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Abstract

Graph Neural Networks (GNNs) have become a tool, in detecting outliers within graphs.

When designing GNNs a key aspect is choosing a filter that suits the task. This research delves

into outlier analysis by examining the graph spectrum and presents a finding; the presence

of outlier leads to a ’right shift’ effect, where the energy distribution in the spectrum moves

towards frequencies. This revelation carries implications for GNN design suggesting that con-

ventional low pass filters may not be ideal, for outlier detection. To address this challenge, we

propose the Beta Wavelet Graph Neural Network (BWGNN), which incorporates spectral and

spatial localized band-pass filters. These filters are specifically designed to handle the ‘right-

shift’ phenomenon, providing a more effective approach to outlier detection. We evaluate the

performance of BWGNN on four large scale outlier detection datasets and demonstrate its su-

periority over existing methods. Our findings not only shed light on the spectral properties of

graph outliers but also pave the way for more sophisticated GNN architectures that can better

capture the nuances of anomalous behavior in graph data.
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Chapter 1

INTRODUCTION

1.1 Background

Graph Neural Networks (GNNs) have become essential in the realm of machine learning, for
data structured in graphs. These networks are crafted to make the most of the data within
graphs and have been effectively used for tasks such, as categorizing nodes predicting links and
classifying graphs. The capability of GNNs to grasp graph topology and characteristics makes
them well suited for outlier detection, which aims to pinpoint patterns within data that do not
conform to expected behavior.

Outlier detection in graphs is a critical task with applications across numerous domains such
as cybersecurity, finance, and social network analysis. Traditional outlier detection techniques
often rely on statistical methods or shallow machine learning models that may not fully cap-
ture the complex dependencies within graph data. GNNs address this limitation by employing
deep learning architectures that can learn representations of nodes and edges, considering both
their features and the structure of the graph.Despite their success, GNNs face challenges when
dealing with outlier in graphs.

Outliers are often sparse and structurally different from normal instances, which can make
them difficult to detect using standard GNN architectures. These architectures typically use low-
pass filters that smooth features over the graph, which may inadvertently obscure the distinctive
signals of outliers. Recent research has highlighted the importance of considering the spectral
properties of graphs when designing GNNs for outlier detection. The graph spectrum, derived
from the eigenvalues and eigenvectors of the graph Laplacian, provides valuable insights into
the structure of the graph.

It has been observed that outliers can cause a ‘right-shift’ in the graph spectrum, where
the energy distribution moves towards higher frequencies. This phenomenon suggests that the
design of spectral filters in GNNs should be rethought to effectively capture the high-frequency
components associated with outliers. In light of these findings, there is a growing interest in
developing new GNN architectures that can better handle the spectral characteristics of graph
outliers.

By rethinking the design of spectral filters and incorporating insights from the graph spec-
trum, researchers aim to improve the performance of GNNs in outlier detection tasks.
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Figure 1.1: The impact of graph outliers is depicted in the spatial domain (top) and spectral domain (bottom) for
various anomaly levels[1]

1.2 Problem Statement

The identification of irregularities, in graph based information is an issue in areas such as cyber-
security, fraud prevention and social media assessment. Uncommon occurrences within graphs
typically appear as arrangements or deviations from the pattern potentially signaling risks or
revealing important findings. Conventional techniques for spotting outliers face hurdles due, to
the nature and vast size of graph data hence why Graph Neural Networks (GNNs) have been
embraced for their capacity to adapt and comprehend complexities. and generalize from graph
topology and node features.

However, GNNs are predominantly designed with low-pass spectral filters that emphasize
smoothness and gradual feature propagation across the graph. This design paradigm is well-
suited for tasks that rely on homophily, where similar nodes are expected to exhibit similar
features. Outlier detection, on the contrary, requires the identification of dissimilar and rare
patterns that low-pass filters may inadvertently dilute or overlook.

The central problem addressed in this research is the inadequacy of conventional GNN archi-
tectures in effectively detecting outliers within graphs. Specifically, the standard low-pass filter-
ing approach fails to account for the ‘right-shift’ phenomenon observed in the graph spectrum
when outliers are present. This shift indicates that outliers are associated with higher-frequency
components, which are not adequately captured by existing GNN models.

The challenge lies in rethinking the design of GNNs to incorporate spectral filters that can
detect and preserve the high-frequency signals indicative of outliers. The goal is to develop a
GNN architecture that not only learns from the graph’s structure and features but also adapts to
the unique spectral characteristics of outliers, thereby enhancing the detection capabilities and
robustness of the model.
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1.3 Importance of Graph-Structured Data

In times there has been an increase, in the use of graph structured data especially in areas such as
social media, online shopping and financial activities. In these scenarios nodes represent entities
like users, products or transactions while edges symbolize connections between these entities
such as friendships, joint purchases or monetary transactions. The interconnected nature of
graph data offers insights that can enhance the accuracy of detecting outliers. By utilizing graph
based strategies we can capture the relationships and structures, within these datasets resulting
in sophisticated and efficient outlier detection methods compared to traditional isolated data
analysis techniques.

1.4 Challenges in Graph Outlier Detection

Graph Neural Networks (GNNs) have demonstrated tremendous power in processing graph-
structured data for rich relational and interaction analysis. GNNs leverage information flow
over the graph by aggregating features from neighbor nodes to learn powerful representations.
Traditional GNN architectures have shown to be successful in a number of graph-based tasks,
nevertheless they suffer from key issues when it comes to outlier detection including vulner-
ability to over-smoothing and homophily (the tendency for nodes with similar feature vectors
to connect) based nature. GNN models collect features from neighbors and over-smoothing
happens when aggregated feature do not exhibit enough difference to properly understand the
attributes of outliers.

1.5 Structural Distribution Shift

Detecting outliers in graphs poses a challenge due, to something called distribution shift (SDS).
This essentially refers to how the distribution of aspects, like node connections, changes be-
tween training and testing phases. This shift can really impact how graph network (GNN)
models can adapt, especially because outliers tend to have more connections to different types
of nodes compared to regular ones. While models, like the Graph Decomposition Network
(GDN) try to tackle this issue by adjusting features they often struggle to handle SDS.

1.6 Proposed Solution

In our research we present the Beta Wavelet Graph Neural Network (BWGNN) a method aimed
at overcoming the shortcomings of existing outlier detection techniques based on graph net-
works. BWGNN uses graph theory to tackle the SDS issue by examining the domain features
of graph data. Unlike spatial domain methods our approach utilizes filters to effectively ad-
dress outliers that lead to shifts, in spectral energy distribution. We showcase the effectiveness
of BWGNN by conducting experiments, on known datasets like Amazon and YelpChi using
a 40% split between test and train data. The results demonstrate that BWGNN outperforms
methods in detecting outliers proving its reliability in environments with structural distribution
shifts. Our key contributions include:-
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Introducing BWGNN, a spectral based Graph Neural Network tailored for outlier detection
in graph data. Offering an analysis of the shift in distribution and its influence on outlier de-
tection models based on GNNs. Performing experiments on real world datasets to confirm the
effectiveness of BWGNN comparing its performance, with the techniques. Through this study
our goal is to advance graph outlier detection by presenting a method that enhances detection
accuracy and resilience to structural distribution shifts.
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Chapter 2

PRELIMINARIES

2.1 Graph Outlier Detection (GOD)

Many traditional methods, for spotting occurrences tend to miss out on the interconnected nature
of data in scenarios, like social networks or transaction records. GOD takes advantage of these
connections by treating data as graphs with nodes representing entities and edges showing how
they interact. This approach makes it easier to spot outliers that might not stand out when
looking at data points but become noticeable when considering their relationships. By taking
into account these connections GOD can uncover patterns and irregularities that would escape
detection using techniques thereby improving the reliability and precision of outlier detection.

2.2 Structural Distribution Shift (SDS)

Changes, in the structure of the graph during training and testing are known as SDS[2]. These
variations in node connections can make it difficult for GNN models to perform well on data.
It’s important to tackle SDS[3] to ensure outlier detection when the data distribution changes.
The changing nature of graph data, with connections and entities appearing regularly amplifies
the challenge of dealing with SDS requiring adaptable methods to handle these shifts smoothly.

2.3 Spectral Graph Theory

The field of graph theory delves into understanding a graphs attributes through studying the
eigenvalues and eigenvectors of matrices linked to the graph like the matrix. This method offers
a glimpse into the features of the graph in terms of frequencies allowing for the creation of filters
that can pinpoint particular frequency components tied to irregularities. Through examining the
spectral traits of graphs scientists can pinpoint trends and properties that signal outliers thereby
boosting GNNs detection abilities[4].
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Chapter 3

LITERATURE REVIEW

3.1 Graph Neural Networks (GNNs)

Graph Neural Networks have emerged as a powerful tool for various graph-based tasks, includ-
ing outlier detection[5]. GNNs leverage the graph structure to aggregate information from a
node’s neighborhood, which helps in learning robust node representations. However, vanilla
GNNs often struggle with outlier detection due to the over-smoothing problem, where the fea-
tures of neighboring nodes become indistinguishable. This issue is particularly problematic for
outliers, as their distinguishing features get averaged out during the aggregation process.

GNN Update Equation:

h(k+1)
v = σ

(
W (k) ·AGG

(
{h(k)u : u ∈ N (v)}

))
(3.1)

GCN Layer Update:

H(l+1) = σ

(
D̃−1/2ÃD̃−1/2H(l)W (l)

)
(3.2)

3.2 Attention Mechanisms

To mitigate the over-smoothing issue, several approaches have incorporated attention mecha-
nisms into GNNs. These mechanisms allow the model to weigh the importance of different
neighbors differently, thus preserving the unique characteristics of anomalous nodes. For in-
stance, methods like GAT (Graph Attention Networks) utilize self-attention layers to focus on
the most relevant parts of the neighborhood, improving the detection of outliers[6].

GAT Attention Coefficient:

αi j =
exp
(
LeakyReLU

(
aT [Whi||Wh j]

))
∑k∈N (i) exp(LeakyReLU(aT [Whi||Whk]))

(3.3)

GAT Node Update:

h′i = σ

(
∑

j∈N (i)
αi jWh j

)
(3.4)
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3.3 Resampling Strategies

Another approach to address the limitations of GNNs in outlier detection involves selective
resampling of neighborhood information. Techniques such as Care-GNN adaptively sample
neighbors based on their similarity, ensuring that the model aggregates information from more
relevant neighbors and reduces the impact of noisy connections[7].

Resampling Process:
N ′(i) = Sample(N (i), p) (3.5)

3.4 Auxiliary Losses

Adding auxiliary losses during training is another strategy to enhance the model’s robustness.
These losses can be designed to enforce certain properties in the learned representations, such
as maintaining high separability between normal and anomalous nodes. For example, some
models introduce contrastive losses that encourage the separation of outlier features from those
of normal nodes.

Contrastive Loss:

Lcontrastive = ∑
(i, j)∈P

∥hi −h j∥2
2 − ∑

(i,k)∈N

∥hi −hk∥2
2 (3.6)

3.5 Spectral Approaches

While most GNN-based outlier detection methods operate in the spatial domain, recent studies
have explored the spectral domain for better handling of outliers[8]. The spectral domain anal-
ysis focuses on the graph’s frequency components, where outliers often induce a ’right-shift’
in the spectral energy distribution, concentrating more energy in high frequencies. Techniques
like the Beta Wavelet Graph Neural Network (BWGNN) utilize band-pass filters to target these
spectral characteristics, effectively distinguishing outliers from normal nodes.

Spectral Convolution:

X̂ =UT X (3.7)
Ŷ = g(Λ)X̂ (3.8)
Y =UŶ (3.9)
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3.6 Addressing Structural Distribution Shift (SDS)

The Graph Decomposition Network (GDN)[9] introduces a novel approach to mitigate SDS by
differentiating structural patterns for outliers and normal nodes. GDN separates node features
into class-specific and surrounding features. For outliers, it ensures that their critical features
remain invariant to the heterophily shift by constraining them through a prototype vector that
updates dynamically during training. This approach reduces the influence of heterophilous
neighbors and enhances the model’s robustness to SDS. For normal nodes, GDN preserves the
connectivity features to leverage homophily, thus benefiting from stable neighborhood patterns.

GDN splits node features X into class features C and surrounding features S:

X =C+S (3.10)

Graph Decomposition Network (GDN) Class Loss:

Lclass = ∑
i
∥Ci − p∥2

2 (3.11)

GDN Connectivity Loss:

Lconnectivity = ∑
(i, j)∈E

∥Si −S j∥2
2 (3.12)

GDN Overall Loss:

LGDN = Lclassification +λ1Lclass +λ2Lconnectivity (3.13)

Comparative Performance: Experimental evaluations on benchmark datasets like Amazon
and YelpChi demonstrate the superiority of GDN over traditional GNN-based models. GDN
consistently achieves higher performance metrics in environments with significant SDS, show-
casing its robustness and adaptability[10]. This performance is attributed to its ability to main-
tain the distinct features of outliers while effectively leveraging the stable patterns of normal
nodes.
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3.7 Graph Outlier Detection (GOD) Methodologies

3.7.1 Semi-Supervised Learning

Graph outlier detection often employs semi-supervised learning methods due to the scarcity of
labeled outliers. These methods train on a small set of labeled nodes and use the learned patterns
to classify unlabeled nodes. The challenge lies in the imbalance between normal and anomalous
nodes, which can bias the model towards the majority class. Techniques like GCN (Graph
Convolutional Network) and Graph-SAGE (Graph Sample and Aggregate) are commonly used,
but they need enhancements to handle the imbalance and SDS effectively[11].

3.7.2 Autoencoder-Based Methods

Autoencoders have been widely used for outlier detection due to their ability to learn com-
pact representations of normal data[12]. In the context of graphs, methods like DONE (Deep
Anomaly Detection on Attributed Networks) use graph autoencoders to learn node represen-
tations. These methods minimize the reconstruction error of normal nodes while highlighting
outliers. However, their effectiveness is limited when the graph structure significantly changes
between training and testing, a scenario often caused by SDS.

9



Chapter 4

METHODOLOGY

4.1 Structural Distribution Shift in GAD

In dealing with SDS in GAD it’s crucial to grasp how changes, in node connectivity and distribu-
tion impact the performance of GNN models. Traditional GNNs gather data from neighboring
nodes, which may blur the features of outliers especially when they are linked to normal nodes.
This blending can result in smoothing causing node representations to blend together and hinder
outlier detection. By tackling SDS we can enhance the models capacity to adapt from training
data to scenarios ultimately boosting its reliability and precision.

4.2 Beta Wavelet Graph Neural Network (BWGNN)

4.2.1 Design of BWGNN

The design of the Beta Wavelet Graph Neural Network (BWGNN) is a significant advancement
in the field of graph neural networks, particularly for the task of outlier detection[13]. BWGNN
is designed to address the limitations of traditional GNNs by incorporating spectral and spa-
tial localized band-pass filters that are better suited for handling the ‘right-shift’ phenomenon
observed in outliers[1]. Specifically, BWGNN adopts the following propagation process with
Weighted cross-entropy loss is used for the training of BWGNN:

Figure 4.1: Comparative analysis of Heat wavelets and Beta wavelets in both the spectral domain (left) and spatial
domain (right)[1].
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Zi =Wi ·C−i(MLP(X)) (4.1)

H = AGG([Z0,Z1, . . . ,ZC]) (4.2)

L = ∑
i
(γyi log(pi)+(1− yi) log(1− pi)) (4.3)

where γ is the ratio of outlier labels (yi = 1) to normal labels (yi = 0)[1].

Key Features of BWGNN:

• Spectral and Spatial Localized Band-Pass Filters: BWGNN utilizes band-pass filters
that are both spectral and spatially localized. This allows the network to focus on specific
frequency ranges within the graph spectrum, enhancing its ability to detect outliers that
are characterized by higher-frequency components[14].

• Beta Kernel: The core of BWGNN’s method is the Beta kernel, which addresses higher
frequency outliers through flexible, spatial/spectral-localized, and band-pass filters1. This
contrasts with the widely used Heat kernels and allows BWGNN to be more effective in
identifying outliers.

• Handling Over-Smoothing: Traditional GNNs often suffer from the over-smoothing is-
sue when aggregating information from node neighborhoods, which can make outliers
less distinguishable. BWGNN’s design mitigates this issue by preserving the distinctive-
ness of anomalous nodes through its specialized filters.

Advantages of BWGNN:

• Improved outlier Detection: By focusing on the right-shift phenomenon, BWGNN can
detect outliers more effectively than traditional GNNs that rely on low-pass filters.

• Flexibility: The Beta kernel provides flexibility in the design, allowing BWGNN to adapt
to different types of outliers and graph structures.

• Efficiency: BWGNN’s localized filters enable it to process graph data more efficiently,
making it suitable for large-scale applications.

BWGNN represents a thoughtful reimagining of GNN architecture for outlier detection. Its
design leverages the spectral properties of graph outliers to provide a more accurate and efficient
tool for identifying irregular patterns within graph-structured data.

4.2.2 Theoretical Justification

The theoretical justification for the design of the Beta Wavelet Graph Neural Network (BWGNN)
is rooted in the spectral graph theory and the need to address the unique challenges posed by
outlier detection in graph-structured data. Here’s an in-depth look at the theoretical underpin-
nings of BWGNN :-

• Spectral Graph Theory: Spectral graph theory provides a framework for analyzing the
properties of graphs using the eigenvalues and eigenvectors of matrices associated with
the graph, such as the graph Laplacian. The spectrum of a graph reveals important struc-
tural information, including the presence of communities, bottlenecks, and outliers.

11



• The ‘Right-Shift’ Phenomenon: The observation of the ‘right-shift’ phenomenon, where
the spectral energy distribution shifts towards higher frequencies in the presence of out-
liers, is a key theoretical insight. This shift indicates that outliers are associated with
high-frequency components in the graph spectrum, which are not adequately captured by
traditional low-pass filters used in GNNs.

• Localized Band-Pass Filters: BWGNN employs localized band-pass filters that are ca-
pable of capturing these high frequency components. The theoretical justification for this
approach is that it allows the network to focus on the spectral regions most affected by
outliers, enhancing the model’s sensitivity to irregular patterns.

• Beta Kernel: The Beta kernel used in BWGNN is theoretically justified by its ability
to provide a flexible response to different frequency ranges. Unlike the rigid structure
of traditional kernels, the Beta kernel can be adjusted to target specific spectral bands,
making it more effective for outlier detection.

• Balancing Aggregation and Preservation: A fundamental challenge in GNN design is
balancing the aggregation of information from node neighborhoods with the preservation
of distinctive node features. BWGNN’s theoretical design addresses this by ensuring that
the aggregation process does not lead to over-smoothing, which can obscure outliers.

• Efficiency and Scalability: The theoretical design of BWGNN also considers the com-
putational efficiency and scalability of the model. By using localized filters, BWGNN
reduces the computational complexity, making it suitable for large-scale graphs where
outliers need to be detected in real-time.

The theoretical justification for BWGNN lies in its ability to address the limitations of existing
GNNs in the context of outlier detection. By leveraging spectral graph theory and the ‘right-
shift’ phenomenon, BWGNN provides a theoretically sound and practically effective solution
for detecting outliers in graph-structured data.

4.2.3 Addressing the ’Right-Shift’

Addressing the ‘right-shift’ in the spectral energy distribution is a crucial aspect of outlier de-
tection in graphs.The ‘right-shift’ refers to the phenomenon where the presence of outliers in
a graph leads to a redistribution of spectral energy towards higher frequencies1. This shift
challenges the traditional design of Graph Neural Networks (GNNs), which typically employ
low-pass filters that focus on smooth, low-frequency signals and may fail to capture the high-
frequency components indicative of outliers.

Strategies for Addressing the ‘Right-Shift’:

• Band-Pass Filters: One approach to address the ‘right-shift’ is the use of band-pass
filters in the design of GNNs. These filters are capable of isolating the frequency bands
where outliers are likely to manifest, allowing the network to focus on the relevant spectral
components.

• Spectral Localization: Spectral localization involves designing filters that are sensitive
to specific parts of the graph spectrum. This allows for targeted analysis of the high-
frequency regions affected by the ‘right-shift’, enhancing the detection of outliers[15].
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• Wavelet Theory: The application of wavelet theory to GNNs provides a framework for
creating band-pass filters that are both spectral-localized and spatial localized.This dual
localization is key to capturing the nuanced spectral signatures of outliers.

• Model Adaptation: GNN architectures can be adapted to incorporate these spectral con-
siderations, leading to models like the Beta Wavelet Graph Neural Network (BWGNN),
which is specifically designed to handle the ‘right-shift’ effect inherent in outliers.

Theoretical Support: The ‘right-shift’ phenomenon has been rigorously proven on a Gaussian
outlier model, validating its occurrence in a variety of graphs with synthetic or real-world out-
liers. This theoretical support underpins the design choices made in addressing the ‘right-shift’
through GNNs. By incorporating strategies to address the ‘right-shift’, GNNs can become more
effective in detecting outliers within graph-structured data. The development of architectures
like BWGNN represents a significant advancement in this direction, offering a theoretically
justified and practically effective solution for the challenges posed by the ‘right-shift’ phe-
nomenon..

4.3 Feature Extraction and Separation

BWGNN divides node characteristics into two groups; class characteristics (C) and neighboring
characteristics (S). The class characteristics depict the qualities of the nodes while the neigh-
boring characteristics convey the structural details. This division enables BWGNN to retain
data, for outlier detection while minimizing the impact of signals, from diverse neighbors. By
upholding the authenticity of node representations BWGNN guarantees that the model can ac-
curately distinguish between irregular nodes thereby improving its ability to detect outliers[16].

4.4 Model Architecture

BWGNNs structure comprises elements :-

Spectral Filtering :- This involves applying filters to the graph Laplacian to focus on frequency
components that are important, for detecting outliers.

Feature Aggregation :- It combines class features and neighboring features separately to en-
sure that the representations of nodes remain accurate.

Classification Module :- This component utilizes the aggregated features to categorize nodes
as either normal or anomalous utilizing enhanced feature representations to enhance detection
precision.

By integrating these elements BWGNN effectively tackles the challenges associated with SDS
thereby enhancing its reliability and accuracy, in identifying outliers.
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Chapter 5

EXPERIMENTS AND RESULTS

The experiments are designed to rigorously evaluate BWGNN’s performance in detecting out-
liers within the Amazon and YelpChi datasets

5.1 Dataset

The Amazon dataset, characterized by its dense product- user interaction network, and the
YelpChi dataset, noted for its segmented user-business review network, are pre-processed ac-
cording to the methodology outlined in previous section.

Amazon
The Amazon dataset contains reviews of products sold on Amazon.com[17]. Each node rep-
resents a user or a product, and edges represent relationships such as "user rated product" or
"product belongs to category."

Commonly used for tasks such as recommendation systems, where the goal is to predict user
preferences or product ratings. Format: Typically provided as a collection of JSON files, where
each file contains information about users, products, reviews, etc.

YelpChi
The YelpChi dataset consists of user reviews and social network information from Yelp[18].
Nodes represent users or businesses, and edges represent social connections or reviews.

Similar to the Amazon dataset, provided as JSON files containing information about users,
businesses, reviews, etc.

5.2 Experimental Setup

The algorithms are implemented in Python and executed on a system having an Intel Core i7
processor with 16 GB RAM running on Windows 11.
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5.3 Performance Metrics

Performance is assessed using precision, recall, F1 macro, GMean and the area under the re-
ceiver operating characteristic (ROC) curve (AUC-ROC), providing a comprehensive view of
BWGNN’s detection accuracy and reliability.

Precision: Precision is the ratio of correctly predicted positive observations to the total pre-
dicted positives. It measures the accuracy of the positive predictions. The formula for precision
is:

Precision =
True Positives

True Positives+False Positives
(5.1)

Recall (Sensitivity): Recall is the ratio of correctly predicted positive observations to the all
observations in actual class. It measures the ability of the model to find all the positive samples.
The formula for recall is:

Recall =
True Positives

True Positives+False Negatives
(5.2)

F1 Score (F1 Macro): The F1 score is the harmonic mean of precision and recall. It provides
a balance between precision and recall, giving equal weight to both metrics. The formula for
the F1 score is:

F1 Score = 2× Precision×Recall
Precision+Recall

(5.3)

For multiclass classification, the F1 macro score calculates the F1 score for each class and
then averages them to give equal weight to each class.

G-Mean: The geometric mean (G-Mean) is a measure of classifier performance that bal-
ances sensitivity and specificity. It is the square root of the product of sensitivity and specificity.
The formula for G-Mean is:

G-Mean =
√

Sensitivity×Specificity (5.4)

Area Under the ROC Curve (AUC-ROC): The ROC curve is a graphical plot that illus-
trates the diagnostic ability of a binary classifier system as its discrimination threshold is varied.
The AUC-ROC measures the area under the ROC curve, which indicates the model’s ability to
distinguish between positive and negative classes[19]. AUC-ROC values range from 0 to 1,
where a higher value indicates better performance.
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5.4 Result Analysis

The application of BWGNN to the Amazon and YelpChi datasets yielded the results shown in
Table 5.1.

Dataset −→ YelpChi Amazon
Metrics −→ AUC F1-macro GMean AUC F1-macro GMeanModels ↓

SVM 70.37 70.77 0 90.51 90.71 0
GCN 56.51 51.31 45.51 86.67 60.54 76.38

PC-GNN 85.12 69.33 77.20 96.14 86.54 89.78
GDN 90.34 76.05 80.84 97.09 90.68 90.78

Proposed 91.24 77.25 81.24 97.26 92.20 91.02

Table 5.1: Results

5.4.1 Amazon Dataset:

BWGNN demonstrated exceptional precision and recall, significantly outperforming baseline
models. The AUC-ROC score indicated a high degree of reliability in distinguishing between
regular and outlier nodes within the dense network.

5.4.2 YelpChi Dataset:

Despite the dataset’s segmented topology, BWGNN maintained its high performance, show-
casing its adapt- ability to various graph structures. Its F1 score, in particular, underscored its
balanced detection capability.
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Chapter 6

CONCLUSION AND FUTURE SCOPE

6.1 Conclusion

This study introduced the Beta Wavelet Graph Neural Network (BWGNN), a novel approach to
outlier detection in graph- structured data that leverages spectral graph theory and neural net-
work architectures to effectively address the challenges posed by structural distribution shifts
(SDS). By implementing BWGNN on the Amazon and YelpChi datasets, we demonstrated its
superior performance in identifying outliers, outperforming existing methods including tradi-
tional GNNs and the Graph Decomposition Network (GDN).

6.2 Key Findings

BWGNN’s integration of spectral graph analysis allows for a nuanced understanding of graph
structures, enabling the detection of outliers with high precision and reliability across diverse
datasets.The adaptability of BWGNN to various graph dynamics, as evidenced by its perfor-
mance on the Amazon and YelpChi datasets, showcases its potential for broad application in
detecting graph-based outliers. BWGNN’s architecture and methodology present a significant
advancement in addressing SDS, ensuring robust outlier detection even in evolving graph envi-
ronments.

6.3 Future Directions

Exploring Additional Datasets Applying BWGNN to a wider range of graph-structured data
can further validate its versa- tility and effectiveness in outlier detection.

Enhancing Model Efficiency Investigating methods to optimize BWGNN’s computational ef-
ficiency could broaden its applicability, especially in real-time detection scenar- ios.

Integrating Advanced Spectral Techniques: Incorporating cutting-edge developments in spec-
tral graph theory could enhance BWGNN’s capability to uncover complex outlier patterns.

Cross-Domain Applications: Examining BWGNN’s applica- bility across different domains,
such as cybersecurity, finance, and social media analysis, could reveal new insights and use
cases for graph-based outlier detection.
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In conclusion, the Beta Wavelet Graph Neural Network (BWGNN) represents a significant
step forward in the field of graph- based outlier detection. Its ability to seamlessly navigate the
complexities of SDS and deliver high-performance results across varied datasets underscores
the potential of spectral graph theory in advancing the detection of outliers in graph- structured
data. We anticipate that further research and de- velopment will continue to uncover the full
extent of BWGNN’s applicability and impact in this evolving field
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