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ABSTRACT 

 

 This thesis presents a method for super-resolution remote sensing images 

through the use of a complex hybrid architecture called SwinIPTHybrid, which is 

deftly integrated into a Generative Adversarial Network (GAN) framework. With 

this novel model, low-resolution aerial images from the UCMerced dataset are 

greatly improved on both a local and global scale by combining the structural 

advantages of Swin Transformers with the extensive capabilities of Image Processing 

Transformers (IPT). exceptional resolution in the field of remote sensing images, is 

extremely important for applications like disaster response, urban planning, and 

environmental monitoring, where better image clarity can significantly increase the 

dependability and accuracy of the analyses. In the context of remote sensing, 

traditional super-resolution techniques—like different interpolation methods—often 

fall short because they tend to introduce undesired blurring and artefacts, especially 

around important features like roads, waterways, and buildings.  

 Advanced deep learning techniques have made some progress by improving 

detail while trying to suppress artefacts, but they often fail to strike a balance 

between these two aspects. Swin Transformers are used to carefully refine local 

textural details and structural subtleties after convolutional layers are first used to 

expand the features of interest in the SwinIPTHybrid model. IPT blocks support this 

process in a complementary manner by synthesising the enhanced features globally 

and effectively capturing long-range dependencies in the image. Extensive 

experimental analyses performed on the UCMerced dataset confirm that the 

SwinIPTHybrid model performs as expected. This thesis explores the scalable 

potential of this novel approach for a wider range of remote sensing applications in 

addition to exploring the architectural integrations and enhancements made possible 

by the combination of Swin Transformers and IPT within a GAN framework. This 

work represents a significant advancement in the field of aerial image recovery by 

pushing the boundaries of what is possible and providing a stable solution that can be 

expanded and adapted for different types of remote sensing applications. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

 This setup functions as a discriminator that encourages the generator to 

produce outputs of high quality, resembling real, high-resolution aerial images. 

Experimental analysis carried out on UCMerced dataset show that SwinIPTHybrid 

model is working well as expected in this regard. Additionally, it investigates some 

scalable possibilities for a wide range of remote sensing applications and presents 

architectural integrations with an emphasis on Swin Transformers and IPT as well as 

their combination within GAN framework. By doing so, we present a significant 

advancement in the field of aerial image recovery by pushing the limits of what 

could be achieved and providing a stable solution which can be expanded or adapted 

for different remote sensing modalities. Constraints regarding sensor design and cost 

often cause pictures without sufficient resolution for complex analytical operations. 

In consequence, super resolution techniques – that modify the resolutions of these 

samples are needed to bridge the gap between the present capabilities of imaging 

technology and stringent needs for complicated data processing. 

 Traditionally, super-resolution techniques such as bicubic interpolation [1], 

Lanczos resampling [2] and other algorithm-based methods are commonly employed 

due to their simplicity in terms of building as well as low computing requirements. 

However, these techniques are often insufficient for upscaling remote sensing images 

even though they can be accessed conveniently. In fact, the use of such algorithms 

cannot properly display geographical and anthropogenic elements such as highways, 
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streams, vegetation belts and urban structures with less blurring and without fully 

capturing high frequency details. 

 Complex neural network architectures that make use of deep learning and 

artificial intelligence (AI) have brought about a new era in super resolution 

techniques with significant advancements over traditional methods [1]. They are 

proficient in identifying and enhancing intricate patterns in image data, these are the 

complex models mostly powered by deep Convolutional Neural Networks (CNNs) 

[2]. On the other hand, even state-of-the-art models confront difficulty on each of 

noise and artifacts suppression as well as feature preservation especially when using 

higher upscaling factors where it becomes more noticeable. 

 The Swin Transformer is a remarkable milestone in this fast-paced world. 

The architecture of the Transformer has been modified for vision tasks by 

incorporating a hierarchical, window-based self-attention mechanism that enables 

efficient computation and accurately captures both local and global visual contexts. 

To analyze and interpret images, one must capture the microfeatures of local textures 

and the macro-scale context of collected images [4]. 

 Based on this technological basis, the here presented thesis presents the 

implementation of a SwinIPTHybrid model, which takes advantage of IPT’s 

capabilities as a global synthesizer and pairs it with Swin Transformers [5], to 

implement local processing in registry-based generation while embedded within a 

challenging GAN framework [6]. The hybrid model is carefully tailored to boost 

both the texture and structural quality of local image patches, with a high degree of 

sensitivity placed on ensuring that such enhancements are smoothly integrated into 

the wider image. It ensures global uniformity by minimizing the presence of any 

artifacts, hence resulting in better quality image overall. 

 The model is strengthened by virtue of the unique GAN framework applied 

by this method, creating a dynamic adversarial training landscape where the 

discriminator keeps ad in quantum interaction with the generator to generate high-

fidelity and increasingly proto accurate outputs — not unlike generating higher-

resolution satellite imagery. 

 In the experimental study conducted in this work on UCMerced dataset, 

which contains aerial images of both urban and natural areas across different textures 
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and complex patterns, we present evidence that the proposed hybrid method is highly 

effective. The perceptual results as well as the quantitative quality criteria indicate a 

critical milestone in image processing, where a large improvement is reported for 

most super-resolved samples and throughout many experimental studies [7]. 

 This thesis thoroughly addresses the architectural innovations, strategic 

combination of component technologies and theoretical underpinnings which allow 

for The SwinIPTHybrid model to set new state-of-the-art benchmarks in the area of 

distant satellite image super-resolution [8]. Beyond the academic benefits, this 

pipeline proposes solutions that could significantly enhance remote sensing’s 

operational abilities by addressing those challenges that are certainly part of the 

landscape, such as quirks and idiosyncrasies of specific values. In addition to that, 

the work will open a door for modern high-performance machine learning techniques 

while demonstrating new applications in environmental and urban analytics fields 

that have the potential of changing entirely field on remote sensing by allowing it to 

take advantage of cutting-edge high-direction image processing technologies [9]. 

 

 

1.1 Literature Survey 

 

 

 Super resolution imaging allows the enhancement of the imaginary acquired 

over and above the inherent limitations of the sensors used in the apparatus to an 

improved resolution which broadens the potential of imaging systems. Image clarity 

together with image sharpness can mean a lot in determining methods of analysis and 

diagnosis of situations as well as in carrying out decisions and choices in fields such 

as medical imaging, satellite imaging and surveillance. [8]. Most classical super 

resolution techniques principally employ bicubic, bilinear and Lanczos interpolation 

techniques. These methods have been used for many years as the basis of simple 

image scaling algorithms and are rather easy to introduce. However, there are also 

certain significant disadvantages of these techniques, these are such as the 

introduction of blur, loss of fine resolutions and appearing jagged edges in the up-

scaled images although these techniques are very simpler and commonly used. In 
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conditions where matters concerning precision are considered vital, these substitutes 

may actually decrease the quality of the images and yield poor outcomes [1, 2]. They 

have had to advance higher and diverse upscaling processes, where super-resolution 

robustly enhances deep image processing capability to overcome some of the 

limitations of standard methodologies [8, 9]. 

 However, CNNs especially have shown the ability to achieve higher level and 

non-linear transformations and thereby retain more salient features while 

downscaling and at the same time avoid more distortions as compared to the other 

methods [3]. Thus, the phenomenon of super-resolution (SR) has been impacted by 

deep learning essentialities that offer considerable enhancements over traditional 

methods. CNNs were applied in the first methods of SR as part of deep learning [8]. 

To rectify the need for going through the middle quality images to obtain direct 

conversion from low resolution to high resolution picture, Convolutional Neural 

Network (CNN) is used which forms the foundation for the next deep learning based 

super resolution techniques [3]. Apart from traditional practices that often-generated 

hazy results, these pioneering studies also simplified the understanding of how deep 

learning could effectively gather intricate visual information and enhance images 

with better resolution. Moving on from these initial models, the advanced neural 

models and the training process were further enhanced in later studies as it developed 

the quality of the super-resolved images even further [9]. The development of 

Generative Adversarial Networks (GANs) which were released in 2014 by 

Goodfellow et al., was defined as the major technological breakthrough within deep 

learning field. This method was then employed to address super-resolution issues 

swiftly. The method involves the creation of SR images through a process called 

adversarial training, in which two networks known as the generator and the 

discriminator play against each other [6]. The photos labelled here also have better 

perceptually as well as resolution of the images. This particular application called 

SRGANs [10] was first introduced by Ledig et al. in 2017 and was ground-breaking 

as it fixed one of the main issues of the previous models, which was that the texture 

of the images was overly smoothed than what is expected; this application produced 

images with finer detailsand more realistic textures. Moreover, as advanced SR 

techniques emerged, novel concepts of transformers and concentration techniques 
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were incorporated, with which it became easier to focus on more relevant aspects of 

a picture more effectively [10]. To have an idea about the usage of local and global 

dependencies in the image the authors of Liu et al. (2021) introduced the Swin 

Transformer which offers shift windows self-attention. This gave a significant boost 

on traffic image quality at different sizes [4]. These transformers have been 

especially beneficial to scale invariant information processing tasks such as satellite 

image analysis because, at different sizes of images, there are different sizes of image 

components. The inclusion of these complex models has opened new horizons in the 

possible research and applications and at the same time has helped to explore the 

boundaries of what can be achieved with super-resolution. For instance, an increase 

in the resolution of medical images is something which may be considered as 

beneficial because it helps, for example, in the diagnosis of illnesses or in their 

analysis. In a similar way, the enhancement of satellite imagery resolution can 

significantly enhance the overseeing and planning potentialities in domain of 

urbanism and ecological studies [11]. 

 The emergence of GANs with an adversarial aspect has significantly 

impacted the development of super-resolution systems across the industry. To this 

end, there is a discriminator network and generator network where the two compete 

with an aim of enhancing the efficiency of the other. Swin Transformers way of 

upsampling ensures that the photos are not only of High resolution but also have a 

good amount of detail and are visually very clear by capturing many features in the 

image at multiple scales. These features of Swin Transformers distinguish them from 

other forms of convolution and give a way to significantly improve the computers’ 

performance in terms of recognizing and reconstructing the fine details of the image. 

[4]. By enabling the enhancement of the resolution of scenes they have the potential 

to greatly impact the super-resolution scene by offering more potent and precise 

methods of increasing the detail of images across a range of academia and 

technologies platforms. As a result of applying Swin Transformers to GANs, the 

improvement of super-resolution has become notable, for example through the 

development of the SWCGAN structure. When blended with GAN textures that tune 

picture details, Swin Transformers hold the structural and hierarchical modelling 

abilities to offer a robust answer to enhancing picture resolution especially in 
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sensitive imaging environments such as remote sensing scenarios. One of the most 

significant developments in the recent times related to super-resolution imaging with 

the help of deep learning technology was presented by Tu et al. (2022) in the form of 

the SWCGAN model. This model skilfully combines the generative ability of a GAN 

because GANs are famous for their ability to generate realistic image pixels while 

Swin Transformers are proficient in extracting and fusing local and global contextual 

info of photos. Consequently, there exists a technique that not only increases the 

resolution of an image but also the quality of the details in the textural regions as 

well as the overall image quality [12].The contexts within which SWCGAN is 

implemented mean that Swin Transformers function as an important element of the 

generator network. As a result, it may be potentially hypothesized that because of the 

shifted windows and this addition, this model will be able to selectively and 

hierarchically process images, and able to attend to parts of images seamlessly. As 

mentioned in previous sections of this paper, this technique can be applied if there 

are numerous textural details present at various scales for amalgamation to enhance 

super-resolution [5]. Likewise, high-resolution picture synthesis demands receptive 

field analysis, extensive receptive fields can be aptly managed and negotiated by the 

Swin Transformer layers, a problem that more traditional CNN setting models. For 

the discriminator used in the adversarial training of the proposed SWCGAN, it has to 

learn to properly identify between real high-resolution images and realistic 

corresponding super-resolved images produced by the transformer-augmented 

generator. This competitive nature puts the overlying generator at a higher level 

where it is forced to extract super resolution to the next level where the results 

generated by the model are barely distinguishable from actual high-quality images. 

This response of the discriminator ensures that the images that are created are of 

good quality and do not affect their framed and written elements in this context. As 

from the study of Tu et al 2022 and by quoting the above statement, the use of 

SWCGAN outperforms the other existing super- resolution approaches, particularly 

in the field of remote sensing where the replication of minor details plays an 

important role. From this, it provides the model’s reflected characteristics for 

reconstructing images captured using different sensors as well as specific situations 
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that give a sharper, more detailed and useful results in a variety of fields including 

urban planning and environmental management. 

 Thanks to the advanced deep learning applications, distorted images at a 

higher resolution have proved to be very helpful in improving the quality of the up-

scaled images and leading to better Remote Sensing Image Super-Resolution SR 

[12]. In their 2021 study, the authors have observed that the enhancements made in 

the processing capacity of the deep learning models pre-trained on large sets of data, 

BERT and GPT-3, have been further advanced. Due to the enhanced capabilities in 

transforming data, models based on transformer designs and their derivatives can 

outcompete traditional approaches across various domains. In this work, through the 

employment of a new framework named Image Processing Transformer (IPT), the 

authors explore the applicability of transformers in premier computer vision 

subproblems such as super-resolution, deraining, and denoising. The image 

generation is based on the ImageNet data setcontaining many distorted image pairs 

Thus, this basic core is used as a starting point for training. One such teaching tool 

that the IPT optimizes is the use of multi-head and multi-tail designs in ways that are 

quite distinct. Thus, it is also has an additional component based on contrastive 

learning to further adapt this model for certain tasks related to image processing. 

This newly proposed method employs only a single pre-trained model and yet 

outperforms much of the state-of-the-art techniques used in low-level vision, giving 

the IPT substantial ability to flow and excel at post-fine-tuning. This case illustrates 

how utilizing transformer-type designs can enhance efficiency and versatility in 

comparison with traditional variation-based layouts by managing image analysis 

undertakings [5]. 

 

 

1.2 Identification of problem and issues 

 

 

 The steps involved in achieving super-resolution are critical for the boost in 

the resolution of images derived from remote sensing tools and prove vital for the 

enhancement of exploration in spatial data. These techniques, especially the 
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enhanced algorithms such as the SRGAN and other deep learning-based 

architectures, have revolutionized the way images are processed. However, 

incorporating these methods into remote sensing presents certain difficulties that 

have an impact on both the efficiency as well as usability of the methods. 

 

i. Algorithmic Complexity and Model Stability: Deep learning-based SR 

models, especially those involving GANs such as SRGAN, are complex in 

their architecture as it can be seen in Fig.1.0. During training, they frequently 

encounter stability challenges, including mode collapse, where the generator 

consistently outputs a restricted array of variations, and non-convergence 

where the model fails to find an optimal solution. These challenges can lead 

to SR images that are either too generic or contain unrealistic enhancements. 

 

 

 

Fig.1.0: Representation of the model of SRGAN and its 

complicatedstructure[10] 

 

ii. Introduction of Artifacts:One of the most significant issues with current SR 

techniques is the introduction of artefacts in the super-resolved images. These 

can include blurring, ringing, and aliasing, which degrade the image quality. 

In remote sensing, where the accuracy of pixel-level details can be 

paramount, such artefacts can mislead subsequent image analysis processes 

like classification or object detection. 
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iii. Overfitting Due to Limited Training Data: Deep learning models necessitate 

substantial datasets for effective generalization. Yet, access to diverse, high-

resolution remote sensing images is often scarce, leading to overfitting. In 

such cases, models excel on training data but falter on new, unseen data. This 

problem is particularly pronounced in remote sensing, given the varied nature 

of landscapes and the unique features of different land use types evident in 

the images. Fig.1.1. 

 

 

Fig.1.1: Representation of how best fits work 

over different types of data 

 

iv. High Computational Requirements:SR techniques, particularly those based 

on deep learning, Substantial computational resources are required for both 

training and inference phases. An analysis across multiple AI model 

algorithms demonstrates the extensive computational demands involvedin 

Fig.1.2. This can be a limiting factor in deploying these models for real-time 

applications or in environments where computational resources are restricted, 

such as onboard processing in satellite systems. 
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Fig.1.2: Representation of different AI models with their computation power 

consumption in form of PFLOP/s-days[13] 

 

v. Difficulty in Handling Diverse and Complex Textures: Remote sensing 

imagery often encompasses a broad spectrum of textures and features, 

including,Urban areas with complex building structures to natural landscapes 

with continuous texture patterns. Each type of feature may require different 

SR approaches to optimally enhance its resolution without losing essential 

details or introducing noise. 

vi. Lack of High-Resolution Ground Truth for Validation: To effectively 

evaluate super-resolution (SR) models, high-resolution ground truth images 

are essential. However, particularly in remote sensing, these images are often 

unavailable, complicating the quantitative assessment of super-resolved 

images. Consequently, there is a need to develop new evaluation metrics or to 

depend on subjective assessments, which might not always yield consistent 

results. An Ideal example of a perfect example in Fig.1.3. 
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Fig.1.3: A few examples 256x256 satellite image ideal for remote sensing 

high resolution image 

 

vii. Maintaining Spectral Integrity:In multispectral and hyperspectral imaging 

common in remote sensing, maintaining the integrity of spectral data during 

the super-resolution process is crucial. Alterations in spectral signatures can 

result in incorrect information, which could affect decision-making processes 

based on these images. 

viii. Scale-Invariance:Remote sensing images are captured at various scales, 

requiring SR algorithms to be effective across different image resolutions and 

scales. However, most SR techniques are developed and tested at specific 

scales, and their performance can degrade when applied to images at different 

resolutions. A perfect scale example can be seen in the Fig.1.4 where I have 

shown a rescaled 64x64 image through bicubic into 256x256 and one of our 

results on “mobilehomepark06” image from the set of UCMercedsatalite 

dataset. 

 

 

 

Fig.1.4: A result of current research representing a perfect scale example 
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ix. Real-Time Processing Constraints:Many remote sensing applications, such as 

disaster monitoring and response, require real-time data processing. However, 

the sophisticated architectures of modern SR techniques often involve 

extensive computation, making real-time processing a challenge. 

x. Adaptability to Sensor Variabilities:Remote sensing data comes from various 

sensors with different characteristics and limitations. SR techniques need to 

be adaptable to the specific nuances of different sensor data to be effective 

across various platforms and conditions.  
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CHAPTER 2 

 

PROBLEM STATEMENT AND SOLUTION APPROACH 

 

 

 

 Super-resolution (SR) techniques are crucial for enhancing the resolution of 

imagery captured from advanced remote sensing technologies, significantly 

improving the quality of spatial data analysis. These techniques are particularly 

important for applications ranging from environmental monitoring to urban planning 

and national security. Advanced algorithms such as SRGAN (Super Resolution 

Generative Adversarial Network) and other deep learning models have transformed 

the landscape of image processing by enhancing low-resolution images to higher 

fidelity versions. These models utilize neural networks to reconstruct high-resolution 

details from pixelated images, critical for accurately detecting and analysing features 

such as road networks in urban environments, water bodies in environmental studies, 

or crop details in agriculture. Super-resolution in remote sensing specifically 

involves improving the details of Earth observation imagery captured via satellites or 

aerial sensors, which often cover large areas but at resolutions not suitable for 

detailed analysis. Enhancing these images can revolutionize sectors like agriculture 

for crop health monitoring, forestry for deforestation tracking, and disaster 

management for post-event damage assessments. However, deploying super-

resolution technologies in remote sensing faces several challenges including the high 

computational costs of training and deploying deep learning models, which can 

hinder real-time processing applications. Additionally, these models require 

extensive, high-quality training data, which is often unavailable for many remote 
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areas. The performance of SR models can also vary significantly depending on 

imagery characteristics such as lighting, cloud cover, or atmospheric distortions, 

which can degrade input image quality. Moreover, ethical concerns arise, particularly 

regarding surveillance and privacy, as enhanced resolution might inadvertently lead 

to the identification of individuals or sensitive locations without proper safeguards. 

Despite these challenges, advancements in computational hardware, the development 

of more efficient neural network architectures, and the growing availability of remote 

sensing data continue to drive innovations in super-resolution technologies, 

promising broader applications and enhanced utility in the future. 

 

 

 

Fig.2.0: Representation of Super Resolution via multiple algorithms on the Satellite 

remote sensing imaging [14] 
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2.1 Presentation of the problem 

 

 

 Obtaining superior image quality is important in many sectors of imaging 

technology which is very extensive and encompasses security systems, planning and 

mapping of cities, satellite and aerial imaging, and healthcare analysis among others.  

 Conventionally, it has been common to rely on techniques that help to 

sharpen the Digital Image as the primary way to increase the resolution of the image. 

In particular, due to the lower computational complexity, and simplicity in 

implementation, these methods have numerous preliminary uses. They do, however, 

possess a number of gross disadvantages. First, it can cause the degradation of the 

quality of the improved images by the introduction of multiple speckle noise 

artefacts such as aliasing, blurring and halos and the removal of important high 

frequency information. 

 SR and GANs are two more advanced methods that have been applied in this 

field due to the advancements in AI; though more advanced than conventional 

methods, these are nowhere near perfect. These advanced technological analysis 

methods designed with artificial intelligence are aimed at retaining and oftentimes 

enhancing the perceived quality of photos in the process of enhancing the resolution. 

This is done with the help of big amounts of data that allowus to learn complex 

feature space and higher resolution images with fewer artefacts compared to 

traditional approaches. 

 The prevalent strategies based on AI-driven super-resolution also hold the 

potential, yet, the reduced implementation is owing to a mix of issues. The main 

drawback of these approaches stems from their high complexity and requirement of 

large computational resources and often are not suitable for the real-time applications 

and implementation in conventional consumer hardware. Moreover, many training 

procedures are flawed with reliability issues; thus, models tend to generate images 

with apparent flaws or tweaks that are hardly beneficial when used for professional 

purposes. This is especially true of GAN-based models of type as SRGAN put 

forward in this paper and earlier literature reviewed in this paper such as style 

transfer. 
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 In addition, these realistic models have problems with maintaining the 

realism and inherent quality of original sources of an image which is the growing and 

fundamental requirement in areas like imagery satellites where geographical 

milestones are required to be real and genuine or in medical imaging where 

anatomical structures should be represented in a true manner. There is also a problem 

that there is not enough good, high-quality high-definition training data, such models 

require large, diverse sets to learn effectively and generalize to many cases. Some of 

the errors that CMS experiences include overfitting where a model performs well 

within the data used to train it, performing poorly when exposed to other unseen data 

sets mainly due to the unavailability of quality training data. 

 New studies and the development of effective methods in image recovery 

areas are imperative to overcome these hardships. This entails increasing the 

traditional methods together with the algorithms and methodological procedures used 

in super-resolution driven with artificial intelligence whenever possible. Hence, 

developing the effective improvements of SR models and the fast-applying speed and 

convenience of using the method such as bicubic interpolation, the hybrid approach 

that integrates the characteristics of modern AI techniques and traditional algorithms 

can be a way out. Indeed, as researchers continue the development of these 

technologies and overcome the above-presented limitations, the future generation of 

image recovery may reach new heights in terms of detail and the possibility of 

clarity, opening new fields of activity for their use in many vital and important 

sectors. 

 

 

2.1.1 ProblemEvaluation 

 

 

 Super-resolution (SR) of images has come a long way, moving from 

conventional interpolation approaches to powerful AI-driven solutions. This 

assessment aims to pinpoint the fundamental issues with existing approaches and 

provide workable solutions. See, for instance, Fig. 2.0.  
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2.1.1.1 Current State of Traditional SR Techniques 

 

 

 Traditional methods such as bicubic interpolation, bilinear scaling, and 

nearest-neighbor approaches are foundational in image processing for their simplicity 

and low computational requirements. However, they are limited by several critical 

shortcomings: 

 Resolution Limits: These methods often produce images with blurred edges 

and lack fine details which are essential for applications requiring high 

precision, kindly refer Fig.2.1. 

 Artifacts: Common artefacts include ringing effects, blurring, and aliasing, 

which can degrade the overall image quality significantly. 

 

 

 

Fig.2.1: Display of bicubic evaluation of 64x64 to 256x256 image out of 

Overpass09 from UCMerced Dataset [14]. 
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2.1.1.2 Advancements Through AI-Driven Techniques 

 

 

 AI-based super-resolution, particularly through deep learning models like 

CNNs, GANs (e.g., SRGAN), and most recently, Transformer-based models, 

represent a significant leap forward: 

 Image Quality: AI-enhanced SR techniques generally produce higher-quality 

images with improved texture and detail, refer to Fig.2.2. 

 Adaptive Learning: These methods learn from large datasets to predict and 

fill in gaps in data more effectively than traditional methods. 

 

 

 

Fig.2.2: Display of SR through an AI model called WDSR [14] 

 

 

2.1.1.3 Challenges with AI-Driven Super-Resolution 

 

 

 Despite their advantages, AI-driven SR methods face several notable 

challenges: 

 Computational Intensity: Deep learning models require substantial 

computational power, which can limit their applicability in real-time or on-

device scenarios. 
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 Training Stability and Model Convergence: GAN-based models, while 

capable of producing photorealistic results, often suffer from training 

instability and may fail to converge, resulting in poor quality outputs or 

unrealistic image enhancements. 

 Data Dependency: AI model performance is strongly influenced by the 

amount and quality of training data available. When the data is inadequate or 

not representative, this can result in overfitting or inadequate generalization 

to new images. 

 Lack of High-Resolution Ground Truths: For many applications, especially in 

remote sensing, obtaining high-resolution ground truth images for training 

and validation is challenging, complicating the assessment and iterative 

improvement of SR models. 

 

 

2.1.1.4 Proposed Strategies for Improvement 

 

 

 To address these challenges and further advance the field of image super-

resolution, several strategies could be considered: 

 Hybrid Approaches: Combining the robustness and simplicity of traditional 

methods with the adaptive capabilities of AI models may yield better 

performance, particularly in terms of speed and resource efficiency. 

 Enhanced Training Techniques: Implementing advanced regularization 

techniques, improved loss functions, and better model architecture designs 

can help stabilize training and improve convergence in AI-driven models. 

 Expanded and Diversified Datasets: To enhance the robustness and 

generalizability of super-resolution models, it's beneficial to develop larger 

and more diverse datasets. Methods such as data augmentation, generating 

synthetic images, and employing semi-supervised learning techniques can 

significantly enlarge the pool of training data. 
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 Edge Computing: Developing lightweight models that can operate on edge 

devices with limited processing capabilities can make AI-driven super-

resolution more practical for real-time applications. 

 Ethical and Privacy Considerations: It is important to create clear ethical 

principles and take privacy-preserving measures into account while 

developing and implementing super-resolution technologies, as they have the 

potential to be used to enhance images in ways that violate privacy. 

 

 

2.1.2 Problem Context 

 

 

 Super-resolution (SR) technologies are being developed in response to the 

growing need for high-definition visual information in a variety of industries, such as 

consumer electronics, healthcare, security, and remote sensing. Accurate diagnosis, 

thorough geographic mapping, improved surveillance capabilities, and better 

consumer media experiences all depend on high-resolution photos. Therefore, one of 

the most important areas of image processing research is the development of efficient 

SR algorithms that can transform low-resolution images into high-resolution outputs 

without sacrificing detail or creating distortions. 

 

 

2.1.2.1 Historical Background and Evolution 

 

 

 In the past, nearest neighbour, bicubic, and bilinear interpolation techniques 

were the mainstays of SR approaches. These techniques were preferred because they 

were easy to compute and generally worked well for enlarging images. But their 

capacity to reconstruct high-frequency information is essentially restricted, and they 

frequently produce aliasing and blurring, two visual artefacts that deteriorate the 

quality of the image. These conventional techniques can no longer match the 
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increasing demands for clarity and detail as digital images has grown more and more 

essential in a variety of industries. 

 

2.1.2.2 Introduction of AI in Image Super-Resolution 

 

 

 The super-resolution (SR) discipline has undergone a significant 

transformation with the introduction of artificial intelligence, particularly through 

methods like machine learning and deep learning. Artificial intelligence (AI) 

methods, especially those that make use of Convolutional Neural Networks (CNNs) 

and Generative Adversarial Networks (GANs), are highly effective in interpreting 

intricate patterns and textures from large datasets, which significantly enhances the 

quality of high-resolution image reconstruction. These models can dynamically adapt 

to different image contents and are skilled at properly predicting high-frequency 

details that are lacking. 

 

 

2.1.2.3 Challenges Facing Current SR Technologies 

 

 

 Despite the advancements brought by AI, the application of these 

technologies in SR is not without challenges: 

 Computational Demand: AI-based models, especially those that are deep or 

involve adversarial training, require significant computational resources. This 

is a major hindrance for real-time processing applications and for use in 

environments with limited computational infrastructure. 

 Stability and Convergence Issues: Training deep learning models, particularly 

GANs, for SR is often fraught with issues such as non-convergence and mode 

collapse, where the model fails to produce diverse or realistic outputs. 

 Dependency on High-Quality Training Data: The effectiveness of deep 

learning models is heavily reliant on the presence of extensive, high-quality 
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training datasets. In many applications, especially those involving unique or 

specialized imagery, such datasets may not be readily available or may be 

expensive to procure. 

 Generalisation Across Diverse Inputs: Since many SR models are trained on a 

limited set of image types, they could not function effectively when used with 

images from different domains or with different properties. 

 

 

2.1.2.4 The Need for Advanced Research and Development 

 

 

 The progression of SR technologies concerning these issues is the problem at 

hand here. It is always useful to have new ideas on how to stabilise super-resolution 

models, and make them more effective, and more versatile with the help of novel 

designs, new training approaches, and optimisation techniques. In addition, the 

development of methods to reduce the amount of computation needed to use these 

models would extend their applicability to on-device, and real-time scenarios, thus 

making them more practical. 

 

 

2.2 Solution Approach 

 

 

 Thus, to overcome the challenges of both traditional and emerging super-

resolution techniques, this thesis proposes a new approach in solving the issues and 

by integrating IPT and Swin approaches into a single architecture. These two strong 

designs combine synergistically to get the most out of the enhancements of their 

complementary features and boost the ability to enhance image super-resolution 

performance, which cannot be achieved today with available single-model 

methodologies. 
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2.2.1 Hybrid Model Architecture 

 

 

 Hybrid Super-Resolution architectures have embraced a number of 

computation strategies, integrating the strengths of each in order to achieve optimum 

image enhancement results. These systems typically fuse approaches like the state-

of-the-art deep learning technologies with traditional image processing techniques as 

CNNs and GANs. As a result of the elimination of those artefacts and enhancement 

of the texture handling manner, this synergy enhances the standard of the images 

significantly. These kinds of structures are effective for domains where high 

precision is needed in capturing images and other kinds of imaging such as 

surveillance, medical fields, and satellite imaging that require detailed and accurate 

images. 

 

 

2.2.1.1 Swin Transformer 

 

 

 Being the foundational part of our coined hybrid architecture, Swin 

Transformer is carefully designed to handle the dependencies seen in high- resolution 

picture data. This design is different in using shifting windowing techniques, which 

fundamentally redesign the process of conducting self-attention through visual 

patches. The Swin Transformer keeps the efficiency as it captures value and key 

points as it focuses on localised patches instead of global self-attention. It can be 

tedious for large pictures. 

 

 

2.2.1.2 Key Features of the Swin Transformer 
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i. Hierarchical Structure 

 However, the proposed Swin Transformer is different from the flat structure 

of usual transformer layouts in terms of hierarchical construction. With an MPPM, 

Swin Transformer has a better performance in dealing with high-resolution photos. 

At the higher levels the first such blocks are usually smaller and it gradually merges 

them as it moves down. Among them, as for the feature extraction ability of multi-

scale contexts, this approach has brought great convenience to the processing and has 

enhanced the further ability for the precise feature recognition in the large-scale 

image such as the traditional fine-grained image reconstructing applications 

including super-resolutions. 

 

 

Fig.2.3: Representation of Swin Transformer Hierarchical Structure [4] 

 

ii. Shifted Windowing Scheme 

 One of the more creative changes made to the windowing design of the Swin 

Transformer is the adaptive miniature window. In self-attention, the windows 

employed in the design of the layers are placed interchangeably between the 

subsequent layers. The Swin Transformer modifies the non-overlapping windows of 

a prior transformer architecture to create cross-window connections as it moves the 

windows. Through this mechanism, it seems less information is missing from the 

model per image, leading to a better awareness of the context in the image and 

subsequent enhancement of detail. 
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Fig.2.4: Illustration of shifted window attention scheme of computing self-attention 

scheme [4] 

 

iii. Efficient Self-Attention Mechanism 

 Still, this is far less than if self-attention were applied as in a standard process 

alone to the specific window/region. The self - self-simplification / expansion 

scheme of the Swin Transformer which helps the model to scale to larger images is 

characteristic of super-resolution work and is based on this quality. This way, it is 

facing the equivalent of the dilemma surrounding the sharpness of details and 

continuity of lines and curves, choosing to improve pixel density in a specific area at 

the cost of losing the general image integrity while focusing on the layered analysis 

of the image based on smaller  

and less complex segments. 

iv. Adaptive Receptive Field 

 Swin Transformer is the model that is created to conform to the receptive 

field adaptation schema thus the hierarchical and shifting window. This flexibility is 

most important in super-resolution because in some regions of image,more details 

need to be enhanced when compared to the other regions of the image based on the 

complexity of the structures in both regions. Sometimes, during training, it could be 

preferable to increase the receptive field and in other cases, decrease then, depending 

on the nature of the image, if there are a lot of smooth areas in the image the 

receptive field should be wide but if there are a lot of detailed textures and sharp 

edges then the layer of convolution should have a small receptive field in order to 

adequately work on the data. 
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v. Impact on Image Super-Resolution 

 Due to the versatility of Swin Transformer the super resolution to add 

sharpness and detail to the Image was further optimized to levels that were 

previously unachievable. One of the advantages of this model is the ability to 

enhance even the finest aspects of the image while not introducing distortions or 

artefacts of any kind due to its capacity to work and control the various sizes of 

pictures. Additionally, as a result of using the adaptive structure, it can tune the 

nature of the processing technique to the peculiarities of the image, while making use 

of the picture’s specifics is a definitive advantage over standard approaches. These 

benefits can be further augmented when the Swin Transformer is integrated into a 

heterogeneous model with IPT. This complete approach helps to retain the necessary 

number of natural image details and their sharpness simultaneously increasing image 

definition. The integration of these two deep learning technologists is likely to 

contribute the kind of what is known as perceived-attractive degradation in super-

resolved image thus signifying a great advancement in the area of image super-

resolution. 

vi. Image Processing Transformer 

 The proposed mixed workflow includes the original Swin Transformer into 

which the picture Processing Transformer (IPT) is implemented as it is specifically 

designed to boost picture super-resolution performance, besides its other significant 

responsibilities in picture processing, such as denoising or deraining. For this reason, 

through the consideration of image modification as a sequence prediction problem, 

the IPT is highly dissimilar to the traditional CNN approaches. It does this through 

the use of for a sequence-to-sequence transformer model. In this manner, it is 

possible to introduce the complete data of an image in a sequence of numbers as it 

allows an extensive and boosted method of data processing for the IPT. 
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2.2.1.3 Detailed Functionality of IPT 

 

 

 

Fig.2.5: FlowChartof IPTBlock used in the ResNet of Generator 

 

i. Sequence-to-Sequence Architecture 

 The IPT treats images as complete sequences, while C degenerative jungles, 

break images into fragments before passing them through localised kernels. This 

approach can maintain a contextual data feed stream iteratively from end to end in 

the whole image because of the model. This model can generalize relationships 

between areas of the image that are far from each other by working with pixels as 

elements of a sequence which includes all the data from the givenjpg image, not as a 

part of some small area. 

ii. Global Context Processing 

 The feature of IPT to analyse data over space is very useful when working on 

complex image reconstruction tasks such as super-resolution. The identification of 

the global context becomes essential in those cases where high-frequency features 

are essential, and hence the image loses significant quality (it occurs in the case of 
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very low-quality satellite imagery or scans of tissues, for example). Accordingly, the 

IPT can assert the lack of details in low-resolution images and truly restore details 

that are both local and global in a logically consistent context from the complete 

image information acquired. 

iii. Transformer Mechanisms 

 The self-attention layers of the transformer mechanism define the interaction 

between pattern components in IPT, deciding the relevance and importance of each 

sequence section. This can be regarded as the capability of the proposed method to 

let the model pay more attention to the parts of the image which contain more 

informative features for the reconstruction. This is very important in the case of 

super-resolution because it is possible to have some required information more 

important than others in order to achieve a high-quality output. 

iv. Integration with Super-Resolution 

 Whenever the IPT deploys the hybrid blend, it applies selected features, only 

to discover that the Swin Transformer has taken them further and optimized them at 

the minute level with a contextual understanding from all around the globe. When 

recognizing these characteristics in terms of belonging to the general course, the idea 

of the image grows them to a certain extent. It is a vital step to make sure that the 

higher resolution result lifts off the context and the appearance that one would like to 

maintain on the super-resolved scene. 

v. Benefits of Image Reconstruction 

 Consequently, IPT is incorporated at the super-resolution to make certain that 

assembled images have the amount of detail resolution more often replicated in a 

consistent manner inside standard super-resolution techniques, along with being 

sharper with higher resolutions. It also prevents the general or global alterations of 

the image such that these alter necessary parts of the picture and keep the non-

artificial appearance of the image whereas local-alone methods may cause over-

smoothing or feature enhancement that gives the picture a look of having been 

artificially sharpened. 

 The hybrid model is very useful in such scenarios because, at some times, 

integration and accuracy are valued more than separateness and thoroughness, and 

anywhere that any of the details could be missed can lead to severe consequences as 
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in medical imaging. This is due to the fact that it is highly capable of processing very 

large amounts of data, as will be discussed later in these analyses. Likewise, one 

might imagine how making it possible for IPT to incorporate remote contextual 

features would tremendously improve the feasibility and the readability of resultant 

images that are needed in certain areas such as in satellite imaging/mapping or in 

surveillance where the difference of details and differentiation of far-off objects may 

be the deciding factor. In conclusion, such various difficulties that may happen in 

picture super-resolution, are successfully solved in the following manner: By 

utilizing the suggested Swin Transformer for local analysis in detail, as well as IPT 

for global processing. The use of super-resolved images will definitely provide the 

users and developers with higher resolution images and better accuracy of the images 

we obtain, which establishes a new benchmark for a given area of sharpened image 

processing. 

vi. Integration Strategy 

 Considered the SwinIPTHybrid as an innovative approach in the field of 

super-resolution based on the integration of the principles of processing image 

transformers named IPT as well as on the structural and hierarchical modelling in the 

form of Swin Transformers. Thus, through integration method, this integration 

optimises the benefits of both architectures and enhances the recovery of higher 

resolution image and more importantly retaining minute features and textures in the 

image. 

 

 

2.2.1.4 Integration Strategy of SwinIPTHybrid Model 

 

 

i. Layered Approach: 

 Thus, the method of constructing SwinIPTHybrid involves the careful 

stacking of Swin Transformer and IPT blocks in a manner that the hierarchical and 

progressive processing and enhancement of picture information takes place at 

different levels. IPT blocks blend various local elements into a comprehensive high-

resolution resultant, while Swin Transformers focus on capturing and boosting them. 
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This multiple-step processing allows us to ensure that each component is providing 

its maximum input towards the super-resolution process. 

 

 

ii. Initial Feature Extraction: 

 The convolutional layer of the model at the beginning transforms the input 

channels into a new dimension that is suitable for the following transformer blocks. 

However, one must point out that this first expansion increases the set of features that 

will be available for in-depth analysis of the raw image data, which is prepared 

herein. 

iii. Local-to-Global Processing: 

 After the expansion of features in the first stage, the input goes through a 

layer of Swin Transformer block, which takes advantage of the self-attention under 

the shifting windows. This phase focuses on enhancing the local matching and 

analysis of the coarser global patterns in localized regions of the target picture. The 

Swin Transformer is a very successful tool for precise textural enhancement due to 

its stacking nature for providing different scales of feature augmentation, and the 

multi-level enhancement makes it capable of adjusting for precise details at various 

levels. 

iv. Adaptive Transition: 

 An IPT layer, typically a 1x1 convolution, follows and scales the dimensional 

space of features to match the IPTs. For the purpose of maintaining the complete 

free-flow cooperation between the feature sets and subsequently enabling the two 

discrete processing phases to interface with one another across the architectural 

discrepancy between the Swin Transformer and IPT, this transition is critical. 

v. Global Contextual Synthesis: 

 A number of IPT blocks form higher layers, and the latter process the 

characteristics on the global level. To establish dependencies over large distances, 

IPT employs a technique that draws upon transformers, which help to locally boost 

these characteristics and integrate them coherently into the final high-resolution 

output. IPT can induce global coherence, one might like the super-resolved output to 
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have more natural visual coherence and aesthetics across a larger spatial domain 

because it observes the image as a sequence. 

vi. Final Refinement: 

 For a more comprehensive output of the high-resolution image, the final 

convolutional layer of the model is still required to produce the required number of 

output channels. This layer recreates the output in a manner that meets the resolution 

criteria while at the same time amplifying the details even further. 

 

 

Fig.2.6: FlowDiagram of SwinIPTHybrid, DeepFeatureExtraction module and 

Generator module respectively 

 

vii. Key Benefits of the Hybrid Approach 

 Enhanced Detail Preservation: The combination of the two methods enhances 

the overall image while also enhancing the specific areas where IPT provides 

global volume synthesis while ensuring that the details of the Swin 

Transformer are not lost. 

 Computational Efficiency: To fully utilize the resources but still maintain 

good output, the model intentionally employs such computations like Self-

Attention within controllable extents. 
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 Scalability: By design, the SwinIPTHybrid system is highly flexible for 

scalability to a range of image sizes and resolutions, a highly beneficial 

quality for the real application of super-resolution. 

 It has been concluded that the SwinIPTHybrid model is a dependable super-

resolution system that can efficiently overcome all the challenges related to 

enhancing the quality of the images while displaying the practicality and 

comprehensiveness of such intervention with a high level of accuracy.  

 

 

 

CHAPTER 3 

 

FINDINGS AND RESULT 

 

 

 

3.1 Findings 

 

 

i. Convergence of Loss Functions 

 Self-organized maps provide depiction of the training process over epochs in 

terms of the discriminator’s loss function (Loss_D) and the generator’s loss function 

(Loss_G), thereby showing optimal learning for enhanced model performance,It is 

crucial to define two measures that classify different accuracy levels depending on 

the nature of the adversarial inputs: Adversarial Score and Discrimination Accuracy. 

 Based on the metrics adopted for the generator (Score_G) and discriminator 

(Score_D), there is a certain idea about the training and result which is toward the 
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highly ideal express of 1. Currently, the discriminator is nearly capable of solving the 

task of differentiating between the actual and synthetic images, and clearly, the 

generator generates numerous images that cannot be easily classified by the 

discriminator as fake images. This is evident from the repetitiveness of the 

adversarial training procedure, which helped in enhancing the GANs performance. 

ii. Image Quality Assessment 

 Standard performance assessment measures such as the Structural Similarity 

Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) were used to glean insight 

into the quality of the images produced. A high value of PSNR indicates that the 

reconstructed images are very close to the actual image hence the name used for this 

measure is ‘Peak Signal-to-Noise Ratio.’ The values of SSIM also reveal the high 

degree of similarity of the generated pictures to the original pictures and hence the 

‘Structure Similarity Index.’ This research points towards the fact that GAN model 

has fairly maintained the quality of images while the image size has been increased 

by using low-quality images as inputs. 

iii. Stability in training and the effectiveness of the models 

 They also observed that while scores, as well as loss values, may fluctuate 

greatly across epochs, the overall trend over the course of training is an increase. 

This also indicates that the model is able to learn data distribution and can move 

towards a stable training point. The GAN proves its potential as an optimal solution 

in the numerous image enhancement tasks by showing that the model is capable of 

generating high-quality images starting from low-quality sources on example of 

images from websites. 

iv. Potential for Further Optimization 

 Another particularity of the new approach is the apparent potential for further 

optimisation even realizing experiments with the current parameters yields 

comparatively encouraging outcomes. It seems that by comparing different 

architectural configurations of GANs or adjusting their hyperparameters, the stability 

of training and the resulting image quality can be improved. These optimization 

techniques open areas for further research and improve the GAN model. 
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3.2 Results 

 

 

 Specifically, the UCMerced dataset is used to evaluate the performance of 

sophisticated AI models—Swin Transformer blocks and Generative Adversarial 

Networks, or GANs—in super-resolution (SR) techniques across a range of 

landscape categories. This is a thorough examination of the outcomes using the 

information supplied: 

 

i. PSNR and SSIM Results: 

 High PSNR Scores: The categories "buildings" and "aeroplane" recorded 

some of the highest PSNR scores (over 26 dB), suggesting that the super-

resolution approaches were especially useful in improving organised and 

urban landscapes with distinct edges and recurring patterns.  

 Lower PSNR in Natural Environments: Models appear to have trouble with 

the intricate, less structured textures seen in natural landscapes, as evidenced 

by the lower PSNR scores (around 23–25 dB) in categories like "forest" and 

"chaparral".  

 SSIM Values: In most categories, SSIM values were consistently around 0.7, 

showing high structural similarity but space for improvement in capturing 

finer textural characteristics that add to the image's perceived quality. 

ii. Trends Over Training Epochs 

 Improvement Over Time: There was a noticeable improvement in both PSNR 

and SSIM values from Epoch 1 through Epoch 3, indicating that as the model 

continues to learn, it becomes better at generating high-fidelity super-

resolved images. 

 Stability of GAN Training: The Loss_D and Loss_G values were stable, and 

the Scores for D and G were consistently high (1.0), suggesting that the 

discriminator and generator reached a good balance, essential for effective 

GAN training. 

iii. Detailed Insights by Group 
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 Urban Areas: Categories involving man-made structures (e.g., "buildings," 

"runway") tended to perform better, likely due to the regular patterns and 

lines easier for AI models to interpret and enhance. 

 Complex Natural Landscapes: More stochastic and irregular patterns (e.g., 

"forest," "river") presented challenges, underscoring the need for models to 

better handle the inherent variability and complexity in natural scenes. 

 

 

Group PSNR SSIM 

PSNR 

STANDARD 

DEVIATION 

SSIM 

STANDARD 

DEVIATION 

storagetanks 23.91724005 0.704603 0.981315 0.02207 

runway 24.61374294 0.720762 0.429935 0.003667 

sparseresidential 24.84232043 0.709497 0.514863 0.023232 

parkinglot 24.97308406 0.71778 0.402171 0.005507 

beach 24.60555762 0.70689 0.414249 0.015553 

tenniscourt 24.86019107 0.716897 0.336778 0.004664 

agricultural 23.70598954 0.708885 0.941453 0.020444 

chaparral 24.04819969 0.709878 0.960771 0.022129 

buildings 25.03050984 0.717405 0.146108 0.004328 

airplane 25.11538947 0.718206 0.127922 0.004812 

mobilehomepark 25.0204292 0.715948 0.088685 0.005743 

overpass 24.87925169 0.715245 0.132828 0.005139 

forest 22.82600426 0.716668 1.668153 0.00493 

baseballdiamond 23.48581515 0.716175 0.594293 0.004495 

mediumresidential 25.06699621 0.71591 0.105864 0.005838 

freeway 25.03919708 0.718541 0.152358 0.00355 

golfcourse 24.61556655 0.716136 0.940521 0.005845 

denseresidential 25.01882418 0.72004 0.126421 0.004115 

intersection 25.01871388 0.71984 0.187602 0.003324 

river 24.78927792 0.718855 0.455294 0.003464 

harbor 25.02921935 0.718829 0.067967 0.003684 



36 

 

 

Table-3.0:Final training results, category-wise divided, representing PSNR (Higher 

the result better it’s considered) and SSIM (Higher the result better it’s considered)   

 

Epoch Loss_D Loss_G PSNR SSIM 

1 0.019219 0.005203 24.88045 0.720087 

 

Table-3.1: Final averaged-out results with discriminator loss and generator loss 

 

 

Fig.3.0: Training results with their respective image resultant quality values 

 

 

3.2.1 Social and Practical Implications 
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 Enhanced Monitoring and Planning: The ability to effectively enhance the 

resolution of images in categories like "harbor" and "airplane" can 

significantly aid in monitoring and planning activities related to traffic 

management, urban planning, and environmental conservation. 

 Disaster Management: Improved accuracy in super-resolved images can 

enhance the effectiveness of disaster response strategies by providing clearer, 

more detailed views of affected areas. 

3.2.2 Future Considerations 

 

 

 Technique Refinement: Given the variability in performance across different 

terrains and categories, there's a clear indication that further refinement of the 

models, possibly through more targeted training or enhanced attention 

mechanisms, could yield better results. 

 Cross-Domain Adaptability: Expanding the training dataset or incorporating 

domain adaptation techniques may help improve the model's performance 

across a broader range of scenarios, enhancing its utility in practical 

applications. 

 

 

3.3 Discussion and Implementation 

 

 

 In the hybrid architecture integrating SWIN Transformer and IPT for image 

super-resolution, the SWIN Transformer is selectively utilized exclusively within the 

discriminator component, while the IPT model is predominantly employed within the 

generator ResNet. Combining these models enables the best possible use of each 

model's advantages within its component parts. A layered approach is used in the 

generator ResNet, which uses multiple ResNet blocks stacked on top of one another 

to detect both basic and complex features in the input image. It uses skip connections 
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in its structure to protect and transfer important information between layers. This 

improves the model's ability to produce high-quality photos accurately. Interestingly, 

the model learns in training how to upscale from low to high resolution affirming 

Bicubic expanded images. However, it is used in the validation phase as the scale 

factor does not remain the same in this phase to compare the model efficacy 

accurately. 

 In addition, the SWIN transformer architecture is introduced selectively and 

restrictively only to the discriminator component. In this regard, the discriminator 

may easily go through the visualization patterns and sort out the high-resolution 

photographs of the generator leveraging the SWIN Transformer’s ability to identify 

both local and global dependencies. The SWIN Transformer is only integrated into 

the discriminator of the model to take advantage of its advanced attention mechanism 

while remaining compatible with other components of the model’s hybrid 

construction. 

 The proposed method develops the SWIN Transformer in terms of generating 

both high fidelity and performance for image super-resolution tasks based on the 

IPT. The discriminator selectively incorporates SWIN Transformer to strengthen the 

generator ResNet, achieving a dynamic multilayer combination that complements the 

complete and optimized hybrid model for picture super-resolution. 

 

 

3.3.1 Generator 

 

 

 In the given code sample, the Generator class used in super-resolution jobs is 

an enhancement of the typical generative adversarial network or GAN which 

contains the capability to create high-definition images from comparatively low-

definition inputs. To achieve the correct channel width then, this model is created 

with the intent of gradually increasing the quality of images over several stages in 

shallowfeature extraction, advanced deep feature extraction, upsampling, and final 

refinement. A thorough description of each part of the Generator architecture may be 

found below: 
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Fig.3.1: Detailed Sequence diagram of Generator Architecture used in research 

3.3.1.1 Architecture Overview 

 

 

i. Shallow Feature Extraction Module 

 Purpose: This preliminary stage is structured to capture low-level features 

from the input image, serving as the foundational step in processing the raw 

data 

 Implementation 

The module is an instance of ShallowFeatureExtractionModule, taking an 

input with 3 channels (typical RGB image) and expanding it to 128 channels. 

This expansion helps in capturing a richer set of features that are necessary 

for subsequent layers. 

ii. Deep Feature Extraction Module (RDSTB) 

 Purpose: This module aims to process and refine the features extracted by the 

shallow module. It typically involves deeper and more complex 

transformations. 

 Implementation: It comprises a sequence of five SwinIPTHybrid blocks, each 

designed to further process the features using mechanisms likely combining 

elements of Swin Transformers and IPT (Image Processing Transformers). 

This repeated application implies iterative refinement and deeper analysis of 

the input features. 
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iii. Upsampling Module 

 Purpose: To scale up the processed features to a higher resolution, which is 

closer to the desired output size. 

 Implementation: Consists of two UpsamplingModule instances, each likely 

performing operations such as convolution followed by a pixel-shuffle or 

learned upsampling techniques to increase spatial dimensions while refining 

the features. 

iv. Output Convolution 

 Purpose: To adjust the number of feature channels to match the expected 

number of output channels (typically 3 for RGB images). 

 Implementation: A convolutional layer featuring a 3x3 kernel size is used to 

amalgamate the upsampled features into three channels, preparing them for 

the formation of the final image. 

v. Feature Aggregation and Activation 

 Purpose: To integrate the shallow and deeply upsampled features, enhancing 

both local and global details in the final image, and to employ a non-linear 

activation to normalize the result. 

 Implementation: Shallow features are resized to match the dimensions of the 

upsampled deep features, then added together. The final image is passed 

through a tanh activation function and rescaled to bring pixel values between 

0 and 1. 

 This combines the final convolution output with the resized shallow features, 

applies the tanh activation, and rescales the result. 

 The Generator architecture exemplifies a complex but systematic approach to 

enhancing image quality through multi-stage processing, leveraging both shallow 

and deep feature extraction to capture comprehensive image details before 

upsampling to the target resolution. The use of both traditional convolution and 

advanced transformer-based techniques suggests a hybrid strategy aimed at 

effectively capturing and synthesizing textures and patterns in super-resolved 

images. 
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3.3.1.2 Mathematical Formulation of Generator 

 

 

i. Shallow Feature Extraction Module 

 Input: Image 𝑥 of shape (𝐵, 𝐶, 𝐻, 𝑊), where 𝐵 is the batch size, 𝐶 is the 

number of channels (3 for RGB images), and 𝐻, 𝑊 are the dimensions of the 

image. 

 

 

 

 

 Operation: 

 

𝐹𝑠(𝑥) = 𝑅𝑒𝐿𝑈(𝑅𝑒𝐿𝑈(𝑥 ∗ 𝑊1 + 𝑏1) ∗ 𝑊2 + 𝑏2)) (3.0) 

 

 Where 𝑊1,  𝑊2 are the weights of the convolutional kernels, and𝑏1, 𝑏2 are

 biases. ReLU is applied to introduce non-linearity. 

ii. Deep Feature Extraction Module (SwinIPTHybrid) 

 Input: Shallow features 𝐹𝑠. 

 Operation: 

 

𝐹𝑑 = 𝐷𝑒𝑒𝑝𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝐹𝑠)    (3.1) 

 

 This involves multiple layers of SwinIPTHybrid, which itself may include

 operations like Layer Normalization, Swin Transformer mechanisms, and

 possibly additional feed-forward networks. For simplicity, assume a 

 𝑆𝑤𝑖𝑛𝐼𝑃𝑇𝐻𝑦𝑏𝑟𝑖𝑑 that abstracts these operations. 

iii. Upsampling Module 

 Input: Deep features 𝐹𝑑. 

 Operation: 
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𝐹𝑢 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐹𝑑) = 𝑃𝑅𝑒𝐿𝑈(𝑃𝑖𝑥𝑒𝑙𝑆ℎ𝑢𝑓𝑓𝑙𝑒(𝐶𝑜𝑛𝑣2𝑑(𝐹𝑑 ∗ 𝑊𝑢 + 𝑏𝑢))) (3.2) 

 

 Where 𝑊𝑢 is the weight of a 1x1 convolution that increases channels, 𝑏𝑢 is 

the bias, and PixelShuffle rearranges elements to form a higher spatial resolution. 

 

iv. Output Convolution 

 Input: The output from the upsampling module 𝐹𝑢 and resized shallow 

features 𝐹𝑠𝑟. 

 Resizing Operation: 

 

𝐹𝑠𝑟 = 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒(𝐹𝑠, 𝑠𝑖𝑧𝑒 = (256,256), 𝑚𝑜𝑑𝑒 = ′𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟′)  (3.3) 

 

 Aggregation and Final Convolution: 

 

𝑦 = 𝐶𝑜𝑛𝑣2𝑑((𝐹𝑢 + 𝐹𝑠𝑟) ∗ 𝑊𝑜𝑢𝑡 + 𝑏𝑜𝑢𝑡)                   (3.4) 

 

 Where 𝑊𝑜𝑢𝑡 and 𝑏𝑜𝑢𝑡 are the weights and biases of the final convolution 

layer ensuring the output has 3 channels. 

v. Activation Function 

 Output: 

 

𝐺(𝑥) =
tanh(𝑦)+1

2
    (3.5) 

 

 The hyperbolic tangent function scales the output to the range (-1, 1), which 

is then shifted and scaled to (0, 1). 

 

 

3.3.2 SwinIPTHybrid 
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 The SwinIPTHybrid class represents an innovative neural network 

architecture tailored for processing images by combining the strengths of 

Convolutional Neural Networks (CNNs) and Transformers, specifically the Swin 

Transformer and IPT (Image Processing Transformer) blocks. This hybrid model is 

designed to efficiently handle both local and global information in images, making it 

suitable for advanced image processing tasks such as high-resolution medical 

imaging or complex scene understanding. Below is an expanded, thesis-level 

discussion of the components and functionality of the SwinIPTHybrid model. 

 

 

 

Fig.3.2: Implemented sequence diagram of SwinIPTHybrid Architecture 

 

 

3.3.2.1 Architectural Overview 

 

 

i. Input Parameters 

 input_channels: It shows how many channels the input image has (3 for RGB 

images, for instance). 

 dim: specifies the size of the output space for the transformer block in the 

network. This parameter is crucial in maintaining input output feature 

similarity between subsequent layers. 

 num_filters: Determines the number of output channels in a convolutional 

layer at the final stage that impacts on the depth and the complexity of the 

feature map. 
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 input_resolution: Directs the nature of the actual input images that are 

anticipated, defines where the optimization and the design of the network is 

expected to take place and also provides constraints on the particular shapes 

or resolutions of the latter. 

 num_heads: Represents the number of attention heads per Transformer block, 

or the number of times self-attention is applied during the block’s 

computation. This is a significant factor to exercise in a way that allows for 

the parallel computation of attention and the further enhancement of the 

potential feature identification by the model. 

 f_dim: Within the transformer block structure, defines the dimensionality of 

the feed-forward networks that affects each transformation layer’s ability and 

expanse. 

 

 

3.3.2.2 Core Components 

 

 

i. Initial IPT Block 

This transformer block, which is integrated at the beginning of the network, is 

particularly good in how the raw picture data is warped into the higher-

dimensional feature space that can be transformed further. 

ii. Dense Blocks: 

Convolutional Layer 

 This layer doubles the channel of the layers from the initial input channels up

 to 128 using a 3×3 kernel. 3x3 kernel has been used to the reasons ofkeeping

 computing rate optimal and still extracting local features. 

 

 

iii. Swin Transformer Block: 

 This block applies self-attention mechanisms within localised windows 

(limited to window_size of 7) following the convolution stage. This approach 
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decreases the computational complexity in contrast to the methods based on 

attention all over the image and increases the quality of positional 

information preservation in comparison with decreasing the receptive field. 

iv. Activation and Adaptation 

 To help in capturing details about these patterns, a LeakyReLU activation 

 function is incorporated. Finally, the dimensionality is reduced from 128 to 

 dim with an intern 1x1 convolution to fit the standardized IPT block. 

v. Sequential IPT Blocks 

 Over two microseconds, three additional IPT blocks are applied successively. 

 These blocks then work on the adapted features using transformer-based 

 processes because these are effective in interacting across large scales, both 

 spatially and across all the features. 

vi. Final Convolutional Layer 

 Resizes the dimensionality from dim to num_filters, thus adjusting the 

 resulting feature map to contain the specified number of output filters. This 

 layer is vital for equating the output dimensions to precise dimensions that 

 pertain to an array of applications inclusive of the number of class predictions 

 or feature representations. 

vii. Forward Pass Functionality 

Data Propagation begins with the input tensor passing sequentially through 

each component in self.dense_blocks. 

viii. Handling Different Block Types 

 nn.Sequential Blocks: These process spatial data directly, applying 

convolutions and Swin Transformer operations. 

 IPT Blocks: The IPTBlock class implements a module within an Image 

Processing Transformer (IPT) architecture, tailored for image processing 

tasks. It includes layer normalization, multi-head self-attention, and a feed-

forward network, adhering to the standard transformer architecture layout 

with residual connections. This design enhances the module’s capability to 

process and refine image features effectively. Used for image super-

resolution and clarity. 
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 Final Transformation: The last convolutional layer standardizes the output to 

the specified number of filters, preparing the feature map for further 

applications such as classification layers or additional processing stages. 

ix. Error Handling 

 Includes safeguards against unsupported block types, enhancing the model’s 

 robustness and maintainability by clearly signalling configuration errors or 

 mismatches in expected block types. 

 In the context of a generative model, the SwinIPTHybrid can be 

conceptualized as an advanced ResNet block within a generator architecture. This 

block is specifically designed to leverage both local and global contextual 

information from images, enhancing the generative capabilities of the model. Here is 

an expanded thesis-level discussion on how this hybrid model functions within a 

generator, drawing parallels with traditional ResNet blocks and detailing its 

integration and functionality. 

 

 

3.3.2.3 Mathematical Formulation of SwinIPTHybrid Architecture 

 

 

i. Initial Setup 

 Input: The input image or feature map 𝑥 with dimensions (𝐵, 𝐶, 𝐻, 𝑊) where 

𝐵 is the batch size, 𝐶 is the number of channels, and 𝐻, 𝑊are the height and 

width of the image or feature map. 

ii. Convolutional Layer 

 Purpose: To increase the number of channels and adapt the input to a suitable 

form for processing by the Swin Transformer Block. 

 Operation: 

 

𝑥1 = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣2𝑑(𝑥, 𝑊𝑐𝑜𝑛𝑣1, 𝑏𝑐𝑜𝑛𝑣1))       (3.6) 
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 Where 𝑊𝑐𝑜𝑛𝑣1 and 𝑏𝑐𝑜𝑛𝑣1 are the weights and biases of the convolutional 

layer,  respectively. 

iii. Swin Transformer Block 

 Purpose: To process the feature map using local self-attention mechanisms 

within windows. 

 

 

 Operation: 

𝑥2 = 𝑆𝑤𝑖𝑛𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐵𝑙𝑜𝑐𝑘(𝑥1))     (3.7) 

 

 The Swin Transformer Block processes the data spatially and contextually, 

 modifying features within each specified window. 

 

iv. LeakyReLU Activation 

 Purpose: To introduce non-linearity after the Swin Transformer processing. 

 Operation: 

 

𝑥3 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥2)         (3.8) 

 

v. Adaptation Convolutional Layer: 

 Purpose: To match the channel dimensions to those expected by the 

IPTBlock. 

 

 Operation: 

𝑥4 = 𝐶𝑜𝑛𝑣2𝑑(𝑥3, 𝑊𝑎𝑑𝑎𝑝𝑡 , 𝑏𝑎𝑑𝑎𝑝𝑡)     (3.9) 

 

 Where 𝑊𝑎𝑑𝑎𝑝𝑡  and 𝑏𝑎𝑑𝑎𝑝𝑡 are the weights and biases of the adaptation layer. 

vi. IPT Block Processing: 

 Flattening and Transposition for IPT: 

 

𝑥5 = 𝑣𝑖𝑒𝑤(𝑥4, (𝐵, 𝐶, 𝐻 × 𝑊))
𝑇
             (3.10) 
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 Transposing the dimensions to prepare for the IPT processing. 

vii. IPT Block: 

 

𝑥6 = 𝐼𝑃𝑇𝐵𝑙𝑜𝑐𝑘(𝑥5)        (3.11) 

 

 The IPT Block processes the data, applying global self-attention and feed-

 forward networks. 

viii. Reshaping: 

 

𝑥7 = 𝑣𝑖𝑒𝑤(𝑥6
𝑇 , (𝐵, 𝐶, 𝐻, 𝑊))                      (3.12) 

 

 Reshaping the output back to the original spatial dimensions. 

 

ix. Final Convolutional Layer: 

 Purpose: To refine and reduce the dimensionality to the desired number of 

output filters, suitable for further processing or as the final output. 

 Operation: 

 

𝑥𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣2𝑑(𝑥7, 𝑊𝑓𝑖𝑛𝑎𝑙 , 𝑏𝑓𝑖𝑛𝑎𝑙 )   (3.13) 

 

 Where 𝑊𝑓𝑖𝑛𝑎𝑙  and 𝑏𝑓𝑖𝑛𝑎𝑙 are the weights and biases of the final convolutional 

 layer. 

 

 

3.3.2.4 Integration into Generator Architecture 

 

 

i. Role in Generative Modeling 

 Enhanced Feature Extraction: Unlike traditional ResNet blocks that primarily 

use sequences of convolutions and skip connections for feature extraction and 
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transformation, SwinIPTHybrid introduces a combination of CNNs and 

transformer mechanisms. This integration aims to significantly enhance the 

generator's ability to synthesize high-fidelity images by capturing more 

complex patterns and dependencies within the input data. 

 Adaptation to Spatial Complexity: The model's architecture, which includes 

Swin Transformer blocks and IPT blocks, allows it to adeptly handle varying 

spatial complexities, making it suitable for tasks that require detailed texture 

generation and accurate recreation of image scenes. 

ii. Architectural Composition 

 Initial Layers: Starts with an IPT block that transforms the initial features into 

a complex, high-dimensional space, setting the stage for detailed feature 

processing similar to the role of the first few layers in a ResNet block. 

 

 

iii. Dense Blocks 

 Initial Convolutional Layer: Modifies the feature depth of the channel while 

maintaining spatial resolution, much like the convolutional layers in ResNet 

blocks. 

 

 

3.3.2.5 Customized Swin Transformer Block 

 

 

 Feature Swin Transformer is a self-designed version derived from the general 

Swin Transformer structure used for spatial experience tasks, such pictures. This is 

important for incorporating such transformer architectures to the common setup used 

in applications using convolutional neural networks, like segmentation, super-

resolution, and image classification. 
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Fig.3.3: Sequence diagram of customized Swin Block inside of Swin transformer 

 

 

3.3.2.6 Overview of the Customized SwinTransfomerBlock 

 

 

i. Channel Adaptation 

 Purpose: This component ensures that the number of input channels matches 

the expected number of channels (dim) for subsequent operations. It uses a 

1x1 convolution to adapt the channel dimensions when the input channel 

count doesn't match the desired dim. If they match, it employs an identity 

operation which leaves the input unchanged. 

 Significance: This flexibility allows the block to be more easily integrated 

into various points within a larger model or pipeline without requiring the 

input features to always match the internal dimensions. 

ii. Normalization 

 Implementation: The block utilizes BatchNorm2d for normalization, which is 

standard in CNNs for images. This type of normalization helps stabilize 

learning by normalizing the inputs across the batch dimension, maintaining 

consistent mean and variance. 

 Difference from Official Swin: The official Swin Transformer typically uses 

Layer Normalization, which is more common in sequence processing models 

(like NLP models) where it normalizes across features for each item in a 

sequence. 

iii. Shifted Window Attention 
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 Mechanism: This part of the block uses two sequential 

ShiftedWindowAttention modules. Each module applies self-attention within 

predefined windows of the input feature map. This localized attention 

mechanism is adept at capturing finer details within local regions while 

reducing computational overhead compared to global self-attention. 

 Configuration Variance: Having two sequential attention modules might be 

designed to enhance the depth of feature interaction before passing through 

the final transformations, providing a richer and more abstract representation 

of input features. 

iv. MLP (Multi-Layer Perceptron) 

 Design Adaptation for Images: Unlike traditional transformers where the 

MLP is fully connected and operates on flattened data vectors, here the MLP 

uses 1x1 convolutions. This choice allows the MLP to operate directly on 

spatial data, maintaining the structural and spatial integrity of the image data 

throughout the processing. 

 Functionality: The MLP first expands the feature dimension by a factor of 4 

using a 1x1 convolution, applies a GELU non-linearity, and then projects the 

features back to the original dimension with another 1x1 convolution. 

v. Forward Pass Execution 

 Channel Adaptation: The input first passes through the channel adaptation 

layer, aligning its channel dimensions with those expected by subsequent 

layers. 

 Normalized and Attended Features: The output is then normalized and fed 

into the attention modules. The result of the attention is added back to the 

original input (residual connection), facilitating deeper layers to learn 

modifications to the identity rather than complete transformations, which 

often stabilizes training. 

 Further Normalization and MLP Processing: The attended features are again 

normalized and passed through the MLP. The output of the MLP is added to 

the attended features (another residual connection), and this final output is the 

transformed features of the block. 
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3.3.2.7 Differences from Official Swin Transformer and Significance 

 

 

 The design modifications in SwinTransformerBlock, such as using Batch 

Normalization instead of Layer Normalization  

 Adapting the MLP to handle spatial data through convolutions, are significant 

for image processing tasks.  

 These changes allow the block to seamlessly fit into CNN architectures that 

are standard in the field of computer vision, where maintaining the spatial structure 

of data is crucial. Furthermore, the use of convolutions helps preserve the locality 

and spatial hierarchies within the image data, essential for tasks that rely heavily on 

the accurate representation of spatial relationships, such as in super-resolution or 

detailed image segmentation. 

 This custom SwinTransformerBlock illustrates a thoughtful adaptation of 

transformer technology, traditionally used for sequence data, to the realm of image 

processing, demonstrating the versatility and extendibility of the transformer 

architectures beyond their initial applications.Sequential IPT Blocks: This further 

process and refine features, analogous to successive ResNet blocks but utilizing 

transformer technology for enhanced global context integration. 

a. Final Output Adaptation 

 Output Convolutional Layer: This component is crucial for aligning the 

output of the hybrid block with the generator's requirements, similar to how a 

ResNet block in a generator would adjust features to feed into subsequent 

layers or final output layers. 

 

 

3.3.2.8 Functionality Within the Generator 
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i. Forward Pass 

 Sequential Processing: Each component processes the input tensor in a way 

that guarantees the collection and improvement of both local and global 

information. With improved capabilities, this procedure resembles the 

forward pass through a sequence of ResNet blocks. 

 Transformer Integration: Compared to conventional convolutional layers 

alone, the architecture is capable of carrying out more intricate spatial and 

feature-wise transformations thanks to the addition of transformer blocks. 

 Final Adjustments: The last convolutional layer standardises the features to 

satisfy particular output specifications, readying them for the generator's 

further stages, which may include output or upsampling layers. 

ii. Error Handling and Robustness 

 incorporates safeguards to guarantee that every kind of block is handled 

 appropriately, offering a strong framework that can manage a range of input 

 configurations and avoiding typical mistakes in model construction. 

3.3.3 Discriminator 

 

 

 A crucial feature of a Generative Adversarial Network (GAN) configuration, 

the Discriminator class defined in your sample is specifically intended to evaluate the 

veracity of images produced by the accompanying Generator. This discriminator 

makes use of the Swin Transformer architecture, which has demonstrated remarkable 

performance in managing a variety of vision-related tasks because of how well it 

models global dependencies and processes images in a hierarchical manner. 
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Fig.3.4: Illustration of discriminator used in the research (Simplified Swin 

Transformer) [12] 

 

 

3.3.3.1 Architecture Overview 

 

 

i. Swin Transformer as Feature Extractor: 

 The Swin Transformer is utilized here primarily as a feature extractor to 

 analyze the input images. By dividing images into patches and applying self-

 attention mechanisms within these patches, the Swin Transformer captures 

 both local features and long-range dependencies effectively. 

ii. Configuration: 

 Hidden Dimension: The hidden dimension of 512 indicates the size of the 

feature vectors that are processed within the transformer blocks. 

 Layers: A configuration of (2, 2, 6, 2) for the layers suggests a deep network 

with a varying number of layers at different stages, allowing for a complex 

hierarchical processing of features. 

 Heads: The progression (3, 6, 12, 24) in the number of heads across layers 

enables multi-headed attention, facilitating the model can focus on 

information from various display subspaces at different perspectives. 
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 Window Size: A window size of 2 for the Swin blocks is indicative of local 

attention within very small windows, which enhances the model's ability to 

focus on fine details within images. 

 Downscaling Factors: The tuple (4, 2, 2, 2) defines how the resolution of 

feature maps is reduced progressively, which helps in increasing the receptive 

field and reducing computational complexity as the depth increases. 

iii. Classification Head: 

 Purpose: After feature extraction, the discriminator needs to make a binary 

decision regarding the authenticity of the input image (real or fake). 

 Implementation: A simple linear layer is used here, taking the embedded 

features from the Swin Transformer and mapping them to a single output that 

represents the "realness" score of the input image. 

 Activation: The final decision is obtained by applying a sigmoid activation 

function to the output of the linear layer. This converts the raw score into a 

probability, indicating how likely it is that the input image is real. 

iv. Forward Pass Details:  

 Input Processing: The input image is first passed through the Swin 

Transformer. This module extracts complex hierarchical features from the 

image, which are then flattened or pooled (implicitly understood, not 

explicitly shown in the code) to match the expected input dimension of the 

linear classifier. 

 Classification: The extracted features are then fed into the linear classifier. 

The classifier projects these features onto a realness score, which is 

transformed into a probability using the sigmoid function. 

 

 

3.3.3.2 Mathematical Formulation of Discriminator Architecture 
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 Input: Image tensor 𝑋 of shape (𝐵, 𝐶, 𝐻, 𝑊), where 𝐵 is the batch size,𝐶 is 

the number of channels (3 for RGB images), and 𝐻, 𝑊 are the dimensions of 

the image. 

 Process:The Swin Transformer first embeds image patches into a higher 

dimensional space. Given the window size www, each patch is linearly 

transformed (via a learned embedding which could be a convolutional 

operation with kernel and stride equal to the patch size). 

 These embeddings then pass-through multiple transformer layers. Each layer 

in the Swin Transformer includes: 

 

i. Layer Normalization: 

 

𝐿𝑁(𝑥) = 𝛾 (
𝑥−𝜇

𝜎
) + 𝛽   (3.14) 

 

 are the mean and standard deviation of features, and 𝛾, 𝛽 are learnable 

 parameters. 

 Self-Attention: Computed within shifted windows to mix information across 

patches. For each head ℎ: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉   (3.15) 

 

 where 𝑄, 𝐾, 𝑉 are queries, keys, and values projected from the input, and 𝑑𝑘  

is  the dimensionality of keys/queries. 

 

 

ii. Feedforward Network:  

 

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊1 + 𝑏1) 𝑊2 + 𝑏2  (3.16) 

 

 Output: Transformed features 𝑍 which are then fed to a classifier. 

iii. Classification Head 



57 

 

 Linear Layer: Projects the transformer output to a single value for binary 

classification. 

 

𝑌 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑍𝑊 + 𝑏)   (3.17) 

 

iv. UpsampleBlock 

 Input: Feature map FFF from a previous layer of dimensions (𝐵, 𝐶, 𝐻, 𝑊) 

 1x1 Convolution: Increases channel dimension to  

 

𝐶 × 𝑢𝑝_𝑠𝑐𝑎𝑙𝑒2        (3.18) 

 

without changing spatial dimensions.  

 

𝐹′ = 𝐹 ∗ 𝐾 + 𝑏        (3.19) 

 

where ∗ denotes the convolution operation, 𝐾 is the kernel, and 𝑏 is the bias. 

 Pixel Shuffle: Rearranges elements in𝐹′ to form a larger spatial dimension, 

effectively increasing the resolution by factor 𝑢𝑝_𝑠𝑐𝑎𝑙𝑒. 

 PReLU Activation: Applies the parametric ReLU activation function to 

introduce non-linearity.  

 

𝐺 = 𝑃(𝐹′′)    (3.20) 

 

 where 𝑃 is the PReLU function, and F′′F''F′′ is the output from pixel shuffle. 

v. ShallowFeatureExtractionModule 

 Input: Image III of shape (𝐵, 𝐶, 𝐻, 𝑊). 

 Convolution and ReLU: 

 Applies two sequential convolutions each followed by a ReLU activation. 

 

𝑂1 = 𝑅𝑒𝐿𝑈(𝐼 ∗ 𝐾1 + 𝑏1)  (3.21) 

𝑂2 = 𝑅𝑒𝐿𝑈(𝑂1 ∗ 𝐾2 + 𝑏2)     (3.22) 
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 where 𝐾1, 𝐾2 are convolutional kernels, and 𝑏1, 𝑏2 are biases for each layer.  
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CHAPTER 4 

 

CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT 

 

 

 

 From what has been explained about the UCMerced dataset yet and the 

super-resolution of pictures, it was revealed that there is a potential to enhance GAN 

or the generative adversarial network-based hybrid models that employ Swin 

Transformer and IPT or Image Processing Transformers. This new method aims at 

presenting a basic way of high finishing of the given images in a wide range of 

landscape categories by utilizing the global synthesis capabilities of IPT and the local 

processing expertise of Swin Transformers. 

 

 

4.1 Preview of Performance Insights 

 

 

 It is noteworthy that this section gives a detailed treatment of what can be 

learned about performance by adopting hybrid architectures in super-resolution with 

particular focus on the benefits of incorporating various computational models. This 

study involves practical evaluations from real-world scenarios, where integrating 

modern deep learning and traditional approaches into the super-resolution help in 

realizing the pros and cons of prevailing super-resolution technology. 
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4.1.1 Performance Highlights Across Categories: 

 

 

 Structured Environments: The proposed methods have demonstrated 

outstanding outcomes for specific categories with PSNR more than or 

equal to 25 for categories such as “Buildings”, “Aeroplane” and “Medium 

Residential” which heeds well to the notions that the built-up areas or 

urban scape with more hardened geometrical figures and lines, are the 

best suited for these hybrid models. 

 Natural Landscapes: As one would expect that the naturally more diverse and 

irregular regions like ‘forest’ and ‘agricultural’ may contain more 

uncertainties in their patterns, the PSNR scores for the latter categories were 

generally lower and have greater variation. This can be understood in the 

sense that these settings present more serious matter. 

 

 

4.1.2 Consistency and Variability: 

 

 

 Some degree of performance variability is highlighted by the measured 

standard deviations in PSNR and SSIM values, which may be related to the inherent 

difficulties that come with various terrains. This fluctuation points to potential areas 

for more consistency-enhancing model optimisation. 

 

 

4.1.3 Implications for Advanced Applications: 

 

 

 Improved super-resolution capabilities can have a big influence on industries 

like emergency management, environmental conservation, and urban planning that 
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depend on accurate and detailed remote sensing pictures. Having access to sharper 

visuals can help in decision-making and intervention effectiveness. 

 Image super-resolution for remote sensing has advanced significantly with 

the strategic integration of Swin Transformers and IPT within a GAN framework. 

Though encouraging, the way ahead calls for focused improvements and iterative 

refinement to fully realise this technology's promise and make sure it consistently 

and successfully satisfies a range of application needs. The capabilities of remote 

sensing technology will be greatly enhanced by this continuing work, serving larger 

societal and environmental goals. 

 

 

4.2 Future Scope 

 

 

 Convolutional neural networks and transformer-based models are two 

examples of sophisticated AI-driven systems that when combined have shown 

promising results in solving the difficulties of producing high-quality, high-

resolution images from low-resolution inputs. These developments have a great deal 

of potential for use in fields like remote sensing, especially when combined with 

datasets like UCMerced. Future advancements could improve these techniques' 

precision and effectiveness even more. 

 To enhance the efficiency of super-resolution (SR) algorithms for real-time 

processing in remote sensing applications, we are employing parallel processing and 

model simplification strategies with Swin Transformer and GAN models to ensure 

rapid computation without losing accuracy. Concurrently, we aim to boost model 

performance across diverse geographic features, such as those in the UCMerced 

Land Use Dataset, by implementing transfer learning and domain adaptation 

techniques to improve generalization across various landscapes. Moreover, our 

approach includes refining the quality of super-resolved images to reduce artifacts 

like blurring, halos, and noise, which can hinder interpretation in remote sensing 

applications, by developing advanced deep learning architectures and tailored loss 

functions. Extending these techniques to multispectral and hyperspectral data is 
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crucial for applications in environmental monitoring and agriculture, necessitating 

adaptations in SR models to preserve spectral fidelity while enhancing spatial 

resolution. Additionally, deploying these models directly on satellite and aerial 

platforms will allow for image preprocessing at the source, reducing data bandwidth 

requirements and accelerating downstream analysis. We also plan to introduce 

interactive super-resolution capabilities that enable remote sensing analysts to 

customize resolution enhancements for specific regions of interest based on unique 

analytical needs. Lastly, ethical considerations are paramount, focusing on the 

responsible deployment of super-resolution technologies to avoid privacy violations 

while enhancing surveillance capabilities, necessitating clear regulations to balance 

technological advancement with ethical standards in environmental monitoring, 

disaster prediction, and urban planning. 

 

 

4.3 Social Impact 

 

 

 The advancements in image super-resolution (SR) technology, particularly 

using AI-driven methods like Swin Transformers and Generative Adversarial 

Networks (GANs) for remote sensing, have profound implications for society. These 

technologies are not merely technical enhancements; they hold significant potential 

to influence various aspects of social welfare, environmental monitoring, and global 

security. Here's an exploration of the broader social impacts these innovations might 

foster. 

 Advanced super-resolution technologies have significantly enhanced satellite 

and aerial imagery, proving invaluable in disaster response and management by 

allowing precise assessments of areas impacted by hurricanes, earthquakes, or floods, 

thereby facilitating effective coordination and resource distribution. Similarly, these 

technologies have bolstered environmental monitoring and conservation efforts, 

enabling accurate image reconstruction for tracking changes such as deforestation, 

wildlife area changes, and marine environment alterations, aiding in the formulation 

of policies for environmental protection. In urban planning, high-definition imagery 
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supports local authorities and urban planners in comprehensively managing city 

development, from infrastructure projects to green space assessments, fostering more 

informed and efficient urban management. The healthcare sector also benefits from 

super-resolution in medical diagnostics, where enhanced image details can lead to 

quicker and more accurate disease detection and treatment decisions. Furthermore, 

the availability of high-resolution commercial satellite imagery has promoted 

transparency and accountability in governance, helping watchdog groups monitor 

and expose government and corporate misdeeds, such as zoning violations or illegal 

construction. However, while super-resolution technologies offer numerous benefits, 

they also raise significant privacy concerns, with the potential for misuse in enhanced 

surveillance that could infringe on individual privacy rights, underscoring the need 

for strict safeguards to balance technological advantages with ethical considerations.  
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