

EXPLORING ADVANCED TECHNIQUES AND

ENHANCING SOFTWARE QUALITY

ASSURANCE THROUGH MACHINE

LEARNING-BASED FAULT PREDICTION

Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY

in

Software Engineering
by

Sanket Das

(2K22/SWE/17)

Under the Supervision of

Prof. Ruchika Malhotra

Head of Department (Software Engineering)

Department of Software Engineering

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

June,2024

ii

ACKNOWLEDGEMENTS

I am very thankful to Prof. Ruchika Malhotra (Head of Department, Professor, DTU,

Department of Software Engineering) and all the faculty members of the Department of

Software Engineering at DTU. They all provided us with immense support and guidance

for the project. I would also like to express my gratitude to the University for providing

us with the laboratories, infrastructure, testing facilities and environment which allowed

us to work without any obstructions. I would also like to appreciate the support provided

to us by our lab assistants, seniors and our peer group who aided us with all the knowledge

they had regarding various topics.

 Sanket Das

 2K22/SWE/17

iii

CANDIDATE’S DECLARATION

I Sanket Das, Roll no. 2K22/SWE/17 hereby certify that the work being presented in the

thesis entitled “Exploring Advanced Techniques and Enhancing Software Quality

Assurance Through Machine Learning-Based Fault Prediction” in partial fulfilment

of the requirements for the award of the Degree of Master of Technology submitted by me

to Department of Software Engineering, Delhi Technological University is an authentic

record of my own work carried out during the period from 2022 to 2024 under the

supervision of Professor Ruchika Malhotra.

The matter presented in the thesis has not been submitted by me for the award of any other

degree of this or any other Institute

Place: Delhi Candidate’s Signature

This is to certify that the student has incorporated all the corrections suggested by the

examiners in the thesis and the statement made by the candidate is correct to the best of

our knowledge.

 Signature of Supervisor

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042

v

ABSTRACT

In pursuit of impeccable software quality, crucial for ensuring customer satisfaction and

economizing testing efforts, a comprehensive examination of diverse machine learning

(ML) techniques was undertaken. Leveraging both established and optimized ML

methodologies on an openly accessible dataset, our research aimed at enhancing model

performance, particularly in terms of accuracy and precision, surpassing preceding

studies. Notably, K-means clustering was employed for class label categorization,

followed by the application of classification models on discerned features. Particle Swarm

Optimization was instrumental in refining ML models. In our evaluation, we looked at

various factors such as precision, recall, F-measure, and different performance error

metrics, as well as using a confusion matrix. Our findings showed that both regular

machine learning models and enhanced versions performed at their best. Particularly,

SVM and its enhanced version achieved high accuracy, with the rates of 99.20%

and 99.91%, respectively. The corresponding accuracy rates for NB, RF and the ensemble

were it is also impressive with percentages of 94.62, 98.82, and 99%, respectively strong

performance. Additionally, the enhanced versions of NB and RF achieved accuracy rates

of 94.62% and 99.72%, respectively.

vi

CONTENTS

ACKNOWLEDGEMENTS .. ii

CANDIDATE’S DECLARATION.. iii

CERTIFICATE BY THE SUPERVISOR(s) ... iv

ABSTRACT .. v

CONTENTS ... vi

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

LIST OF ABBREVIATIONS .. x

CHAPTER 1 ... 1

1. INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Software Fault Prediction ... 1

1.3 Motivation ... 2

1.4 Objective ... 2

1.5 Thesis Structure .. 3

CHAPTER 2 ... 4

2. LITERATURE SURVEY ... 4

2.1. Related works .. 4

CHAPTER 3 ... 7

3. MODEL DESIGN .. 7

3.1. Proposed Architecture ... 7

 .. 7

3.2. Dataset ... 8

3.3. Evaluation Metrics ... 10

CHAPTER 4 ... 11

4. METHODOLOGY ... 11

4.1. Preprocessing of the Dataset .. 11

vii

4.2. Classification ... 13

4.3. Support Vector Machine (SVM) .. 13

4.4. Naïve Bayes (NB) .. 14

4.5. Random Forest ... 14

4.6. Ensemble Techniques... 15

4.7. Feature Selection.. 21

CHAPTER 5 ... 24

5. EXPERIMENTAL RESULT .. 24

CHAPTER 6 ... 27

6. RESULT DISCUSSION ... 27

CHAPTER 7 ... 30

7. CONCLUSION AND FUTURE SCOPE ... 30

7.1. Conclusion ... 30

7.2. Future Scope .. 30

REFERNCES ... 31

viii

LIST OF FIGURES

 FIGURE NAME PAGE NUMBER

Fig 1: Proposed Methodology 16

Fig 2: Types of Machine Learning 21

Fig 3: Ensemble Learning Techniques 25

Fig 4: Hard Voting 26

Fig 5: Soft Voting 27

Fig 6: Bagging or Bootstrap Aggregation 28

Fig 7: Boosting 29

Fig 8: Stacking 30

Fig 9: Feature Correlation 31

Fig 10: Evaluation metrics of all models without optimization. 36

Fig 11: Evaluation metrics of all models with optimization 37

ix

LIST OF TABLES

TABLE NAME
PAGE

NUMBER

Table 1: Features of the dataset 18

Table 2: Metrics for Assessing Classifiers without Optimization 33

Table 3: Metrics for Assessing Classifiers with Optimization 34

x

LIST OF ABBREVIATIONS

ABBREVIATIONS FULL FORM

SFP Software Fault Prediction

NB Naïve Bayes

SVM Support Vector Machine

KNN K-Nearest Neighbour

DT Decision Tree

PSO Particle Swarm Optimization

1

CHAPTER 1

1. INTRODUCTION

1.1 Introduction

Software testing is part of software development, so it can often require many hours and

resources. life cycle. Delivering software that is totally error-free and satisfies the needs

goal of the testing process. To find bugs in software is an expensive way but a necessary

process. Since testing is quite an expensive process, it increases the overall project

expense. When errors are accurately predicted early on in the process, the software

becomes more effective and of higher quality. Accurate defect prediction also helps in

maintaining the project within budget.

1.2 Software Fault Prediction

Software Fault Prediction (SFP) is one of the techniques used to bring about an

improvement in the quality of software, while at the same time ensuring low testing cost,

done through the construction of categorization models based on many machine learning

techniques. In the process of software development and maintenance, SFP has played a

key role by using ML techniques based on historical data for error prediction, therefore

enhancing the process with high-quality developed software within a tight schedule in

order to meet customer expectations. SFP is aimed at the delivery of great quality, reliable

2

software and at the same time toward resource utilization optimization made available

throughout the software development life cycle.

1.3 Motivation

As a result, most of the software development organizations would like to estimate and

minimize the defects to meet the requirements of the customers and save the testing

efforts. At present, SFP is a promising approach that applies machine-learning techniques

to develop a classification model—a very effective means for fault estimation. Research

work has widely been conducted on the diversity of machine-learning methodologies,

such as Decision Trees, Naïve Bayes, multi-layer perceptron, and Random Forests.

1.4 Objective

Recent advancements in machine learning have seen the advent of ensembling strategies

and feature selection approaches such as Principal Component Analysis (PCA). In light of

the voluminous literature on software metrics for SFP, focusing on the most salient metrics

proves pragmatic for accurate defect prediction. SFP leverages Software repository data

from the past to assess the dependability and quality of software modules, with software

metrics serving as crucial inputs for SFP models. The present study utilizes a publicly

available dataset from the Promise Repository, comprising data on diverse applications

investigated in NASA from 2005. Following dataset preprocessing and feature selection,

K-means clustering facilitates output categorization, followed by the application of

machine learning techniques such as Support Vector Machine, Naïve Bayes, and Random

Forest, with and without Swarm Intelligence Optimization. An ensemble approach

3

integrates the results, culminating in a comprehensive analysis and comparison of all

models against previous studies. Model performance is evaluated over a range of

parameters, such as precision, performance error metrics precision, F-measure, confusion

matrix, and recall.

1.5 Thesis Structure

This study's structure is as follows: In Section 2, relevant prior research in the field of

software fault prediction is described. Section 3 presents the proposed work and covers

the dependent and independent datasets. variables, as well as process and static code

measurements. Section 4 presents the research methodology, including the performance

evaluation meter utilized, the statistical test used, the classification and ensemble

strategies used, and the strategies' implementation. Section 5 displays the results of each

model employing each classification strategy and ensemble methodology. Bar graphs and

statistical tests are used in Section 6 to display the results discussed.

4

CHAPTER 2

2. LITERATURE SURVEY

2.1. Related works

The basic models had been worked out in the earlier studies by Jinsheng et al. (2014) [21]

and Yong, L.G., Ying, X.L., and Qiong, Z.C. (2014) [27], but they were conducted to

support the development of the proposed research based on fundamental methods that

used machine learning and CART algorithms. From such seminal works, it is quite evident

that computational models can be used, with specific reference to techniques like CART,

for the identification of software anomalies. On this history, other researchers then applied

many others, such as machine learning techniques and decision trees, in accordance to

Naidu and Geethanjali (2013)[12] and Singh and Chug (2017)[36], which reconfirms the

constant worth of these techniques in Software Fault Prediction (SFP) applications.

It was at this time, 2015 up to 2018 that witnessed an increase in developing and/or

improving innovative approaches to ease the challenges that were associated with the old

prediction defect prediction methods. To this Ryad, Arora, Tetarwal, and Sah (2015)[11]

accorded room for more research by having a clear review of open issues that surrounded

the establishment of innovative approach. Kumudha and Venkatesan (2016) [15] adapted

a cost-sensitive radial basis function neural network classifier in order to illustrate the

relevance of economic efficiency in model training and implementation. Esteves et al.

(2020) [13] covered the gap between theoretical concepts and practical implications so

5

that thorough insight about machine learning applications in defect prediction could either

enlarge the field through actionable insight.

Development offers a wider scope for improving the accuracy of prediction by adopting

more sophisticated techniques and methodologies. Ensemble-based aggregate learning

methods have been reported in literature earlier for improving the accuracy of prediction.

Recently, from work conducted by Faseeha et al. (2021), in the literatures reporting on

such kinds of approaches, greater focus has been found. Hybrid approaches, according to

Manjula and Florence (2018), combine machine learning approaches with optimization

approaches suitable for overcoming the challenges intrinsic within defect prediction. This,

in turn, is likely to lead to an inference whereby the field is going towards forms of

modeling that are more complex and sophisticated. Further, the deep learning reports of

Akimova et al. (2021) and convolutional neural networks over control flow graphs by

Phan, Nguyen, and Bui (2017) reach such an inference.

Examples of this are research on bio-inspired algorithms, like the artificial immune

network for feature selection by Mumtaz et al. (2021), and further integration with

predictive analytics through swarm intelligence by Coelho and Guimaraes (2014). Such

comparative analyses as those of Alsaeedi and Khan (2019) [26] and Herbold, Trautsch,

and Grabowski (2018) [30] also serve as a benchmark for system performance and at the

same time test the effectiveness of cross-project defect prediction approaches.

6

Other than algorithmic enhancements, making use of cloud computing also presents an

effective option for defect prediction systems to acquire better scalability and efficiency;

this is confirmed by Ali et al. in 2017. Some other significant contributions in the direction

are a feature selection study in ensemble classification frameworks by Iqbal et al. (2019)

[10] and a machine learning technique-based detailed analysis of NASA datasets by Iqbal

et al. (2019) [32]. In total, software defect prediction reviews how the foundation is the

traditional forms of machine learning; after that, the advanced, hybrid, and bio-inspired

models are built on that.

New trends in deep learning, ensemble techniques, and cloud computing are so much finer

that they have the possibility of shaping up the field further and getting better predictive

accuracy. This work, along with the other works, contributes to the development of

sophisticated tools ongoing in the area of software defect prediction for enhancement of

software quality and reliability. Such integration of methodologies and continuous

benchmarking of predictive models from diverse classifiers is a requisite for raising the

state of the art in topic areas, moving the research community incrementally closer to a

roadmap for future explorations.

This review of the literature is no exception in those ways methodologies have shaped and

might point to a number of the future advancements in SFP, a critical area for software

quality assurance. This collective effort in this area by researchers shows the importance

of machine learning and its derivatives to ensure that the software defect prediction

models are precise.

7

CHAPTER 3

3. MODEL DESIGN

3.1. Proposed Architecture

In this regard, integration of this profound development in the field of AI through ML has

hence come to be imperative for developing an ML-based model for SFP that helps in

supporting software quality and economizing the expenses related to testing. A

comprehensive review of literature shows that predicting the defects in software using ML

Fig 1: Proposed Methodology

8

has a number of challenges because the authors have employed a diverse array of ML

algorithms across various datasets that result in discrepancies in performance and

accuracy. This paper attempts to develop a prototype framework of SFP analysis primarily

working with the cost of tests to reduce and at the same time improve the accuracy of

systems.To achieve this, we undertake a rigorous analysis of different ML techniques,

coupled with feature selection and clustering methodologies, aimed at optimizing

accuracy. Our investigation focuses on attaining superior accuracy utilizing analyzed ML

algorithms, particularly on the CM1 dataset, known for its lower accuracy across most

techniques. The proposed model architecture, depicted in Figure 1, embodies the

culmination of our efforts. Leveraging both established and optimized ML techniques on

an open dataset, our approach centers on enhancing dataset accuracy vis-à-vis prior

research. Key components include the utilization of K-means clustering for class label

categorization, followed by the application of classification models on selected features.

Particle Swarm Optimization further fine-tunes ML models to achieve optimal

performance.

3.2. Dataset

Our study engaged with the CM1 dataset, sourced from the PROMISE Software

Engineering Repository, which is an integral part of the NASA Metrics Data Program

(MDP). This particular dataset is associated with a C-language software module designed

for NASA’s spacecraft instrumentation. It encompasses 498 modules, each exhibiting 22

unique attributes. A meticulous examination of these modules disclosed that 49 exhibited

9

defects, translating to a defectiveness rate of 9.83%. This finding highlights the criticality

of implementing stringent quality control protocols, as a substantial fraction of the

modules failed to meet the prescribed quality benchmarks. Conversely, the defect-free

status of 449 modules underscores the software’s overall structural integrity and

operational reliability. These observations are instrumental in advancing the reliability of

systems that are crucial to mission success, thereby emphasizing the continual evolution

of software engineering methodologies.

Metrics Description

LOC Sum of line in the module

iv(g) Design complexity of each module

ev(g) Essential complexity of each module

N Sum of operators and operands existing in the module

V(g) Cyclomatic complexity of each module

D Difficulties in each module

B Effort approximation

L Program size for each module

V Volume of each module

I Intelligence content

E Error approximation

Locomment Line of comments in each module

Loblank Sum of blank lines in each module

uniq_op Sum of unique operators

uniq_opnd Sum of unique operand

T Time determinist

Branchcount Sum of branch in the software module

total_op Sum of operators

total_opnd Sum of operators

Locodeandcomment Sum of line of code and comments

Defects Details on whether there is existence of defect or not

TABLE 1: Features of the dataset

10

The dataset utilized in our investigation is characterized by a diverse array of metrics,

which include four McCabe metrics and twelve Halstead measurements, along with

additional metrics. The McCabe metrics, which are collected at the method level, provide

a straightforward assessment of programming constructs directly from the source code.

The Halstead metrics, on the other hand, offer a numerical representation of software

complexity and can be readily obtained using various software tools. Additionally, the

dataset is enriched with other metrics such as lines of code and comment counts,

enhancing our understanding of the software’s complexity and maintainability. This

multifaceted approach allows for a thorough evaluation of the software’s quality and

performance.

3.3. Evaluation Metrics

Evaluation metrics encompass accuracy, performance error metrics precision, F-measure,

confusion matrix, and recall. analysis. Our rationale for selecting ML techniques is rooted

in the variability of findings in existing literature, suggesting room for improvement in

accuracy. Thus, our objective is twofold: to enhance performance and accuracy of

established ML techniques and meticulously analyze the outcomes for insights and

advancements in SFP methodologies.

11

CHAPTER 4

4. METHODOLOGY

We have used the following steps:

1. Acquire process metrics and static code statistics from publicly available sources.

2. Done some operational processing on the dataset.

3. Clustered the data using K-mean clustering.

4. Choose some classification techniques and ensemble techniques.

5. Used Particle Swarm Optimization on the techniques to compare the results

6. Select performance evaluation metrics to assess the accuracy of the predictions.

7. Analyzed the performance based on the evaluation metrics.

4.1. Preprocessing of the Dataset

After meticulously scrutinising the dataset, it's evident that standardizing the data to a

uniform format is essential before applying any machine learning models. With a dataset

comprising 498 tuples and 22 features, each column exhibits a wide range of values. For

instance, the 'e' column (representing programming effort) varies from a minimum value

of 0.0 to a maximum of 1000.0, while the 't' column (representing programming time)

ranges from 0.0 to 500.0. Similarly, the 'I' column (representing intelligence) spans from

0.0 to 1.0, indicating considerable diversity among columns.

12

With such clear differences between the columns, this requires that the data be normalized.

One common way of doing this is as follows: this 'typical scaling' transforms the data in

such a manner so that it looks similar to a standard normal distribution, at which point fair

comparisons of features can subsequently be made. It is a statistical sense to obtain the

standardized value of each observation by the formula Δ = (K - μ) / σ, where: Δ is the

standardized value K is an observation μ is the mean of sample σ is standard deviation in

the sample.

It was also comprehensive when checking through for the missing values on the

completeness of the dataset and, hence, assured data integrity. The comprehensive test

showed that there was no null in any tuple of the data set, thus it assures completeness.

Fig 2: Types of Machine Learning

13

4.2. Classification

Supervised machine learning methods are then applied on data sets having output class

labels and are divided between training and testing sets. In this paper, the training data set

comprises 2/3rd of the total and the remaining 1/3rd are assigned to testing. First of all,

the training data set which involves output class labels are used to learn the model, a step

which is then followed by testing the unseen data which does not contain the class labels.

The Machine Learning algorithm within our analysis constitutes mainly three separate

components for classification: a Linear Support Vector Machine (SVM), Gaussian Naive

Bayes (NB), and Random Forest (RF). A Stacked Generalization model is also applied to

combine the results of Naive Bayes as the base model with Support Vector Machine and

Random Forest as member models.

4.3. Support Vector Machine (SVM)

The Support Vector Machine model is for two-class classification tasks and treats data

with special care, showing a lot of efficiency, especially with smaller datasets. The Support

Vector Machine maximizes the margins separating classes by drawing a line between the

data points, conflicting with the rationale for the increase in accuracy of the classification

rule. Our implementation uses linear Support Vector Classifier (SVC) with fixed random

state of 42.

14

4.4. Naïve Bayes (NB)

Name predicts it all: Naive in the way it proceeds by making the assumption that the

occurrence of a certain feature associated with a class is in no way related to the presence

or absence of other features. Since this makes calculations easier, this in turn helps the

algorithm to predict easily. Some of the most common variations of NB include:

1. Gaussian NB: Assumes a Gaussian (Normal) Distribution for Numeric Features.

2. Multinomial NB: This is to be used when classification will have to assume that

it's performed with discrete feature counts, even word counts for document

classification.

3. Bernoulli Naive Bayes: This model is similar to Multinomial, but it assumes

binary features; it is often applied in binary text classification problems.

In contrast, the Naive Bayes algorithm bases on the Bayes theory and classifies data by

making use of the different probabilities and likelihoods within the datasets. It is

particularly effective in those phenomena with weak interrelation among the dataset

attributes. In this work, the Gaussian Naive Bayes classifier is put to work with a fixed

random state number 42 and standardization.

4.5. Random Forest

Random Forest, on the other hand, harnesses ensemble learning principles, amalgamating

multiple decision trees to refine predictions. By employing 1000 decision trees, our

Random Forest model optimizes performance, with a fixed random state of 42 to ensure

reproducibility and consistency.

15

4.6. Ensemble Techniques

The objective is to aggregate the prediction results of various learning approaches so that

the overall performance of the decision is enhanced. The ensemble model improves the

performance of the individual model for example it improves the performance of the

decision tree by reducing variance in the model. They are classified as either homogeneous

or heterogeneous ensembles. In a homogeneous ensemble, similar type of learning

techniques like bagging, boosting, and others are employed. Different types of learning

techniques are used in heterogeneous ensembles. We built a defect prediction model using

voting, stacking, bagging, and boosting in this study. Ensemble techniques are machine

learning methods that combine the predictions of multiple individual models, known as

base models or weak learners, to improve the overall predictive performance. By

leveraging the diversity and collective wisdom of multiple models, ensemble techniques

aim to achieve better generalization, reduce overfitting, and enhance prediction accuracy.

Fig. 4.2 depicts the categories of ensemble techniques. Among all the applied

methodologies, the ensemble techniques have been proved to apply across several classes

of problems. Applications of these methods cut across in machine-learning tasks including

classification, regression, and anomaly detection. These methods have also demonstrated

competitive success in both competitions and real-world cases. The selection of a specific

ensemble technique depends on the problem at hand, data characteristics, and the preferred

trade-offs between performance and interpretability.

16

4.6.1. Voting

Voting might be the act of using either multiple models to make the predictions or multiple

classifiers, and the final decision is made by voting on individual decisions. Voting can

also be an extra form of ensemble learning that has a goal of increasing the general

robustness and accuracy of the predictions made. There are two types of voting:

1. Hard Voting

Hard voting, also known as deterministic voting, considers only the expected class

labels of models. On the other hand, the final prediction is made based on the most

Fig 3: Ensemble Learning Techniques

17

occurring label among the predictions. Fig. shows the diagram of the hard voting

system.

2. Soft Voting

Probabilistic voting or soft voting refers to the class probability, or the confidence

scores, attributed to the class label by each model. This process, then, aggregates

Fig 4: Hard Voting

18

the individual models' class probabilities and selects the class label for which the

average probability is maximum as the final prediction.

4.6.2. Bagging

Bagging is a short abbreviation for bootstrap aggregating. It is a machine learning

ensemble meta-algorithm designed to improve the stability and accuracy of machine

learning algorithms used in statistical classification and regression. To accomplish a good

generalization ability, bagging trains multiple models based on various training data

subsets. It is an effective ensemble learning technique used to boost prediction accuracy

and stability.

Fig 5: Soft Voting

19

4.6.3. Boosting

Boosting is a machine learning technique utilized to construct a strong predictive model

from the combination of a few weak models; these are often termed base learners or weak

learners. In contrast to bagging, in which the base models are independently trained,

boosting trains the base models in a sequential adaptive manner, as it trains a new base

model and puts emphasis on its gradient mainly for those cases where the previous base

models were misclassified. Boosting is a way to increase predicted accuracy by giving

higher weights to points that are not well classified. XGBoost, Gradient Boosting,

Adaboost, and LightGBM are some of the popular boosting algorithms.

Fig 6: Bagging or Bootstrap Aggregation

20

4.6.4. Stacking

In machine learning, the term "stacking" describes a method where several models also

referred to as base models or learners are combined to enhance prediction outcomes. It is

an example of ensemble learning, which uses the advantages of various models to produce

predictions that are more accurate.

The base models in a stacking ensemble are trained on the same dataset, and a meta-

learner, also known as a stacking model, is used to combine the predictions of the base

models. The meta-classifiera learns how to effectively integrate the basic models'

predictions to generate the final prediction.

Fig 7: Boosting

21

4.7. Feature Selection

The process feature selection is vital to the improvement of prediction models. by

curtailing the number of features utilized during training and testing phases. In this study,

we employ the variance inflation factor approach and correlation method to gauge the

significance of values and assess multicollinearity among features post dataset

preparation. Features exhibit positive correlation when A rise in one feature is

accompanied by a surge in others, or vice versa, while no correlation is observed when

Fig 8: Stacking

22

changes in one feature have no bearing on others. Conversely, negative correlation occurs

when an increase in one parameter corresponds with a decrease in another, and vice versa.

Visualizing the correlation between all features in the dataset, as depicted in Figure 2,

enables us to discern the top 10 attributes with either negative or negligible associations,

devoid of class labels. This meticulous selection is underpinned by the imperative of

reducing computational overhead and circumventing overfitting challenges, thereby

Fig 9: Feature Correlation

23

bolstering model performance. In our research, we leverage both unsupervised machine

learning techniques, and supervised machine learning, particularly classification, for

predictive analysis. This hybrid approach ensures comprehensive coverage and

effectiveness in addressing the complexities inherent in predictive modeling.

24

CHAPTER 5

5. EXPERIMENTAL RESULT

In this section, the result obtained experimentally using ensemble learning and

classification algorithms on each of the datasets is presented. The graphical and tabular

form represents the result based on the CM1 dataset experimentally obtained using

different ML techniques. There are striking graphical representations developed

containing comparisons between strategies with insights into the performances of each

one. Comparisons are also made between optimized and non-optimized methods in both

strategies.

TABLE 2: Metrics for Assessing Classifiers without Optimization

25

Tables 2 and 3 represent all-inclusive evaluation metrics for every ML methods

investigated after optimization and without optimization, respectively. In the performance

of all models, there is praiseworthy performance; however, Support Vector Machine and

its optimized version are far better than all the rest models in both settings. Specifically,

SVM yields a near-perfect precision value in predicting class 1 observations; as a result

of misclassification by some class 0 observations, the recall value is slightly less than it

can be.

On the other hand, NB gives poor performance, but at least it gives an accuracy rate for

higher-dimensional data. The same results are also shown by RF and ensemble techniques

because the technique of RF is using based on the ensemble technique by combining the

decision trees. The model of RF gives a precision of 100% and an accuracy of 98.7%, a

TABLE 3: Metrics for Assessing Classifiers with Optimization

26

nice design to make the predictions. The class 1 instances are also predicted in class 0

while an error in prediction of class 0 is almost negligible.

Briefly, all the models showed their proficiency, among which SVM and optimized SVM

gave continuously better results across all the metrics of evaluation. On the other hand, it

is evident that NB lacks in low-dimensional data sets while RF and ensemble techniques

show good results, particularly in terms of precision and accuracy.

27

CHAPTER 6

6. RESULT DISCUSSION

All results for these non-optimized models of machine learning are depicted in Figure 10,

including the ensemble approach. The best classifying metric is prominently found in

precision across all algorithms, indicated where each of the models correctly predicts class

1 instances. However, due to the suitability of handing large quantities of data or high-

dimensional datasets, the performance of the NB model greatly drops in f-measure and

recall. Both the results of the Random Forest (RF) model and the ensemble are competitive

with each other, but the Support Vector Machine (SVM) model outperformed by a high

margin in all the metrics employed to evaluate model performance.

Fig 10: Evaluation metrics of all models without optimization.

28

Figure 11 presents the aggregate results of all predictive models utilizing Particle Swarm

Optimization (PSO). Despite achieving commendable evaluation metrics, including

precision, all models, including the ensemble technique, exhibit a slight dip in

performance compared to their unoptimized counterparts. This observation underscores

the notion that optimization solutions are particularly advantageous when confronted with

larger datasets. Notably, improvements in f-measure and recall are discernible with

optimization, suggesting enhanced model performance in scenarios with increased dataset

sizes.

Fig 11: Evaluation metrics of all models with optimization.

29

In summary, while all models, both with and without optimization, achieve satisfactory

evaluation metrics, the unoptimized SVM model consistently outshines its counterparts.

However, optimization solutions, while beneficial for larger datasets, result in a marginal

reduction in performance across all models, albeit with noticeable improvements in recall

and f-measure metrics.

30

CHAPTER 7

7. CONCLUSION AND FUTURE SCOPE

7.1. Conclusion

A wide range of models have been developed and are being investigated in the field of

software fault prediction. Many of those identify faulty software codes or programs using

static code metrics. In this project the efficiency of process metrics or variable have been

analyzed using classification and ensemble methods merging with Particle Swarm

Optimization (PSO) on the basis of recall, precision, accuracy, f-measures, bar graphs.

It can be concluded that the combined outcomes of any predictive model that makes use

of Particle Swarm Optimization (PSO). Even though all models—including the ensemble

technique achieves satisfactory evaluation measures like precision, their performance is

marginally lower than that of their unoptimized counterparts.

7.2. Future Scope

Ensemble and classification methods can also be used to examine other process

parameters. Regression analysis can be used to forecast the number of defects while taking

into account the same datasets utilized in this study. Rather than bugs, effort or

maintainability can alternatively be thought of as dependent variables.

31

REFERNCES

[1] Singh, P.D.; Chug, A. Software defect prediction analysis using machine learning

algorithms. In Proceedings of the 2017 7th International Conference on Cloud

Computing, Data Science and Engineering-Confluence IEEE, Noida, India, 12–13

January 2017; pp. 775–781.

[2] Li, R.; Zhou, L.; Zhang, S.; Liu, H.; Huang, X.; Sun, Z. Software Defect Prediction

Based on Ensemble Learning. In Proceedings of the 2019 2nd International

Conference on Data Science and Information Technology, Seoul, Republic of Korea,

19–21 July 2019; pp. 1–6.

[3] Maddipati, S.; Srinivas, M. Machine learning approach for classification from

imbalanced software defect data using PCA and CSANFIS. Mater. Today Proc. 2021,

52, 471.

[4] Perreault, L.; Berardinelli, S.; Izurieta, C.; Sheppard, J. Using classifiers for software

defect detection. In Proceedings of the 26th International Conference on Software

Engineering and Data Engineering, Sydney, Australia, 2–4 October 2017; pp. 2–4.

[5] Li, Z.; Jing, X.Y.; Zhu, X. Progress on approaches to software defect prediction. IET

Softw. 2018, 12, 161–175.

[6] Hammouri, A.; Hammad, M.; Alnabhan, M.; Alsarayrah, F. Software bug prediction

using machine learning approach. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 78–83.

32

[7] Akimova, E.N.; Bersenev, A.Y.; Deikov, A.A.; Kobylkin, K.S.; Konygin, A.V.;

Mezentsev, I.P.; Misilov, V.E. A Survey on Software Defect Prediction Using Deep

Learning. Mathematics 2021, 9, 1180.

[8] Coelho, R.A.; Guimaraes, F.D. Applying Swarm Ensemble Clustering Technique for

Fault Prediction Using Software Metrics. In Proceedings of the 2014 13th

International Conference on Machine Learning and Applications, Date of Conference,

Detroit, MI, USA, 3–6 December 2014; pp. 356–361.

[9] Arar, Ö.F.; Ayan, K. Software defect prediction using cost-sensitive neural network.

Appl. Soft Comput. 2015, 33, 263–277.

[10] Iqbal, A.; Aftab, S.; Ullah, I.; Bashir, M.S.; Saeed, M.A. A feature selection based

ensemble classification framework for software defect prediction. Int. J. Mod. Educ.

Comput. Sci. 2019, 11, 54.

[11] Arora, I.; Tetarwal, V.; Saha, A. Open issues in software defect prediction.

Procedia Comput. Sci. 2015, 46, 906–912.

[12] Naidu, M.S.; Geethanjali, N. Classification of defects in software using decision

tree algorithm. Int. J. Eng. Sci. Technol. 2013, 5, 1332.

[13] Esteves, G.; Figueiredo, E.; Veloso, A.; Viggiato, M.; Ziviani, N. Understanding

machine learning software defect predictions. Autom. Softw. Eng. 2020, 27, 369–392.

[14] Mumtaz, B.; Kanwal, S.; Alamri, S.; Khan, F. Feature selection using artificial

immune network: An approach for software defect prediction. Intell. Autom. Soft

Comput. 2021, 29, 669–684.

33

[15] Kumudha, P.; Venkatesan, R. Cost-sensitive radial basis function neural network

classifier for software defect prediction. Sci. World J. 2016, 2016, 2401496.

[16] Ali, M.M.; Huda, S.; Abawajy, J.; Alyahya, S.; Al-Dossari, H.; Yearwood, J. A

parallel framework for software defect detection and metric selection on cloud

computing. Clust. Comput. 2017, 20, 2267–2281.

[17] Hassan, F.; Farhan, S.; Fahiem, M.A.; Tauseef, H. A Review on Machine Learning

Techniques for Software Defect Prediction. Tech. J. 2018, 23, 63–71.

[18] Cetiner, M.; Sahingoz, O.K. A Comparative Analysis for Machine Learning based

Software Defect Prediction Systems. In Proceedings of the 2020 11th International

Conference on Computing Communication

and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–7

[19] Rawat, M.; Dubey, S.K. Software Defect Prediction Models for Quality

Improvement: A Literature Study. Int. J. Comput. Sci. 2012, 9, 288–296.

[20] Fenton, N.E.; Neil, M. A critique of software defect prediction models. IEEE

Trans. Softw. Eng. 1999, 25, 675.

[21] Jinsheng, R.; Ke, Q.; Ying, M.; Guangchun, L. On Software Defect Prediction

Using Machine Learning. J. Appl. Math. 2014, 2014, 785435.

[22] Tua, F.M.; Sunindyo, W.D. Software Defect Prediction Using Software Metrics

with Naïve Bayes and Rule Mining Association Methods. In Proceedings of the 2019

5th International Conference on Science and Technology (ICST), Yogyakarta,

Indonesia, 30–31 July 2019; pp. 1–5.

34

[23] Manjula, C.; Florence, L. A Deep neural network based hybrid approach for

software defect prediction using software metrics.

[24] Faseeha, M.; Taher, M.; Nasser, T.; Shabib, A.; Munir, A.; Muhhammad, A.;

Sagheer, A.; Tariq, R. Software Defect Prediction Using Ensemble Learning: A

Systematic Literature Review. IEEE Access 2021, 9, 98754–98771.

[25] Paramshetti, P.; Phalk, D.A. Software defect prediction for quality improvement

using hybrid approach. Int. J. Appl. Innov. Eng. Manag. 2015, 4, 99–104.

[26] Alsaeedi, A.; Khan, M.Z. Software Defect Prediction Using Supervised Machine

Learning and Ensemble Techniques: A Comparative Study J. Softw. Eng. Appl. 2019,

12, 85–100.

[27] Yong, L.G.; Ying, X.L.; Qiong, Z.C. Research of software defect prediction based

on CART. Int. J. Adv. Comput. Sci. Appl. 2014, 602, 3871–3876.

[28] Manjula, C.; Florence, L. Hybrid approach for software defect prediction using

machine learning with optimization technique. Int. J. Comput. Inf. Eng. 2018, 12, 28–

32.

[29] Phan, A.V.; Nguyen, M.L.; Bui, L.T. Convolutional neural networks over control

flow graphs for software defect prediction. In Proceedings of the 2017 IEEE 29th

International Conference on Tools with Artificial Intelligence (ICTAI), Boston, MA,

USA, 6–8 November 2017; pp. 45–52.

[30] Herbold, S.; Trautsch, A.; Grabowski, J. A comparative study to benchmark cross-

project defect prediction approaches. IEEE Trans. Softw. Eng. 2018, 44, 811–833.

[31] Aljamaan, H.; Alazba, A. Software defect prediction using tree-based ensembles.

In Proceedings of the 16th ACM International Conference on Predictive Models and

35

Data Analytics in Software Engineering, Virtual USA, 8–9 November 2020; pp. 1–

10.

[32] Iqbal, A.; Aftab, S.; Ali, U.; Nawaz, Z.; Sana, L.; Ahmad, M.; Husen, A.

Performance analysis of machine learning techniques on software defect prediction

using NASA datasets. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 300–308.

[33] Ali, M.M.; Huda, S.; Abawajy, J.; Alyahya, S.; Al-Dossari, H.; Yearwood, J. A

parallel framework for software defect detection and metric selection on cloud

computing. Clust. Comput. 2017, 20, 2267–2281.

[34] Tua, F.M.; Sunindyo, W.D. Software Defect Prediction Using Software Metrics

with Naïve Bayes and Rule Mining Association Methods. In Proceedings of the 2019

5th International Conference on Science and Technology (ICST), Yogyakarta,

Indonesia, 30–31 July 2019; pp. 1–5.

[35] Li, Z.; Jing, X.Y.; Zhu, X. Progress on approaches to software defect prediction.

IET Softw. 2018, 12, 161–175.

[36] Singh, P.D.; Chug, A. Software defect prediction analysis using machine learning

algorithms. In Proceedings of the 2017 7th International Conference on Cloud

Computing, Data Science and Engineering-Confluence IEEE, Noida, India, 12–13

January 2017; pp. 775–

36

LIST OF ACCEPTED PAPERS

[1] Malhotra, R. Das, S. (2024) Enhancing Software Quality Assurance through Machine

Learning-Based Fault Prediction. In: 1st International Conference on Advances in

Computing, Communication and Networking- ICAC2N (IEEE Xplore, Scopus

Indexed) (Accepted).

37

[2] Malhotra, R. Das, S. (2024) Exploring Advanced Techniques for Software Defect

Prediction: A Comprehensive Review. In: 1st International Conference on Advances

in Computing, Communication and Networking- ICAC2N (IEEE Xplore, Scopus

Indexed) (Accepted).

38

	8604fe39e2074a390ec09dbcd2bb8294c80a9c4c71d0ed990bf1268b5b03eb2a.pdf
	df2af090efcbf93be4db6d81e8eba3d5be4fcecc64d6754cda22363fc06c8937.pdf
	8604fe39e2074a390ec09dbcd2bb8294c80a9c4c71d0ed990bf1268b5b03eb2a.pdf

