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Abstract

The research is divided into two parts - The first part to the research involves Integrat-

ing K-Fold Cross-Validation with Convolutional Neural Networks (CNN) for Plant Species

and Pathogen Detection, that focuses on precisely identifying and predicting various plant

species using Artificial Intelligence (AI) techniques like CNN and K-fold Cross-Validation

and also accurately diagnosing the disease that the plant under consideration is affected

by. In the research, we utilized a rich dataset from the PlantVillage repository, and our

models were trained on over 54,306 images that also cover 14 major crop species. The

model identifies the plant and pathogens and then focuses on the accuracy of identifying

the right kind of species and pathogens. The growth prediction model predicts the best

conditions for the plant to grow. In the work, the results were successfully tested and

witnessed 81 % accuracy in the Plant and Pathogen detection model and the growth

prediction model’s low mean squared error i.e. 21 % supports accurate trend forecasting

for optimizing plant care. The second part to the research contributes towards Opti-

mising Plant Health with Q-Learning, that introduces a novel approach to plant care,

leveraging deep reinforcement learning (DRL) algorithms, such as Q-learning, to simu-

late diverse plant growth scenarios. The research aims to develop a system that provides

a tailored approach to determine the best-case scenario for plant species’ maximum or

optimum growth or development. The PlantVillage dataset used for the research is well

labeled and considered as it fulfills the set environment for the agent to produce rewards

on. The research contributes significantly to environmental sustainability and ecological

awareness, fostering a deeper connection between humans and the natural environment

by providing AI-powered cultivation strategies.

Keywords: ”Convolutional Neural Network, Q-Learning, PlantVillage Dataset, K-Fold

Cross Validation, Plant and Pathogen Detection, Plant Health Management, Deep Rein-

forcement Learning, Cultivation Strategies”
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Chapter 1

INTRODUCTION

1.1 Blueprint

We have built two models and used two approaches: First being the Plant Species and

Pathogen Identification Model, which precisely identifies the correct plant species and

the diseases caused to them, and the second is the Growth Prediction Model, which ac-

curately detects the growth of plants. Our first approach is taken towards using K-fold

cross-validation technique in Convolutional Neural Network to identify the plants and

pathogen and the second approach deals towards maintaining the plant health care sys-

tem using Q-Learning technique of Deep Reinforcement Learning.

1.2 Dataset

In the research we have utilised the PlantVillage dataset which contains all the required

feature sets of different data points across PAN India. This dataset best determines the

conditions optimal for a plant to grow in different regions across PAN India. The primary

objective of the research is to provide an intuitive, scientifically backed, and easy-to-use

model for plant enthusiasts, gardeners, and botanists. By consolidating vast botanical

data and employing advanced AI algorithms, the research seeks to accurately simulate

the best-case scenarios for the growth and development of any plant species and their

specific needs, making plant care easy for any plant lover and resulting in optimal plant

health.

1



1.3 Q-Learning

The DRL model intends to influence significantly by enacting sustainable gardening ac-

tivities and increasing environmental awareness, as well as promoting biodiversity conser-

vation. This influence will then be realized by educating people on how to care for plants

in the most effective ways. Therefore, it impacts the relationship between people and na-

ture which should be strengthened to facilitate an individual’s well-being and enhancing

the balance in the ecology. Botany coupled with Q-learning promotes new approaches to

improving plant care practice. Q-learning allows the plants’ decision-makers to get real

and complex data by integrating extra learning tools to emulate a learning environment

and learn from highly complex and frequently shifting contexts.

The DRL model for plant care can access numerous environmental factors, including

temperature, light, humidity, and soil, and their impact on plant growth. Through the

manipulation of these variables, Q-Learning acquires the ability to enhance maintenance

decision-making, encompassing the effective management of nutrients, optimal timing

of water supply, and judicious use of pesticides. Q-learning’s ability to learn allows it

to generate data-based recommendations for certain plants and growth stages, thereby

substituting conventional approaches and advocating for permaculture techniques. The

uniqueness of this technique is in its capacity to continuously adjust to new information,

resulting in increasingly accurate and efficient facility solutions as time progresses.
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1.4 Motivation

In recent years, the urge for plantation and love for plants have risen in many urban ar-

eas, especially during the rise of COVID-19. People have started knowing the importance

of oxygen and, from it, the importance of plants in every household. This urge has led

them to grow more and more plants, but not knowing which plants to grow in which

conditions has become a significant problem. Information is available, but it isn’t enough

for us to get the best for our plant care; hence, we have developed a novel approach to

train our model over a hasty number of images so that our model produces the required

accuracy to build trust in our users. They gradually become experts at being plant moms.

The innovative feature of the model is its aspiration to function as a holistic plant care

system. The objective is to provide users with knowledge on several elements of plant

care, such as irrigation, soil choice, sunshine needs, and disease avoidance. This compre-

hensive approach encompasses all stages of plant care, providing a convenient option for

both inexperienced gardeners and seasoned botanists.

While working on this project, we read and observed that approaches like CNN has

been used earlier by researchers but no work has been done in the field of reinforcement

learning using Q-Learning which motivated us to produce results and solve problems to

maintain sustainability. Hence, the research contributes purely towards a novel under-

standing of the plant world. The objective is to solve the problem of our plant lovers, our

professional botanists, and gardeners, who can quickly identify and recognize the detailed

summary of any plant across PAN India.
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In this advancing age of AI, where the whole world relies on technology and things that

are easy for human use, why is it behind in terms of plants and botany? Hence, putting

the best knowledge of AI into botany by using Machine Learning (ML) and Deep Learn-

ing (DL) techniques is a revolutionary way to interact with and identify plants. This is

a research project aimed at utilizing these cutting-edge AI technologies that will reduce

human effort and bring humans closer to nature, eventually leading to a healthy lifestyle

and sustainable living.
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Chapter 2

LITERATURE REVIEW

Jana Wäldchen et at [1] discusses about the efforts that are required to conserve biodiver-

sity that is underway, but recognizing species is crucial for adequate protection, requiring

thorough training and practice. Advances in image processing and pattern recognition

technology can automate identification, providing invaluable support to the public, edu-

cators, researchers, and authorities.

The authors of [2] discusses how the crop diseases threaten food security, but detection

infrastructure is lacking in many regions. With smartphone ubiquity and deep learning

in computer vision by training on large, publicly available image datasets. The research

further solves the problem discussed within.

Negin Katal et al. [3] discusses how the climatic changes pose an urgent danger to bio-

diversity, with wide-ranging impacts on species interactions, ecosystem functioning, and

the formation of biotic communities. This paper is the inaugural comprehensive literature

review that seeks to meticulously examine all major publications on DL methodologies.

Authors have used a multi-stage procedure in works published over the past five years

(2016–2021). After thoroughly examining this research, they have outlined the techniques

based on the observed phenological phases, type of plant, geographical scale, data collec-

tion methods, and deep learning approaches. In addition, the have analyzed and explored

current patterns in research, emphasizing potential areas for the future of development.
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Aalt-Jan Van Dijk et al. [4] discuss in their paper the composition of plant cells re-

sulted from genotypic variation and environmental variation. These factors subsequently

impact physiological and developmental characteristics, such as the creation of organs and

the growth of plants, and ultimately, qualities that are significant in agriculture, such as

crop output and the ability to withstand stress. As a result, establishing a connection

between genotypes and phenotypes provides valuable knowledge about controlling critical

processes in plant growth and function.

The authors of the paper [5] discusses about the growing global population and the

reality of climate change necessitate accurate agricultural productivity. In this study, au-

thors have employed comprehensive algorithms that intricate interactions are inaccessible

through repetition. Experiments are significantly influencing agricultural output fluctua-

tions. Consequently, these interactions can potentially result in considerable gains in crop

productivity. The methodology we employ can expedite agricultural research, detect and

promote sustainable practices, and address the challenges posed by future food demands.

Zafar Salman et al. [6] through their work shows a survey that aims to document

the notable progress made in disease identification using ML techniques. They have

examined commonly used datasets and strategies for plant disease identification and em-

phasized new and developing approaches in this field. This paper overviews datasets of

the plant disease, approaches related to DL, and the associated problems. The findings

are a significant asset for scholars and practitioners. This study aims to provide valuable

insights and stimulate future research endeavors, ultimately advancing precision agricul-

ture techniques and optimizing crop health management.
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The authors of the paper [7] discuss the rise of climate change and the increasing

threat to the security of all countries that has increased the importance of climate ac-

tion in many scientific studies. For this reason, climate data is an essential element in

developing climate risk and impact assessment models. This study evaluated available

spaces to determine the most suitable for the research field. Statistical methods such as

discrepancy, and percentage variance were applied to meteorological data at three time

scales (daily, weekly, and monthly).

Megali Lescot et al. [8] have talked about a database PlantCARE, a repository of

plant, repressors, and promoters. The links to new cluster and motif studies are now

available for studying gene clusters. Once new systems are managed, one can import and

add them to the repository.

The authors of the paper [9] discuss the possibility of using another extension method,

namely Actor-Critic with Advantage (A2C), which was not explored. This study used

Deep Q-Network (DQN) and A2C methods with different static and dynamic control ob-

jectives.

Mariam Reda et al. in the paper [10] discuss how new and small-scale farmers and in-

experienced and large-scale farmers identify the diseases that damage their plants. It aims

to help farmers improve their knowledge in this area by providing additional agricultural

training and co-training on basic plant care needed to identify, treat, and prevent Isola

(type of disease). The work briefly compares the best CNN models for improvement of

the accuracy and efficiency of classification decisions using transfer learning, which forms

the basis of pre-training.
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Przemyslaw Prusinkiewicz discusses in his paper [11] that the L-system theory pro-

posed by Lindemeier in 1968 established a mature method for plant structural modeling.

Many current engineering models provide insight into plant growth processes, including

physiological processes such as carbon transport and distribution. Its goal is to interest

plants in the face of plant biochemistry problems that do not affect all plant development.

Aldo Carl Leopold through his research [12] discusses in his book about botany. Each

chapter is divided into several sections and further broken down by topic. Radiation in

the physiological environment includes light, heat, and water. Plant physiologists often

use the term ”growth” loosely, and reviewers of this book do not quite understand the

context. The development section of the book tends to focus on development policy.

The authors of the paper [13] talks about efficient irrigation which is vital for sus-

tainable agriculture due to the scarcity of water resources. The A2C model reduced

water consumption by 20 % compared to DQN, albeit with a slight decline in productiv-

ity. These findings suggest that on-policy models like A2C can enhance water savings in

water-scarce regions. The BioD’Agro project will utilize IoT sensor data to train these

models further, aiming to refine irrigation schedules and promote agrobiodiversity through

efficient, environmentally conscious water management.

The authors of the paper [14] researched on how to meet global food demand by 2050,

increasing agricultural productivity by 70 % that is essential, with fertilizer application

playing a crucial role. However, traditional uniform fertilizer application wastes over 65

% of fertilizer, contributing to environmental problems. A Q-learning-based simulation

tool is proposed to dynamically optimize fertilizer application by sensing the environ-

ment and adjusting to site-specific conditions. It is computationally efficient and matches

or surpasses the performance of other deep learning methods like DQN, Double-Deep-q-

Networks (DDQN), and dueling networks, providing a promising solution for sustainable

fertilizer management. DDQN is a variant of DQN algorithm.
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Oluwaseyi Ogunfowora and Homayoun Najjaran in their paper [15] talk about main-

tenance planning which is crucial for minimizing costs, extending equipment lifespan, and

ensuring workplace safety. Reinforcement learning (RL) and deep reinforcement learn-

ing (DRL) have emerged as effective data-driven tools to optimize dynamic maintenance

strategies by leveraging condition monitoring data. Graphical and tabular summaries

offer insights into recent advancements and underscore areas ripe for further exploration,

aiding both new and experienced researchers in navigating the evolving landscape of smart

maintenance solutions.

Dhivya Elavarasan and P. M. Durairaj Vincent in their paper [16] discuss crop yield

prediction and how it is essential for sustainable agriculture, yet existing models often

struggle with directly mapping raw data to yield outcomes. DRL, combining RL and DL,

offers a promising solution. The proposed Deep Recurrent Q-Network (DRQN) model

leverages Recurrent Neural Network (RNN) and Q-learning to achieve a 93.75 % ac-

curacy in yield prediction. The integration of DRL minimizes expert dependency and

provides a holistic solution for accurate yield forecasting.

The authors of the paper [17] discuss RL, particularly multi-armed bandits, as a

promising approach for improving crop management Decision Support Systems (DSS).

Its ability to handle uncertainty and evaluate joint action sequences makes it well-suited

for real-world agricultural challenges. However, limited contributions and challenges like

data scarcity and multiple objectives have hindered adoption. A joint research effort be-

tween RL and agronomy experts, supported by ergonomists, is essential to overcome these

obstacles. Collaboration will unlock RL’s potential, enabling human-centered, interactive

tools to better support farmers in addressing the evolving challenges of agriculture.
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Faye Mohameth et al. in their paper [18] discusses how crop diseases pose a significant

challenge to global food security, but advances in technology, specifically smartphone-

assisted disease diagnosis powered by deep learning, offer promising solutions. The authors

in this study applied deep feature extraction, and transfer learning to the PlantVillage

Dataset, testing models like VGG16, GoogleNet, and ResNet50 for plant disease detec-

tion. Results showed that Support Vector Machines (SVM) are the best classifier for

identifying diseases, achieveing high accuracy with efficient execution time. Future work

will involve collecting a unique dataset from sub-equatorial zones to better understand

plant behavior in hostile environments and refine disease detection methods for varying

regions.

The authors of the research [19] through their study proposed a plant-image augmenta-

tion and classification approach using a novel PI-GAN (Plant-Image Genetic Adversarial

Network) and PI-CNN (Plant-image Convolutional Neural network) method. By com-

bining and enhancing input images, PI-GAN generated new plant images that improved

classification accuracy over traditional augmentation methods. Experimental results us-

ing four open datasets verified that the PI-GAN and PI-CNN frameworks achieved higher

classification accuracy compared to existing techniques. Future work will focus on incor-

porating explainable AI (XAI) methods to refine PI-CNN’s classification accuracy and

explore approaches to preserve class information during image augmentation.

The authors of the paper [20] investigated the inherent dataset bias present in the

PlantVillage dataset for plant disease detection models. Training a machine learning

model using just 8-pixel backgrounds yielded 49 % accuracy, revealing significant label-

correlated noise. The dataset bias was attributed primarily to capture bias, affecting

both the foreground and background. Background removal alone couldn’t eliminate the

bias, and adding data randomly didn’t help either. Future research should follow robust

experimental design principles to minimize noise factors and carefully extend the dataset

while providing unbiased performance estimates.
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The above-reviewed papers present insights and research done in our related field and

highlights the future potential of AI and DL in plant science, covering all the major as-

pects of plant species, identification, prediction, phenotyping, and genomics. They are

performed by recognised researchers in the field of Data Science (DS) and Artificial Intel-

ligence. Hence, they add value and enhance our work and research in this domain.
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Chapter 3

METHODOLOGY

3.1 Dataset Description

We have used the “PlantVillage” dataset for our research study [21]. The PlantVillage

dataset consists of the following features:

• The feature set consists of ‘Image Data’ which has leaf images and ‘Labels’ in which

each image is labeled with plant species, and if it carries any disease, then the dis-

ease types are also mentioned.

• The number of images (Rows) of the dataset contains 54,306 images, each repre-

senting a row in the context of a dataset.

• The number of columns is represented in a tabular view, where each row is an image,

the dataset typically has columns named ‘Image’ which carries the pixel data or im-

age file, and ‘Plant Species’ which carries the complete name of the species of that

plant and the ‘Disease Type’ which shows the plant’s health or disease indicator,

mentioned in case the plant is infected.

• The dataset overall covers 14 major crop species, The dataset contains 38 class la-

bels, including those for healthy and diseased plants. The number of each category

Tomato Leaf Images in PlantVillage Dataset is shown in Fig. 3.1.

12



Figure 3.1: The number of each Category Tomato Leaf Images in PlantVillage
Dataset

• The dataset contains features like temperature, soil, moisture, humidity, and water,

and all of this is labeled data attached with each image.

• The dataset is used for enhancing and optimizing plant care management systems,

and hence we have used it in building our deep reinforcement learning model using

the Q-learning technique.

• The dataset contains annotated samples to show the region of interest as shown in

Fig. 3.2.
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Figure 3.2: Annotated Samples of the PlantVillage Dataset to show the region
of Interest

Timely disease detection in plants remains a challenging task for farmers. They do

not have many options other than consulting fellow farmers. Expertise in plant diseases

is necessary for an individual to be able to identify the diseased leaves as shown in Fig.

3.3. For this, Deep Convolutional Neural Networks based approaches are readily available

to find solutions. One such solution is discussed below.

14



Figure 3.3: Different Types of Diseases from the PlantVillage Dataset

3.2 Building the Models

The initial step is creating a machine learning [22] CNN model to identify the images of

the plants. We have chosen CNNs for plant identification as they excel in tasks related

to image categorization. After the model is selected, it is trained over our PlantVillage

Dataset, which consists of a wide array of plant photos encompassing different species

and situations.

In this context, the feature extraction procedure is essential to discerning the funda-

mental attributes of plants from photographs as shown in Fig. 3.2. A single equation

cannot fully capture CNNs in the context of picture categorization. CNNs comprise of

numerous layers and processes that collaborate to classify images [23].
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The dataset is split into two sets, one is the training dataset and another is the testing

dataset. It is usually considered in the ration 8:2 respectively. To prevent over-fitting, we

have used K-Fold Cross Validation technique for sampling of our data points into training

set and testing set. This reduces the problem of over-fitting to a larger extent hence

providing us with better accurate results.

We have then worked on our metrics o extract the results after running our model to

fetch the Accuracy, Precision, Recall, F1-Score and Mean Squared Error (MSE) values

to understand the performance of our model. Basis the MSE value, we built the growth

prediction model.

Next, we have worked on the Reinforcement Q-Learning to maintain the best growth

conditions for our plant’s maximum health discussing along-way the best cultivation

strategies. Our Q-Learning agent produces results after getting feedback from the ac-

tion that it performs in the environment.
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3.3 Convolutional Neural Network

3.3.1 Convolutional Operation

Equation 3.1 illustrates how to apply the operation across the entire image to create a

feature map. The chosen CNN architecture can recognize patterns indicative of specific

plant diseases [24]. The CNN architecture is as shown in Fig. 3.4.

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n).K(i−m, j − n) (3.1)

3.3.2 Activation Function

ReLU (Rectified Linear Unit) Activation function is typically applied after each convolu-

tional operation. ReLU is shown as given in Equation 3.2.

f(x) = max(0, x) (3.2)

17



3.3.3 Pooling

Pooling layers (e.g., max pooling) reduce special data dimensions. Equation 3.3 represents

the Max pooling operation.

P (i, j) = maxm,nwindow.I(i+m, j + n) (3.3)

3.3.4 Flattening

A fully connected neural network layer receives the output from the final pooling layer,

which is flattened into a 1D vector.

18



Figure 3.4: CNN Architecture in Plant Disease Detection

3.3.5 Fully Connected Layers

The neurons in these layers are fully connected to all activations in the previous layers.

This can shown by Equation 3.4.

O = W. X + b (3.4)

Where,

• X is the input vector from the flattened feature map,

• b is the bias vector,

• W is the weight matrix, and

• O is the output vector.
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3.3.6 Output Layers

For classification, the final layer is often a softmax layer, which converts output scores

into a probability distribution, as represented in equation 3.5.

softmax(z)i =
ezi∑
k ezk

(3.5)

Where,

• zi is the score for class i, and

• the denominator is the sum of exponential scores for all classes.
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3.4 K-Fold Cross Validation

K-fold cross-validation is a widely used method for assessing the performance of a machine

learning model and ensuring that it generalizes well to new, unseen data. Resampling tech-

niques are used while our dataset is split into training set and testing set, but there are

high chances of repetition of sample set and hence over-fitting of our model could easily

take place, hence for splitting the dataset and overcome the problem of over-fitting we

have used resampling technique of Cross- Validation. It helps in estimating how well the

model will perform on an independent dataset. The technique to Cross-Validation can

also be depicted through the Fig. 3.5.

3.4.1 Concept

Dataset Splitting

• The dataset is divided into k equally sized subsets or ”folds.”

• The value of k is a hyper-parameter that needs to be chosen; common values are 5

and 10.

Model Training and Evaluation

• The model is trained and evaluated k times.

• In each iteration, one of the k folds is used as the test set, and the remaining k − 1

folds are combined to form the training set.

• This process ensures that each data point is used exactly once as a test set and k−1

times as part of the training set.

21



Figure 3.5: 5-Fold Cross Validation

Performance Metrics

• After each iteration, a performance metric (such as accuracy, precision, recall, F1

score, etc.) is calculated on the test set.

• These metrics are recorded and averaged over the k iterations to provide an overall

performance measure.

• Additionally, the standard deviation of the performance metric can be calculated to

assess the variability of the model’s performance across different folds.
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Steps of K-Fold Cross-Validation

• Randomly split the dataset into k folds of approximately equal size.

• For each fold i (where i ranges from 1 to k).

• Set the i-th fold aside as the test set.

• Combine the remaining k − 1 folds to form the training set.

• Train the model on the training set.

• Evaluate the model on the test set using the chosen performance metric.

• Record the performance metric for this iteration.

• Calculate the mean of the performance metrics obtained from the k iterations.

• Calculate the standard deviation of the performance metrics to understand the vari-

ability.
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3.4.2 Advantages

• Reduced Overfitting: By using multiple splits, K-fold cross-validation ensures that

the model is tested on different subsets of the data, reducing the risk of overfitting

to any particular subset.

• Efficient Use of Data: Unlike a single train-test split, K-fold cross-validation uses all

the data for both training and testing, providing a more comprehensive evaluation.

• Performance Variability Insight: By calculating the standard deviation of the perfor-

mance metrics, K-fold cross-validation provides insight into how stable the model’s

performance is across different subsets of data.

3.4.3 Disadvantages

• Computationally Intensive: Training and evaluating the model k times can be com-

putationally expensive, especially with large datasets and complex models.

• Choice of k: The choice of k can influence the results. Smaller k values can lead to

higher bias, while larger k values can lead to higher variance.
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3.4.4 Typical Values of k

• 5-Fold Cross-Validation: Commonly used for general purposes, providing a good

balance between bias and variance.

• 10-Fold Cross-Validation: Often used when more precision in performance estima-

tion is required, though it is more computationally expensive.

3.5 Flowchart

We start the process by loading the dataset ‘PlantVillage’ and pre-processing the im-

ages. We have then built our CNN model using Keras Sequential API [25]. It consists of

sequential layers using Adam optimizer and categorical cross-entropy loss. To generate

augmented images of training, we performed data augmentation and nicely fit the model

after preventing overfitting and putting checkpoints on epochs. To evaluate our model,

we have used specific metric parameters like accuracy, recall, precision, mse, and f1-score.

For visualization, we plotted our results using bar charts and line charts. The flow of

events is depicted in the flowchart shown in Fig. 3.6.
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Figure 3.6: Optimized CNN Training and Evaluation Workflow with K-Fold
Cross-Validation
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3.6 Steps Towards Reinforcement Learning

3.6.1 Data Preparation

Images from the PlantVillage dataset [21] were preprocessed to normalize their pixel val-

ues and resized to a consistent format. Features such as color, texture, shape, and size

were extracted from these images to serve as inputs to the DRL model.

3.6.2 Simulation Environment

A custom simulation environment was developed where different states represent the

health conditions of plants (e.g., Mild disease, Moderate Disease, Severe Disease), and

actions include treatments like fertilizing, watering, applying pesticides, and pruning [26].

The Q-learning algorithm was employed to learn optimal actions in each state based on

the expected future rewards as shown in Fig. 3.7.
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Figure 3.7: Q-Learning

3.6.3 Q-Learning Implementation

The Q-table was initialized to store Q-values representing the expected utility of taking

actions in specific states. Actions were chosen based on the policy derived from the Q-

table, aiming to maximize the expected reward.

The learning involved updating the Q-table entries based on the reward received after

taking action and observing the resulting new states. Q-learning is A value-based rein-

forcement learning algorithm that seeks to learn the Value of the best action in a given

state. It’s represented by the Q-function, updated as given in equation 7.

Q(s, a)← (1− α) ·Q(s, a) + α ·
(
r + γ ·max

a′
Q(s′, a′)

)
(3.6)

where:

• Q(s, a) is the Q-value for state-action pair (s, a),

• α is the learning rate,

• r is the immediate reward,

• γ is the discount factor,

• s′ is the next state,

• a′ is the next action.

28



Figure 3.8: Step-wise Q-Learning Implementation

In the implementation process as shown in Fig. 3.8 , these algorithms are coupled

with neural networks to handle plant growth’s high complexity and non-linearity un-

der various environmental conditions. The neural networks serve as function approx-

imators for the Q-function in Q-learning or the policy in policy gradients. Hyper-

parameter tuning (adjusting learning rates, discount factors, exploration rates, etc.)

is an integral part of training these models to achieve optimal performance. Dealing

with the over-fitting of the model, we have used methods like early stopping and

drop-out techniques to fetch better results and manage the plants well.
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3.7 Confusion Matrix

A confusion matrix is a table used to evaluate the performance of a classification algo-

rithm. It provides a detailed breakdown of the model’s predictions compared to the actual

outcomes. Each row of the matrix represents the instances in an actual class, while each

column represents the instances in a predicted class (or vice versa). The tale 3.1 shows

the confusion matrix.

A confusion matrix is a tool used to evaluate the performance of classification models

by summarizing the results of predictions in a tabular format. It compares the actual

target values with the predicted values generated by the model, allowing you to see where

the model is getting things right and where it is making mistakes. Here are the types of

errors that can be observed in a confusion matrix:

3.7.1 Terms in a Confusion Matrix

• True Positive (TP): The number of instances correctly predicted as positive.

• False Negative (FN): The number of instances incorrectly predicted as negative,

when they are actually positive.

• False Positive (FP): The number of instances incorrectly predicted as positive,

when they are actually negative. Type I Errors.

• True Negative (TN): The number of instances correctly predicted as negative.

Type II Errors.
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Table 3.1: Confusion Matrix

−−−−−− Predicted Positive Predicted Positive

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

3.7.2 Metrics Derived from a Confusion Matrix

Accuracy

The proportion of correct predictions (both true positives and true negatives) among the

total number of cases. The accuracy is calculated as shown in Equation 3.7.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.7)

Precision

The proportion of true positives among the predicted positives. The value for precision

is calculated as shown in Equation 3.8.

Precision =
TP

TP + FP
(3.8)
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Recall (Sensitivity or True Positive Rate)

The proportion of true positives among the actual positives. The recall value is calculated

as shown in Equation 3.9.

Recall =
TP

TP + FN
(3.9)

Specificity (True Negative Rate)

The proportion of true negatives among the actual negatives. The specificity is calculated

as shown by equation 3.10.

Specificity =
TN

TN + FP
(3.10)

F1 Score

The harmonic mean of precision and recall, providing a single metric that balances both.

The F1-Score is calculate as shown by equation 3.11.

F1Score = 2× Precision×Recall

Precision+Recall
(3.11)
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3.7.3 Types of Errors

False Positives (FP)

• These are instances where the model incorrectly predicts the positive class.

• This error indicates that the model has predicted a positive outcome when the actual

outcome is negative.

• In medical diagnostics, a false positive might indicate that a person is diagnosed

with a disease they do not have, leading to unnecessary stress and potentially harm-

ful treatments.

False Negatives (FN)

• These are instances where the model incorrectly predicts the negative class.

• This error occurs when the model fails to predict a positive outcome that is actually

present.

• In medical diagnostics, a false negative could mean a patient with a disease is not di-

agnosed, resulting in a lack of treatment and potentially severe health consequences.
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3.7.4 Implications of Errors

False Positive Rate (FPR)

The proportion of actual negatives that are incorrectly classified as positive. It is

calculated as shown in equation 3.12 below:

FPR =
FP

FP + TN
(3.12)

False Negative Rate (FNR)

The proportion of actual positives that are incorrectly classified as negative. It is

calculated as shown in equation 3.13 below:

FNR =
FN

FN + TP
(3.13)

Balancing Errors

In practice, the cost and consequences of false positives and false negatives vary de-

pending on the application. Therefore, it is often necessary to balance these errors by

adjusting the decision threshold of the model or choosing an appropriate evaluation met-

ric.
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3.7.5 Multiclass Confusion Matrix

For multiclass classification problems, the confusion matrix extends to an n × n matrix,

where n is the number of classes. Each element (i, j) in the matrix represents the number

of instances of class i that were predicted as class j as shown in table 3.2.

Example

In the matrix shown in table 3.2:

• 50 instances of class A were correctly predicted as A (True Positives for A).

• 2 instances of class A were incorrectly predicted as B.

• 3 instances of class A were incorrectly predicted as C.

• And so on for classes B and C.
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Table 3.2: The Confusion Matrix for a Three-class classification problem
(classes A, B, and C)

−−−− Predicted A Predicted B Predicted C

Actual A 50 2 3

Actual B 4 45 6

Actual C 7 3 40

Understanding the types of errors in a confusion matrix is crucial for evaluating and

improving the performance of a classification model. By analyzing false positives and

false negatives, and using appropriate metrics like precision, recall, and F1 score, we

made informed decisions on how to optimize our model based on the specific needs and

consequences of errors in our application domain.‘

3.7.6 Mean Squared Error (MSE)

Mean Squared Error (MSE) is a common metric used to evaluate the performance of a

prediction model, including growth prediction models for plants. MSE measures the aver-

age of the squares of the errors—that is, the average squared difference between the actual

observed values and the values predicted by the model. Here’s a step-by-step explanation

of how we calculated the MSE for a plant growth prediction model:
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Step-by-Step Calculation of MSE

Calculate the Errors

• For each observation i, calculate the difference (error) between the actual value and

the predicted value: ei = yi − ŷi.

Square the Errors

• Square each error: e2i .

Calculate the Mean of Squared Errors

• Sum all the squared errors:
∑n

i=1 e
2
i .

• Divide this sum by the number of observations n: MSE = 1
n

∑n
i=1 e

2
i .
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Interpretation

A lower MSE value indicates that the model’s predictions are closer to the actual

values, signifying better model performance. However, it is essential to compare the MSE

value in the context of the specific dataset and problem domain, as what constitutes a

”low” or ”acceptable” MSE can vary.

MSE is a useful metric for evaluating the accuracy of growth prediction models for

plants. It provides a single number that summarizes the average squared differences

between predicted and actual values, facilitating easy comparison between different models

or configurations.
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Chapter 4

RESULTS AND DISCUSSION

The research aims to integrate advanced AI technologies with plant care and disease man-

agement. This research’s conclusions and possible outcomes are broadly categorized into

technological advancements, practical applications, and broader impacts. The compar-

ison of results of all the evaluated metrics and the level of correctness received in the

species and pathogen detection model and the growth prediction model is given in Table

4.1 below.

The results as shown in Table 4.1 of different performance metrics across the two main

models in the project: the Species and Pathogen Detection Model and the Growth Pre-

diction Model.
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Table 4.1: Comparative Analysis of the Performance of Metrics

Metrics Species Detection Model Growth Prediction Model

Precision Metric 0.99 −−

F1-Score Metric 0.89 −−

Accuracy Metric 0.81 −−

Recall Metric 0.81 −−

MSE Metric −− 0.21

Fig. 4.1 helps us visualize the results obtained and compare them between all the

metrics. The high precision highlights that whenever the model predicts a positive in-

stance, it is 99.02 % of the time correct.
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Figure 4.1: Quantitative Evaluation of Predictive Accuracy and Error Metrics
in Convolutional Neural Network Performance
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It is visible that the highest performance metric for both the models, i.e., the plant

and pathogen detection models, is precision, followed closely by f1-score, recall, and ac-

curacy as shown in Fig. 4.2. The high precision combined with good accuracy and recall

suggests that this model is highly effective in scenarios where false positives are high. The

balance observed in the f1-score indicates that the model is suitably calibrated for the

task, effectively minimizing both types of errors [27].
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Figure 4.2: Dynamic Evaluation of CNN Diagnostic Accuracy and Error Met-
rics Across Multiple K-Fold Validation Cycles

The simulation demonstrated fluctuations in plant health indices over time, indicative

of the response to the treatments applied based on the learned Q-learning policy [25].

The health indices showed variability, suggesting that the treatments’ effectiveness [28]

depended significantly on the specific conditions and application timing.

The research confirmed that DRL [29] could effectively learn and suggest optimal plant

care strategies under varying conditions. However, the variability in plant health indices

suggests that while the model can adjust to changes, there is room for improvement in

the stability and consistency of the model’s proposed care strategies.
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Figure 4.3: The Progress Report of the Learning Curve Demonstrated by a
Graphical Representation

Fig. 4.3 shows the learning curve and its progress as our agent learns from the en-

vironment and rewards itself by taking action. With each iteration, our agent is learning.

Either it produces positive feedback or negative feedback.
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Figure 4.4: Evolution of Plant Care Features: A Graphical Demonstration.

Fig. 4.4 shows the trend in changing plant care features and how, after performing

the feature extraction, the care in the plant management system changes with time, in-

dicating different features.
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Figure 4.5: Evolution of Reward Over time: A Graphical Demonstration.

The following graph in Fig. 4.5 shows the reward our agent is getting after performing

actions on the environment and learning from the feedback loop, improving its efficiency

with time.
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Figure 4.6: A Graphical Representation of: Color over time

Fig. 4.6 to Fig. 4.10 shows different features that change over time, like color, texture,

size, and shape of the plant and leaf. It also shows the health changes of the plant and

the reward changing with time.
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Figure 4.7: A Graphical Representation of: Texture Over Time
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Figure 4.8: A Graphical Representation of: Shape over time
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Figure 4.9: A Graphical Representation of: Size over time
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Figure 4.10: A Graphical Representation of: Overall Health Index over time
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Figure 4.11: A Visual Representation of Distribution of Rewards

Fig. 4.11. shows how the reward is distributed as the agent performs actions on the

environment and learns continuously from the feedback received.
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Figure 4.12: Heatmap of Q-Values for State-Action Pairs in the Q-Learning
Process.

Fig. 4.12 shows the heatmap of Q-values for State-Action pairs. The highest Q-values

appear in actions such as “water” in the “healthy” state (0.98), suggesting that watering

is highly beneficial or optimal when the plant is healthy. Similarly, “prune” in the “severe

disease” state shows a high value (0.75), indicating that pruning might be considered a

beneficial action in managing severe disease conditions.

Low values, as shown in Fig. 4.12 in certain states like “Fertilize” in the “Severe

Disease” state (0.39), suggest that fertilizing is less effective or potentially detrimental

when the plant is severely diseased.
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Figure 4.13: Visual Representation of Simulated Plant Health Indices Over
Time

The graph shown in Fig. 4.13 visually represents how plant health might vary over

time under simulated conditions, offering insights that could be used to refine models,

adjust experimental setups, or develop better plant care protocols in various applications.

The research aims to integrate advanced Q-Learning with plant care and cultivation

and health management strategies. This research’s conclusions and possible outcomes are

broadly categorized into technological advancements, practical applications, and broader

impacts.
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4.1 Effective Cultivation Strategies for Plant Health

Management

Effective cultivation strategies are essential for managing plant health, enhancing growth,

and ensuring optimal yields. Here are some key strategies:

4.1.1 Soil Management

• Soil Testing: Regularly test soil for pH, nutrient levels, and contamination. Adjust

pH with lime (to raise) or sulfur (to lower) and amend soil with organic matter or

fertilizers based on test results.

• Crop Rotation: Rotate crops to prevent soil depletion and reduce pest and disease

cycles.

• Cover Cropping: Use cover crops to improve soil structure, increase organic mat-

ter, and suppress weeds.

• Mulching: Apply mulch to conserve soil moisture, regulate temperature, and re-

duce weed growth.

4.1.2 Water Management

• Irrigation Systems: Use efficient irrigation systems like drip or sprinkler systems

to ensure uniform water distribution and reduce water wastage.

• Water Scheduling: Schedule watering based on plant needs and weather condi-

tions to avoid overwatering or underwatering.

• Rainwater Harvesting: Collect and store rainwater for irrigation to reduce de-

pendency on groundwater and municipal water sources.
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4.1.3 Nutrient Management

• Balanced Fertilization: Apply balanced fertilizers based on soil test results to

provide essential nutrients without over-fertilizing.

• Organic Amendments: Use compost, manure, and other organic amendments to

enhance soil fertility and microbial activity.

• Foliar Feeding: Apply nutrients directly to plant leaves for quick absorption, es-

pecially during periods of nutrient deficiency.

4.1.4 Pest and Disease Management

• Integrated Pest Management (IPM): Use a combination of biological, cultural,

mechanical, and chemical control methods to manage pests and diseases sustainably.

• Resistant Varieties: Choose plant varieties resistant to common pests and dis-

eases.

• Sanitation: Remove and destroy diseased plants and plant debris to reduce sources

of infection.

• Beneficial Insects: Encourage beneficial insects like ladybugs and predatory

wasps to control pest populations naturally.

4.1.5 Crop Selection and Genetic Diversity

• Diverse Cultivation: Plant a diverse range of crops to reduce the risk of

widespread disease and pest outbreaks.

• Heirloom and Native Varieties: Use heirloom and native plant varieties adapted

to local conditions and resistant to local pests and diseases.
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4.1.6 Climate Adaptation

• Micro-climate Modification: Use windbreaks, shade cloths, and row covers to

modify the micro-climate and protect plants from extreme weather.

• Season Extension: Use greenhouses, high tunnels, and cold frames to extend the

growing season and protect plants from adverse weather.

4.1.7 Proper Planting Techniques

• Correct Spacing: Plant at proper spacing to ensure adequate air circulation,

reduce disease incidence, and allow for healthy root development.

• Planting Depth: Plant at the correct depth to ensure proper root establishment

and prevent stem rot.

4.1.8 Regular Monitoring and Record-Keeping

• Frequent Inspections: Regularly inspect plants for signs of stress, pests, and

diseases.

• Record-Keeping: Maintain detailed records of planting dates, treatments applied,

and observations to identify patterns and make informed decisions.

4.1.9 Sustainable Practices

• Organic Farming: Adopt organic farming practices to reduce chemical inputs and

promote ecological balance.

• Conservation Tillage: Use conservation tillage methods to reduce soil erosion

and improve soil health.
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4.1.10 Education and Training

• Continuous Learning: Stay updated with the latest research and advancements

in plant health management.

• Farmer Training: Participate in workshops and training programs to enhance

knowledge and skills in sustainable cultivation practices.

Implementing these strategies helps create a holistic approach to plant health man- age-

ment, promoting resilient and productive agricultural systems.
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Chapter 5

CONCLUSION AND FUTURE SCOPE

The research aims to integrate advanced AI technologies with plant care and disease man-

agement. This research’s conclusions and possible outcomes are broadly categorized into

technological advancements, practical applications, and broader impacts.

It is evident that the highest performance metric for both models, i.e., the plant and

pathogen detection models, is precision, followed closely by F1-score, recall, and accuracy.

The high precision combined with good accuracy and recall suggests that this model is

highly effective in scenarios where false positives are high. The balance observed in the

F1-score indicates that the model is suitably calibrated for the task, effectively minimizing

both types of errors.

The evaluation of the species and pathogen detection and growth prediction model

reveals significant advancements in their accuracy and precision. The detection model

achieves a precision of 99%, ensuring that positive predictions are accurate while main-

taining a balanced F1-score 89% and recall 81%, minimizing both false positives and

negatives.
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This balanced performance allows efficient disease management with minimal waste.

The growth prediction model’s low mean squared error 21% supports accurate trend fore-

casting for optimizing plant care. These models hold substantial potential for improving

resource efficiency, reducing environmental impact, and cutting costs through precise in-

terventions and accurate yield predictions.

The simulation demonstrated fluctuations in plant health indices over time, indicative

of the response to the treatments applied based on the learned Q-learning policy. The

health indices showed variability, suggesting that the treatments’ effectiveness depended

significantly on the specific conditions and application timing.

The research confirmed that DRL could effectively learn and suggest optimal plant

care strategies under varying conditions. However, the variability in plant health indices

suggests that while the model can adjust to changes, there is room for improvement in

the stability and consistency of the model’s proposed care strategies.

The Q-Learning model has effectively learned optimal care strategies, significantly

adapting to plant health’s dynamic conditions. The simulation data show that the effec-

tiveness of interventions, such as watering, and fertilizing, varies significantly, based on

the timing and specific environmental conditions.
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The evolution of plant care features, such as color, texture, and size, indicates that the

model can effectively track and respond to changes over time. The heatmap of Q-values

demonstrates that specific actions (e.g. watering in healthy states and pruning in severely

diseased states) are more beneficial. Overall, the model is a success indicative of the best

care management that needs to be performed for the maximized growth of the plant.

Despite the overall success, the variability in plant health indices suggests room for

improvement in the stability and consistency of the model’s outputs [30]. Given the fluctu-

ations and the diverse responses observed in the plant health indices, there is a significant

potential to refine the model to achieve more consistent and predictable results.

Enhancing the DRL model by incorporating more detailed features and possibly using

more complex models like Deep Q-Networks (DQNs) [31] as shown in Fig. 5.1 or com-

bining them with other AI techniques such as convolutional neural networks for better

feature extraction from images. Expanding the dataset with more varied images under

different environmental conditions will train the model to handle a broader range of sce-

narios.

Incorporating IoT devices for real-time monitoring of plant conditions can provide

continuous input to the DRL model for dynamic adjustment of care strategies. Conduct-

ing field trials to validate the effectiveness of the recommended strategies under real-world

conditions.
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Figure 5.1: Deep Q-Learning

We can improve our work into a user-friendly application where one can scan the im-

age of the plant and identify its exact species. Similarly, one can detect the disease the

plant is carrying [32] and further, we can also classify our model based on the geographical

locations using machine learning classification techniques.

We can further advance our application by providing a complete guide to maintaining

the plant’s best health conditions based on geographical locations and improvising our

model using DRL algorithms like Q-learning and Deep Q-Networks.
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Appendix A

K-Fold Cross Validation with CNN for Species

Classification and Pathogen Detection

Import Libraries Importing the required libraries

Data Loading Load the dataset

Data Preprocessing Preprocess the data (normalization, resizing, etc.)

K-Fold Cross-Validation Setup Define the number of folds k

CNN Model Building Build the Convolutional Neural Network architecture

Main Execution Block each fold in K-Fold Cross-Validation

Data Augmentation Apply data augmentation techniques on the training data

Training Train the CNN model on the training split of the current fold

Prediction and Metrics Evaluation Evaluate the model on the validation split.

Collect Metrics Store the calculated metrics for this fold

Print Metrics Calculate and print the average metrics across all folds

Visualization Visualize the results (e.g., accuracy, loss curves)
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Appendix B

Plant Health Optimisation using Q-Learning.

Convert image to RGB Convert the image from other color spaces to RGB

Convert image to grayscale Convert the RGB image to a grayscale image

Compute GLCM Calculate the Gray Level Co-occurrence Matrix (GLCM)

Compute contrast from GLCM Extract the contrast feature from the GLCM

Find contours Detect contours in the grayscale image

Calculate area of the largest contour Measure the area of the largest contour

Image size as a proxy for plant size Use image dimensions to approximate size

Example feature extraction for the first image Extract features.

Assuming 4 features: color, texture, shape, size Define four main features.

These ranges are arbitrary for demonstration. Specify ranges for each feature.

max values for each feature Set the maximum values for normalization

initial random state Initialize the state of the plant randomly

Four possible actions Define the set of possible actions.

Ideal state (perfect health conditions) Define the optimal state.

Action effects (simplified) Specify how each action affects the state variables

Apply action effects to the state Update the state based on the chosen action
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Calculate reward Compute the reward based on the state after action

Reset the state to a new random state Randomly reinitialize the state.

Simulate 10 steps each step in 1 to 10

Randomly choose an action Select an action randomly from the action set

Hypothetical function to simulate the effect of an action on the state

Assuming each action randomly improves or worsens the state

Negative sum of absolute differences from ideal state Calculate the reward.

Assuming 4 actions and 4-dimensional state Define the state and action spaces

To track state and reward history for visualization Maintain history of states.

Reset the state to a new random state within bounds Reinitialize the state

Apply action effects to the state Update the state based on the chosen action

Plot the evolution of plant features and rewards over time Visualize changes

State size should be adjusted based on actual discretization Adjust the state

Simplified state representation for indexing Q-table Use a simplified state

Plotting each feature evolution over time Visualize changes in individual features

Plotting overall health index Visualize the overall health index of the plant

Plotting rewards Visualize the rewards obtained over time

Assuming the dataset is organized under ’dataset directory’ Defining dataset

Modify these based on actual needs Adjust based on specific requirements

Example function to simulate reward calculation for an episode

Reward decreases slightly with each episode due to increasing difficulty

Simulating the reward calculation for 100 episodes each episode in 1 to 100

Calculate reward Compute the reward for the episode

Plotting the learning curve Visualize the learning progress over episodes
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Assume these lists are filled with data from your simulation

Calculating the required metrics Compute performance metrics

Printing the results Output the results of the simulation

Path to the image Specify the image path for loading
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Appendix C

List of Publications

• ”Integrating K-Fold Cross-Validation with Convolutional Neural Networks for Plant

Species and Pathogen Detection”, in the International Conference on Intelligent

Computing and Communication Techniques (ICICCT), 2024 (Accepted)

• ”Optimizing Plant Health with Q-Learning: A Deep Reinforcement Learning Ap-

proach”, in the 15th International IEEE Conference on Computing, Communication

and Networking Technologies (ICCCNT), 2024 (Accepted)
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