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ABSTRACT 

 
With the exponential proliferation of food-related material on digital platforms, automatic food 

picture categorization has emerged as a critical study field. Deep learning models such as 

EfficientNetB0, Xception, and Inception-v3, which are known for their ability to use transfer 

learning, have become crucial tools in this sector. In this thesis, we critically evaluate the 

performance of such models on the complex Food-101 dataset that encompasses 101 various  

types of food. Our study found out that Xception is leading in its performance, with an awe-

inspiring accuracy rate of 84.54%, which surpasses other models. Based on this breakthrough, 

we explore how deep feature extraction techniques and powerful classification algorithms like 

SVM, Random Forest, and CatBoost can be integrated. Our findings prove how effective it is 

when we combine linear SVM with Xception attributes, which achieve a top accuracy of 93% 

for food image categorization. We have also analyzed the possibility of using features acquired 

from the pooling layer of EfficientNetB0 showing its superiority compared to others when 

linked to a Catboost classifier. This revolutionary study not only demonstrates the technological 

impact of these deep learning architectures but also shows their combined effects with machine 

learning classifiers, thereby advancing the frontier of accurate food image classification to new 

heights. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Need for Food Classification 

In the current world, people are suffering from more health diseases than they ever used to. Today's 

generation is getting more worried about health and consuming a healthy diet, but due to hectic 

schedules, it becomes impossible for us to check our diet all the time, which is why automatic food 

monitoring has become necessary. Nutrition science, over the time, has discovered vitamins, minerals, 

and other components that make up our foods. Foods are classified into different groups in order to 

simplify dietary recommendations. For example, it’s easier to eat two orange fruits instead of consuming 

50 milligrams of vitamin C. 

Adding to the problem of consuming a balanced number of vitamins and minerals, a dish with a lot of 

different foods complicates the issue even further. Therefore, it would be better to recognize the generic 

type of a particular food item and we can use it to determine its nutritional value, e.g., calories. Calories 

are mainly used in order to know the energy content of food items. Calorie counting can provide users 

with a rudimentary understanding of their daily caloric consumption. 

1.2 Integrated Machine and Deep Learning for Image Classification 

Advancements in machine learning and deep learning algorithms has advanced the field of computer 

vision in terms of the human-like classification accuracies achieved. One such application profoundly 

impacted is the classification of different classes of food images [31], a critical task in today's data-

driven world where visual content is prolifically shared on digital platforms. Machine learning makes it 

possible to uncover complex patterns from huge datasets [32]. These algorithms can recognize minute 

variations in textures, forms, and colors when used to classify food images, making it possible to 

distinguish between various gourmet products. On the other hand, deep learning has shown to be 

unmatched in its ability to extract useful information from high-dimensional image data [33]. Deep 

learning has outperformed feature engineering in various applications in computer vision [34]. 

Convolutional neural networks (CNNs) have proved to be efficient at extracting hierarchical 

representations of images [35], which is crucial in differentiating subtle features of food products. The 

performance of computer vision algorithms has been greatly accelerated and improved in terms of 

accuracy and efficiency due to the integration of deep neural networks and machine learning algorithms 
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[36]. Additionally, because machine learning algorithms are adaptable, they may continuously become 

better with new data, guaranteeing that categorization models develop and get better over time [37]. 

 

1.3 CNNs for Image Classification  

Computer vision techniques may be used to create systems that can detect and categorise various food 

products. CNNs are the most widely utilised architecture for image identification and detection. Image 

classification using CNNs has shown to be an optimal method since convolutional neural networks can 

generate the scoring function directly from the pixels in an image and its built-in convolutional layer 

decreases an image's high dimensionality without losing its information. 

Over the past few decades, lots of research has been made in the field of deep learning in order to design 

an optimal Convolutional Neural Network that can recognize and classify different images. The five 

CNNs (Inception-v3, EfficientNetB0, Xception, DenseNet121, and MobileNet) that we shall explore in 

this thesis are among the best-performing CNNs in today's globe.  

Inception-v3 is the third iteration of Google's Inception Convolutional Neural Network, which was first 

unveiled for the ImageNet Recognition Challenge [2]. The main purpose of Inception-v3 is to utilise less 

computational resources by changing the Inception designs from previous versions. This idea was 

proposed by Szegedy et al., 2015[3].  

By using neural architecture search to create a new baseline network and scaling it up, EfficientNets can 

be created [4]. In contrast to the best available Convolutional Neural Networks, EfficientNet-B7 is 8.4 

times smaller and 6.1 times faster on inference but still achieves top-of-the-line 84.3% accuracy on 

ImageNet.  

Convolutions make the Inception network computationally inefficient. These convolutions occur not 

only spatially, but also across depth. As a result, for each additional filter, we must do the convolution 

over the input depth to determine only a single output map, and as a result, the depth becomes a big 

hindrance in the DNN. Researchers attempted to reduce the depth, which is where Xception came into 

play. Xception, introduced by Chollet François [1], is an extreme version of inception and it takes the 

principles of Inception to their logical conclusion. In Inception, 1x1 convolutions were used to compress 

the original input, and we used different types of filters on each depth space from each of those input 
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spaces. This step is simply reversed by Xception. It employs 1x1 convolution across the depth range in 

order to reduce depth.  

In order to address the declining accuracy brought on by high-level neural networks' disappearing 

gradient, DenseNet was created. DenseNet joins (.) the output of the subsequent layer with the output of 

the preceding layer.  DenseNet121 is a 121 layers deep CNN proposed by Iandola et al., 2014 [16]. 

MobileNet is a computer vision model that is compact, low-latency, and low-power. As compared to 

other networks with conventional convolutions and the same depth in the nets, it greatly minimizes the 

number of parameters by using depthwise separable convolutions which is the reason why it is a 

lightweight deep CNN.  

 

1.4 Machine Learning Classifiers 

1.4.1 SVM 

Support Vector Machines (SVMs) belong to the family of supervised classifiers; they perform well for 

both linear and non-linear data, and the selection of the kernel function and tuning parameters like C and 

γ is generally what determines how well they perform. The most basic type of SVM, suited for data that 

can be separated linearly, is the linear kernel. When the link between features and classes is linear, it 

functions well. By utilizing polynomials to translate features into a higher-dimensional space, the 

polynomial kernel enhances SVM's ability to handle non-linear data. The polynomial's degree is 

controlled by the parameter d (degree). For non-linear data, the RBF kernel, commonly referred to as the 

Gaussian kernel, is frequently utilized. It has infinite-dimensional spatial mapping capabilities. 

The RBF kernel has two important parameters, one is the regularization parameter (C) and the other is 

gamma (γ). We have set C as 1 and gamma as 0.1. Maximizing the margin while minimizing the training 

error are trade-offs that are balanced by the regularization parameter (C). Gamma describes the range of 

an individual training example's impact. High levels indicate close influence, while low values indicate 

distance. Low gamma can result in underfitting, whereas high gamma can result in overfitting. 

1.4.2 Random Forest 

One of the ensemble learning techniques, Random Forest is a flexible and popular machine learning 

algorithm. To build a more robust, accurate model, ensemble approaches integrate several different 

independent models. Particularly, Random Forest is a collection of decision trees. Decision trees are 
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unique models that rely their choices on the features provided as input. They split the data into subsets 

depending on the values of the features, resulting in a decision-tree-like structure. Nodes in decision 

trees indicate features, and branches on those nodes reflect decisions depending on those features. The 

leaves, or the last nodes in a tree, stand for the forecasts or class labels. 

A random subset of the dataset is used to train each tree. Additionally, only a random subset of traits is 

taken into account for splitting at each node. Each tree "votes" for a class in classification tasks. The 

Random Forest makes a prediction for the class that receives the most votes. For regression tasks, the 

predictions of all trees are averaged to obtain the final prediction. We have set n_estimators to be 100 

and max_depth to be 20. 

1.4.3 XGBoost 

Extreme Gradient Boosting, or XGBoost, is a kind of gradient boosting technique used in machine 

learning. XGBoost is a technique for group learning. During the training phase, it creates a number of 

decision trees and combines their predictions to provide precise and reliable forecasts. Instead of using a 

single decision tree, XGBoost builds a strong learner from a series of weak learners (shallow trees). We 

use a learning rate of 0.1 and have set objective to multi:softmax for multiple classification. We use 

max_depth of 6. 

1.4.4 CATBOOST 

Yandex created the robust gradient boosting library CatBoost [41] to effectively handle categorical 

information in machine learning applications. It is notable for being scalable, resilient, and capable of 

achieving excellent results on a variety of datasets. CatBoost is a flexible and effective gradient-boosting 

toolkit that performs well with categorical data, reduces overfitting, and generates reliable and 

comprehensible models. 

In this thesis, an effort has been made to analyze the performances of five CNNs mainly known as 

Inception-v3, EfficientNetB0, Xception, DenseNet121, and MobileNet in terms of their accuracies. We 

also explore the synergistic combination of deep learning with machine learning algorithms, specifically 

Support Vector Machines (SVMs) with linear, polynomial ad Gaussian/RBF kernels, Random Forest, 

and XGBoost, to raise the accuracy of food image classification. 

 

  



5 
 

CHAPTER 2 

RELATED WORK 

 

Earlier when CNNs were not used for food classification and recognition, it was done with the help of 

traditional algorithms using feature extraction techniques. But traditional algorithms had some 

drawbacks such as not making appropriate use of texture features of food. In [5], Tao et al proposed a 

feature extraction algorithm called color completed local binary pattern (CCLBP). The model uses 

CCLBP for extracting texture feature of image and HSV color histogram and Border pixel classification 

(BPC) color histogram for extracting color features of image. This model has obtained recognition rate 

that is higher by only 5% than those achieved through conventional methods of feature extraction. 

Zhou et al. [6] were among the first to apply deep learning to food categorization. They examined 

research that employed deep learning as a data analysis tool to address difficulties in the food sector, 

such as calorie estimation and food recognition. The survey findings revealed that deep learning beat 

manual feature extractors and typical machine learning algorithms. 

Pan et al. [7] introduced a DeepFood system that comprises of a deep learning-based features extractor, 

feature selection, and the Sequential minimal optimisation (SMO) classifier. For feature extraction, they 

used 3 CNNs that are AlexNet [8], CaffeNet [12], and ResNet [15]. They observed that the DeepFood 

framework, which combines ResNet deep feature sets, Information Gain (IG) feature selection, and the 

SMO classifier, outperforms previous food classification systems, with an average accuracy of 87.78%. 

AlexNet and CaffeNet fared equally in feature extraction, with average accuracies of 80.415% and 

80.756%, respectively. 

Shaha and Pawar [9] have used the pre-trained model VGG19 and fine-tuned the network parameters of 

it. Later on, they went to compare the results of fine-tuned VGG19 model with the results of fine-tuned 

VGG16 and AlexNet in terms of average recall, precision, and F-score. They have used two state-of-the-

art databases GHIM10K and CalTech256 for the performance evaluation of VGG19. From the results, it 

was concluded that fine-tuned VGG19 performed better than the rest of the 4 two models AlexNet and 

VGG16 on both databases. VGG19 achieved a precision of 99.23 and an F1-score of 99.30 on the 

GHIM10K database and for CalTech256, VGG19 achieved a precision of 88.88 and an F1-score of 

88.65. 
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Yanai and Kawano [10] have examined deep convolutional neural networks (DCNN) for food 

recognition. They have pre-trained the DCNN by picking up 1000 food categories from 21,000 

categories of ImageNet and added them with the ILSVRC 1000 ImageNet categories. They have fine-

tuned the pre-trained deep convolutional neural network in Caffe [12] with the help of a total of 2000 

image categories. For trials, they employed the UEC-FOOD100 and UEC-FOOD256 datasets, where the 

DCNN attained accuracies of 78.77% and 67.57%, respectively. 

VijayaKumari et. al. [11] have used pre-trained EfficientNetB0 [14] and trained it on the Food101 

dataset which consists of 101,000 real-world images of food divided into 101 different categories. They 

trained the EfficientNetB0 in four distinct techniques by altering the supplemented data and the model's 

learning rate. The report concluded that EfficientNetB0 beat GoogleLeNet and Inception-v3 with 80% 

accuracy. 

Yadav et. al. [14] have used pre-trained SqueezeNet and VGG16 convolutional neural networks. They 

utilized 10 classes out of 101 classes in the Food101 dataset and trained both models on those specific 10 

classes. They concluded that VGG19 outperformed SqueezeNet, with training accuracy of 94.02% and a 

validation accuracy of 85.07%. 

Chen et al. [17] have proposed an auto-clean CNN model for online food prediction image cleaning. 

They have used the Mealcome dataset (MLC dataset) which contains two parts, one is the clean part 

(MLC-CP) and another one is the dirty part (MLC-DP). They have divided the task of auto-cleaning the 

images into two parts, firstly they used three pre-trained CNN models that are VGG16, AlexNet, and 

CaffeNet for single-task comparison in order to identify which model is most suitable for food 

recognition and classification. They have used the MLC-CP dataset for single-task comparison. It was 

found that CaffeNet was the best among all three models therefore they proposed an auto-clean CNN 

model which was inspired by CaffeNet and trained it on MLC-CP and MLC-DP datasets. 

Singla et al. [18] have used a pre-trained GoogleLeNet CNN model and evaluated the model based on 

food/non-food classification and food categorization. They have created their datasets by collecting 

images from the real world and social platforms. They have created two datasets named Food-5K and 

Food-11 and used them for food/non-food classification and food categorization respectively. They 

achieved an accuracy of 98.3% and 99.2% after fine-tuning the last 2 layers and the last six layers 

respectively on the Food-5K dataset. For food categorization, they achieved an accuracy of 83.6% on the 

Food-11 dataset. 
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Özsert Yiğit, Gözde, and B. Melis Özyildirim [19] have developed three deep convolutional network 

(DCNN) structures and compared their performances with pretrained models AlexNet and CaffeNet. 

Three DCNN structures have been trained on Food11 and Food101 datasets with the learning method 

being changed for all three models. They have used stochastic gradient descent, Nesterov’s accelerated 

gradient, and Adaptive Moment Estimation as the learning methods for the three different structures. The 

first of the three structures proposed is similar to AlexNet but it has different number of layers and 

different kernel size. The second structure does not have the fifth convolutional layer and the third 

structure is the same as the first one but it does not use a local response normalization. In the paper, it is 

concluded that AlexNet and CaffeNet have higher accuracies compared to these three structures. 

Structure one was the best among all three, it gave an accuracy of 73.80% when trained with adam 

learning technique whereas AlexNet had an accuracy of 86.92%. 

Kagaya et al. [20] have analyzed the performance of CNN for food detection and food recognition and 

compared it with existing techniques that are spatial pyramid matching (SPM), colour histogram and 

SVM, and GIST features and SVM. For normalization, they have used local response normalization 

(LRN). It was concluded that existing techniques had accuracies between 50% to 60% whereas CNN 

with a kernel size of 5x5 and 6-fold cross-validation had an accuracy of 73.70%. 

Subhi, Mohammed A., and Sawal Md Ali [21] have proposed 24 layers deep convolutional neural 

network out of which 21 layers are convolutional and 3 layers are fully connected. They have fixed the 

stride to 1 pixel for every convolutional layer and dimensions are preserved after convolution. They 

evaluated the food recognition capability of the model on 5800 food images distributed over 11 food 

categories. 

Yu et. al. [22] have analyzed the performances of Inception-ResNet and Inception-V3 models on the 

ETHZ-FOOD-101 dataset which has 101 classes of food and around 1000 images in each class. Before 

training and testing the models, they pre-processed the images in order to remove background variations 

of the images. They have done white balancing of the images with help of the grey world method and 

then applied histogram equalization for getting better contrast and luminance. On full-layer training, 

Inception-ResNet achieved top-1 accuracy of 72.55% and top-5 accuracy of 91.31%. 

Attokaren et al. [23] have retrained the Inception-v3 model on the Food-101 dataset which contains 101 

different classes of food items and images in this dataset are filled with noise and intense colour. Some 
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of the images have the wrong label. They have properly labeled the images and rescaled them to the 

dimensions 299x299. Their proposed approach achieved an accuracy of 86.97%.  

Alex M. Goh and Xiaoyu L. Yann [24] have used 4 classes out of 101 classes of food items of the Food-

101 dataset and trained the pre-trained Inception-v3 model on it with the help of transfer learning. They 

have cut out the last three layers of the model and taken results from the bottleneck layer and considered 

them to be the feature results. They have intentionally not cleaned the images to check the accuracy of 

the model and rescaled the images to a maximum side length of 512 pixels.  

Haddadi et al. [25] have developed an intrusion detection system (IDS) with the help of a 2-layer feed-

forward neural network and backpropagation algorithm. They evaluated the model on the DARPA 

dataset and divided the data into 80% and 20% for training and testing respectively. The model is trained 

for 599 epochs and stopped because of early stopping. Two studies have been conducted using various 

numbers 7 of relationships between the training and test datasets. The findings suggested that the 

proposed IDS performed almost as well in both experiments and that the detection rates were extremely 

close.  

Zhang et al. [26] have taken a pre-trained DCNN which is trained on the ILSVRC 1000-class dataset and 

retrained it on a custom dataset of 360 different classes of food items. For data cleaning, they trained a 

one-class SVM with deep convolutional features. They changed the output number of the last fully 

connected layer of the model to 360 as there are 360 classes of food items. Their framework consists of 

three major tasks that are food identification, cooking method recognition, and food ingredient detection 

task. Their network achieved 57.25% and 82.29% in the top-1 and top-5 accuracies respectively in the 

case of food identification task. For cooking method recognition, their model achieved an accuracy of 

69.50%, and for the food ingredient detection task they achieved a precision of 60.74%.  

Ragusa et al. [27] have used pre-trained AlexNet and VGG models and considered two basic transfer 

learning techniques which are, using the models as feature extractors and fine-tuning the models. An 

SVM classifier is trained on top of the features that were taken from the training set. At the time of fine-

tuning, a new layer with only two nodes is substituted for the network's final layer, which originally 

contained 1000 units. They evaluated the models on the Flickr-NonFood dataset by splitting the dataset 

asymmetrically into two halves, each comprising 3583 and 4422 samples. From the results, it was 

concluded that AlexNet with binary SVM achieved an accuracy of 94.86% and VGG with binary SVM 

achieved an accuracy of 91.99%.  
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Rajayogi et al. [28] have analyzed and compared the performances of four CNNs pre-trained on the 

ImageNet dataset that are VGG16, VGG19, Inception-v3, and ResNet. They have considered the Indian 

Food Dataset which contains 20 classes of food items. Since there are images with multiple food items, 

the dataset by its very nature contains a lot of noise. The image samples also have a lot of colors, and 

some of them have labels that are incorrect. Each of the 20 classes of dataset contains 500 images out of 

which 400 are taken for training and 100 for testing the models. They have used a dropout of 0.2 to 

avoid overfitting of the models. They have observed that Inception-v3 outperformed all three models 

with an accuracy of 87.9% and a loss rate of 0.5893.   

Hassannejad et al. [29] have taken three different datasets ETH Food-101, Food-101, and UEC Food-

256, and augmented the images by cropping them out and resizing them to 299x299 and distorting the 

contrast, hue, brightness, and saturation of the images. ETH dataset has already been divided in 75% 

training and 25% testing but for Food-101 and UEC Food-256, they have randomly split the data into 

80% for training and 20% for testing. They used pre-trained Google Inception-v3 model for evaluation 

which achieved top-1 accuracies of 88.28%, 81.45%, and 76.17% for datasets ETH Food-101, Food-101, 

and UEC Food-256 respectively.  

ŞENGÜR et al. [30] have considered two pre-trained models VGG16 and AlexNet for feature extraction 

and used an SVM classifier to determine the class label of input images. They have used three available 

datasets named Food-5k, Food-11, and Food-101 that contain 2, 11, and 101 classes of food respectively. 

VGG16’s and AlexNet’s fc6 and fc7 layers features are extracted and concatenated in various 

combinations to get the best accuracy on three datasets. Results of the paper depict that VGG16’s fc6 

feature sets concatenated with AlexNet’s fc6 feature sets gives the best accuracies of 99.00%, 89.33%, 

and 62.44% on the Food-5k, Food-11, and Food-101 datasets respectively. 

Jogin et al. [16] investigated several classification techniques, such as SoftMax, Fully Connected Neural 

Network (FCN), SVM, Nearest Neighbor classifier and Convolutional Neural Network (CNN). 

Although not the best method for classifying images, the Nearest Neighbor classifier performs better 

than random guessing with an accuracy of 28.2%. SoftMax reaches 34.1% accuracy, whereas SVM 

reaches 37.4%. The study shows that while CNNs outperformed with an accuracy of 85.97%, FCN only 

provided 46.4% accuracy. The study came to the conclusion that CNN, in particular, shows considerable 

potential for a wide range of tasks linked to computer vision, voice recognition, and security, obtaining 

astounding accuracy rates.  



10 
 

Farooq et al. [17] made use of the 1098 images from 61 categories of a fast-food image dataset. For 

feature extraction, AlexNet was employed. For classification tasks, independent features extracted from 

the FC6, FC7 and FC8 fully connected layers of the network were used. These feature representations 

were used to train the SVM classifier. Using features from the FC6, FC7, and FC8 layers, average 

accuracies of 70.13%, 66.39%, and 57.2%, respectively, were obtained for the 61 categories of fast food 

images. 

Islam et al. [42] explored efficient techniques for classifying food images using deep CNNs that have 

already been trained. Two approaches were looked into: retraining DCNNs on images of food and using 

pre-trained DCNN features to train conventional classifiers. A novel food image database, Food-22, 

aligned with Australian dietary guidelines, was introduced for evaluation purposes. Comparative 

evaluations of Food-22 and current databases indicated similar accuracy for both approaches, with the 

latter showing much shorter training periods. 

 Phiphitphatphaisit and Surinta [43] proposed a novel approach utilizing the ResNet50-LSTM network. 

Robust spatial features were extracted using advanced VGG, ResNet and DenseNet architectures. 

Temporal features were then extracted through a Conv1D-LSTM network, combining convolutional and 

long short-term memory networks. The resulting ResNet50+Conv1D-LSTM network achieved the 

highest accuracy on the challenging Food-101 dataset as compared to the state of the art.  

Zhang et al. [44] proposed a food mage recognition system utilizing convolutional neural networks 

(CNN) and tested on two food image datasets. The results indicated that adding RGB color features 

significantly improved accuracy for fruit images but unexpectedly reduced accuracy for multi-food 

images. The study concluded that CNN's effectiveness is influenced by the dataset size, with larger 

datasets leading to better performance.  

Other advances in the state of the art for food image recognition include ensembles of fine-tuned CNNs 

[45], integration of deep features with hand-crafted features like Histogram of Gradients (HoG) [46], and 

mobile-based food image recognition [47] involving identification of regions of interest in the food 

image. The review in [48] provides a comprehensive collection of deep learning models applied to the 

task of food image recognition. 
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CHAPTER 3 

METHODOLOGY 

 

Fig. 3.1. Deep learning architecture for food classification. 

Figure 3.1 shows the suggested deep learning architecture. Here dataset 1 is nothing but ImageNet 

dataset on which all the five models Inception-v3, EfficientNetB0, Xception, DenseNet121, and 

MobileNet are pre-trained on. We are using these five pre-trained models and with the help of the 

concept of transfer learning [9][11], we have trained our pre-trained models on Food101 dataset. 

Food101 images are preprocessed first in which image augmentation occurs, this implies that images are 

transformed and the dataset is extended. These adjustments offer a fresh perspective for capturing the 

object in real life rather than altering the target class of photos. Because of these modifications, the 

dataset now comprises a range of pictures, making our model robust and generalizable when trained on 

slightly different images.  
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3.1 Transfer learning using deep pre-trained networks 

First, we'll look at the pre-trained Inception-v3 model. Inception-v3 includes convolutional layers, 

average pooling layers for calculating the average for each patch of the feature map, max-pooling layers, 

a concat layer that joins all of its input blobs together to form a single output blob, and fully connected 

layers that connect all of the neurons in one layer to all of the neurons in another layer. We have 

unfrozen all of the layers in the pre-trained Inception-v3 model. Then, to reduce training loss, we 

flattened the output layer to one dimension and added a fully connected layer with hidden units equal to 

the number of classes. To minimise overfitting, we added a 0.5 dropout rate and a final SoftMax layer 

for classification. To minimise overfitting and provide quicker weight updates during training, we 

employed stochastic gradient descent (SGD) as the optimizer and golorot_uniform as the kernel 

regularizer. There are a total of 22,630,277 parameters, with 22,595,845 being trainable. 

Second, we have EfficientNetB0. We have made all of the layers trainable. To the pre-trained 

EfficientNetB0 model, we used Average Pooling to compute the average of all the values from the 

section of pictures covered by the kernel. We've included a thick layer with hidden units equal to the 

number of classes and a dropout rate of 0.5. Finally, we implemented a SoftMax layer for classifying 

multiple classes.. To optimise, we employed stochastic gradient descent with a learning rate of 0.1 and 

momentum of 0.9. There are a total of 5,213,192 parameters, of which 5,171,169 are trainable. 

Third, we have Xception. We have made all of the layers trainable. We used Global Average Pooling to 

the pre-trained Xception model to compute the average of all values from the region of pictures covered 

by the kernel, and then added a flatten layer. We've included a thick layer with hidden units equal to the 

number of classes and a dropout rate of 0.5. We utilised the Nadam optimizer, with the lr initialised at 

0.0001. Finally, we implemented a SoftMax layer to classify several classes. There are a total of 

21,068,429 parameters, among which 21,013,901 are trainable. 

Then we took DenseNet121. All of DenseNet121's layers are trainable. We utilised the Adam optimizer 

with a learning rate of 0.1 and a dropout of 0.5. We applied the AveragePooling2D layer with a pool size 

of (4,4) and then a flattened layer at the end. There are a total of 7,141,029 parameters, of which 

7,057,381 are trainable. 
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Finally, we have MobileNet, Keras' first mobile computer vision model. We configured all the layers as 

trainable and used Adam optimiser with a learning rate of 0.1. We set the dropout to 0.5 before adding 

the AveragePooling2D and flatten layers, as well as a thick layer with hidden inputs equal to the number 

of classes. 

 

3.2 Data Augmentation 

The following parameters are considered for image augmentation: 

 Rotation range = 90: This method of augmentation allows us to rotate the picture by 0 to 360 

degrees clockwise. The image's pixels spin this way. To use this argument, we must pass the 

rotation range parameter to the ImageDataGenerator class's constructor. 

 Brightness range = [0.1, 0.7]: Here, the range begins at zero, which denotes that the image is not 

bright. Additionally, the top range is 1, denoting the widest range of brightness. The range is 

defined to be between 0.1 and 0.7. 

 Width shift range = 0.5: The image is really shifted to the left or right (horizontal). A positive 

value selected at random will move the picture to the right, while a negative value will move it to 

the left. 

 Height shift range = 0.5: It produces a vertical image shift. If the value is a float number, it 

specifies how much the image's width or height will change. If it's an integer number, however, 

the width or height will simply be modified by that many pixel values. 

 

3.3 Training Procedure  

All five models are trained for 30 epochs on 101 distinct classes of the Food101 dataset, with a batch 

size of 32. 

We preserved the learning rate as a variable for each model. It varies according to the epochs. 
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Epoch Learning Rate 

1-5 0.001 

6-10 0.0002 

11-15 0.00002 

16-30 0.0000005 

Table 3.1 Learning Rate 

Table 3.1 shows the learning rate that has been set for a particular epoch. 

 

For Inception-v3 we have taken SGD optimizer. We have set a checkpoint to save the best-only 

training accuracy. 

 

Fig. 3.2. Training accuracy of Inception-v3. 

Figure. 3.2 Shows the training accuracy graph for the fine-tuned Inception-v3 model which achieved 

the highest training accuracy of 80.45%. 

For EfficientNetB0, we have used SGD optimizer with a learning rate of 0.1 and momentum of 0.9. 

We achieved a training accuracy of 72.94% on the 101 training classes of the Food101 dataset. 



15 
 

 

Fig. 3.3. Training accuracy of EfficientNetB0. 

Figure 3.3 Shows the training accuracy graph for the fine-tuned EfficientNetB0 model. 

For Xception, we have used Nadam optimizer with a learning rate of 0.0001. The highest training 

accuracy that the Xception model achieved is 91.11%. 

 

Fig. 3.4. Training accuracy of Xception. 

Figure 3.4. Shows the training accuracy graph for the fine-tuned Xception model. 

For DenseNet121, we have used Adam optimizer with a learning rate of 0.1. DenseNet121 achieved 

the highest training accuracy of 73.02% after 30 epochs. 
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Fig. 3.5. Training accuracy of DenseNet121. 

For MobileNet also we have used Adam optimizer with its learning rate initialized to 0.1. It was the 

fastest model when it comes to the training time comparison because of its compact size and low 

latency. The highest training this model achieved on the Food-101 dataset was 75.60% for 30 

epochs. 

 

Fig. 3.6. Training accuracy of MobileNet. 
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3.4 Integrated SVM-Xception model 

 

 

Fig. 3.7. Feature extraction and classification pipeline. 

After the pre-trained Xception model is trained on the Food-101 dataset, learning complex features 

from the images. Features are extracted from the last layer of the Xception model, which is the 

Global Average Pooling layer, resulting in a feature vector of 2048 dimensions. Each image in the 

dataset is transformed into a set of 2048 features. The extracted features are fed into various machine 

learning classifiers, such as SVM (with linear, polynomial and Gaussian/RBF kernels), Random 

Forest, and XGBoost. These classifiers are trained on the extracted features to learn the patterns and 

relationships within the data. The classifiers output the final classification results, indicating the 

predicted classes for the given food images. This process allows us to leverage the pre-trained 

Xception model's feature extraction capabilities and then use traditional machine learning classifiers 

for accurate food image classification 

Each image is transformed into a 2048-dimensional feature vector by the Xception pre-trained 

model. We have 18750 features in the training dataset and 6250 features in the testing dataset.  

Features extracted from Xception are fed into SVM (linear, polynomial and Gaussian/RBF kernels), 

Random Forest, and XGBoost classifiers, and their accuracies are compared for evaluation. We 

applied Support Vector Machines (SVM) with three distinct kernels, training each on the extracted 

features from Xception. 
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Support Vector Machines (SVMs) belong to the family of supervised classifiers; they perform well 

for both linear and non-linear data, and the selection of the kernel function and tuning parameters 

like C and γ is generally what determines how well they perform. The most basic type of SVM, 

suited for data that can be separated linearly, is the linear kernel. When the link between features and 

classes is linear, it functions well. By utilizing polynomials to translate features into a higher-

dimensional space, the polynomial kernel enhances SVM's ability to handle non-linear data. The 

polynomial's degree is controlled by the parameter d (degree). For non-linear data, the RBF kernel, 

commonly referred to as the Gaussian kernel, is frequently utilized. It has infinite-dimensional spatial 

mapping capabilities. 

 The RBF kernel has two important parameters, one is the regularization parameter (C) and the 

other is gamma (γ). We have set C as 1 and gamma as 0.1. Maximizing the margin while minimizing 

the training error are trade-offs that are balanced by the regularization parameter (C). Gamma 

describes the range of an individual training example's impact. High levels suggest intimate 

influence, and low amounts indicate distance. A low gamma can lead to underfitting, whereas a high 

gamma can cause overfitting. 
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3.5 Fusion of Deep Features Using CatBoost 

 

 

 

Fig. 3.8. Hybrid Feature Extraction and Classification Pipeline. 

 

We employ a pre-trained EfficientNetB0 model to extract complicated characteristics from the 

Food101 dataset's pictures. These are collected by the Average Pooling layer, which yields a feature 

vector of shape (None, 3, 3, 1280). This means that these characteristics should be flattened to obtain 

a tensor having the shape 11520. Thus, each image in this dataset is modified according to this 

principle generating as many as 11520 features. Further on these characteristics are pooled together 

for further computing using several machine learning classifiers that include CatBoost, SVM and 

Random Forest. These classifiers make use of the collected features to learn about patterns and 

correlations within data. During post training phase, classifiers make final classification results 

indicating the expected classes for food pictures under consideration. Therefore, it functions by first 

using extraction abilities of a pre-trained EfficientNetB0 model followed by traditional machine 

learning frameworks that will bring about accurate categorization of food images. 

EfficientNetB0 presents an intricate design for fetching compound layouts from input snapshots. 

Convolutional layers form part of its input flow while middle flow includes repeated residual blocks.; 

and the exit flow consists of further convolutional layers. The model introduces depth-separable 

convolutions and shortcut connections to enhance its feature  



20 
 

extraction performance of images having a size of 224x224 pixels and three RGB color  

channels. Unlike the exit flow which contains 8 residual blocks, intermediate flow consists of 16  

repeated residual blocks that make it more robust in differentiating complicated image features. 

For optimization we use Stochastic Gradient Descent (SGD) optimizer having a learning rate of  

0.1 and momentum of 0.9 together with dropout rate 0.5 to prevent overfitting as well as facilitate  

learning. 

During training on the Food 101 data set, EfficientNetB0 model works with a batch size equal to 32 

across several epochs thus allowing for iterative refining its parameters. The learning rate remains  

flexible throughout the training process enabling adaptive tweaks for optimized model efficiency in 

every epoch. 

CatBoost is a kind of gradient boosting such that it is good at dealing with machine learning 

problems where categorical data is involved for instance classification and regression challenge. It is 

outstanding in performance and provides cutting-edge outcomes particularly for regression and 

classification tasks. CatBoost excels when it comes to working with raw categorical features. This 

column is essential because the model is trained with an efficient approach that converts categorical 

attributes to numeric values so simplifying data preparation for improved performance can happen 

through relevance learning. Some hyperparameters are available in CatBoost that can be adjusted to 

enhance performance. The key aspects to take into account are the number of trees, the depth of the 

tree, and the learning rate. 

Learning rate defines the magnitude of each step in gradient descent, establishing the model's 

convergence speed and performance as well.The depth of each decision tree is a major determinant 

of the difficulty while the total complexity of the ensemble is affected by the number of trees.  

The CatBoost classifier was fine tuned for a balance between complexity and generalization by 

constraining the tree depth to 5 and setting the learning rate to 0.01. To prevent overfitting and 

ensure robustness enhancing the model’s accuracy and stability in categorizing food photos the 

following were used: 1000 trees, early stopping, and L2 regularization..
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Dataset 

In this section, we will be discussing the dataset that we have used and the results that 

we got after training and testing all three models on the particular dataset. 

We utilised the Food101 dataset, which consists of 101 distinct food groups or 

categories, each with 1000 real-world photos. Food101 is a tough multimodal dataset, 

with noise in the training pictures. [13]. Out of these 1000 photographs for each class, 

750 are allocated to training and 250 are for testing. We used transfer learning to train 

all 101 food classes' pre-trained models on their training photos. 

. 

 

Fig. 4.1. Eight classes of Food. 

Figure 4.1 represents three classes out of 101 classes the of Food-101 dataset that we 

have used for the evaluation of models. Each of these classes has two different folders, 

one contains training images and the other contains testing images. 
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Classes Train 

Images 

Test 

Images 

101 750 250 

Total 

images 

75750 25250 

Table 4.1 Training and Testing Images 

Table 4.1 shows the training and testing images. We have a total of 75750 images for 

training and 25250 images for testing. 
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4.2 Results 

4.2.1 Results of Transfer Learning 

We will compare the outcomes of all five models based on testing accuracy by 

assessing them on the test dataset. 

 

Fig. 4.2. Testing accuracy of Inception-V3. 

Figure 4.2 represents the testing accuracy of Inception-v3 for the 101 classes of food. 

Inception-v3 attained the greatest testing accuracy of 81.73% across 30 epochs. 

. 

 

Fig. 4.3. Testing accuracy of EfficientNetB0. 
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Figure 4.3 represents the testing accuracy graph of EfficientNetB0. The testing 

accuracy recorded for the model after 30 epochs was 79.81%. 

 

 

Fig. 4.4. Testing accuracy of Xception. 

Figure 4.4 shows the testing accuracy of the Xception model. Xception obtained a 

testing accuracy of 84.54% after 30 epochs. This model achieved the highest testing 

accuracy among all the five models. 

 

Fig. 4.5. Testing accuracy of DenseNet121. 
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DenseNet121 achieved the lowest testing accuracy among all five models. It achieved 

a testing accuracy of 34.41% after the completion of 30 epochs. 

 

 

Fig. 4.6. Testing accuracy of MobileNet. 

Figure 4.6 depicts the training accuracy graph for MobileNet. MobileNet obtained a 

testing accuracy of 63.09% after 30 epochs. 
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CNN Testing 

Accuracy 

Inception-v3 81.73% 

EfficientNetB0 79.81% 

Xception 84.54% 

DenseNet121 34.41% 

MobileNet 63.09% 

 

Table 4.2 Accuracy comparison of three pre-trained models 

 

Table 4.2 contains the list of all the convolutional neural networks along with their 

testing accuracies. As shown, Xception outperformed all other models in the 

classification challenge, with an accuracy of 84.54%, while Inception-v3 came in 

second with 81.73%. The DenseNet-121 model fared the poorest with 34.41% for the 

food picture classification assignment. 
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4.2.2 Results of Integrated Xception-SVM model 

Fig. 4.7 illustrates the testing accuracy curve of the Xception model across 30 epochs. 

As observed from this graph, the highest test accuracy achieved by Xception is 

88.94%.  

 

 

Fig. 4.7. Testing Accuracy of Integrated SVM-Xception 

Each image is transformed into a 2048-dimensional feature vector by the the Xception 

pre-trained model is utilized with a training dataset containing 18,750 features and a 

testing dataset containing 6,250 features. All classifiers are trained using the complete 

set of 18,750 features for the purpose of classification. 

The features obtained from the Xception model are inputted into various classifiers, 

including Support Vector Machines (SVM) with linear, polynomial, and 

Gaussian/RBF kernels, as well as Random Forest, CatBoost and XGBoost. The 

accuracies of these classifiers are then compared for evaluation. Specifically, we 

employed Support Vector Machines (SVM) with three different kernels, training each 

on the features extracted from Xception. 

Table 4.3 presents the classification accuracy of different models on the test features 

extracted from Xception for the three different kernels. Amongst these, the linear 

kernel SVM exhibited superior performance, achieving the highest accuracy of 93%. 

The random forest implementation, utilizing 100 decision trees led to an accuracy of 
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78.32%. For XGBoost, we fine-tuned the learning process with a rate of 0.1, 

employing a multi:softmax objective for multiple classifications. We set the maximum 

depth of the trees to 6, resulting in an accuracy of 68.92%. For CatBoost we have used 

1000 decision trees which led to an accuracy of 91.36%. 

 

Model Accuracy 

Xception-SVM (Linear) 93% 

Xception-SVM (Polynomial) 86.20% 

Xception-SVM (RBF) 89.63% 

Xception-CatBoost 91.36% 

Xception-Random Forest 78.32% 

Xception-XGBoost 68.92% 

Xception base model 84.54% 

 

Table 4.3 Performance comparison of different classifiers and Xception 
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4.2.3 Results of Integrated EfficientNetB0-CatBoost model 

 

Fig. 4.8 Testing Accuracy of Integrated CatBoost-EfficientNetB0 

Figure 4.8 presents the testing accuracy curve of the EfficientNetB0 model over 30 

epochs, showcasing its performance trajectory. Notably, the model attains a peak test 

accuracy of 81.49%, highlighting its efficacy in accurately classifying food images. 

Then, CatBoost, SVM, and Random Forest classifiers use the retrieved features from 

EfficientNetB0 as input, allowing for a thorough comparison of their individual 

accuracies. 

Each food image is transformed into a high-dimensional 11520-feature vector, with 

the training dataset comprising 18,750 features and the testing dataset containing 

6,250 features. Then, all classifiers are trained on the 18,750 characteristics to assist 

classification tasks, ensuring a full evaluation of their performance across varied food 

categories. 

We then tested 11520-dimensional feature vectors from EfficientNetB0 model using 

the CatBoost classifier and we had good results on the testing dataset, achieving an 

accuracy of 87.53%. This illustrates how well features taken from EfficientNetB0 

work with the CatBoost classifier to provide precise food image recognition. 
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The characteristics were applied to Support Vector Machines (SVMs) with a linear 

kernel. The EfficientNetB0 model produced extracted features with a classification 

accuracy of 84.61 percent on the testing dataset.  

Our random forest implementation produced an accuracy of 74.15% by using 200  

decision trees and a maximum depth of 30. 

 

Table 4.4 Performance comparison of different classifiers combined with 

EfficientNetB0. 

Table 4.4 shows how accurate some of these methods are that have been explored in  

our research project, where CatBoost reached the highest point as it had more 

application on our experiment which dealt with food image classification using 

features obtained from EfficientNetB0. 

 

 

 

 

 

Model Accuracy 

EfficientNetB0-CatBoost 87.53% 

EfficientNetB0-SVM(Linear) 84.61% 

EfficientNetB0-Random 

Forest 

74.15% 

EfficientNetB0 base model 81.49% 
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CHAPTER 5 

CONCLUSION 

 

We evaluated the effectiveness of five well-known Convolutional Neural Networks 

(CNNs) and several machine learning methods in identifying deep features taken from 

the Xception model for food image recognition. We used pre-trained models such as 

Inception-v3, EfficientNetB0, Xception, DenseNet121, and MobileNet, which were 

first trained on the ImageNet dataset and fine-tuned to categorise 101 food categories 

from the Food101 dataset. When it comes to test accuracies, our assessment was based 

on demonstrating that Xception has the greatest classification rates (84.54%) despite 

its modest size compared to Inception V3. 

Our investigation found that linear SVMs outperformed other methods when analysing 

Xception-derived test characteristics. The linear kernel SVM is the optimal classifier 

for deep feature classification compared to other alternatives. We emphasised the 

importance of transfer learning by using a pre-trained Xception model for feature 

extraction, which contributed considerably to improved classification outcomes. We 

conclude from our study that Xception-SVM (93%) is the best hybrid model followed 

by EfficientNetB0-CatBoost (87.53%), proving the efficiency of the proposed hybrid 

framework involving deep features and machine learning classifiers for classification 

of food images. 

Our research concluded that deep learning models, are highly efficient for categorising 

food images. We acquired CatBoost as the best option among conventional machine 

learning classifiers in terms of efficiency compared to SVM and Random Forest 

because it can properly cope with gathered food picture information. Combining 

classical machine learning classifiers with deep learning feature extraction has 

potential for food image classification research and applications. This study 

emphasises the necessity of selecting appropriate classifiers and optimising 

hyperparameters to improve classification accuracy and overall system performance. 
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