration Techniques 

 

This section contains research on underwater image restoration 

techniques. In detail, underwater image restoration method is classified in four 

main groups:  

 

• Turbulence degradation model (TDM) 

• Jaffe-McGlamery model (J-MGM) 

• Point spread function model (PSFM) 

• Image dehazing based model (IDBM) 

 

 

2.4.1.1 Turbulence Degradation Model 

 

Turbulence generates a non-uniform switch in the refractive index of 

the atmosphere; it resembles light propagation in water. Degradation model A, 

designed by Hufnagel and Stanley [23], is totally based on the atmospheric 

turbulence properties. Based on the frequency domain (u, v), it is defined by Eq. 

(2.1):  

 

                      A (u, v) = exp [- k (u2+v2)5/6]                     (2.1)      
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Here, k represents the magnitude of turbulence. The underwater image 

restoration is realized by merging the degradation model with the evaluation 

function. Yang and Gong [24] also designed an underwater image restoration 

technique based on turbulence, where the weighted contrast average grads 

(WCAG) are applied in determining the standard of underwater images. 

 

 

2.4.1.2 Jaffe-McGlamery Model 

 

This method of underwater image restoration [25–26] is one of the 

most widely used models, in which the light (ET) coming from the camera is 

divided into the following divisions: (i) reflected light from an object (Ed), (ii) light 

that is emulated from a target known as forward scattered light (Ef), and (iii) non-

target reflected light known as back scattered light (Eb), given in Eq. (2.2). 

 

                               ET= Ed + Ef + Eb     (2.2)

           

Based on the simplified model by Jaffe McGlamery, Trucco and Olmos 

[27] designed a self-calibrated filter. This filter is based on two presumptions: (i) 

lighting (direct sunlight) underwater is consistent, and (ii) forward scattering is an 

important component, whereas other components like direct components and 

backscattering were neglected. 

 

Few researchers not only paid attention to backscattering in the Jaffe 

McGlamery model but also used the Dark Channel Prior (DCP). In this method, it 

was presumed that backscattering did not affect a high-contrast region in an image. 

The parameters of this model were evaluated based on this presumption. 
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2.4.1.3 Point Spread Function Model 

 

The imaging process in seawater with the help of a linear system was 

introduced by Hou et al. [28–30]. They also introduced the optical properties of 

water under the standard underwater image restoration system. Various parameters 

like attenuation, volume scattering function, absorption, and particle distribution 

were measured with some specific instruments. Grosso [31], Voss [32], and Chapin 

[33] also used some specific instruments to measure the PSFM. However, the 

instruments were too complicated and expensive. 

 

 

2.4.1.4 Image Dehazing Based Model 

 

This model is divided into two parts: (i) a classical DCP-based 

underwater image restoration model and (ii) a learning DCP-based underwater 

image restoration model. Table 2.1 represents these methods, where in model 

column R, R is restoration, C is color correction, ML is machine learning, and DL 

is deep learning. In the Hypothesis priori column, DCP is dark channel prior, 

DBGR is the difference between blue green and red channels, UDCP is underwater 

dark channel prior, RDCP is red dark channel prior, and CDCP is color-corrected 

images in dark channel prior. In the background light column, GB is the global 

background light estimation and LB is the local background light estimation. In the 

transmission map (TM) estimation column, DEP is depth, AP is attenuation prior, 

FDC is from the dark channel, RET is Retinex, BM is blurring map, and MIL is 

minimum information loss. 
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Table 2.1. DCP based underwater image restoration models. 

 

 

S.No. Model 
Hypothesis 

Prior 

Color 

Correction 

TM 

Estimation 

1 R DBGR N FDC 

2 R DCP N FDC 

3 R DCP N DEP+AP 

4 R UDCP N FDC 

5 R RDCP N FDC 

6 R+C DCP Y BM 

7 R UDCP N FDC 

8 R+C DCP Y DEP 

9 R+C+ML DCP Y DEP 

10 R+C DCP Y MIL+FDC 

11 R DCP Y FDC 

12 R+C DCP Y DEP+AP 

13 R+C+ML CDCP Y ML+AP 

14 R+C+DL DCP Y DL+DEP 

15 R+C CDCP Y FDC 

16 R+C CDCP Y FDC 

17 R+ML DCP N DEP+AP 

18 R+ML DCP N DEP+AP 

19 R+C UDCP Y FDC 

20 R+C+DL DCP Y DL+DEP 

21 R+C DCP Y RET+AP 
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In previous years, the DCP-based underwater image restoration model 

has gained attention. In it, there is a presumption that red debilitation is agile as 

compared to other attenuation colors, which is true in the case of open water and 

is used for calculating dark channel images in both DCP-based restoration models. 

 

Carlevaris et al. [16] initially computed the highest variation in red and 

blue-green channels. Thereafter, the transmission map is evaluated by setting the 

maximum variation until it becomes one. Whatever the least value of the 

transmission map, it is considered background light. Now, the posterior probability 

is maximized, and the final image is evaluated. The transmission map is further 

studied by Chiang and Chen [34] in terms of the ratio of residual energy of the 

input image to the camera after reflection. The average brightness difference 

between foreground and background is compared to estimate an artificial light 

source. The red channel was taken underwater prior to Galdran et al. [35]. Here, 

using the highest value of the red channel, the background light was computed. 

The red channel was considered the fast-attenuated channel by P. Drews, Jr., et al. 

[14], because of which no information related to field depth was provided. As a 

result, a novel approach with an underwater dark channel (UDCP) was presented. 

This dark channel image was created by calculating the lowest difference between 

the green and blue channels, and the background light was calculated using the 

highest value obtained from the dark channel image. 

 

When light is absorbed through water, it causes scattered color 

projection, which generally causes dark channels prior to failing to identify the 

transmission map more precisely. Furthermore, an underwater scenario is generally 

defined by limited or inappropriate light. There will be no change in the dark scene 

area even after imaging. In some previous work, fuzzy image and field depth were 

used to enhance the transmission map estimation [36–38], and color correction was 
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added to adjust the uneven projection caused by absorption [39–42]. Ancuti et al. 

[43] used the local highest value of dark channels for evaluating background light. 

 

Background’s light, whether global or local, is also defined as a flat 

area [44–45], also known as a blurry region [42]. To compute the blurry area in an 

underwater image or to identify the background light, Emberton et al. [46] designed 

a hierarchical model. While the color of the underwater target was near-blurred, 

this model became unreliable. Emberton et al. [42] again dissolved the underwater 

image into (i) greenish, (ii) bluish, and (iii) blue greenish, based on the hierarchy 

technique. Before the DCP-based restoration, different white balance procedures 

were used for each part. Whereas, if the theoretical highest merit of background 

light was applied as a denominator for evaluating the transmission map, then this 

resulted in an oversaturation phenomenon leading to the appearance of artifacts in 

the background area [47]. 

 

In existing approaches, the maximum amount of learning used in DCP-

based restoration models is based on supervised scenarios [45]. In some of the 

approaches, unsupervised methods were used. With respect to the statistical 

distribution of color images, authors [19, 41] combined the colors present in 

original images into 500 types. Every pixel present in the color image was 

presented with a cluster center. In clustering space, a color pixel shows a line 

segment based on distance with respect to the camera. Using the k-dimensional 

(KD) tree, an attenuation curve is created by clustering with the logarithmic of the 

RGB value. The background light was examined after determining the pixel value 

with the most significant change across RGB channels in the underwater image. 

To correct the transmission map simultaneously, the saturation constraint is 

applied; still, the restored image remains oversaturated and dark. 
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2.4.2 Underwater Image Enhancement Techniques 

 

This section contains research on underwater image enhancement 

techniques. In this method, information related to the image is extracted even in 

the absence of prior knowledge of the surroundings. For this reason, these 

techniques are more generalized in comparison to restoration techniques. 

 

In underwater image processing and analysis, many underwater 

enhancements are combined, which are taken from methods directly applied to 

natural images [48–50]. Here we are discussing the most important aspects of 

underwater image enhancement techniques, in which they focus on contrast 

stretching, merged improvement, multi-information, and noise removal. 

 

All these methods have been listed in Table 2.2. In detail, underwater 

image enhancement method is classified in three main groups:  

 

• Filter Based Technique 

• Color Correction Based Technique  

• Image Fusion Based Technique 
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Table 2.2. Underwater image enhancement techniques 
 
 
 

S. No. Technique Quality Fusion 

1 ACE None N 

2 Gaussian filter, Contrast Stretch None N 

3 MRF None N 

4 

Homomorphic filtering, Wavelet 

Transform,  

Anisotropic filtering, Contrast 

Stretch 

Distribution of  

gradient 

histogram 

N 

5 Integrated color model None N 

6 Quaternion’s rotation None N 

7 Morphological filter None N 

8 
White Balance, Bilateral Filter, 

Histogram equalization 
None Y 

9 NSCT, ATV 
PSNR and 

Sharpness 
N 

10 Rayleigh stretching None N 

11 Rayleigh stretching None N 

12 Retinex, color correct None N 

13 
Gray World, Gamma Correction, 

High Pass Filter 
PCQI Y 

14 Wavelet 
SSIM, PSNR, 

Entropy 
N 

15 Retinex 
MSE, UIQM, 

UCIQE 
Y 
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2.4.2.1 Filter Based Technique 

 

Arnold-Bos et al. [51] designed a pre-processing model for luminance 

components in the underwater image. This model identified a specific noise range 

in the underwater image by combining enhancement and deconvolution methods. 

The Log Gabor wavelet is used for denoising, decreasing various quantization 

errors, and suspending particle noise. This system increases the effect of edge 

detection. 

 

A model designed by Bazeille [52] contains various filtering steps that 

enhance the quality of non-uniform illumination, increase contrast, decrease noise, 

and update the color of an underwater image. To minimize the noise in the 

underwater image, a non-subsampled contourlet transform (NSCT) that depends 

on adaptive total variation was designed by Jia and Ge [53]. 

 

A partial differential equation (PDE) was also used by the authors to 

reduce noise in an image and construct frequency components. The amount of 

improvement in underwater images was examined through the sharpness and peak 

signal-to-noise ratio (PSNR). 

 

2.4.2.2 Color Correction Based Technique 

 

A model was proposed by Chambah et al. [54] in which automatic 

color equalization (ACE) was applied on each channel of RGB individually and 

adjusted the outputs of all three channels to increase the efficiency of identifying 

the object from the image. The ACE algorithm’s various parameters were adjusted 

internally. A model based on the Rayleigh distribution that contains a sequence of 

color correction schemes was designed by Ghani and Isa [55–56]. An underwater 

image was taken by Torres-Méndez and Dudek [57], which was treated like a 

Markov random field (MRF), and in it, nodes evident in random fields indicated 
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the poor quality of color values, while those that were not visible indicated the true 

color values in the underwater image. It explained the relationship between the 

pixels and their neighbourhood by training the true color of the sample pixels. Iqbal 

et al. [58] suggested an underwater image enhancement algorithm for the marine 

environment using the integrated color model. In this model, an RGB color space 

is used, and it depends on the sequence of sliding stretching, like contrast 

stretching, whereas in an HSI color space, it depends on brightness and saturation 

stretching. An underwater image color enhancement algorithm, designed by Petit 

et al. [59], was based on optical attenuation inversion. 

 

The variational Retinex model was designed by Fu et al. [60] and was 

based on Retinex theory. Herein, using the linear domain variational Retinex, the 

spatial luminance parameter of a color-corrected underwater image was 

disintegrated through 4-6 iterations. In this, triangular and bilateral filters were 

used on a, b, and L components in place of the Gaussian filter, and then they were 

combined based on the ratio of values present in the RGB space. 

 

 

2.4.2.3 Image Fusion Based Technique 

 

There are many methods and models based on observation, which 

plays a significant part in improvement. Gradually, the fusion procedure was also 

considered under image enhancement. A fusion-based underwater image 

enhancement model was designed by Ancuti et al. [6]. Here, white balance color 

improvement and the output of bilateral filtering were weighted using the outcome 

of histogram equalization. To get a pixel-level fusion output, four types of fusion 

weights—Gaussian, local, sensitometry, and saliency contrast—were calculated. 

However, under the consideration that fast attenuation was of the red channel, they 

increased the white balance processing in [61]. 



52 
 

2.4.3 Underwater Image Enhancement using Deep Learning    

Techniques 

 

Based on deep learning, underwater image enhancement has 

challenges like labelling images, difficulty collecting them practically, etc. Some 

of the approaches are discussed in Table 2.3, wherein training image column N 

stands for normal images and U stands for underwater images.  

 

A collection of color-corrected underwater images [62] has been used 

as a training data set in [63], in which, based on a convolutional neural network 

(CNN), an underwater image enhancement technique is constructed. In this model, 

55 elements are used, following which a three-D enhanced underwater image is 

achieved. In [64], the Water GAN network was designed for underwater image 

color alteration enhancement, which is used to simulate the attenuation caused by 

the water body. This is like the Generative Adversarial Networks (GAN) [65], 

where two training sets were taken into consideration, one containing normal 

images and their relative depth maps in air and another one containing underwater 

images that are taken from simulated underwater and laboratory images referred to 

by the Jaffe-McGlamery model.  

 

Motivated by the cycle-consistent adversarial network (Cycle GAN) 

[66], a weakly supervised color migration model was suggested by Lie et al. [67] 

to provide accuracy in color deformation in deep-sea underwater images. Herein, 

between the underwater and normal images, forward and backward mapping and 

adversarial discriminators were incorporated. Several distortion functions, like 

adversarial losses (Loss GAN), structural similarity (Loss SSIM), and periodic 

continuity (Loss Cyc), were used in the forward mapping and backward mapping 

generators. All the useful information in the underwater images was the same, 

while the color was improved. There are some other types of GAN that have been 

used by various authors [68–69]. These types of GAN enhance the contrast, color, 
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and de-haziness of real-world underwater images. Details of these types of GAN 

are given in Table 2.3. 

 

 

2.4.4 Underwater Image Dataset and Evaluation 

 

This section presents research work related to the various datasets and 

evaluation of the underwater image quality. This section is classified in two groups:  

 

• Underwater Image Dataset 

• Evaluation of underwater image quality 

 

2.4.4.1 Underwater Image Dataset 

 

The underwater image dataset is very useful in the evolution of 

underwater image processing techniques. Here, various underwater image datasets 

that have been used by several authors for restoration and enhancement purposes 

have been summarized in Table 2.4. 

 

 

2.4.4.2 Evaluation of Underwater Image Quality 

 

There are some parameters, such as image restoration, image 

enhancement, image classification, image retrieval, image transmission, and 

optimization, in optical image systems where the measurement of image quality 

plays an important part. Two main methods, i.e., subjective image quality 

evaluation and objective image quality evaluation, are used for evaluating the 

quality of images. The classification of objective image quality evaluation is 

independent of the reference image. If a reference image for any underwater image 

is not found, then to obtain the image quality, we need a no-reference image metric. 
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Table 2.3. Deep learning-based models 
 
 
 

S. No. Model 
Source of 

training sets 

Training 

Images 
Effects 

1 CNN 
Corrected 

Underwater Images 
Not mentioned 

Color 

Correction 

2 GAN 
Tank and simulated 

underwater images 
5348N+7000U 

Color 

Correction 

3 Cycle GAN 
Online underwater 

images 
3800N+3800U 

Color 

Correction 

4 Fusion-GAN 
Real Underwater 

Images 
6128U 

Color 

Correction 

5 
Unsupervised-

GAN 

Synthetic 

Underwater Images 
3733U 

Color 

Correction 

6 FUnIE-GAN 

Paired and 

Unpaired 

Underwater Images 

20000U 

Color & 

Contrast 

Correction 

7 Spiral GAN 
Real World 

Underwater Images 

4757U + 

4129U  

+ 726U 

Color & 

Contrast 

Correction 
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Table 2.4: Underwater Image datasets 
 
 
 

S.No. Dataset No. of Images 
Total 

Images 
Resolution 

  Paired Unpaired   

1 Underwater 45 (U-45) - 45 45 256*256 

2 

Enhancing Underwater 

Visual Perception 

Dataset (EUVP) 

11950 6665 18615 320*240 

3 

Underwater Image 

Enhancement Benchmark 

Dataset (UIEB) 

890 60 950 Varied 

4 
Large Scale Underwater 

Image Dataset (LSUI) 
4279 - 4279 Varied 

5 UFO-120 1620 - 1620 640*480 

6 

Real-world Underwater 

Image Enhancement 

Dataset (RUIE) 

300 3630 3930 320*240 

7 
Detecting Underwater 

Object Dataset (DUO) 
- 7782 7782 Varied 

8 

Underwater Multiple 

Object Tracking Dataset 

(U-MOT) 

- 514 514 1920*1020 
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We can use several quantitative metrics to assess the restoration and 

enhancement performance of different types of underwater images. These are (i) 

global contrast dealing with grayscale underwater image quality; (ii) weighted 

grayscale angle (WGSA) metrics to evaluate the improvement of the restored 

image; and (iii) robustness index to identify the proximity of grayscale histograms 

to their exponential distribution. Some papers define a method to measure the 

robustness of underwater image noise removal. 

 

In color-based underwater images, two important no-reference 

evaluation metrics were used. One is the underwater image quality measure 

(UIQM), in which the following three methods were combined to measure the 

quality of underwater images: (i) underwater image sharpness measure UISM; (ii) 

underwater image contrast measure UIConM; and (iii) underwater image 

colorfulness measure UICM. 

 

The other reference metric is the underwater color image quality 

evaluation (UCIQE) metric, which is broadly used to estimate the quantity of non-

uniform color cast, enhance the quality of the image, and quantify the blur and 

noise in the underwater image. 

 

In subjective evaluation, some techniques are defined to evaluate the 

quality of natural images, similar to patch-based contrast quality index (PCQI), 

mean square error (MSE), global contrast factor (GCF), structural similarity index 

measure (SSIM), average execution, peak signal to noise ratio (PSNR), entropy, a 

contrast to noise ratio (CNR), visibility metrics based on CNR (VM-CNNR), 

discrete entropy and contrast measure (DECM), and gradient ration in visible edge 

(GAVE). 

The overall deterioration dominates all underwater images, including 

non-uniform light, non-uniform color casts, chroma reduction, poor contrast, 

blurring, and noise from numerous parameters. Because of the various distortions 
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present in underwater images, it is difficult to develop a standard image quality 

metric that can be applied to all kinds of underwater conditions. Using the existing 

underwater image quality criteria, an incorrect value was given for an underwater 

image containing dark areas, oversaturation, and non-uniform brightness. 

 

 

2.4.5 Research Gaps Identification 

 

From the literature survey, few research gaps which have been 

identified are as follows:  

 

1. Required to explore the most effective techniques used to enhance the quality of 

underwater images. 

2. It has been observed that, most of the previous research is focused only on 

restoration rather than enhancement methods. 

3. Robust image enhancement system is not available which enhances the images 

captures at different water level. 

4. Previous models works on only specific objectives which are mainly focused on 

the specific datasets. 

5. The use of Deep learning-based methodology in this area is less explored. 

6. Enhancement on Deep Sea underwater images is very difficult because of the 

unavailability of light as well as uneven presence of artificial light. 

7. Need to identify some common parameters to compare the result obtained from 

different algorithms. 
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2.5 Concluding the Review 

 

 

The literature review has uncovered several challenges in the field of 

underwater image enhancement, mainly related to the use of deep learning 

techniques, the resilience of current systems, and traditional enhancement methods. 

Seeing these challenges, a distinct gap of opportunity comes up for a development 

of a powerful underwater image enhancement model that solves the problems and 

improves image quality more effectively and robustly. 

 

Conventional enhancement techniques, although somewhat successful, 

might not be able to handle the complexities of underwater images. Despite their 

potential, deep learning techniques may encounter difficulties in reaching peak 

performance because of the difficulties presented by underwater environments. 

Moreover, the current technologies may not be as strong as needed to manage 

changing underwater circumstances, which would reduce their overall efficacy. 

 

Underwater image enhancement is an area that might experience 

significant changes, and this research opportunity provides a cutting-edge 

opportunity to contribute to the development of technology and approaches in this 

field. 
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CHAPTER 3 

 

 
COMPARATIVE UNIVERSAL STRETCHING 

MODEL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The suggested robust model for enhancing underwater images is thoroughly 

explored in this chapter. It starts with an introduction that places the model's 

importance and usefulness in the larger context of underwater imaging. After 

that, the chapter reviews relevant literature, providing insights into current 

frameworks and approaches that contributed to the development of the 

proposed model. 

A significant section of the chapter is providing the detailed explanation of 

the robustness of the model. It includes the fundamental and the structural 

part of the model. This method is analysed and validated on the eight different 

datasets for their efficiency. This validation shows that we can rely on the 

improved underwater images. 

This chapter shows that the CUS model is a single image based, datasets 

independent model. It shows that the model is more flexible and adaptable, 

enable the model to work well on various datasets. 
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3.1 Introduction 

 

Underwater image enhancement is a main research area that is now 

being addressed across the world. The primary reason for this is that water scatters 

and absorbs light, providing images with extremely low contrast and color cast. 

Hence, to conquer this problem with underwater images, we designed a simple and 

effective Comparative Universal Stretching (CUS) method. This method is split 

into two parts.  

 

The first section focuses on boosting contrast, while the second focuses 

on improving color. To begin with, under the RGB color model, contrast 

enhancement equalizes the G and B channels. Each R, G, and B channel's 

histogram is then redistributed using effective parameters connected with the 

intensity distribution in the input image and the wavelength attenuation of various 

colors underwater. The noise is subsequently reduced using a bilateral filtering 

technique, which not only keeps important facts in an underwater image but also 

increases local information. In the second section, the color is enhanced by 

increasing the L element and adjusting the 'a' and 'b' elements of the CIE lab color 

space. 

 

The experiment findings show that the suggested techniques 

outperform alternative strategies. Our enhanced results stand out for their brilliant 

color, greater contrast, and enhanced features. When compared to other 

approaches, the values of peak signal-to-noise ratio (PSNR), entropy, mean square 

error (MSE), underwater color image quality evaluation (UCIQE), and underwater 

image quality measures are 7.88, 920.20, 18.92, 0.596, and 2.734, respectively. 

This technique improves image quality by increasing entropy, PSNR, and UCIQE 

values while lowering MSE. 
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It is an entirely algorithm-based technique that is independent of image 

datasets. The images used to evaluate the results come from a variety of datasets, 

and their enhanced performance confirms their robustness. Because of its single 

image-based approach, our method is very compelling in terms of processing 

speed. Comprehensive findings on different underwater image datasets show that 

our approach performs well on most of them. For these reasons, the comparative 

universal stretching approach is better than others. 

 

 

3.2 Related Work 

 

This section mainly consists of the pre-requisites of the proposed 

comparative universal stretching (CUS) model. In this section, the basic 

underwater model approach and histogram stretching approach have been 

discussed, and how we are using their equations in our proposed work has been 

explained. 

 

 

3.2.1 Underwater Model 

 

Various well-defined image hazing models [70-71] are generally used 

to identify the transmission equation of the scattered background light in an 

underwater scene. The equation is given below: 

 

                      Iλ(x) =  Jλ(x)tλ(x) + (1 – tλ(x))Bλ                        (3.1) 

Where λ is the light wavelength that belongs to red, green, and blue. x 

is the underwater image Iλ(x) pixel point.  Jλ(x) denotes the light at sight location 

x. tλ(x) denotes the residual energy ratio (RER). RER is the ratio of reflection in 

underwater from location x to back to camera. Uniform background light is 
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represented by Bλ . Jλ(x)tλ(x) represents the straight attenuation of scene radiant 

Jλ(x) in underwater [72]. The RER tλ(x) is depends upon the λ as well as the site 

camera distance 𝑑(𝑥), which shows the complete impact of color change which 

has been suffered by the wavelength of light in underwater distance 𝑑(𝑥), and light 

scattering. Therefore tλ(x) can be defined as: 

 

                                     tλ(x) = NRER  (λ)d(x)         (3.2) 

 

where NRER is normalized RER, which defines the proportion of 

residual energy ratio to original energy for a minimum single unit of distance 

transmitted. As we know, the green & blue light have a higher frequency because 

of their shorter wavelengths, and therefore they attenuate extremely lower as a 

comparison to the red light. For this reason, as we move deep inside the sea, the 

images appear as blue toned images. The values of the light wavelength of NRER 

(λ) are defined as follows: 

 

         NRER (λ) =  {

0.83~0.90      if λ = 590~750 μm (Red) 
    0.90~0.95     if λ = 490~590 μm (Green)

0.95~0.99      if λ = 400~490 μm (Blue)
              (3.3) 

 

We are using these values to predict the range of RGB channels in the 

CUS model. 

 

 

3.2.2 Histogram Stretching 

 

The underwater images have poor visibility as well as contrast because 

of the very low range of histograms and relatively concentrated distribution. To 

overcome this problem, we use histogram stretching, which gives us a fair 

distribution of pixels in the image channels across the dynamic range. This 
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increases the visibility and contrast in the underwater image. The contrast 

stretching function is given in equation (3.4) [73–74]. 

 

                                       p0 = (pi −  a) +
c−d

b−a
+  d       (3.4) 

 

where pi is the intensity value of the input pixel, po is the intensity 

value of the output pixel. The min & max intensity values of the actual image and 

the desired output image is represented by a, b & c, d, respectively. c & d are 

constant in a global stretching and are frequently fixed to 255 & 0 respectively; 

a & b are chosen at 0.2 % & 99.8 %  in the original image's entire histogram. 

 

 

3.3 Proposed Work 

 

Generally, our suggested model is consisting of three basic steps: 

contrast improvement, color improvement, and quality evaluation as shown in 

Figure 3.1. 

 

In contrast improvement, first we are doing RGB channel 

decomposition. After that, we perform color equalization on the green and blue 

channels. Then we determine the adaptive stretching range. After that, we perform 

comparative universal stretching on the image. Finally, while keeping the 

information about the needed colorful underwater image, we use a bilateral filter 

to eliminate the noise created by the aforesaid transformation [72]. This will not 

only diminish the color cast result because of the light absorption and scattering, 

but also reduce the effect of the low contrast. Once we performed all the steps in 

contrast improvement, we got the resultant image. After that, we performed color 

improvement on the resultant image [75]. In color improvement, first we change 

the image into a CIELAB color model. We extend the parameters of the image 

using basic global histogram stretching and correct the parameters in the CIE Lab 
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color model. The adaptive stretching improves the image's brightness and 

saturation, resulting in a more vibrant color. After performing contrast 

improvement and color improvement, to estimate the quality of our designed 

model, we use a few quality evaluation parameters. Now we are going to elaborate 

in detail on contrast improvement and color improvement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Comparative Universal Stretching (CUS) Model 

 

3.3.1 Contrast Improvement 

 

Figure 3.2 presents the sequence used in contrast improvement, which 

consists of five main phases. These are (i) RGB Channel Decomposition, (ii) Color 

Equalization on GB Channel, (iii) Determining Adaptive Stretching Range, (iv) 

Comparative Universal Stretching, (v) Bilateral filter on the RGB Channels. 

 

Input Image 

Output Image 

Contrast Improvement 

Module 

Color Improvement 

Module 

Evaluation  

(Assessment Model) 



65 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Sequence used in contrast improvement. 

 

3.3.1.1 Color Equalization on GB Channel 

 

Images are rarely color-balanced appropriately when taken 

underwater. We begin color equalization for the underwater image after RGB 

channel decomposition. According to the Von Kries hypothesis [76], Iqbal et al. 

(2010) modified color values in RGB elements, keeping the leading color cast 

channel constant. As per the unsupervised color correction model (UCM), if one 

channel's average is very low, the channel must increase with a larger multiplier, 

resulting in incorrect image color processing. As motivated by the Gray World 

Assumption Theory (GWAT) [16], in a perfect image, the mean value of any color 

object is always gray. Hence, we improve the green as well as the blue channels 

with the help of the following assumptions: 

 

                                    (Ravg + Gavg + Bavg)/3 = 0.5      (3.5) 

Input 

Image 

RGB Channel 

Decomposition 
Color Equalization 

on GB Channel 

Determining Adaptive 

Stretching Range 

Comparative 

Universal Stretching 

Bilateral filter on 

the RGB 

Channels 

Resultant 

Image 
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where Ravg,  Gavg and Bavg are the normalized mean values of the 

recovered RGB channels.  

 

Gavg =  
1

255 ∗ MN
∑ ∑ Ig( i, j ) , θg =   

0.5

Gavg
  

N

j=1

M

i=1
 

                          Bavg =  
1

255∗MN
∑ ∑ Ib( i, j ) , θb =   

0.5

Bavg
  N

j=1
M
i=1          (3.6) 

 

Pixel values can vary between 0 and 256. Every value denotes a color 

code. The calculation of these large numerical values may get more difficult when 

processing the image as it is, i.e., by taking the simple mean value. It can be 

minimized by normalizing the numbers to the range between 0 and 1. As a result, 

the numbers would be minimal, and the calculation would be easy as well as 

quicker. Pixel values vary between 0 and 256; apart from 0, the range is 255. 

Hence, dividing all the numbers by 255 (i.e., the standard deviation) will convert 

them to a range of 0 to 1. That is the reason for taking the normalized mean value 

instead of the simple mean value in equation (3.6). 

 

With the help of GWAT, we improve the G & B channel. The R channel 

is not taken into attention here since the red light in water is difficult to correct with 

basic color equalization. If we consider the red light, then it brings red over 

saturation. The above equation is defined for computing G & B channels color 

equalization coefficient i.e., θg & θb, respectively. The underwater image size is 

given by M * N. Depends upon the color equalization coefficients θg & θb, the 

intensity of the G channel and B channel is modified by changing θg and θb 

respectively. After this, we now must perform comparative universal stretching for 

image channels. 

 

 

 



67 
 

3.3.1.2 Comparative Universal Stretching (CUS) Model 

 

The overall histogram stretching method typically employs equal 

values for each channel of an image, neglecting the histogram allocation features 

of individual channels and images. If predefined values, for example, have been 

used in (3.4), some color channels are either over or under stretched, causing 

destruction to the input image's features. Due to the transmission principle of light 

underwater, to repair the distorted images, we must use the contrast improvement 

approach. According to the following study of underwater images, the RGB 

channel's histogram distribution requirements are as follows: The histogram of red 

light in most underwater images is in the band [50, 150], whereas in the G & B 

channel, values are in [70, 210]. Due to this, the histogram stretching is sensitive 

to channels. We rewrite the comparative universal stretching in equation (3.7) to 

distinguish it from global histogram stretching in equation (3.4). 

 

                           𝑝
𝑜𝑢𝑡

= (𝑝
𝑖𝑛

−  𝐼𝑚𝑖𝑛) ( 
𝑂𝑚𝑎𝑥− 𝑂𝑚𝑖𝑛

𝐼𝑚𝑎𝑥− 𝐼𝑚𝑖𝑛

 ) +  𝑂𝑚𝑖𝑛                   (3.7) 

 

where 𝑝𝑖𝑛is the input pixel, 𝑝𝑜𝑢𝑡 is the output pixel. 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥 are 

the adaptive parameters before the stretching images. 𝑂𝑚𝑖𝑛 and 𝑂𝑚𝑎𝑥 are the 

adaptive parameters after the stretching images. After this, we'll go through how to 

calculate the stretching range (𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥) and the desired range (𝑂𝑚𝑖𝑛, 𝑂𝑚𝑎𝑥). 

 

 

3.3.1.3 Determining Adaptive Stretching Range 

 

If we consider the histogram distribution of different underwater 

images, it is seen that the histogram distribution in the RGB channel is comparable 

to a variant of the Rayleigh distribution described as (3.8), and that is an ongoing 

probability proportion for positive-valued random variables. 
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               𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =   
𝑥

𝑎2 𝑒−𝑥2 2𝑎2⁄ , 𝑥 ≥ 0, 𝑎 > 0                  (3.8) 

 

In equation (3.8), the distribution's scaling parameter 𝑎 is the mode, 

which is the highest in the 𝑅, 𝐺 & 𝐵 channel histogram. It is worth noting that, 

when a channel's allocation follows a regular pattern, its midpoint and mode are 

almost identical. In the histogram stretching, we use the mode result as a borderline 

to determine the minimum intensity level on the left and the maximum intensity 

level on the right of the original input image.  

 

Because underwater images are impacted by a variety of causes, 

stretching ranges between 0.1 % and 99.9 % of the histogram are commonly used 

to decrease the impact of certain high pixels in comparative universal stretching. If 

the histogram is not regularly distributed, the procedure of removing the same 

quantity of pixels from both ends of the histogram is not appropriate. To compute 

the 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥 for each RGB channel, we partition the top and bottom portions 

of the intensity values, as shown in equation (3.9). 

 

𝐼𝑚𝑖𝑛 = 𝐺. 𝑠𝑜𝑟𝑡 [ 𝐺. 𝑠𝑜𝑟𝑡. 𝑖𝑛𝑑𝑒𝑥(𝑎) ∗ 0.1% ] 

                   𝐼𝑚𝑎𝑥 = 𝐺. 𝑠𝑜𝑟𝑡[ −( 𝐺. 𝑙𝑒𝑛𝑔𝑡ℎ −  𝐺. 𝑠𝑜𝑟𝑡. 𝑖𝑛𝑑𝑒𝑥(𝑎)) ∗ 0.1% ]     (3.9) 

 

where 𝐺 is the group of image pixel values for each 𝑅, 𝐺 & 𝐵 channel, 

𝐺. 𝑠𝑜𝑟𝑡 is the increasing sorted data set, 𝐺. 𝑠𝑜𝑟𝑡. 𝑖𝑛𝑑𝑒𝑥(𝑎) is the index number of 

the mode in the histogram distribution, and 𝐺. 𝑠𝑜𝑟𝑡[𝑥] is the value at index 𝑥 of the 

positive sorted data set. To implement the unique approach, we extract pixels 

values in the lowest 0.1 % of the left side and the largest 0.1 % of the right side 

from histogram distribution using Equation (3.9). The RGB channels and different 

images of the Rayleigh distribution, the 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥 are both channel and image 

sensitive. 
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Global histogram stretching of [0, 255] range typically produces 

excessive blue and green light in underwater images. We dynamically decide the 

highest (𝑂𝑚𝑎𝑥) and lowest (𝑂𝑚𝑖𝑛) intensity level values by each RGB channel to 

obtain a perfect intended band of stretching.  

 

We begin by calculating the Rayleigh distribution's standard deviation 

values σλ, as shown in equation (3.10). 

 

                                  σλ =  √
4−𝜋 

2
𝑎λ = 0.655𝑎λ  , λ ϵ { R, G, B }      (3.10) 

 

Where 𝑎 denotes the channel mode, λ belongs to RGB Channels. After 

that, we establish the required range's minimum value O λ min, as shown in equation 

(3.11) 

                      

      𝑂λ min =  𝑎λ − 𝛽λ ∗  σλ  , 0 ≤  𝑂λ min  ≤  𝐼λ min     (3.11) 

 

Here 𝛽 λis derived from equation (3.11) and substitute σλ from 

equation (3.10) 

 

𝛽λ =  
𝑎λ− 𝑂λ min

σ λ
   ,   

𝑎λ−  𝐼min

σ λ
  ≤    𝛽λ   ≤     

𝑎λ

σλ
      (3.12) 

 

In the right side of equation (3.12), we get 𝛽λ   ≥    0, as 𝑎 ≥   𝐼𝑚𝑖𝑛. 

Now, substitute the value of σλ in the right side in equation (3.12), we 

obtain 𝛽λ  ≤ 1.526. 

 

Now describe 𝛽λ  ∈   𝑍, it must have a unique solution that is 𝛽λ = 1. 

Hence equation (3.11) is rewritten in the form of equation (13) as shown below: 

 

 𝑂λ min =  𝑎λ −  σλ        (3.13) 
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Because of the varying degrees of depletion of the various bands of 

light in underwater, we should study individual 𝑅, 𝐺, 𝐵 channel to compute 

optimum parameters of the required range. Based on the simple fuzzy image 

method (3.1), the image dehazing function 𝐽λ(𝑥) is improved as given in equation 

(3.14). 

 

𝐽λ(𝑥) =  
𝐼λ(𝑥)− (1 − 𝑡λ(𝑥))𝐵λ

𝑘 𝑡λ(𝑥)
       (3.14) 

 

Where the red and the green-blue channel have experienced values of 

1.1 and 0.9, respectively. When maximizing the recovered image 𝐽λ(𝑥), as shown 

in equation (15), the maximum value of the required range Omax is obtained. 

 

𝑀𝑎𝑥 (𝐽λ(𝑥)) =  𝑀𝑎𝑥(
𝐼λ(𝑥)− (1 – 𝑡λ(𝑥))𝐵λ

𝑘 𝑡λ(𝑥)
)       (3.15) 

 

𝐵λ is 0, when 𝐽λ(𝑥) reaches its maximum value. Then, for each color 

channel Omax is defined as shown in equation (3.16). 

 

𝑂λ max =  
𝐼λ

𝑘 𝑡λ
  =    

𝑎λ+ 𝜇λ∗ σλ

𝑘∗ 𝑡λ
   , 𝐼 λ max  ≤    𝑂 λ max   ≤    255      (3.16) 

 

𝑡λ(𝑥) is calculated with the help of equation (3.2), where 𝑁𝑅𝐸𝑅 (λ) 

values are 0.83, 0.95 and 0.97 for the RGB channels, respectively (also look at 

equation (3.3)). Due the estimated path between the camera and the site, 𝑑(𝑥) is 

fixed to 3. 𝐼λ values always lie on the right side of the mode in channels histogram, 

and therefore it is represented in the form of 𝑎λ + 𝜇λ ∗  σλ. 

 

The coefficient 𝜇λ fulfils the inequality as shown in equation (3.17), 

depending on the overall range value of 𝑂λ max.  
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𝜇λ =  
(𝑂λ max ∗  𝑘 ∗  𝑡λ)  −   𝑎λ

σλ
 

                           
𝑘∗ 𝑡λ ∗  𝐼λ

σλ
  ≤  𝜇λ  +  1.526  ≤   

𝑘∗ 𝑡λ ∗  255

σλ
                        (3.17) 

 

In equation (3.17), in the integer field 𝜇λ has either no solution or 

specific solutions. We take the mean of all solutions when 𝜇λ are many solutions. 

When there are no solutions of 𝜇λ,  𝑂λ max is set to 255. These adaptive parameters, 

which are derived from the histogram distributions from several channels, may 

substantially enhance the contrast of stretched images while also reducing noise 

and preserving features.  

 

 

3.3.2 Color Improvement 

 

Figure 3.3 shows the sequence used in color improvement, which 

consists of three important phases. These are (i) Conversion from RGB to CIE lab, 

(ii) Adaptive Stretching in CIE lab, (iii) Conversion from CIE lab to RGB. 

 

 

 

 

 

 

 

 

 

Figure 3.3 Sequence used in color improvement. 
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3.3.2.1 CIELAB Color Model 

 

The human eye can see large numbers of colors. However, it does not 

always differentiate between colors properly. Based on our viewing position and 

illumination, we may see two slightly different colors as the same or detect 

distinctions in things of equal color. These create challenges when we try to 

enhance the color component. To enhance the color of underwater images every 

time, we require strategies to define a color's qualities and identify the quantitative 

difference between shades. CIELAB, generally CIE L*a*b*, is a three-dimensional 

color space that is device-independent and enables the exact analysis and 

measurement of all observable colors via three color variables. In this color space, 

numerical changes between values generally correlate to the degree of difference 

in colors that humans perceive. 

 

Each of the three variables used by the CIELAB color space to measure 

objective color and calculate color differences is given by L*, a*, and b*. L* 

signifies brightness within a range of 0 to 100. Whereas a* & b* signify 

chromaticity without numerical boundaries. (–ve) a* represents green, (+ve) a* 

represents red, (-ve) b* represents blue, and (+ve) b* represents yellow. The 

CIELAB color space plots a color's location in a chart that comprises an unlimited 

range of different colors, including colors outside the visible spectrum, by 

measurements of its L*, a*, and b* values. We may utilize formulas to quantify the 

difference between distinct colors with the values on the L* a* b* chart, which is 

referred to as delta (Δ). To compute L*, for example, reduce the L* value of the 

standard color from the L* value of the sample. L*a*b* values can also be used to 

transform to a different color scale. Because of these various qualities of the CIE 

Lab color model, it is chosen over other models. 
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3.3.2.2 Adaptive Stretching in CIE Lab 

 

The resultant image will be color corrected after the contrast 

enhancement in the RGB color space. To enhance color quality, the image is altered 

further in the CIELAB color space in this step. The 'L' parameter, is like image 

lightness in CIE-Lab color space, provides the darkest assessment at L= 0, whereas 

the brightest assessment is at L = 100. The color channel will show true neutral 

gray values when ‘a’ and ‘b’ are both zero. As a result, the output color successions 

in ‘a’ and ‘b’ parameters are updated to obtain proper color improvement, while 

the intensity of the full image is tuned using the 'L' component. 

 

The 'L' element is used in conjunction with linear slide stretching, as 

described in equation (3.8), which lies within 0.1% to 99.9% is stretched to [0 to 

100]. The minimum and maximum 0.1 % of the image's value are adjusted to 0 and 

100, respectively. 

 

‘a’, ‘b’ has values ranging from [128, 127], where 0 represents the 

median. An S-model curve is used to define the extending of 'a' and 'b' parameters 

as shown in equation (3.18). 

 

𝑃𝛾 =  𝐼𝛾  ∗   (𝜑1− |
𝐼𝛾

128
|)   ,   𝛾  𝜖  {𝑎, 𝑏}       (3.18) 

 

Where 𝐼𝛾 is the input pixels, 𝑃𝛾 is the output pixels. 𝛾 represents the 

‘a’, ‘b’ parameters. 𝜑 is the ideally suitable value which is 1.3. The stretching 

coefficient in Equation (3.18) is an exponential function, in which case if the value 

is close to 0, the more it will be stretched.  

 

The importance of contrast and color in an image's clarity and visibility 

cannot be overstated. As a result, the background and foreground objects in an 

image are easily distinguished. The channels are assembled and turned into an 
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RGB color model once the stretching process for 𝐿, 𝑎 & 𝑏 elements in CIE Lab 

have been completed. As the observed and viewable final output image, a contrast- 

and color-improved result can be formed. 

 

 

3.4 Datasets and Evaluation Parameters 

 

This section describes the datasets, competing methods, and evaluation 

metrics that have been used to evaluate the designed algorithm. 

 

 

3.4.1 Datasets 

 

For underwater image improvement, we currently utilize eight 

different datasets: Underwater Test Dataset (U45) [67], Enhancing Underwater 

Visual Perception (EUVP) [68], Underwater Image Enhanced Benchmark dataset 

(UIEB) [77], Large-scale Underwater Image (LSUI) dataset [78], UFO-120 dataset 

[79], Underwater MOT dataset [69], Real-world Underwater Image Enhancement 

(RUIE) dataset [80], and dataset for underwater object detection (DUO) [81]. 

 

 

3.4.2 Competing Methods 

 

We are using different competing approaches for underwater image 

enhancement. These competing approaches are given below. We compared our 

proposed model with the following methods: We compared our comparative 

universal stretching model with Bianco Prior [82], Dark Channel Prior [12], New 

Optical Model [83], Integrated Color Model [76], and Unsupervised Color 

Correction Method [73]. In the assessments, our method of comparative universal 

stretching gets the highest outcomes, while unsupervised color correction gets the 
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second highest outcomes. The Bianco Prior and Dark Channel Prior methods 

depend on the underwater image restoration method. The new optical and 

integrated color models depend on underwater image enhancement techniques. The 

comparative universal stretching method also uses a fusion-based algorithm in the 

underwater image enhancement method. 

 

 

3.4.3 Evaluation Parameters 

 

We use objective metrics such as entropy, peak signal-to-noise ratio 

(PSNR) [84], mean square error (MSE), High-Dynamic Range Visual Difference 

Predictor 2 (HDR-VDP2) [85], and underwater color image quality evaluation 

(UCIQE) [86] to perform quantitative analysis. The amount of information is 

represented by entropy, which is understood as the mean unpredictability of the 

information source. The more information there is, the greater the entropy value. 

MSE and PSNR are standard image quality evaluation measures that primarily 

measure image noise deterioration. The HDR-VDP2 predicts both the presence of 

artifacts and the overall quality of images using a pretty complex model of human 

perception. It generates a QMOS value ranging from 0 (best) to 100 (worst) to 

represent image quality. The UCIQE, which is an appropriate analytical predictor 

of hue, brightness, and contrast, is a relatively new non-reference metric for the 

evaluation of color image quality. However, MSE, PSNR, and Q-MOS are full 

reference metrics that take an actual image as a reference. They can be used to 

show how the created image compares to the original in terms of the observed loss 

in quality and increase in noise. 

 

The detailed comparative analysis has been done in Chapter 5. Where 

we provide a detailed description of datasets, evaluation criteria, and result 

comparison in terms of qualitative and quantitative analysis. 
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3.5 Conclusion 

 

This chapter provides a detailed explanation of the difficulty which 

have been occurred during the enhancement of the underwater images. A novel 

approach called CUS is designed to address this issue. This model generates the 

very high quality of the underwater images on various datasets.  

 

In first phase of the CUS model we improve the contrast by using 

adaptive feature in histogram stretching. These adaptive features have been taken 

from the RGB color space of the degraded image; it evaluates the light propagation 

features as well as extract the histogram distribution parameter from the degraded 

images. 

 

In second phase of the CUS model we perform the color improvement 

by utilizing the efficiency of the CIELAB color space. This phase is important to 

improve the color representation in the enhanced underwater images. A more 

subtle and context-aware color improvement is possible in the CIE Lab color space 

because of the adaptive stretching technique, which takes into consideration the 

unique qualities of underwater environments. 

 

The CUS model offers a complete approach for enhancing underwater 

images by fusing contrast improvement in the RGB color space with adaptive color 

stretching in the CIE Lab color model. This two-step process results in a strong and 

efficient enhancement technique that is customized to the unique challenges 

presented by underwater environments. 

 

A thorough comparative analysis against traditional dehazing models, 

like DCP, and other enhancement models, such UCM and ICM, is an essential 

phase in verifying the efficiency of the CUS model. We use both qualitative and 

quantitative analyses to determine how well the CUS model performs relative to 
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these well-established methods. Through this rigorous assessment, the CUS model 

shows its superiority in achieving these goals, exhibiting a significant advantage 

for enhancement of visibility, fine-tuning of details, and improvement in contrast 

and color. 

 

In addition, these comparison assessments demonstrate how robust the 

CUS model is. Its success applies to other underwater image datasets and is not 

limited to any specific dataset. This universality highlights the CUS model's 

flexibility and applicability, which makes it a flexible option for improving images 

in a variety of applications and datasets. 

 

The results of the comparison analysis verify the CUS model's effectiveness and 

robustness. It is proven to be a useful and adaptable technique for enhancing 

underwater image quality due to its superior performance over other dehazing and 

enhancement models on both qualitative and quantitative analysis. This validates 

the concept that the CUS system is fundamentally reliable, producing positive 

results on various datasets and establishing its status as a potential development in 

the field of underwater image enhancement. 
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CHAPTER 4 

 

 

DEEPSEANET FRAMEWORK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this chapter, the suggested DeepSeaNet model is explained in 

detail, with the architecture divided into two sections: convolutional, which 

consists of the first three steps, and deconvolutional, which consists of the 

fourth step. The first step considers the channel-specific features of each 

image channel to generate wavelength-driven contextual sizes. The second 

step uses the multi-contextual features that were learnt in the previous stage 

to construct color-dependent distortion residuals. Then these residuals have 

been used to generate the global color-correction features, which is the 

objective of the third step of the DeepSeaNet model. The restoration phase, 

which consists of a deconvolution layer, residual block, and an additional 

deconvolution layer, is the last and fourth step. 

 

This chapter is organized as follows, with an introduction placing 

the scene for the importance of the DeepSeaNet model in the context of deep-

sea image improvement. Reviewing related content gives light on present 

methods and prepares the reader for a thorough analysis of the suggested 

model.  

 

The chapter describes the datasets utilized for evaluation, 

assuring a representative and varied range of deep-sea underwater images for 

verifying the proposed model. The assessment criteria, involving both 

qualitative and quantitative evaluations to fully evaluate the model 

performance. 
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4.1 Introduction 

 

In deep-sea underwater images, the uneven attenuation of sunlight, 

when it spreads underwater, has high color distortion and very low intensity. 

Furthermore, the amount of reduction with respect to their wavelength causes 

asymmetric color movement. Irrespective of several efforts at deep-sea image 

enhancement via deep learning, this asymmetry has not been addressed earlier. As 

part of the research, this paper demonstrates that assigning the appropriate context 

based on the color channel traversal range may result in a significant performance 

speedup for the objective of underwater image enhancement. Furthermore, it is 

critical to reduce inappropriate characteristics and improve the model's 

representational strength. Therefore, we included an important reduction method 

to dynamically modify the learned characteristics. DeepSeaNet, the suggested 

framework, is enhanced via conventional pixel-wise and feature-based estimation 

methods. Comprehensive tests were conducted to demonstrate the efficiency of the 

proposed technique with the best published paper on standard datasets. 

 

 

4.2 Related work 

 

Despite the vast literature on previous deep learning and machine 

learning-based algorithms, the enhanced underwater images still suffer from color 

distortion. One of the key problems might be the use of deep CNN without 

appropriately overseeing the spatial formation of receptive fields among all the 

channels depending upon traversal lengths. Underwater images, unlike outside 

images, need specific measures due to varying attenuation ranges all over the 

channels. 

 

As a result, a ready-made outdoor system is not appropriate in an 

underwater situation. Additionally, it was discovered in a prior study [87] that 
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specific channels contribute so much to dehazing, whereas the rest contribute to 

spatial color improvement. Because of these meaningful differences in various 

subtasks, the channels may need differing receptive field dimensions. Furthermore, 

the bulk of the approaches [88–90] rely on adversarial training [65], which could 

result in training instability. Due to adversarial learning, the generator model may 

soon begin to create images to fool the discriminator rather than generating 

improved or enhanced underwater images if not carefully designed [91]. 

Furthermore, unlike [77, 92], the suggested method does not use some priors, such 

as histogram equalization (HE), gamma correction (GC), or white-balanced (WB), 

to estimate the improved images. Due to the absence of semantic guidance and a 

vast dataset, such priors may assist in avoiding constructing a model that may not 

function well on unknown data. An example is estimating alpha matte out of a 

single image without using any before, so this is a significant issue [93]. The 

DeepSeaNet, on the other hand, is reasonably self-sufficient in learning these 

meaningful characteristics without some previous knowledge while predicting an 

enhanced version of the noisy deep-sea image at the same time. Furthermore, 

unlike [79], DeepSeaNet does not include several residual dense blocks [94] or 

multi-modal loss functions. The proper and accurate design of contextual sizes, 

together with the optimal usage of convolutional block attention modules, is 

sufficient to achieve significant improvement increases in enhanced deep sea 

underwater images.  

 

 

4.3 Proposed work 

 

In this section, we are going to discuss our approach to the problem 

statement, followed by one of the pre-requisites of the proposed work, which is the 

convolutional block attention module, followed by the proposed model. In the end, 

we also discussed model learning and how we trained our model to reduce the error 

so that the trained model worked well for the deep-sea underwater images. 
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4.3.1 Our Approach 

 

Given the disadvantages highlighted above, we present the 

DeepSeaNet architecture, a four-step process containing convolutional in the first 

three steps and deconvolutional in the fourth step that enhances the degraded 

underwater images. We controlled the receptive field size, depending upon color 

channels of attenuation-guided global as well as local coherence. It is commonly 

known that a bigger or smaller receptive field understands the global or local 

characteristics of an image very well. In the deep-sea underwater image, the global 

coherence is generally aligned with blue. As a result, depending on our previous 

studies of the wavelength-driven spatial size connection, we decided to give the 

blue color channel a bigger receptive field, green's smaller, and reds even smaller. 

Moreover, to dynamically control the channel-specific information flow 

throughout the designed DeepSeaNet, we used a block attention-based [95] skip 

refinement technique. Our major contributions are outlined below: 

 

• We introduce a deep convolutional neural network structure with 

multiple stages for deep-sea underwater image enhancement. The first phase 

analyzes the color channel of the damaged image, which has varied spatial sizes, 

while considering its global and local semantics depending on its attenuation 

length. Using an attention mechanism, the intermediate levels combine the learned 

multi-contextual characteristics, which also reduces the extraneous color-localized 

data from the preceding layer. The final phase is concerned with the restoration of 

the improved image. 

 

• Although the scale of such advances may appear trivial, it is 

sometimes exactly what is required to produce the highest quality. 
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• We use the feature reconstruction loss [96] in addition to the standard 

mean squared error for training. 

 

• We provided a thorough set of trials versus various current best 

research papers on enhancement of underwater images on the 10 image quality 

measures to demonstrate efficacy. 

 

 

4.3.2 Convolution Block Attention Module (CBAM) 

 

The CBAM module developed by Woo et al. [95] has been integrated 

into the proposed framework to retrieve the channel attention module and spatial 

attention module characteristics for the provided intermediate feature map as input. 

As illustrated in Figure 4.1, the resulting attention maps are multiplied by specified 

input features for adaptive enhancement [97]. In DeepSeaNet, we use the 

convolutional block attention module advantage after the color-localized skip 

connections in stages II and IV rather than directly after the convolution layer. 

 

To formalize its operation, consider Ms(I) as the spatial attention 

mappings and Mc(I) as the channel attention mappings for the intermediate feature 

map I. They are represented as: 

 

Ms(I) =  σ ( c7∗7 ( [ AP (I); MP (I) ] ) ) 

           =  σ ( c7∗7 ( [ Iavg
s ;  Imax

s  ] ) ) 

                           Mc(I) =  σ ( Fc ( Iavg
c  ) +  Fc( Imax

c  ) )                      (4.1) 

 

c7∗7 is a convolution operation with a 7 ∗ 7 kernel, σ is a sigmoid 

function, Fc denote a multilayer perceptron with a hidden layer. While MP 

represents the maximum pooling and AP represents the average pooling. The 

improved feature Ir is defined as: 
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H =   Mc(I) ⨂ I 

                                                     Ir =   Ms(H) ⨂ H                                         (4.2) 

 

For further information, we recommend that readers consult [95]. In 

Section 7.2, we demonstrated how the improved characteristics aided in the 

creation of visually pleasing, enhanced underwater images. 

 

 

Figure 4.1. Convolutional Block Attention Module Structure 

 

 

4.3.3 Proposed Model 

 

Goal: As seen in Figures 4.2 – 4.5, we develop a model for the 

enhancement of underwater images. Figure 4.2 – 4.5, represent the structure of the 

suggested technique for enhancement of underwater images. The suggested 

technique receives a degraded underwater image as input and produces an 

enhanced image in terms of both visual appeal and spatial quality. 

 

Description: The underwater images that are deteriorated and 

enhanced, respectively, are D and E. 
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Additionally, we use the abbreviations DR, DG and DB to refer to the 

red color channel, blue color channel, and green color channel of the deteriorated 

image.  fc,s
i  referred as ith step, having channel c belongs to red, green, and blue, 

and field size s. The planned DeepSeaNet operational regimes for each level are 

described below. While ⨀ means channel-wise concatenation, ⨁ means adding the 

characteristics pixel-by-pixel. 

 

 

 

Figure 4.2 Structure of the suggested technique for enhancement of underwater 

image Step I. 

 

Step I: The first step tries to provide wavelength-driven contextual 

sizes with channel-specific properties as shown in Figure 4.2. We do this by 

channel-wise inputting the degraded underwater image D to acquire the multi-

contextual characteristics as follows: 

 

 M<3,5,7>
1 =   f R,3

1  ⨀ f G,5
1   ⨀  f B,7

1                                                 (4.3) 

 

where these color specific features are calculated as: 

 f R,3
1 =  g(bn(p3∗3 (DR))) 

                                         f G,5
1 =  g(bn(p5∗5 (DG)))                                 (4.4) 
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 f B,7
1 =  g(bn(p7∗7 (DB))) 

 

here 𝑏𝑛 is the batch normalization and g is the parametric rectified linear unit 

(ReLU) layers. 

 

Step II: Like step I, the initial layer of stage II is composed of just a 

pile of convolution layers with varied receptive fields as shown in Figure 4.3. The 

specific purpose of step II is to generate the color-dependent distortion residuals 

from multi-contextual features learned in step I as follows: 

 

 

 fR,3
2 =  g(bn (p3∗3 (M<3,5,7>

1 ))) ⨀  f R,3
1  

         fG,5
2 =  g(bn (p5∗5 (M<3,5,7>

1 ))) ⨀  f G,5
1                            (4.5) 

 fB,7
2 =  g(bn (p7∗7 (M<3,5,7>

1 ))) ⨀  f B,7
1  

 

 

The resulting residuals are dynamically improved using CBAM [16] modules. 

 

 

 fR,3
2 =  CBAM ( fR,3

2 ) 

 fG,5
2 =  CBAM ( fG,5

2 )                                          (4.6) 

 fB,7
2 =  CBAM ( fB,7

2 ) 

 

The two objectives were achieved by doing this: (i) the color-specific, 

noisy features will not propagate to the next steps; and (ii) the model preserve the 

color related features when predicting the “global color correction residual,” as it 

may while handling the complete input image all at once. Step II's output may be 

described as: 

 

M<3,5,7>
2 =   fR,3

2  ⨀ fG,5
2   ⨀  fB,7

2                                                (4.7) 
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Figure 4.3. Structure of the suggested technique for enhancement of underwater 

image Step II. 

 

 

Step III: It generates the global color-correction features from the 

intermediate features residuals, shown in Figure 4.4. It is given as follows: 

 

  

M<3,5,7>
3 =   fR,3

3  ⨀ fG,5
3   ⨀  fB,7

3                                           (4.8) 

 

where, 

 

 fR,3
3 =  g(bn (p3∗3 (M<3,5,7>

2 ))) ⨁ DR 

 fG,5
3 =  g(bn (p5∗5 (M<3,5,7>

2 ))) ⨁ DG                           (4.9) 

 fB,7
3 =  g(bn (p7∗7 (M<3,5,7>

2 ))) ⨁ DB 
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Figure 4.4 Structure of the suggested technique for enhancement of underwater 

image Step III. 

 

 

Step IV: The last step serves as the restoration method and consists of 

a deconvolution layer, a residual block that is attentive, and the final deconvolution 

layer as shown in Figure 4.5. The improved underwater image is produced in step 

IV using the overall color correction residual in the form of input. The step IV 

operational regimes are given below: 

 

 

                               f 4 =  CBAM( g ( bn (d3∗3 (M<3,5,7>
3 ))) ⨀ M<3,5,7>

3 ) 

                                           E =  g ( bn (d3∗3 (f 4)))                                     (4.10) 

                                            

 

where d3∗3 is the deconvolution operation and E is the enhanced image. 
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Figure 4.5 Structure of the suggested technique for enhancement of underwater 

image Step IV. 

 

 

4.3.4 Model Learning 

 

As per the prior image enhancement efforts [98-99], to train the 

DeepSeaNet, we initially integrated the conventional Mean Squared Error ℓ2 as, 

 

ℒ2(θ) =  
1

b
 ∑ ||  W(θ; Dj) −  Oj ||2

2b
j=1                                    (4.11) 

 

here 𝑂 is the original cleaner underwater image. The ℓ2-norm based reduction 

result in fuzzy artefacts in recovered image. 

 

To address this issue, we have included the Perceptual Loss ℒP [96] 

function, which aids in keeping the image's high-frequency information. We used 

the visual geometry group (VGG16) (V(Θ))[100] technique, which was pre-

trained on the ImageNet [101] database. We define the ℓ2 norm as a cost function 

between the relu2_2 feature [102] derived via employing a speculated enhanced 
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underwater image and their respected ground truth image, which can be 

represented as: 

 

ℒP(θ) =  
1

b
 ∑ || V( W(θ; Dj); Θ) –  V(Oj;  Θ) ||2

2b
j=1                        (4.12) 

 

The structural difference between the enhanced underwater image 

generated by DeepSeaNet and the original cleaner underwater images has been 

reduced with a structural similarity index measure (SSIM) [103] like loss relation 

in continuation to the ℒ2 loss and ℒP loss. It calculates the similarities between two 

images and states them as: 

 

𝑆𝑆𝐼𝑀 (𝑟) =  
2.𝜇𝑥.𝜇𝑦+ 𝑍1

𝜇𝑥
2+𝜇𝑦

2+  𝑍1
 .

2.𝜎𝑥𝑦+ 𝑍2

𝜎𝑥
2+𝜎𝑦

2+  𝑍2
                             (4.13) 

 

here 𝑥 and 𝑦 are the patches from the E and O. 𝑧1 and 𝑧2 are the 

predefined parameters. 𝜇 is a mean, σ  is a standard deviation and 𝜎𝑥𝑦 is a 

covariance, provided 𝑟 is the center pixels of the patches 𝑥, 𝑦 from the E and O 

underwater images. The SSIM loss that has been absorbed may then be expressed 

as: 

 

ℒSSIM(θ) =  
1

2b
 ∑ 1 −   SSIM( W(θ; Dj); Oj)

b
j=1                     (4.14) 

 

Here after, the suggested technique is refined with the help of objective 

function shown below: 

 

arg min ℒ2(. ) +  λP. ℒP(. ) + λS. ℒSSIM(. )                           (4.15) 

here λP is 0.02 and λS is 0.5, these both values are empirically 

determined. 
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During our experiments, we discovered that ℒ2 & ℒP losses are enough 

on their own. However, for more improved performance, ℒSSIM loss has also been 

integrated for image enhancement. This is mainly concerned with color correction 

in an underwater environment. 

 

 

4.4 Datasets and Evaluation Parameters 

 

In this section, the datasets and training setup, competing methods, and 

evaluation parameters have been described. They are all used to evaluate the 

DeepSeaNet model. 

 

 

4.4.1 Datasets and training setup 

 

For underwater image improvement, we utilized currently accessible 

benchmarks, especially the EUVP [68] dataset, the UIEB [77] dataset, and the 

UFO-120 [79] dataset. For underwater image enhancement, we use the EUVP 

dataset, which contains 11435 paired images of dimensions 256 * 256. The EUVP 

testing dataset contains 515 image pairs that are identical. The model that was 

trained on the EUVP dataset has been further fine-tuned to share our findings on 

the UIEB dataset. This dataset consists of 890 pair-wise underwater images. A 

random set of any 800 images is selected as the training and testing dataset. Given 

the memory restriction, we downsized the training images to 512 * 512. For a fair 

comparison, we used 5-fold cross-validation and published the mean findings. We 

also used the UIEB dataset challenge set for validation, which includes 60 

deteriorated underwater images with no ground truth references. Once the model 

was fully trained, we tested it on the UFO-120 dataset for the enhancement of the 

underwater images. 
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The DeepSeaNet model is designed using the Pytorch [104] platform 

with the Adam [105] optimizer. The training went on for around two thousand three 

hundred iterations. The DeepSeaNet model requires a memory of 5GB and a batch 

size of 5. It is light weight, with a file size of 3.23 MB, and can analyze a 640 * 

480 pixel image in 0.38 seconds. 

 

 

4.4.2 Competing Methods 

 

We are using different competing methods for underwater image 

enhancement. These competing methods are given below. We compared the 

suggested strategy to the following best-published works for this task: Fusion-

based [6], Retinex-based [60], Histogram Prior [106], Blurriness-based [18], 

generalized dark primary color prior (GDCP) [107], Water Cycle GAN [67], Dense 

GAN [89], Water-Net [77], Haze Lines [108], unsupervised GAN (UGAN) [88], 

Funie-GAN [109], Deep SESR [79], Ucolor [92], SRCNN [115], SRResNet [116], 

SRGAN [116], SRDRM [90], SRDRM GAN [90]. 

 

 

4.4.3 Evaluation Parameters 

 

For a more comprehensive evaluation of the proposed approach, we 

have included both reference-based and non-reference-based image quality 

measurements, as shown here: Structural similarity index measure (SSIM), Peak 

Signal-to-Noise Ratio (PSNR), Mean-Squared Error (MSE), Patch-based Contrast 

Quality Index (PCQI) [110], Natural Image Quality Evaluator (NIQE) [111], 

Visual Information Fidelity (VIF), Underwater Image Contrast Measure 

(UIConM) [112], Underwater Image Quality Measure (UIQM) [112], Underwater 

Image Sharpness Measure (UISM) [112], Underwater Color Image Quality 

Evaluation (UCIQE) [86]. 
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The detailed comparative analysis has been done in Chapter 5. Where 

we provide a detailed description of datasets, evaluation criteria, and result 

comparison in terms of qualitative and quantitative analysis. 

 

 

4.5 Conclusion 

 

This chapter presents an innovative deep learning-based method 

designed to improve deep-sea underwater images. Our method is unique because 

we carefully consider the receptive field size for every single image channel, which 

is established by its appropriate wavelength. This novel architecture allows for a 

multi-contextual formulation, which makes it easier to understand the various 

global and local features present in every channel of deep-sea images. 

 

The implementation of a multi-contextual formulation is found to be 

crucial in ensuring that the model can identify both global and local details, as well 

as the complex features encountered in deep-sea images. We integrate the 

Convolutional Block Attention Mechanism (CBAM), an adaptive change that 

considerably increases the performance of our suggested DeepSeaNet model, to 

further optimize the learnt features. 

 

We perform comprehensive evaluation and comparisons among 

several standard datasets to validate the effectiveness of our proposed DeepSeaNet 

model. The outcomes show how well our model performs when compared to 

current state-of-the-art methods, demonstrating its superiority in deep-sea 

underwater image improvement. 
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CHAPTER 5 

 

 

COMPARATIVE RESULT ANALYSIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter highlights the minute details of the suggested 

method through a comprehensive examination of datasets, evaluation 

criteria, outcome analysis, and method comparisons. The first part of the 

chapter provides the detailed description of the datasets that have been 

used and taken for the evaluation.  We have taken eight various datasets to 

prove the robustness of the model whereas we have taken three deep-sea 

images datasets for a representative analysis and to provide an accuracy. 

 

The evaluation parameters have been taken which include both 

the quantitative and qualitative analysis to provide the detailed view of the 

various pre-exists methods. 

 

This chapter is a key component of the detailed assessment of 

the suggested approach. By thoroughly going over the datasets, evaluation 

criteria, result analysis, and method comparisons, the chapter provides 

valuable knowledge about the benefits and effectiveness of the suggested 

method for underwater images enhancement and deep-sea image 

enhancement respectively. 
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5.1 Result analysis of CUS Model 

 

Our designed technique, which includes saturation equalization, 

sharpness improvement, and contrast improvement, is quantitatively and 

qualitatively comparable to other standard enhancement techniques. He [12] 

utilized image haze reduction with DCP and is taken as a comparison with our 

proposed work since it is a traditional approach for dehazing, and underwater 

images are frequently termed haze images. Unsupervised color correction models 

(UCM) and integrated color models (ICM) [73, 76] are the other comparison 

techniques since they are the most efficient imaging models and have the best 

similarities to the suggested approach in the context of histogram modification. 

Because the Rayleigh distribution method failed to run out in [74, 113–114], we 

only provide the UCM images in the comparative outcomes because the ICM has 

comparable outcomes to the UCM. Bianoc Prior (BP) [16] and New Optical Model 

(NOM) [82] are also compared with our approaches, as they are also based on the 

single image enhancement system.  

 

 

(a)              (b)                  (c)                (d)                 (e)              (f)                

Figure 5.1. Represents the (a) Input Image and enhanced images using methods 

(b) Bianco Prior (c) Dark Channel Prior (d) New Optical Model (e) Unsupervised 

Color Correction Method (f) Comparative Universal Stretching. 

Our designed technique, as shown in Figure 5.1, appears to provide an 

improved visual image compared to the other way. An UCM and NOM model 

produces a general sense of fish that has simple changes that do not boost image 

quality or reduce brightness and visibility. The BP and DCP oversaturate the color 
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because the image's blue and green colors are dominant in nature, which causes 

noise and decreases the overall visual effect. As the fisher is more distinguished 

from the background, the contrast and the color saturation of the image created by 

our approach improve, and a smaller amount of blue-green lighting is preserved. 

 

The x-axis in the histogram in input as well as output images lies from 

0 to 255, as shown in the other part of Figure 5.2. In (a) and (b), the gray-level 

values of histogram distributions are relatively dense, which helps to explain why 

two vibrant pictures have poor contrast and visibility. The gray level values in (c) 

and (d) spread in comparison to (a) and (b), but not as well with respect to (e) and 

(f). The gray level values of histogram distribution in (e) and (f) are dispersed 

throughout the x-axis, but according to GWAT [83], because of the accurate 

histogram stretching, the histogram of the improved image as shown in (f) has a 

better distribution. 

 

         (a)    (b)          (c) 

 

         (d)     (e)            (f) 

Figure 5.2. Represents the histogram distribution of (a) Input Image (b) Bianco 

Prior (c) Dark Channel Prior (d) New Optical Model (e) Unsupervised Color 

Correction Method (f) Comparative Universal Stretching. 
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(a)       (b)                 (c)                  (d)                   (e)              (f) 

 

Figure 5.3. (a) Input Image (b) Bianco Prior (c) Dark Channel Prior (d) New 

Optical Model (e) Unsupervised Color Correction Method (f) Our proposed 

method 
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Various approaches used for image improvement attain the outcome 

given in Figure 5.3. The input images are from the Real-World Underwater Image 

Enhancement Dataset (RUIE). Clearly, the images are not enhanced by BP and 

NOM, as shown in Figures 5.3 (b) and 5.3 (d). In Figures 5.3 (c) and 5.3 (e), the 

top two images of the DCP and UCM oversaturate the image color when the 

image's blue as well as green color gets too intense, resulting in enhanced images 

that are less realistic than those produced by our technique, as shown in Figure 5.3 

(d) (top two images). The UCM's output underwater images have considerable 

noise; however, our technique successfully reduces the noise while preserving 

image features, as represented in the below three images in Figures 5.3 (e) and 5.3 

(f), respectively. 

 

We use objective metrics like entropy, peak signal-to-noise ratio 

(PSNR) [84], mean square error (MSE), High-Dynamic Range Visual Difference 

Predictor 2 (HDR-VDP2) [85], and underwater color image quality evaluation 

(UCIQE) [86] to perform quantitative analysis. The amount of information is 

represented by entropy, which is understood as the mean unpredictability of the 

information source. The more information there is, the greater the entropy value. 

MSE and PSNR are standard image quality evaluation measures that primarily 

measure image noise deterioration. 

 

The HDR-VDP2 predicts both the presence of artefacts and the overall 

quality of images using a pretty complex model of human perception. It generates 

a QMOS value ranging from 0 (best) to 100 (worst) to represent image quality. The 

UCIQE, which is an appropriate analytical predictor of hue, brightness, and 

contrast, is a relatively new non-reference metrics for the evaluation of the quality 

of a color image. However, MSE, PSNR, and Q-MOS are full reference metrics 

that take an actual image as a reference. They can be used to show how the created 

image compares to the original in terms of observed loss in quality and increase in 

noise.  
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The comparative outcomes with the following evaluation models are 

given in Table 5.1. We compared our comparative universal stretching model with 

Dark Channel Prior [12], Unsupervised Color Correction Method (UCM) [73], 

Integrated Color Model (ICM) [76], Bianco Prior [82], and the New Optical Model. 

In the assessments, our method of comparative universal stretching gets the highest 

outcomes, while unsupervised color correction gets the second highest outcomes. 

The Bianco Prior and Dark Channel Prior methods depend on the underwater 

image restoration method. The new optical and integrated color models depend on 

underwater image enhancement techniques. The comparative universal stretching 

also uses a fusion-based approach in the underwater image enhancement method. 

 

TABLE 5.1. Evaluation of various methods based on entropy, MSE, PSNR, 

HDR-VDP2, UCIQE and UIQM 

 

Methods Entropy MSE PSNR 
HDR-

VDP2 
UCIQE UIQM 

Bianco Prior 5.43 3201.66 12.64 55.89 0.401 0.114 

Dark Channel 

Prior 
6.17 3116.78 13.36 53.68 0.419 1.396 

New Optical  

Model 
6.55 2224.36 15.51 48.36 0.453 1.327 

Integrated 

Color Model 
7.22 1440.12 16.58 42.65 0.485 2.236 

Unsupervised 

Color 

Correction 

Method 

7.56 1355.56 16.97 38.66 0.528 2.668 

Comparative 

Universal 

Stretching 

7.88 920.20 18.92 33.69 0.596 2.734 
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It keeps the most details and information, provides excellent visibility 

and overall quality, and reduces noise. The greatest UCIQE score indicates that our 

approach can properly balance the improved underwater images' chroma, 

saturation, and contrast. In all four approaches, the DCP delivers the lowest results, 

which is consistent with the viewing experience of low brightness and poor 

visibility. This implies that basic haze elimination with the DCP for underwater 

enhancement should not be employed straight away. The UCM and ICM 

techniques generate images with visible noise, resulting in a high MSE and low 

PSNR value. 

 

To be more precise, we are using graphs to compare our proposed 

model with various other pre-existing models to represent the quantitative analysis 

of each evaluation parameter. It is very difficult to analyze the complete table 

straight-forward. So here we are going to compare all models with every evaluation 

parameter and identify the performance of all methods. 

 

In the graphs, the x axis consists of the methods, which are arranged in 

order of their performance. The methods that are present on the left-most side are 

the lowest in terms of efficiency, and the methods that are on the right-most side 

have the highest efficiency. By doing so, we can easily find out the relationship 

between the various models, like which model is more or less efficient than the 

others. 

 

Table 5.1 has been further analyzed with the help of graphs for each 

evaluation parameter, as shown in Figures 5.4.–5.9. 
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Figure 5.4. Analysis of the Entropy evaluation parameter shown in Table 5.1 

 

By analyzing Figure 5.4, we can easily understand that the Bianco Prior 

method is performing the lowest with an entropy value of 5.432 and the CUS 

method is performing the best with an entropy value of 7.887 among all the 

methods that have been compared in Table 1.1. 
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Figure 5.5. Analysis of the MSE evaluation parameter present in Table 5.1 

 

By analyzing Figure 5.5, we can easily understand that the Bianco Prior 

method is performing the lowest with an MSE value of 3201.663 and the CUS 

method is performing the best with an MSE value of 920.205 among the methods 

that have been compared in Table 5.1. 

 

 

 

 

 

 

3201.665 3116.789

2224.367

1440.126 1355.568

920.205

Bianco Prior Dark Channel 
Prior

New Optical 
Model

Integrated 
Color Model

Unsupervised 
Color 

Correction 
Method

Comparative 
Universal 
Stretching

MSE



102 
 

 

 

 

 

 

 

 

 

Figure 5.6. Analysis of the PSNR evaluation parameter present in Table 5.1 

 

By analyzing Figure 5.6, we can easily understand that the Bianco Prior 

method is performing the lowest with a PSNR value of 12.641 and the CUS method 

is performing the best with a PSNR value of 18.924 among the methods that have 

been compared in Table 5.1. 
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Figure 5.7. Analysis of the HDR-VDP2 evaluation parameter present in Table 5.1 

 

By analyzing Figure 5.7, we can easily understand that the Bianco Prior 

method is performing the lowest with an HDR-VDP2 value of 55.896 and the CUS 

method is performing the best with an HDR-VDP2 value of 33.695 among the 

methods that have been compared in Table 5.1. 
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Figure 5.8. Analysis of the UCIQE evaluation parameter present in Table 5.1 

 

By analyzing Figure 5.8, we can easily understand that the Bianco Prior 

method is performing the lowest with a UCIQE value of 0.401 and the CUS method 

is performing the best with a UCIQE value of 0.569 among the methods that have 

been compared in Table 5.1. 
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Figure 5.9. Analysis of the UIQM evaluation parameter present in Table 5.1 

 

By analyzing Figure 5.9, we can easily understand that the Bianco Prior 

method is performing the lowest with a UIQM value of 0.114 and the CUS method 

is performing the best with a UIQM value of 2.734 among the methods that have 

been compared in Table 5.1. 

 

 

 

 

 

 

0.114

1.327 1.396

2.236

2.668 2.734

Bianco Prior New Optical 
Model

Dark Channel 
Prior

Integrated 
Color Model

Unsupervised 
Color 

Correction 
Method

Comparative 
Universal 
Stretching

UIQM



106 
 

 

 

Table 5.2. Evaluation Metrics of our proposed method CUS on various datasets 

using MSE, PSNR, UCIQE and UIQM 

 

Datasets Images MSE PSNR UCIQE UIQM 

U45 

Figure 5.4 (i) 1389.985 17.369 0.489 2.123 

Figure 5.4 (ii) 1458.398 16.254 0.456 1.965 

Figure 5.4 (iii) 1187.325 17.321 0.496 1.587 

Figure 5.4 (iv) 1255.985 15.323 0.532 2.321 

EUVP 

Figure 5.5 (i) 1026.987 16.548 0.498 2.541 

Figure 5.5 (ii) 826.698 17.896 0.562 2.365 

Figure 5.5 (iii) 855.258 17.549 0.554 2.897 

Figure 5.5 (iv) 812.987 18.369 0.589 3.168 

UIEB 

Figure 5.6 (i) 750.357 19.398 0.599 3.245 

Figure 5.6 (ii) 712.987 19.687 0.601 3.112 

Figure 5.6 (iii) 650.325 18.368 0.532 2.987 

Figure 5.6 (iv) 623.245 19.967 0.491 2.645 

LSUI 

Figure 5.7 (i) 1055.325 15.359 0.402 1.987 

Figure 5.7 (ii) 1032.357 16.356 0.425 2.665 

Figure 5.7 (iii) 1652.365 16.245 0.489 1.986 

Figure 5.7 (iv) 984.325 17.554 0.487 1.889 
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Datasets Images MSE PSNR UCIQE UIQM 

UFO-120 

Figure 5.8 (i) 820.125 15.748 0.523 2.568 

Figure 5.8 (ii) 850.256 15.356 0.432 2.325 

Figure 5.8 (iii) 1052.658 16.958 0.489 2.578 

Figure 5.8 (iv) 981.854 17.698 0.502 2.222 

RUIE 

Figure 5.9 (i) 752.995 19.689 0.569 3.568 

Figure 5.9 (ii) 715.658 19.584 0.635 3.115 

Figure 5.9 (iii) 655.358 19.284 0.555 2.998 

Figure 5.9 (iv) 620.356 19.657 0.489 2.897 

Underwater 

MOT 

Figure 5.10 (i) 1110.879 16.358 0.502 3.589 

Figure 5.10 (ii) 1204.689 16.325 0.565 3.456 

Figure 5.10 (iii) 1002.359 18.658 0.486 2.154 

Figure 5.10 (iv) 995.987 17.658 0.466 2.753 

DUO 

Figure 5.11 (i) 1056.337 16.526 0.416 3.129 

Figure 5.11 (ii) 985.401 15.469 0.337 2.101 

Figure 5.11 (iii) 1054.159 16.334 0.499 3.825 

Figure 5.11 (iv) 9987.232 17.567 0.562 2.219 
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Table 5.2 represents the evaluation metrics in the form of MSE, PSNR, 

UCIQE, and UIQM values of four enhanced images of each of the eight datasets, 

which have been given in Figures 5.10–5.17. 

 

Figures 5.10–5.17 represent the underwater images and their 

corresponding enhanced images from eight different datasets: Underwater Test 

Dataset (U45) [67] in Figure 5.10; Enhancing Underwater Visual Perception 

(EUVP) [68] in Figure 5.11, Underwater Image Enhanced Benchmark dataset 

(UIEB) [77] in Figure 5.12, Large-scale Underwater Image (LSUI) dataset [78] in 

Figure 5.13, UFO-120 dataset [79] in Figure 5.14, Real-world Underwater Image 

Enhancement dataset (RUIE) [80] in Figure 5.15, Underwater MOT dataset [69] in 

Figure 5.16, and dataset for underwater object detection (DUO) [81] in Figure 5.17.  

 

 

 

(i)                           (ii)       (iii)                     (iv) 

 

Figure 5.10. U45 datasets input and enhanced images. 
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(i)                           (ii)       (iii)                     (iv) 

 

Figure 5.11. EUVP datasets input and enhanced images. 

 

 

 

       (i)                     (ii)       (iii)                     (iv) 

 

Figure 5.12. UIEB datasets input and enhanced images. 
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(i)                           (ii)       (iii)                     (iv) 

 

Figure 5.13 LSUI datasets input and enhanced images. 

 

 

 

 

                            (i)                        (ii)     (iii)                          (iv) 

 

Figure 5.14 UFO-120 datasets input and enhanced images. 
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         (i)                           (ii)       (iii)                         (iv) 

 

Figure 5.15 RUIE datasets input and enhanced images. 

 

 

 

                              (i)                           (ii)       (iii)                       (iv) 

 

Figure 5.16 Underwater MOT datasets input and enhanced images. 
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(i)                           (ii)       (iii)                     (iv) 

 

Figure 5.17. DUO datasets input and enhanced images. 

 

Tables 5.3 to 5.10 represent the quantitative analysis of all eight 

datasets in detail. In each table, ten random test sample images have been chosen 

to compute evaluation metrics. The chosen images are totally different from all the 

above images, which have been used in Figures 5.10 – 5.17.  

 

To prove the robustness of our approach, we took input images from 

different datasets and then performed our model to enhance the underwater images. 

If the MSE value is lower, then the image quality is better, whereas if the PSNR, 

UCIQE, and UIQM values are higher, the image is better. If the average value of 

any dataset in the test samples is less than 1000 in RMSE and greater than 16.700, 

0.450, and 2.500 in PSNR, UCIQE, and UIQM, respectively, we consider our 

method to be above average for the datasets; otherwise, we consider our method to 

be below average for the datasets.  
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Table 5.3. Evaluation Metrics of our proposed model on U45 dataset using MSE, 

PSNR, UCIQE and UIQM  

 

Datasets Images MSE PSNR UCIQE UIQM 

U45 

Image 1 1040.709 17.441 0.436 2.302 

Image 2 905.390 17.435 0.441 3.589 

Image 3 989.783 17.000 0.478 1.666 

Image 4 822.131 16.255 0.423 1.863 

Image 5 1071.325 16.235 0.456 2.365 

Image 6 1074.658 17.321 0.569 3.265 

Image 7 1018.698 17.256 0.444 1.325 

Image 8 979.258 17.369 0.565 2.325 

Image 9 1085.147 16.357 0.462 2.654 

Image 10 906.963 17.238 0.423 3.698 

Image 

Average 
989.406 16.991 0.470 2.505 
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Table 5.4. Evaluation Metrics of our proposed model on EUVP dataset using 

MSE, PSNR, UCIQE and UIQM  

 

Datasets Images MSE PSNR UCIQE UIQM 

EUVP 

Image 1 842.026 15.749 0.419 1.864 

Image 2 872.154 17.275 0.418 2.137 

Image 3 830.644 15.534 0.430 1.661 

Image 4 872.253 15.822 0.422 2.247 

Image 5 1022.762 17.987 0.445 2.156 

Image 6 922.121 18.654 0.556 3.654 

Image 7 913.356 18.123 0.456 2.355 

Image 8 1184.800 18.357 0.564 2.658 

Image 9 1045.131 18.456 0.598 3.325 

Image 10 1134.175 17.569 0.444 2.298 

Image 

Average 
963.942 17.353 0.475 2.436 
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Table 5.5. Evaluation Metrics of our proposed model on UIEB dataset using 

MSE, PSNR, UCIQE and UIQM 

 

Datasets Images MSE PSNR UCIQE UIQM 

UIEB 

Image 1 606.608 16.095 0.465 1.887 

Image 2 662.074 17.776 0.459 2.107 

Image 3 767.527 16.592 0.401 1.888 

Image 4 727.181 17.663 0.410 1.904 

Image 5 798.359 18.862 0.625 2.632 

Image 6 780.157 18.426 0.588 2.231 

Image 7 759.153 19.842 0.564 3.214 

Image 8 684.953 19.874 0.489 3.278 

Image 9 763.759 18.896 0.525 3.865 

Image 10 763.486 19.632 0.608 2.536 

Image 

Average 
731.326 18.366 0.513 2.554 
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Table 5.6. Evaluation Metrics of our proposed model on LSUI dataset using 

MSE, PSNR, UCIQE and UIQM 

 

Datasets Images MSE PSNR UCIQE UIQM 

LSUI 

Image 1 1043.574 15.366 0.441 1.827 

Image 2 1020.682 15.576 0.405 2.333 

Image 3 1252.697 15.006 0.467 1.921 

Image 4 955.570 16.066 0.477 2.259 

Image 5 1163.800 16.933 0.307 2.787 

Image 6 1255.143 17.116 0.369 2.636 

Image 7 908.869 15.056 0.309 2.462 

Image 8 1006.861 15.025 0.476 2.095 

Image 9 1241.307 16.407 0.471 3.168 

Image 10 915.795 15.664 0.404 3.221 

Image 

Average 
1093.794 15.878 0.415 2.420 
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Table 5.7. Evaluation Metrics of our proposed model on UFO-120 dataset using 

MSE, PSNR, UCIQE and UIQM 

 

Datasets Images MSE PSNR UCIQE UIQM 

UFO-120 

Image 1 820.711 16.779 0.414 1.613 

Image 2 818.224 16.771 0.496 1.737 

Image 3 816.678 15.337 0.500 2.449 

Image 4 847.085 15.109 0.427 2.058 

Image 5 1060.826 17.567 0.472 2.905 

Image 6 976.274 17.779 0.487 2.202 

Image 7 1113.448 16.119 0.452 3.934 

Image 8 1150.686 18.752 0.420 3.876 

Image 9 1169.523 15.155 0.467 3.182 

Image 10 1128.895 15.343 0.428 2.584 

Image 

Average 
991.216 16.584 0.454 2.623 
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Table 5.8. Evaluation Metrics of our proposed model on RUIE dataset using 

MSE, PSNR, UCIQE and UIQM 

 

Datasets Images MSE PSNR UCIQE UIQM 

RUIE 

Image 1 706.448 15.604 0.446 1.755 

Image 2 663.923 17.641 0.410 2.306 

Image 3 697.657 16.949 0.500 2.194 

Image 4 705.228 15.570 0.414 2.064 

Image 5 979.839 17.907 0.423 3.228 

Image 6 864.686 18.933 0.579 2.655 

Image 7 997.312 16.036 0.503 3.550 

Image 8 833.470 17.422 0.493 3.846 

Image 9 914.562 17.945 0.502 3.725 

Image 10 818.213 17.041 0.586 2.180 

Image 

Average 
818.134 17.105 0.486 2.750 
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Table 5.9. Evaluation Metrics of our proposed model on Underwater MOT 

dataset using MSE, PSNR, UCIQE and UIQM 

 

Datasets Images MSE PSNR UCIQE UIQM 

Underwater 

MOT 

Image 1 1099.793 15.898 0.490 1.987 

Image 2 1253.287 15.166 0.464 1.601 

Image 3 1033.680 17.286 0.405 1.543 

Image 4 1129.493 17.313 0.415 2.484 

Image 5 1287.365 17.687 0.352 1.957 

Image 6 1343.265 15.572 0.342 1.938 

Image 7 1338.458 15.521 0.380 1.929 

Image 8 1254.369 17.355 0.435 2.018 

Image 9 1303.245 18.895 0.375 2.058 

Image 10 1281.365 17.529 0.323 1.837 

Image 

Average 
1232.432 16.822 0.398 1.935 
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Table 5.10. Evaluation Metrics of our proposed model on DUO dataset using 

MSE, PSNR, UCIQE and UIQM 

 

Datasets Images MSE PSNR UCIQE UIQM 

DUO 

Image 1 1045.142 16.548 0.401 3.287 

Image 2 1037.716 16.674 0.441 2.129 

Image 3 960.472 15.987 0.353 2.019 

Image 4 1013.565 16.542 0.441 3.187 

Image 5 924.647 17.341 0.493 2.070 

Image 6 1074.894 16.993 0.437 3.182 

Image 7 813.642 17.086 0.412 2.183 

Image 8 1069.631 16.224 0.338 2.087 

Image 9 969.763 15.074 0.493 2.999 

Image 10 1047.834 16.461 0.431 2.529 

Image 

Average 
995.731 16.493 0.424 2.567 
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Based on the mean square error (MSE) evaluation parameter, the top 

two results have been seen in the UIEB dataset, i.e., 731.326, and the RUIE dataset, 

i.e., 818.134, whereas the bottom two results have been seen in the LSUI dataset, 

i.e., 1093.794, and the Underwater MOT dataset, i.e., 1232.432.  

 

With the PSNR evaluation parameter, the top two results have been 

seen in the UIEB dataset, i.e., 18.366, and the EUVP dataset, i.e., 17.353, whereas 

the bottom two results have been seen in the LSUI dataset, i.e., 15.878, and the 

DUO dataset, i.e., 16.493.  

 

With the UCIQE evaluation parameter, the top two results have been 

seen in the UIEB dataset, i.e., 0.513, and the RUIE dataset, i.e., 0.486, whereas the 

bottom two results have been seen in the LSUI dataset, i.e., 0.415, and the 

Underwater MOT dataset, i.e., 0.398.  

 

With the UIQM evaluation parameter, the top two results have been 

seen in the RUIE dataset, i.e., 2.750, and the UFO-120 dataset, i.e., 2.632, whereas 

the bottom two results have been seen in the LSUI dataset, i.e., 2.420, and the 

Underwater MOT dataset, i.e., 1.935.  

 

The values that we are taking for all four evaluation parameters when 

considering the above- or below-average datasets are the combined average values 

with an efficiency greater than 85%. Whereas the overall average values that we 

are getting in all our datasets are above 75%. All values of each evaluation 

parameter and efficiency in terms of % have been evaluated with the help of tables 

5.2–5.10. 

 

We can consider the RUIE, EUVP, UFO-120, and U45 datasets as 

above average, while the LSUI, Underwater MOT, and DUO datasets as below 
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average. But the overall results of our proposed method on every dataset are far 

better compared to other methods. 

 

To sum up, the research suggests that our approach is better than 

commonly used underwater image enhancement methods for producing high-

quality underwater images. 

 

5.2 Result analysis of DeepSeaNet Model 

 

The quantitative findings are given in Tables 5.11 to 5.14. Table 5.11 

represents the quantitative comparison of the EUVP dataset. Table 5.11 

demonstrates how the suggested model outperformed the current research on 

nearly all image quality criteria. Whereas the proposed approach improved PSNR 

and SSIM by 5.3% and 2.4%, respectively. A significant increase of 0.05 and 11 

was seen in the UIQM and NIQE evaluation parameters of Deep SESR [79]. In the 

perspective of underwater image enhancement, the suggested model has likewise 

obtained dominance on 8 out of 10 image quality measures.  

 

In Figure 5.18, it has been observed that the methods UGAN, UGAN-

P, and Funie-GAN are underperforming in comparison to other methods in the 

EUVP dataset. The results obtained in Deep SESR and DeepSeaNet are more 

enhanced and have higher accuracy in comparison to all methods. Our method, 

DeepSeaNet, is providing the best results in MSE, PSNR, SSIM, NIQE and UISM. 
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Figure 5.18. Qualitative representation of DeepSeaNet model for underwater 

image enhancement on EUVP dataset. 
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Table 5.11. Quantitative evaluation of DeepSeaNet model for underwater image 

enhancement on EUVP dataset. Ten parameters have been used to evaluate the 

result. Results are shown in two consecutive tables for EUVP dataset. The top 

two outcomes are represented in bold. 

 

Methods SSIM MSE PSNR PCQI VIF 

UGAN 0.81 0.36 26.55 0.701 0.402 

UGAN-P 0.81 0.36 26.54 0.703 0.401 

Funie-GAN 0.79 0.39 26.22 0.706 0.384 

Funie-

GAN-UP 
0.78 0.61 25.22 0.702 0.394 

Deep SESR 0.81 0.34 27.08 0.679 0.384 

DeepSeaNet 0.83 0.29 28.62 0.694 0.438 

 

Methods NIQE UISM UIQM UIConM UCIQE 

UGAN 49.91 6.84 2.89 0.78 0.581 

UGAN-P 50.17 6.83 2.93 0.78 0.559 

Funie-GAN 50.51 6.91 2.97 0.84 0.595 

Funie-

GAN-UP 
52.87 6.86 2.93 0.79 0.588 

Deep SESR 55.68 7.06 3.09 0.78 0.572 

DeepSeaNet 44.89 7.06 3.04 0.77 0.591 

 

Table 5.11 has been further analyzed with the help of graphs for each 

evaluation parameter, as given in Figures 5.19.–5.26. 
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Figure 5.19. Analysis of the SSIM evaluation parameter present in Table 5.11 

 

 

By analyzing Figure 5.19, we can easily understand that the FUNIE-

GAN-UP method is performing the lowest with a SSIM value of 0.78 and the 

DeepSeaNet method is performing the best with a SSIM value of 0.83 among the 

methods that have been compared in Table 5.11. 
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Figure 5.20. Analysis of the MSE evaluation parameter present in Table 5.11 

 

 

By analyzing Figure 5.20, we can easily understand that the FUNIE-

GAN-UP method is performing the lowest with a MSE value of 0.61 and the 

DeepSeaNet method is performing the best with a MSE value of 0.29 among the 

methods that have been compared in Table 5.11. 
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Figure 5.21. Analysis of the PSNR evaluation parameter present in Table 5.11 

 

 

By analyzing Figure 5.21, we can easily understand that the FUNIE-

GAN-UP method is performing the lowest with a PSNR value of 25.22 and the 

DeepSeaNet method is performing the best with a PSNR value of 28.62 among the 

methods that have been compared in Table 5.11. 
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Figure 5.22. Analysis of the PCQI evaluation parameter present in Table 5.11 

 

 

By analyzing Figure 5.22, we can easily understand that the FUNIE-

GAN method is performing the lowest with a PCQI value of 0.706 and the 

DeepSeaNet method is performing the best with a PCQI value of 0.679 among the 

methods that have been compared in Table 5.11. 
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Figure 5.23. Analysis of the VIF evaluation parameter present in Table 5.11 

 

 

By analyzing Figure 5.23, we can easily understand that the FUNIE-

GAN method is performing the lowest with a VIF value of 0.384 and the 

DeepSeaNet method is performing the best with a PCQI value of 0.438 among the 

methods that have been compared in Table 5.11. 
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Figure 5.24. Analysis of the NIQE evaluation parameter present in Table 5.11 

 

 

By analyzing Figure 5.24, we can easily understand that the DEEP 

SESR method is performing the lowest with a NIQE value of 55.68 and the 

DeepSeaNet method is performing the best with a NIQE value of 44.89 among the 

methods that have been compared in Table 5.11. 
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Figure 5.25. Analysis of the UIQM evaluation parameter present in Table 5.11 

 

 

By analyzing Figure 5.25, we can easily understand that the UGAN 

method is performing the lowest with a UIQM value of 2.89 and the Deep SESR 

method is performing the best with a UIQM value of 3.09 among the methods that 

have been compared in Table 5.11. Our method, DeepSeaNet, shows the second 

highest efficiency with a UIQM value of 3.04. 
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Figure 5.26. Analysis of the UCIQE evaluation parameter present in Table 5.11 

 

By analyzing Figure 5.26, we can easily understand that the UGAN-P 

method is performing the lowest with a UCIQE value of 0.559 and the Funie-GAN 

method is performing the best with a UCIQE value of 0.595 among the methods 

that have been compared in Table 5.11. Our method, DeepSeaNet, shows the 

second highest efficiency with a UCIQE value of 0.591. 
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Table 5.12 shows the quantitative evaluation of the DeepSeaNet model 

for image enhancement on the UIEB dataset.  

 

It shows that the suggested approach greatly performed on the current 

best-published studies on the UIEB dataset in every aspect. A significant increase 

of 0.18, 0.44, 0.02, 0.89, and 0.98 was seen in MSE, PSNR, SSIM, UIQM, and 

NIQE, respectively, in comparison to the best previously proposed methods.  

 

In Figure 5.27, we also show a visual assessment of the designed model 

compared to existing approaches.  

 

It shows that the previous approaches, Haze Lines [108] and Retinex 

[60], suffer from color oversaturation and undersaturation in improved images. 

Whereas Fusion-based [6] and GDCP [107] approaches fail to improve damaged 

images, the suggested DeepSeaNet model produces the most visually appealing 

enhanced underwater images. 

 

After these quantitative and qualitative analyses, Table 5.12 has been 

further analyzed with the help of graphs for each evaluation parameter, as given in 

Figures 5.28–5.32. 
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Figure 5.27. Qualitative representation of DeepSeaNet model for underwater 

image enhancement on UIEB dataset. 
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Table 5.12. Quantitative evaluation of DeepSeaNet model for underwater image 

enhancement on UIEB dataset. The top two outcomes are represented in bold. 

 

 

 

 

 

 

Methods MSE PSNR SSIM UIQM NIQE 

Fusion-Based 0.91 21.23 0.78 1.22 4.96 

Histogram Prior 1.71 15.85 0.53 1.25 5.29 

Retinex-Based 1.34 17.66 0.61 1.15 5.66 

GDCP 3.33 13.86 0.55 1.11 5.88 

Blurriness-Based 1.91 15.31 0.61 1.16 6.11 

Water Cycle GAN 1.72 15.75 0.52 0.91 7.67 

Dense GAN 1.21 17.28 0.44 1.11 5.71 

Water Net 0.79 19.11 0.79 0.97 6.04 

Haze lines 2.44 15.17 0.57 1.09 5.95 

Deep SESR 1.75 16.65 0.57 1.11 5.91 

DeepSeaNet 0.61 21.57 0.81 2.14 3.98 
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Figure 5.28. Analysis of the MSE evaluation parameter present in Table 5.12 

 

 

By analyzing Figure 5.28, we can easily understand that the GDCP 

method is performing the lowest with a MSE value of 3.33 and the DeepSeaNet 

method is performing the best with a MSE value of 0.61 among the methods that 

have been compared in Table 5.12.  
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Figure 5.29. Analysis of the PSNR evaluation parameter present in Table 5.12 

 

 

By analyzing Figure 5.29, we can easily understand that the GDCP 

method is performing the lowest with a PSNR value of 13.86 and the DeepSeaNet 

method is performing the best with a PSNR value of 21.57 among the methods that 

have been compared in Table 5.12.  
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Figure 5.30. Analysis of the SSIM evaluation parameter present in Table 5.12 

 

 

By analyzing Figure 5.30, we can easily understand that the 

DenseGAN method is performing the lowest with a SSIM value of 0.44 and the 

DeepSeaNet method is performing the best with a SSIM value of 0.81 among the 

methods that have been compared in Table 5.12.  
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Figure 5.31. Analysis of the UIQM evaluation parameter present in Table 5.12 

 

 

By analyzing Figure 5.31, we can easily understand that the Water 

CycleGAN method is performing the lowest with a UIQM value of 0.91 and the 

DeepSeaNet method is performing the best with a UIQM value of 2.14 among the 

methods that have been compared in Table 5.12.  
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Figure 5.32. Analysis of the NIQE evaluation parameter present in Table 5.12 

 

 

By analyzing Figure 5.32, we can easily understand that the Water 

CycleGAN method is performing the lowest with a NIQE value of 7.67 and the 

DeepSeaNet method is performing the best with a UIQM value of 3.98 among the 

methods that have been compared in Table 5.12.  
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A quantitative evaluation of the DeepSeaNet model for underwater 

image enhancement on the Challenge set of the UIEB dataset has also been shown. 

The improved results achieved by applying the suggested work keep the blue 

characteristic of the water stronger than current efforts like U-color [92].  

 

Table 5.13 displays the quantitative evaluation of the DeepSeaNet 

model for underwater image enhancement on the Challenge set of the UIEB 

dataset. The suggested DeepSeaNet model outperforms the previous best published 

research through a considerable improvement in SSIM, NIQE, and UIQM. 

 

Table 5.13 has been further analyzed with the help of graphs for each 

evaluation parameter, as given in Figures 5.33.–5.37. 
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Table 5.13. Quantitative evaluation of DeepSeaNet model for underwater image 

enhancement on UIEB dataset Challenge set. The top two outcomes are 

represented in bold. 

 

Methods MSE PSNR SSIM UIQM NIQE 

Fusion-Based 0.88 15.68 0.65 1.45 5.88 

Histogram Prior 1.32 13.55 0.46 1.49 5.55 

Retinex-Based 1.15 15.36 0.58 1.25 5.89 

GDCP 3.21 11.32 0.56 1.14 5.68 

Blurriness-Based 1.52 14.56 0.52 1.36 6.35 

Water Cycle GAN 1.38 17.86 0.45 1.03 6.65 

Dense GAN 0.98 15.36 0.32 1.33 5.26 

Water Net 0.88 16.35 0.68 1.09 6.34 

Haze lines 2.11 14.65 0.46 1.23 5.75 

Deep SESR 0.93 15.36 0.71 1.35 4.97 

DeepSeaNet 0.79 19.35 0.75 1.95 4.68 

 

 

 



143 
 

 

 

 

 

 

 

Figure 5.33. Analysis of the MSE evaluation parameter present in Table 5.13 

 

 

By analyzing Figure 5.33, we can easily understand that the GDCP 

method is performing the lowest with a MSE value of 3.21 and the DeepSeaNet 

method is performing the best with a MSE value of 0.79 among the methods that 

have been compared in Table 5.13.  
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Figure 5.34. Analysis of the PSNR evaluation parameter present in Table 5.13 

 

 

By analyzing Figure 5.34, we can easily understand that the GDCP 

method is performing the lowest with a PSNR value of 11.32 and the DeepSeaNet 

method is performing the best with a PSNR value of 19.35 among the methods that 

have been compared in Table 5.13.  
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Figure 5.35. Analysis of the SSIM evaluation parameter present in Table 5.13 

 

By analyzing Figure 5.35, we can easily understand that the 

DenseGAN method is performing the lowest with a SSIM value of 0.32 and the 

DeepSeaNet method is performing the best with a PSNR value of 0.75 among the 

methods that have been compared in Table 5.13.  
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Figure 5.36. Analysis of the UIQM evaluation parameter present in Table 5.13 

 

 

By analyzing Figure 5.36, we can easily understand that the Water 

CycleGAN method is performing the lowest with a UIQM value of 1.03 and the 

DeepSeaNet method is performing the best with a UIQM value of 1.95 among the 

methods that have been compared in Table 5.13.  
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Figure 5.37. Analysis of the NIQE evaluation parameter present in Table 5.13 

 

 

By analyzing Figure 5.37, we can easily understand that the Water 

CycleGAN method is performing the lowest with a NIQE value of 6.65 and the 

DeepSeaNet method is performing the best with a NIQE value of 4.68 among the 

methods that have been compared in Table 5.13.  

 

Table 5.14 represents the quantitative evaluation of the DeepSeaNet 

algorithm for underwater image enhancement on the UFO-120 dataset. It illustrates 

how the proposed wavelength-specific multiple contextual deep convolutional 
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neural networks outperformed on an untrained dataset for the underwater image 

improvement task. Despite a minor loss in PSNR, there was a large efficiency 

improvement in MSE, SSIM, and NIQE. Our suggested approach beat the Deep 

SESR [79] by 3.04% in UIQM. Figure 5.38 represents the qualitative comparison 

between the various enhanced methods on the UFO-120 dataset. Our method, 

DeepSeaNet, provides the most enhanced resultant images in the UFO-120 dataset. 

 

Table 5.14 has been further analyzed with the help of graphs for each 

evaluation parameter, as given in Figures 5.39.–5.43. 

 

 

Figure 5.38. Qualitative representation of DeepSeaNet model for underwater 

image enhancement on UFO-120 dataset. 
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Table 5.14. Quantitative evaluation of DeepSeaNet model for underwater image 

enhancement on UFO-120 dataset. The top two results are shown in bold. 

 

Methods MSE PSNR SSIM UIQM NIQE 

SRCNN 0.82 22.22 0.56 2.24 5.52 

SRResNet 1.22 23.85 0.56 2.18 8.35 

SRGAN 0.95 23.87 0.58 2.39 6.53 

SRDRM 1.46 22.65 0.67 2.33 7.54 

SRDRM-

GAN 
0.88 24.45 0.68 2.33 8.65 

Deep SESR 0.96 26.86 0.66 2.87 7.36 

DeepSeaNet 0.75 25.23 0.74 2.96 4.66 
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Figure 5.39. Analysis of the MSE evaluation parameter present in Table 5.14 

 

By analyzing Figure 5.39, we can easily understand that the SRDRM 

method is performing the lowest with a MSE value of 1.46 and the DeepSeaNet 

method is performing the best with a NIQE value of 0.75 among the methods that 

have been compared in Table 5.14.  

 

 

 

 

 

1.46

1.22

0.96 0.95
0.88

0.82
0.75

SRDRM SRResNet Deep SESR SRGAN SRDRM-GAN SRCNN DeepSeaNet

MSE



151 
 

 

 

 

Figure 5.40. Analysis of the PSNR evaluation parameter present in Table 5.14 

 

 

By analyzing Figure 5.40, we can easily understand that the SRCNN 

method is performing the lowest with a PSNR value of 22.22 and the Deep SESR 

method is performing the best with a PSNR value of 26.86 among the methods that 

have been compared in Table 5.14. Our method, DeepSeaNet, shows the second 

highest efficiency with a PSNR value of 25.23. 
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Figure 5.41. Analysis of the SSIM evaluation parameter present in Table 5.14 

 

 

By analyzing Figure 5.41, we can easily understand that the SRCNN 

method is performing the lowest with a SSIM value of 0.56 and the DeepSeaNet 

method is performing the best with a SSIM value of 0.74 among the methods that 

have been compared in Table 5.14. 
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Figure 5.42. Analysis of the UIQM evaluation parameter present in Table 5.14 

 

 

By analyzing Figure 5.42, we can easily understand that the SRResNet 

method is performing the lowest with a UIQM value of 2.18 and the DeepSeaNet 

method is performing the best with a UIQM value of 2.96 among the methods that 

have been compared in Table 5.14. 
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Figure 5.43. Analysis of the NIQE evaluation parameter present in Table 5.14 

 

 

By analyzing Figure 5.43, we can easily understand that the SRResNet 

method is performing the lowest with a NIQE value of 8.65 and the DeepSeaNet 

method is performing the best with a NIQE value of 4.66 among the methods that 

have been compared in Table 5.14. 
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5.3 Conclusion 

 

We performed a comparison and analysis of various methods with our 

CUS model and DeepSeaNet model of underwater image enhancement for 

enhancing underwater and deep-sea images and increasing their overall quality in 

this detailed discussion. In the CUS model, color expansion, bilateral filtering, and 

contrast improvement have been employed to deal with the challenges of 

underwater circumstances. A contrast correction as well as a color correction 

approach are used in a fusion-based approach one after another to enhance the 

contrast, color, and other features of underwater images and to remove different 

noise particles.  

 

In the DeepSeaNet model, a four-stage architecture is designed where, 

in the first three stages, a degraded image is converted into a global color correction 

residual. This is further passed to the fourth stage, where the final enhanced deep-

sea underwater image has been generated by applying deconvolutional operations. 

We also used CBAM in our DeepSeaNet model to increase the efficiency of the 

convolutional and deconvolutional operations.  

 

We evaluated our both models with the help of qualitative and 

quantitative analysis. We use tables, images, and graphs to show and compare our 

results with various pre-existing models. Our collaborative efforts are proposed to 

provide enhanced underwater image quality while addressing the unique problems 

connected with this area. 

 

 

 

 



156 
 

 

 

CHAPTER 6 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this final chapter we summarize our thesis work, it provides the deep 

detailed discoveries and their contributions. The proposed model 

explained their overall contribution, showing their superiority in 

underwater image enhancement. We also included various possibilities 

for future research and their development. 

The main summary of the thesis is summarized in the conclusion, which 

provides a discrete summary of the models, their explanation with result. 

This complete research has been focused on the major findings and the 

perception learned from the development and the use of the designed 

models. 

In last the chapter discussed the major contribution of the proposed model 

in underwater image enhancement. It contains the development of the 

model, their approach, and their possible uses. The chapter also highlights 

the future work that will make the significance new thought in the 

research evident. 

 



157 
 

This research work proposes underwater image enhancement models 

with the help of enhancement techniques as well as enhancement using deep 

learning techniques to enhance the quality of underwater images. The first 

proposed underwater image enhancement framework implements a CUS model 

with the help of image enhancement techniques. The implemented algorithm 

utilizes contrast improvement using histogram stretching and color correction 

using CIELAB color space to increase the quality of images. The second proposed 

underwater image enhancement framework implements a DeepSeaNet model with 

the help of image enhancement techniques using deep learning techniques to 

enhance the quality of underwater images. The implemented algorithm utilizes 

color improvement using CBAM to improve the quality of images. The efficiency 

of the suggested models was compared to the most recent methods, generating 

significant improvements for many metrics like MSE, PSNR, UIQM, UCIQE, and 

UICM for all techniques that were studied. The quantitative and qualitative results, 

as well as the comparative analysis, indicate the efficiency and effectiveness of the 

suggested models. 

 

 

6.1 Summary of the Thesis  

 

This section discusses the thesis to solve the limitations as well as the 

difficulties addressed in underwater image methods using restoration and 

enhancement techniques.  

 

Firstly, to address the improvement challenges of the underwater 

image enhancement model, this research work suggested novel CUS and 

DeepSeaNet models for the underwater image enhancement system to enhance the 

quality of underwater images. 
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Secondly, to provide robustness in the underwater image enhancement 

system, the proposed CUS architecture provides a promising solution using a single 

image-based system with independent datasets that provides equal weight to any 

dataset image and improves image quality. 

 

Thirdly, to improve deep sea underwater image quality, the suggested 

model deploys CBAM-based algorithms to provide efficiency, achieve 

improvement, and enhance the quality of images, depending upon the wavelength 

criteria for each channel. 

 

Lastly, we provide the result analysis and comparative analysis of our 

framework with various other techniques and have given significant results in 

terms of various evaluation criteria. 

 

 

6.2 Contribution of the Research  

 

This study discusses the technique used to handle the issues of 

underwater image enhancement systems. We have suggested the CUS and 

DeepSeaNet frameworks for the improvement of the underwater image’s quality. 

 

 

6.2.1 CUS Model 

 

In this research, we analyzed challenges with water images and videos 

and current underwater image improvement techniques and successfully suggested 

a novel image enhancement approach called CUS for a variety of underwater 

images. Various underwater image enhancement algorithms have been used to 

enhance the images, but they are mostly dataset specific. We worked not only on 

the color element but also on the contrast element. This fusion-based enhancement 
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approach is a single image-based system that not only improves the result over 

other standard methods but also works well on various datasets. That's why it is 

also dataset independent. This dataset-independent approach provides robustness 

to our model, which makes it superior in comparison to other methods. Our 

suggested model initially conducts contrast improvement using a basic histogram 

stretching with adaptive characteristics obtained in the RGB color space that 

considers both the raw image's histogram distribution parameter and the 

underwater propagation capabilities of distinct light channels. The CIE Lab color 

model is then used to perform adaptive stretching for color improvement. After 

that, our proposed technique is compared to other standard dehazing models, such 

as DCP, as well as other enhancement models like UCM and ICM. These 

enhancement models also use histogram stretching in HSI/HSV and R-G-B color 

spaces. Qualitative and quantitative findings show that our technique is more 

successful at increasing visibility, improving details, and reducing artifacts and 

noise from images. Other underwater image datasets can also benefit from the 

incorporation of histogram restructuring in RGB and CIE Lab color models. 

Hence, it shows that our system is highly robust in nature, which provides a fruitful 

output for different datasets. 

 

 

6.2.2 DeepSeaNet Framework 

 

In this research, we developed a unique deep learning-based algorithm 

for underwater images. We designed it by using the unique receptive field size of 

every image channel, which is determined by their wavelength. These multi-

contextual features aids in understanding many global as well as local 

characteristics based on each channel of every images. Further, these 

characteristics are again modified with the help of convolutional block attention 

module, which significantly increased the suggested approach performance. Our 

suggested model is structurally adaptable to allow increased underwater image 
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spatial resolution. We demonstrated the superiority of the designed method above 

existing best-published research across many standard datasets. 

6.3 Future Work 

 

Even though our method outperforms the competition, it has following 

aspects that should be considered in future research:  

 

1) On one side, our method may have over-enhanced regions for 

underwater images taken in artificial light in the DeepSeaNet framework. We can 

do this by applying some dehazing approach before passing the dataset into the 

neural network. On the other hand, the process of choosing the CIE lab color space 

may increase the algorithm's complexity in the CUS framework. We can reduce 

the complexity of CUS framework by processing the image directly using the RGB 

color space with some advance techniques. 

 

2) Developing underwater image enhancement systems that are more 

robust and computationally efficient. The proposed image enhancement approach 

should be capable of adapting to various underwater environments and developing 

an effective enhancement approach for various types of underwater image 

applications. We may conclude from this research that only a few of the techniques 

can increase the quality of underwater images. 

 

3) Creating a own underwater image dataset, and then test the 

algorithms whether it will perform well or not. 

 

4) Providing a relationship between low-level image processing and 

high-level classification and detection Existing underwater image enhancement 

approaches concentrate on increasing image intuitive effects while ignoring 

whether the improved images may improve the precision of high-level 

characteristic analysis like object classification and recognition. 
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5)  Designing an efficient underwater image quality evaluation 

measure. Although few image quality evaluation measures have been published, 

only a few are applicable to underwater images. Here, the commonly used UIQM 

and UCIQE, which are motivated by human vision structure properties to evaluate 

underwater color images, failed to give a valid evaluation of the quality of the 

underwater image. Their assessment prefers overly enhanced colored images, 

which contradicts subjective preferences for naturalness. Future work must be 

given to the sensible combination of both objective and subjective evaluation, as 

well as the continuous improvement of non-reference evaluation models. 
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