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Preface

“This thesis contributes to the numerical methods for singularly perturbed differential and

delay differential equations. The purpose of this research is to propose numerical tech-

niques for solving singularly perturbed differential and delay differential equations. We

investigate, develop, and analyse numerical methods, as well as their implementations,

for such challenging problems. A chapter-by-chapter structure of the thesis is as follows:

• Chapter 1 presents introduction to SPPs, a brief survey on numerical analysis of

SPDDEs and the need for parameter uniform numerical techniques. Objectives,

motivations and a brief summary of the present work is also included in this chapter.

• In Chapter 2, we have implemented finite element method for the class of SPP-

PDDEs with time delay. The solution of this class of problems exhibits parabolic

boundary layers. The domain is discretized with a piecewise uniform mesh (Shishkin

mesh) for spatial variable to capture the exponential behaviour of the solution in the

boundary layer region and backward-Euler method on equidistant mesh in time

direction. The error analysis id carried out in maximum norm and the proposed

method is shown to be of order [O(N−1 lnN)2+∆t]. The effect of shifts on the bound-

ary layer behaviour of the solution is shown by numerical experiments. The results

of this chapter have been published in the journal “Numerical Method for Partial

Differential Equation”.

• Chapter 3 is devoted to develop numerical collocation method based on Bernstein

polynomial for nonlinear singularly perturbed parabolic reaction-diffusion problems.

The existence uniqueness of the proposed problem is carried out. The strategy

behind this mesh is to deal with delay term and capture boundary as well as interior
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layer behaviour of the solution. The performance of the method is corroborated by

numerical examples. The results of this chapter have been accepted for publication

in the journal “Journal of Mathematical Chemistry".

• The main aim of Chapter 4 is to provide finite element method with Richardson

extrapolation techniques for singularly perturbed parabolic time delay reaction dif-

fusion problem and to improve the order of convergence of the numerical scheme

proposed in Chapter 2. The solution of this class of problems is polluted by a small

positive parameter due to which the solution of the said problem exhibits parabolic

boundary layers. The spatial variable domain is evaluated by implementing finite

element method along with piecewise uniform mesh (Shishkin mesh) to capture

the exponential behaviour of the solution in the boundary layer region and for time

variable author has implemented implicit backward-Euler method with Richardson

extrapolation on equidistant mesh in time direction to attain a good accuracy along

with the higher order convergence. The proposed method is shown to be accurate

of order [O(N−1 lnN)2 +∆t2] in maximum norm. The results of this chapter have

been communicated.

• The main purpose of Chapter 5 is to overcome the well-known difficulties asso-

ciated with numerical methods and to remove restriction on the choice of mesh

generation for singularly perturbed problems. In this chapter a closed-form iterative

analytic approximation to a class of nonlinear singularly perturbed parabolic partial

differential equation is developed and analysed for convergence. We have con-

sidered both parabolic reaction diffusion and parabolic convection diffusion type of

problems in this chapter. The solution of this class of problem is polluted by a small

dissipative parameter, due to which solution often shows boundary and interior lay-

ers. A sequence of approximate analytic solution for the above class of problems is

constructed using Lagrange multiplier approach. Numerical experiments are pro-

vided to illustrate the performance of the method. The results of this chapter have

been communicated.

• Finally, the Chapter 6 is devoted to conclusion of the study and discussion on some

future directions of the current research work."
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Chapter 1

Introduction

The purpose of this chapter is to give a glimpse into the Singular perturbation theory,

particularly the Singularly perturbed differential equations, with or without delay. We shall

cover its development from 1900 to 1950, then some crucial contributions from 1980 to

2022, and its evolution from 1900 till today, which further justifies the motivation for this

thesis. It also covers some basic notations and the synopsis of the thesis.
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2

1.0.1 Singularly Perturbed Differential Equations

It is undoubtedly not hyperbole to state that the differential equations and numerical

analysis are the backbones of present-day human civilization. These are broad topics

that are equally important. The mathematical model of differential equations concern-

ing a perturbation parameter offers the most accurate and, in numerous instances, the

only realistic simulation of real-life phenomena. Mathematically, the model could be ex-

pressed in the form of an algebraic equation, an ordinary differential equation, an integral

equation, a partial differential equation, or a system of these equations. The study of the

effects of minor disruptions in a mathematical model of a physical system is known as

perturbation theory. As differential equations, perturbation problems Pε are ones in

which a small positive perturbation parameter ε is attached to the leading derivative of

the differential equation. The perturbation problem Pε is called to be regularly perturbed

if the solution of Pε as ε→ 0, converges uniformly to the solution of the reduced problem

P0, which is achieved by setting ε equal to zero in the perturbation problem Pε . Other-

wise, it has referred to be singularly perturbed, with the singular perturbation parameter

as the perturbation parameter. Such a breakdown of singular perturbation problems

(SPPs) occurs only in narrow intervals of space or short intervals of time. The solution

changes quickly and creates layers in these confined regions. Boundary layers in fluid

mechanics, edge layers in solid mechanics, skin layers in electrical applications, shock

layers in fluid and solid mechanics, transition points in quantum physics, and Stroke lines

and surfaces in mathematics are all terms used to describe these narrow regions.

The name "singular perturbation" comes from the fact that when the singular perturba-

tion parameter is set to zero, the behavior of the differential equations changes totally in

the limit situation. For example, the conservation of momenta and the conservation of

energy equations change from being nonlinear parabolic equations to nonlinear hyper-

bolic equations. The birth of “singular perturbation” occurred at the Third International

Congress of Mathematicians in Heidelberg in 1904, where Ludwig Prandtl delivered a

lecture on “Fluid motion with small friction”. His seven-page report was published in the

proceedings of the conference [246], in which he pointed out that the domain of fluid

flow past a body can be divided into two parts, i) a narrow region (boundary layer) adja-

cent to the body in which the frictional effects are prominent, and ii) the remaining region
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(outer region) away from the body in which the flow is smooth. However, the terminology

“boundary layer” was introduced by Prandtl, but Wasow introduced a substantial gener-

ality to the word “boundary layer” in his doctoral dissertation [297]. The term “singular

perturbation” was first used by Friedrichs and Wasow in their paper [87].

The singularly perturbed boundary value problems (SPBVPs) are used frequently for

describing and modeling mathematically many real-life phenomena in engineering, bi-

ology, economics, and physics, for example, fluid mechanics, fluid dynamics, aerody-

namics, plasma-dynamics, the Michelis-Menten theory for enzyme reactions, the drift-

diffusion equations of semiconductor device physics, magneto-hydrodynamics, rarefied-

gas dynamics, chemical-reactor theory, elasticity, quantum mechanics, oceanography,

plasticity, meteorology and radiating flows. Singular perturbation is now a relatively ma-

ture mathematical subject with a reasonably long history. The subject is now commonly

a part of graduate study in applied mathematics and many engineering fields.

1.0.2 Singularly Perturbed Delay Differential Equations

In many branches of science and engineering, including control theory, epidemiology,

laser optics, and viscoelastic behavior, mathematical models have emerged that account

for the current state and the history of a physical system. Delay differential equations

DDEs, a family of functional differential equations, are commonly used to explain such

types of models. When some unknown hidden variables and processes are known to

produce a temporal lag but are present in the majority of applications in the life sci-

ences, a delay is added. The delay differential equation can describe various processes

mathematically, offering the most accurate simulation of observable phenomena and oc-

casionally the only one-in many application disciplines.

Delay differential equations (DDEs) were first used to describe technical devices, such

as control circuits. In that context, the delay is a quantifiable physical property (e.g., the

time it takes for the signal to reach the controlled device, for the user to react, and for

the signal to return). DDEs are widely used in many biology and control theory fields,

including ecology, chemostat systems, epidemiology, immunology, compartmental stud-

ies, neural networks, and the navigational control of ships and planes (with varying lag

times).
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There are many biological phenomena where the delay model is used to model them,

for example, in physiological kinetics [9], growth model for cell proliferation [18], math-

ematical models of the early embryonic cell cycle [47], chemical kinetics [77], peri-

odic oscillations of breathing frequency [205], blood cell production [210], immune re-

sponses [211], modeling population dynamics [231], etc. There is numerous collection

of books that indicate application areas and theory for DDEs; the list is quite long, but we

cite here a few of them: the books by Kuang [174], Asachenkov et al. [13], R. Bank [24],

MacDonald [203], Marchuk [211], Bellman and Cooke [34], Driver [71], Gopalsamy [96]

and Kolmanovskii, et al. [164].

The primary reasons for studying and using DDE models are that

i) they offer a more robust mathematical foundation for analyzing the dynamics of biolog-

ical systems than ordinary differential equations,

ii) they exhibit superior congruence with the nature of the underlying processes and pre-

diction outcomes. While DDEs and related functional differential equations represent

issues where there is an after-effect impacting at least one of the variables, ordinary

differential equations (ODEs) model problems where the variables react to current con-

ditions.

Some modelers ignore the “lag” effect and use an ODE model as a substitute for a

DDE model. Kuang ( [174], pp. 11) comments under the heading “Small delays can have

large effects” on the dangers that researchers risk if they ignore lags which they think

are small; see also El’ sgol’ts and Norkin ( [76], pp. 243). Now, if we restrict the above

classes to a class with the characteristics of both the classes, , i.e., delay or advance

and singularly perturbed behavior, this class is classified as the singularly perturbed

differential-difference equation with delay or advance. In the literature, the expression

“negative (or left) shift” and “positive (or right) shift” are used for “delay” and “advance”,

respectively. Such differential equations arise in modeling various practical phenomena

in bioscience, engineering, control theory, etc. For example, the first exit time problem in

modeling of activation of neuronal variability [188], in the study of bistable devices [68]

and evolutionary biology [299], in a variety of models for physiological processes or dis-

eases [204], to describe the human pupil-light reflex [200], variational problems in control

theory [91], and in describing the motion of the sunflower [244], where they provide the

best and in many cases the only realistic simulation of the observed phenomena.
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1.0.3 Nonlinear Singularly Perturbed Differential and Partial Differential

Equation

Whenever a real-life phenomenon is converted into a mathematical model, a nonlin-

ear differential equation, nonlinear partial differential equation, and system of the differ-

ential equation play a vital role in modeling natural evolution, we primarily try to obtain

what is important, retaining the essential physical quantities and neglecting the negligible

ones which involve small positive parameters. These problems occur in oceanography,

population dynamic, generic repression, size-dependent cell growth, division modeling,

ecology, quantum physics, chemistry, finance(Black-Schole Equation), and material sci-

ence. The Navier-Stokes equation with a higher Reynolds number is one of the most

striking examples of nonlinear singularly perturbed parabolic partial differential equa-

tions (NSPPPDEs) that arise in fluid dynamics. These problems are essential to the

environmental sciences in analyzing pollution from manufacturing sources entering the

atmosphere. This type of problem occurs in chemical kinetics in catalytic reaction the-

ory. The NSPPDEs problem models an isothermal reaction catalyzed in a pellet and

modeled. In considering these types of problems, it is essential to acknowledge that the

diffusion coefficient of the admixture in the material may be sufficiently small, resulting

in substantial variations of concentration along with the material depth. Then, the diffu-

sion boundary layers rise. Hence these types of problems exhibit a singularly perturbed

character. The mathematical model of such problems has a perturbation parameter, a

small coefficient multiplying the differential equation’s highest derivatives. Such specific

problems rely on a small positive factor so that the solution changes swiftly in some areas

of the domain and gradually in other sections. The mathematical model for an adiabatic

tubular chemical reactor that processes an irreversible exothermic chemical reaction is

also represented by NSPPDEs problems. The concentrations of the various chemical

species involved in the reaction can be determined in a simple manner.
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1.1 Real World Aspects of Nonlinear Singularly Perturbed Dif-

ferential Equations

1.1.1 Navier-Stokes equation

Consider the NSPPDES that emerge in fluid dynamics is the Navier-Stokes equation

with a greater Reynolds number. Considering the following Navier-Stokes equation that

governs unsteady in-compressible viscous fluids flow problem.

∂υε

∂ t
+υε .∆υε +∆ρ =

1
ℜe

∆
2
υε

∆υε = 0

Where ρ signifies pressure and υ = (υ1,υ2) denotes the velocity, with velocity compo-

nents υ1 and υ2 along with x and y directions. The parameter ℜe represents Reynolds

number which is directly proportional to the velocity scale, length scale and inversely

proportional to the kinematic viscosity of the fluid.

1.1.2 Enzyme kinetics

Enzyme kinetics commonly describes the process by which an enzyme transforms a

substrate (p) into a product through the formation of a substrate-enzyme complex (q).

The pair of equations is a model for this procedure and this is known as the Michaelis-

Menton reaction p
′
(x) =−p+(p+a−b)q

εq
′
(x) = p− (p−a)q

The variable q(x) production rate is measured by the parameter ε. Where a and b are

positive constants and initial conditions are p(0) = 1 and q(0) = 0.

1.1.3 The Belousov-Zhabotinskii reaction

Belousov introduced this well-known and well researched phenomenon in 1951. He

found that it was feasible for a catalyst’s concentration to oscillate steadily between its
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oxidised and reduced states. This can be demonstrated in a suitable medium as a dra-

matic change in colour over the course of about a minute, with each colour representing

a different condition. For this chemical reaction, a set of model equations are
εv
′
= v+u− vu− εσv2

εµu
′
= kw−u− vu

w
′
= v−w

where w denotes the concentration of the catalyst. Here σ , µ and k are positive constant

independent of ε, measures the rate constant for the production of v and specifies the

size of the corresponding constant for u as well as the nonlinearity in the first equation.

1.1.4 Ginzburg-Landau equation

Gingburg and Landau first introduced Ginzburg-Landau functional in the context of su-

perconductivity in 1950. ε∆V =V 3−V in Ω

V (0) = 0 in ∂Ω

1.2 Real World Aspects of Singularly Perturbed Delay Differ-

ential Equations

1.2.1 Respiratory Physiology to Laser-Based Optical Devices

In respiratory physiology and laser-based optical systems, delayed recruitment/renewal

equation is defines as:

ε
dµ(t)
dt

=−µ(t)+ f (µ(t−1)),

Here, ε is inversely proportional to the product of the time-delay inherent in the phys-

ical system and its rate of decay, provides the mathematical model [204] in a diverse

spectrum of practical applications.
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1.2.2 Population Dynamics

The mathematical model of population dynamic, which is also known as Britton-model

modelled as:
∂vε(x, t)

∂ t
− ε∆vε(x, t) = vep(x, t)(g∗ vep(x, t)), (1.2.1)

where

g∗ vε =
∫ t

t−τ

∫
Ω

g(x,−y, t− s)vε(y,s)dyds (1.2.2)

Here 0 < ε << 1, v(x, t) signifies a density of population that evolves by random migration,

which is described by the diffusion term and reproduction term is modelled by the non-

linear reaction term. The convolution operator’s kernel g(x, t) describes the evolution’s

distributed age-structure dependence as well as its dependence on local population den-

sities.

1.2.3 Van der Pol Equation

Considers the van der Pol equation defined by Oliveira [67] as

d2ω(t)
dt2 − ε

dω(t)
dt

+ εω
2(t− τ)

dω(t− r)
dt

+ω(t) = 0,

where τ and ε are real parameters, with ε > 0 small, with the delayed time τ, and 0≤ τ <

π/2. The existence and stability of a periodic solution with period near 2π and amplitude

near 2/
√

cos (τ) is shown.

1.2.4 Singularly Perturbed Functional Differential Equations Arising in

Optimal Control Theory

A controlled singularly-perturbed system with point wise delay in the state variables [91]

is:

dx(t)
dt

= A1(t)x(t)+A2(t)y(t)+H1(t)x(t− εh)+H2(t)y(t− εh)+B1(t)u(t)+ f1(t),

ε
dy(t)
dt

= A3(t)x(t)+A4(t)y(t)+H3(t)x(t− εh)+H4(t)y(t− εh)+B2(t)u(t)+ f2(t),
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x(t) = φx(t), y(t) = φy(t), −εh≤ t < 0,

x(0) = φ 0
x , y(0) = φ 0

y ,

where x and y are state variables, u is a control variable, ε > 0 is a small parameter

(ε � 1), h > 0 is some constant independent of ε, Ai, Hi, B j, (i = 1, . . . ,4; j = 1,2), are

time depending matrices of corresponding dimensions.

1.2.5 Neural Reflex Mechanism

εv′(t)+α(εv′(t))y(t) = f (v(t− τ)).

Since neuromuscular reflexes with delayed negative feedback have varying rates de-

pending on the direction of movement, these models are essential [19].

1.2.6 Activation of Neurons

The initial efforts in studying the Stein’s model and compared it with the diffusion model

was done by Roy and Smith [265], Tuckwell and Cope [285].

In Stein’s model, the distribution representing inputs is taken as a Poisson process with

exponential decay. If in addition, there are inputs that can be modeled as a Wiener pro-

cess with variance parameter σ and drift parameter µ, then the problem for expected first-

exit time y, given initial membrane potential x ∈ (x1,x2), can be formulated as a general

boundary value problem (BVPs) for a linear second order differential difference equa-

tion(DDE) [187]

σ2

2
y′′(x)+(µ− x)y′(x)+λEy(x+aE)+λIy(x−aI)− (λE +λI)y(x) =−1, (1.2.3)

where the values x = x1 and x = x2 correspond to the inhibitory reversal potential and to

the threshold value of membrane potential for action potential generation, respectively. σ

and µ are variance and drift parameters, respectively, y is the expected first-exit time and

the first order derivative term −xy′(x) corresponds to exponential decay between synaptic

inputs. The undifferentiated terms correspond to excitatory and inhibitory synaptic inputs,

modeled as Poisson process with mean rates λE and λI, respectively, and produce jumps
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in the membrane potential of amounts aE and aI, respectively, which are small quantities

and could be dependent on voltage. The boundary condition is

y(x)≡ 0, x /∈ (x1,x2).

1.2.7 Mathematical Model of Red Cell System

For describing the production of red blood cells, Wazewska-Czyzewska and Lasota [299]

used the equation

εy′(t,ε) =−y(t,ε)+λ (y(t−1,ε))8e(−y(t−1,ε))

1.2.8 The Mathematical Model Describing the Motion of the Sunflower

The following mathematical model [244] is used to explain the motion of sunflower.

εv′′(t)+av′(t)+bsin(v(t− τ)) = 0, t ∈ [−τ,0],

ε > 0 with v′(0) prescribed. Here a and b are positive parameters which can be obtained

experimentally, the v(t) is the angle of the plant with the vertical and the time lag (τ) is

geotropic reaction.

1.2.9 Dynamics of a Network of Two Identical Amplifiers

For ε > 0 and f ∈Cm(ℜ×ℜ), λ ∈ℜ, m≥ 3, the following system of DDEs

ε
dx(t)
dt

=−x(t)+ f (y(t−1),λ ),

ε
dy(t)
dt

=−y(t)+ f (x(t−1),λ ),

describes the dynamics of a network of two identical amplifiers (or neurons) with delayed

outputs [58].
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1.3 Numerical Methods

1.3.1 Numerical Analysis

The development and study of algorithms for numerical computations is known as nu-

merical analysis, and it can be approached in one of three ways:

i) It can involve designing methods for solving specific computational problems that orig-

inate from mathematical applications.

ii) Providing and analyzing algorithms for fundamental mathematical estimations that are

common to numerous applications or performing theoretical research on questions that

are critical to the success of algorithms.

iii) Function approximation, data fitting and smoothing, optimization, matrix calculations,

ordinary, partial, and functional differential equations, computational aspects of dynam-

ical systems, theory of orthogonal polynomials, and special functions are some areas

where it conducts the study.

1.3.2 Numerical Method for Singular Perturbation Problems

The solutions of singularly perturbed differential equations exhibit multi-scale charac-

ter. The area is referred to as a boundary layer when the solution changes swiftly over a

segment of the independent variable. In the outer region, the solution changes gradually.

Thus, the "two-time-scale" characteristic of the singular perturbation problems (SPPs)

arises. The terminology "boundary layer" is borrowed from physics. The problem is "stiff"

from the perspective of approximating the answer since both the slow and fast phenom-

ena exist at the same time. Various methods have been proposed so far to obtain the

approximate solution of singular perturbation problems, which are classified as;

i) Finite Difference Methods (FDM),

ii) Finite Element Methods (FEM),

iii) Finite Volume Methods (FVM),

iv) Collocation Methods,

v) Operational Matrix Methods (OMM),

vi) Iterative methods and
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vii) Asymptotic Approach.

Asymptotic methods are applicable only to the restrictive class of problems. They are

not conveniently applicable to two-dimensional problems. For complex one-dimensional

nonlinear problems, the asymptotic methods are valid for small values of singular per-

turbation parameter ε. The asymptotic technique provides qualitative behavior of the

solution of a family of problems and semi-quantitative information about the solution of

any given member of the family. In contrast, the numerical approach offers quantitative

information about the solution to a specific problem. In this section, we give an overview

of the numerical approach for tackling involving singular perturbations.

The textbooks provide a thorough summary of SPPs as well as their theoretical and

numerical implementation can be found in [42,78,108,111,214,217,220,221,234] and

the citations therein.

The growth of research activity in the area of numerical treatment for solving singularly

perturbed ODEs resulted in the publication of two survey papers [128, 145]. In [128],

Kadalbajoo and Reddy presented a survey on the numerical methods for one dimen-

sional SPPs, starting from Pearson’s work [242, 243] in the year 1968 up to 1984. In

continuation, Kadalbajoo with Patidar [145] published another survey paper on the nu-

merical treatment for singularly perturbed ODEs which deals with the work done after

1984, starting from Ascher’s work [14] up to Kopteva’s work [170] in 1999. In this section,

we focus on the work done after 1999 till date.

In [189], Lengerink considers a one-dimensional convection-diffusion type singularly

perturbed BVPs. The author has proposed and discussed a centered difference or finite

element discretization and implemented it to solve such types of BVPs. A piecewise

equidistant mesh is used for discretization. The author has shown that the proposed

scheme is second order convergent concerning the number of nodes concerning the

perturbation parameter.

Beckett and Mackenzie [27] consider a model for inhomogeneous second-order SPB-

VPs on a non-uniform grid and derived a ε-uniform error estimates for first-order upwind.

The mesh is discretized by using the equidistribution of a positive monitor function which

is a linear combination of an appropriate power of the second derivative of the solution

and a positive constant. The authors showed how the constant should be chosen to
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ensure ε-uniform convergence.

This research article [216] aims to implement a numerical scheme for a singularly per-

turbed differential equation of reaction-diffusion type with a discontinuous source term.

The numerical scheme proposed by the authors consists of a standard finite difference

operator and a non-standard Shishkin mesh (piece-wise uniform mesh). The Shishkin

mesh is constructed in such a way as to capture the boundary and interior layers that

arise inside the solution to the problem. The authors have shown the proposed scheme

to be uniformly convergent with concerning singular perturbation parameters. A brief

overview is given to show the occurrence of such problems in the context of models of

simple semiconductor devices.

In this paper [86], the authors have proposed a defect correction method based on the

FDM on the piece-wise uniform mesh known as Shishkin mesh to solve convection-type

singularly perturbed BVPs. The convergence analysis is carried out, and the authors

obtained bounds for error uniformly in the perturbation parameter ε.

In 2001, Kopteva and Stynes published research articles on the numerical approxima-

tion for the solutions of SPDEs. In [171], Kopteva and Stynes deal with the singularly

perturbed BVPs of the convection-diffusion type in conservative form. They present an

upwind conservative FDM to solve such BVPs. They establish bounds for the errors in

approximating the derivative of the exact solution by divided differences of the computed

solution on any arbitrary mesh with the weight of the small diffusion coefficient. These

bounds are then made more explicit for the specific cases of Shishkin and Bakhvalov

meshes.

Kadalbajoo and Patidar [142] present a two-point BVP of singularly perturbed type and

discuss the cases when solutions to such BVPs exhibit a most interesting “turning point”

phenomena. The authors construct a numerical technique based on the cubic spline

technique with non-uniform mesh to solve such BVPs. The proposed numerical scheme

is analyzed for convergence and stability. Some test problem is taken into account, and

numerical experiments are carried out in support of the predicted theory.

In 2001, Liu and Tang [199] consider a singularly perturbed BVPs and developed a

Galerkin-spectral method, which makes use of a class of trial functions that are suitable

for coordinate stretching for solving such type of problems. The authors have carried out



14

the error analysis for the proposed spectral method. When solving SSPs using traditional

spectral methods, spectral accuracy can be obtained only when N = O(ε−g), where ε is

the singular perturbation parameter and g is a positive constant. They obtained similar

results for advection-diffusion equations. Two essential features of the proposed method

are as follows: i) the coordinate transformation does not involve the singular perturbation

parameter ε; ii) machine accuracy can be achieved with N of the order of several hundred,

even when ε is very small.

In [207], MacMullen et al. present a self-adjoint singularly perturbed ordinary differen-

tial equation and construct a parameter uniform numerical scheme to approximate such

type of BVPs. It is demonstrated that an appropriately constructed discrete Schwarz

method based on maximum norm converges to the exact solution uniformly concerning

the singular perturbation parameter. The suggested scheme has second-order maximum

norm convergence.

Aziz and Khan [16] considered singularly-perturbed BVPs and proposed a numerical

technique based on a quintic spline method for such types of problems. The scheme

leads to a pentadiagonal linear system. The authors have claimed in their article that the

proposed approach has fourth-order convergence.

In this article [80], Farrell et al. proposed and analyzed numerical methods based

on upwind FDM for solving SSPs. The authors have studied the convergence analysis

in maximum norm. The authors employ the technique for computing Reynolds-uniform

error bounds in the maximum norm for the numerical solutions obtained by a proposed

method applied to Prandtl’s problem arising from laminar flow past a thin flat plate.

In 2002, Kadalbajoo again published a survey paper [145] with Patidar on the numeri-

cal techniques for solving singularly perturbed ODEs. In this article, the authors present

the survey of the work done after 1984, starting from Ascher’s work [14] up to 1999. In

2002, Kadalbajoo and Patidar presented several numerical difference schemes based on

the cubic spline to solve the BVPs for singularly perturbed linear and nonlinear ODEs.

In [143], they consider spline in tension to obtain the numerical solution of SPBVPs. In

this paper, the authors consider three types of problems, i) the reaction-diffusion type, ii)

the convection-diffusion type with no reaction term, and iii) a more general convection-

diffusion type with a reaction term. The authors use the continuity of the spline function’s
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first derivative to resolve these BVPs. The resulting spline produces a tridiagonal system

that can be successfully solved using well-established algorithms. The authors have ob-

tained the error estimates for the numerical solution of such types of BVPs. This article

[144] deals with the nonlinear SPBVPs. In this article, the authors propose a numerical

technique based on cubic splines with non-uniform mesh for nonlinear SPBVPs. The

proposed nonlinear problem is first linearized by the quasilinearization technique. The

authors drive the difference schemes linearized SPBVPs using a variable-mesh cubic

spline. In [146], the authors present a method based on spline in tension for the self-

adjoint two-point SPBVPs. The proposed approach is shown to be of almost second

order convergence. In [132], Kadalbajoo et al. considered a singular perturbation prob-

lem and developed a B-spline collocation method using artificial viscosity for such type

of problems.

B. Zhang et al. [308] consider SPBVPs of reaction-diffusion type and derived a poste-

riori error bounds for nonconforming finite element approximations to such type of prob-

lems under special equilibration conditions.

J. Zhao and S. Chen [312] a reaction-diffusion type SPBVPs on anisotropic meshes.

The authors have derived robust a posteriori error estimates using the nonconforming

finite element method over the anisotropic mesh.

In [206], the author proposes a numerical technique to solve the SPBVPs of convection-

diffusion type with a regular boundary layer and construct an iterative method based on

the Schwarz alternating procedure over a nonuniform grid (Shishkin mesh) to solve such

type of problems. It is demonstrated that the numerical approximations produced by the

overlapping Schwarz method with uniform meshes and arbitrary fixed interface positions

are not ε-uniform convergent. The approximations produced by a numerical approach

using uniform meshes on overlapping meshes and Shishkin interface positions need to

converge to exact solutions. Finally, the authors examine a non-overlapping method

using Shishkin interface positions, uniform meshes, and artificial Dirichlet interface con-

ditions for a two-dimensional elliptic problem with regular boundary layers.

In [60], C. Clavero et al. present a uniformly convergent alternating direction HODIE

FDM for a 2D parabolic convection-diffusion partial differential equation and construct an

FDM to solve such types of problems. The authors implement a Peaceman and Rach-
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ford technique in the time direction and (HODIE) high-order differences via an identity

expansion along with FDM in the space direction. The author discretizes the mesh grid

using piece-wise uniform mesh in space direction. In [44], C. Clavero et al. present a

2D parabolic partial differential equation of reaction-diffusion singularly perturbed type.

The proposed method consists of implementing the (HODIE) scheme, the finite differ-

ence method in space direction, and the Peaceman and Rachford technique in the time

direction. The authors have proved that method is second order convergent in time and

third-order convergent in space.

Matthews et al. [213] deals with a two-coupled system of singularly perturbed reaction-

diffusion ODEs of Dirichlet type. The authors have constructed a numerical technique

whose approximate solutions converge point-wise at all domain points independently of

the singular perturbation parameter.

In this article [224], Natesan and Ramanujam deal with singularly perturbed second-

order ODEs of Robin type. To approximate the multi-scale character of such problems,

an asymptotic approximate solution combined with the solution obtained by a numeri-

cal method comprising an exponential FDM is obtained suitably. The ‘transition point’

is chosen inside the interval of integration when the solution of the reduced problem is

evaluated, which will be taken as a boundary value for the boundary layer region prob-

lem. The authors perform iterations here by slowly moving the transition point towards

the right-hand side until the solution stabilizes. In the outer region, the solution of the

reduced problem is taken as an approximation to the original problem. Error estimates

are established for the approximate solution.

C. Xenophontos and L. Oberbroeckling [303] proposed a FEM for numerically approx-

imating singularly perturbed systems of reaction-diffusion problems. The error analysis

is carried out, and the authors claim that the proposed method is convergent with an

exponential convergence rate.

In [223], two-point SPBVPs having less severe boundary layers are proposed, and a

numerical scheme using the shooting method is constructed. The authors divide the

domain into two subintervals of consideration of the differential equation, namely the

outer region and the boundary layer or inner region. In the boundary layer region, an

IVP obtained from the given BVP is solved by an exponentially fitted FDM. In contrast,
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the authors have used a classical upwind scheme in the outer region. The authors carry

out the convergence and error analysis. The implementation of the method on parallel

architectures is discussed.

In this artice [261], the authors deal with implementing numerical integration techniques

for solving SPBVPs. The authors replace the original second ODE with an approximate

first-order differential equation with a term recurrence relationship. The proposed method

is iterative on the deviating argument.

F. Celiker and B. Cockburn [51] present a class of convection-diffusion problems in one

space dimension. The author implements discontinuous Galerkin, discontinuous Petrov-

Galerkin technique, and hybridized techniques to study the superconvergence of these

numerical schemes. The authors have proved the superconvergence of order (2q+1), q

denotes the degree of a polynomial. The proposed numerical test’s results support the

theoretical findings.

Valarmathi and Ramanujam consider an asymptotic numerical fitted mesh method for

singularly perturbed third-order ODEs of the reaction-diffusion type [290,291] and fourth-

order ODEs of the convection-diffusion type [270]. The authors transform the third-order

singularly perturbed BVPs into an equivalent problem of a weakly coupled system of one

first-order and one second-order ODE with the parameter ε multiplying the highest order

derivative and a fourth-order SPBVPs into the equivalent problem of a weakly coupled

system of two-second order ODEs, one with a small parameter and other without the

parameter. A computational method based on asymptotic expansion is proposed to solve

these systems. In [290], up to the transformation of the third order into the system of

ODEs is the same as the authors did in [291]. Then in this paper, the authors divide

the domain of the definition of the differential equations into two sub-intervals, namely,

the boundary layer region and the outer region. Now the differential equation is solved

in these regions separately. The solutions so obtained in these intervals are combined

to give the solution in the whole interval. To obtain boundary conditions at the transition

points, the authors use mostly the zeroth-order asymptotic expansion of the solution

of the BVP or a suitable asymptotic expansion solution. To tackle semi-linearity in the

differential equation, Newton’s method of quasi-linearization is applied.

Valarmathi and Ramanujam continue their numerical study on the third-order singularly
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perturbed ODE. In [289], the authors consider singularly perturbed third-order ODEs of

the convection-diffusion type. In this article, a numerical method is proposed to solve

such problems. This method transforms the given BVPs into a weakly coupled system

of two ODEs subject to suitable initial and boundary conditions. The authors reduce the

weakly coupled system into a decoupled system. Then, to solve this decoupled system

numerically, a boundary value technique is used, in which the domain of the definition

of the differential equation is divided into two non-overlapping subintervals called inner

and outer regions. Then the decoupled system is solved over these regions as two-point

BVPs. An exponential-fitted FDM is used in the inner region, and a classical FDM is in

the outer region. The boundary conditions at the transition point are obtained using the

zero-order asymptotic expansion approximation of the solution to the problem.

H. Zarin et al. [306] deal with singularly perturbed third-order BVPs on a layer adaptive

mesh. The author’s design of an interior penalty finite element technique on piece wise

uniform mesh (Shishkin mesh). The error estimates are derived in energy norm, and the

proposed method is found to be robust.

J.M. Melenk and C. Xenophontos [215] consider a singularly perturbed reaction-diffusion

equation that is posed on a two-dimensional domain with an analytical boundary, and the

hp-version of the FEM is used to solve such type of problems numerically. The authors

have carried out the convergence analysis in the balanced norm, and the method is uni-

formly convergent concerning the singular perturbation parameter.

In 2003, Heinrichs [107] presented least squares spectral collocation for discontinuous

and singular perturbation problems. For the first derivative operator, the author decom-

posed the domain into subdomains where the jumps are imposed at the discontinuities

and used the equal order polynomial on all subdomains. He uses spectral collocation

with Chebyshev polynomials for discretization. The collocation and interface conditions

lead to an overdetermined system that least squares can efficiently solve. The solution

technique involves only symmetric positive definite linear systems. The author extends

this approach to singular perturbation problems where least-squares are used for stabi-

lization. A suitable decomposition of the domain well resolves the boundary layer.

S.C.S. Rao and S. Kumar [260] deal with the coupled system of singularly perturbed

IVPs and design a second-order global uniformly convergent numerical method for such
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problems. M. Kumar and S.C.S. Rao [178] proposed a high-order parameter robust nu-

merical technique for 1D singularly perturbed time-dependent reaction-diffusion Dirichlet

problem. The proposed method consists of the Crank-Nicolson technique on a uniform

grid in the time direction and the fourth-order high-order compact scheme directly on a

Shishkin method in the space.

In [147], the authors consider singularly perturbed two-point BVPs and developed a

difference scheme based on spline in compression on a non-uniform mesh to solve such

types of BVPs. The proposed scheme is second-order accurate. The authors have taken

a few numerical examples to support the theoretical results.

Natesan et al. [225] developed and analyzed a numerical technique for SPPs exhibiting

weak boundary layers. In this article, the authors have divided the domain [0,1] into two

non-overlapping sub-domains, as, [0,kε] and [kε,1]. An exponential FDM is implemented

in the layer region [0,kε], subject to the transition boundary condition at x= kε to solve the

proposed problem. A classical FDM is implemented to approximate the SPPs differential

equation in the regular region [kε,1]. In order to obtain the boundary condition at the

interior point x = kε (called the transition point), the value of the asymptotic approximation

is used. The authors have carried out the error estimate, and the proposed technique is

found to be convergent with concerning the perturbation parameter ε.

H. Zarin et al. [306] deal with singularly perturbed third-order BVPs on a layer adaptive

mesh. The author’s design of an interior penalty finite element technique on layer adap-

tive mesh is known as Shishkin mesh. The error estimates are derived in energy norm,

and the proposed method is found to be robust.

J.M. Melenk and C. Xenophontos [215] consider a singularly perturbed reaction-diffusion

equation that is posed on a two-dimensional domain with an analytical boundary, and the

hp-version of the FEM is used to solve such type of problems numerically. The authors

have carried out the convergence analysis in the balanced norm, and the method is uni-

formly convergent concerning the singular perturbation parameter.

In 2003, Heinrichs [107] presented least squares spectral collocation for discontinuous

and singular perturbation problems. For the first derivative operator, the author decom-

posed the domain into subdomains where the jumps are imposed at the discontinuities

and used the equal order polynomial on all subdomains. He uses spectral collocation
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with Chebyshev polynomials for discretization. The collocation and interface conditions

lead to an overdetermined system that least squares can efficiently solve. The solution

technique involves only symmetric positive definite linear systems. The author extends

this approach to singular perturbation problems where least-squares are used for stabi-

lization. A suitable decomposition of the domain well resolves the boundary layer.

S.C.S. Rao and S. Kumar [260] deal with the coupled system of singularly perturbed

IVPs and design a second-order global uniformly convergent numerical method for such

problems. M. Kumar and S.C.S. Rao [178] proposed a high-order parameter robust nu-

merical technique for 1D singularly perturbed time-dependent reaction-diffusion Dirichlet

problem. The proposed method consists of the Crank-Nicolson technique on a uniform

grid in the time direction and the fourth-order high-order compact scheme directly on a

Shishkin method in the space.

In [147], the authors consider singularly perturbed two-point BVPs and developed a

difference scheme based on spline in compression on a non-uniform mesh to solve such

types of BVPs. The proposed scheme is second-order accurate. The authors have taken

a few numerical examples to support the theoretical results.

In [288], the authors developed and analyzed a computational technique to approxi-

mate non-turning-point SPBVPs for second-order ODEs subject to Dirichlet-type bound-

ary conditions. In this article, the authors proposed a zeroth-order asymptotic expansion

for the numerical solution of SPBVPs. Then, the problem is integrated to obtain an equiv-

alent IVP for a first-order ODE. This IVP classical method or a fitted operator method after

approximating some of the terms in the differential equations by using the zeroth order

asymptotic expansion. The proposed technique is shown to be convergent of order h,

where h is the mesh size by deriving the error estimate for the numerical solution.

Z. Du and L. Kong [72] deal with singularly perturbed second-order differential equa-

tions and their application to multi-point BVPs. The authors solve the proposed problem

by a hybrid method which is a combination of asymptotic solutions and the Liouville-

Green transform.

Natividad and Stynes [226] develop a Richarchardson extrapolation technique along

with FDM for numerically approximating singularly perturbed convection-diffusion prob-

lem over a piece-wise uniform Shishkin mesh. In this paper, the authors show how to
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construct a Richardson extrapolant of the computed solution and prove that the extrapo-

lation technique minimizes the nodal errors from O(N−1 lnN) to O(N−2 ln2 N), where N+1

points are used in the mesh.

Vivek et al. [183] proposed a numerical technique to solve convection-dominated, convection-

diffusion SSPs using second-order central difference methods and a new adaptive mesh

strategy. The proposed method employs a novel, entropy-like variable as the convection-

diffusion problems adaptation parameter. The proposed method does not require prior

knowledge of the position and width of the layers (interior and boundary). In [182], Vivek

Kumar has developed and analyzed a high-order compact finite-difference (HOCFD)

technique to solve 1D and 2D singularly-perturbed elliptic and parabolic reaction-diffusion

problems. The author has claimed parameter uniform convergence. In [184], Vivek et al.

consider a singularly perturbed star graph with k + 1 nodes and k edges, leading to a sys-

tem of k separate partial differential equations along the edges with coupling conditions

at the common junction.

C.Y. Jung and R. Temam [127] initiated the study of singularities and boundary layers

created by a convection-diffusion problem in a circle of noncompatible data. The circle’s

boundary has two characteristics that are associated with noncompatible data. The au-

thors have observed a complex singular phenomenon and carefully analyzed it for highly

noncompatible data.

C. Clavero et al. [61] consider a parabolic singularly perturbed partial differential equa-

tion of convection type with degenerating convective term and discontinuous (discon-

tinuity of the first type) source term. The authors have developed a monotone finite

difference method with piece-wise uniform mesh for solving the proposed problem. C.

Clavero et al. [62] deal with the 1d parabolic convection reaction partial differential equa-

tion of singularly perturbed type. The proposed problem is more complex by multiplying

the convection term by the parameter µ, and the source term has a discontinuity. Due to

this, interior and boundary layers emerge. The authors have designed a finite difference

method over a Shishkin mesh in space direction and an implicit Euler method over the

uniform grid in time direction for solving such types of problems. The authors claim that

the proposed approach is convergent with first order in time and second order in space.

In [55], The authors have designed and implemented a hybrid difference scheme for
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a singularly perturbed reaction-diffusion problem with discontinuous (discontinuity of the

first type) source term. The author also discusses the case of semiconductor modeling.

The authors have proved second order convergence in maximum norm.

R. Lin and M. Stynes [190] consider singularly perturbed reaction-diffusion problems of

d≥ 2. The authors first proved that the energy norm is too weak to capture the error in the

layer part. The authors introduced a balanced norm and proved a uniform convergence

for d ≥ 2.

In [310], J. Zhang et al. derived error bounds of the streamline diffusion finite ele-

ment method (SDFEM) for 2D convection-dominated BVPs with boundary layers. The

authors demonstrate the method’s convergence with a point-wise precision of nearly or-

der 7/4 away from the characteristic layers, independent of the perturbation parameter

ε. Numerical experiments support these theoretical findings. [309] J. Zhang and X. Liu

proposed SDFEM on hybrid meshes and Shishkin meshes for convection-diffusion BVPs

with characteristic layers. In [311], Z. Zhang proposed a finite element and derived the

super-convergence for 2D convection-diffusion BVPs over Shishkin mesh.

In this article, [106], A.F. Hegarty and E. O’Riordan dealt with linear SPBVPs convection

dominated over a circular domain and constructed a uniform numerical method. The

method consists of a monotone FDM over a layer-adapted mesh of the Shishkin type.

N.N. Nefedov et al. [227] take into account a singularly perturbed parabolic periodic

BVPs of reaction advection-diffusion type. The author has implemented a modified

asymptotic approach by the upper and lower solution method. The authors have derived

the existence and asymptotic stability of periodic solutions for the proposed problem.

Madden et al. [208] present a system of two coupled singularly perturbed linear

reaction-diffusion two-point BVPs and construct a numerical method to solve such prob-

lems. Each equation’s leading term is multiplied by a small positive parameter, but the

size of these parameters can have different magnitudes. There are boundary layers that

overlap and interact in the system solutions. By examining the structure of these layers,

the authors were able to develop a piecewise-uniform Shishkin mesh. They also prove

that on this mesh, central differencing is almost first-order accurate, uniformly in both

small parameters. Numerical results are presented for a test problem in support of the

predicted theory.
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H.-G. Roos and H. Zarin [264] present a convection-diffusion problem on a unit square

with Dirichlet boundary conditions. On a layer-adapted mesh with linear/bilinear com-

ponents, the problem is discretized using a combination of the standard Galerkin FEM

and an h-version of the nonsymmetric discontinuous Galerkin FEM with interior penal-

ties. The authors demonstrate uniform convergence (in the perturbation parameter) in

an associated norm using specifically selected penalty parameters for edges from the

coarse region of the mesh.

In [305], H. Zarin examines and implements a numerical scheme based on discon-

tinuous FEM for convection-dominated diffusion BVPs. The technique combines a hp

version of nonsymmetric discontinuous Galerkin FEM with ordinary Galerkin FEM with

bilinear components. The authors have obtained super closeness results. The method

is found to be robust and efficient.

In [48], The authors developed a numerical technique combining discontinuous Galerkin

FEM and ordinary Galerkin FEM. The author has implemented Galerkin fem in the regu-

lar region and discontinuous Galerkin method in the layer region. The convergence and

stability of the proposed method are derived from advection-diffusion reaction problems.

Z. Cen et al. [52] developed a reliable method to numerically approximate a nonlinear

singularly perturbed IVPs. The authors have also analyzed the behavior of the exact

solution and developed a second order method accordingly.

In [236], consider singularly perturbed ordinary differential equations containing two

small parameters and develop parameter-uniform numerical methods for solving such

types of BVPs. The authors have derived parameter-explicit theoretical bounds on the

derivatives of the solutions. A numerical technique consists of an upwind finite difference

operator, and an appropriate piecewise uniform mesh is constructed. The proposed

method is proved to be convergent, and the parameter-uniform error bounds are derived

for the numerical solution of the problem. The obtained numerical results support the

theoretical findings.

In [43], M. Brdar and H. Zarin consider a two-parameter singularly perturbed differential

equation and constructed a numerical method for solving such a problem. The authors

demonstrate uniform convergence of a piecewise linear Galerkin FEM on a Bakhvalov-

type mesh.
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H.-G. Roos [263], derived error estimate for finite linear elements on Bakhvalov type

meshes. Optimal error estimates for finite linear elements on Shishkin-type meshes are

for convection-diffusion problems with exponential layers. The author provides the first

energy norm optimal convergence result for a Bakhvalov-type mesh.

M. Chandru, T. Prabha, and V. Shanthi [56] consider singularly perturbed two param-

eters problems with non-smooth data and developed a numerical scheme to numeri-

cally approximate such types of problems. The authors have obtained the theoretical

bounds on the derivatives. On a Shishkin mesh, authors have designed a hybrid differ-

ence scheme.

J.L. Gracia and E. O’Riordan [99] proposed an efficient numerical technique that con-

sists of a finite difference operator on a piecewise-uniform Shishkin mesh to solve a

singularly perturbed parabolic partial differential equation.

S. Kumar and B.V.R. Kumar [179] developed and analyzed a reliable numerical method

for the numerical approximation of a parabolic singularly perturbed differential equation.

The authors have designed an algorithm combining the Domain Decomposition Method

(DDM) based on the Schwarz alternating and three-step Taylor Galerkin Finite Element

(3TGFE) method. A convergence analysis has been carried out.

In [209], Martin Stynes and Niall Madden develop and analyze numerical techniques

to approximate the multi-scale character of singularly perturbed reaction-diffusion type

BVPs. The proposed technique is based on the weighted and balanced finite element

method on a piecewise uniform grid. The authors have proved a parameter uniform

convergence and found that the proposed technique is almost first-order convergent.

S. Franz [85] consider a singularly perturbed convection-diffusion problem and con-

structed discontinuous Galerkin FEM for such type of problems. In this approach, the

author has addressed the lack of stability with ordinary Galerkin FEM.

In [158], the authors have developed a modified graded mesh to capture the boundary

layer phenomena of the singularly perturbed reaction-diffusion BVPs. The authors have

designed a finite element method and a modified graded mesh, and the convergence is

studied in the energy norm.

In [287], the authors have implemented a Bernstein operator method for approximating

Volterra integral differential equations of singularly perturbed type. The author has car-
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ried out error and convergence analysis. Numerical results show the effectiveness and

robustness of the proposed method.

1.3.3 Numerical Methods of Delay Differential Equations

The fact that many phenomena frequently modeled by ODEs can be better modeled

by DDEs has not escaped the attention of the numerical analysis community. The main

difference between DDEs and ODEs is that the evolution of DDE involves preliminary

information on the state variable. The singularly perturbed delay differential equation

(SPDDE) is usually the first estimate of the physical model being considered. The solu-

tion of the DDEs needs information on not only the current state but also the state at a

particular time previously. In such situations, however, a more practical framework would

add some of the system’s past and future states; therefore, differential equations with lag

or progress should be based on a real system. Due to their presence in a broad category

of application fields, there has been tremendous growth in the numerical study of (DDEs).

Many research publications, technical reports, and textbooks so far have documented a

substantial amount of work on DDEs. The most part of the work on DDEs has focused

on Initial value problems (IVPs). The main numerical approaches for solving IVPs for

ordinary first-order DDEs fall into two classes:

i) single-step methods which use one starting value at each step of the solution.

ii) multistep methods, which are based on several values of the solution. Runge-Kutta

methods among single-step methods and the Predictor-corrector method among the mul-

tistep methods are of main interest.

While certain DDEs might have solutions that suffer from temporary discontinuities,

other DDEs may have solutions that are smooth, and these DDEs may benefit from the

employment of customized linear formulae approaches. Contrarily, one-step methods,

particularly Runge-Kutta methods, are particularly well suited to DDEs, for which there is

no derivative smoothing and so may require repetitive step size modification.

To the best of our knowledge the first mathematician who introduced a delay in a bio-

logical model was Hutchinson [114]. To take into consideration hatching and maturation

periods, Hutchinson revised Verhulst’s traditional model. He brought up the possibility
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that a discrete time delay in the resource or crowding term could account for the oscilla-

tion that has been observed in some types of biological phenomena.

Then, Driver in 1962 published a research article [70] on the “Existence and stability of

solutions of a delay differential system". The fundamental theorem and an overview of

the Lyapunov method for a generalized difference-differential system are presented by

the author in this article. In 1962, Bellman et al. initiated the study of the DDEs and im-

plemented of numerical technique. In [35], the authors have taken into account systems

with variable time delays. The authors then converted DDEs into ODEs in order to imple-

ment a numerical technique. Subsequent research will focus on situations with multiple

lags and lags caused by the solution itself. In [36], the authors considered the first order

DDEs µ ′(t) = µ(t− 1− k sin(ωt))+ sin(t) and pointed out some interesting properties of

the solution via numerical study.

Feldstein and Goodman [82] studied the discretization of propagation of error for dis-

continuous ODE and DDEs. In [95], the same authors considered a retarded ordinary dif-

ferential equation (RODE), and for the linear case, the authors estimated the cumulated

round-off error, which is a linear combination of the preceding local round-off errors. For

a nonlinear retarded ODE, they were obtained by similar estimates.

In [228], Neves investigated the automatic integration of functional differential equa-

tions. The author described a method for converting automatic DDEs solvers from ODE

solvers. The method kept the essential elements of the first ode solver, like error esti-

mates and step altering.

In order to solve DDEs of the form “µ ′(t) = F [(t,µ(t),µ(t− τ))];(τ > 0)”, Bleyer [37]

introduced a numerical technique based on spline. He derived a general theorem and

the proposed method’s convergence.

A finite difference technique for determining parameters in linear DDEs was proposed

by Burns and Hirsch in [46]. For a straightforward explicit approach (Euler’s), they ob-

tained convergence results and convergence rates.

In [6], Allen and McKee conducted research on fixed-step discretization techniques for

DDEs with variable delay. The authors were able to prove global order convergence,

which allows the case for the existence of discontinuities. This makes use of a revised

formulation of the prerequisite for Dahlquist stability.
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Oberle and Pesch [232] deal with the numerical treatment of DDEs using Hermite inter-

polation. In this research article, the authors constructed a class of numerical techniques

based on the RK-Fehlberg methods for treating DDEs. The authors use a multipoint

Hermite interpolation to tackle the retarded argument.

In the paper [30], The authors have considered first- and second-order linear delay

differential operators in periodic function spaces. Some conditions, in order to ensure

that these operators are of ‘monotonic type,’ that is, isotonic if Lu ≤ Lv implies u ≤ v and

antitonic if Lu≤ Lv implies u≥ v, are given. The cases of a variable delay τ = τ(t) and that

of a constant delay τ are considered. For constant delays, optimal results are obtained.

In 1982, a technical report published by Arndt [11] on “the influence of interpolation on

global error for retarded differential equations”. In order to obtain a numerical solution of

an IVPs for retarded DDEs, generally, one replaces it with an IVP for an ODE along with

an appropriate interpolation scheme. In this report, the actual global error was estimated

by the author in terms of controllable quantities. In addition, the author demonstrated how

the concept of local error, which comes from the theory of ODEs, needs to be generalized

for the DDE of the retarded type.

Flower published a research paper [84] on “Asymptotic analysis of the delayed logis-

tic equation when the delay is large”. This paper is devoted to a construction of an

asymptotic approximation to the delay equation “µ ′(t) = ρµ(1− µ1),” analogous to the

asymptotic limit ρ → ∞.

H. T. Banks continued the work on parameter identification problems for delay sys-

tems, and in [23], he published a research paper on “Estimation of delay and other pa-

rameters in nonlinear functional differential equations”. They covered a spline-based

approximation method for nonlinear non-autonomous DDEs in this work. They analyzed

convergence outcomes in the context of parameter estimation concerns, which included

estimating various delays, beginning data, and the typical coefficient-type parameters

utilizing estimates of the underlying nonlinear operators of the dissipative type.

Bellen and Zennaro [31], consider a collocation method for the numerical solution of a

BVPs of the form

u′′(t) = f (t,u(t),u(g(t)),u′(t),u′(h(t))),

with appropriate boundary conditions. The solutions of such BVPs usually have jump
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discontinuities in the second derivative even for smooth functions. The given problem is

reformulated as a nonlinear integral equation with a compact operator. Then Vainikko’s

results on projection methods with uniformly bounded projections give a convergence

estimate. This result is used for carrying out the approximation by global polynomials

and by piecewise polynomials of increasing degree on a fixed subdivision of the given

interval (“p-convergence”). The zeros of orthogonal polynomials are used as collocation

points. In this case the Erdos-Turan theorem gives the bound for the projections. The

convergence rate of this method depends critically on the smoothness of the solution on

the interval or its subdivision, respectively. By using h and g sometimes subdivisions can

be constructed on which the solution is smooth. Two numerical examples confirm the

theory and demonstrate how much can be gained by a suitable subdivision.

In [28], Bellen considered an IVP for the DDEs

µ
′(t) = f (t,µ(t),µ(t−α(t))), t0 ≤ t ≤ x, 0≤ α(t)≤ r,

µ(t0) = µ0 µ(t) = φ(t), t0− r ≤ t ≤ t0,

where f , φ and µ are m-vector valued functions and α is a piecewise continuous scalar

function. In this paper, author implemented numerical technique that consist of one-

step collocation Legendre orthogonal method along with continuous piecewise polyno-

mial functions. The obtained results on convergence and super convergence are shown

for appropriate choices of the mesh 4 and for smooth f .

Feldstein and Neves [83] presented numerical methods to solving state-dependent

DDEs of the form
µ ′(t) = f (t,µ(t),µ(α(t,µ(t)))), t ∈ [a,b],

α(t,µ(t))≤ t,

µ(t) = π(t), t ∈ [a,a],

where a = mint∈[a,b]α(t,µ(t)). There are jump discontinuities in the solution of such

types of problems at the initial jump point t = a. Thus, in order to find the accurate

location of jump discontinuities in lower-order derivatives of the solution µ(t), a high-order

numerical method is implemented. Now one can question whether these unknown jump

discontinuities are determined accurately enough to develop high-order methods? The

authors explored the special properties of DDEs to reply affirmatively to this question.
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In [122], a stability analysis is made of the θ -methods for the solution of DDEs. Such

types of equations are relevant to nonlinear problems which arise in a wide variety of

practical applications. The approach used in this paper is to investigate whether the

asymptotic behavior of solutions of DDEs is inherited by the numerical solution when the

θ -method is applied.

In [29], the author considered a BVPs for second-order delay differential systems:

“µ ′′(t) = f (t,µ(t),µ ′(t),µ(t− τ(t)),µ ′(t−σ(t))) t0 ≤ t ≤ b

µ(t) = φ(t) t ≤ t0,

µ ′(t) = φ ′(t) t < t0,

µ(b) = µb”,

where µ : ℜ→ℜm, f : [t0,b]×ℜ4m→ℜ and τ(t),σ(t)> 0. In this article, the author have

implemented collocation method in piecewise polynomial spaces by shooting or in the

global approach.

Bellen continued his work on the numerical solution of DDEs, and Bellen, with Zennaro,

submitted a technical report [32] on “Numerical solution of delay differential equations”

[33]. In this article, the authors constructed numerical techniques based on a modified

version in a predictor-corrector mode of the single-step collocation method at n Gaussian

points to approximate the solutions of DDEs.

In continuation of the numerical treatment of IVPs for the retarded DDEs, in 1985, Arndt

et al. published a research article [12] on the numerical integration of retarded differential

equations. The prime objective of the author’s work is to demonstrate that such linear

multistep method’s minimax versions, which were initially developed for an ODE with

a periodic solution, are equally appropriate for the integration of retarded DDEs with

periodic solutions.

In this article [115], Hwang and Chen deal with parameter identification and problems

of analysis of time delay systems using rectangular functions such as block-pulse and

Walsh functions. The authors have solved the proposed problems by the continuously

shifted Legendre polynomials. The DDEs have been converted into an algebraic form

using the operational matrices of integration.

Watanabe and Roth [298] described a geometric technique for the analysis of the DDEs
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µ ′ = pµ(t)+qµ(t−τ), where the delay τ ≥ 0 and the quantities q and p are complex con-

stants.It is demonstrated that there is an equivalent formula for DDEs with similar stability

qualities for each A- or A(α)-stable linear multistep ODE. However, this result does not

extend to implicit Runge-Kutta formulae, and a particular example of the midpoint rule is

discussed.

In 1986, Houwen with Sommeijer and Baker published a research paper [292] that

deals with parabolic equations with delay, and the authors have proved stability analysis

of predictor-corrector. In diffusion problems, when the current state depends on the

past history, it gives rise to parabolic equations with lag. The authors have developed

an efficient numerical solution of classical parabolic equations via a predictor-corrector

type technique with extended real stability intervals. The authors have analyzed the

test problem µ ′(t) = q1µ(t)+ q2µ(t −ω), where, in view of the class of parabolic delay

equations which the authors want to consider, their primary interest is in the case |q1| �

|q2|.

A single-step subregion method for DDEs was devised in [293]. The proposed tech-

nique approximates the solution throughout the entire interval with a piecewise polyno-

mial of fixed degree n. It is shown that for an appropriate choice of the mesh points, the

method has uniform convergence of order hn+1 and superconvergence of order h2n at

nodes.

S. P. Banks [25] published a research article entitled “Existence of periodic solutions

in n-dimensional retarded functional differential equations". Here the author proved the

existence of periodic orbits of n-dimensional delay differential systems of the form µ ′(t) =

− f (µ(t− p)). The result is applied to systems of the form µ ′(t) =−µ(t−1)N(µ(t)) and to

a certain type of Hamiltonian system.

In [198], IVPs for DDEs are studied. It is assumed that such equations are solved

numerically by two different methods. If there is no delay, these methods are the one-leg

θ -method and the linear θ -method, 0≤ θ ≤ 1. The same names are also used when there

are delay terms in the equations. The stability properties of these two numerical methods

are studied concerning the test problem µ ′(t) = λ µ(t)+αµ(t− τ), τ ≥ 0, with λ and α

complex constants. It is proved that the stability regions of the two numerical methods

are different except in the two extreme cases θ = 0 and θ = 1, when the methods have
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the same stability region. A significant result is that for all θ ∈ (0,1), the linear θ -method

has a larger stability region than the corresponding one-leg θ -method. Numerical results

indicate that for delay equations with constant coefficients, the linear θ -method tends to

perform better than the one-leg θ -method.

Willé and Baker submitted two technical reports in 1988 [300] and 1990 [2] on the han-

dling of derivative discontinuities in systems of DDEs and presented an overview of DDEs

solver DELSOL, which were letter published in the form of two consecutive research pa-

pers [2,300].

In [123], Jankowski deals with the numerical approximation of DDEs with parameters

and constructs a one-step technique for numerically approximating the proposed prob-

lems. The error estimate was derived, as well as the convergence theorem.

Murphy [222] dealt with nonlinear non-autonomous DDE and constructed a parame-

ter estimation technique to evaluate state-dependent delays and other parameters that

appear in this type of problem. The linear splines are used to approximate original differ-

ential equations as well as variable delays.

In this article [279], Thompson considered ODEs with either time-dependent or state-

dependent lags and implemented continuously embedded RK-Sarafyan methods to ob-

tain the solution to such types of problems. The author described a method for finding

credible solutions to these challenging problems without taking the impact of local ap-

proximation error and local integration error into separate considerations. Additionally,

he provided a technique for dealing with derivative discontinuities that occur during the

solution of differential equations with delays.

Hout and Spijker [119] consider a linear test problem “µ ′(t) = λ µ(t)+αµ(t−τ)′′ where

(i) τ > 0 and (ii) λ and α are complex. This equation is used in the stability analysis of

numerical methods for DDEs. In this paper, these results are generalized: the authors

prove a theorem that gives a necessary and sufficient condition for stability that contains

the results of the four papers mentioned above as special cases. It is also shown that the

general results derived by the authors contain interesting cases that are not covered in

those works.

Paul submitted a technical report [239] on developing a DDEs solver. The author pro-

vided a brief overview of several phenomena that should be analyzed when developing
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a robust code for DDEs, including the selection of an interpolant, tracking discontinuities,

vanishing delays, and issues with floating point arithmetic. Paul continued his study on

DDEs and, as a co-author with Baker, submitted a technical report [20] on “Vomputin

stability regions - Runge-Kutta methods for delay differential equations” which later was

published as a research paper [21]. In this article, the authors discussed the applica-

tion of various fixed step size (RK) methods, along with continuous extensions to such

problems, along with the practical determination of stability regions. Consider the linear

DDEs,

µ
′(t) = λ µ(t)+αµ(t− τ) t ≥ 0,

with fixed delay τ, which is not an integer multiple of the step size. Based on the stability

loci obtained in practice, the stability region for Runge-Kutta methods for DDEs may not

be accurately mapped by the standard boundary-locus technique. The paper’s primary

goal is to present a different stability boundary algorithm that avoids the drawbacks of

the conventional boundary-locus method. Both explicit and implicit Runge-Kutta methods

can make use of the new algorithm.

In this article [49], Cao considered the state-dependent DDEs and generalized the

discrete Lyapunov function to such problems. The discrete Lyapunov function quantifies

the oscillation of solutions on intervals with lengths equal to the time delay at the zero

states. The author established the relationship between the oscillation, exponential decay

rate, and first-order estimation of solutions that go to zero as t → ∞. He also observed

that a solution decays more quickly the faster it oscillates.

Hout [117] deals with the ODEs with a lagging argument. This article analyzes the sta-

bility of the Runge-Kutta approach for DDEs. They emphasize the subclass of collocation

techniques that have abscissas in [0,1], and they demonstrate that each of these meth-

ods violates a crucial stability requirement pertaining to the category of test problems

“µ ′(t) = λ µ(t)+αµ(t− τ), where λ ,α ∈C,ℜ(λ )<−|α|, and τ > 0.”

In 1990, Hout presented an article on the stability analysis of a class of RK methods for

DDEs at the International Conference on Numerical Solution of Volterra and DDEs. Later

in 1992 this paper [117] was published. This paper deals with the stability analysis of

Runge-Kutta-type methods for DDEs. They focus on the subclass of collocation methods

with abscissas in [0,1) and prove that all of these methods violate an important stability
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condition related to the class of test problems U ′(t) = λU(t)+ µU(t − τ) with λ , µ ∈ C,

Reλ <−|µ| and τ > 0.

In this paper [229], the authors deal with systems of functional differential equations

which contain delays or lags and are concerned with the solution of this class of prob-

lems. The solution of differential equations with state-dependent delays using software

is discussed. The methods used in the software which are described provide a natural

means of solving such problems. The package uses the continuously embedded Runge-

Kutta methods of Sarafyan. These methods are based on C1 piecewise polynomial in-

terpolants, which are used to handle tasks associated with root finding and interpolation.

In addition to providing a means to handle user-defined root-finding requirements, they

offer a way to identify derivative discontinuities automatically when they appear during

the solution of differential equations with delays.

In [173], the authors deal with a nonlinear system of DDEs. The authors of this article

examine the asymptotic behavior of theoretical and numerical approximations of nonlin-

ear DDE systems. When the assumption for the right-hand function is the same as that

in a paper, in this article [284], the authors derived the theoretical solutions of the nonlin-

ear systems of DDEs and proved obtained solution asymptotically stable. The analogous

behavior of the numerical solutions produced by θ -methods is also shown.

In [110], Higham broadened the scope of the analysis to include a specific class of

ODEs with low-order derivative discontinuities and DDEs with constant delays. The au-

thor demonstrated that standard error control techniques would be successful if delays

are calculated with sufficiently precise interpolants to ensure asymptotic proportionality

and discontinuities are crossed with sufficiently small steps.

In [283], the authors construct the numerical methods for pure DDEs and derive the

stability properties. The proposed method employs an interpolant and quadrature rule

to approximate the retarded part (continuous quadrature rule). The authors consider

the test equation as µ ′(t) = −∑
R
r=1 br(t)µ(t− rτ) (t > 0), µ(t) = φ(t) (t ≤ 0) and provide

sufficient conditions on the boundedness of the solution. The continuous quadrature rule

maintains the same behavior when the parameters are restricted.

In 1994, Paul submitted a twelve-page technical report [240] on the performance and

properties of continuous explicit R-K (CERK) approach for ODEs and DDEs.
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Karoui and Vaililancourt [151] dealt with state-dependent DDEs and presented a com-

puter solution to solve such problems. In order to develop the numerical technique for

approximating the state-dependent DDEs with nonvanishing lag, The authors have imple-

mented an adaptive R-K-Verner (5,6) method. A fifth-degree divided difference Newton

interpolation was employed to locate the derivative jump discontinuities of the solution. A

three-point Hermite polynomial was used to approximate the solution’s value at the delay.

In this article [38], the author deals with delay-differential systems arising in immune re-

sponse modeling and performs the numerical study of the parameter identification prob-

lem. The equations for the models are nonlinear stiff systems of DDEs. When relevant

data with significant magnitude variations, the criteria for the best-fit solution are dis-

cussed. The fitting procedures are based on a combination of imprecise, globally ap-

plicable methods of fitting the models to the data and more precise, locally convergent

methods. In order to simplify an optimization problem, an algorithm for sequential pa-

rameter identification is based on subdividing the total fitting interval. The authors use

short-cut methodologies to enhance several poor initial estimates for some parameters,

such as modifying the model with spline functions that approximate the data over the

entire observation time interval. They demonstrate an example of the real-life parameter

identification problem for the antiviral immune response model in the context of the hep-

atitis B virus infection modeling and use a modification of the DIFSUB Code to solve the

stiff DDEs.

In this article [113], the authors examine the stability analysis of a few prominent nu-

merical approaches for systems of neutral delay-differential equations (NDDEs). The

stability regions of linear multistep, explicit RK, and implicit A-stable RK methods are

examined when they are implemented to asymptotically stable linear NDDEs after estab-

lishing a sufficient condition for asymptotic stability for linear NDDEs. Some comments

are made regarding the results’ extension in the case of multiple delays.

Karoui et al. [152] present a numerical method for solving vanishing-lag DDEs. For

asymptotically vanishing lag as t → ∞, once the lag is sufficiently small, the solution

can be determined by solving an ordinary differential equation approximating the original

delay equation.

In 1996, Hout published a research article [118] on the adaptation of Runge-Kutta meth-
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ods to IVPs for systems of DDEs. Presently, three main types of interpolation procedures

can be distinguished in the literature for adapting Runge-Kutta methods to DDEs, viz.

Hermite interpolation concerning the grid points, interpolation procedures that use con-

tinuous extensions of the Runge-Kutta method, and the interpolation procedures that

have been introduced by K J In’ t Hout (1992). In this paper, the author discusses the sta-

bility of the corresponding three types of adaptations of the class of Runge-Kutta methods

and presents a survey on them. In [160], Khajah and Ortiz discuss a differential-delay

equation arising in number theory. They approximate Buchstab’s function, , using the Tau

method, which is given by the DDEs “(µw(µ))′ = w(µ − 1) for µ ≥ 2 and w(µ) = 1/µ for

1≤ µ ≤ 2”.

In [301], the authors consider the second-order neutral differential equation with con-

stant delay
d2

dt2 (µ(t)− pµ(t− τ))+q(t) f (µ(t−σ)) = 0, t ∈ [0,∞),

where f (x), q(t) are continuous functions such that q(t) ≥ 0,q(t) ∈ C[0,∞), µ f (µ) > 0 if

µ 6= 0, and 0 < p < 1, τ > 0, σ > 0. In this case, f (µ) appeases the sub-linear or super-

linear constraints, respectively, with the special case f (µ) = µ|µ|γ−1 for 0 < γ < 1, and

γ > 1 respectively. In this article, they discover the essential and sufficient elements

for all continuously resolvable solutions of the aforementioned DDEs. If τ = p = σ =

0 in the aforementioned DDEs, the obtained results in this article reduce to the well-

established known theorems of Atkinson and Belohorec in the special case when f (µ) =

µ|µ|γ−1, γ 6= 1. In this paper [22], the author provides detailed information, develops a

theoretical framework for fundamental numerical concepts (such as the existence of a

close approximation, convergence to the actual solution, and numerical stability), and

then presents some research results. Jiang and Wang [125] consider a BVP for the

singular second-order functional differential equation,

y′′ =− f (x,y(w(x))), 0 < x < 1,

αy(x)−βy′(x) = ξ (x), a≤ x≤ 0,

γy(x)+δy′(x) = η(x), 1≤ x≤ b,

where f (x,y) is a function defined on (0,1)×(0,∞), which appeases specific prerequisites

and may exhibit a singularity at y = 0, and w(x) is a continuous function defined on [0,1].
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The authors obtain the positive solution of the BVP by applying the Schauder fixed point

theorem.

In [241], Paul published a paper on designing efficient software for solving DDEs. The

author of this paper describes how to employ numerical software to solve DDEs. Several

methodologies for enhancing DDE solver effectiveness that has been developed over the

past 25 years are also addressed in this article.

Aykut and Yildiz [15] consider a BVP for a differential equation with a variant retarded

argument
x′′(t)+a(t)x(t− τ(t)) = x(t),

x(t) = φ(t) λ0 ≤ t ≤ 0,

x(T ) = xT ,

where 0 ≤ t ≤ T and a(t), f (t), τ(t) ≥ 0 (0 ≤ t ≤ T ) are known continuous functions. In

this paper, the authors apply two approximate methods for the solution of the above BVP.

In [120], the authors present an embedded singly diagonally implicit RK technique to

approximate stiff systems of DDEs. The authors use Newton’s divided difference inter-

polation to tackle the delay argument. Initially, the whole system is considered non-stiff

and solved by a simple iteration; if stiffness is indicated, the whole system is considered

stiff and solved using Newton iteration.

In [75], a pseudo-spectral estimation method is proposed for the class of time-delayed

functional differential equation control systems. In this paper, the authors first formu-

late the problem optimal control problem as a delay-free governed by a system of par-

tial differential equations with boundary conditions of nonlocal type. Next, a Chebyshev

spectral method and the cell-averaging Chebyshev integration technique are used to dis-

cretize the delay-free optimal control problem. The optimal control problem is thereby

transformed into a nonlinear programming problem that can be approximated using well-

developed nonlinear programming techniques. As claimed by the authors, the proposed

method avoids many of the numerical challenges typically encountered when solving

common time-delayed optimal control problems because of its dynamic nature.

In [100], Guofeng discusses the consistency and stability of implicit one-block tech-

niques for the numerical solutions of DDEs systems. The behavior of these techniques,

when used to solve the linear test problem mentioned below, is the author’s primary
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concern.
µ ′(t) = Lµ(t)+Mµ(t− τ), t ≥ 0,

µ(t) = g(t), −τ ≤ t ≤ 0,

where L, M ∈Cd×d are constant complex valued matrices, τ > 0 is the constant delay,

and g(t) is a predetermined initial function, µ(t) signifies a d-dimensional vector-valued

function. The author demonstrates how the asymptotic stability property of the system’s

analytical solutions is preserved by a A-stable implicit one-block method.

DDEs with constant delays can be solved in "Matlab" using the program "dde23," which

was written by Shampine and Thompson. In [269], Shampine and Thompson go over

some of its features, such as event location, iteration for brief delays, and discontinuity

tracking. Convergence, error estimation, and the effects of brief delays on stability are

just a few of the theoretical findings that the authors develop and which serve as the

foundation for the solver.

Oliveira [67] considers the van der Pol equation

d2u(t)
dt2 − ε

du(t)
dt

+ εu2(t− r)
du(t− r)
dt

+u(t) = 0,

with the delayed time r, where r and ε are real parameters, with ε > 0 small and 0≤ r <

π/2 and proved the stability and existence of a periodic solution with period near 2π and

amplitude near 2/
√

cos (r).

In [267], the author considers a functional differential equation of the neutral type and

presents a class of numerical methods to obtain the approximate solution to the problem.

The methods presented in this paper are based on spline functions. The study of the

existence and uniqueness of 3h-step spline functions of degree m = 4 are considered.

This paper [50] is devoted to the construction of a numerical method to solve the BVPs

for second-order differential equations with retarded arguments, i.e. of type

µ ′′(t)+a(t)µ(t− τ(t)) = f (t)

µ(t) = φ(t) λ0 ≤ t ≤ 0, µ(T ) = µT ,

where 0≤ t ≤ T and a(t), f (t),τ(t)≥ 0 (0≤ t ≤ T ) and φ(t), λ0 ≤ t ≤ 0 are known contin-

uous functions.
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In this article [73], the authors study generic oscillation and generic non-oscillation of

second order impulsive DDEs. In this article, the authors obtain some essential and suf-

ficient conditions for both phenomena based on the roots of the characteristic equation.

In this article [268], George Seifert considers functional differential equations of the

neutral delay type with piecewise constant time dependence. He obtains conditions for

the existence and uniqueness of almost periodic solutions for such DDEs.

In [109], Henríquez and Vásquez consider a second-order semilinear functional differ-

entiable equation with unbounded delay and analyze the differentiability of solutions of

such type of differential equations. The authors employ their research results to describe

the infinitesimal generators of several firmly continuous semigroups of linear operators

that appear in the theory of linear abstract retarded functional differential equations with

unbounded delay on an axiomatically defined phase space.

In 2003, Jankowski [124] made a study to obtain the approximate solution of the BVPs

for differential equations with delayed arguments. The sufficient conditions are estab-

lished for the existence of a unique solution or extremal ones of the given problem. The

author applies a monotone iterative technique [186] for the nonlinear problem.

In [304], the authors deal with a class of second-order DDEs with impulses and obtain

sufficient oscillation conditions for all solutions of such differential equations. The authors

first calculate the power series of the proposed system and then transform it into Padé

(approximates) series form.

The article [202] investigates the existence of periodic solutions for nonautonomous

equations with multiple deviating arguments

u′′(t)+ f (u(t))u′(t)+
n

∑
j=1

β j(t)g(u(t− γ j(t))) = p(t)

where f , g∈C(R,R), p(t), β j(t), γ j(t) ( j = 1,2, . . . ,n) are continuous periodic functions with

period T > 0. In this paper, the authors obtain new results on the existence and nonex-

istence of periodic solutions of the above differential equations by using the continuation

theorem of coincidence degree theory and some analysis techniques.

In 2003, El-Harwary et al. [74] present spline collocation methods for solving DDEs. The

authors consider the convergence and stability analysis of seventh C3-spline collocation
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methods applied to DDEs.

In [121], Ismail et al. solve DDEs using the embedded Singly Diagonally Implicit RK

(SDIRK) technique (3,4) in (4,5). The authors use Newton divided difference interpo-

lation and the interpolation developed by In’t Hout to approximate the delay term. The

polynomial and the stability regions of the SDIRK method (2,2) using In’t Hout interpola-

tion for the delay term are presented.

In the article [17], the authors consider the BVPs on an infinite interval for second-order

DDEs:
µ ′′(t)− pµ ′(t)−qµ(t)+ f (t,µ(t)) = 0, t ∈ [0,∞),

αµ(t)−β µ ′(t) = ξ (t), t ∈ [−τ,0],

limt→∞ µ(t) = 0,

and
µ ′′(t)− pµ ′(t)−qµ(t)+ f (t,µ(t),µ ′(t)) = 0, t ∈ [0,∞),

αµ(t)−β µ ′(t) = ξ (t), t ∈ [−τ,0],

limt→∞ µ(t) = 0,

where p, α, β ≥ 0, α2 + β 2 > 0, and q > 0. They discuss the existence of the positive

solution for such BVPs.

In [149], the author extends the quasi-Monte Carlo methods for Runge-Kutta solution

techniques to differential equations developed by Stengle, Lécot, Coulibaly and Koudiary

for DDEs. Interpolation is used to simulate the retarded argument before the traditional

quasi-Monte Carlo Runge-Kutta techniques can be employed. The authors provide gen-

eral proof for the convergence of this method and its order that is independent of any

particular quasi-Monte Carlo Runge-Kutta method.

In article [296], Wang and Li deal with the second-order neutral differential equation

with distributed deviating arguments. By introducing parameter functions and employing

integral averaging techniques, we can obtain some general oscillatory criteria of solutions

for such types of DDEs.

In the paper [271], the authors present a class of second-order neutral functional dif-

ferential equations. Using an extended Riccati transformation and again incorporating

parameter functions and integral averaging approaches, the authors derive some novel

conditions that ensure solution oscillation.
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In [129], Kadalbajoo and Sharma deals a BVPs for a SPDDE containing both delay

and advance arguments in reaction terms. Taylor’s series is employed to handle terms

with minor shifts. The authors develop a numerical technique based on FDM and a dis-

crete invariant embedding algorithm. Furthermore, the authors constructed a parameter

uniform numerical scheme [148] for SPDDEs based on a fitted operator. The solution to

the proposed problem exhibits multi-scale character, i.e., the boundary layer appears on

either the boundary’s left or right side, depending on the sign of the convection term. The

authors discussed both the cases and derived parameter uniform error estimates.

In [139], Kadalbajoo and Sharma introduce SPDDEs both with positive and negative

shifts and develop a robust numerical scheme based on a fitted mesh finite difference

scheme. The authors demonstrate the impact of shifts over the layer behavior of the

computed solution and acquire robust error estimates. In [130], the authors continued

the study of a similar type of problem and discussed the case when solutions exhibit

rapid oscillations. In [140], Kadalbajoo and Sharma proposed a numerical technique for

non-linear SPDDEs. The authors have implemented a quasi-linearization approach to

handle non-linearity. The numerical scheme is based on a fitted mesh finite difference

scheme. In [141], the authors continued the study of non-linear SPDDEs with a negative

shift. They discussed two numerical approaches depending on a particular type of mesh

with the fitted operator and fitted mesh method. In this article [131], authors studied

the model in a more general form. They presented a robust numerical scheme based

on Shishkin mesh (piecewise uniform mesh), which is finer in the boundary layer region

than that of the outside.

In [148,238], Patidar et al. dealt with numerical schemes for SPDDEs and developed a

new class of fitted operator techniques to approximate the solution of such types of prob-

lems. These schemes are based on modeling rules for non-standard FDMs proposed by

Mickens.

In [256], Ramos constructed and implemented an exponentially fitted operator tech-

nique to find an approximate multi-scale solution of linear SPDDE. The proposed ap-

proaches are based on an analytical piecewise solution of advection-reaction-diffusion

operators with non-local approximations. For the proposed problem, it is demonstrated

that these techniques provide better approximations to solutions than methods based on

the analytical solution of the advection-diffusion operator.
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In [137], Kadalbajoo et al. considered the BVPs for SPPs to develop and analyze

numerical schemes based on upwind, midpoint upwind, and hybrid schemes. In [137],

a comparative study is given, and it is shown that the hybrid scheme yields a better

approximate solution over a wide range of δ and ε than that of the standard upwind and

midpoint upwind scheme.

To approximate the solution of SPDDEs, Devendra and Kadalbajoo developed several

numerical techniques to obtain an approximation of the solution of SPDDEs. In article

[134], the authors investigated the effectiveness of B-spline collocation approaches with

a fitted mesh in designing a parameter uniform numerical scheme for a linear second-

order singularly perturbed convection-diffusion-reaction problem with a small delay in the

convection term. In [135], a non-linear SPDDE with a negative shift is considered, and

non-linearity is handled using a quasi-linearisation process. The mesh is designed to be

dense inside the layer region to capture the boundary layer behavior of the solution and

coarser in the outer region.

To design numerical techniques for SPPs, one has to rely on highly appropriate non-

uniform meshes only if sufficient information like width, location, and presence of bound-

ary layer is known. In 2010, Mohapatra and Natesan [219] proposed an adaptive grid

method to evaluate an approximate solution of SPDDEs. The primary characteristic of

the proposed technique is that it does not depend upon a priori considerable information

about the exact solution and can be used to construct robust schemes for SPPs as well

as SPDDEs. The primary approach for creating a reliable method is to evenly distribute

the numerical solutions and equidistribute positive monitor function over the domain to

establish the grid points and automatically combine them in the boundary layer region.

Many factors influence the choice of monitor function, including the problem under con-

sideration, the norm used to calculate error estimates, and the numerical simulation of

the proposed problem.

A computational method for solving SPDDE with twin layers or oscillatory behavior

was presented by Swamy et al. [185]. First-order DDEs asymptotically equivalent to the

original problem is used in their substitute. Numerical integration and linear interpolation

are used to find the discrete solution in the remaining parts of the work.

Sirisha and Reddy [53,274,275] developed and implemented a numerical technique to
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obtain approximate solutions for a class of linear second order SPDDEs. The concept

underlying their numerical techniques is to replace the original SPDDE with an asymp-

totically comparable singularly perturbed ordinary differential equation.

In 2011, Sharma et al. initiated the numerical study of a very interesting problem

SPDDEs with convection coefficient vanishes or changes sign in the domain, i.e., SPDDEs

with turning points, which can result in twin boundary layer or interior layer, depend-

ing upon the values of coefficients of various terms involved in the differential-difference

equation. In [252], the authors described a numerical method for SPDDEs with turning

points exhibiting interior layers. Their method is based on El-Mistikawy-Werle exponen-

tial FDM with some modifications. In [253], they analyzed fitted operator finite difference

schemes for SPDDEs with mixed shifts and a turning point. In [251], the same authors

studied SPDDE with an isolated turning point at x = 0. A priori estimates have been es-

tablished to prove the proposed numerical scheme’s convergence. The paper [254] is

concerned with SPDDEs, which arise in modeling neuronal variability.

In article [94], Amiraliyev and Erdogan considered SPIVP for linear first-order DDEs

having fixed delay. The authors have constructed a numerical method for this problem

based on appropriate piecewise-uniform mesh on each time subinterval. Amiraliyev and

Erdogan [8] considered the following quasilinear SPDDEs:

εµ
′(t)+g(t,µ(t),µ(t− r)) = 0, t ∈ (0,T ], (1.3.1)

µ(t) = φ(t), t ∈ [−r,0], (1.3.2)

Here r > 0 is a large delay. To construct a robust scheme, the authors used an adaptive

grid that involved a piecewise-uniform mesh (Shishkin Mesh) over every time subinterval.

Amiraliyev and Cimen [7] studied the following singularly perturbed second order convection-

diffusion type problem with large delay. For D = D1∪D2, D1 = (0,k], D2 = (k, l), D̄ = [0, l],

D0 = [−k,0], consider

εµ
′′(x)+a(x)µ ′(x)+b(x)µ(x− k) = f (x), x ∈ D, (1.3.3)
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subject to the boundary conditions:

µ(x) = φ(x), x ∈ D0, µ(l) = B,

where 0 < ε � 1 is the perturbation parameter, a(x), b(x), f (x) and φ(x) are given suf-

ficiently smooth functions satisfying certain regularity conditions to be specified and

k (l < 2k) is a large delay, which is independent of ε, and B is a given constant. For

small values of ε, the function µ(x) has a boundary layer near x = 0. The proposed nu-

merical scheme involves exponentially fitted finite difference method accomplished by

the method of integral identities.

So far, the authors have considered singularly perturbed differential-difference equa-

tions with continuous coefficient and large delay. Subburayan and Ramanujam [278]

suggested a numerical technique based on asymptotic initial value for the solution of

convection type SPDDEs with discontinuous convection-diffusion coefficient term.

In 2013, Subburayan and Ramanujam [276] considered following reaction-diffusion

problem:

−εµ
′′(x)+a(x)µ(x)+b(x)µ(x−1) = f (x), x ∈ (0,1)∪ (1,2), (1.3.4)

subject to the boundary conditions defined as

µ(x) = φ(x), x ∈ [−1,0], µ(2) = l, (1.3.5)

where 0 < ε � 1, a(x) ≥ α1 > α > 0 and β0 ≤ b(x) ≤ β < 0. a(x), b(x) and f (x) are given

sufficiently smooth functions on [0,2], φ(x) is a smooth function on [−1,0] and l is a given

constant independent of ε. The solution of BVP (1.3.4) exhibits boundary layers at x = 0,

x = 2 and an interior layers at x = 1 for small values of ε. The authors approximated the

solution of (1.3.4) by the second order hybrid finite difference scheme.

Nicaise and Xenophontos [230] considered a second-order singularly perturbed ordi-

nary differential equations with large delay and developed a robust numerical method to

solve such types of problems based on the hp-finite element method.

In [307], Helena Zarin proposed a discontinuous Galerkin FEM with interior penalties

for SPDDEs. The author demonstrated a robust convergence in the appropriate energy

norm using higher-order polynomials on Shishkin-type layer-adapted meshes. Numerical
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experiments support theoretical conclusions.

In article [181], S. Kumar and M. Kumar deals with the singularly perturbed DDEs and

develop a numerical technique to solve such types of problems.

In 2018 Subburayan and Mahendran [277] considered convection type third order SPDDEs

with discontinuous convection and source term. The authors have constructed an FDM

on Shishkin mesh to approximate such types of problems. Moreover, the existence and

uniqueness of the proposed problem have been derived.

1.3.4 Numerical Methods for Singularly Perturbed Parabolic Differential

Equations with Time and Space Delay

The SPPDE problem with the time delay model’s a more realistic biological and natural

phenomenon than the conventional singularly perturbed problems with no delay do. The

methodology and dynamics of the SPPDE problem with time delay are utterly different

from the conventional partial differential equations without time lag. The solution of (SP-

PDE) problem with time delay is evaluated by ψb(x, t) an initial value function for t−τ < 0

rather than by a simple initial value function ψb(x, t) as happens in case of singularly per-

turbed PDEs. The main difficulty in designing the computational algorithms to solve such

problems is the simultaneous presence of the singular perturbation parameter and the

delay term. The present thesis is mainly divided into two sections. First, we have consid-

ered a class of problems involving differential-difference equations in which the highest

order derivative is multiplied by a small parameter ε. In the second part, the thesis is

concerned with nonlinear SSPs.

Due to its applications in disciplines like neurobiology, [187], optimal control theory [93],

in describing the so called human pupil-light reflex [200], in the study of an optically

bistable device [68]„ in variety of models for physiological processes or diseases [205],

there has recently been an increase in interest in the numerical study of such problems.

In [102], Hairer et al. discussed the convergence of Runge-Kutta methods for singularly

perturbed ODEs by studying the ε-expansion of the solution. Tian [280] adopted their

technique to study Runge-Kutta methods for singularly perturbed DDEss.

Glizer authored numerous research works on singularly perturbed DDEs. In 1998,
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Glizer [90] took into account a BVP for the set of functional differential equations with

partial derivatives of the Riccati type linked to a singularly perturbed linear quadratic op-

timal control problem with state delay. In addition to being asymptotically solved, the

problem is given an expression for a solution that converts it to the explicit singular per-

turbation form. In [91], the author presents the asymptotic solution of a BVP for linear

SPDDEs. The asymptotic solution of the Hamiltonian BVP is constructed and justified as-

suming boundary layer stabilizability and detectability. The article [92] is concerned with

the study of singularly perturbed linear systems with an infinite horizon H∞ state-feedback

control with a small state delay. Concerning this problem, the authors build an asymptotic

solution of the hybrid system of Riccati-type algebraic, ODEs, and PDEs with deviating

arguments. Based on this asymptotic solution, the authors are able to determine the

prerequisites for the existence of a singular perturbation parameter independent solution

to the original H∞ problem. When all sufficiently small values of this parameter are taken

into account, they finally arrive at a simplified controller with parameter-independent gain

matrices that solves the original problem. In this article [93], the author considers a sin-

gularly perturbed system of linear ODEs with a small delay. Estimates of blocks of the

fundamental matrix solution to this system uniformly valid for all sufficiently small values

of the parameter of singular perturbation are obtained in the cases of time-independent

and time-dependent coefficients of the system. In the first case, the author considers the

system on an infinite time interval, while in the second case, it is considered on a finite

time interval. Finally, the author applies these estimates to justify a uniform asymptotic

solution of an IVP for this system in both cases.

In [88], consider the first order singular perturbation problems with delay of the form

µ ′(t) = f (µ(t),µ(t− τ),v(t),v(t− τ)), t ∈ [0,T ],

εv′(t) = g(µ(t),µ(t− τ),v(t),v(t− τ)), 0 < t� 1,

µ(t) = ϕ(t), v(t) = ψ(t), t ≤ 0,

where τ and ε are constants, τ > 0. ϕ and ψ are continuous functions. f : RM ×RM ×

RN×RN → RN and g : RM×RM×RN×RN → RN are given mappings, which are sufficiently

smooth. In this article, the authors deals with the one-parameter stiff SSPs with delay

and study the error analysis of linear multi-step methods and RK methods.



46

In this research article [281], the author discusses the exponential stability of SPDDEs

with a bounded lag. The author derives a generalized Halanay inequality and proves a

sufficient condition to ensure that any solution of the SPDDEs with a bounded delay is

exponentially stable uniformly for sufficiently small singular perturbation parameters.

In [282], Tian presents the asymptotic expansion for singularly perturbed DDEs. In

this paper, the author extends singular perturbation theory in ODEs to DDEs with fixed

delay and gives an adequate condition so that the solution of a class of SPDDEs can be

asymptotically expanded.

A numerical study of BVPs for singularly perturbed second-order differential-difference

equation with small shifts was initiated in 2002 [129]. The authors of this article take into

account the case where such BVP solutions exhibit boundary layer behavior. A numerical

technique scheme based on FDM is devised to evaluate the numerical solution of these

BVPs. The presented difference scheme is analyzed for stability and convergence. The

authors conduct several numerical experiments to demonstrate the impact of shifts on

the behavior of the solution’s boundary layer.

In 2007, Ansari, Bakr, and Shishkin [10] studied a time-dependent singularly perturbed

BVP, a linear parabolic differential equation with a delay argument in the time variable.

The authors developed a parameter uniform-fitted mesh FDM for this type of problem.

In 2010, Kaushik et al. [156] developed a numerical technique for numerically approx-

imating non-stationary time delay convection-dominated singularly perturbed parabolic

problems. The Authors have implemented FDM with Shishkin mesh to capture the layer

phenomena.

Bashier and Patidar [26] studied SPPPDDEs with delay argument in time variable dur-

ing 2010-2011. The authors proposed parameter uniform numerical schemes consisting

of fitted numerical methods with finite difference schemes. They proved the proposed

methods to be unconditionally stable and convergent.

In 2012, Kaushik and Sharma [157] considered SPPPDDEs with time delay. The au-

thors constructed and analyzed a parameter-uniform numerical method for this type of

problem. The method extends to the case of adaptive meshes, which can be used to

improve the solution.

In this article [97], Gowrisankar and Natesan proposed a parameter uniform computa-
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tional technique to approximate the solution of singularly perturbed delay parabolic initial

BVPs, exhibiting parabolic boundary layers. On time and spatial domain, uniform and

non-uniform meshes are placed via a monitor function’s equidistribution. The proposed

technique is proved to be parameter uniform convergent with an optimal error bound

C(N−2 +M−1) in the discrete maximum norm. In this article, Das and Natesan proposed

a parameter uniform technique with the hybrid scheme in space direction and backward-

Euler method in time direction to numerically approximate the convection-dominated sin-

gularly perturbed delay parabolic time delay BVPs. Then, in 2017, Gowrisankar and

Natesan [98] studied the convection dominated singularly perturbed delay parabolic time

delay BVPs and developed parameter uniform scheme.

In [176], Kamlesh Kumar et al. used a methodology of entropy function and, by this

concept, developed an adaptive mesh for numerically approximating the convection type

singularly perturbed parabolic problem with the delay. In this adaptive mesh, the authors

do not need prior knowledge of mesh location, unlike Bakhvalov and Shishkin.

S. Kumar and M. Kumar [180] deal with singularly perturbed BVPs, a linear parabolic

differential equation with delay argument in the time variable. The authors have imple-

mented and developed a hybrid scheme over Shishkin mesh in a spatial direction and the

Euler method in a time direction. Moreover, the authors have implemented the Richard-

son extrapolation technique in the time direction to improve accuracy and convergence.

The authors have derived a priori bound on the derivative and exact solution. The pro-

posed method has proved to be of almost four orders in space and order two in time.

In this article [273], Joginder et al. considered a parabolic singularly perturbed reaction-

diffusion type time delay problem and designed a numerical technique to approximate

the proposed problem. The authors have developed a domain decomposition method

for the proposed problem over the piecewisepiecewise uniform mesh. The convergence

analysis is carried out, and the proposed method is found to be robust and convergent.

In this article [175], Devendra Kumar deals with the numerical analysis of singularly per-

turbed parabolic partial differential equation of convection type with time delay. The au-

thor has developed a cubic B-spline collocation approach on a piecewise uniform mesh.

The author has conducted the convergence analysis, and theoretical bounds have been

derived. In [69], Devendra Kumar and Parvin Kumari deals with the SPPPDDEs with time
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delay and develop a collocation technique based on an extended cubic B-spline approach

to solve such types of problems. The author has shown the advantage of extended cubic

B-spline over the cubic B-spline technique.

Vikas Gupta et al. [101] proposed a numerical technique to approximate multi-scale so-

lution of singularly perturbed time-dependent differential-difference convection-dominated

diffusion equations. The authors have constructed a higher-order Richardson extrapola-

tion technique.

Pratima Rai et al. [247] presented a singularly perturbed DDEs with a turning point.

This type of problem exhibits a boundary layer and an interior layer. The authors have

implemented the FDM over a Shishkin mesh to approximate the proposed problem.

Komal Bansal et al. [165] deal with the SPPPDDEs with delay arising from model-

ing neuronal variability. The author constructed a non-standard finite difference method

based on interpolation, θ -technique, and Micken’s method to approximate the multi-

scale solution of the problem. It is proved that the method is unconditionally stable for

0≤ θ ≤ 1/2.

Monika Choudhary et al. [59] proposed a defect correction technique to approximate

the convection-dominated SPPPDDEs with delay. The authors examine the convergence

analysis and discover that the method is convergent in the discrete maximum norm.

1.3.5 Numerical Methods for Nonlinear Singularly Perturbed Differential

and Partial Equation

The nonlinear singularly perturbed partial differential equations (NSPPDEs) are essen-

tial in converting a real-life phenomenon into a mathematical model. The dynamics of

NSPPDEs are utterly different from the conventional nonlinear partial differential equa-

tions. These types of problems depend on a small positive parameter, which makes the

solution vary rapidly in narrow regions of the domain and change slowly in the rest of the

domain. This behavior of the solution in narrow regions is called layer phenomena, and

this class of problem is known as SSPs. The designing of computational algorithms for

such types of problems is burdened with difficulties because the solution of the proposed

problem is contaminated by a small positive parameter ε and nonlinear term simultane-

ously. Since only a few nonlinear systems can be solved explicitly, we rely on numerical
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techniques by linearizing the nonlinear problems. Due to the linearization of the nonlin-

ear problem, the approximated solution’s accuracy somehow degenerates, which leads

to deceptive solutions, and we have to compromise the accuracy of the solution. In this

thesis, an attempt has been made to overcome the difficulties associated with nonlinear

problems. In this thesis, the authors have presented two numerical techniques to solve

the NSPPDEs without linearization or discretization. Very little literature has been re-

ported for nonlinear singularly perturbed differential equations (NSPDEs) and NSPPDEs

so far.

In 1952 N. Levinson and E.A. Coddington [64] published a research paper on BVPs for

a nonlinear differential equation of convection type with a small parameter. The authors

studied the problem in the context of existence and uniqueness.

In 1973, D.S. Cohen [65] analyzed a nonlinear two-point BVPs of singularly perturbed

type. The author has carried out the existence and uniqueness of the proposed problem.

In 1988 M.K. Kadalbajoo and Y.N. Reddy [138] proposed a numerical technique for

numerically approximating a class of nonlinear singular perturbation two-point BVPs. The

author designed an iterative boundary value method. The theoretical analysis is carried

out.

In [81], Farrell et al. deal with a semilinear singularly perturbed two-point BVP and

develop an FDM on an equidistant mesh with nodal distancing h. Through this article,

the authors have shown that the proposed numerical technique with a fixed fitting factor

cannot converge ε-uniformly to the solution of the proposed problem as h tends to zero

in the maximum norm. They have considered a set of numerical experiments, and the

numerical result validates the theoretical findings with variable fitting factors. In [79],

Farrell, O’Riordan, Miller, and Shishkin consider quasilinear singularly perturbed BVPs

exhibiting boundary layer phenomena. In this article, the authors construct an upwind

difference operators technique along with a unique piecewise-uniform mesh known as

Shishkin mesh which are fitted to these boundary layers. The convergence analysis is

shown to be parameter uniform in a discrete maximum norm concerning the singular

perturbation parameter.

In 2000, O’Malley, Jr. [262] published a research article on the asymptotic solution for

singularly perturbed BVPs. In this paper, he considered the BVPs for certain differential
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equations of the form “ε ẍ(t) = g(x(t)) f (ẋ(t)) on 0 ≤ t ≤ 1” whose solution exhibits an

interior shock layer. He constructed an asymptotic solution to such BVPs.

Kadalbajoo and Patidar [136] deal with singularly-perturbed nonlinear BVP. The au-

thors design a numerical technique based on cubic spline over Shishkin mesh. First,

the original nonlinear BVP is linearized using the quasilinearization technique, and then

the proposed numerical method is implemented. The authors have done the conver-

gence analysis, and the method is found to be parameter uniform with a second order

convergence rate.

VUlanović, Relja [294] constructed a numerical method for approximating the semi-

linear singular perturbation BVPs. The author has constructed sixth-order FDM. The

theoretical estimates are derived, and the method is found to be parameter uniform.

In this paper [126], the authors extend the study of Stynes and O’Riordan on local ex-

ponentially fitted FEM for singularly perturbed two-point BVPs. In the present article, the

authors consider a local exponentially fitted FEM in which exponential splines are imple-

mented only in the layer part and away from the layer, the normal continuous piecewise

linear function instead of a singularly perturbed two-point BVPs and derive an ε-uniform

h| ln h|1/2 order error estimate in the energy norm for this scheme under the assumption

that the mesh is quasi-uniform. The authors also consider the two higher-order numerical

schemes for approximating the solution of singularly perturbed two-point BVP.

In this article [272], G.I. Shishkin, and L.P. Shishkina published a research article on nu-

merical technique for a quasilinear singularly perturbed elliptic reaction-diffusion equation

in a vertical strip. The authors have implemented the Richardson extrapolation technique

to increase the accuracy and rate of convergence.

In [313], Zhao, et al. implement a variation of the iteration method to obtain a close-

form analytic solution of singularly perturbed IVPs and a system of these. They carried

out convergence analysis, and the technique proved convergent concerning the singular

perturbation parameter ε. A numerical experiment is carried out, and numerical results

support the theoretical finding.

In [286], the author has developed and implemented an iterative analytic technique

known as the homotopy perturbation technique for numerically solving a nonlinear two-

point singularly perturbed BVPs. The method seems more effective in faster convergence
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when the optimal convergence control parameters are computed utilizing the absolute

residual error concept. The author considers three nonlinear test problems solved in this

article by the proposed method.

In [153], article, the author has proposed an iterative analytic method for nonlinear

singularly perturbed convection-diffusion problems. The method is based on a Lagrange

multiplier’s which is evaluated by Liouville-Green transformation and variational theory.

The author has also proved the existence and uniqueness of the proposed problem. To

analyze the efficiency of the proposed method, two linear and two nonlinear test problems

have been considered, and the method is found to be robust.

In the article [172], the authors consider a quasilinear two-point BVP of convection-

diffusion type and present a robust adaptive method based on an upwind FDM to approx-

imate such types of BVPs. A straightforward novel approach based on equidistribution

of the arc length of the current derived piecewise linear solution is utilized to adaptively

shift the nodes of the employed mesh. The mesh has a fixed number (N + 1) of nodes

and is initially uniform. The authors demonstrate the existence of a mesh that uniformly

distributes the arc length throughout the polygonal solution curve, and the method is

first-order concerning the singular perturbation parameter ε. In 2007, N. Kopteva [166]

deals with a nonlinear two-point BVP singularly perturbed type over a non-uniform mesh.

The author obtained a second order of convergence in discrete maximum norm using

an equidistribution grid via monitor function. Numerical results are presented by the

author and support the theoretical finding. In 2007, [167] N. Kopteva presented a 2D

semilinear SSP of reaction-diffusion type derived estimates in the maximum norm. In

2011, [54] N. Kopteva et al. considered a 3d semilinear SSP and derived estimates in

maximum norm. In 2009, [169] N. Kopteva et al. considered a semilinear two-point BVP

of reaction-diffusion type with multiple solutions and analyze the proposed problem using

an overlapping Schwarz method. In [168], N. Kopteva deals with singularly perturbed

BVP of reaction diffusion and derives posteriori error estimates in maximum-norm on

adaptive anisotropic meshes.

In this research article [194], the authors have considered a quasilinear singularly per-

turbed two-point BVP and constructed a nonstandard upwind first-order FDM on piece-

wise uniform meshes. The proposed method is considered parameter uniform in a dis-

crete L∞ norm.
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In [154], the authors considered nonlinear singularly perturbed IVPs. The author has

constructed a closed-form iterative analytic method for solving such types of problems.

The proposed technique consists of a variation of the iteration approach depending on

Lagrange’s multiplier. The authors have considered a few problems, and numerical re-

sults suggest the theoretical results.

In [159], authors have constructed a closed-form iterative analytic method for one-

dimensional nonlinear singularly perturbed BVP of reaction-diffusion type. The method

is based on a Lagrange multiplier evaluated by Liouville-Green transformation and varia-

tional theory known as the Variation of iteration method (VIM). The authors do a compar-

ative analysis, and the method is found to be robust concerning the singular perturbation

parameter ε.

SC Rao and M Kumar, [259] deal with nonlinear singularly perturbed two-point BVPs

with Robin boundary conditions and developed a collocation method based on B-spline

for solving such type of problem. The authors have first linearized the original problem

by the quasilinearization technique, then the proposed method, along with piecewise

uniform mesh, is implemented over the linearized problem. The stability and convergence

of the proposed technique are derived.

In this article [161], S.A. Khuri et al. implemented an adaptive variational algorithm

for self ad-joint singularly perturbed BVP. The method’s fundamental idea is to handle

this class of problems by using a mixed piecewise domain decomposition and modifying

the variational iterative technique. It is shown that the method uniformly converges to

the exact solution. The authors have shown the method’s convergence, effectiveness,

and applicability through test problems and numerical results. In [162] S.A. Khuri et al.

develop and implement a patching approach technique, a combination of two different

numerical schemes, the cubic spline collocation method and the variational of iteration

method (VIM), for numerically approximating singularly perturbed self-adjoint BVP. In the

patching approach, the authors have divided the domain into layers and outer regions.

The authors implement the VIM method in the layer region and the cubic spline colloca-

tion method in the outer region. To demonstrate the method’s convergence, efficiency,

and applicability, numerical results and computational comparison are done by the au-

thors.
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In [255], the authors present an artificial neural network(ANN) method based on a

neuro-evolutionary technique for approximating singularly perturbed BVPs of both linear

and nonlinear types. The proposed method is a combination of feed-forward artificial

neural networks, sequential quadratic programming (SQP) techniques, and genetic al-

gorithms. The authors consider six linear and nonlinear BVPs of SSP to determine how

well the proposed design scheme performs, and the method is found to be robust and

effective.

In [177], M. Kumar et al. present linear and nonlinear SSPs on a domain [p,q] and

prosed an initial value technique to solve such types of problems. The authors have

implemented the initial value method directly to linear problems, and for nonlinear prob-

lems, the authors have adopted the quasi-linearization technique to linearize the nonlin-

ear problem. Then the reduced problems are solved by the proposed methods.

In [66] article, the author has developed an adaptive mesh, and comparative analysis

is carried out for singularly perturbed nonlinear BVPs. The author has done a posteriori

error analysis for the proposed problem. A comparative analysis is carried out using

existing numerical techniques in the literature.

Q. Zheng et al. [314] proposed a hybrid FDM over a Bakhvalov-Shishkin mesh to a

quasilinear singularly perturbed BVPs. The convergence analysis is carried out, and the

method is proven uniformly convergent concerning the singular perturbation parameter.

In 2019 Pankaj Mishra et al. [218] considered nonlinear singularly perturbed reaction-

diffusion problems and proposed a collocation method based on an orthogonal spline on

piece-wise uniform mesh (Shishkin Mesh). The authors have carried out the convergence

analysis and used splines of degree ≥ 3. The authors have also proved error estimates

in other norms for which analysis has not yet been established, and the results of the

numerical experiments confirm the theoretical outcomes of the analysis.

In [212], Mario Amrein and Thomas P Wihler proposed an adaptive numerical known

as the Newton-Galerkin method for numerically approximating semilinear parabolic SSP.

The proposed technique consists of Newton’s technique for linearization, FEM for adap-

tive discretization in spatial variables, and the backward Euler method in the temporal

direction. A posteriori error analysis is derived by the authors.

In [63], Clavero et al. developed and analyzed a parameter uniform numerical method
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for numerically approximating a semilinear system of one-dimensional parabolic singu-

larly perturbed reaction-diffusion IVP. The method consists of central FDM to discretize

in space and the implicit Euler method in time. The proposed method is proved to be

second order convergence in space and first-order in time.

In [197], the authors considered a system of nonlinear first-order SSPs and proposed a

numerical method based on the backward-Euler approach on an adaptive grid. The pro-

posed method is first-order convergent, according to the convergence analysis results.

The authors [258] have considered a system of coupled semilinear singularly perturbed

reaction-diffusion BVPs interior layers and developed a numerical method for such prob-

lems. The authors have used Shishkin mesh to capture the boundary layer phenomena.

It is demonstrated that the proposed method is convergent and robust with an almost

second order convergence rate.

J. Quinn [249] proposed parameter-uniform numerical methods for general nonlinear

singularly perturbed reaction-diffusion problems having a stable reduced solution. E.

O’Riordan and J. Quinn [237] proposed parameter uniform numerical methods for linear

and nonlinear singularly perturbed convection-diffusion boundary turning point problems.

Igor Boglaev in [40] has developed and implemented a discrete monotone iterative

technique to approximate the nonlinear parabolic singularly perturbed of reaction-diffusion

type. The author first implements upper and lower solution techniques to obtain a non-

linear difference scheme. Then to solve the nonlinear difference scheme author imple-

mented a monotone domain decomposition method based on the Schwartz method. The

method solves the linear system at each iteration step. In this article [39], Igor Boglaev

deals with semilinear SSPs of elliptic and parabolic types. The author has implemented

monotone iterative methods for solving such types of problems, and the proposed method

is proven uniformly convergent. In article [193], Igor Boglaev has constructed a numeri-

cal method for solving nonlinear parabolic SSPs and constructed a monotone alternating

direction technique (ADI) for numerically solving such types of problems. The author

has generated a monotone sequence using this technique’s upper and lower solution

method. With the help of this sequence, a nonlinear difference scheme is developed, by

which the nonlinear parabolic problem is approximated. The convergence rate of mono-

tone sequences is found to be quadratic.
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In [195], Chein-Shan Liu et al. develop and analyze a numerical method based on

a modified asymptotic approach for numerically solving nonlinear singularly perturbed

BVPs. The authors have done a few numerical tests, and the method is found to be

robust.

In article [3], the authors present a nonlinear singularly perturbed BVPs with integral

and multi-point integral boundary conditions. The author developed a multi-resolution

Haar wavelet collocation method for approximating nonlinear singularly perturbed BVPs

with integral and multi-point integral boundary conditions. To linearize a nonlinear prob-

lem quasilinearization technique is used. Numerical results show the effectiveness and

robustness of the proposed method. A few test problems are taken into account, and

numerical experiments are carried out in support of the predicted theory.

1.3.6 Finite Element Method

In the 1940s, a series of scientific papers were published by some research which

founded the finite element method (FEM), which developed into the finite element anal-

ysis concept for numerically approximating the ODEs and PDEs. The FEM method is

based on a problem domain’s subdivision into simpler parts called finite elements. It

also uses the calculus of variational methods to minimize an associated error function.

The main advantage of the FEM is to handle and approximate the complex elasticity and

structural analysis problems. In article [1] A. Hrennikoff in 1941 and in [250] in 1943 R.

Courant first published their work but the method was not recognized at that time. Then

in 1950s, the analysis of FEM was began and method was rediscovered by mathemati-

cians.

Let H1(Ω) be the Sobolev space, defined as

H1(Ω) = { f : f and f
′
∈ L2(Ω)}. (1.3.6)

Suppose H1
0 (Ω) be the subspace of all function of H1(Ω). To construct FEM first we are

going to convert the problem into its weak formulation as:{
f ind uε ∈V, s.t. a(uε ,v) = l(v) ∀v ∈V. (1.3.7)
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where V belongs to H1
0 (Ω) is the solution space, a(., .) be bilinear functional V ×V , and

l(.) be the linear functional on V .

After replacing V in (1.3.7) with a finite dimensional subspace Vh ⊂ V that consists of

continuous piecewise polynomial functions of the fixed degree connected with a subdi-

vision of the computational domain, we take into account the following approximation of

(1.3.7).  f ind uε ∈Vh, s.t. a(uε ,vh) = l(v) ∀vh ∈Vh.

dimVh = N(h) and Vh = span{φ1,φ2, · · · ,φN(h)}
(1.3.8)

Each φi, i= 1, · · · ,N(h) are linearly independent basis functions which have small compact

support. The approximate solution uh can be expressed in terms of basis function, φi, as:

uh(x) =
N(h)

∑
i=1

Uiφi(x),

Here, Ui, i = 1, · · · ,N(h), are unknowns and is to be determined. Now we rewrite equation

(1.3.8) as follows:

find (U1, · · · ,UN(h)) ∈ RN(h) such that

N(h)

∑
i=1

a(φi,φ j)Ui = l(φ j), j = 1, · · · ,N(h). (1.3.9)

Hence we obtained a linear system of equation, where U = (U1, · · · ,UN(h))T is to be

evaluated, with the matrix of the system A = (a(φ j,φi)) of the size N(h)×N(h). As these

φi’s have small support, i.e. a(φi,φ j) = 0 for most pairs of i and j, so the obtained matrix

A is a sparse.

Notations and Symbols Through out the thesis C denotes the positive constant indepen-

dent of parameter ε. We have assumed
√

ε ≤CN−1 in our analysis. Now ‖v‖= sup
x∈[0,1]

|v(x)|

and ‖v‖ω = max
i=1,··· ,N−1

|v(xi)| be the continuous and discrete maximum norm respectively.



Chapter 2

Finite Element Analysis of Singularly

Perturbed Parabolic Partial Differential

Equation With Retarded Argument

In this chapter1, a parameter uniform Galerkin finite element method for solving singu-

larly perturbed parabolic reaction diffusion problems with retarded argument is proposed.

The solution of this class of problems exhibits parabolic boundary layers. The domain is

discretized with a piecewise uniform mesh (Shishkin mesh) for spatial variable to capture

the exponential behaviour of the solution in the boundary layer region and backward-

Euler method on equidistant mesh in time direction. The method is proved to be un-

conditional stable and parameter uniform. The method is shown to be accurate of order

[O(N−1 lnN)2 +∆t] in maximum norm using green’s function approach. The convergence

of the proposed method does not depend on the singular perturbation parameter.

1“Khari K. and Kumar V., Finite Element Analysis of Singularly Perturbed Parabolic Partial Differen-
tial Equation With Retarded Argument, Numer. Methods Partial Differ. Equ. 38 8 (2022) , 997-1014,
https://doi.org/10.1002/num.22785.”
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2.1 Introduction

To transform a real-life phenomenon into a mathematical model, we mainly try to obtain

whatever is necessary, preserving the essential physical quantities and neglecting the

negligible things. Such specific problems rely on a small positive factor so that the solu-

tion changes swiftly in some areas of the domain and gradually in other sections. There-

fore, usually, there are thin intermediate layers in which the solution changes quickly or

leaps suddenly while the solution behaves gradually and differs slowly away from these

layers. These types of problems are called singularly perturbed problems (SPP). The

problem is singular in that the order of the reduced problem is less than the order of the

original problem. At the same time, the number of boundary conditions stays the same,

which makes the problem behave abnormally in a particular domain region to satisfy the

boundary conditions.

The main difference between delay differential equations and ordinary differential equa-

tions is that the evolution of delay differential equations involves prior information on the

state variable. The singularly perturbed delay differential equation is usually the first

estimate of the physical model being considered. The solution of the delay differential

equations needs information on not only the current state but also the state at a partic-

ular time previously. In such situations, however, a more practical framework would add

some of the system’s past and future states; therefore, differential equations with lag or

progress should be based on a real system. The last few decades witnessed the growth

of interest in studying this class of problem.

The main difficulty in designing the computational algorithms to solve such types of prob-

lems is the presence of the singular perturbation parameter and the delay term simulta-

neously. Suppose we use the existing classical numerical methods such as finite element

and finite difference on the uniform mesh to solve these types of problems. In that case,

large oscillations may occur, and the solution can be contaminated due to the presence

of a boundary layer in the entire interval, or one has to decrease the step size in similarity

with ε, which seems to be unrealistic when the singular perturbation parameter is very

small to obtain the stability result.
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To the best of our knowledge, the finite element method is not developed to find the

approximate solution to this class of problems. The novelty of this chapter is to design an

efficient Galerkin finite element method for the SPPRD problem with retarded argument.

The energy norm is weak to capture the sharp layers for SPPRD problems of type (4.2.1)

as it involves an excessive power of small parameter [190]. Therefore, to capture the

sharp layer and the singularities that arise in the problem’s solution, the error estimates

are carried out in the maximum norm using Green’s function approach.

The chapter is organized as follows: The continuous model problem is defined in Sec-

tion 2.2. In Section 2.3, we provide auxiliary results. In Section 2.4, we have defined the

piece-wise uniform mesh (Shishkin mesh) for our continuous problem. The problem is

discretized using Galerkin finite element for space component, and the backward-Euler

method for the time component in Section 2.5. In Section 2.6, we carried out the stability

and error analysis. In Section 2.7, two test problems are taken into account to validate

our theoretical results. Finally, Section 2.8 contains a conclusion.

2.2 Statement of Problem

Consider the following class of SPPRD problems with retarded argument on a rectan-

gular domain. Let Q = ω× (0,T ] , ω = (0,1) and ϒ = ϒl ∪ϒb∪ϒr, where ϒb = ω̄× [−τ,0],

ϒl = {(0, t) : t ∈ [0,T ]} and ϒr = {(1, t) : t ∈ [0,T ]} are the initial boundary condition, left

boundary condition and right boundary condition of the rectangular domain Q respec-

tively.

“(vε)t(x, t)− ε(vε)xx(x, t)+a(x)vε(x, t)+b(x, t)vε(x, t− τ) = f (x, t), (2.2.1)

where (x, t) ∈ Q, subject to the initial condition and boundary conditions given as:


vε(x, t) = ψb(x, t), on (x, t) ∈ ϒb,

vε(x, t) = ψl(t), on (x, t) ∈ ϒl = {(0, t) : t ∈ [0,T ]},

vε(x, t) = ψr(t), on (x, t) ∈ ϒr = {(1, t) : t ∈ [0,T ]}”.

(2.2.2)
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The model problem (4.2.1) can be recast as

“(vε)t(x, t)+Lε,xvε(x, t) = F(x, t), (2.2.3)

Lε,xvε(x, t) =



− ε(vε)xx +a(x)vε(x, t) for x ∈ (0,1),

t ∈ (0,τ],

− ε(vε)xx +a(x)vε(x, t)+b(x, t)vε(x, t− τ) for x ∈ (0,1),

t ∈ (τ,1],

(2.2.4)

and

F(x, t) =

−b(x, t)ψb(x, t− τ)+ f (x, t), for x ∈ (0,1), t ∈ (0,τ],

f (x, t), for x ∈ (0,1), t ∈ (τ,1]”.
(2.2.5)

Here, 0 < ε � 1 is the singular perturbation parameter and τ > 0 be the delay term. The

problem data ψl(t), ψr(t), ψb(x, t), f (x, t), a(x), and b(x, t) are supposed to be sufficiently

smooth, bounded and independent of parameter ε.

a(x)≥ α > 0, b(x, t)≥ β > 0, (x, t) ∈ Q̄. (2.2.6)

Where α and β are the positive constants independent of singular perturbation parameter

ε. As ε → 0 the solution of the problem (4.2.1)-(5.1.5) exhibits boundary layers of equal

width on both ϒl and ϒr boundary points.

2.3 Auxiliary Result

Compatibility Conditions: To ensure the existence and uniqueness of the solution

of SPPRD problem with retarded argument (4.2.1)-(5.1.5), it is presumed that given data

f (x, t), a(x), and b(x, t) is holder’s continuous and the compatibility conditions at (0,0),

(1,0), (0,−τ) and (1,−τ) corner points are fulfilled. Then compatibility condition’s are
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defined as 

ψb(0,0) = ψl(0),

ψb(1,0) = ψr(0),

∂ψl(0)
∂ t − ε

∂ 2ψb(0,0)
∂x2 +a(0)ψb(0,0) = f (0,0)−b(0)ψb(0,−τ),

∂ψr(0)
∂ t − ε

∂ 2ψb(1,0)
∂x2 +a(1)ψb(1,0) = f (1,0)−b(1)ψb(1,−τ).

(2.3.1)

Note that it is presumed that ψl(t), ψr(t) and ψb(x, t) are sufficiently smooth in order to

satisfy the compatibility conditions i.e., ψ(x, t) ∈ C 2,1(ϒb), ψr(t) ∈ C 1(ϒr), ψl(t) ∈ C 1(ϒl).

Under the above assumption the problem (4.2.1) has a unique solution [163].

Maximum Principle: Let a,b ∈ C 0(Q̄) and Θ(x, t) ∈ C 2(Q̄)∩C 0(Q̄) such that Θ ≥ 0 on

ϒ. Then,
(

Lε,xΘ(x, t)+ ∂Θ(x,t)
∂ t

)
≥ 0 ∀ (x, t) ∈ Q implies that Θ(x, t)≥ 0 ∀ (x, t) ∈ Q.

The subsequent theorem provides the ε−uniform bound for the solution of (4.2.1)-(5.1.5)

in maximum norm and the stability of the (Lε,xvε(x, t)+(vε)t(x, t)) should be.

Theorem 2.3.1. Suppose vε is any function in differential operator’s ( ∂

∂ t +Lε,x) domain of defini-

tion in (4.2.1)-(5.1.5). Then

‖vε‖ ≤ (1+µT )max{‖ vϒ ‖,‖ ((vε)t +Lε,xvε) ‖} , (2.3.2)

and we have parameter uniform upper bound for any solution vε of (4.2.1)-(5.1.5).

‖vε‖ ≤ (1+µT )max{‖ f‖,‖ψ‖ϒ}. (2.3.3)

Where µ = maxω̄{0,1− γ} ≤ 1.

Theorem 2.3.2. Suppose a(x)∈C 2+µ(ω̄),b(x, t), f (x, t)∈C (2+µ,1+µ/2)(Q̄), ψl, ψr ∈C 2+µ/2([0,T ]),

ψb ∈ C (4+µ,2+µ/2)(ϒb),µ ∈ (0,1) and higher order compatibility conditions (2.3.1) at corner

points are satisfied. Then problem (4.2.1) has a unique solution vε and vε ∈ C (4+µ,2+µ/2)(Q̄).

Further, the derivative of the solution vε of (4.2.1) satisfies the following:∥∥∥∥∥∂ p+qvε

∂xp∂ tq

∥∥∥∥∥≤Cε
−p/2.

Proof. For proof of above theorem we recommend [163].



62

The bounds in the above theorem do not depend explicitly on the boundary layer. So we

decompose vε into its singular and smooth component to obtain the stronger estimates

on its derivatives and of its partial derivative.

We decompose vε(x, t) the solution of (4.2.1) as:

vε = r+ s.

Where s and r are the singular and regular component. We further decompose the

smooth component as:

r = r0 + εr1.

Further we define r0 and r1 as

∂ r0

∂ t
+ar0 = br0(x, t− τ)+ f , (x, t) ∈ Q,

r0(x, t) = ψb(x, t), on ϒ,

and

Lε,xr1 +
∂ r1

∂ t
= −br1(x, t− τ)+

∂ 2r1

∂x2 , (x, t) ∈ Q,

r1(x, t) = 0, on ϒ.

By r0 and r1, we define the smooth component r as:

∂ r
∂ t

+Lε,xr = −br(x, t− τ)+ f , (x, t) ∈ Q,

r(x, t) = ψb(x, t), on ϒb,

r(0, t) = r0(0, t), on ϒl,

r(1, t) = r0(1, t), on ϒr.
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Similarly the singular component s can be defined as

∂ s
∂ t

+Lε,xs = −bs(x, t− τ), (x, t) ∈ Q,

s(x, t) = 0, on ϒb,

s(0, t) = ψl(t)− r0(0, t), on ϒl,

s(1, t) = ψr(t)− r0(1, t), on ϒr.

The singular component s is further decomposes into a right and left layer component sr

and sl respectively as:

s(x, t) = sr(x, t)+ sl(x, t), (2.3.4)

where sl satisfies as

∂ sl

∂ t
+Lε,xsl = −bsl(x, t− τ), (x, t) ∈ Q,

sl(x, t) = 0, on ϒr∪ϒb,

sl(0, t) = ψl(t)− r0(0, t), on ϒl,

and sr as

∂ sr

∂ t
+Lε,xsr = −bsr(x, t− τ), (x, t) ∈ Q,

sr(x, t) = 0, on ϒl ∪ϒb,

sr(0, t) = ψr(t)− r0(1, t), on ϒr.

The subsequent theorem provides the explicit bounds for the singular component s, the

smooth component r, and all its partial derivatives, that perform an essential part in the

error analysis throughout Section 6.

Theorem 2.3.3. Suppose a(x)∈C 4+µ(ω̄), b(x, t), f (x, t)∈C (4+µ,2+µ/2)(Q̄),ψl, ψr ∈C 3+µ/2([0,T ]),

ψb ∈ C (6+µ,3+µ/2)(ϒb), µ ∈ (0,1) and compatibility conditions (2.3.1) of high order at corner
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points are satisfied. Then the integer p,q such that 0≤ p+2q≤ 4 we have the following estimate:∥∥∥∥∥ ∂ p+qr
∂xp∂ tq

∥∥∥∥∥
Q̄

≤ C(1+ ε
1−p/2),∥∥∥∥∥ ∂ p+qsl

∂xp∂ tq

∥∥∥∥∥ ≤ Cε
−p/2e

−x√
ε ,∥∥∥∥∥ ∂ p+qsr

∂xp∂ tq

∥∥∥∥∥ ≤ C(1+ ε
−p/2)e

−(1−x)√
ε .

Proof. For proof of the above theorem, we recommend [163].

Theorem 2.3.4. The partial derivative of s(x, t) satisfies:∥∥∥∥∥ ∂ p+qs
∂xp∂ tq

∥∥∥∥∥≤Cε
−p/2Bε(x), (x, t) ∈ Q̄,

Bε(x) = {e
−x√

ε + e
−(1−x)√

ε } for integer p,q such that 0≤ p+2q≤ 4.

Proof. Using estimations of theorem (4.3.1) and decomposition (5.3.7) proof of the above theorem

is completed.

2.4 Mesh Discretization

The classical numerical methods, such as finite difference, finite element, etc. for

singular perturbation problems are incompetent on the uniform mesh because they re-

quire a massive number of mesh points to construct satisfying computational results.

Shishkin [133] proposes a non-uniform mesh, which is also known as the piece-wise

mesh for construction of the parameter uniform method for singular perturbation prob-

lems. The piece-wise mesh is coarse away from the layer region and fine near the layer.

The piece-wise mesh is attractive due to the simplicity and appropriate handling of a wide

range variety of singular perturbation problems. One of the main drawbacks of piece-wise

mesh is that one should know the prior knowledge about the location of the boundary

layer. Since our problem (4.2.1) exhibits the strong boundary layer of parabolic type at

x = 0 and x = 1. So we divide our interval into three subinterval ω1 = [0,σ ], ω2 = [σ ,1−σ ]
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and ω3 = [1−σ ,1], such that

σ = min
{

1
4
,

√
ε

α +β
lnN

}
where σ is called the mesh transition point. Shishkin mesh is built by partitioning the

interval ω2 into
N
2

equidistant mesh point and dividing the interval ω1 and ω2 into
N
4

equidistant mesh points.

The step-size hi is calculated as:

hi =



4σ

N
for i = 1, · · · , N

4

2(1−2σ)

N
for i = N

4 +1, · · · , 3N
4

4σ

N
for i = 3N

4 +1 · · · ,N

(2.4.1)

Where xi is calculated as:

xi =


(i−1)hi for i = 1, · · · , N

4

σ +(i− (
N
4
+1))hi for i = N

4 +1, · · · , 3N
4

1−σ +(i− (
3N
4

+1))hi for i = 3N
4 +1 · · · ,N

(2.4.2)

2.5 Weak Formulation

Consider the Sobolev space H1(ω), space of function defined as

H1(ω) = { f : f and f
′
∈ L2(ω)}. (2.5.1)

Let H1
0 (ω) be the subspace of all function of H1(ω) that vanishes at boundary points x = 0

and x = 1. Let V(ω̄N) is the finite dimensional subspace of H1
0 (ω) of standard piecewise

linear polynomials on given Shishkin mesh ωN condensed at boundary points x = 0 and

x = 1. We shall consider ω̄N = {x0 = 0 < x1 < · · · ,xN = 1} to be the set of mesh points

xi, for some positive integer N. We set hi = xi− xi−1 to be the local step size. The linear
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basis function of V̄ (ω)N is {φi}N−1, φi are given by:

φ(x) =



x− xi−1

hi
for x ∈ [xi−1,xi],

xi+1− x
hi+1

for x ∈ [xi,xi+1],

0 for otherwise.

(2.5.2)

The weak formulation of the problem (4.2.1) can be interpreted as to determine vε ∈

H1
0 (ω), such that

A(vε ,v) = F(v), for all v ∈ H1
0 (ω), (2.5.3)

and condition (4.2.6) provides the uniqueness of weak formulation.

A(vε ,v) =
∫

ω

{εv
′
εv
′
+(vε)tv+a(x)vεv+b(x, t)vε(x, t− τ)v}dx, (2.5.4)

F(v) =
∫

ω

f (x, t)vdx. (2.5.5)

Now we write

vε(x, t) =
N

∑
i=1

Vi(t)φi(x) and vε(x, t− τ) =
N

∑
i=1

Vi(t− τ)φi(x), (2.5.6)

A(vε ,v) =
∫

ω

N

∑
i=1
{εVi(t)φ

′
i (x)φ

′
(x) j +V

′
i (t)φi(x)φ j(x)+a(x)Vi(t)φi(x)φ j(x)

+b(x, t)Vi(t− τ)φi(x)φ j(x)}dx. ∀ j = 1, · · · ,N.

F(v) =
∫

ω

N

∑
j=1

f (x, t)φ j(x)dx.

In matrix notation it can be expressed as:

[
MV

′
(t)+(εK +a(x)M)V (t)+b(x)MV (t− τ) = F(t)

]
. (2.5.7)

Where M = [Mi j]1≤i, j≤N is the mass matrix with elements mi j =
∫

ω
φi(x) φ j(x)dx, K =
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[Ki j]1≤i, j≤N is the stiffness matrix with entries ki j =
∫

ω
φ
′
i (x) φ

′
j(x)dx and F = [Fj]1≤ j≤N is

the vector with entries Fj =
∫

ω
f φ
′
j(x)dx, V (t) is the vector of unknowns Vi(t). Now to solve

delay differential equation (2.5.7) we use backward Euler method.

K =



(hi +hi+1)/hihi+1 −1/hi+1

−1/hi (hi +hi+1)/hihi+1 −1/hi+1 0
. . .

0 −1/hi (hi +hi+1)/hihi+1 −1/hi+1

−1/hi (hi +hi+1)/hihi+1


,

M =



(hi +hi+1)/3 hi+1/6

hi/6 (hi +hi+1)/3 hi+1/6 0
. . .

0 hi/6 (hi +hi+1)/3 hi+1/6

hi/6 (hi +hi+1)/6


.

Backward Euler method: The time domain [0,T ] is descretized by equidistant mesh with

constant step size ∆t as:

∇
M
t = {t0 = 0,∆t, · · · ,(M−1)∆t,M∆t = T}. (2.5.8)

Where ∇M
t is the partition of the time domain with no. of mesh points M in t- direction on

[0,T ] and ∆t satisfies constrains ∆t = τ/k, where k is a positive integer tn = n∆t, n ≥ −k.

Now we define the backward difference as:

δtV =
V n−V n−1

∆t
,

and we discretize the equation (2.5.7) by backward-Euler method for time derivative as:[
M
∆t

+ εK +a(x)M
]

V n = G n, (2.5.9)



68

where G n is as:

G n ≡



M
∆t

V n−1−bn
ψ

n
b +Fn for n = 1, · · · ,k,

M
∆t

V n−1−bnMV n−k+1 +Fn for n = k+1, · · · ,M.

(2.5.10)

2.6 Convergence Analysis

Let us consider the steady-state version of the abstract problem (4.2.1)-(5.1.5):

Lε,xvε =−ε(vε)xx +avε +bvε = f , x ∈ ω, (2.6.1)

vε(0) = vε(1) = 0,

with 0 < ε � 1 and a≥ α and b≥ β on ω and α,β > 0.

The corresponding variational formulae is, find vε ∈ V(ω̄N) such that

A(vε ,v) = ε((vε)x,vx)+(avε ,v)+(bvε ,v) = ( f ,v),

where (., .) is the standard inner-product in L2(ω). Numerical Solution of (2.6.1) is obtain

by using piece-wise linear basis. The above weak formulation is equivalent to the finite

difference scheme using piece-wise linear basis:

[LεV ]i =
−ε

h̄

(
Vi+1−Vi

hi+1
− Vi−Vi−1

hi

)
+

hi

h̄
(ai−1 +bi−1)

6
Vi−1 + (2.6.2)

2(ai +bi)

3
Vi +

hi+1

h̄
(ai+1 +bi+1)

6
Vi+1 =

hi

h̄
fi−1

6
+

2
3

fi

+
hi+1

h̄
fi+1

6
,

V0 = VN = 0, ∀ i = 1, · · · ,N−1.

Where h̄ = hi+hi+1
2 .

For stability of (2.6.1), Let us assume a(x),b(x)∈C 0,a[0,1] and for arbitrary ρ ∈ (0,1). Then

‖uε‖ω ≤
3

(1−ρ)(α +β )
‖Lε,xuε‖ω
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Proof: Clearly the matrix corresponding to the weak formulation are M− Matrix. So by

M−criterion Lε,xu is stable [192, p. 37].

2.6.1 Green’s Function

Let G ∈ H1
0 (ω) be the Green’s function corresponding to the weak formulation A(., .)

with mesh points xi. It satisfies

A(u,G) = u(ς) ∀ u ∈ H1
0 (ω) (2.6.3)

where G ∈ C 2((0,ς)∪ (ς ,1))∩C [0,1] such that

LεG = 0 in (0,ς)∪ (ς ,1) (2.6.4)

Equivalently, using standard basis function in V(ω̄N) and Lε from equation (2.6.2). G can

be written as

[LεG]
j
i = w j

i ,

G0 = GN = 0 ∀ i = 1, · · · ,N−1.

Where wi is the Dirac-delta function defined as:

wi =

h̄−1, i = j,

0 otherwise.

Since Lε,xu is inverse monotone then G≥ 0 and G has the following bound in L1 norm.

Theorem 2.6.1. Let G be the Green function corresponding with the discrete operator Lε,x then

we have the following bound.

‖(a+b)Gi‖1,ω ≤ 1, (2.6.5)

‖Gζ ,i,.‖1,ω ≤ 2(1+ ε(α +β )−1)2

ε(α +β )
, (2.6.6)

‖Gζ ζ ,i‖1,ω ≤ 2ε
−2, ∀ i = 1, · · · ,N−1. (2.6.7)
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Proof: For proof of the above theorem we refer [41, p. 193]

2.6.2 Interpolation Error

Theorem 2.6.2. Let vI
ε(x, tn) be the V(ω̄N) interpolant of the finite element approximation of the

solution vε(x, t) of (2.6.1) on mesh ωN . Then the maximum-norm error satisfies:

‖vI
ε − vε‖ω ≤CN−2(lnN)2 (2.6.8)

where C is a constant independent of ε.

Proof. The estimate is obtain separately on each sub interval ωi = (xi−1− xi). Let us assume any

function z on ωi:

zI = zi−1φi−1 + ziφi,

so it is evident that, on ωi

zI(x)≤max
ωi

z(x)[φi−1(x)+φi(x)],

taking maximum on both sides

| zI(x) |≤max
ωi
| z(x) |, (2.6.9)

and by applying Taylor’s expansion, it is straightforward to see that

|zI(x)− z(x)| ≤Ch2
i max |z

′′
(x)|. (2.6.10)

Now from Theorem (2.3.2) and (2.6.10) on ωi

|vε
I(x)− vε(x)| ≤ Ch2

i max |v
′′
ε(x)|,

≤ C
h2

i
ε
. (2.6.11)
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Also, from (2.6.9), (2.6.10), Theorem (2.3.4) on ω̄i, and from [217, p. 80].

|vε
I(x, tn)− vε(x, tn)| = |rI(x, tn)+ sI

l (x, tn)+ sI
r(x, tn)− r(x, tn)

−sl(x, tn)− sr(x, tn)|,

|vε
I(x, tn)− vε(x, tn)| ≤ |rI(x, tn)− r(x, tn)|+ |sI

l (x, tn)− sl(x, tn)|

+|sI
r(x, tn)− sr(x, tn)|,

|vε
I(x, tn)− vε(x, tn)| ≤ Ch2

i max
ωi
|r
′′
(x, tn)|+2max

ωi
|sl(x, tn)|

+2max
ωi
|sr(x, tn)|,

|vε
I(x, tn)− vε(x, tn)| ≤ C

(
h2

i + e
−xi
√

(α+β )√
ε + e

−
√

(α+β )(1−xi)√
ε

)
.

Case-1 When σ ≥ 1
4 and 1

4 ≤
√

ε

α+β
lnN implies that the mesh is uniform, hence it is clear that

xi− xi−1 = N−1 and ε
−1
2 ≤C lnN and hence from equation (2.6.11) and [133, p. 48].

‖vI
ε − vε‖ω ≤CN−2(lnN)2. (2.6.12)

Case-2 When σ < 1
4 implies σ =

√
ε

α+β
lnN, then the mesh is piece-wise uniform with mesh

spacing hi =
2(1−2σ)

N in [σ ,1−σ ] and hi =
4σ

N in each sub-interval [0,σ ] and[1−σ ,1].

Now in interval [0,σ ] and[1−σ ,1] we have hi = 4
√

ε

α+β

lnN
N hence from (2.6.11). We have

‖vI
ε − vε‖ω ≤CN−2(lnN)2. (2.6.13)

Now in interval [σ ,1−σ ] we have hi =
2(1−2σ)

N .

Theorem 2.6.3. Let vε(x, tn) be the solution of stationary problem (2.6.1) and let V (x, t) be the

numerical approximation of (2.6.1) then,

‖vI
ε −V‖ω ≤CN−2(lnN)2. (2.6.14)

Proof. Let

‖vI
ε −V‖ω = ‖vε − vI

ε + vI
ε −V‖,
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by triangle inequality

‖vI
ε −V‖ω ≤ ‖vε − vI

ε‖+‖vI
ε −V‖, (2.6.15)

where ‖vε − vI
ε‖ω is the interpolation error which is bounded in theorem (3.3.1) as

‖vI
ε − vε‖ω ≤CN−2(lnN)2, (2.6.16)

now to prove the above theorem, it remains to bound the term e = |vI
ε(x, tn)−V (x, tn)| and let

E = f − (a+b)u, then

ei = (EI−E,G)− ((a+b)e)I,G)+
2
3

∫ 1

0
((a+b)eG)I(x)dx. (2.6.17)

We use quadrature to evaluate the integral (a+ b)vε and f . So (a+ b)vε and f are replaced by

their interpolants EI and E = (a+b)vε− f = ε(vε)xx. Hence (EI−E,G) is again the interpolation

error [154] and can be bounded as

|(EI−E,G)| ≤CN−2(lnN)2, (2.6.18)

and from equation (2.6.2)

2
3

∫ 1

0
(((a+b)eG)I− ((a+b)e)I,G)(x)dx =

−1
3 ∑

hi

2
((ak +bk)ekGk

+(ak−1 +bk−1)ek−1Gk−1).

Suppose ρ be the arbitrary small and from equation (4.6.20), (4.6.21) and theorem (4.6.1).

2
3

∫ 1

0
((a+b)eG)I− ((a+b)e)I,G)(x)dx ≤

(
1
2
+

M h
2(α2 +β 2)

)
‖e‖ω ,

≤ (1+ρ)

2
‖e‖ω . (2.6.19)

Hence from equation (4.6.18), (4.6.20) and (4.6.22)

|ei| ≤CN−2(lnN)2 +
(1+κ)

2
‖e‖. (2.6.20)

Now we take maximum over i = 1, · · · ,N−1 in equation (4.6.23) to get the general error bound.
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Using theorem (3.3.1) and from equation (4.6.17), (4.6.20), (4.6.23).

‖vε −V‖ ≤CN−2(lnN)2. (2.6.21)

Theorem 2.6.4. Let vε(x, tn) is exact solution of the continuous problem (4.2.1)-(5.1.5) and V (x, tn)

is the finite element approximation from the space V(ω̄N) of the exact solution vε(x, t) and com-

patibility conditions (2.3.1) are satisfied at the corner points then the corresponding error is:

‖vε −V‖ ≤ [CN−2(lnN)2 +∆t]. (2.6.22)

Proof. Let the error term is denoted by η = vε −V , then the truncation error is denoted by:

[δtη +Lεη ]ni = χ
n
1,i +χ

n
2,i, (2.6.23)

where [χn
1,i] = [Lε,xvε ]

n
i − [LεV ]ni is the truncation error in space and χn

2,i = [δtvε ]
n
i − ∂tvn

εi is the

truncation error in time discretisation.

We prove the above theorem step by step.

First we are going to provide error estimates on interval [0,τ] i.e in this interval time discretisation

parameter n varies from 0 to k. So in interval [0,τ] our discretisation scheme is as:

δtV n
i +Lε,xV n

i =−bn
i ψb(xi, tn− k)+ f n

i , i = 1, · · · ,N−1, n = 1, · · · ,k. (2.6.24)

As a consequence, the truncation error in equation (2.6.24) can be written as follows, as shown

in [191] as:

δtη
n
i +Lεη

n
i = χ

n
1,i +χ

n
2,i, f or (xi, tn) ∈ Q̄, (2.6.25)

where χn
1,i and χn

2,i are same as in equation (5.3.14). With the truncation error partition, the error

η can decomposed as η = φ +ψ , where the function φ n
i is the solution of the corresponding

stationary problem (2.6.1) for each fixed n = 1, · · · ,k as:

Lε,xφ
n
i = χ

n
1,i, for i = 1, · · · ,N−1, (2.6.26)

φ
n
0 = φ

n
N = 0,
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and

[δtψ +Lε,xψ]ni = [δt(η−φ)+Lε,x(η−φ)]ni ,

= δtη
n
i −δtφ

n
i +Lε,xη

n
i −Lε,xφ

n
i ,

= [δtη
n
i +Lε,xη

n
i ]− [δtφ

n
i −Lε,xφ

n
i ] ,

= χ
n
1,i +χ

n
2,i−δtφ

n
i −χ

n
1,i,

= χ
n
2,i−δtφ

n
i .

Now we have

[δtψ +Lε,xψ]ni = χ
n
2,i−δtφ

n
i ; i = 1, · · · ,N−1, (2.6.27)

ψ
n
0 = ψ

n
N = 0, n = 1, · · · ,k

ψ
0
i = −ψ

0
bi.

Now to bound equation (2.6.27), we use theorem (3.3.1), as φ n
i is sequence of the stationary

problem (2.6.1) corresponding to the problem (4.2.1), we bound as

‖φ n‖ω ≤C(N−1 lnN)2, f or all i,n≤ k, (2.6.28)

with the assumption that N−1 �
√

ε and our problem exhibits regular boundary layers of the

parabolic type, the other error component ψ is bounded by using the theroem (2.3.1) and Lin

2007 [155] as

‖ψn‖ω ≤ ‖φ 0‖+C max(‖δtu−ut‖+‖δtφ‖), (2.6.29)

using Taylor’s expansion and theorem (3.3.1)

‖ψn‖ω ≤C(N−1 lnN)2 +C(∆t +max‖δtφ‖).

Now it remains to bound the term δtφ

[Lδtφ ]
n
i = δt χ

n
1,i−δtan

φ
n−1, (2.6.30)
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now a is a function of x only. So

[Lε,xδtφ ]
n
i = δt χ

n
1,i, i = 1, · · · ,N−1

(δtφ)
n
0 = (δtφ)

n
N = 0.

Since φ is a sequence of stationary problem. So by theorem (3.3.1)

‖δtφ
n‖ ≤C(N−1 lnN)2 ∀ n = 1, · · · ,k. (2.6.31)

Now from inequalities (2.6.28), (2.6.29) and (2.6.31). We have the error bound for time-delay

singularly perturbed problem as:

‖vε −V‖ ≤ [CN−2(lnN)2 +∆t]. (2.6.32)

now for interval [τ,T ], we follow the similar argument as in interval [0,τ] and have the following

error estimates:

‖vε −V‖ ≤ [CN−2(lnN)2 +∆t]. (2.6.33)

2.7 Numerical Experiment and Discussion

In this section, two test problems are taken into account, and rigorous comparative

analysis is done. The test problems are solved by using the Galerkin finite element

method over Shishkin mesh for the spatial variable and backward-Euler method on equidis-

tant mesh for time variable. Let η
N,M
ε , and O(N) denote the maximum point-wise error

and rate of convergence (ROC), respectively.

η
N,M
ε = max

(xi,tn)∈Q(N,M)
ε

|vε(xi, tn)−V (xi, tn)|, O(N) = log2

(
η

N,M
ε

η
2N,4M
ε

)
,

where V (xi, tn) and vε(xi, tn) denotes the numerical and exact solution of SPPRD problem

with retarded argument (4.2.1) respectively with M mesh points in temporal direction with

equidistant time-step ∆t and N mesh points in spatial direction. The method proposed in
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this chapter is of order two in space, but only of order one in time. So to accommodate

the two error difference, the number of mesh intervals in space direction N is selected

with respect to the number of M time step so that N = 4
√

M with rounded to the nearest

integer divisible by 4 to assure adequate construction on Shishkin mesh.

Example 2.7.1. Consider the following example of SPPRD problem with retarded argument

[163].


“(vε)t(x, t)− ε(vε)xx(x, t) = 2e−1vε(x, t−1), (x, t) ∈ ω× (0,2],

vε(x, t) = e
(
−t− x√

ε

)
, (x, t) ∈ [0,1]× [−1,0],

vε(0, t) = e(−t), vε(1, t) = e
(
−t− 1√

ε

)
, t ∈ [0,2]”

(2.7.1)

Since the exact solution of the above test problem (5.5.1) is known to us which is vε(x, t) =

e
(
−t− x√

ε

)
. From the exact solution, we can see that there is only one boundary layer at the left

side of the domain Γl , which is of parabolic type.

As example, (5.5.1) has a non-homogeneous boundary condition, so to apply the finite element

method, first the boundary conditions are transformed from non-homogeneous to homogeneous

boundary conditions then, we proceed for approximation.

Let us assume the solution of example (5.5.1) vε(x, t) as:

vε(x, t) = S(x, t)+U∗(x, t),

S(x, t) = A(t)(1− x)+B(t)x,

Now S has to satisfy the boundary condition and we calculate A(t) and B(t) as:

A(t) = e(−t) B(t) = e
(
−t− 1√

ε

)
,

Now

vε(x, t) = e(−t)(1− x)+ e
(
−t− 1√

ε

)
x+U∗(x, t),

(vε)t(x, t) = −e(−t)(1− x)− e
(
−t− 1√

ε

)
x+U∗t (x, t),

(vε)xx(x, t) = U∗xx(x, t).

Putting values of vε(x, t), (vε)t(x, t) and (vε)xx(x, t) in equation (4.8.1). We obtain transformed



77

homogeneous problem as:


U∗t (x, t)− εU∗xx(x, t) = 2e−1U∗(x, t−1)− (1− x)e(−t)− xe

(
−t− 1√

ε

)
,

U∗(x, t) =−e(−t)(1− x)− xe
(
−t− 1√

ε

)
+ e

(
−t− x√

ε

)
,(x, t) ∈ ω̄× [−1,0],

U∗(0, t) = 0, U∗(1, t) = 0, t ∈ [0,2]

(2.7.2)

The maximum point-wise error η
N,M
ε and the ROC O(N) have been calculated by the proposed

scheme for example (5.5.1) and are given in table (2.1) and (4.3) respectively. As we analyse

the numerical results given in table (2.1) and (4.3) for example (5.5.1). It is observed that the

proposed scheme is parameter-uniform convergent.

Number of N mesh points/Number of M mesh points.
ε 32/10 64/40 128/160
100 5.424051e −

04
1.492265e −
04

3.855375e −
05

10−2 3.822828e −
02

1.010200e −
02

2.562070e −
03

10−4 5.905033e −
02

1.610509e −
02

4.334634e −
03

10−6 6.624503e −
02

2.007671e −
02

6.067123e −
03

10−8 6.696112e −
02

2.078518e −
02

6.626397e −
03

Table 2.1: “Maximum point-wise error η
N,M
ε obtained using finite element method for Example

(5.5.1).”

Number of N mesh points/Number of M mesh points.
ε 32/10 64/40 128/160
100 1.8618 1.9525 1.9864
10−2 1.9199 1.9792 1.9947
10−4 1.8744 1.8935 1.5030
10−6 1.7223 1.7264 1.3845
10−8 1.6877 1.6492 1.5110

Table 2.2: “ROC for solution of Example (5.5.1)”
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Figure 2.1: “Log-log plot for maximum point-wise error of the solution of Example (5.5.1).”

Example 2.7.2. Consider the following example of SPPRD problem with retarded argument.
“(vε)t(x, t)− ε(vε)xx(x, t)+ x2vε(x, t)+ vε(x, t−1) = t3, (x, t) ∈ ω× (0,2]

vε(x, t) = 0, (x, t) ∈ [0,1]× [−1,0]

vε(0, t) = vε(1, t) = 0, t ∈ [0,2]”.

(2.7.3)

The exact solution of above test problem (5.5.2) is not available. In order to determine the accuracy

and parameter uniform convergence of the proposed numerical scheme, the double mesh principle

is used by analysing the numerical solution V N,M to the numerical solution V 2N,4M, which is

calculated on the mesh that is two times fine in space direction and four-time as finer in time

direction. The maximum point-wise error η
N,M
ε and the ROC O(N) for example (5.5.2) are given

in table (2.3) and table (2.4) respectively.

Number of N mesh points/Number of M mesh points.
ε 32/10 64/40 128/160
100 5.2417e−03 1.3268e−03 3.4345e−04
10−2 1.3926e−01 3.6468e−02 9.2237e−03
10−4 1.4064e−01 3.6689e−02 9.2574e−03
10−6 1.3981e−01 3.66118e−02 9.2554e−03
10−8 1.3864e−01 3.6545e−02 9.2428e−03

Table 2.3: “Maximum point-wise error η
N,M
ε obtained using finite element method for Example

(5.5.2).”
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Figure 2.2: “Log-log plot for maximum point-wise error of the solution of Example (5.5.2)”.

Number of N mesh points/Number of M mesh points.
ε 32/10 64/40 128/160
100 1.9820 1.9497 1.9966
10−2 1.9330 1.9832 1.9957
10−4 1.9385 1.9866 1.9977
10−6 1.9330 1.9839 1.9938
10−8 1.9235 1.9832 1.9919

Table 2.4: “ROC of the solution of Example (5.5.2).“

2.8 Conclusion

In this chapter, the Galerkin finite element method has been successfully applied to the

SPPRD problems with retarded argument. Parameter uniform convergence is derived in

maximum norm using Green’s function approach. Two linear test problems have been

solved by using propose method. The proposed method is shown to be accurate of order

(O(N−1 lnN)2 +∆t) in maximum norm.
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Figure 2.3: “Numerical solution using finite element method of Example (5.5.2) for ∆t = 0.1 and
N = 32“.



Chapter 3

An Efficient Numerical Method for Solving

Singularly Perturbed Nonlinear Reaction

Diffusion Problems

In this chapter1, a numerical method based on Bernstein polynomial for nonlinear sin-

gularly perturbed reaction-diffusion problems is proposed. The solution of this type of

problem is polluted by a small positive parameter ε along with non-linearity due to which

the solution often shows boundary layers, interior layers, and shock waves that arise due

to non-linearity. The existence and uniqueness of the solution of the said problems are

proved using Nagumo’s condition. Moreover, the convergence analysis is carried out of

the proposed problem in maximum norm. To illustrate the proposed method’s efficiency,

two nonlinear test problems have been taken into account, and a comparative analy-

sis has been done with other existing methods. The proposed method’s approximated

solution seems to be superior or in good agreement with the existing method..

1 “ Khari, K., Kumar, V. An efficient numerical technique for solving nonlinear singularly perturbed reaction
diffusion problem. J Math Chem 60, 1356-1382 (2022). https://doi.org/10.1007/s10910-022-01365-4".
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3.1 Introduction

Whenever a real-life phenomenon is converted into a mathematical model, differen-

tial equation, partial differential equation and system of differential equation plays a vital

role in modelling natural evolution, we primarily try to obtain what is important, retaining

the essential physical quantities and neglecting the negligible ones which involve small

positive parameters. Due to their occurrence in a wide range of applications, the study

of nonlinear singularly perturbed reaction-diffusion (SPNRD) problems has always been

the topic of considerable interest for many mathematicians and engineers. These prob-

lems seem to be of significance to the environmental sciences in analyzing pollution from

manufacturing sources that is entering the atmosphere. These type of problem occurs in

chemical kinetics in catalytic reaction theory. The SPNRD problem models an isothermal

reaction which is catalyzed in a pellet and modelled by equation (3.3.1) [295]. Where the

concentration of reactant is denoted by v and 1√
ε

is called the Thiele module defined by
K
D , K is the reaction rate and D is the diffusion coefficient. In considering these types of

problems, it is essential to acknowledge that the diffusion coefficient of the admixture in

the material may be sufficiently small, resulting in substantial variations of concentration

along with the material depth. Then, the diffusion boundary layers rise. Hence these

type of problems exhibit a singularly perturbed character. The mathematical model of

such problems has a perturbation parameter, which is a small coefficient multiplying the

differential equation’s highest derivatives. Such specific problems rely on a small posi-

tive factor so that the solution changes swiftly in some areas of the domain and changes

gradually in other sections of the domain. The mathematical model for an adiabatic tubu-

lar chemical reactor which processes an irreversible exothermic chemical reaction is also

represented by SPNRD problems. The concentrations of the various chemical species

involved in the reaction can be determined in a simple manner from a knowledge of v.

We rely on the numerical schemes to get the approximate solution of nonlinear systems

by linearizing the nonlinear problems as only few nonlinear systems can be solved ex-

plicitly. On a uniform mesh, the existing numerical technique, such as finite difference,

finite element, spline collocation, etc., gives unsatisfactory results or one has to modify

the local mesh that works fine near the layer region and standard away from the layer

region by designing a suitable layer adaptive mesh.
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The novelty of this chapter is to drive an analytic iterative approximation to nonlinear

singularly perturbed reaction diffusion problems using a Bernstein collocation method

based on Bernstein polynomial and operational matrix. Bernstein polynomials perform a

vital role in numerous mathematics areas, e.g., in approximation theory and computer-

aided geometry design [112]. The Bernstein polynomial method’s main advantage over

the other existing approach is its simplicity of implementation for nonlinear problems. The

key feature of this approach is that it reduces such problem to one of solving the system

of algebraic equation via operational matrices.

Due to the flexibility and ability, the Bernstein collocation method (BCM) has emerged

as a powerful tool to solve linear and nonlinear systems.

The main advantages of this method are i) it provides the approximate solution over the

entire domain while other existing numerical method provide the approximate solution on

the discrete point of the domain, ii) to solve the nonlinear problem, one often use a quasi-

linearization technique to linearize the problem and then solve the linearize problem by

numerical or other existing techniques. Due to linearization of nonlinear problem the ac-

curacy of nonlinear problem somehow degenerate, which may lead to deceptive solution

some time. In this method, we solve the nonlinear problem without linearization. iii) It is

easy to implement.

The chapter is organised as, in Section 3.2 brief sketch of Bernstein collocation method

and auxiliary results are presented. Then in Section 3.3 the existence and uniqueness

of the said problem is carried out. In Section 3.4 the error analysis is done. In Section

3.5, two nonlinear test problems are taken into account to validate the theoretical finding

of the proposed method and a comparative analysis is carried out with the other existing

methods. Section 3.6, contains the conclusion.

3.2 Brief Sketch of the Method

In this section we give some brief sketch and auxiliary results corresponding to our

proposed method.
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3.2.1 Properties of Bernstein polynomial

Generalized form of Bernstein polynomial of mth order on interval [0,1] is defined as

Bi,m(x) =
(

m
i

)
xi(x−1)m−i, 1≤ i≤ m. (3.2.1)

Using Binomial expansion of (x−1)m−i, Bernstein polynomial of mth order reads as:

Bi,m(x) =

(
m
i

)
xi

(
m−i

∑
k=0

(−1)k
(

m− i
k

)
xk

)
, (3.2.2)

=
m−i

∑
k=0

(−1)k
((

m
i

)(
m− i

k

)
xk+i

)
, i = 0,1, · · · ,m. (3.2.3)

Bi,m(x) has the following properties:

1. Bi,m(x) is continuous over interval [0,1],

2. Bi,m(x)≥ 0 ∀ x ∈ [0,1],

3. Sum of Bernstein polynomial is 1 (unity) i.e

m

∑
i=0

Bi,m(x) = 1 x ∈ [0,1]. (3.2.4)

4. Bernstein polynomial Bi,m(x) can be written in form of recursive relation as

Bi,m(x) = (1− x)Bi,m−1(x)+ xBi−1,m−1(x). (3.2.5)

Let ϕ(x) = [B0,m(x),B1,m(x), · · · ,Bm,m(x)]T , then we can write ϕ(x) as:

ϕ(x) = Q×Tm(x). (3.2.6)

Where vector Qi+1 is defined as follows:

Qi+1 =


i times︷ ︸︸ ︷

0,0, · · · ,0,(−1)0
(

m
i

)
,(−1)1

(
m
i

)(
m− i

1

)
, · · ·(−1)m−i

(
m
i

)(
m− i
m− i

) , (3.2.7)
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Tm(x) as

Tm(x) =


1

x
...

xm

 , (3.2.8)

and Q is an (m+1)× (m+1) matrix and written as follows:

Qm(x) =


Q1

Q2
...

Qm+1

 , (3.2.9)

and

ϕ(x) =


B0,m(x)

B1,m(x)
...

Bm,m(x)

 . (3.2.10)

From equation (5.5.1), it is concluded that matrix Q is an invertible matrix as it is an upper

triangular matrix with non zero diagonal entries and determinant |Q|= ∏
i=m
i=0
(m

i

)
.

3.2.2 Operational Matrix for Differentiation

In this subsection a Bernstein operational matrix associated with differentiation is de-

rived. From Eq. (3.2.6) we have

ϕ(x) = Q×Tm(x), (3.2.11)
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and differentiation of ϕ(x) is calculated as:

dϕ(x)
dx

= Qm



0

1

2x
...

mxm−1


, (3.2.12)

the above expression can be written as:

dϕ(x)
dx

= QmΛ
′
X
′
(x). (3.2.13)

Where Λ
′
and X

′
are written as:

Λ
′
=



0 0 · · · 0

1 0 · · · 0

0 2 · · · 0
...

... . . . ...

0 0 · · · m


, (3.2.14)

and

X
′
(x) =



0

1

x
...

xm−1


. (3.2.15)

Now vector X
′
(x) can be expressed in form of Bernstein polynomial basis as Bi,m as

X
′
(x) = ∆∗ϕ(x), where

∆
∗ =



Q−1
1

Q−1
2

Q−1
3
...

Q−1
m


, (3.2.16)
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hence,
dϕ(x)

dx
= QmΛ

′
∆
∗
ϕ(x). (3.2.17)

Where O = QmΛ
′
∆∗ is called the operational matrix of the derivatives. Let us assume that

v(x) is approximated as:

v(x)'V T
ϕ(x), (3.2.18)

Then the differentiation of v(x) in term of operational matrix is defined as:

v(n)(x)'V T
ϕ
(n)(x) =V T On

ϕ(x). (3.2.19)

3.2.3 Operational Matrix of Product

The main concern of this subsection is to explicitly evaluate the product of operational

matrix corresponding to Bernstein polynomial of mth degree operational matrix. Let c be

a column vector of (m+ 1)× 1 and Let C̆ be a (m+ 1)× (m+ 1) product of operational

matrices.

cT
ϕ(x)ϕ(x)T ' ϕ(x)TC̆, (3.2.20)

where ϕ(x) is defined in (3.2.6) and we have cT ϕ(x) = ∑
i=m
i=0 ciBi,m , we rewrite equation

(3.2.20) in form of Bernstein basis as

cT
ϕ(x)ϕ(x)T = cT

ϕ(x)T T
m (x)QT , (3.2.21)

= [cT
ϕ(x),xcT

ϕ(x),x2cT
ϕ(x), · · · ,xmcT

ϕ(x)]QT , (3.2.22)

=
i=m

∑
i=0

[ciBi,m,cixBi,m,cix2Bi,m, · · · ,cixmBi,m]QT . (3.2.23)

Now we evaluate all xkBi,m in term of {Bi,m} for all k, i = 0,1, · · · ,m. Let

ek,i = [e0
k,i,e

1
k,i, · · · ,em

k,i]
T . (3.2.24)

Let D be a (m+1)× (m+1) dual matrix of ϕ(x) such that

D =
∫ 1

0
ϕ(x)ϕ(x)T dx. (3.2.25)



88

Now for i,k = 0,1, · · · ,m we have

eT
k,iϕ(x)' xkBi,m. (3.2.26)

Now we define

ek,i = D−1
[∫ 1

0
xkBi,mB0,m(x),

∫ 1

0
xkBi,mB1,m(x),

∫ 1

0
xkBi,mB2,m(x), · · · ,

∫ 1

0
xkBi,mBm,m(x)

]T

,

(3.2.27)

ek,i = D−1

( (m
i

)
2m+ k+1

)[ (m
0

)(2m+k
i+k

) , (m
1

)( 2m+k
i+k+1

) , · · · , (m
m

)( 2m+k
i+k+m

)]T

, for i,k = 0,1, · · · ,m. (3.2.28)

Let Čm+1 be a (m+ 1)× (m+ 1) matrix of columns vectors [Č1,Č2, · · · ,Čm+1] and Čk+1 is

defined as

Čk+1 = [ek,0,ek,1, · · · ,ek,m]c ∀ k = 0,1, · · · ,m. (3.2.29)

Then from equation (3.2.23)

cT
ϕ(x)ϕ(x)T =



∑
i=m
i=0 ciBi,m

∑
i=m
i=0 cixBi,m

∑
i=m
i=0 cix2Bi,m

...

∑
i=m
i=0 cixmBi,m


QT . (3.2.30)

cT
ϕ(x)ϕ(x)T ' ϕ(x)T [Č1,Č2, · · · ,Čm+1]QT , (3.2.31)

' ϕ(x)TČQT . (3.2.32)

Hence, the operational matrix of product is defined as:

C̆ = ČQT . (3.2.33)
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3.3 Existence and Uniqueness

Consider the following class of singularly perturbed non-linear reaction diffusion prob-

lem. εv′′(x) = g(x,v(x)); x ∈ (0,1) = ω,

v(0) = A, v(1) = B,
(3.3.1)

where ε is singular perturbation parameter with 0 < ε << 1 and g ∈ C∞[0,1]× R. Let

assume that

gu(x,v)> ℑ
2 > 0 ∀(x,v) ∈ ω̄×R. (3.3.2)

Let α(x) and β (x) are two smooth function such that α(x)≤ β (x) and satisfies−εα ′′(x)+g(x,α(x))≤ 0 and − εβ ′′(x)+g(x,β (x))≥ 0

α(0)≤ A≤ β (0), α(1)≤ B≤ β (1),
(3.3.3)

Nagumo condition holds:g(x,v) = O(|v|)2,

as |v| → ∞ ∀ (x,v) ∈ (α,β )× [0,1].
(3.3.4)

Theorem 3.3.1. Condition (5.1.1) and Nagumo condition (5.1.4) provides the existence of solution

v(x) ∈C2[0,1] of problem (3.3.1), satisfying the condition α(x)≤ v(x)≤ β (x) for all x ∈ [0,1].

Proof. Let us write the problem in operator form as:

£v = g(x,v), (3.3.5)

where £ = ε
d2

dx2

£α ≥ g(x,α), and £β ≤ g(x,β ) on [a,b]×R. (3.3.6)

As g is continuous for (x,v)∈ [a,b]×R, which ensure the existence of v(x) s.t. α(x)≤ v(x)≤ β (x)
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and satisfing the boundary value problem (3.3.1).

The proof of the above theorem can be done by using maximum principal [235, 248].

Theorem 3.3.2. Let the function g be continuous with respect to (x,v) and also g belongs to the

class of C1 with respect to v for (x,v) in (α,β )× [0,1] and there exist a positive constant m such

that gv(x,v)≥m > 0 for [0,1]×R. Then for each ε > 0, the problem (3.3.1) has a unique solution

v(x,ε) ∈ [0,1] such that |v(x,ε)| ≤ M
m . Where M = max{max |g(x,0)|,m|B|,m|A|}

Proof. Suppose for x ∈ [0,1],

α(x) =
−M

m
, and β (x) =

M

m
. Then

α(x)≤ β (x), α(0)≤ A≤ β (0), α(1)≤ B≤ β (1).

Applying Taylor’s theorem for some point ζ ∈ (α,0), it is obtained as:

g(x,α,0) = g(x,0,0)+αgv(x,ζ ,0),

g(x,α,0) ≤ g(x,0,0)+αm≤M +m(
−M

m
)≤ 0 =−εα.

Similarly for intermediate point η ∈ (0,β ),

g(x,β ,0) = g(x,0,0)+βgv(x,η ,0),

g(x,β ,0) ≥ g(x,0,0)+βm≥−M +m(
M

m
)≥ 0 =−εβ .

Hence, it follows from Theorem (3.3.1) that for each ε > 0 the problem (3.3.1) has a solution

v(x,ε) on [0,1] satisfying :
−M

m
≤ v(x,ε)≤M

m
. (3.3.7)

The uniqueness of the solution of problem (3.3.1) follows from maximum principle.

3.3.1 Stability of Degenerate Solution

In this subsection we are concern with the existence and stability of solution for problem

(3.3.1). However we only stick with stable solution of the proposed problem. Let z(x) ∈
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C1[a,b] be the solution of equation g(x,v(x)) = g(x,z(x)) in Ω = [a,b]. Then we define

φ0(z) = {(x,v(x) : |v(x)− z(x)| ≤ ψ(x),x ∈Ω}, (3.3.8)

where ψ(x) is defined as

ψ(x) =


|A− z(a)|+ρ for x ∈ [a,a+ρ/2],

ρ for x ∈ [a+ρ,b−ρ],

|B− z(b)|+ρ forx ∈ [b−ρ/2,b].

(3.3.9)

Where ρ be a small positive constant and suppose if A≥ z(a) and B≥ z(b), then we define

φ1(z) = {(x,v(x)) : |v(x)− z(x)| ∈ [0,ψ(x)],x ∈Ω}, (3.3.10)

IIrly if A≤ z(a) and B≤ z(b) then

φ2(z) = {(x,v(x)) : |v(x)− z(x)| ∈ [−ψ(x),0],x ∈Ω}, (3.3.11)

Now we discuss and define the stability for the solution of problem (3.3.1). Let us presume

that g(x,v(x)) has the stated number of continuous partial derivatives w.r.t v(x) in φi, i= 0,1

or 2 and n≥ 2, q≥ 0 be the integers.

Definition 3.3.3. The function z = z(x) be Iq-stable on Ω if ∃ a constant m such that

∂ jg(x,z(x))
∂v j = 0 ∀ x ∈Ω,0≤ j ≤ 2q, (3.3.12)

and
∂ qg(x,z(x))

∂vq ≥ m > 0 in φ0(z). (3.3.13)

Definition 3.3.4. The function z = z(x) be IIn-stable on Ω and A≤ z(a), B≤ z(b) if ∃ a constant

m≥ 0 such that
∂ jg(x,z(x))

∂v j ≥ 0 ∀ x ∈Ω,1≤ j ≤ n−1, (3.3.14)

and
∂ ng(x,z(x))

∂vn ≥ m > 0 in φ1(z). (3.3.15)

Theorem 3.3.1. Let g(x,v(x)) = 0 satisfies definition (3.3.3) i.e have Iq stable solution z = z(x) ∈
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C2(Ω). Then ∃ ε0 > 0 such that 0 < ε < ε0. Then problem (3.3.1) has a solution v(x) = v(x,ε)

which satisfies the following

|v(x)− z(x)| ≤ sl(x)+ sr(x)+Cε
1/(2q+1), (3.3.16)

where sl and sr is defined as

sl =

|A− z(a)|exp(−
√

m/ε(x−a)) if q = 0,

|A− z(a)|[1+ρ|A− z(a)|qε−1/2(x−a)−1/q if q≥ 1.
(3.3.17)

And

sr =

|B− z(b)|exp(−
√

m/ε(b− x)) if q = 0,

|B− z(b)|[1+ρ|B− z(b)|qε−1/2(b− x)−1/q if q≥ 1.
(3.3.18)

where ρ =
√

mq[(q+1)(2q+1)!]−1/2.

Proof. For detail proof [57]

Theorem 3.3.2. Let g(x,v(x)) = 0 satisfies definition (3.3.4) i.e have IIn stable solution z = z(x)∈

C2(Ω) such that z(a)≤ A, z(b)≤ B and z
′′ ≥ 0 in (a,b). Then ∃ ε0 > 0 such that 0 < ε < ε0. Then

problem (3.3.1) has a solution v(x) = v(x,ε) which satisfies the following

0≤ v(x)− z(x)≤ sl(x)+ sr(x)+Cε
1
2 , (3.3.19)

where wl and wr is defined as

wl(x) = (A− z(a))
[
1+(x−a)(A− z(a))

1
2(n−1) ρ1/

√
ε

] −2
n−1

, (3.3.20)

and

wr(x) = (B− z(b))
[
1+(b− x)(B− z(b))

1
2(n−1) ρ1/

√
ε

] −2
n−1

, (3.3.21)

and ρ1 = (n−1)(m
2 (m+1)!)1/2.

Proof. For detail proof [57].
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3.4 Error Analysis

In this section error analysis is carried out in maximum norm of proposed problem

(3.3.1). Let us assume that ε ≤ Ch where C is a positive constant independent. Let us

define the collocation points as x j = x0 +
j

m and h j = x j− x j−1 ∀ j = 0,1, · · · ,m.

First, let us consider the possible cases with g(x,v(x)) as

g(x,v(x)) =


f (x,v(x)),

f (x,v(x))+ p(x)v(x),

f (x,v(x))− p(x)v(x).

(3.4.1)

There only three possible cases associated with g(x,v(x)). In first case g(x,v(x)) is non-

linear function and other two cases are when, linear part is extracted out from g(x,v(x))

with positive and negative signs. Let p(x)≤ |℘|.

Suppose χ =C[0,1] be the Banach space equipped with norm defined as

‖v‖= max
x∈[0,1]

|v(x)|. (3.4.2)

Theorem 3.4.1. Let v(x) is the solution of (3.3.1) and g∈C∞[0,1]×R then we have the following

bound on the derivative of v(x)

|v(i)(x)| ≤ |C(1+ ε
−ie−ℑx/

√
ε + ε

−ieℑ(−1+x)/
√

ε)|, (3.4.3)

for i = 1,2,3.

Proof. For proof of the above theorem see [166].

Theorem 3.4.2. Suppose F ∈ χ and Bm(F ) be a sequence converges to F uniformly, where

Bm(F ) is defined in (3.2.1). Then for any δ ≥ 0 ∃ m such that

‖Bm(F )−F‖ ≤ δ . (3.4.4)

Proof. For detailed proof see [245].
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Theorem 3.4.3. Let F be a bounded and continuous function and F
′′

exist in [0,1], then we have

the following error bound

‖Bm(F )−F‖ ≤ 1
2m

x(1− x)‖F
′′
‖. (3.4.5)

Proof. For detail proof see [201].

Theorem 3.4.4. Let v be the exact solution and vm denotes the approximate solution by BCM.

Suppose nonlinear function g(x,v) satisfies the Lipschitz condition

|g(x,v)−g(x,v?)| ≤L |v− v?|, (3.4.6)

then the error bound for the BCM is given as:

‖v− vm‖ ≤
L℘

8m
‖v
′′
‖. (3.4.7)

where L is known as Lipschitz constant.

Proof. Let

‖v− vm‖= max
x∈[0,1]

|g(x,v(x))−g(x,vm(x))|. (3.4.8)

Case 1. When g(x,v(x)) = f (x,v(x)), then

‖v− vm‖= max
x∈[0,1]

| f (x,v(x))− f (x,vm(x))|, (3.4.9)

now using Lipschitz condition (3.4.6)

‖v− vm‖ ≤L max
x∈[0,1]

|v(x)− vm(x)|, (3.4.10)

now we have approximated v(x) by BCM then we have

‖v− vm‖ ≤L max
x∈[0,1]

|v(x)−Bm(x)|, (3.4.11)
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Now from theorem (3.4.3), we have

‖v− vm‖ ≤
L

2m
max

x∈[0,1]
|x(1− x)|‖v

′′
‖, (3.4.12)

≤ L

8m
‖v
′′
‖, (3.4.13)

Case 2. When g(x,v(x)) = f (x,v(x))+ p(x)v(x), then

‖v− vm‖ = max
x∈[0,1]

| f (x,v(x))+ p(x)v(x)− f (x,vm(x))− p(x)vm(x)|, (3.4.14)

= max
x∈[0,1]

| f (x,v(x))− f (x,vm(x))+ p(x)(v(x)− vm(x))|, (3.4.15)

≤ max
x∈[0,1]

| f (x,v(x))− f (x,vm(x))|+ max
x∈[0,1]

|p(x)||(v(x)− vm(x))|, (3.4.16)

using Lipschitz condition (3.4.6)

‖v− vm‖ ≤L

[
max

x∈[0,1]
|v(x)− vm(x)|+ max

x∈[0,1]
|p(x)||v(x)− vm(x)|

]
. (3.4.17)

Now the proof is straight forward. Using conditions (3.4.11), (3.4.12). We obtain the following

bound

‖v− vm‖ ≤
L℘

8m
‖v
′′
‖, (3.4.18)

Case 3. When g(x,v(x)) = f (x,v(x))− p(x)v(x), The proof is similar and we have

‖v− vm‖ ≤
L℘

8m
‖v
′′
‖. (3.4.19)

3.5 Numerical Results and Discussion

This section analyzes the proposed method’s efficiency and implements the BCM to

solve two nonlinear singularly perturbed reaction-diffusion problems. The proposed method

approximated solution is compared with spline technique [136], B-spline collocation method

[259], a patching approach based on novel combination of variation of iteration and cubic

spline collocation method [162] and a neuro-evolutionary artificial technique [255].

Example 3.5.1. Consider the non-linear problem singularly perturbed problem used as a model
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of Michaelis-Menten process, the model takes the form of an equation describing the rate of

enzymatic reaction in biology [218].

−εv′′(x)− v(x)−1
2− v(x)

+ f (x) = 0, v(0) = v(1) = 0. (3.5.1)

The f (x) of the above problem is calculate so that the exact solution of the above problem is

v(x)= 1− e
−x√

ε +e
−(1−x)√

ε

1+e
−1√

ε

. The approximate solution obtained by BCM and exact solution of example

(3.5.1) for different values of ε are given in tables (3.1) and (3.3). The absolute error calculated

for example (3.5.1) is given in tables (3.2) and (3.6).

ε = 0.1
x v(x) v6(x) v9(x)
0.0 0 0 0
0.1 0.2449922124062 0.244920738131 0.24499155042781
0.2 0.4138523719037 0.4137925266378 0.41385182864694
0.3 0.5236076811362 0.5235555298431 0.52360718596683
0.4 0.5853249820947 0.585276186368 0.58532498209477
0.5 0.6052290251285 0.6051808878855 0.60522857705331
0.6 0.585324982094 0.585276186368 0.58532498209477
0.7 0.5236076811362 0.5235555298431 0.52360718596683
0.8 0.4138523719037 0.4137925266378 0.41385182864694
0.9 0.2449922124062 0.244920738131 0.24499155042781
1.0 0 0 0

Table 3.1: “Comparison between exact solution and the approximate solution for M = 6,9 of
Example (3.5.1) for ε = 0.1."
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Figure 3.1: “Comparison between exact solution and the numerical solution computed by BCM
of Example (3.5.1) for ε = 0.1."
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Figure 3.2: “Comparison between exact solution and the numerical solution computed by BCM
of Example (3.5.1) for ε = 0.01."
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ε = 0.1
x Error for m =

6
Error for m =
9

Error for m =
12

0.0 0.0 0.0 0.0
0.1 7.14743 ×

10−5
6.61978 ×
10−7

7.40155 ×
10−11

0.2 5.98453 ×
10−5

5.43257 ×
10−7

6.41531 ×
10−11

0.3 5.21513 ×
10−5

4.95169 ×
10−7

5.74667 ×
10−11

0.4 4.92528 ×
10−5

4.57111 ×
10−7

5.34776 ×
10−11

0.5 4.81372 ×
10−5

4.48075 ×
10−7

5.21325 ×
10−11

0.6 4.92528 ×
10−5

4.57111 ×
10−7

5.34776 ×
10−11

0.7 5.21513 ×
10−5

4.95169 ×
10−7

5.74667 ×
10−11

0.8 5.98453 ×
10−5

5.43257 ×
10−7

6.41531 ×
10−11

0.9 7.14743 ×
10−5

6.61978 ×
10−7

7.40155 ×
10−11

1.0 0.0 0.0 0.0

Table 3.2: “Absolute error at different iterations of Example (3.5.1) for ε = 0.1."

ε = 0.01
x v(x) v6(x) v9(x) v12(x)
0.0 0.0 0.0 0.0 0.0
0.1 0.632014 0.610778 0.630021 0.631995
0.2 0.864335 0.855949 0.8636 0.864328
0.3 0.949303 0.946408 0.94899 0.9493
0.4 0.979207 0.977815 0.979085 0.979205
0.5 0.986525 0.985572 0.986436 0.986524
0.6 0.979207 0.977815 0.979085 0.979205
0.7 0.949303 0.946408 0.94899 0.9493
0.8 0.864335 0.855949 0.8636 0.864328
0.9 0.632014 0.610778 0.630021 0.631995
1.0 0.0 0.0 0.0 0.0

Table 3.3: “Comparison between exact solution and the approximate solution for M = 6,9,12 of
Example (3.5.1) for ε = 0.01."



99

ε = 0.01
x Error for m =

6
Error for m =
9

Error for m =
12

0.0 0.0 0.0 0
0.1 2.12363 ×

10−2
1.99293 ×
10−3

1.85967 ×
10−5

0.2 8.38674 ×
10−3

7.35248 ×
10−4

7.6668×10−6

0.3 2.89526 ×
10−3

3.13402 ×
10−4

3.01472 ×
10−6

0.4 1.39188 ×
10−3

1.21095 ×
10−4

1.27381 ×
10−6

0.5 9.53085 ×
10−4

8.86043 ×
10−5

8.32789 ×
10−7

0.6 1.39188 ×
10−3

1.21095 ×
10−4

1.27381 ×
10−6

0.7 2.89526 ×
10−3

3.13402 ×
10−4

3.01472 ×
10−6

0.8 8.38674 ×
10−3

7.35248 ×
10−4

7.6668×10−6

0.9 2.12363 ×
10−2

1.99293 ×
10−3

1.85967 ×
10−5

1.0 0.0 0.0 0.0

Table 3.4: “Absolute error at different iterations of Example (3.5.1) for ε = 0.01."

ε = 0.01
x CPU time for

m = 6
CPU time for
m = 9

CPU time for
m = 12

0.0 − − −
0.1 0.000089 0.000065 0.000078
0.2 0.000087 0.00008 0.000092
0.3 0.000109 0.000072 0.000105
0.4 0.000068 0.000067 0.000076
0.5 0.000082 0.000087 0.000086
0.6 0.0001 0.00008 0.000086
0.7 0.000063 0.00007 0.000099
0.8 0.000051 0.000071 0.000085
0.9 0.000083 0.000076 0.000094
1.0 − − −

Table 3.5: “CPU time of table (3.6) of Example (3.5.1) for ε = 0.01."
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ε = 0.001
x Error for m =

9
Error for m =
12

Error for m =
20

0.0 0.0 0.0 0.0
0.1 3.6262×10−2 6.67567 ×

10−3
6.79712 ×
10−5

0.2 1.1625×10−3 3.23463 ×
10−4

2.97539 ×
10−6

0.3 8.158×10−4 2.9402×10−6 1.25976 ×
10−7

0.4 4.31425 ×
10−4

3.59187 ×
10−6

5.29514 ×
10−9

0.5 3.606×10−4 7.67527 ×
10−7

4.26708 ×
10−10

0.6 4.31425 ×
10−4

3.59187 ×
10−6

5.29514 ×
10−9

0.7 8.158×10−4 2.9402×10−6 1.25976 ×
10−7

0.8 1.1625×10−3 3.23463 ×
10−4

2.97539 ×
10−6

0.9 3.6262×10−2 6.67567 ×
10−3

6.79712 ×
10−5

1.0 0.0 0.0 0.0

Table 3.6: “Absolute error at different iterations of Example (3.5.1) for ε = 0.001."

Example 3.5.2. Consider the following non-linear singularly perturbed problem from [136, 162,

255, 259]. This problem can be used to describe a mathematical model of an adiabatic tubular

chemical reactor that processes an irreversible exothermic chemical reaction. Where ε represents

the dimensionless adiabatic temperature. In fact, the steady state temperature of the reaction is

equivalent to a positive solution v.−εv′′+ v+ v2 = e
−2x√

ε

v(0) = 1, v(1) = e
−1√

ε .
(3.5.2)

The exact solution of the above problem is given as: v(x) = e
−x√

ε . The approximate solution ob-

tained by the BCM and the exact solution of example (3.5.2) for different values of ε are given

in tables (3.7) and (3.9). The absolute error calculated for example (3.5.2) is given in tables (3.8)

and (3.10). We have compared the error obtained by the BCM for example (3.5.2) with spline
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technique [136], B-spline collocation method [259], a patching approach based on novel combi-

nation of variation of iteration and cubic spline collocation method [162] and a neuro-evolutionary

artificial technique [255] in table (3.13), (3.14) , (3.12) and (3.11) respectively.

Figure (3.1) and (3.2) depict the comparison between the exact solution and the approximate so-

lution obtained from the proposed method for example (3.5.1) with ε = 0.1 and 0.01 respectively

and Figure (3.3) and (3.4) depict the comparison between the exact solution and the approximate

solution obtained from the proposed method for example (3.5.2) with ε = 0.1 and 0.01 respec-

tively. It is observed in all figures as m increases the approximate solution converges to the exact

solutions, which demonstrate the convergence of our proposed method.

ε = 0.1
x v(x) v6(x) v9(x) v12(x)
0.0 1 1 1 1
0.1 0.728893 0.69735 0.729038 0.728893
0.2 0.531286 0.48428 0.531366 0.531286
0.3 0.387251 0.337681 0.387294 0.387251
0.4 0.282264 0.238303 0.282291 0.282264
0.5 0.205741 0.170761 0.205746 0.205741
0.6 0.149963 0.123527 0.149947 0.149963
0.7 0.109307 0.0889388 0.109276 0.109307
0.8 0.0796732 0.0631934 0.0796146 0.0796732
0.9 0.0580733 0.04635 0.0579722 0.0580733
1.0 0.0423292 0.0423292 0.0423292 0.0423292

Table 3.7: “Comparison between exact solution and the approximate solution for M = 6,9,12 of
Example (3.5.2) for ε = 0.1"
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Figure 3.3: “Comparison between exact solution and the numerical solution computed by BCM
of Example (3.5.2) for ε = 0.1."
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Figure 3.4: “Comparison between exact solution and the numerical solution computed by BCM
of Example (3.5.2) for ε = 0.01."
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ε = 0.1
x Error for m =

6
Error for m =
9

Error for m =
12

0.0 0.0 0.0 0.0
0.1 2.12363 ×

10−2
2.95251 ×
10−7

2.44075 ×
10−10

0.2 8.38674 ×
10−3

1.82323 ×
10−7

1.47531 ×
10−10

0.3 2.89526 ×
10−3

1.37572 ×
10−7

8.51842 ×
10−11

0.4 1.39188 ×
10−3

1.10479 ×
10−7

3.9244 ×
10−11

0.5 9.53085 ×
10−4

1.04473 ×
10−7

6.61762 ×
10−13

0.6 1.39188 ×
10−3

1.10767 ×
10−7

4.05694 ×
10−11

0.7 2.89526 ×
10−3

1.34799 ×
10−7

8.54505 ×
10−11

0.8 8.38674 ×
10−3

1.69239 ×
10−7

1.41512 ×
10−10

0.9 2.12363 ×
10−2

2.46245 ×
10−7

2.16198 ×
10−10

1.0 0.0 0.0 0.0

Table 3.8: “Absolute error at different iterations of Example (3.5.2) for ε = 0.1."

Example 3.5.3. Consider the following non-linear singularly perturbed problem.−εv′′+ v+(v+1)3 =−1

v(0) = 0, v(1) = 0.
(3.5.3)

The exact solution of the above problem is not known. The approximate solution obtained by the

BCM and the absolute error calculated for example (3.5.3) is given in tables (3.15) and (3.16).

As the true solution of problem (3.5.3) is not known to us. So to calculate the error we take a

reference solution computed using m = 20.
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ε = 0.01
x v(x) v6(x) v9(x) v12(x)
0.0 1.0 1.0 1.0 1.0
0.1 0.367879 0.480727 0.389305 0.367897
0.2 0.135335 0.193552 0.140804 0.135341
0.3 0.0497871 0.0587971 0.050756 0.0497889
0.4 0.0183156 0.0125445 0.0193477 0.0183163
0.5 0.00673795 0.00663759 0.00692563 0.00673799
0.6 0.00247875 0.00868034 0.00195098 0.00247826
0.7 0.000911882 0.00203716 0.000678469 0.000910368
0.8 0.000335463 -0.0141669 -

0.00144098
0.00033117

0.9 0.00012341 -0.0250462 -
0.00663395

0.000111523

1.0 0.000045399 0.000045399 0.000045399 0.000045399

Table 3.9: “Comparison between exact solution and the approximate solution for M = 6,9,12 of
Example (3.5.2) for ε = 0.01."

3.6 Conclusion

In this chapter, we have successfully implemented the Bernstein collocation method

for solving SPNRD problems. To solve the nonlinear problems, one often uses a quasi-

linearization technique to linearize the problem and then solve the linearized problem by

numerical or other existing techniques. Due to the linearization of the nonlinear problem,

the approximated solution’s accuracy somehow degenerates, which may leads to decep-

tive solutions sometimes. Here we address this issue and solve the nonlinear problem

without linearization. The proposed method is easy to implement as it changes complex

nonlinear problems to a system of algebraic equation system and can be extended to

even a general class of problems. This method yield a higher level of precision just using

lower degree polynomials without any limiting assumption.
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ε = 0.01
x Error for m =

6
Error for m =
9

Error for m =
12

0.0 0.0 0.0 0.0
0.1 2.12363 ×

10−2
8.44402 ×
10−4

1.7746×10−5

0.2 8.38674 ×
10−3

2.06568 ×
10−4

5.48799 ×
10−6

0.3 2.89526 ×
10−3

8.72922 ×
10−5

1.83925 ×
10−6

0.4 1.39188 ×
10−3

2.73424 ×
10−5

6.16373 ×
10−7

0.5 9.53085 ×
10−4

1.98908 ×
10−5

3.88065 ×
10−8

0.6 1.39188 ×
10−3

1.9252×10−5 4.91776 ×
10−7

0.7 2.89526 ×
10−3

5.62131 ×
10−5

1.51435 ×
10−6

0.8 8.38674 ×
10−3

1.25513 ×
10−4

4.29289 ×
10−6

0.9 2.12363 ×
10−2

4.23724 ×
10−4

1.1887×10−5

1.0 0.0 0.0 0.0

Table 3.10: “Absolute error at different iterations of Example (3.5.2)."

ε = 0.01
x Our proposed method

for m = 12
Method in [255]

0.0 0 0
0.1 1.7746×10−5 1.23×10−4

0.2 5.48799×10−6 4.99×10−5

0.3 1.83925×10−6 7.32×10−5

0.4 6.16373×10−7 5.70×10−5

0.5 3.88065×10−8 6.61×10−5

0.6 4.91776×10−7 6.42×10−5

0.7 1.51435×10−6 5.97×10−5

0.8 4.29289×10−6 7.89×10−5

0.9 1.1887×10−5 6.35×10−5

1.0 0 0

Table 3.11: “Absolute error comparison of proposed method for Example (3.5.2) with neuro-
evolutionary model technique [255]."
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ε = 0.1
Our proposed method for m = 9 Method in [162]
2.95251×10−7 5.0000×10−4

Table 3.12: “Maximum absolute error comparison of proposed method for Example (3.5.2) with
a patching approach Method in [162]."

ε = 1
16 ε = 1

64 ε = 1
128

N Method in
[136]

BCM m =
12

Method in
[136]

BCM m =
12

Method in
[136]

BCM m =
12

32 0.80×10−3 3.2057 ×
10−9

0.93×10−3 2.81829 ×
10−6

0.14×10−3 4.4966 ×
10−5

64 0.15×10−3 3.2057 ×
10−9

0.63×10−3 2.81829 ×
10−6

0.76×10−3 4.4966 ×
10−5

128 0.64×10−4 3.2057 ×
10−9

0.59×10−4 2.81829 ×
10−6

0.25×10−3 4.4966 ×
10−5

256 0.13×10−6 3.2057 ×
10−9

0.10×10−4 2.81829 ×
10−6

0.24×10−4 4.4966 ×
10−5

Table 3.13: “Maximum norm error comparison of proposed method for Example (3.5.2) with
spline technique [136] on piece-wise uniform mesh."

ε = 2−4 ε = 2−6 ε = 2−8

N Method in
[259]

BCM m =
12

Method in
[259]

BCM m =
12

Method in
[259]

BCM m =
12

32 1.81×10−4 3.2057 ×
10−9

7.31×10−4 2.81829 ×
10−6

2.44×10−3 2.81829 ×
10−4

64 4.50×10−5 3.2057 ×
10−9

1.82×10−4 2.81829 ×
10−6

7.31×10−4 2.81829 ×
10−4

128 1.12×10−5 3.2057 ×
10−9

4.53×10−5 2.81829 ×
10−6

1.81×10−4 2.81829 ×
10−4

Table 3.14: “Maximum norm error comparison of proposed method for Example (3.5.2) with
B-spline collocation method [259] on piece-wise uniform mesh".
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ε = 1
x Error for m =

9
Error for m =
12

0.0 0.0 0.0
0.1 4.58387 ×

10−7
1.39753 ×
10−9

0.2 3.9138×10−7 1.25563 ×
10−9

0.3 3.69418 ×
10−7

1.16725 ×
10−9

0.4 3.51124 ×
10−7

1.11688 ×
10−9

0.5 3.47409 ×
10−7

1.10017 ×
10−9

0.6 3.51124 ×
10−7

1.11688 ×
10−9

0.7 3.69418 ×
10−7

1.16725 ×
10−9

0.8 3.9138×10−7 1.25563 ×
10−9

0.9 4.58387 ×
10−7

1.39752 ×
10−9

1.0 0.0 0.0

Table 3.15: “Absolute error at different iterations of Example (3.5.3) for ε = 1."
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ε = 0.1
x Error for m =

9
Error for m =
12

0.0 0.0 0.0
0.1 5.47695 ×

10−4
3.06129 ×
10−5

0.2 3.53802 ×
10−4

2.10407 ×
10−5

0.3 2.7224×10−4 1.58368 ×
10−5

0.4 2.23452 ×
10−4

1.31449 ×
10−5

0.5 2.10797 ×
10−4

1.2301×10−5

0.6 2.23452 ×
10−4

1.31449 ×
10−5

0.7 2.7224×10−4 1.58368 ×
10−5

0.8 3.53802 ×
10−4

2.10407 ×
10−5

0.9 5.47695 ×
10−4

3.06129 ×
10−5

1.0 0.0 0.0

Table 3.16: “ Absolute error at different iterations of Example (3.5.3) for ε = 0.1."



Chapter 4

Galerkin Finite Element Method with

Richardson Extrapolation for Singularly

Perturbed Time Delay Parabolic

Reaction-Diffusion Problem

In this chapter1, a parameter uniform Galerkin finite element method with Richardson

extrapolation in time for numerically approximating singularly perturbed parabolic reac-

tion diffusion problems with retarded argument is proposed. The solution of this class of

problems is polluted by a small positive parameter, due to which the solution of the said

problem exhibits parabolic boundary layers. The spatial variable domain is evaluated by

implementing the finite element method along with piecewise uniform mesh (Shishkin

mesh) to capture the exponential behavior of the solution in the boundary layer region,

and for the time variable author has implemented implicit backward-Euler method with

Richardson extrapolation on equidistant mesh in time direction to attain a good accuracy

along with the higher order convergence. The proposed method is shown to be robust,

efficient, unconditionally stable, and parameter uniform. The error analysis is carried out

1“K. Khari and V. Kumar, Galerkin Finite Element Method with Richardson Extrapolation for Singularly Per-
turbed Time Delay Parabolic Reaction-Diffusion Problem (Communicated) ”
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in maximum norm using Green’s function approach. The proposed method is shown to

be accurate of order [O(N−1 lnN)2+∆t2] in maximum norm. Few numerical examples are

taken into account to validate the theoretical findings.
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4.1 Introduction

Singularly perturbed parabolic partial differential with a time delay (SPPDE) plays an

essential role in converting a natural phenomenon into a mathematical model in which

the system’s response is delayed or depends on past history. Moreover, in most life sci-

ence models, a delay term is inducted when the process needs to be better understood

or there are some hidden variables that cause a time lag. The (SPPDE) problem with the

time delay model’s a more realistic biological and natural phenomenon than the conven-

tional singularly perturbed problems with no delay do. The methodology and dynamics

of (the SPPDE) problem with time delay are utterly different from the conventional partial

differential equations without time lag. The solution of (SPPDE) problem with time delay

is evaluated by ψb(x, t) an initial value function for t− τ < 0 rather than by a simple initial

value function ψb(x, t) as happens in case of singularly perturbed PDEs. These problems

depend on a small positive parameter so that solution varies rapidly in some parts of the

domain and changes slowly in other parts. These phenomena are called boundary layer

phenomena, and this type of problem is called singularly perturbed. Due to their occur-

rence in a wide range of applications, the study of singularly perturbed delay differential

equations has been an area of research over the last decades. A singularly perturbed

delay differential equation is a delay differential equation whose leading derivative has a

small positive parameter multiplied by it, which makes the problems much more complex.

Finding an approximate solution independent of this singular perturbation parameter ε is

very challenging.

The Richardson extrapolation method is used to analyze the numerical solutions of SPP

problems in order to improve the proposed scheme’s rate of convergence and accuracy.

We have shown in this article that in the case of a time-dependent parabolic problem,

the extrapolated approximation for the time variable can be examined irrespective of the

space variable. Diffusion is a natural occurrence that happens all the time. This happens

when molecules move from a high concentration to a low concentration. Contaminant dif-

fusion in porous media, oxygen diffusion in our cells, and other natural processes exist.

In many cases, a reaction happens simultaneously with diffusion, and when these two

equations are coupled, the diffusion equation becomes the reaction-diffusion equation.
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The paper is organized as follows: The continuous model problem is defined in Section

4.2. In Section 4.3, we provide auxiliary results. In Section 4.4, we have defined the

piece-wise uniform mesh (Shishkin mesh) for our continuous problem. The problem is

discretized using Galerkin finite element for the space component and the backward-

Euler method for the time component in Section 4.5. In Section 4.6, we carried out

the stability and error analysis. In Section 4.7, Richardson extrapolation is discussed.

Section 4.8 test problem is taken into account to validate our theoretical results. Finally,

Section 4.9 contains a conclusion.

Notations Through out the paper C denotes the positive constant independent of pa-

rameter ε. We have assumed
√

ε ≤ CN−1 in our analysis. Now ‖v‖ = max
x∈[0,1]

[v] and

‖v‖ω = max
i=1,··· ,N−1

[v] be the discrete and continuous maximum norm respectively.

4.2 Statement of Problem

Consider the following class of SPPRD problems with retarded argument on a rectan-

gular domain. Let Q = ω× (0,T ] , ω = (0,1) and ϒ = ϒl ∪ϒb∪ϒr, where ϒb = ω̄× [−τ,0],

ϒl = {(0, t) : t ∈ [0,T ]} and ϒr = {(1, t) : t ∈ [0,T ]} are the initial boundary condition, left

boundary condition and right boundary condition of the rectangular domain Q respec-

tively.

“(vε)t(x, t)− ε(vε)xx(x, t)+a(x)vε(x, t)+b(x, t)vε(x, t− τ) = f (x, t), (4.2.1)

where (x, t) ∈ Q, subject to the initial condition and boundary conditions given as:


vε(x, t) = ψb(x, t), on (x, t) ∈ ϒb,

vε(x, t) = ψl(t), on (x, t) ∈ ϒl = {(0, t) : t ∈ [0,T ]},

vε(x, t) = ψr(t), on (x, t) ∈ ϒr = {(1, t) : t ∈ [0,T ]}”.

(4.2.2)

The model problem (4.2.1) can be recast as

“(vε)t(x, t)+Lε,xvε(x, t) = F(x, t), (4.2.3)
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Lε,xvε(x, t) =



− ε(vε)xx +a(x)vε(x, t) for x ∈ (0,1),

t ∈ (0,τ],

− ε(vε)xx +a(x)vε(x, t)+b(x, t)vε(x, t− τ) for x ∈ (0,1),

t ∈ (τ,1],

(4.2.4)

and

F(x, t) =

−b(x, t)ψb(x, t− τ)+ f (x, t), for x ∈ (0,1), t ∈ (0,τ],

f (x, t), for x ∈ (0,1), t ∈ (τ,1]”.
(4.2.5)

Here, 0 < ε � 1 is the singular perturbation parameter and τ > 0 be the delay term. The

problem data ψl(t), ψr(t), ψb(x, t), f (x, t), a(x), and b(x, t) are supposed to be sufficiently

smooth, bounded and independent of parameter ε.

a(x)≥ α > 0, b(x, t)≥ β > 0, (x, t) ∈ Q̄. (4.2.6)

Where α and β are the positive constants independent of singular perturbation parameter

ε. As ε → 0 the solution of the problem (4.2.1)-(5.1.5) exhibits boundary layers of equal

width on both ϒl and ϒr boundary points.

4.3 Auxiliary Result and Time Discretization

Theorem 4.3.1. Suppose a(x)∈C 4+µ(ω̄),b(x, t), f (x, t)∈C (4+µ,2+µ/2)(Q̄),ψl, ψr ∈C 3+µ/2([0,T ]),ψb ∈

C (6+µ,3+µ/2)(ϒb),µ ∈ (0,1) and compatibility conditions (2.3.1) of high order at corner points

are satisfied. Then the integer p,q such that 0≤ p+q≤ we have the following estimate:∥∥∥∥∥∂ p+qvε

∂xp∂ tq

∥∥∥∥∥
Q̄

≤ C(1+ ε
−pe

−α(1−x)
ε ,∥∥∥∥∥ ∂ p+qr

∂xp∂ tq

∥∥∥∥∥
Q̄

≤ C(1+ ε
2−p),∥∥∥∥∥ ∂ p+qs

∂xp∂ tq

∥∥∥∥∥ ≤ C(1+ ε
−p/2)e

−(1−x)√
ε .
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Proof. For proof of the above theorm we recommend [163].

Backward-Euler method is implemented for discretization of time derivative and let us

assume

Lε,xvε(x, t) =

− ε
∂ 2

∂x2 +a(x)I for (x, t) ∈ Q−

− ε
∂ 2

∂x2 +(a(x)+b(x))I for (x, t) ∈ Q+
(4.3.1)

and

F(x, t) =

−b(x, t)ψb(x, t− τ)+ f (x, t), for (x, t) ∈ Q−,

f (x, t), for (x, t) ∈ Q+.
(4.3.2)

We discretize the time domain [0,T ] by equidistant mesh with constant step-size ∆t. Let

∇M
t denotes the partition of the time interval [0,T ] with no. of grid points M.

∇
M
t = {t0 = 0,∆t, · · · ,(M−1)∆t,M∆t = T}. (4.3.3)

Where ∆t satisfies constrains ∆t = τ/k, where k is a positive integer tn = n∆t, n≥−k. Now

the backward difference is defined as follows:

δtvε =
vn

ε − vn−1
ε

∆t
,

and the discretized form of the equation (4.3.1) by backward-Euler method for time deriva-

tive is defined as follows:

(∆tLε,x + I)vn
ε = F n, (4.3.4)

where F n is as:

F n ≡



1
∆t

vn−1
ε −bn

ψ
n
b + f n for n = 1, · · · ,k,

1
∆t

vn−1
ε −bnvn−k+1

ε + f n for n = k+1, · · · ,M.

(4.3.5)

Lemma 4.3.1. Suppose vn
ε is the semi-discrete approximation of the exact solution vε(x, t) at nth

time level tn = n∆t and Eq. (4.3.4) satisfies the maximum principle then.

(x, t) ∈ Q−

‖(∆tLε,x + I)−1‖∞ ≤
1

(1+b∆t)
(4.3.6)



115

(x, t) ∈ Q+

‖(∆tLε,x + I)−1‖∞ ≤
1

(1+(b+ c)∆t)
(4.3.7)

Proof. For proof of the above lemma see [196].

Hence the lemma (4.3.1) proves the stability of Euler-scheme for semi-discrete form(4.3.4).

So we get a system of ordinary differential equation in spatial variable x for each time

step nth time step and vn
ε denotes the discretized solution at each time level tn with step

size ∆t. Now we rewrite the obtained ordinary differential equation in more simplified way

as:

When (x, t) ∈ Q−

−ε
∂ 2vn

ε(x)
∂x2 +a(x)vn

ε(x) =
1
∆t

vn−1
ε (x)−bn

ψ
n
b + f n. (4.3.8)

When (x, t) ∈ Q+,

−ε
∂ 2vn

ε(x)
∂x2 +a(x)vn

ε(x) =
1
∆t

vn−1
ε (x)−bnvn−k+1

ε (x)+ f n, (4.3.9)

with boundary conditions:

vn
ε(0) = vn

ε(1) = 0.

4.4 Mesh Discretization

Since our problem (4.2.1) exhibits the strong boundary layer of parabolic type at x = 0

and x = 1. So we divide our interval into three subinterval ω1 = [0,σ ], ω2 = [σ ,1−σ ] and

ω3 = [1−σ ,1], such that

σ = min
{

1
4
,

√
ε

α +β
lnN

}
where σ is called the mesh transition point. Shishkin mesh is built by partitioning the

interval ω2 into
N
2

equidistant mesh point and dividing the interval ω1 and ω2 into
N
4

equidistant mesh points.
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The step-size hi is calculated as:

hi =



4σ

N
for i = 1, · · · , N

4

2(1−2σ)

N
for i = N

4 +1, · · · , 3N
4

4σ

N
for i = 3N

4 +1 · · · ,N

(4.4.1)

Where xi is calculated as:

xi =


(i−1)h(i) for i = 1, · · · , N

4

σ +(i− (
N
4
+1))h(i) for i = N

4 +1, · · · , 3N
4

1−σ +(i− (
3N
4

+1))h(i) for i = 3N
4 +1 · · · ,N

(4.4.2)

4.5 Weak Formulation

Let H1
0 (ω) be the subspace of all function of H1(ω) that vanishes at boundary points

x = 0 and x = 1. Let V(ω̄N) is the finite dimensional subspace of H1
0 (ω) of standard

piecewise linear polynomials on given Shishkin mesh ωN condensed at boundary points

x = 0 and x = 1. We shall consider ω̄N = {x0 = 0 < x1 < · · · ,< xN = 1} to be the set of

mesh points xi, for some positive integer N. We set hi = xi− xi−1 to be the local step size

and h̄ = hi+hi+1
2 . The linear basis function of V̄ (ω)N is {φi}N−1, φi are given by:

φ(x) =



x− xi−1

hi
for x ∈ [xi−1,xi],

xi+1− x
hi+1

for x ∈ [xi,xi+1],

0 for otherwise.

(4.5.1)

The Galerkin weak formulation of the problem (4.2.1) can be interpreted as to determine

vn
ε ∈ H1

0 (ω), such that

A(vn
ε ,v) = F(v), for all v ∈ H1

0 (ω), (4.5.2)

and condition (4.2.6) provides the uniqueness of weak formulation.
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For (x, t) ∈ Q−

A−(vn
ε ,v) =

∫
ω

{ε(vn
ε)
′
v
′
+a(x)vn

εv}dx, (4.5.3)

F−(v) =
∫

ω

{
f (x, tn)v−b(x)ψn

b (x)v+
1
∆t

vn−1
ε (x)v

}
dx. (4.5.4)

For (x, t) ∈ Q+

A+(vn
ε ,v) =

∫
ω

{ε(vn
ε)
′
v
′
+b(x)vn

εv}dx, (4.5.5)

F+(v) =
∫

ω

{
f (x, tn)v−b(x)ψn

b (x)v+
1
∆t

vn+1−k
ε (x)v

}
dx. (4.5.6)

The above Galerkin weak formulation can be expressed in terms of difference scheme

and written as:

LN(vε)i = ε
[
D+(vε)i−D−(vε)i

]
+αiD−(vε)i +βiD+(vε)i + γi(vε)i = F(v) (4.5.7)

Where D+(vε)
n
i and D−(vε)

n
i are defined as

D+(vε)
n
i =

(vε)
n
i+1− (vε)

n
i

hi+1
D−(vε)

n
i =

(vε)
n
i − (vε)

n
i−1

hi
(4.5.8)

4.6 Convergence Analysis

4.6.1 Green’s Function

Let G ∈H1
0 (ω) be the green’s function corresponding to the weak formulation A(., .) with

mesh points xi. It satisfies

A(u,G ) = u(ς) ∀ u ∈ H1
0 (ω) (4.6.1)

where G ∈ C 2((0,ς)∪ (ς ,1))∩C [0,1] such that

LεG = 0 in (0,ς)∪ (ς ,1) (4.6.2)
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Equivalently, using standard basis function in V(ω̄N) and Lε from equation (2.6.2). G can

be written as

[LεG ]
j
i = w j

i ,

G0 = GN = 0 ∀ i = 1, · · · ,N−1.

Where wi is the Dirac-delta function defined as:

wi =

h̄−1, i = j,

0 otherwise.

Since Lε,xu is inverse monotone then G ≥ 0 and G has the following bound in L1 norm.

Theorem 4.6.1. Let G be the green function corresponding with the discrete operator Lε,x then

we have the following bound.

‖(a+b)Gi‖1,ω ≤ 1, (4.6.3)

‖Gζ ,i,.‖1,ω ≤ 2(1+ ε(α +β )−1)2

ε(α +β )
, (4.6.4)

‖Gζ ζ ,i‖1,ω ≤ 2ε
−2, ∀ i = 1, · · · ,N−1. (4.6.5)

Proof: For proof of the above theorem we refer [41, p. 193]

Let Θ = vε(x, tn)−vh
ε(x, tn) be the point-wise error at each time level tn ∀ n = 0,1 · · · ,M and

xi ∈ ω. The point-wise error can be written as:

|vε(x, tn)− vh
ε(x, tn)|= |vε(x, tn)− vI

ε(x, tn)+ vI
ε(x, tn)− vh

ε(x, tn)| (4.6.6)

and

vε(x, tn)− vh
ε(x, tn) = Θ1 +Θ2 (4.6.7)

where Θ1 = vε(x, tn)− vI
ε(x, tn) be the interpolation error and Θ2 = vI

ε(x, tn)− vh
ε(x, tn) repre-

sents the discretization error. So in this section first we are going to prove interpolation

error and then discretization error by using Green’s function.

Theorem 4.6.2. Let vI
ε(x, tn) be the V(ω̄N) linear interpolant of solution vε(x, t) of (2.6.1) on
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mesh ωN . Then we have the following bound:

‖vε − vh
ε‖∞ ≤CN−2(lnN)2, (4.6.8)

where C is a constant independent of ε.

Proof. We first decomposes vε(x, t) into its boundary layer and outer region component. Then,

the interpolation error is evaluate for boundary layer and outer layer component separately. The

interpolation error can be written as:

|Θ1| = |vε(x, tn)− vI
ε(x, tn)|, (4.6.9)

= |r(x, tn)− rI(x, tn)+ s(x, tn)− sI(x, tn)|. (4.6.10)

First, we prove the error for regular region r(x, tn). Recalling theorem (2.3.4) on ω̄i, and from [133,

p. 80]

‖r− rI‖∞ ≤Ch2
i max

ωi
|r
′′
(x, tn)|, (4.6.11)

Here, there are two cases, 1st when 1
4 ≤

ε

α+β
lnN and 2nd when 1

4 ≥
ε

α+β
lnN. So in case 1st

results are straightforward as in this mesh becomes uniform and ε−1 ≤C lnN. In second case the

outer region lies, 0≤ xi ≤ N/2 and σ = ε

α+β
lnN. Then we have the following bound:

‖r− rI‖∞ = max
i=1,··· ,N

max
ωi
|r(x, tn)− rI(x, tn)| ≤CN−2(lnN)2, (4.6.12)

Now it remains to prove the interpolation error for boundary layer (singular) component s(x, tn).

|s(x, tn)− sI(x, tn)|ωi ≤
1
2
|
∫ xi

xi−1

s
′′
(x, tn)(xi− x)(x− xi−1)dx|, (4.6.13)

≤ C|
∫ xi

xi−1

s
′′
(x, tn)(x− xi−1)dx| (4.6.14)

≤ C
(∫ xi

xi−1

|s
′′
(x, tn)|1/2dx

)2

.

≤ C
(∫ xi

xi−1

|s
′′
(x, tn)|1/2dx

)2

.

≤ CN−2(lnN)2.
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Now taking maximum form i = 1, · · · ,N of equation (4.6.15). We have the following bound

‖s− sI‖∞ =CN−2(lnN)2 (4.6.15)

Hence from equation (4.6.15) and (4.6.12) results is proved.

Theorem 4.6.3. Let vε(x, tn) be the solution of stationary problem (2.6.1) and let v(x, t) be the

numerical approximation of (2.6.1) then,

‖vI
ε − vh‖ω ≤CN−2(lnN)2. (4.6.16)

Proof. Let

|Θ|ω = |vε(x, tn)− vI
ε(x, tn)+ vI

ε(x, tn)− vh
ε(x, tn)|

by triangle inequality

‖Θ‖ω ≤ ‖vε − vI
ε‖+‖vI

ε − vh‖, (4.6.17)

where Θ1 = ‖vε − vI
ε‖ω is the interpolation error which is bounded in theorem (3.3.1) as

‖Θ1‖ω ≤CN−2(lnN)2, (4.6.18)

now to prove the above theorem it is remain to bound the term Θ2 = |vI
ε(x, tn)− vh(x, tn)| and we

define

η = F n− (a+b)vn (4.6.19)

then

Θ2 = (η I−η ,G )− ((a+b)e)I,G )+
2
3

∫ 1

0
((a+b)eG )I. (4.6.20)

We use quadrature to evaluate the integral (a+ b)vn
ε and F n. So (a+ b)vn

ε and F n are replaced

by their interpolants η I and η = (a+b)vn
ε −F n = ε(vn

ε)xx. Hence (η I−η ,G ) is again the inter-

polation error [154] and can be bounded as

|(η I−η ,G )| ≤CN−2(lnN)2, (4.6.21)
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and from equation (2.6.2)

2
3

∫ 1

0
(((a+b)eG )I− ((a+b)e)I,G ) =

−1
3 ∑

hi

2
((ak +bk)ekGk

+(ak−1 +bk−1)ek−1Gk−1).

Suppose ρ be the arbitrary small and from equation (4.6.20), (4.6.21) and theorem (4.6.1).

2
3

∫ 1

0
((a+b)eG )I− ((a+b)e)I,G ) ≤

(
1
2
+

Mh
2(α2 +β 2)

)
‖e‖ω ,

≤ (1+ρ)

2
‖e‖ω . (4.6.22)

Hence from equation (4.6.18), (4.6.20) and (4.6.22)

|(Θ2)i| ≤CN−2(lnN)2 +
(1+κ)

2
‖e‖. (4.6.23)

Now we take maximum over i = 1, · · · ,N−1 in equation (4.6.23) to get the general error bound.

Using theorem (3.3.1) and from equation (4.6.17), (4.6.20), (4.6.23).

‖vε − vh‖ ≤CN−2(lnN)2. (4.6.24)

Theorem 4.6.4. Let vε(x, t) is exact solution of the continuous problem (4.2.1)-(5.1.5) and V (x, t)

is the finite element approximation from the space V(ω̄N) of the exact solution vε(x, t) and com-

patibility conditions (2.3.1) are satisfied at the corner points then the corresponding error is:

‖vε −V‖ ≤ [CN−2(lnN)2 +∆t]. (4.6.25)

4.7 Richardson Extrapolation

In this section we have implemented Richardson extrapolation to improve the rate of

convergence of our discrete scheme in time direction. We assume the tensor product of

meshes Q̄N,∆t and Q̄N,∆t/2, which are piecewise uniform in spatial direction and uniform
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step size ∆t and ∆t/2 in time direction respectively.

Q̄,∆t
0 = Q̄N,∆t ∩ Q̄N,∆t/2 (4.7.1)

Let V 1(x, t)∈ Q̄N,∆t and V 2(x, t)∈ Q̄N,∆t/2 be the solution of scheme (4.2.1). Then we define

V EXT (x, t) = 2V 2−V 1,(x, t) (x, t) ∈ Q̄N,∆t . (4.7.2)

Here V EXT denotes the Richardson extrapolation approximation of V which has an im-

proved rate of convergence in time direction. Let V k(x, t) for all (x, t) ∈ Q̄N,∆t/k, k = 1,2 and

the expansion of V k(x, t) is written as:

V k(x, t) =V +2−(k−1)
∆tς(x, t)+Rk(x, t) (4.7.3)

where ς is the residual term which is the solution of the problem:

(
Lε,x +

∂

∂ t

)
ς(x, t) = 2−1 ∂ 2

∂ t2 v(x, t) (4.7.4)

ς(x, t) = 0 for all (x, t) ∈ ∂Q.

Now in order to derive the convergence analysis of the Richardson technique, we have to

derive the convergence analysis of the reminder term Rk(x, t) on Q̄N,∆t/k for k = 1,2. Now(
Lε,x +

∂

∂ t

)
Rk(x, t) =

(
Lε,x +

∂

∂ t

)
(V k− v)−2−(k−1)

(
Lε,x +

∂

∂ t

)
ς(x, t) (4.7.5)

Hence,

Rk(x, t)≤ [CN−2(lnN)2 +∆t2], (4.7.6)

the above estimate yield the error bound of Richardson scheme.

Theorem 4.7.1. Let vε(x, tn) is exact solution of the continuous problem (4.2.1)-(5.1.5) and V EXT (x, tn)

is the finite element approximation from the space V(ω̄N) of the exact solution vε(x, t) and com-

patibility conditions (2.3.1) are satisfied at the corner points then the corresponding error is:

‖vε −V EXT‖ ≤ [CN−2(lnN)2 +∆t2]. (4.7.7)
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4.8 Numerical Experiment and Discussion

In this section, to examine the efficiency of our proposed method few numerical experi-

ment is carried out. Let η
N,M
ε and O(N) denote the maximum point-wise error and rate of

convergence (ROC), respectively.

η
N,M
ε = max

(x j,ti)∈Q(N,M)
ε

‖vε −V‖, O(N) = log2

(
η

N,M
ε

η
2N,4M
ε

)
,

where V (x j, ti) and vε(x j, ti) denotes the numerical and exact solution of SPPRD problem

with retarded argument (4.2.1) respectively with M mesh points in temporal direction with

equidistant time-step ∆t and N mesh points in spatial direction.

Example 4.8.1. Consider the following example of SPPRD problem with retarded argument.

“(vε)t(x, t)− ε(vε)xx(x, t)+ vε(x, t) = vε(x, t−1)+ f (x, t), (x, t) ∈ ω× (0,2],

vε(x, t) = e−t

e−
x√
ε + e−

1−x√
ε

e−
1√
ε +1

− cos2(πx)

 , (x, t) ∈ [0,1]× [−1,0],

vε(0, t) = 0, vε(1, t) = 0, t ∈ [0,2]”

(4.8.1)

Where the exact solution of the above problem is

vε(x, t) = e−t

e−
x√
ε + e−

1−x√
ε

e−
1√
ε +1

− cos2(πx)

 (4.8.2)

The maximum point-wise error η
N,M
ε and the ROC O(N) have been calculated by the proposed

scheme for example (5.5.1) and are given in table (2.1) and (4.3) respectively. As we analyse

the numerical results given in table (4.1) and (4.2) for example (5.5.1). It is observed that the

proposed scheme is parameter-uniform convergent.

4.9 Conclusion

In this chapter, we have successfully implemented Galerkin FEM with Richardson ex-

trapolation for numerically approximating the SPPRD problem with retarded argument.
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Figure 4.1: “Comparison between exact and numerical solution using finite element method of
Example (5.5.1) for M = 40 and N = 64.”
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Figure 4.2: “Comparison between exact and numerical solution using finite element method of
Example (5.5.1) for M = 40 and N = 64.”



125

Number of N mesh points/Number of M mesh points.
ε 32/20 64/40 128/80
20 1.449750e −

03
1.021228e −
03

5.917450e −
04

2−2 3.473786e −
03

1.969669e −
03

1.046272e −
03

2−4 1.452867e −
03

8.433870e −
04

4.523180e −
04

2−6 5.964408e −
03

3.026289e −
03

1.523524e −
03

2−8 1.245321e −
02

6.358727e −
03

3.207173e −
03

2−10 1.753827e −
02

8.963481e −
03

4.519927e −
03

2−12 2.906274e −
02

1.388118e −
02

6.974805e −
03

2−14 3.174558e −
02

1.545738e −
02

7.579147e −
03

2−16 3.069788e −
02

1.490232e −
02

7.222957e −
03

Table 4.1: “Maximum point-wise error η
N,M
ε obtained using finite element method for Example

(5.5.1) before Richardson extrapolation.”

The error analysis is carried out in the discrete maximum norm. The proposed method is

shown to be accurate of order (O(N−1 lnN)2 +∆t2) in maximum norm. The obtained nu-

merical result shows the robustness of the proposed method and validates the theoretical

finding.
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Number of N mesh points/Number of M mesh points.
ε 32/20 64/40 128/80
20 1.058027e −

03
2.643077e −
04

6.642837e −
05

2−2 6.394781e −
04

1.538965e −
04

3.903915e −
05

2−4 4.672427e −
04

1.166427e −
04

2.912724e −
05

2−6 4.291767e −
04

1.072185e −
04

2.676694e −
05

2−8 1.134271e −
03

2.883891e −
04

7.257301e −
05

2−10 3.898567e −
03

1.018128e −
03

2.560283e −
04

2−12 3.992687e −
02

1.136948e −
02

3.120726e −
03

2−14 4.198006e −
02

1.170268e −
02

3.203880e −
03

2−16 4.245185e −
02

1.196698e −
02

3.292116e −
03

Table 4.2: “Maximum point-wise error η
N,M
ε obtained using finite element method for Example

(5.5.1) after Richardson extrapolation.”

Number of N mesh points/Number of M mesh points.
ε 32/10 64/40 128/160
20 2.0011 1.9923 1.9956
2−2 2.0549 1.9790 1.9826
2−4 2.0021 2.0017 2.0012
2−6 2.0010 2.0020 2.0014
2−8 1.9757 1.9905 1.9956
2−10 1.9370 1.9915 1.9881
2−12 1.8122 1.8652 1.8812
2−14 1.8429 1.8689 1.8749
2−16 1.8268 1.8620 1.8631

Table 4.3: “ROC for solution of Example (5.5.1)”
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Figure 4.3: “Comparison between exact and numerical solution using finite element method of
Example (5.5.1) for M = 40 and N = 64.”





Chapter 5

An Iterative Analytic Approximation of

Non-Linear Singularly Perturbed Parabolic

Partial Differential Equations

1 In this chapter a closed-form iterative analytic approximation to a class of nonlinear

singularly perturbed parabolic partial differential equation is developed and analysed for

convergence. We have considered both parabolic reaction diffusion and parabolic con-

vection diffusion type of problems in this chapter. The solution of this class of problem

is polluted by a small dissipative parameter, due to which solution often shows bound-

ary and interior layers. A sequence of approximate analytic solution for the above class

of problems is constructed using Lagrange multiplier approach. Within a general frame

work, the Lagrange multiplier is optimally obtained using variational theory and Liouville-

Green’s transformation. The sequence of approximate analytic solutions so obtained is

proved to converge the exact solution of the problem.

1This work is .. “ Kartikay Khari and Vivek Kumar, An Iterative Analytic Approximation for a Class of Non-
Linear Singularly Perturbed Parabolic Partial Differential Equations (Communicated)".
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The nonlinear singularly perturbed parabolic partial differential equations (NSPPPDEs)

plays an essential role in converting a real life phenomenon into a mathematical model.

The dynamics of NSPPPDEs are utterly different from the conventional nonlinear partial

differential equations. These types of problems depend on a small positive parameter,

which makes the solution varies rapidly in narrow regions of the domain and changes

slowly in rest parts of the domain. This behaviour of the solution in narrow regions is

called layer phenomena and this class of problem is known as singularly perturbed prob-

lems. The problem is singular in such a way that when ε → 0 changes the order of the

differential equation, but the number boundary conditions remain the same, causing the

problem ill-posed. This type of problems occur in oceanography, population dynamic,

generic repression, size dependent cell growth, division modelling, ecology, quantum

physics, chemistry, finance(Black-Schole Equation) and material science.

The designing of computational algorithms for such type of problems burden with diffi-

culties because the solution of the proposed problem is contaminated by a small positive

parameter ε and nonlinear term simultaneously. Since only few nonlinear systems can be

solved explicitly, we rely on numerical techniques by linearizing the nonlinear problems.

To best of our knowledge, till date there is no analytic method (exact or approximate) is

developed to solve the NSPPPDEs. The novelty of this chapter is the development of an

iterative analytic method based on variation of iteration approach to find the approximate

solution of the NSPPPDEs. The Variation of iteration method (VIM) was first developed

by J. H. He [104] in 1999. The VIM is based on a Lagrange’s multiplier developed by

Inokuti et al. [116] in which they constructed adjoint operators and state that Lagrange

multiplier λ is regarded as a Green’s function rather then a constant. In [257] J. L. Ramos

proves that the claim made by Inokuti et al. are indeed correct.

We can drive the VIM method by using Green’s function, method of weighted residuals

and using integration by parts. The best property of VIM method is to drive a closed form

solution of a nonlinear problem without any need of linearization and discretization. Due

to the flexibility and ability, the VIM has emerged as a promising tool to solve non-linear

or complex systems. Consequently, this method was successfully implimented to find the

approximate solution of Hilfer fractional advection diffusion equations with power law ini-

tial condition [5], of reaction diffusion system with fast reversible reaction [4], of wave-like
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and heat-like equations in large domains [89], of delay differential equations [103], of non-

linear singular boundary value problems [150], of the time fractional Fornberg-Whitham

equation [266], of Burger’s flow with fractional derivatives [302], of non-isothermal reac-

tion diffusion model equations in a spherical catalyst [158], of Optical bright and dark

soliton solutions for coupled nonlinear Schrodinger (CNLS) equations [45], to Bratu-like

equation arising in electrospinningand [105], to free vibration analysis of a tapered beam

mounted on two-degree of freedom subsystems [196].

The chapter is organized as follows: The continuous model problem is defined in Sec-

tion 5.1. In Section 5.2, a brief sketch of the method is given. Section 5.3, contains the

solution methodology and optimal value of Lagrange multiplier is evaluated. In Section

5.4 the convergence analysis is carried out . In Section 5.5, one linear and one nonlinear

test problems are taken into account to validate theoretical results obtained in section 5.6

Finally, Section 5.7, contains a conclusion.

5.1 Statement of Problem

5.1.1 Parabolic Reaction Diffusion Problem

Consider the following class of nonlinear singularly perturbed parabolic problem of re-

action diffusion type.

“(vε)t(x, t)− ε(vε)xx(x, t)+ vε(x, t)− f (x, t,v) = 0, (5.1.1)

where (x, t) ∈ (0,1)× (0,1), subject to the initial condition and boundary conditions pre-

scribed as: 
vε(x,0) = ψb(x),

vε(0, t) = ψl(t),

vε(1, t) = ψr(t)”.

(5.1.2)

Where 0 < ε� 1 is a small positive parameter known as singular perturbation parameter.

Let f (x, t,v) be sufficiently smooth and ρ ,ρ̄ be some constant satisfies,

0≤ ρ
2 ≤ fv(x, t,v)≤ ρ̄

2 ∀(x, t,v) ∈ [0,1]× [0,1]×R (5.1.3)
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5.1.2 Parabolic Convection Diffusion Problem

Consider the following class of singularly perturbed parabolic convection dominated

problem.

“(vε)t(x, t)− ε(vε)xx(x, t)+(vε)x(x, t)− f (x, t,v) = 0, (5.1.4)

where (x, t) ∈ (0,1)× (0,1), subject to the initial condition and boundary conditions pre-

scribed as: 
vε(x,0) = ψb(x),

vε(0, t) = ψl(t),

vε(1, t) = ψr(t)”.

(5.1.5)

Where 0 < ε� 1 is a small positive parameter known as singular perturbation parameter.

Let f (x, t,v) be sufficiently smooth and ρ ,ρ̄ be some constant satisfies,

0≤ ρ
2 ≤ fv(x, t,v)≤ ρ̄

2 ∀(x, t,v) ∈ [0,1]× [0,1]×R (5.1.6)

5.2 Variation of Iteration Method

In this section, we have given a brief sketch of variation of iteration method. Consider

a general class non-linear parabolic partial differential equation.

Dv(x, t) = L (v(x, t))+N (v(x, t)) = F . (5.2.1)

Where L and N are the linear and non-linear operator respectively and F (x, t) be the

force term or inhomogeneous term. Then the correction functional associated with (5.2.1)

is defined as:

vn+1(x, t) = vn(x, t)+
∫ t

0
λ (s){L vn(x,s)+N ṽn(x,s)−F (x,s)}ds n≥ 0. (5.2.2)

Where λ be the general Lagrange’s multiplier, which is evaluated optimally [104] by using

variational theory and Liouville-Green transformation. Furthermore, vn denotes the nth

iterative approximation of v and ṽn denotes the restricted variation i.e ˜δvn = 0. After

evaluating the Lagrange’s multiplier λ and choosing an appropriate initial condition v0,
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and using (5.2.2), one obtain the successive approximations vn of solution v(x, t). Hence

the exact solution of the problems (5.2.1) is obtained as

v(x, t) = lim
n→∞

vn(x, t).

5.3 Solution Methodology

5.3.1 Lagrange’s Multiplier for Parabolic Reaction Diffusion Problem

Taking the correction functional in t−direction. The problem (5.1.1) can be expressed

as:

vn+1(x, t) = vn(x, t)+
∫ t

0
λ (s)

(
∂vn(x,s)

∂ s
− ε

∂ 2vn(x,s)
∂x2 + fn(x,s,v)

)
ds,n≥ 0. (5.3.1)

Now let δ ṽn is the restricted variation and the restricted variation of nonlinear source term

is denoted by f̃n(x,s,v).

vn+1(x, t) = vn(x, t)+
∫ t

0
λ (s)

(
∂vn(x,s)

∂ s
− ε

∂ 2ṽn(x,s)
∂x2 + f̃n(x,s,v)

)
ds. (5.3.2)

Using integration by part and restricting the restricted variation term,

vn+1(x, t) = vn(x, t)+ [λ (s)vn(x,s)]
t
s=0−

[
dλ (s)

ds
vn(x,s)

]t

s=0
. (5.3.3)

We recall the variational theory for evaluating Lagrange’s multiplier optimally and applying

variation corresponding to vn and making correction functional stationary i.e. δvn+1 = 0.

δvn+1(x, t) = δvn(x, t)+λ (s)δvn(x, t)−
dλ (s)

ds
δvn(x, t) = 0. (5.3.4)

We obtain the following Euler-Lagrange equation and stationary conditions as:[
dλ (s)

ds

]
s=t

= 0; [1−λ (s)]s=t = 0. (5.3.5)



134

From stationary condition (5.3.5) we obtain the optimal value of Lagrange’s multiplier

λ (s) =−1 (5.3.6)

Now the iteration formulae is written as

vn+1(x, t) = vn(x, t)−
∫ t

0

(
∂vn(x,s)

∂ s
− ε

∂ 2vn(x,s)
∂x2 + fn(x,s,v)

)
ds. (5.3.7)

5.3.2 Lagrange’s Multiplier for Parabolic Convection Diffusion Problem

Taking the correction functional in t−direction. The problem (5.1.4) can be expressed

as:

vn+1(x, t) = vn(x, t)+
∫ t

0
λ (s)

(
∂vn(x,s)

∂ s
− ε

∂ 2vn(x,s)
∂x2 +

∂vn(x,s)
∂x

+ fn(x,s,v)
)

ds,n≥ 0.

(5.3.8)

Now let δ ṽn is the restricted variation and the restricted variation of nonlinear source term

is denoted by f̃n(x,s,v).

vn+1(x, t) = vn(x, t)+
∫ t

0
λ (s)

(
∂vn(x,s)

∂ s
− ε

∂ 2ṽn(x,s)
∂x2 +

∂ ṽn(x,s)
∂x

+ f̃n(x,s,v)
)

ds. (5.3.9)

Using integration by part and restricting the restricted variation term,

vn+1(x, t) = vn(x, t)+ [λ (s)vn(x,s)]
t
s=0−

[
dλ (s)

ds
vn(x,s)

]t

s=0
. (5.3.10)

We recall the variational theory for evaluating Lagrange’s multiplier optimally and applying

variation corresponding to vn and making correction functional stationary i.e. δvn+1 = 0.

δvn+1(x, t) = δvn(x, t)+λ (s)δvn(x, t)−
dλ (s)

ds
δvn(x, t) = 0. (5.3.11)

We obtain the following Euler-Lagrange equation and stationary conditions as:[
dλ (s)

ds

]
s=t

= 0; [1−λ (s)]s=t = 0. (5.3.12)
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From stationary condition (5.3.12) we obtain the optimal value of Lagrange’s multiplier

λ (s) =−1 (5.3.13)

Now the iteration formulae is written as

vn+1(x, t) = vn(x, t)−
∫ t

0

(
∂vn(x,s)

∂ s
− ε

∂ 2vn(x,s)
∂x2 +

∂vn(x,s)
∂x

+ fn(x,s,v)
)

ds. (5.3.14)

5.4 Convergence

Theorem 5.4.1. Let us suppose that χ be a Banach space such that A : χ → χ be the non-linear

mapping and suppose

‖A[v]−A[v̄]‖ ≤ ρ‖v− v̄‖, v, v̄ ∈ χ (5.4.1)

then A has a unique fixed point for ρ < 1. Moreover

vn+1 = A[vn] (5.4.2)

Sequence converges to a fixed point A for any arbitrary choice of v0 ∈ χ ,

‖vk− vl‖ ≤ ‖v1− v0‖
k−2

∑
j=l−1

ρ
j (5.4.3)

Proof. See [233]

The above iteration formulae (5.3.7) generates a sequence < vn(x, t) > . Now we con-

struct the series from variational iteration formulae (5.3.7) as,

v0(x, t)+ [v1(x, t)− v0(x, t)]+ [v2(x, t)− v1(x, t)]+ · · ·+[vn(x, t)− vn−1(x, t)]+ · · · . (5.4.4)

Now let

Sn+1(x, t)= v0(x, t)+[v1(x, t)−v0(x, t)]+[v2(x, t)−v1(x, t)]+· · ·+[vn(x, t)−vn−1(x, t)]= vn(x, t),

(5.4.5)

then we have the following bounds.
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Theorem 5.4.2. Let vn(x, t) ∈ [0,1] be the sequence generated by (5.4.4) with v0 = q(x)c, where

q(x) ∈ C2[0,1] bounded in interval [0,1] and c is an arbitrary constant. Let the optimal value

of Lagrange’s multiplier corresponding to the stationary conditions (5.3.5) belongs to C∞[0,1].

Then the sequence vn convergences to the exact solution to v(x, t) of the problem.

Proof.

|v1(x, t)− v0(x, t)| = |
∫ t

0
λ (s)

(
∂v0(x,s)

∂ s
− ε

∂ 2v0(x,s)
∂x2 + f̃n(x,s,v0)

)
ds|, (5.4.6)

≤
∫ t

0
|λ (s)|

(
‖∂v0(x,s)

∂ s
− ε

∂ 2v0(x,s)
∂x2 ‖+‖ f̃n(x,s,v0)‖

)
ds, (5.4.7)

≤
∫ t

0
|Ai|(‖Bi‖∞ +‖Ci‖∞)ds (5.4.8)

≤ M
∫ t

0
ds, (5.4.9)

≤ Mt. (5.4.10)

Where |Ai|= maxs∈[0,1] |λ (s)|; ‖Bi‖∞ ≤maxi |Bi| and ‖Ci‖∞ ≤maxi |Ci|,

M = max{|Ai|(‖Bi‖∞ +‖Ci‖∞) ,‖Bi‖∞}. (5.4.11)

Similarly ,

|v2(x, t)− v1(x, t)| = |
∫ t

0
λ (s)

(
∂v1(x,s)

∂ s
− ε

∂ 2v1(x,s)
∂x2 + f̃ (x,s,v1)

)
ds|, (5.4.12)

≤
∫ t

0
|λ (s)|

(
‖∂v1(x,s)

∂ s
− ε

∂ 2v1(x,s)
∂x2 ‖+‖ f̃ (x,s,v1)‖

)
ds,(5.4.13)

≤
∫ t

0
|Ai|(‖Bi‖∞ +‖Ci‖∞)ds, (5.4.14)

≤ M2
∫ t

0
sds, (5.4.15)

≤ M2t2

2!
. (5.4.16)
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By mathematical induction,

|vn+1(x, t)− vn(x, t)| = |
∫ t

0
λ (s)

(
∂vn(x,s)

∂ s
− ε

∂ 2vn(x,s)
∂x2 + f̃ (x,s,vn)

)
ds|, (5.4.17)

≤
∫ t

0
|λ (s)|

(
‖∂vn(x,s)

∂ s
− ε

∂ 2vn(x,s)
∂x2 ‖+‖ f̃ (x,s,vn)‖

)
ds,(5.4.18)

≤
∫ t

0
|Ai|(‖Bi‖∞ +‖Ci‖∞)ds, (5.4.19)

≤ Mn+1
∫ t

0
snds, (5.4.20)

≤ Mn+1tn+1

(n+1)!
. (5.4.21)

Hence, for t ∈ [0,1] the series Mntn

n! is uniformly convergent and converges to 0 as n→∞. Therefore

we conclude that the sequence < vn > is uniformly convergent and converges to the exact solution

v(x, t). From above convergence analysis it is concluded that the proposed method is parameter

uniform convergent i.e independent of singular perturbation parameter ε .

Theorem 5.4.3. Let vn(x, t)∈ [0,1] be the sequence generated by (5.3.14) with v0 = q1(x)c1, where

q1(x) ∈C2[0,1] bounded in interval [0,1] and c1 is an arbitrary constant. Let the optimal value

of Lagrange’s multiplier corresponding to the stationary conditions (5.3.12) belongs to C∞[0,1].

Then the sequence vn convergences to the exact solution to v(x, t) of the problem.

Proof. The proof is similar to the theorem (5.4.2).

5.5 Numerical Discussion

In this section, two linear and one non-linear reaction-diffusion test problems are con-

sidered, as well as one linear convection reaction diffusion kind of problem to validate

the theoretical finding and evaluate the mentioned method’s efficiency. The maximum

absolute error is calculated by using the following:

η = ‖v− vn‖ (5.5.1)

The approximate solution at the nth iteration is symbolized by vn. We define

η̂ = max
x=0.1,0.2··· ,0.9

‖η‖ (5.5.2)
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The approximate solution obtained by proposed method for example (5.5.1) and exam-

ple (5.5.2) with ε = 2−4 and 2−6 at 10th and 4th iteration are plotted in Fig. (5.1) and Fig.

(5.5) respectively, which coincide with the exact solutions plotted in Fig. (5.2) and Fig.

(5.6), respectively. The approximate solution computed by proposed method for example

(5.5.1) and example (5.5.2) with ε = 2−10 at 10th and 4th iteration are plotted in Fig. (5.3)

and Fig. (5.7) respectively, which coincide with the exact solutions plotted in Fig. (5.4)

and Fig. (5.8), respectively. From figure (5.1) and (5.3), it is clear that the solution exhibits

the boundary layers at the both boundaries, which corroborate the theoretical property

of the considered test problem (5.5.1). The example (5.5.2) is a time depend second or-

der differential equation, therefore the basic theory of singularly perturbed problem says

that there should be two boundary layers at both the boundaries of spatial domain but

contrary the graphs of the solution of the examples (5.5.2) in figure (5.5) and (5.8) shows

one boundary layer at x = 0. This is happened because the exact solution of the example

(5.5.2) v(x, t) = e−t− x√
ε satisfies the boundary condition v(1, t) = e

(
−t− 1√

ε

)
at x = 1.

The computed results are tabulated in table (5.1) for example (5.5.1) and in table (5.2)

for example (5.5.2). Therefore, from table (5.1) and (5.2) we observe that after further

increases the number of iteration the error term decreases. Hence it is concluded that

the proposed method is convergent and converges to the exact solution.

5.5.1 Reaction-diffusion problem

Example 5.5.1. “Consider the following linear parabolic singularly perturbed reaction diffusion

problem. 

∂v(x,t)
∂ t − ε

∂ 2v(x,t)
∂x2 + v(x, t) = f (x, t),

v(x,0) =

e−
x√
ε + e−

1−x√
ε

e−
1√
ε +1

− cos2(πx)

 , x ∈ [0,1],

v(0, t) = 0, v(1, t) = 0, t ∈ [0,1]

(5.5.3)
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with exact solution

v(x, t) = e−t

e−
x√
ε + e−

1−x√
ε

e−
1√
ε +1

− cos2(πx)

 .” (5.5.4)

Figure 5.1: “Solution Obtained by VIM Method at 10th iteration for ε = 2−4 for Example (5.5.1)."

Figure 5.2: “Exact Solution for ε = 2−4 for Example (5.5.1)."

Example 5.5.2. “Consider the following non-linear parabolic singularly perturbed reaction dif-
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Figure 5.3: “Solution Obtained by VIM Method at 10th iteration for ε = 2−10 for Example
(5.5.1)."

Figure 5.4: “Exact Solution for ε = 2−10 for Example (5.5.1)."
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t ε = 2−4 ε = 2−6 ε = 2−8 ε = 2−12 ε = 2−16

0.2 2.6148 ×
10−12

2.1399 ×
10−13

1.3250 ×
10−13

3.1572 ×
10−15

1.2101 ×
10−14

0.4 6.8904 ×
10−10

4.6791 ×
10−10

2.0960 ×
10−10

8.5420 ×
10−13

9.40137 ×
10−13

0.6 5.9053 ×
10−8

3.9830 ×
10−8

1.7842 ×
10−8

7.2197 ×
10−11

7.8050 ×
10−11

0.8 1.3761 ×
10−6

9.2819 ×
10−7

4.1580 ×
10−7

1.6825 ×
10−9

1.8193 ×
10−9

Table 5.1: “Maximum absolute error η̂ of proposed method for Example (5.5.1) solved for fifth
iteration v5."

fusion equation. 

∂v(x,t)
∂ t − ε

∂ 2v(x,t)
∂x2 + v(x, t)+(v(x, t))2 = e−2t− 2x√

ε − e−t− x√
ε ,

v(x,0) = e
(
− x√

ε

)
, x ∈ [0,1],

v(0, t) = e(−t), v(1, t) = e
(
−t− 1√

ε

)
, t ∈ [0,1]

(5.5.5)

with exact solution

v(x, t) = e−t− x√
ε .” (5.5.6)

Figure 5.5: “Exact Solution v(x, t) for ε = 2−6 for Example (5.5.2)."
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Figure 5.6: “Solution Obtained by VIM Method at 4th iteration for ε = 2−6 for Example (5.5.2)."

Figure 5.7: “Solution Obtained by VIM Method at 4th iteration for ε = 2−10 for Example (5.5.2)."

Figure 5.8: “Exact Solution for ε = 2−10 for Example (5.5.2)."
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t ε = 2−2 ε = 2−4 ε = 2−6 ε = 2−8 ε = 2−10

0.2 3.85497 ×
10−4

1.3886×10−4 2.40926 ×
10−5

2.62891 ×
10−5

1.68401 ×
10−6

0.4 3.56725 ×
10−3

8.5865×10−4 7.28079 ×
10−4

4.24775 ×
10−4

2.53068 ×
10−5

0.6 5.11157 ×
10−3

5.11257 ×
10−3

5.11157 ×
10−3

2.15044 ×
10−3

1.20588 ×
10−4

0.8 2.26075 ×
10−2

2.19989 ×
10−2

1.98954 ×
10−2

6.7509×10−3 3.59495 ×
10−4

Table 5.2: “Maximum absolute error η̂ of proposed method for Example (5.5.2) solved for third
iteration v3."

5.5.2 Convection Reaction-diffusion problem

Example 5.5.3. “Consider the following non-linear parabolic singularly perturbed convection-

reaction diffusion problem.

∂v(x,t)
∂ t − ε

∂ 2v(x,t)
∂x2 + ∂v(x,t)

∂x + v(x, t)+(v(x, t))2 = f (x, t),

v(x,0) = e
(
− x√

ε

)
, x ∈ [0,1],

v(0, t) = e(−t), v(1, t) = e
(
−t− 1√

ε

)
, t ∈ [0,1]

(5.5.7)

with exact solution

v(x, t) = e−t
(

x
(

1− e−1/ε

)
− e−

1−x
ε + e−1/ε

)
.” (5.5.8)

Figure 5.9: “Solution Obtained by VIM Method at 6th iteration for ε = 20 for Example (5.5.3)."
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Figure 5.10: “Exact Solution for ε = 20 for Example (5.5.3)."

Figure 5.11: “Solution Obtained by VIM Method at 6th iteration for ε = 2−4 for Example (5.5.3)."

5.6 Conclusion

The flow of a fluid through a permeable medium is a well-connected topic in oil re-

covery, geo-technical engineering, and shallow groundwater hydrology, among several

others fields. Ground water pollution is a worry for many environmentalists, scientists,

soil and agricultural experts, oceanographers, and biochemists. Several physical prob-

lems in oceanography are modelled using mathematical models including such convec-

tion models, diffusion models, reaction-convection diffusion models, convection-diffusion

models, and so on, which analyse the solute flow in an aquifer / ground water to un-
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Figure 5.12: “Exact Solution for ε = 2−4 for Example (5.5.3)."

Figure 5.13: “Solution Obtained by VIM Method at 6th iteration for ε = 2−8 for Example (5.5.3)."

Figure 5.14: “Solution Obtained by VIM Method at 6th iteration for ε = 2−8 for Example (5.5.3)."
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derstand the physical behaviour of ground water pollution, how it will affect the environ-

ment, and how it will affect human life. The fundamental equations that describe the

kinematic and dynamic interactions among flow parameters, fluid, and medium at any

location within the flow domain under consideration are ordinary differential equations

and partial differential equations. The nonlinear singularly perturbed problems such as

nonlinear singularly perturbed reaction diffusion, singularly perturbed convection diffu-

sion, Navier-stokes equations are all crucial in understanding the mechanics of transport

phenomena in permeable mediums. Many laboratory studies on 1-D fluid flow have been

performed, in which a uniform pressure was applied to the lower edge of the column to

evaluate the fluid flow rate in a uniformly length column packed with porous medium. In

this chapter, we have successfully developed the variational iteration method for solving

NSPPPDEs. In nonlinear problems, one often uses a quasi-linearization technique to

linearize the problem and then solve the linearized problem by numerical or other ex-

isting techniques. Due to the linearization of the nonlinear problem, the approximated

solution’s accuracy somehow degenerates, which leads to deceptive solutions. In this

chapter, an attempt has been made to address such types of issues associated with

NSPPPDEs. The method presented in this chapter seems to be robust, as it maintains

high accuracy concerning the perturbation parameter ε. Unlike numerical approaches,

the proposed method is simple to implement because it does not require either linear

or nonlinear systems of equations. It eliminates the need for time-consuming algebraic

equations, prior simplification, discretion, or linearization, allowing it to greatly reduce the

size of the calculation while maintaining excellent accuracy. We obtain a higher level of

precision just in few iterations without any limiting assumption. The obtained numerical

results appear to be promising and justify the efficiency of the proposed method.



Chapter 6

Summary and Future Scope

6.1 Summary of Results

The thesis is divided into two parts; in the first part, we deal with the singularly per-

turbed delay differential equation. We have developed and implemented finite element

methods to solve such types of problems. We have considered a nonlinear singularly

perturbed differential equation in the second part of the thesis. We rely on the numerical

method through quasilinearization to solve a nonlinear differential equation. In this the-

sis, we have developed and implemented numerical schemes in which we do not need

linearization or discretization of our problem.

6.1.1 Model Problem:1

Singularly Perturbed Parabolic Reaction Diffusion Problem with Time Delay:

“(vε)t(x, t)− ε(vε)xx(x, t)+a(x)vε(x, t)+b(x, t)vε(x, t− τ) = f (x, t), (6.1.1)

where (x, t) ∈ Q, subject to the initial condition and boundary conditions given as:


vε(x, t) = ψb(x, t), on (x, t) ∈ ϒb,

vε(x, t) = ψl(t), on (x, t) ∈ ϒl = {(0, t) : t ∈ [0,T ]},

vε(x, t) = ψr(t), on (x, t) ∈ ϒr = {(1, t) : t ∈ [0,T ]}”.

(6.1.2)

147
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Here, 0 < ε � 1 is the singular perturbation parameter and τ > 0 be the delay term. The

problem data ψl(t), ψr(t), ψb(x, t), f (x, t), a(x), and b(x, t) are supposed to be sufficiently

smooth, bounded and independent of parameter ε.

a(x)≥ α > 0, b(x, t)≥ β > 0, (x, t) ∈ Q̄. (6.1.3)

Where α and β are the positive constants independent of singular perturbation parameter

ε. As ε → 0 the solution of the such problem exhibits boundary layers of equal width on

both ϒl and ϒr boundary points.

6.1.2 Model Problem:2

Singularly Perturbed Non-Linear Reaction Diffusion Problem.“εv′′(x) = g(x,v(x)); x ∈ (0,1) = ω,”

v(0) = A, v(1) = B,
(6.1.4)

where ε is singular perturbation parameter with 0 < ε << 1 and g ∈ C∞[0,1]× R. Let

assume that

gu(x,v)> ℑ
2 > 0 ∀(x,v) ∈ ω̄×R. (6.1.5)

6.1.3 Model Problem:3

Nonlinear Singularly Perturbed Parabolic Reaction Diffusion Problem

“(vε)t(x, t)− ε(vε)xx(x, t)+ vε(x, t)− f (x, t,v) = 0, (6.1.6)

where (x, t) ∈ (0,1)× (0,1), subject to the initial condition and boundary conditions pre-

scribed as: 
vε(x,0) = ψb(x),

vε(0, t) = ψl(t),

vε(1, t) = ψr(t).”

(6.1.7)
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Where 0 < ε� 1 is a small positive parameter known as singular perturbation parameter.

Let f (x, t,v) be sufficiently smooth and ρ ,ρ̄ be some constant satisfies,

0≤ ρ
2 ≤ fv(x, t,v)≤ ρ̄

2 ∀(x, t,v) ∈ [0,1]× [0,1]×R (6.1.8)

6.1.4 Model Problem:4

Singularly Perturbed Parabolic Convection Diffusion Problem Consider the following

class of singularly perturbed parabolic convection dominated problem.

“(vε)t(x, t)− ε(vε)xx(x, t)+(vε)x(x, t)− f (x, t,v) = 0, (6.1.9)

where (x, t) ∈ (0,1)× (0,1), subject to the initial condition and boundary conditions pre-

scribed as: 
vε(x,0) = ψb(x),

vε(0, t) = ψl(t),

vε(1, t) = ψr(t).”

(6.1.10)

Where 0 < ε� 1 is a small positive parameter known as singular perturbation parameter.

Let f (x, t,v) be sufficiently smooth and ρ ,ρ̄ be some constant satisfies,

0≤ ρ
2 ≤ fv(x, t,v)≤ ρ̄

2 ∀(x, t,v) ∈ [0,1]× [0,1]×R (6.1.11)

6.2 Numerical Schemes

Chapter 2 implements a Galerkin finite element method on a singularly perturbed

parabolic partial differential equation with time delay. The convergence analysis is car-

ried out, and the method is found to be robust.

In chapter 3, a Bernstein collocation method is implemented on a Nonlinear singularly

perturbed reaction-diffusion problem. The existence and uniqueness are derived, and

the method is robust.



150

Chapter 4 implements a Galerkin finite element method with Richardson extrapolation

in time on a singularly perturbed parabolic partial differential equation with time delay.

The convergence analysis is carried out, and the method is found to be robust.

In chapter 5, an iterative method known as the variation of iteration method based on

Lagrange’s multiplier is implemented on a nonlinear singularly perturbed parabolic partial

differential equation of both convection-diffusion and reaction-diffusion type. The conver-

gence analysis is carried out, and the method is found to be robust.

6.3 Future Scope

During the development and implementation of the numerical schemes to solve singu-

larly perturbed differential and differential-difference equations, we noticed some issues

that require further investigation. Some of these points and plans for future work are as

follows:

1. Development and analysis of parameter uniform finite element method to 2-D sin-

gularly perturbed parabolic delay differential equation.

2. Development and analysis of operational matrix methods on a piece-wise uniform

mesh to higher dimension singularly perturbed parabolic differential equation with

and without delay.

3. Development and analysis of operational matrix methods on the piece-wise uniform

mesh to the system of coupled singularly perturbed parabolic differential equation

with and without delay.

4. Development and analysis of numerical methods for singularly perturbed turning

point parabolic differential equation with and without delay.

5. With increasing popularity of Caputo types differential equations a future work can

be involved the analysis of the following time fractional singularly perturbed initial
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value problem.

D
ρ

t vε(x, t)− ε
∂v2

ε(x, t)
∂x2 +a(x, t)

∂vε(x, t)
∂x

+b(x, t)vε(x, t− τ) = f (x, t),

where (x, t) ∈ Q, subject to the initial condition and boundary conditions given as:


vε(x, t) = ψb(x, t), on (x, t) ∈ ϒb,

vε(x, t) = ψl(t), on (x, t) ∈ ϒl = {(0, t) : t ∈ [0,T ]},

vε(x, t) = ψr(t), on (x, t) ∈ ϒr = {(1, t) : t ∈ [0,T ]}.

(6.3.1)

Where D
ρ

t is defined as:

D
ρ

t g(x, t) =
1

Γ(1−ρ)

∫ t

s=0
(t− s)−ρ ∂gε(x,s)

∂ s
ds (6.3.2)
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