
Enhancing Android Security: Machine Learning
Approaches for App Permissions and Malware

Detection

Major 2 Project Dissertation

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

SOFTWARE ENGINEERING

Submitted by

JAIKISHAN MOHANTY (2K22/SWE/07)

Under the supervision of

Dr. DIVYASHIKHA SETHIA

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi 110042

May, 2024

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Jaikishan Mohanty, Roll No’s –2K22/SWE/07 students of M.Tech (Sofware Engineer-

ing), hereby declare that the project Dissertation titled “Enhancing Android Security:

Machine Learning Approaches for App Permissions and Malware Detection” which is

submitted by me to the Sofware Engineering Department, Delhi Technological Univer-

sity, Delhi in partial fulfilment of the requirement for the award of degree of Master of

Technology, is original and not copied from any source without proper citation. This work

has not previously formed the basis for the award of any Degree, Diploma Associateship,

Fellowship or other similar title or recognition.

Place: Delhi Jaikishan Mohanty

Date: 24.05.2024 (2K22/SWE/07)

i

DEPARTMENT OF MECHANICAL ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Enhancing Android Security: Machine

Learning Approaches for App Permissions and Malware Detection” which is submitted

by Jaikishan Mohanty, Roll No’s – 2K22/SWE/07, Department of Software Engineering,

Delhi Technological University, Delhi in partial fulfilment of the requirement for the award

of the degree of Master of Technology, is a record of the project work carried out by the

students under my supervision. To the best of my knowledge this work has not been

submitted in part or full for any Degree or Diploma to this University or elsewhere.

Place: Delhi Dr. Divyashikha Sethia

Assistant Professor

Date: 01.06.2024 Department of Software Engineering, DTU

ii

DEPARTMENT OF MECHANICAL ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

ACKNOWLEDGEMENT

We wish to express our sincerest gratitude to Dr. Divyashikha Sethia for the continuous

guidance and mentorship that she provided us during the project. She showed us the

path to achieve our targets by explaining all the tasks to be done and explaining to us

the importance of this project as well as its industrial relevance. She was always ready to

help us and clear our doubts regarding any hurdles in this project. Without her constant

support and motivation, this project would not have been successful.

Place: Delhi Jaikishan Mohanty

Date: 24.05.2024 (2K22/SWE/07)

iii

Abstract

The prevalence of Android devices has made the platform a major player in the mobile

market. However, this widespread adoption also brings significant challenges when de-

tecting and preventing Android malware. This thesis aims to address these challenges

by utilizing machine learning techniques. The first aspect of this thesis focuses on giving

users greater control over their app permissions through an innovative Android applica-

tion. This application uses machine learning models to analyze the permissions requested

by various apps and provides users with informed recommendations based on the safety

ratings of these permissions. By leveraging usage frequency data from specific app cat-

egories on the Google Play Store, the model offers users a comprehensive tool to make

educated decisions regarding app permissions, thus contributing to a safer and more secure

mobile app ecosystem.

The second aspect of this thesis introduces the GARB (Gradient Boosting classifier, Ad-

aBoost, Random Forest and Bagging classifier with a decision tree) Model, a novel ensem-

ble approach for detecting malware in Android packages. The GARB Model combines

multiple base classifier algorithms, including Gradient Boosting, AdaBoost, Random For-

est, and Bagging Classifier with Decision Tree, through a weighted averaging method of

stacking. This ensemble approach exhibits superior performance, achieving an accuracy

of 82.38% in distinguishing between malware and benign Android packages. Moreover,

the GARB Model outperforms individual classifiers in various criteria, highlighting its

efficacy and reliability for prediction tasks related to malware detection.

Together, these contributions offer comprehensive solutions for enhancing mobile app se-

curity and user privacy within the Android ecosystem. By leveraging machine learning

techniques, this thesis aims to mitigate the growing threat of Android malware and em-

power users with the tools and knowledge necessary to navigate the increasingly complex

landscape of mobile app permissions and security risks.

iv

Contents

Candidate’s Declaration i

Certificate ii

Acknowledgement iii

Abstract v

Content vi

List of Tables vii

List of Figures viii

1 INTRODUCTION 1
1.1 Overview . 1
1.2 Motivation . 4
1.3 Problem Statement . 4
1.4 Proposed Solution . 4
1.5 Contribution . 5

2 TECHNICAL BACKGROUND 6
2.1 Android System Architecture . 6
2.2 An Android security Mechanism . 6
2.3 Workflow for using permissions . 7
2.4 Types of permissions . 8

3 ML-Based Android App Permission Detection 10
3.1 Motivation And Research Gaps . 10
3.2 Objective . 10
3.3 Related Work . 11

3.3.1 Comparison with the Existing Application 13
3.3.2 Comparison with the Android Versions 13

3.4 Methodology . 14
3.4.1 Overview of APEC: App Permission Classification with Efficient

Clustering [1] . 14
3.4.2 Implementation of APEC in the Android Permission Detector . . . 17

4 Stacked ML for Android App Malware Detection 20
4.1 Motivation And Research Gaps . 20
4.2 Objective . 20

v

4.3 Related Work . 21
4.4 Methodology . 22

4.4.1 Dataset . 24
4.4.2 Pre-processing . 24
4.4.3 Hyperparameter Tuning . 26
4.4.4 Experimentation . 26

4.5 Proposal of GARB Model . 29

5 RESULTS and DISCUSSION 30
5.1 Android App Permission Detector based on Machine Learning Models . . . 30
5.2 Android App Malware Detection using Stacking of Machine Learning Al-

gorithms . 31

6 CONCLUSION AND FUTURE SCOPE 34

vi

List of Tables

3.1 Related Work On Model . 12
3.2 Comparison of Android . 14
3.3 Comparison with Android Versions . 16

4.1 Related Work . 24

5.1 Application Testing with Proposed Application 30
5.2 Performance Comparison of Different Algorithms 32

vii

List of Figures

2.1 Platform Architecture of Android [2] . 7
2.2 Permission-Based Security Mechanism . 8
2.3 Illustrates the workflow for using app permissions [3] 8

3.1 Flow diagram of Three-Tier Architecture for APEC [1] 15
3.2 K-distance graph of Action category [1] . 17
3.3 Flow diagram of Android Permission Detector 18

4.1 Flow Diagram . 23
4.2 Dataset Distribution . 25
4.3 Price vs Category of applications . 26
4.4 Different Experimental Phases . 27
4.5 GARB (Gradient Boosting classifier, AdaBoost, Random Forest and Bag-

ging classifier with a decision tree) Model 29

5.1 The interface of Permission Detector. In Fig. (a), Audiobooks show
granted unsafe permission, of which three are user-authorized. In Fig.
(b), After turning off User-authorized permission from setting and refresh
the app. 31

5.2 Confusion Matrix of GARB Model . 32

viii

Chapter 1

INTRODUCTION

1.1 Overview
In recent years, the Android ecosystem has experienced exponential growth, emerging as
the dominant player in the global mobile operating system landscape [4]. With a stag-
gering market share of approximately 84.2% worldwide and over 3 billion active users,
Android’s accessibility and widespread adoption have reshaped the way individuals inter-
act with technology [5]. However, amidst this meteoric rise, the platform has encountered
a formidable adversary: malware.

Malware, or malicious software, poses a significant threat to the privacy and security of
Android users and has become a pressing concern for both consumers and developers
alike [6]. The proliferation of malware on the Android platform has escalated to alarming
levels, with an overwhelming majority—nearly 97% of malicious mobile apps targeting
Android devices [7]. This threat manifests in various forms, ranging from seemingly
innocuous applications masquerading as ad blockers to sophisticated malware capable of
infiltrating devices and accessing sensitive data [8].

The Android security mechanism, while robust in theory, has exhibited vulnerabilities in
practice, contributing to the proliferation of malware [6]. The app publishing process,
characterized by a lack of stringent validation, has provided an entry point for malware
publishers to exploit, circumventing security measures and infiltrating the platform [6].
Consequently, Android users are left vulnerable to many privacy breaches and data abuses,
jeopardizing their personal information and digital identities [9].

Android presents several privacy threats [10], such as:

(a) Malware: Without the user’s knowledge, malicious software or malware is installed
on an Android device, gathering private data, including login passwords and finan-
cial information.

(b) Location tracking : A few applications can access and track a user’s location without
that user’s knowledge or consent.

(c) Data Leakage: Android apps can access various private data, including contacts,
location, and text messages, and they may do so without the user’s knowledge or
approval.

1

(d) Phishing : Phishing attacks target Android users, tricking them into providing sen-
sitive information, including login credentials, to a bogus website or app.

Applications must obtain user permission before accessing specific data and capabilities
under Android’s permission system. However, it is ultimately up to the users to allow
or deny these permissions, which is problematic. More than 70% smartphone apps often
request data collection permissions that are only sometimes essential for their core func-
tions. Unfortunately, many users hastily grant all permissions during installation, while
even those who pay attention may need help comprehending the implications fully. The
lack of practical guidance for granting permissions leaves users needing assistance navi-
gating the minefield of app permissions. The consequences are dire, as third-party apps
can covertly track user locations, access sensitive information like contact lists and SMS
logs, and compromise personal data privacy [9]. With Android 6.0, Android introduced
runtime permissions to address these issues and give users more control over app permis-
sions. There are four types of permissions: install-time permissions, runtime permissions,
normal permissions, and special permissions. These permissions define the scope of data
access for an app and the actions the app can perform if granted permission.

1. Install-time permission: It provides restricted access to classified data or actions
that have a minimal impact on the system. The user receives a notification when
they view the app’s information page, notifying them of the install-time permissions.
Examples of these permissions include ACCESS_NETWORK_STATE, BLUE-
TOOTH, and INTERNET.

2. Runtime permission: It grants the app additional access to classified data or actions
that can significantly impact the system and other apps. Therefore, the app must
request runtime permissions before accessing classified data or performing restricted
actions. Examples of these permission groups include Calendar, Call log, Camera,
Contacts, Location, Microphone, Sensor, SMS, Storage, and Telephone.

3. Special permission: These permissions are established when the platform and Orig-
inal Equipment Manufacturers(OEMs) wish to restrict access to decisive actions
such as drawing over other apps. The Special app access page in system settings
holds a collection of user-toggle-able operations, with many implemented as special
permissions. These permissions include scheduling exact alarms, drawing over other
apps, and Accessing all storage data.

Runtime permissions are also known as user authorization permissions, primarily encom-
passing permission groups. However, none of the Android versions provide any service
to warn the user about the safety of the application permissions. The app permissions
management system has changed since the recent Android 12 update [11]. The update’s
notification service covers only a small number of specific permissions. Other permis-
sions may also pose a threat to privacy. New malware techniques developed for new apps
mainly threaten users’ privacy. Therefore, there is a need for new Android services that
can warn users when something is safe or unsafe and give them a secure environment in
which to use applications.
Android 13 [12] brings several vital updates. Users can now stop foreground services from
the notification drawer, improving performance and battery life. A new runtime permis-
sion, POST_NOTIFICATIONS, enhances user control over notifications. Apps targeting
Android 13 must declare the AD_ID permission for Google Play services. Privacy and se-
curity need separate media access permissions instead of READ_EXTERNAL_STORAGE.

2

Install-time permission USE_EXACT_ALARM benefits apps like calendars and alarms,
ensuring precise timing. These changes reflect Android’s Focus on performance, privacy,
and security.

To address this problem, APEC, also known as App Permission Classification with Ef-
ficient Clustering [1], is a model that aims to enhance the security of Android applica-
tions. It utilizes a three-tier structure consisting of permission categorization clustering
through DBSCAN and permission classification using Decision Tree and Random Forest
algorithms. APEC achieves accuracy rates, with Decision Tree reaching 93.8% accuracy
and Random Forest achieving 95.8% accuracy. Moreover, it effectively addresses privacy
concerns by predicting whether permissions are safe or unsafe based on the categories of
the apps. This model offers recommendations for users and developers, improving An-
droid app security in line with the updates introduced in Android 12 [11] for permission
management.

According to previous research, such as the study conducted by Wang et al. [13], machine
learning can aid in the identification of Android malware. However, prior efforts have
focused mainly on detecting malware, with little attention paid to privacy concerns arising
from the apps’ additional permission requests. Therefore, a new approach is necessary
to address the privacy and data abuse issues that may arise from the apps’ permission
requests.

One approach to mitigating the malware threat on Android devices is using the Android
permission system. This system mandates that applications acquire user consent before
accessing specific data and capabilities [9]. However, studies have revealed that users often
grant permissions without fully comprehending their implications, inadvertently exposing
themselves to privacy risks [9]. Furthermore, while machine learning techniques have
shown promise in detecting Android malware [13], existing efforts have primarily focused
on malware detection, neglecting the associated privacy concerns arising from excessive
permission requests [13].

This thesis endeavours to address the multifaceted challenge posed by malware on the
Android platform, with a particular emphasis on enhancing malware detection while safe-
guarding user privacy. Leveraging datasets such as the Android Permission Dataset (AP
dataset) [14], this research aims to develop a comprehensive approach to malware detec-
tion based on permissions. Building upon previous studies, such as the XGBoost-based
model proposed by Rawat et al. [15], this thesis seeks to refine and augment existing
methodologies by adopting ensemble learning techniques.

By amalgamating insights from diverse domains, including cybersecurity, machine learn-
ing, and mobile computing, this thesis aims to contribute to developing more secure
and privacy-aware Android applications. The overarching goal is to foster a safer digi-
tal ecosystem for Android users, characterized by heightened resilience against malware
threats and enhanced personal data protection. Through empirical research and practical
interventions, this thesis seeks to fortify the foundations of trust upon which the Android
ecosystem thrives, ensuring that users can confidently harness the power of technology
without compromising their privacy or security.

3

1.2 Motivation
The exponential growth of the Android ecosystem has brought along significant security
challenges, particularly in combating malware threats. With Android devices being the
target of a vast majority of malicious mobile apps, there’s an urgent need for robust
cybersecurity measures. Despite efforts to address this issue, vulnerabilities in the Android
security mechanism and app publishing process persist, allowing malware to infiltrate the
platform.

The motivation for this research stems from the critical gaps in current malware detection
techniques, particularly in addressing privacy concerns related to excessive permission
requests. By leveraging datasets like the Android Permission Dataset (AP dataset) and
employing advanced machine learning techniques, this research aims to enhance malware
detection accuracy while minimizing privacy risks for Android users.

Ultimately, the goal is to contribute to the development of more secure and privacy-aware
Android applications, fostering a safer digital ecosystem where users can confidently utilize
technology without compromising their privacy or security.

1.3 Problem Statement
In today’s data-driven world, security has become a paramount concern due to the mas-
sive volume of data generated daily. One practical approach to addressing this challenge
is identifying potentially harmful behaviour of Android applications as their usage pro-
liferates. This can be achieved through dynamic malware analysis techniques based on
Android permission analysis. Utilizing machine learning algorithms such as Decision Trees
and Random Forests, this research aims to detect and classify application permissions as
safe or unsafe, enhancing Android app security.
Another significant problem is malware detection on Android devices. While existing
methods have shown promise, there remains a need for more robust solutions that can
accurately identify and mitigate malware threats. This research uses an ensemble ap-
proach to enhance malware detection accuracy by combining multiple classifiers, thereby
fortifying Android device security against evolving malware threats.

1.4 Proposed Solution
Building upon the aforementioned contributions, the proposed solution for this thesis
report involves developing and implementing a comprehensive framework for Android
app security.

The framework encompasses two primary components:

1. Android App Permission Detector: The first component involves designing and
deploying the Android App Permission Detector. Leveraging the insights gained
from the APEC model, the detector will analyze and classify application permissions
to determine their safety levels. By integrating with the latest Android updates and
utilizing advanced machine learning techniques, the detector will provide actionable
recommendations for developers to optimize app permissions, enhancing overall app
security.

4

2. GARB Model for Malware Detection: The second component focuses on imple-
menting the GARB Model for malware detection. By utilizing ensemble learning
techniques and a diverse set of machine learning algorithms, the GARB Model will
accurately identify malicious Android packages. By leveraging the strengths of in-
dividual classifiers and employing stacking with Logistic Regression, the model will
enhance malware detection accuracy while minimizing false positives.

The proposed solution combines these two components within a unified framework to
provide a comprehensive approach to Android app security. Through empirical evaluation
and real-world testing, the effectiveness and robustness of the solution will be assessed,
with the ultimate goal of enhancing user privacy and security in the Android ecosystem.

1.5 Contribution
The proposed work makes significant contributions in two key areas:

1. Proposal of Android App Permission Detector: This research introduces a
novel Android App Permission Detector designed for permission classification based
on a static model known as APEC [1]. The detector evaluates the safety of applica-
tion permissions by analyzing their frequency of usage within specific app categories
on the Google Play Store. Aligned with the updates introduced in Android 12 and
Android 13 [11, 12], the detector outperforms similar applications in the market.
Furthermore, it serves as a user recommendation system, providing developers with
insights into the minimal permissions required for optimal app functionality while
alerting users about potentially unsafe permissions associated with installed appli-
cations.

2. Proposal of GARB Model for Malware Detection: This study proposes the
innovative GARB Model, which stands for Gradient Boosting, AdaBoost, Random
Forest, and Bagging Classifier with Decision Tree. Utilizing a weighted averaging
method of stacking, the GARB Model determines whether an Android package is
malware. By employing various machine learning algorithms, including Gradient
Boosting, Ridge Classifier, Random Forest Classifier, MLP Classifier, Bagging Clas-
sifier with Decision Tree, and ADA Boost Classifier, this research explores ensemble
prediction techniques to enhance malware detection accuracy. Additionally, stack-
ing with Logistic Regression is employed, utilizing base models’ predictions to train
a meta-model for improved malware identification.

5

Chapter 2

TECHNICAL BACKGROUND

2.1 Android System Architecture
The Android operating system, a Linux-based kernel system, uses a software Stack to cre-
ate its hierarchical system architecture. According to Figure 2.1, which is ordered from
bottom to top are as follows- Power Management, Android Runtime environment, hard-
ware abstraction layer (HAL), Linux kernel, native C/C++ libraries, Java API framework,
an application layer, Google offers the traditional layered design of the Android system.
There are numerous subsystems and submodules within each layer. The Linux kernel is
the foundation of the kernel section at the bottom of the Android stack, as shown in Fig.
3.1.1. While the native C/C+++ libraries, Android Runtime Environment, and the Java
API framework make up the user space at the top of the system. System calls connect
the kernel and user areas. Most user space programs are created using Java or C++.
Through the Java native interfaces, the user space’s Java layer and native layer are linked
to the rest of the Android system.

2.2 An Android security Mechanism
Android OS is a privileged-partition operating system in general. A series of system ser-
vices are carried out by the system using Binder, an inter-process communication mecha-
nism to achieve high-level system operations as shown in figure 2.2. Utilizing their distinct
system identifiers, the Android operating system isolates executing applications (Linux
UIDs). By default, Android applications are only given a small number of permissions in
order to communicate with hardware, system services, and other applications, they must
acquire more specific permission. An Android application’s required permission is listed in
the relevant manifest file, i.e. Androidmanifest.xml, and is provided either after installa-
tion or while the program is in a running state. The Android operating system categorizes
the permissions given to each program using UIDs, executes these restrictions while the
program is running and further limits each process’ permissions by using SELINUX.

The development of security features has received a lot of focus from Android developers
during system updates and iterations. For instance, the 2019 release of Android Q includes
a number of additional security features, including access control for sensitive data, file-
based encryption, access control for background cameras and microphones, encrypted
backup, a lock mode, and a system known as Google Play Protect. Android version

6

Figure 2.1: Platform Architecture of Android [2]

Q offers a variety of security and privacy protections for users. Additionally, it has a
better system for controlling permissions, gives the users more control over sharing their
location, prevents background programs from initiating tasks, limits app. access to the
non-reset device identifiers (like the serial number and IMEI), and by default, it enables
MAC address randomization. Android Malware is still a concern, though.

2.3 Workflow for using permissions
In the event that your app necessitates access to classified data or actions, it is important
to establish whether or not you can obtain the information or perform the actions without
announcing your permissions. There are many use cases in your application, such as
capturing images, stopping media playback, and presenting related adverts, that can be
accomplished without announcing any permissions. However, if it is determined that the
app must obtain classified data or execute restricted actions to achieve its objectives, then
the necessary permissions must be declared. Certain permissions, known as install time
permissions, are granted automatically upon app installation. Other permissions, known
as runtime permissions, require the app to request permission at runtime

7

Figure 2.2: Permission-Based Security Mechanism

Figure 2.3: Illustrates the workflow for using app permissions [3]

2.4 Types of permissions
There are various types of permissions categorized by Android, including install-time
permissions, runtime permissions, and special permissions. Each permission type specifies
the range of classified data that your app can access and the range of restricted actions
that your app can perform if your app is granted that permission.

8

1. Install-time permissions : Install-time permissions offer limited access to classified
data or allow the app to execute restricted actions that have a minor impact on
the system or other apps. When you include install-time permissions in your app,
the app store displays an install-time permission notification to the user when they
view the app’s information page.

2. Normal permissions : These permissions provide access to data and actions that go
beyond your app’s sandbox but pose a minimal risk to the user’s privacy and the
operation of other apps. Normal permissions are assigned the normal protection
level by the system.

3. Signature permissions : The system grants signature permission to an app only when
the app is signed by the same certificate as the app or the OS that defines the permis-
sion. Apps that implement privileged services, such as autofill or VPN services, also
require signature permissions for service binding, so that only the system can bind
to the services. The signature protection level is assigned to signature permissions
by the system.

4. Runtime permissions : Runtime permissions, also known as dangerous permissions,
provide the app with additional access to classified data or allow the app to execute
restricted actions that significantly impact the system and other apps. As a result,
runtime permissions must be requested in the app before accessing classified data
or performing restricted actions. Don’t assume that these permissions have been
granted in advance, instead check them and, if necessary, request them before each
access.

5. Special permissions : Special permissions correspond to specific app operations.
Only the platform and OEMs can define special permissions. Additionally, the plat-
form and OEMs typically establish special permissions when they wish to restrict
access to particularly powerful actions, such as drawing over other apps. The Spe-
cial app access page in system settings contains a set of user-toggleable operations.
Many of these operations are implemented as special permissions.

9

Chapter 3

ML-Based Android App Permission Detection

3.1 Motivation And Research Gaps
The motivation behind this research lies in the persistent challenges surrounding Android
app security and privacy. Despite advancements in mobile technology, users still need
help understanding and managing app permissions effectively. The dynamic nature of
malware threats further complicates the landscape, necessitating adaptive solutions that
can keep pace with evolving risks.

Moreover, while machine learning holds promise for improving security measures, there
still needs to be a gap in seamlessly integrating these advanced techniques into practical
applications. Existing tools may require more user-friendliness, hindering their adoption
and effectiveness.

In response to these challenges, this thesis aims to develop an intuitive Android application
that leverages machine learning models for permission classification. By providing users
with actionable insights and recommendations, the application seeks to empower users to
make informed decisions about app permissions, ultimately contributing to a safer and
more secure mobile app ecosystem.

3.2 Objective
The objective of this thesis is to develop an Android application utilizing machine learning
models to enhance the security and privacy of Android users by providing a comprehensive
tool for assessing app permissions. The application aims to address the critical issue of
Android malware detection and privacy breaches resulting from the lack of stringent
validation during app publishing. Specifically, the objectives are:

(a) To develop an Android application that employs machine learning models to assess
the safety of permissions requested by various apps available on the Google Play
Store.

(b) To integrate the machine learning model into the Android application to classify
app permissions as safe or unsafe based on their usage frequency in specific app
categories.

(c) To design a user-friendly interface that empowers users to make informed decisions

10

regarding app permissions by providing safety ratings and recommendations.

(d) To contribute to a safer mobile app ecosystem by providing users with practical
guidance for managing app permissions and mitigating potential security and pri-
vacy risks.

3.3 Related Work
In 2022, Manzil et al. [16] proposed a detection framework based on permission features

using machine learning techniques and Recursive Feature Elimination (RFE) technology.
The system analyzes 100 CoVID-themed fake apps from the Google Play Store and Git-
hub repository and extracts permission features from the AndroidManifest.xml file. The
system consists of 4 components: dataset collection, static analysis, feature selection, and
classification. The study shows better accuracy with the Decision tree and random forest
classifiers. Most malware identified are part of the Cerberus, SpyNote, Metasploit pay-
loads, and SMS Stealer family. This framework may not detect new or unknown variants
of COVID-themed Android malware that researchers have yet to include in the dataset.
SAMADroid, a novel three-level hybrid malware detection model for the Android oper-

ating system, was proposed by Arshad et al. (2018) [17]. The authors conduct an analysis
and categorize several Android malware detection methods. They developed a revolution-
ary three-layer hybrid malware detection methodology for the Android operating system
that combines the advantages of three layers: static and dynamic analysis, local and
remote hosts, and machine learning intelligence. According to trial data, SAMADroid
ensures efficiency in terms of power and storage consumption to reach a high level of
accuracy.
Sun et al. (2016) [18] proposed a method called Significant Permission Identification for

Android Malware Detection (SIGPID). This method aims to tackle the malware issue on
Android devices by identifying the required crucial permissions. Their study showed that
SIGPID outperformed techniques in terms of effectiveness. It achieved an accuracy rate
of 93.62% for detecting apps. It has demonstrated a classification accuracy of 91.4% when
tested with unknown malware apps.
Multilevel Permission Extraction (MPE), a method to automatically detect permission

interactions that successfully discriminate malicious and benign applications, was pro-
posed by Zhen Wang et al. in 2019 [19]. It uses three techniques for extracting permis-
sions: association rule mining, PCA, and deep cross-network (DCN). MPE achieves a
malware detection rate of 97.88% by classifying apps using machine learning algorithms.
The experiment’s findings demonstrate that MPE can attain accuracy, recall, precision,
and FScore levels above 95.8%. In the two cutting-edge methods compared to MI and
SigPID, MPE achieves 96.58% and 95.69% detection rates.

S. Alsoghyer et al. in 2020 [20] proposed a ransomware threat on Android devices by
analyzing Android permissions and proposed a permissions-based detection system. The
study uses a 500 ransomware and 500 benign apps dataset, finding distinct permission
patterns. The system achieves a 96.9% accuracy rate, particularly with Random Forest.
This research emphasizes the importance of Android permissions in ransomware detection,
provides a precise model, and shares the dataset for further study, offering an efficient
approach to enhance Android security against ransomware.

Table 4.1 contrasts the related work’s main contributions and limitations. The earlier

11

Table 3.1: Related Work On Model

Research
Work

Type Analysis
Tech.
Used

Contribution Limitation

Manzil et
al. (2022)
[16]

Malware
Detection

Static
Analysis

It identifies COVID-
themed Android
malware and im-
proves accuracy using
Recursive Feature
Elimination and
machine learning.

The dataset was
custom-created using
feature elimination
techniques and may
not detect new or
unknown variants of
COVID-themed An-
droid malware not in
the dataset.

Sun
et al.,
(2017)
[18]

Malware
Detection

Static
Analysis

Multilevel Data Prun-
ing

Out of 122 possible
permissions, the model
only takes 23 into ac-
count. False classifica-
tion may be the out-
come of the reduction.

Arshad et
al. (2018)
[17]

Malware
Detection

Static
and Dy-
namic
Analysis

SAMADroid have
shown a slight per-
formance overhead on
Android smartphones,
outperforming the
Drebin dataset in
static analysis.

The local host does not
detect malicious activ-
ity, resulting in the
failure of network links
or congestion at the
channel.

Zhen
Wang et.
Al (2019)
[19]

Malware
Detection

Static
Analysis

Multilevel Permission
Extraction for Mal-
ware Detection.

Tested on a specific
dataset of 4,868 be-
nign and 4,868 mali-
cious applications.

S. Al-
soghyer
(2020)
[20]

Malware
Detection

Hybrid
(Static
and Dy-
namic
analysis)

Permissions-based
ransomware detection
system for Android
devices achieved 96.9%
accuracy and offers
valuable insights into
the critical role of An-
droid permissions in
ransomware detection.

Worked on 500 ran-
somware and 500
benign Android apps
without real-world
testing.

12

studies demonstrate that the dataset needed to be revised and unjustifiable given the
variety of apps available in the Google Play Store. Additionally, the prior efforts’ main
emphasis was on malware identification rather than the privacy issues brought on by the
programs’ additional permission requests. Therefore, a new approach is needed to solve
the privacy and data abuse issues brought on by the apps’ other permission requests.

3.3.1 Comparison with the Existing Application

Mobile app permissions are crucial for user security and privacy. Applications have evolved
to manage permissions, allowing users to turn them on or off. Malware exploiting app
permissions is a growing threat to user privacy.
This paper delves into a comparative analysis of the "Permission Detector" application
and several similar applications in the domain of permission management. It provides a
comprehensive view of the functionality, limitations, and malware detection capabilities
of Permission Detector compared to other permission management applications. This
comparative analysis aims to highlight the distinctive strengths and contributions of Per-
mission Detector in enhancing mobile app security and user privacy.

The Permission Manager [21] primarily focuses on enabling or disabling specific per-
missions for user-installed and system applications. However, it operates with limited
permissions, including Calendar, Call log, Camera, Contacts, Location, Microphone, Sen-
sor, SMS, Storage, and Telephone. Notably, it cannot modify sensor permissions starting
from Android 12. Despite its functionality, Permission Manager does not address malware
detection through permission classification.

Similarly, Permission Pilot [22] presents a dashboard listing all installed applications and
their permissions from the Manifest.xml file. Users have control over viewing and dis-
abling granted and ungranted permissions, but like Permission Manager, it lacks malware
detection capabilities based on permission classification.

On the other hand, App Permission Manager [23] provides information about installed,
system, and high-risk apps, specifying granted permissions from various categories. While
identifying high-risk apps and considering granted permissions without evaluating their
safety. Like the other tools, App Permission Manager does not feature malware detection
based on permission classification.

Table 3.2 describes that other applications provide valuable functionality for managing
app permissions. The proposed Android application Permission Detector stands out with
its unique capability for malware detection through permission classification. It empowers
users to not only control permissions but also assess the safety of these permissions,
contributing to a more secure and privacy-conscious mobile app ecosystem.

3.3.2 Comparison with the Android Versions

Android released a new update with significant changes in the app permission manage-
ment. Here is a comparison of updates in the app permission management with the
proposed application as shown in Table 3.3.

13

Table 3.2: Comparison of Android

Aspects Number of
permissions

Purpose Safe/Unsafe
support

Permission
Manager [21]

Only user
authorizes
permissions

Enable and Disable
permission.

No

Permission
Pilot [22]

All permissions of
AndroidMani-
fest.xml file.

Display Granted and
ungranted permissions, and
the user can disable it from

the setting.

No

App
Permission

Manager [23]

Only user
authorizes
permissions

Presents high-risk apps
based on four granted

permissions: Contact, SMS,
Telephone, and Storage.

No

Proposed
Android

Permission
Detector

All Runtime and
install time granted

permissions.

Detect safe or unsafe
permission based on their
usage frequency in the app

category.

Yes

3.4 Methodology

3.4.1 Overview of APEC: App Permission Classification with Ef-
ficient Clustering [1]

The APEC model [1] is an approach for classifying app permissions into safe and unsafe
categories using a three-tier architecture. It uses a 2 million dataset comprising the
name of the app and all app permissions requested by the applications. It efficiently
categorizes app permissions based on the frequency of their occurrence within different
app categories. The key components of the APEC model, as shown in Fig. 3.1, comprise
of Group category, Clustering and Approval and Classifier.

1. Group Category : The APEC model categorizes apps based on their respective cate-
gories in Layer 1, as shown in Fig. 3.1. This categorization stems from apps within
the same category generally sharing similar requirements and permissions, as ex-
plained in [24]. To group apps by category, the APEC model calculates the sum
of each unique permission in every category on the basis requested by the apps. It
then creates a frequency map of permissions based on the category containing the
sum of each permission.

2. Clustering and Approval : The second tier of the APEC model uses DBSCAN clus-
tering to group permissions based on their frequency in Layer 2, as shown in 3.1.
DBSCAN is a density-based spatial clustering of applications with a noise algorithm
well-suited for clustering data with outliers. The APEC model uses DBSCAN clus-
tering to group permissions into core and outlier clusters. The core cluster contains
the permissions most frequently requested by apps in a category, while the outlier
cluster contains the less frequently requested permissions.

To determine which permissions belong to the core cluster, the APEC model calcu-
lates the k-distance for each permission. The k-distance is the minimum distance

14

Figure 3.1: Flow diagram of Three-Tier Architecture for APEC [1]

15

Table 3.3: Comparison with Android Versions

Aspects of
Comparison

Selective
Permission

Control

Scope of
Permission

Types

Privacy
Concerns

Comprehensive
Coverage

Android
12 [11]

Selective
notification for

microphone
and camera
access only.

Focus on
platform-
provided

permissions,
excluding

runtime and
special

permissions.

Permission
groups might
only address
some privacy
concerns and

variations
among apps.

Limited scope,
concentrating

on a few
specific

permissions.

Android
13 [12]

User can stop
Foreground
service from

the
Notification

drawer.

Some of the
runtime

permissions
covered, e.g.,

POST_NOTIFI-
CATION

Separate
permission for
EXTERNAL_-

STORAGE

Calendar and
Alarm

introduce some
new

permissions,
i.e.,

USE_EXACT_-
ALARM at
install time.

Proposed
Permission
Detector

Notifications
cover all user
permissions.

Consider a
wide array of
permissions,
including

runtime and
special ones.

Permission
categories

ensure better
addressing of

various privacy
concerns.

It covers a
wide range of
permissions to

provide
comprehensive

coverage.

between permission and its kth nearest neighbour. The APEC model then plots the
graph of k-distance values and identifies the point where the line curves. Fig. 3.2
shows the k-distance graph of the action category. It shows the line approximately
curves at a value of ε = 20. Hence, in DBSCAN clustering, the value will be in
the neighbourhood of 20 to give an optimal clustering of the app permissions of the
action category. This point is considered the optimal epsilon value, and the cluster
uses it for evaluation.

The APEC model also assigns an approval rating to each permission. The approval
rating is represented by a ’1’ for the cluster’s core, showing that the permission
is safe, and an unsafe ’0’ for the cluster’s outlier, showing each category’s rare
permissions requests.

3. Classifier : The third tier of the APEC model [1] uses a decision tree or random
forest classifier to evaluate the permissions of new apps according to their category
and the approval rating of the permissions within that category. Tier 2 clustering
generates ground truth data and trains the decision tree or random forest classifier.
To evaluate the permissions of a developed application, the APEC model follows
a step-by-step process. Firstly, it identifies the category that the app belongs to.
Then, it assigns an approval rating for each permission associated with that category.

16

Figure 3.2: K-distance graph of Action category [1]

Lastly, using either a decision tree or random forest classifier, it predicts the safety
level of each permission by considering its approval rating.

3.4.2 Implementation of APEC in the Android Permission De-
tector

An Android application that implements the APEC model [1] allows users and developers
to assess the security of app permissions. The application provides a user-friendly interface
to assess the permissions requested by various apps and recommends the appropriate
actions based on the permissions classification.
Integrating the APEC model [1] into the Android application is seamless, providing users
with a straightforward and user-friendly experience. This integration allows users to
access the APEC model’s functionality without complexity. The integration of the APEC
model [1] into the Android application, as shown in Fig. 3.3, involves several key steps:

1. Dataset : The work enhances the dataset used in the APEC [1] Model by extracting
the model predicted output and integrating it into the Android application known
as Permission detector.

2. Initial Installation and Data Collection: Upon the initial installation of the appli-
cation, it queries all application packages and Loaded APEC model results into an
application.

3. Pre-processing Dataset : The collected dataset of query packages undergoes pre-
processing to eliminate all system applications in the list. This step ensures that
the analysis focuses on user-installed applications only.

4. Exporting Permissions : Users can export all user-installed apps and their granted
permissions into an Excel file. This functionality supports future permission classi-
fication, data analysis, and app security work.

5. Fetching Granted Permissions : When the user clicks on any application, it fetches all

17

Figure 3.3: Flow diagram of Android Permission Detector

18

the granted permissions by checking if PackageInfo.requestedPermission == Pack-
ageManager.PERMISSION_GRANTED, then add in a list, forming the basis for
further analysis.

6. Comparison with APEC Model : Compared the granted permissions with the APEC
model’s [1] results. This comparison categorizes permissions as safe or unsafe, pro-
viding users with clear insights into their security.

7. Enable or Disable Permission: Users can interact with the application through a
user-friendly interface. They can turn specific permissions on or off directly from
the application, giving them greater control over their device’s security.

19

Chapter 4

Stacked ML for Android App Malware
Detection

4.1 Motivation And Research Gaps
The increase in malware attacks on mobile devices, notably Android smartphones, high-
lights the urgent need for more effective detection methods. Despite efforts, current tech-
niques often struggle to accurately identify malware, leaving users vulnerable to privacy
breaches and security threats. While machine learning algorithms offer promise, further
advancements are needed to improve detection accuracy and address evolving malware
tactics. Additionally, there is a need to explore the privacy implications of application
permissions, an area often overlooked in current research.

Existing literature lacks enhanced detection accuracy, privacy considerations, exploration
of ensemble learning, and comprehensive model comparisons. Despite leveraging machine
learning, current methods still need the desired accuracy. This research proposed an
ensemble approach, the GARB Model, which addresses this gap by combining multiple
classifiers. Previous studies focus primarily on malware detection, neglecting the privacy
risks of excessive application permissions. This research seeks to bridge this gap by exam-
ining the broader implications of permission requests. Ensemble techniques, particularly
in mobile malware detection, still need to be explored. This study investigates the ef-
fectiveness of combining classifiers to improve detection performance. It is essential to
conduct more comprehensive comparisons between machine learning algorithms and en-
semble methods for detecting malware on Android devices. This thesis work performs a
thorough evaluation to identify the most effective approach.

4.2 Objective
The objective of this paper is to investigate the effectiveness of various classification algo-
rithms in identifying malware in Android applications based on the permissions requested
by the user. The study aims to determine the most accurate model for predicting malware
presence in different types of Android packages. Specifically, the objectives are:

(a) To evaluate the performance of different classification algorithms, including Gradient
Boosting, AdaBoost, Random Forest, and Bagging Classifier with Decision Tree
(GARB), in identifying malware in Android applications using permission-based

20

features.

(b) To implement a weighted averaging ensemble approach, incorporating multiple clas-
sification models, to enhance the accuracy of malware detection in Android packages.

(c) To propose the GARB model, leveraging the strengths of various classification algo-
rithms through ensemble prediction, and compare its performance with individual
classifiers and other ensemble methods.

(d) To explore the efficacy of stacking techniques, particularly using Logistic Regres-
sion as a meta-model, in improving the accuracy of malware detection based on
permission requests in Android applications.

4.3 Related Work
Rawat et al. [15] presents a comprehensive investigation into machine learning algorithms

for Android malware detection, focusing on permissions requested by apps. Previous re-
search has predominantly utilized deep learning and supervised learning methods, while
traditional approaches like static and dynamic analysis encounter scalability and feature
engineering challenges. The study evaluates seven classification algorithms on a dataset
comprising 29,999 instances and 180 features. XGBoost emerges as the top-performing
algorithm with 80.03% accuracy. However, limitations such as imbalanced data, miss-
ing values, and computational constraints for specific algorithms are acknowledged. The
study highlights the efficiency of machine learning in identifying Android malware based
on requested permissions but suggests further research to address these limitations for
more robust detection systems.

In a study by Rana et al. [8], the following tree-based algorithms, Random Forest, De-
cision Tree, Gradient Tree Boosting and Extremely Randomized Tree, were assessed to
detect Android Malware. Selecting features based on substrings is mainly used for creating
classifiers. The researcher used three distinct substrings for each feature: one word, two
words, and three words, respectively. The researcher used the DREBIN dataset, which
comprised 11,120 apps with data and metadata, equally split between malicious and be-
nign apps. The researcher assessed the classifiers’ performance using precision, recall,
accuracy, and F1 score criteria. The Random Forest algorithm achieved a competitive
accuracy rate of 97.24% and performed well in other metrics. Therefore, it is the best
algorithm for all substring situations. Blending other terms in the last words of different
app features adversely affected the performance of the classifiers. Hence, optimizing the
app’s performance requires careful attention to this aspect.

McLaughlin et al. [25], researchers employed convolution neural networks to process an
Android app’s raw Dalvik byte code to detect malware on the device. They trained their
neural network using the Torch environment and optimized it with RMSProp. According
to their claims, one of the main advantages of their approach is that it eliminates the need
for manually designed malware features.
A group of developers conducted a study on a newly developed application classification

technique called DroidCat [26]. The study found that app execution traces can provide
valuable information on various features, although not all may be useful. The developers
defined 122 metrics by characterizing application behaviours using these execution traces.
The creators of DroidCat designed it to overcome challenges that most existing peer ap-
proaches face. The results demonstrated that DroidCat outperformed other approaches

21

in detecting malware and categorizing families.
The study found that malware invokes SDK APIs more frequently than benign Android
apps from user code or third-party libraries. It also discovered that malicious apps tend
to log less than benign ones. The results showed that DroidCat outperformed state-of-
the-art malware detection and categorization techniques, achieving a mean F1 accuracy
of 97.39Researchers noted that DroidCat achieved an impressive precision rate of 96.83%
for malicious apps. DroidCat has a high chance of detecting any unknown app with an
accuracy rate of 96.83%. A reliable antivirus tool in Virus Total would also detect the
same app.

Wang et al. (2019) proposed a hybrid model aimed at improving the accuracy and effi-
ciency of Android malware detection on a large scale. The proposed model relied on two
crucial components: deep autoencoder (DAE) and convolution neural network (CNN).
Virus Total confirmed that all 10,000 apps crawled by the Anzhi Play Store were benign.
Virus Share collected 13,000 malicious apps, resulting in a dataset of 23,000 apps used
to train and test various models. The researchers reconstructed the high-dimensional
features of the apps to boost the accuracy of Android malware detection, reducing the
number of features from 34,570 to 413. The researchers deployed a serial convolution
network architecture (CNN-S) to detect malware in apps, which achieved the highest ac-
curacy of 99.82% compared to traditional methods and other CNN architectures. DAE
was combined with CNN to create the DAE-CNN model to achieve the same performance
while reducing the training time. The results showed that training time was reduced by
83% compared to CNN-S, resulting in improved accuracy and efficiency.

Jerome et al. [7] examined machine learning-driven device malware detection. They
introduced a tool that autonomously extracts characteristics from Android smartphones
and analyzed emulator-centric and device-centric detection methodologies across trials.
Their Dataset comprised 2444 applications, with half sourced from the Android Malware
Genome Project and the other half sourced from Intel Security. By employing InfoGain,
the researchers identified 100 features out of a total of 178 features. They focused solely
on these selected features. During their experimentation, the team grouped 100 features
into five categories: top 20, 40, 60, 80, and top 100. They analyzed these features using
several classifiers, such as MLP, SVM, Random Forest, Naive Bayes, PART, J48 decision
tree model, and Simple Logistics. Subsequently, they evaluated the applications in em-
ulator—and device-based settings to assess and compare their performance levels. The
findings indicated that the device-based approach is notably more effective in analyzing
a percentage of apps than the emulator environment.

Table 4.1 compares the related work’s primary Methodology, Contributions and limita-
tions. The earlier studies demonstrate that the Dataset needed to be revised and unjus-
tifiable given the variety of apps available in the Google Play Store.

4.4 Methodology
This study presents a new method for detecting malware using Machine Learning (ML)
algorithms and ensemble prediction techniques. The study aims to identify the most
effective approach by evaluating various performance metrics through comprehensive ex-
perimentation. Figure 4.1 depicts the overall Methodology. This approach provides a
novel and promising solution to the challenging issue of malware detection.

22

Figure 4.1: Flow Diagram

23

Table 4.1: Related Work

Research
Work

Methodology Contribution Limitation

Rawat et al.
[15]

Machine learning
algorithms focusing
on permissions
requested by apps

XGBoost emerged as
the top-performing al-
gorithm with 80.03%
accuracy.

Imbalanced data, miss-
ing values, and compu-
tational constraints for
specific algorithms are
acknowledged.

Rana et al.
[8]

Tree-based al-
gorithms and
substring-based
feature selection

Random Forest algo-
rithm achieved 97.24%
accuracy on 11,120
apps in DREBIN
Dataset.

Static analysis focus,
outdated Dataset, and
exclusive tree classifiers
evaluation.

McLaughlin
et al. [25]

CNN on raw Dalvik
byte code

Eliminate manual mal-
ware feature identifica-
tion with the 2163 Ap-
plications Dataset.

This method may not
generalize well to new,
unseen malware vari-
ants.

DroidCat
[26]

App classification
using execution
traces

Used four datasets with
approximately 5000 ap-
plications and achieved
97.39% F1 accuracy.

Imbalanced training
datasets may affect
the generalizability of
results.

Wang et al.
[27]

Hybrid model with
DAE and CNN

Achieved 99.82% accu-
racy in malware detec-
tion.

lack of real-world de-
ployment and evalua-
tion.

Jerome et al.
[7]

Device-based
detection with
dynamic analysis

2,444 Android applica-
tions were examined for
malware using opcode
sequences.

lack of evaluation on di-
verse datasets and real-
time detection scenar-
ios.

4.4.1 Dataset

The Dataset consists of comma-separated values of 29999 instances, each with 180 features
[14]. Among these features, one output variable classifies the Android package as benign or
malicious. The package has two categories of permissions: safe and dangerous. Most of its
features are related to these permissions. Additionally, the Dataset includes features that
provide general information about the packages, such as "app", "description", "related
apps", "price", and others.

The Dataset contains a mix of string and integer values. One of the columns in the
Dataset, called "Related Apps", has 755 null values. Additionally, the Dataset’s depen-
dent variable indicates an imbalance ratio of 2:1 for malicious and benign apps. Dataset
distribution is shown in Figure 4.2, where "Red" represents malicious Android packages
and "Green" represents benign Android packages.

4.4.2 Pre-processing

This paper performed standard exploratory data analysis, examining column data types,
generating a numerical statistical summary, and searching for empty values. It is simple

24

Figure 4.2: Dataset Distribution

to rearrange the "app," "description," and "category" columns to trick consumers. As
a result, this work refrained from using such data for analysis. The Dataset has 204
empty entries in the "Dangerous permissions count" column and 755 empty values in
the "Related apps" column. For convenience, this work replaced the value in related
apps. This work decided not to use generic value replacement techniques for "dangerous
permissions" because they might cause harm.

1. Handling Missing Values : Adding values to the Dataset can help the effectiveness of
analysis and modelling efforts. It’s essential to handle them appropriately to ensure
the integrity of the data. This work identifies and removes rows with missing values
in the preprocessing pipeline using pandas’ dropna() function. Removing rows with
missing values ensures that the Dataset used for analysis and modelling is complete
and does not introduce biases or errors.

2. Feature Selection: Feature selection is a crucial step in preprocessing, as it involves
identifying the most relevant features for the analysis and model training. This
approach prioritizes features based on their occurrence frequency and relevance to
identifying scam applications. The system drops unnecessary columns to streamline
the Dataset. Removing irrelevant columns reduces the Dataset’s dimensionality and
focuses on features likely to impact the task significantly.

3. Text Data Transformation: Various techniques transform textual columns, such as
app names, descriptions, and package names, into numerical features for analysis
and modelling. These techniques include counting uppercase letters and periods
and analyzing word patterns. Machine learning algorithms can effectively process
and analyze textual information by transforming text data into numerical features.

4. Encoding Categorical Variables : Categorical variables, such as app categories, must
be encoded numerically to ensure compatibility with machine learning algorithms.
Label encoding converts categorical variables to numerical representations for better
analysis by machine learning models.

5. Feature Engineering : Feature engineering creates or modifies features to enhance
a dataset’s predictive power. In this approach, additional features are generated

25

based on patterns and insights obtained from the data.

For instance, detecting the word "free" in app names can create new features that
provide additional information, enhancing machine learning models’ performance.

6. Data Visualization: Data visualization is crucial in exploring and understanding
datasets. Various visualization techniques, including count plots, heatmaps, scatter
plots, and box plots, are utilized to gain insights into data distributions, correlations,
and outliers. For example, the graph illustrates the relationship between application
price and category in Figure 4.3.

Figure 4.3: Price vs Category of applications
This paper analyzes the Dataset using six different classification algorithms. These al-
gorithms include a Gradient boosting classifier, Ridge classifier, random forest classifier,
MLP classifier, Bagging classifier with decision tree, and ADA boost classifier. Whenever
appropriate, hyperparameter tuning is applied to improve the algorithms’ performance.
The Randomized Search object applied a default 5-fold cross-validation. The work split
the original Dataset into 80-20 training and testing sets to evaluate algorithm perfor-
mance.

4.4.3 Hyperparameter Tuning

After preprocessing, the system runs each algorithm using the default hyperparameters.
The default hyperparameters are then analyzed, and based on the findings, the hyperpa-
rameters are adjusted to enhance the outcomes.

4.4.4 Experimentation

The Experimentation Phase is an in-depth analysis of the performance of several addi-
tional machine learning algorithms employed in the classification task. Let’s discuss each
algorithm’s accuracy, precision, recall, and F1 score, which will illuminate its strengths

26

and weaknesses. Experimenting with different machine learning algorithms to obtain an
accurate model for prediction is illustrated in Figure 4.4.

Figure 4.4: Different Experimental Phases

Experiment 1: Base Classifiers

a. Gradient Boosting Classifier (GB): Gradient Boosting Classifier, a sophisti-
cated ensemble learning technique, showcased exceptional performance in the clas-
sification task. It builds a robust predictive model by combining decision trees
iteratively. The algorithm demonstrated a notable accuracy of 82.01%, surpassing
several other methods in the study. Its precision score is 0.8225, recall is 0.8201, and
F1 score is 0.8211, underscoring its effectiveness in accurately identifying positive
and negative instances.

b. Ridge Classifier: Despite being a linear model, the Ridge Classifier exhibited
decent performance with an accuracy of 71.15%. This algorithm applies L2 regular-
ization to mitigate the effects of multicollinearity in the feature space. It performed
well overall, with a precision score of 0.6998, a recall score of 0.7115, and an F1
score of 0.7019. However, compared to more flexible algorithms, it needed to be
improved in capturing complex nonlinear relationships within the data.

c. Random Forest Classifier (RF): Random Forest Classifier emerged as a strong
performer with an accuracy of 80.53%. By aggregating the predictions of multiple
decision trees trained on random subsets of the data [27], it effectively mitigates
overfitting and yields robust predictions. Its precision score of 0.8062, recall score
of 0.8053, and F1 score of 0.8057 highlight its ability to balance precision and recall
while maintaining high accuracy.

27

d. MLP Classifier: The MLP (Multi-Layer Perceptron) Classifier, a type of artifi-
cial neural network [28], delivered a competitive performance with an accuracy of
76.81%. Its architecture, comprising multiple layers of interconnected neurons, en-
ables it to learn complex patterns in the data. Despite its lower accuracy than some
ensemble methods, its precision score of 0.7889, recall score of 0.7681, and F1 score
of 0.7731 demonstrate its effectiveness in capturing intricate relationships within
the feature space.

e. Bagging Classifier with Decision Tree (BCDT): Using a Bagging Classifier
combined with Decision Trees produced encouraging outcomes, reaching an accuracy
rate of 81.24%. Bagging, short for Bootstrap Aggregating, includes training base
learners on bootstrapped training datasets and combining their forecasts. With
a precision rate of 0.8143, a recall rate of 0.8124 and an F1 score of 0.8132, this
ensemble technique showcased performance in managing noise and overfitting issues.

f. ADABoost Classifier (ADA): The ADABoost Classifier demonstrated strong
performance, achieving an accuracy of 80.27%. AdaBoost, short for Adaptive Boost-
ing, is an iterative ensemble method that adjusts the weights of misclassified in-
stances in subsequent iterations to focus on difficult-to-classify samples. Its preci-
sion score is 0.802, recall score is 0.8027, and an F1 score of 0.8023 highlight its
ability to effectively classify both positive and negative instances.

Experiment 2: Ensemble Prediction

a. Ensemble Predictions using Simple Averaging (GB, BCDT, ADA): Com-
bining the predictions of classifiers like Gradient Boosting, Bagging, and AdaBoost
and applying a simple averaging method after ensemble models improves results,
reaching an accuracy level of 82.16%. This ensemble approach utilizes each model’s
abilities, resulting in a precision score of 0.8742, a recall score of 0.8545, and an F1
score of 0.8643. It excels in categorizing instances across classes.

b. Ensemble Predictions using Weighted Averaging (GB, ADA, RF, BCDT)
(GARB): By incorporating Random Forest through weighted averaging, the en-
semble predictions achieved an impressive accuracy of 82.38%. This comprehensive
ensemble method leveraged the strengths of each algorithm, including Gradient
Boosting, Bagging, and AdaBoost classifiers along with Random Forest. The en-
semble method outperformed the others with a precision score of 0.8762, a recall
score of 0.8545, and an F1 score of 0.8653. Additionally, it accurately classified
instances across multiple classes while maintaining high precision.

c. Stacking with Logistic Regression:

Using Logistic Regression in a stacked approach achieved an accuracy of 81.86%.
This technique combines the abilities of base models (GB, BCDT, ADA, RF) by
training a meta-model-like Logistic Regression on their predictions. The precision
score, recall, and F1 scores are 0.8188, 0.8186, and 0.8187, respectively, indicating a
balance between precision and recall for classifying instances across different classes
while maintaining high precision levels.

28

Figure 4.5: GARB (Gradient Boosting classifier, AdaBoost, Random Forest and Bagging
classifier with a decision tree) Model

4.5 Proposal of GARB Model
The GARB Model is a method used for classification tasks that combines base models,
like Gradient Boosting, ADA Boost Random Forest and Bagging Classifiers with a Deci-
sion Tree. Its goal is to utilize a variety of algorithms to improve classification accuracy
and reliability. One interesting feature of the GARB model is its stacking with averaging
technique. This approach combines predictions of base models to produce an overall pre-
diction, as shown in Figure 4.5. Assigning weights based on individual model performance
reduces biases.
In the context of stacking with averaging, stacked generalization involves combining es-
timator predictions and inputting them into an estimator trained using cross-validation.
This approach helps minimize estimator biases and harnesses algorithms’ strengths for
reliable predictions.
The Stacking Classifier and Stacking Regression frameworks offer tools for professionals
seeking to enhance accuracy in classification and regression tasks by combining models.
The proposed GARB Model, which uses stacking with averaging, offers an ensemble learn-
ing framework designed explicitly for classification tasks. By combining the insights of
multiple models and using stacking techniques, the GARB Model has the potential to
achieve higher accuracy in classifying and handling challenges in practical scenarios.

29

Chapter 5

RESULTS and DISCUSSION

5.1 Android App Permission Detector based on Ma-
chine Learning Models

The results of this study demonstrate the successful integration of the App Permission
Classification with Efficient Clustering (APEC) Model [1] into an Android application for
permission classification, allowing users to distinguish between safe and unsafe app per-
missions. Notably, the model achieved an impressive accuracy rate of 93.8% using Decision
Tree and 95.8% using Random Forest classifiers. The DBSCAN clustering algorithm, an
unsupervised learning methodology, effectively rated apps within various categories. The
classification model, trained on 100% of data from a dataset comprising two million apps
and tested with a real-time Google Play Store application, empowers users to manage
permissions, safeguarding their privacy.

Table 5.1: Application Testing with Proposed Application

Device /
Android Version

Category App Name
Unsafe Permissions Unsafe Permissions that

Users Can Enable/Disable

LG / 12 Books
and Ref-
erence

Freed
Audio-
books

WAKE_LOCK
FOREGROUND_SERVICE
WRITE_EXTERNAL_STORAGE
ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

WRITE_EXTERNAL_STORAGE
ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

Samsung
/ 10

Beauty TST-
Malaysia

CHANGE_NETWORK_STATE
READ_CONTACTS
WRITE_EXTERNAL_STORAGE
CALL_PHONE
WAKE_LOCK
GET_TASKS

READ_CONTACTS
WRITE_EXTERNAL_STORAGE
CALL_PHONE

POCO /
13

Board Fun101
Okey

WRITE_EXTERNAL_STORAGE
RECORD_AUDIO
MODIFY_AUDIO_SETTINGS
WAKE_LOCK
KILL_BACKGROUND_PROCESS
FOREGROUND_SERVICE

WRITE_EXTERNAL_STORAGE
RECORD_AUDIO

30

Figure 5.1: The interface of Permission Detector. In Fig. (a), Audiobooks show granted unsafe
permission, of which three are user-authorized. In Fig. (b), After turning off User-authorized
permission from setting and refresh the app.

Testing on Google Play Store applications across all 48 different categories [29] revealed
the accuracy for determining safe and unsafe permissions, enabling users to make in-
formed decisions regarding permission management. Furthermore, rigorous testing on
various models of Android phones, including the LG G8X, Motorola, Realme, Redmi,
OnePlus 6, POCO, OnePlus, and Samsung, demonstrated the versatility and robustness
of the system. These results underscore the system’s effectiveness across various Android
devices, enhancing its applicability in real-world scenarios. For example, as depicted in
Fig. 5.1, the Freed Audiobooks application determines the granted unsafe permissions for
which the user authorizes only a few. After turning off user-authorized permissions, the
Permission Detector app removes those unsafe permissions. This paper displays testing
results in Table 5.1, and you can locate the complete results in [30]. These results un-
derscore the potential of the APEC Model [1] in bolstering mobile app security and user
privacy while fostering transparency between users and developers.

5.2 Android App Malware Detection using Stacking of
Machine Learning Algorithms

The performance of various classification algorithms, including Gradient Boosting Clas-
sifier, Ridge Classifier, Random Forest Classifier, MLP Classifier, Bagging Classifier with
Decision Tree, AdaBoost Classifier, Ensemble Predictions using simple averaging (GB,
BG, ADA), Ensemble Predictions using Weighted Averaging (GB, ADA, RF, BG) (re-
ferred to as the GARB Model), and Stacking with Logistic Regression, is evaluated and
compared using metrics such as accuracy, precision score, recall score, and F1 score. The
results are summarized in Table 5.2.

31

Table 5.2: Performance Comparison of Different Algorithms

Algorithms Accu-
racy

Precision
Score

Recall
Score

Fl
Score

Rawat et al. (XGBoost Classifier) [15] 0.8003 0.8477 0.8532 0.8505
Rawat et al. (CatBoost Classifier) [15] 0.7958 0.8378 0.8622 0.8499
Gradient Boosting Classifier 0.8201 0.8225 0.8201 0.8211
Ridge Classifier 0.7115 0.6998 0.7115 0.7019
Random Forest Classifier 0.8053 0.8062 0.8053 0.8057
MLP Classifier 0.7681 0.7889 0.7681 0.7731
Bagging Classifier with Decision Tree 0.8124 0.8143 0.8124 0.8132
AdaBoost Classifier 0.8027 0.802 0.8027 0.8023
Ensemble Predictions using simple av-
eraging (GB, BG, ADA)

0.8216 0.8742 0.8545 0.8643

Stacking with Logistic Regression 0.8187 0.8188 0.8186 0.8187
Proposed GARB Model 0.8238 0.8762 0.8545 0.8653

The GARB Model, which integrates Gradient Boosting, ADA Boost, Random Forest,
and Bagging classifier with Decision Tree, along with stacking using weighted averaging,
yielded the highest accuracy among all models, achieving an accuracy of 82.38%. This
ensemble method capitalizes on the diverse strengths of each algorithm and effectively
combines their predictive capabilities to enhance classification performance.

Figure 5.2: Confusion Matrix of GARB Model

32

In addition, the GARB Model showed precision, recall, and F1 scores of 0.8762, 0.8545,
and 0.8653, respectively. GARB demonstrates its ability to classify instances across cat-
egories while maintaining precision accurately. Figure 5.2 presents the confusion matrix
of the GARB Model, which shows the supplementary analysis.

Stacking with Logistic Regression, in particular, has shown promising results with an
accuracy rate of 81.87%. This approach utilizes stacked generalization to merge predic-
tions from estimators and fine-tune an estimator through cross-validation. With precision,
recall, and F1 scores of 0.8188, 0.8186, and 0.8187, respectively, Stacking with Logistic
Regression balances precision and recall, showcasing its effectiveness in categorizing in-
stances while reducing biases.

Overall, the experimental findings highlight the effectiveness of learning techniques such
as the GARB Model and Stacking with Logistic Regression in enhancing classification per-
formance across various domains. These results emphasize the importance of employing
advanced algorithms and ensemble methods to achieve predictive accuracy and resilience
in practical scenarios.

For a more detailed overview of the results and discussions regarding algorithm perfor-
mance, refer to Table 5.2, which provides insights into their metrics and comparative
analyses of previous related work and current work.

33

Chapter 6

CONCLUSION AND FUTURE SCOPE

The evolution of the Android operating system has witnessed considerable advancements
in app permissions and security mechanisms. Despite these strides, the persistent menace
of fraudulent applications infiltrating the Google Play Store raises pertinent concerns
regarding the overall integrity of the Android ecosystem. This research underscores the
pressing need for innovative solutions to augment user control and fortify mobile security.

The introduction of the Android App Permission Detector, underpinned by the APEC
model, represents a proactive response to address these security challenges. By equipping
users with a robust toolset for evaluating and managing app permissions, this solution not
only empowers individuals to make informed decisions about their digital privacy but also
serves as a bulwark against potential security breaches arising from unauthorized access
to sensitive data. Thus, the Android App Permission Detector emerges as a beacon of
hope in the ongoing battle to safeguard the integrity of the mobile app landscape.

Moreover, the efficacy demonstrated by advanced classification algorithms such as the
GARB Model and Stacking with Logistic Regression in identifying and categorizing mal-
ware Android Packages underscores the pivotal role of cutting-edge technology in bolster-
ing mobile security measures. By leveraging sophisticated machine learning techniques,
these models can discern subtle patterns indicative of malicious intent, enabling preemp-
tive action to mitigate security risks effectively.

Looking ahead, it is imperative to sustain momentum in research and development efforts
aimed at refining permission classification methodologies and exploring diverse ensemble
learning techniques. Such endeavours promise to foster a more secure and privacy-aware
mobile app ecosystem wherein users can confidently engage with digital applications with-
out compromising their personal data or system integrity. Thus, by embracing innovation
and collaboration, stakeholders within the Android community can collectively strive to-
wards a future characterized by enhanced mobile security and user empowerment.

34

Bibliography

[1] P. S. Rawal and D. Sethia, “APEC: App Permission classification with Efficient
Clustering,” 2023, international Conference On Computational Intelligence For In-
formation, Security And Communication Applications (CIISCA - 2023) (Accepted in
conference).

[2] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A review of android malware
detection approaches based on machine learning,” IEEE Access, vol. 8, pp. 124 579–
124 607, 2020.

[3] A. Developers, “Permission on android.” [Online]. Available: https://developer.
android.com/guide/topics/permissions/overview

[4] A. S. Nabila Popal, “IDC - smartphone market share - market share,” https://www.
idc.com/promo/smartphone-market-share, 08 2023, [Last accessed on September 15,
2023].

[5] IANS, “Android now powers over 3 billion devices worldwide,” https://bit.ly/
android_devices_sundar_pichai, 07 2022, [Last accessed on October 07, 2023].

[6] X. Su et al., “An informative and comprehensive behavioral characteristics analysis
methodology of android application for data security in brain-machine interfacing,”
https://scite.ai/reports/10.1155/2020/3658795, 03 2020, [Last accessed on October
10, 2023].

[7] Jerome et al., “Using opcode-sequences to detect malicious android applications,” in
2014 IEEE International Conference on Communications (ICC), 2014, pp. 914–919.

[8] M. S. Rana, S. S. M. M. Rahman, and A. H. Sung, “Evaluation of tree based machine
learning classifiers for android malware detection,” in Computational Collective In-
telligence: 10th International Conference, ICCCI 2018, Bristol, UK, September 5-7,
2018, Proceedings, Part II 10. Springer, 2018, pp. 377–385.

[9] K. Olmstead and M. Atkinson, “An analysis of android app permissions. pew research
center: Internet, science & tech.” https://bit.ly/pewresearch_android, 11 2015, [Last
accessed on October 12, 2023].

[10] Yang et al., “Pradroid: Privacy risk assessment for android applications,” in 2021
IEEE 5th International Conference on Cryptography, Security and Privacy (CSP),
2021, pp. 90–95.

[11] “Google, Android 12 Features Overview,” https://bit.ly/3QK9q3t, 10 2021, [Last
accessed on October 1, 2023].

35

[12] “Google, Android 13 Features Overview,” https://bit.ly/40pNqOz, 08 2022, [Last
accessed on October 18, 2023].

[13] Z. Wang, Q. Liu, and Y. Chi, “Review of android malware detection based on deep
learning,” IEEE Access, vol. 8, pp. 181 102–181 126, 2020.

[14] M. Arvind, “Android permission dataset,” Mendeley Data, vol. 1, 2018.

[15] S. Rawat, R. Phira, and P. Natu, “Use of machine learning algorithms for android
app malware detection,” in 2021 5th International Conference on Electrical, Electron-
ics, Communication, Computer Technologies and Optimization Techniques (ICEEC-
COT), 2021, pp. 448–454.

[16] Manzil et al., “Covid-themed android malware analysis and detection framework
based on permissions,” in 2022 International Conference for Advancement in Tech-
nology (ICONAT), 2022, pp. 1–5.

[17] S. Arshad et al., “Samadroid: A novel 3-level hybrid malware detection model for
android operating system,” IEEE Access, vol. 6, pp. 4321–4339, 2018.

[18] L. Sun et al., “Sigpid: significant permission identification for android malware de-
tection,” in 2016 11th International Conference on Malicious and Unwanted Software
(MALWARE), 2016, pp. 1–8.

[19] Z. Wang, Li et al., “Multilevel permission extraction in android applications for mal-
ware detection,” in 2019 International Conference on Computer, Information and
Telecommunication Systems (CITS), 2019, pp. 1–5.

[20] Samah et al., “On the effectiveness of application permissions for android ransomware
detection,” in 2020 6th Conference on Data Science and Machine Learning Applica-
tions (CDMA), 2020, pp. 94–99.

[21] “Permission Manager created by NorthRiver,” https://play.google.com/store/apps/
details?id=com.agooday.permission, 2019.

[22] “Permission Pilot created by darken,” https://play.google.com/store/apps/details?
id=eu.darken.myperm, 2022.

[23] “App Permission Manager created by Micro Inc,” https://play.google.com/store/
apps/details?id=com.assistant.android.permission.manager, 2021.

[24] A. Felt et al., “Android permissions: User attention, comprehension, and behavior,”
SOUPS 2012 - Proceedings of the 8th Symposium on Usable Privacy and Security,
07 2012.

[25] McLaughlin et al., “Deep android malware detection,” in Proceedings of the Seventh
ACM on Conference on Data and Application Security and Privacy, ser. CODASPY
’17, 2017, p. 301–308. [Online]. Available: https://doi.org/10.1145/3029806.3029823

[26] H. Cai, N. Meng, B. Ryder, and D. Yao, “Droidcat: Effective android malware detec-
tion and categorization via app-level profiling,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 6, pp. 1455–1470, 2019.

[27] W. Wang, M. Zhao, and J. Wang, “Effective android malware detection with
a hybrid model based on deep autoencoder and convolutional neural network,”

36

Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 8, pp.
3035–3043, 2019. [Online]. Available: https://doi.org/10.1007/s12652-018-0803-6

[28] P. D. Nandanwar and D. S. B. Dhonde, “A novel approach to cervical cancer detection
using hybrid stacked ensemble models and feature selection,” International Journal
of Electrical Engineering and Robotics, vol. 11, no. 2, pp. 582–589, 2023.

[29] Google, “Android category and tags for your app or game,” https://bit.ly/android_
category, [Last accessed on October 05, 2023].

[30] “Android Permission Detector Testing Results,” https://bit.ly/testing_result.

37

)

.)

.)

)

:DELRECH

Title of the Thesis

Total Pages

Supervisor (s)

(2)
(3).

Abbroaches fon Hhb Penmisas and Molwa Detefi
Jabshan Mahant

Depart1ment

) Dr. Diya shikhe Sebia

below:

Software used:

DELHI TECHNOLOGICAL UNIVERSITY

(Fonnerly Delhi College of Engincering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

Date:

Enhancig

24/%5

46

PLAGIARISM VERIFICATION

This is to report that the above thesis was scanned for similarity detection. Process and outcome is given

TUnnih

Anbeatd Secni iMachae beaai

Name of the Scholar

Softws Eganeonya

Candetatets Signature

ANNEXURE-IY

Sinilarity Index: ll,Total Word Count:

17
Page 17 of 22

12007

Signature of Supervisor(s)

Similarity Report

PAPER NAME

Jaikishan_Thesis_10May24_PlagRep

WORD COUNT

12007 Words
CHARACTER COUNT

71529 Characters

PAGE COUNT

46 Pages
FILE SIZE

2.2MB

SUBMISSION DATE

May 10, 2024 5:05 PM GMT+5:30
REPORT DATE

May 10, 2024 5:06 PM GMT+5:30

11% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

7% Internet database 4% Publications database

Crossref database Crossref Posted Content database

7% Submitted Works database

Excluded from Similarity Report

Bibliographic material Quoted material

Cited material Small Matches (Less then 8 words)

Manually excluded text blocks

Summary

Similarity Report

11% Overall Similarity
Top sources found in the following databases:

7% Internet database 4% Publications database

Crossref database Crossref Posted Content database

7% Submitted Works database

TOP SOURCES
The sources with the highest number of matches within the submission. Overlapping sources will not be
displayed.

1
developer.android.com 2%
Internet

2
researchgate.net <1%
Internet

3
Shaurya Rawat, Rushang Phira, Prachi Natu. "Use of Machine Learning ... <1%
Crossref

4
Praveen Singh Rawal, Divyashikha Sethia. "App Permission Classificati... <1%
Crossref

5
Napier University on 2022-05-12 <1%
Submitted works

6
doctorpenguin.com <1%
Internet

7
fedetd.mis.nsysu.edu.tw <1%
Internet

8
hindawi.com <1%
Internet

Sources overview

https://developer.android.com/guide/topics/permissions/overview?fbclid=IwAR2girPg
https://www.researchgate.net/publication/342614130_A_Review_of_Android_Malware_Detection_Approaches_Based_on_Machine_Learning/fulltext/5efd2e6045851550508482c4/A-Review-of-Android-Malware-Detection-Approaches-Based-on-Machine-Learning.pdf
https://doi.org/10.1109/ICEECCOT52851.2021.9708033
https://doi.org/10.1109/ICCCNT56998.2023.10307201
http://doctorpenguin.com/categories.html
http://fedetd.mis.nsysu.edu.tw/FED-db/cgi-bin/FED-search/view_etd?identifier=oai%3Apc01.lib.ntust.edu.tw%3Aetd-0125108-152813
https://www.hindawi.com/journals/scn/2022/8621083/

Similarity Report

9
University of Hertfordshire on 2024-04-29 <1%
Submitted works

10
Athlone Institute of Technology on 2021-04-04 <1%
Submitted works

11
University of Central Lancashire on 2021-01-11 <1%
Submitted works

12
"Recent Trends in Image Processing and Pattern Recognition", Springe... <1%
Crossref

13
iieta.org <1%
Internet

14
University of Southern Mississippi on 2021-07-02 <1%
Submitted works

15
link.springer.com <1%
Internet

16
search.bvsalud.org <1%
Internet

17
stax.strath.ac.uk <1%
Internet

18
dspace.dtu.ac.in:8080 <1%
Internet

19
Rena Lavranou, Stylianos Karagiannis, Aggeliki Tsohou, Emmanouil Ma...<1%
Crossref

20
University of New South Wales on 2022-12-04 <1%
Submitted works

Sources overview

https://doi.org/10.1007/978-981-13-9181-1
https://iieta.org/download/file/fid/107077
https://link.springer.com/article/10.1007/s10207-024-00822-2?code=8391cd8a-2070-42a4-bc10-b1f237c00dd6&error=cookies_not_supported
https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/?lang=fr&q=kw%3A%22Random+forests%22
https://stax.strath.ac.uk/downloads/w0892b45q?locale=en
http://dspace.dtu.ac.in:8080/jspui/bitstream/repository/18189/1/Thesis_Himanshu_Shekhar%20M.Tech..pdf
https://doi.org/10.24018/ejeng.2023.1.CIE.3141

Similarity Report

21
Kaijun Liu, Shengwei Xu, Guoai Xu, Miao Zhang, Dawei Sun, Haifeng Liu...<1%
Crossref

22
University of Huddersfield on 2021-09-27 <1%
Submitted works

23
Uttar Pradesh Technical University on 2019-06-15 <1%
Submitted works

24
Visvesvaraya National Institute of Technology on 2021-07-06 <1%
Submitted works

25
University of Hull on 2023-03-20 <1%
Submitted works

26
Indiana University on 2023-07-13 <1%
Submitted works

27
College of Engineering Trivandrum on 2019-11-21 <1%
Submitted works

28
Natalia Baxevanou, Sotiria Triantafyllia Sotirhou, Konstantinos Limnioti... <1%
Crossref

29
SHAPE (VTC college) on 2019-06-04 <1%
Submitted works

30
University College London on 2017-09-03 <1%
Submitted works

31
University of Bedfordshire on 2023-07-28 <1%
Submitted works

32
khazna.ku.ac.ae <1%
Internet

Sources overview

https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.4018/978-1-7998-9190-1.ch011
https://khazna.ku.ac.ae/ws/portalfiles/portal/19098217/file

Similarity Report

33
escholar.manchester.ac.uk <1%
Internet

34
mdpi.com <1%
Internet

35
"Data Engineering and Communication Technology", Springer Science ... <1%
Crossref

36
Chester College of Higher Education on 2023-10-05 <1%
Submitted works

37
Chester College of Higher Education on 2024-02-08 <1%
Submitted works

38
Heriot-Watt University on 2019-04-03 <1%
Submitted works

39
Huasong Meng, Vrizlynn L.L. Thing, Yao Cheng, Zhongmin Dai, Li Zhan... <1%
Crossref

40
Saba Arshad, Munam Ali Shah, Ayesha Siddiqa, Hafsa Maryam, Abdul ... <1%
Crossref

41
University of Hertfordshire on 2023-04-23 <1%
Submitted works

42
University of Westminster on 2023-09-07 <1%
Submitted works

43
openknowledge.worldbank.org <1%
Internet

44
srmengineeringcollege on 2024-03-28 <1%
Submitted works

Sources overview

https://www.escholar.manchester.ac.uk/api/datastream?datastreamId=FULL-TEXT.PDF&publicationPid=uk-ac-man-scw%3A339939
https://www.mdpi.com/1424-8220/22/20/7928/htm
https://doi.org/10.1007/978-981-15-1097-7
https://doi.org/10.1016/j.cose.2018.02.019
https://doi.org/10.1109/ICET.2017.8281735
https://openknowledge.worldbank.org/bitstream/handle/10986/6853/411720PAPER0Kn101OFFICIAL0USE0ONLY1.txt?isAllowed=y&sequence=2

I hereby certify that the work which is presented in Major Project-II entitled Enhancing Android

Security: Machine Learning Approaches for App Permissions and Malware Detection in

fulfillment of the requirenent for the award of the Degrec of Master of Technology in Software

Engineering and submitted to the Department of Software Engineering, Delhi Technological

University, Delhi is an authentic record of my own, carried out during a period from January to May

2024, under the supervision of Dr. Divyashikha Sethia.

The matter presented in this report has not been submitted by me for the award of any other degree of

this or any other Institute/University. The work has been published/accepted/communicated in SCUSCI

expanded/SSCVScopus indexed journal OR peer-reviewed Scopus indexed conference with the

following details:

Title of the Paper: Android App Permission Detector Based on Machine Learning Models

Author names (in sequence as per research paper): Jaikishan Mohanty, Dr. Divyashikha Sethia

Name of Conference/Journal: IETCIT - 2024
Conference Dates with venue: 1-2nd March 2024, Chandigarh, India

Status of paper (Accepted/Published/Communicated): Accepted

Date of paper communication: January 17, 2023

DECLARATION

Date of paper acceptance: February 06, 2023
Date of paper publication: N/A

Jaikishan Mohanty
Roll No. 2K22/SWE/07

Student Roll No., Name andSignáture

Place: Delhi

To the best of my knowledge, the above work has not been submitted in part or full for any Degree
or Diploma to this University or elsewhere. I further certify that the publication and indexing
information given by the students is correct.

Date: May 24, 2024

SUPERVISOR CERTIFICATE

Dr. Divyashikha Sethia

Supervisor Name and Signature

2

DECLARATION

I hereby certify that the work which is presented in the Major Project-II entitled Enhancing

Android Security: Machine Learning Approaches for App Permissions and Malware

Detection in fulfillment of the requirement for the award of the Degree of Master of Technology

in Software Engineering and submitted to the Department of Software Engineering, Delhi

Technological University, Delhi is an authentic record of my own, carried out during a period from

January to May 2024, under the supervision of Dr. Divyashikha Sethia.

The matter presented in this report has not been submitted by me for the award of any other degree

of this or any other Institute/University. The work has been published/accepted/communicated in

SCI/SCI expanded/SSCI/Scopus indexed journal OR peer reviewed Scopus indexed conference

with the following details:

Title of the Paper: Android App Malware Detection Using Stacking of Machine Learning

Algorithms

Author names (in sequence as per research paper): Jaikishan Mohanty, Dr. Divyashikha Sethia

Name of Conference/Journal: THE 15th INTERNATIONAL IEEE CONFERENCE ON COMPUTING,
COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT)
Conference Dates with venue: 24-28th June 2024, IIT Mandi

Status of paper (Accepted/Published/Communicated): Accepted

Date of paper communication: April 15, 2023

Date of paper acceptance: May 22, 2024

Date of paper publication: N/A

Jaikishan Mohanty
Roll No. 2K22/SWE/07

Student Roll No., Name and Signature

SUPERVISOR

CERTIFICATE

To the best of my knowledge, the above work has not been submitted in part or full for any

Degree or Diploma to this University or elsewhere. I further certify that the publication and

indexing information given by the students is correct.

Place: Delhi Dr. Divyashikha Sethia

Date: May 28, 2024 Supervisor Name and Signature

