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ABSTRACT 

 

In pursuit of impeccable software quality, crucial for ensuring customer satisfaction and 

economizing testing efforts, a comprehensive examination of diverse machine learning 

(ML) techniques was undertaken. Leveraging both established and optimized ML 

methodologies on an openly accessible dataset, our research aimed at enhancing model 

performance, particularly in terms of accuracy and precision, surpassing preceding 

studies. Notably, K-means clustering was employed for class label categorization, 

followed by the application of classification models on discerned features. Particle Swarm 

Optimization was instrumental in refining ML models. In our evaluation, we looked at 

various factors such as precision, recall, F-measure, and different performance error 

metrics, as well as using a confusion matrix. Our findings showed that both regular 

machine learning models and enhanced versions performed at their best. Particularly, 

SVM and its enhanced version achieved high accuracy, with the rates of 99.20% 

and 99.91%, respectively. The corresponding accuracy rates for NB, RF and the ensemble 

were it is also impressive with percentages of 94.62, 98.82, and 99%, respectively strong 

performance. Additionally, the enhanced versions of NB and RF achieved accuracy rates 

of 94.62% and 99.72%, respectively. 
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CHAPTER 1 

 

 

1. INTRODUCTION 

1.1 Introduction 

Software testing is part of software development, so it can often require many hours and 

resources. life cycle. Delivering software that is totally error-free and satisfies the needs 

goal of the testing process. To find bugs in software is an expensive way but a necessary 

process. Since testing is quite an expensive process, it increases the overall project 

expense. When errors are accurately predicted early on in the process, the software 

becomes more effective and of higher quality. Accurate defect prediction also helps in 

maintaining the project within budget. 

1.2 Software Fault Prediction 

Software Fault Prediction (SFP) is one of the techniques used to bring about an 

improvement in the quality of software, while at the same time ensuring low testing cost, 

done through the construction of categorization models based on many machine learning 

techniques. In the process of software development and maintenance, SFP has played a 

key role by using ML techniques based on historical data for error prediction, therefore 

enhancing the process with high-quality developed software within a tight schedule in 

order to meet customer expectations. SFP is aimed at the delivery of great quality, reliable 



2 

 

 

 

software and at the same time toward resource utilization optimization made available 

throughout the software development life cycle. 

1.3 Motivation 

As a result, most of the software development organizations would like to estimate and 

minimize the defects to meet the requirements of the customers and save the testing 

efforts. At present, SFP is a promising approach that applies machine-learning techniques 

to develop a classification model—a very effective means for fault estimation. Research 

work has widely been conducted on the diversity of machine-learning methodologies, 

such as Decision Trees, Naïve Bayes, multi-layer perceptron, and Random Forests. 

 

1.4 Objective 

Recent advancements in machine learning have seen the advent of ensembling strategies 

and feature selection approaches such as Principal Component Analysis (PCA). In light of 

the voluminous literature on software metrics for SFP, focusing on the most salient metrics 

proves pragmatic for accurate defect prediction. SFP leverages Software repository data 

from the past to assess the dependability and quality of software modules, with software 

metrics serving as crucial inputs for SFP models. The present study utilizes a publicly 

available dataset from the Promise Repository, comprising data on diverse applications 

investigated in NASA from 2005. Following dataset preprocessing and feature selection, 

K-means clustering facilitates output categorization, followed by the application of 

machine learning techniques such as Support Vector Machine, Naïve Bayes, and Random 

Forest, with and without Swarm Intelligence Optimization. An ensemble approach 
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integrates the results, culminating in a comprehensive analysis and comparison of all 

models against previous studies. Model performance is evaluated over a range of 

parameters, such as precision, performance error metrics precision, F-measure, confusion 

matrix, and recall. 

 

1.5 Thesis Structure 

This study's structure is as follows: In Section 2, relevant prior research in the field of 

software fault prediction is described. Section 3 presents the proposed work and covers 

the dependent and independent datasets.  variables, as well as process and static code 

measurements. Section 4 presents the research methodology, including the performance 

evaluation meter utilized, the statistical test used, the classification and ensemble 

strategies used, and the strategies' implementation. Section 5 displays the results of each 

model employing each classification strategy and ensemble methodology. Bar graphs and 

statistical tests are used in Section 6 to display the results discussed.  
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CHAPTER 2 

 

2. LITERATURE SURVEY 

2.1. Related works 

The basic models had been worked out in the earlier studies by Jinsheng et al. (2014) [21] 

and Yong, L.G., Ying, X.L., and Qiong, Z.C. (2014) [27], but they were conducted to 

support the development of the proposed research based on fundamental methods that 

used machine learning and CART algorithms. From such seminal works, it is quite evident 

that computational models can be used, with specific reference to techniques like CART, 

for the identification of software anomalies. On this history, other researchers then applied 

many others, such as machine learning techniques and decision trees, in accordance to 

Naidu and Geethanjali (2013)[12] and Singh and Chug (2017)[36], which reconfirms the 

constant worth of these techniques in Software Fault Prediction (SFP) applications. 

It was at this time, 2015 up to 2018 that witnessed an increase in developing and/or 

improving innovative approaches to ease the challenges that were associated with the old 

prediction defect prediction methods.  To this Ryad, Arora, Tetarwal, and Sah (2015)[11] 

accorded room for more research by having a clear review of open issues that surrounded 

the establishment of innovative approach. Kumudha and Venkatesan (2016) [15] adapted 

a cost-sensitive radial basis function neural network classifier in order to illustrate the 

relevance of economic efficiency in model training and implementation. Esteves et al. 

(2020) [13] covered the gap between theoretical concepts and practical implications so 
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that thorough insight about machine learning applications in defect prediction could either 

enlarge the field through actionable insight. 

 

Development offers a wider scope for improving the accuracy of prediction by adopting 

more sophisticated techniques and methodologies. Ensemble-based aggregate learning 

methods have been reported in literature earlier for improving the accuracy of prediction. 

Recently, from work conducted by Faseeha et al. (2021), in the literatures reporting on 

such kinds of approaches, greater focus has been found. Hybrid approaches, according to 

Manjula and Florence (2018), combine machine learning approaches with optimization 

approaches suitable for overcoming the challenges intrinsic within defect prediction. This, 

in turn, is likely to lead to an inference whereby the field is going towards forms of 

modeling that are more complex and sophisticated. Further, the deep learning reports of 

Akimova et al. (2021) and convolutional neural networks over control flow graphs by 

Phan, Nguyen, and Bui (2017) reach such an inference. 

 

Examples of this are research on bio-inspired algorithms, like the artificial immune 

network for feature selection by Mumtaz et al. (2021), and further integration with 

predictive analytics through swarm intelligence by Coelho and Guimaraes (2014). Such 

comparative analyses as those of Alsaeedi and Khan (2019) [26] and Herbold, Trautsch, 

and Grabowski (2018) [30] also serve as a benchmark for system performance and at the 

same time test the effectiveness of cross-project defect prediction approaches. 
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Other than algorithmic enhancements, making use of cloud computing also presents an 

effective option for defect prediction systems to acquire better scalability and efficiency; 

this is confirmed by Ali et al. in 2017. Some other significant contributions in the direction 

are a feature selection study in ensemble classification frameworks by Iqbal et al. (2019) 

[10] and a machine learning technique-based detailed analysis of NASA datasets by Iqbal 

et al. (2019) [32]. In total, software defect prediction reviews how the foundation is the 

traditional forms of machine learning; after that, the advanced, hybrid, and bio-inspired 

models are built on that. 

New trends in deep learning, ensemble techniques, and cloud computing are so much finer 

that they have the possibility of shaping up the field further and getting better predictive 

accuracy. This work, along with the other works, contributes to the development of 

sophisticated tools ongoing in the area of software defect prediction for enhancement of 

software quality and reliability. Such integration of methodologies and continuous 

benchmarking of predictive models from diverse classifiers is a requisite for raising the 

state of the art in topic areas, moving the research community incrementally closer to a 

roadmap for future explorations. 

This review of the literature is no exception in those ways methodologies have shaped and 

might point to a number of the future advancements in SFP, a critical area for software 

quality assurance. This collective effort in this area by researchers shows the importance 

of machine learning and its derivatives to ensure that the software defect prediction 

models are precise. 
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CHAPTER 3 

 

3. MODEL DESIGN 

3.1.  Proposed Architecture 

 

 

 

In this regard, integration of this profound development in the field of AI through ML has 

hence come to be imperative for developing an ML-based model for SFP that helps in 

supporting software quality and economizing the expenses related to testing. A 

comprehensive review of literature shows that predicting the defects in software using ML 

Fig 1: Proposed Methodology 
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has a number of challenges because the authors have employed a diverse array of ML 

algorithms across various datasets that result in discrepancies in performance and 

accuracy. This paper attempts to develop a prototype framework of SFP analysis primarily 

working with the cost of tests to reduce and at the same time improve the accuracy of 

systems.To achieve this, we undertake a rigorous analysis of different ML techniques, 

coupled with feature selection and clustering methodologies, aimed at optimizing 

accuracy. Our investigation focuses on attaining superior accuracy utilizing analyzed ML 

algorithms, particularly on the CM1 dataset, known for its lower accuracy across most 

techniques. The proposed model architecture, depicted in Figure 1, embodies the 

culmination of our efforts. Leveraging both established and optimized ML techniques on 

an open dataset, our approach centers on enhancing dataset accuracy vis-à-vis prior 

research. Key components include the utilization of K-means clustering for class label 

categorization, followed by the application of classification models on selected features. 

Particle Swarm Optimization further fine-tunes ML models to achieve optimal 

performance. 

 

3.2. Dataset 

Our study engaged with the CM1 dataset, sourced from the PROMISE Software 

Engineering Repository, which is an integral part of the NASA Metrics Data Program 

(MDP). This particular dataset is associated with a C-language software module designed 

for NASA’s spacecraft instrumentation. It encompasses 498 modules, each exhibiting 22 

unique attributes. A meticulous examination of these modules disclosed that 49 exhibited 
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defects, translating to a defectiveness rate of 9.83%. This finding highlights the criticality 

of implementing stringent quality control protocols, as a substantial fraction of the 

modules failed to meet the prescribed quality benchmarks. Conversely, the defect-free 

status of 449 modules underscores the software’s overall structural integrity and 

operational reliability. These observations are instrumental in advancing the reliability of 

systems that are crucial to mission success, thereby emphasizing the continual evolution 

of software engineering methodologies. 

 

 

 

 

 

Metrics Description

LOC Sum of line in the module

iv(g) Design complexity of each module

ev(g) Essential complexity of each module

N Sum of operators and operands existing in the module

V(g) Cyclomatic complexity of each module

D Difficulties in each module

B Effort approximation

L Program size for each module

V Volume of each module

I Intelligence content

E Error approximation

Locomment Line of comments in each module

Loblank Sum of blank lines in each module

uniq_op Sum of unique operators

uniq_opnd Sum of unique operand

T Time determinist

Branchcount Sum of branch in the software module

total_op Sum of operators

total_opnd Sum of operators

Locodeandcomment Sum of line of code and comments

Defects Details on whether there is existence of defect or not

TABLE 1: Features of the dataset 
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The dataset utilized in our investigation is characterized by a diverse array of metrics, 

which include four McCabe metrics and twelve Halstead measurements, along with 

additional metrics. The McCabe metrics, which are collected at the method level, provide 

a straightforward assessment of programming constructs directly from the source code. 

The Halstead metrics, on the other hand, offer a numerical representation of software 

complexity and can be readily obtained using various software tools. Additionally, the 

dataset is enriched with other metrics such as lines of code and comment counts, 

enhancing our understanding of the software’s complexity and maintainability. This 

multifaceted approach allows for a thorough evaluation of the software’s quality and 

performance. 

 

3.3. Evaluation Metrics 

Evaluation metrics encompass accuracy, performance error metrics precision, F-measure, 

confusion matrix, and recall. analysis. Our rationale for selecting ML techniques is rooted 

in the variability of findings in existing literature, suggesting room for improvement in 

accuracy. Thus, our objective is twofold: to enhance performance and accuracy of 

established ML techniques and meticulously analyze the outcomes for insights and 

advancements in SFP methodologies. 

 

 

 



11 

 

 

 

CHAPTER 4 

 

4. METHODOLOGY 

We have used the following steps: 

1. Acquire process metrics and static code statistics from publicly available sources.  

2. Done some operational processing on the dataset. 

3. Clustered the data using K-mean clustering. 

4. Choose some classification techniques and ensemble techniques. 

5. Used Particle Swarm Optimization on the techniques to compare the results 

6. Select performance evaluation metrics to assess the accuracy of the predictions.  

 

7. Analyzed the performance based on the evaluation metrics. 

 

 

4.1. Preprocessing of the Dataset 

After meticulously scrutinising the dataset, it's evident that standardizing the data to a 

uniform format is essential before applying any machine learning models. With a dataset 

comprising 498 tuples and 22 features, each column exhibits a wide range of values. For 

instance, the 'e' column (representing programming effort) varies from a minimum value 

of 0.0 to a maximum of 1000.0, while the 't' column (representing programming time) 

ranges from 0.0 to 500.0. Similarly, the 'I' column (representing intelligence) spans from 

0.0 to 1.0, indicating considerable diversity among columns. 
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With such clear differences between the columns, this requires that the data be normalized. 

One common way of doing this is as follows: this 'typical scaling' transforms the data in 

such a manner so that it looks similar to a standard normal distribution, at which point fair 

comparisons of features can subsequently be made. It is a statistical sense to obtain the 

standardized value of each observation by the formula Δ = (K - μ) / σ, where: Δ is the 

standardized value K is an observation μ is the mean of sample σ is standard deviation in 

the sample. 

It was also comprehensive when checking through for the missing values on the 

completeness of the dataset and, hence, assured data integrity. The comprehensive test 

showed that there was no null in any tuple of the data set, thus it assures completeness. 

 

 

 
Fig 2: Types of Machine Learning 



13 

 

 

 

4.2. Classification 

Supervised machine learning methods are then applied on data sets having output class 

labels and are divided between training and testing sets. In this paper, the training data set 

comprises 2/3rd of the total and the remaining 1/3rd are assigned to testing. First of all, 

the training data set which involves output class labels are used to learn the model, a step 

which is then followed by testing the unseen data which does not contain the class labels. 

The Machine Learning algorithm within our analysis constitutes mainly three separate 

components for classification: a Linear Support Vector Machine (SVM), Gaussian Naive 

Bayes (NB), and Random Forest (RF). A Stacked Generalization model is also applied to 

combine the results of Naive Bayes as the base model with Support Vector Machine and 

Random Forest as member models. 

 

4.3. Support Vector Machine (SVM) 

The Support Vector Machine model is for two-class classification tasks and treats data 

with special care, showing a lot of efficiency, especially with smaller datasets. The Support 

Vector Machine maximizes the margins separating classes by drawing a line between the 

data points, conflicting with the rationale for the increase in accuracy of the classification 

rule. Our implementation uses linear Support Vector Classifier (SVC) with fixed random 

state of 42. 
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4.4. Naïve Bayes (NB) 

Name predicts it all: Naive in the way it proceeds by making the assumption that the 

occurrence of a certain feature associated with a class is in no way related to the presence 

or absence of other features. Since this makes calculations easier, this in turn helps the 

algorithm to predict easily. Some of the most common variations of NB include: 

1. Gaussian NB: Assumes a Gaussian (Normal) Distribution for Numeric Features. 

2. Multinomial NB: This is to be used when classification will have to assume that 

it's performed with discrete feature counts, even word counts for document 

classification. 

3. Bernoulli Naive Bayes: This model is similar to Multinomial, but it assumes 

binary features; it is often applied in binary text classification problems. 

In contrast, the Naive Bayes algorithm bases on the Bayes theory and classifies data by 

making use of the different probabilities and likelihoods within the datasets. It is 

particularly effective in those phenomena with weak interrelation among the dataset 

attributes. In this work, the Gaussian Naive Bayes classifier is put to work with a fixed 

random state number 42 and standardization. 

4.5. Random Forest 

Random Forest, on the other hand, harnesses ensemble learning principles, amalgamating 

multiple decision trees to refine predictions. By employing 1000 decision trees, our 

Random Forest model optimizes performance, with a fixed random state of 42 to ensure 

reproducibility and consistency. 
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4.6. Ensemble Techniques 

The objective is to aggregate the prediction results of various learning approaches so that 

the overall performance of the decision is enhanced. The ensemble model improves the 

performance of the individual model for example it improves the performance of the 

decision tree by reducing variance in the model. They are classified as either homogeneous 

or heterogeneous ensembles. In a homogeneous ensemble, similar type of learning 

techniques like bagging, boosting, and others are employed. Different types of learning 

techniques are used in heterogeneous ensembles. We built a defect prediction model using 

voting, stacking, bagging, and boosting in this study. Ensemble techniques are machine 

learning methods that combine the predictions of multiple individual models, known as 

base models or weak learners, to improve the overall predictive performance. By 

leveraging the diversity and collective wisdom of multiple models, ensemble techniques 

aim to achieve better generalization, reduce overfitting, and enhance prediction accuracy. 

Fig. 4.2 depicts the categories of ensemble techniques. Among all the applied 

methodologies, the ensemble techniques have been proved to apply across several classes 

of problems. Applications of these methods cut across in machine-learning tasks including 

classification, regression, and anomaly detection. These methods have also demonstrated 

competitive success in both competitions and real-world cases. The selection of a specific 

ensemble technique depends on the problem at hand, data characteristics, and the preferred 

trade-offs between performance and interpretability. 
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4.6.1. Voting 

Voting might be the act of using either multiple models to make the predictions or multiple 

classifiers, and the final decision is made by voting on individual decisions. Voting can 

also be an extra form of ensemble learning that has a goal of increasing the general 

robustness and accuracy of the predictions made. There are two types of voting: 

 

1. Hard Voting 

Hard voting, also known as deterministic voting, considers only the expected class 

labels of models. On the other hand, the final prediction is made based on the most 

Fig 3: Ensemble Learning Techniques 
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occurring label among the predictions. Fig. shows the diagram of the hard voting 

system. 

 

 

 

 

 

2. Soft Voting 

Probabilistic voting or soft voting refers to the class probability, or the confidence 

scores, attributed to the class label by each model. This process, then, aggregates 

Fig 4: Hard Voting 
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the individual models' class probabilities and selects the class label for which the 

average probability is maximum as the final prediction. 

 

 

 

4.6.2. Bagging 

Bagging is a short abbreviation for bootstrap aggregating. It is a machine learning 

ensemble meta-algorithm designed to improve the stability and accuracy of machine 

learning algorithms used in statistical classification and regression. To accomplish a good 

generalization ability, bagging trains multiple models based on various training data 

subsets. It is an effective ensemble learning technique used to boost prediction accuracy 

and stability. 

 

Fig 5: Soft Voting 
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4.6.3. Boosting 

Boosting is a machine learning technique utilized to construct a strong predictive model 

from the combination of a few weak models; these are often termed base learners or weak 

learners. In contrast to bagging, in which the base models are independently trained, 

boosting trains the base models in a sequential adaptive manner, as it trains a new base 

model and puts emphasis on its gradient mainly for those cases where the previous base 

models were misclassified. Boosting is a way to increase predicted accuracy by giving 

higher weights to points that are not well classified. XGBoost, Gradient Boosting, 

Adaboost, and LightGBM are some of the popular boosting algorithms. 

Fig 6: Bagging or Bootstrap Aggregation 
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4.6.4. Stacking  

In machine learning, the term "stacking" describes a method where several models  also 

referred to as base models or learners are combined to enhance prediction outcomes. It is 

an example of ensemble learning, which uses the advantages of various models to produce 

predictions that are more accurate.  

The base models in a stacking ensemble are trained on the same dataset, and a meta-

learner, also known as a stacking model, is used to combine the predictions of the base 

models. The meta-classifiera learns how to effectively integrate the basic models' 

predictions to generate the final prediction. 

 

Fig 7: Boosting 
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4.7. Feature Selection 

The process feature selection is vital to the improvement of prediction models. by 

curtailing the number of features utilized during training and testing phases. In this study, 

we employ the variance inflation factor approach and correlation method to gauge the 

significance of values and assess multicollinearity among features post dataset 

preparation. Features exhibit positive correlation when A rise in one feature is 

accompanied by a surge in others, or vice versa, while no correlation is observed when 

Fig 8: Stacking 
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changes in one feature have no bearing on others. Conversely, negative correlation occurs 

when an increase in one parameter corresponds with a decrease in another, and vice versa.  

 

 

Visualizing the correlation between all features in the dataset, as depicted in Figure 2, 

enables us to discern the top 10 attributes with either negative or negligible associations, 

devoid of class labels. This meticulous selection is underpinned by the imperative of 

reducing computational overhead and circumventing overfitting challenges, thereby 

Fig 9: Feature Correlation 
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bolstering model performance. In our research, we leverage both unsupervised machine 

learning techniques, and supervised machine learning, particularly classification, for 

predictive analysis. This hybrid approach ensures comprehensive coverage and 

effectiveness in addressing the complexities inherent in predictive modeling. 
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CHAPTER 5 

 

5. EXPERIMENTAL RESULT 

 

In this section, the result obtained experimentally using ensemble learning and 

classification algorithms on each of the datasets is presented. The graphical and tabular 

form represents the result based on the CM1 dataset experimentally obtained using 

different ML techniques. There are striking graphical representations developed 

containing comparisons between strategies with insights into the performances of each 

one. Comparisons are also made between optimized and non-optimized methods in both 

strategies. 

 

 

 

 

 

TABLE 2: Metrics for Assessing Classifiers without Optimization 
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Tables 2 and 3 represent all-inclusive evaluation metrics for every ML methods 

investigated after optimization and without optimization, respectively. In the performance 

of all models, there is praiseworthy performance; however, Support Vector Machine and 

its optimized version are far better than all the rest models in both settings. Specifically, 

SVM yields a near-perfect precision value in predicting class 1 observations; as a result 

of misclassification by some class 0 observations, the recall value is slightly less than it 

can be. 

On the other hand, NB gives poor performance, but at least it gives an accuracy rate for 

higher-dimensional data. The same results are also shown by RF and ensemble techniques 

because the technique of RF is using based on the ensemble technique by combining the 

decision trees. The model of RF gives a precision of 100% and an accuracy of 98.7%, a 

TABLE 3: Metrics for Assessing Classifiers with Optimization 
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nice design to make the predictions. The class 1 instances are also predicted in class 0 

while an error in prediction of class 0 is almost negligible. 

Briefly, all the models showed their proficiency, among which SVM and optimized SVM 

gave continuously better results across all the metrics of evaluation. On the other hand, it 

is evident that NB lacks in low-dimensional data sets while RF and ensemble techniques 

show good results, particularly in terms of precision and accuracy. 
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CHAPTER 6 

 

6. RESULT DISCUSSION 

All results for these non-optimized models of machine learning are depicted in Figure 10, 

including the ensemble approach. The best classifying metric is prominently found in 

precision across all algorithms, indicated where each of the models correctly predicts class 

1 instances. However, due to the suitability of handing large quantities of data or high-

dimensional datasets, the performance of the NB model greatly drops in f-measure and 

recall. Both the results of the Random Forest (RF) model and the ensemble are competitive 

with each other, but the Support Vector Machine (SVM) model outperformed by a high 

margin in all the metrics employed to evaluate model performance. 

 

 
Fig 10: Evaluation metrics of all models without optimization. 
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Figure 11 presents the aggregate results of all predictive models utilizing Particle Swarm 

Optimization (PSO). Despite achieving commendable evaluation metrics, including 

precision, all models, including the ensemble technique, exhibit a slight dip in 

performance compared to their unoptimized counterparts. This observation underscores 

the notion that optimization solutions are particularly advantageous when confronted with 

larger datasets. Notably, improvements in f-measure and recall are discernible with 

optimization, suggesting enhanced model performance in scenarios with increased dataset 

sizes. 

 

 

 

 

Fig 11: Evaluation metrics of all models with optimization. 
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In summary, while all models, both with and without optimization, achieve satisfactory 

evaluation metrics, the unoptimized SVM model consistently outshines its counterparts. 

However, optimization solutions, while beneficial for larger datasets, result in a marginal 

reduction in performance across all models, albeit with noticeable improvements in recall 

and f-measure metrics. 
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CHAPTER 7 

 

7. CONCLUSION AND FUTURE SCOPE 

7.1. Conclusion 

A wide range of models have been developed and are being investigated in the field of 

software fault prediction. Many of those identify faulty software codes or programs using 

static code metrics. In this project the efficiency of process metrics or variable have been 

analyzed using classification and ensemble methods merging with Particle Swarm 

Optimization (PSO) on the basis of recall, precision, accuracy, f-measures, bar graphs.

  

It can be concluded that the combined outcomes of any predictive model that makes use 

of Particle Swarm Optimization (PSO). Even though all models—including the ensemble 

technique achieves satisfactory evaluation measures like precision, their performance is 

marginally lower than that of their unoptimized counterparts. 

 

7.2. Future Scope 

Ensemble and classification methods can also be used to examine other process 

parameters. Regression analysis can be used to forecast the number of defects while taking 

into account the same datasets utilized in this study. Rather than bugs, effort or 

maintainability can alternatively be thought of as dependent variables. 
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