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Abstract

Low-light image enhancement can be defined as the process of improving the visi-

bility and quality of images captured in poor lighting conditions. The goal is to make

these images clearer and more aesthetically appealing by increasing luminance, reduc-

ing noise, and refining details. However, many present algorithms focus on increment-

ing the brightness uniformly and to a particular extent which limits the experience of

a user. This model utilizes a diffusion model that is conditioned on an illumination

embedding. This framework allows the model to improve images in an iterative man-

ner slowly refining the image quality by reducing noise and improving brightness. The

illumination embedding serves as a control mechanism, enabling users to specify their

desired brightness levels. This approach offers a high degree of adjustment which al-

lows for tailored enhancements according to choice of the user. The embedding of

the SAM gives freedom to users to choose particular areas in an image for the de-

sired upgradation. This attribute improves user experience by providing an intuitive

procedure for confined adjustments making the process efficient.
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Chapter 1

INTRODUCTION

1.1 Overview

A low-light image can be identified as a digital image taken under conditions where
lighting is not sufficient to evidently illuminate the background. Some of the factors
that attributes to this are: capturing images at night or evening time where natural light
from the sun is minimal or absent, rooms or spaces that do have not good artificial light
conditions, and weather conditions like foggy or stormy situations which can decrease
the natural light, areas which are in profound shadows or concealed from direct light
sources.

Some of the inherent characteristics of a low-light image are: high ISO camera
settings or sensor impediments in low light contributing to the freckled or grainy image
that is a noisy image, diminished information in both dark and light areas throws a
challenge to capture a wide diversity of tones, color can look less muted or vibrant and
image may lack contrast, blurriness in an image because of high exposure duration.

Enhancing a poor-lit image has many benefits like details are more comprehensi-
ble, clarity which is dominant for viewing, analyzing, and interpretation can make the
image more appealing to the eyes, in security applications enhanced images are crucial
for recognizing objects and activities, in the medical field it may direct to better diag-
nosis and treatment of disease, in research field it can help in analyzing occurrences
which are not easy to observe, enhancing images of artifact and artwork contributes to
better documentation and preservation, in content creation and social media enhanced
images bring better results.

The scarcity of accessible paired datasets poses considerable issues in the devel-
opment and training of productive image enhancement algorithms. The paired dataset
comprises low-light images and their corresponding good-quality type which are used
as ground truth references for training. Obtaining high-quality images demands guided
lighting conditions and comparable camera settings which is an arduous task. We have
to take pictures in such a way that we have to maintain the deviation between the paired
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images which is not easy.

In this project, we are using LOL [6] dataset. It consists of paired low-lit and well-
lit images. It includes a total of 500 images, which are partitioned into four hundred
and eighty five training pairs and fifteen testing pairs. It is obtained using a DSLR
camera. It includes a wide mix of indoor and outdoor scenes which provides variety in
textures and light conditions.

Denoising diffusion models [14] are getting recognition for image generation tasks
due to their remarkable potential to generate high-quality images. It grasps the dis-
tribution of natural images by slowly adding noise to an image and then learning to
reverse this process to generate an original image.

By iteratively denoising the image, it can produce a detailed image as they absorb
the distribution better. It can generate a wide range of images that are diversified and
realistic. The training process allows them to learn robust features. In comparison to
earlier used methods like Convolutional Neural Networks and Generative Adversarial
Networks, it demonstrates better performance, fewer artifacts, and greater stability.

Many existing approaches for the enhancement of low-light images are designed
in such a manner that they follow injective transformation from dim-lit to well-lit im-
ages. This approach overlooks the inherently ambiguous nature where multiple pos-
sible well-lit versions of the same low light may exist. The model assumes that there
is a uniform brightness level which makes a well-lit image. This approach lacks the
flexibility to generate multiple possible enhancements that might be suitable for var-
ied situations. This method has acute limitations in complex lighting situations where
different regions of the image may be either under-exposed or over-exposed. This
leads to sub-optimal results. This may worsen the over-exposed region, making them
excessively bright and washed out.

So users can specify region of interest manually that is they can select a specific
area of interest which may lead to localized adjustments instead of global, uniform
change. It aims to improve the exposure in targeted regions, but accurate selection
of regions requires precision and is cumbersome. On smartphones, people use their
fingers to select regions on the touchscreen. Finger inputs are less precise than other
methods. It may introduce noise and imprecise boundaries which makes the selection
less accurate.

Instead, one can use unified illumination embedding to guide the enhancement of
images. Here we use the diffusion model to enhance the image according to a target
brightness level specified by the user. Illumination embedding represents the overall
lighting condition of the image. It serves as a guide for the enhancement process. Here,
the user can specify the desired brightness level which acts as a conditioning factor for
the diffusion model. By, mentioning the desired brightness level they can control the
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final appearance of the enhanced image. Here, the brightness level is computed using
the average pixel intensities of the image.

To further enhance the process we introduce the additional conditional elements,
we condition the process with features derived from low-light images and supplement
it with a normalized color map and SNR map. The diffusion process is conditioned
on features procured from low-light images which aids in understanding the specific
characteristics of an image. A normalized color map provides a standard reference
for the colors in an image, ensuring the color enhancement is consistent. An SNR
map indicates levels of noise in different regions. It helps to focus on areas with high
noise which allows aggressive denoising wherever necessary. These supplements sim-
plify the enhancement process which reduces the computational and complexity bur-
den leading to faster convergence. The inclusion of these maps ensures that enhance-
ment is not only focused on increasing brightness but also on maintaining color fidelity
and reducing noise.

We also incorporate binary mask as additional input which facilitates localized
edits. Segment Anything Model [17] is integrated in the framework to allow for the
creation of a binary mask. It allows users to define regions of interest using simple and
intuitive prompts such as points or boxes. This allows for user-friendly region control.

1.2 Motivation

Low light image improvement is an important area of research and practical applica-
tions. Enhancement improves visibility and extracts features that are otherwise hidden.
Low -light introduces noise in the image which can be reduced by enhancement lead-
ing to clearer and aesthetically pleasing images. Even with rapid development in tech-
nology sensors struggles to capture good-quality images in bad lighting conditions.
Enhancement of low-light image also has application in astronomy where celestial ob-
jects are faint. In cases like video calls or live-streaming, real-time low-light image
enhancement improves the visual quality, making the experience better. Here, we use
unified illumination embedding to enhance images. It captures the luminosity and
lighting distribution of the image. Diffusion models have gained popularity in image
restoration tasks. It works by learning the distribution of image by gradually adding
the noise and reversing the process to obtain the image.

We use the diffusion model for low-light image enhancement. We further incor-
porate features derived from low-light images, along with a color map and SNR map.
It makes the enhancement process becoming more effective. It ensures that low-light
images are enhanced in such a manner that it addresses both the brightness and quality
of the image, leading to optimal results.
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1.3 Problem Statement

A low-light image is a photograph clicked under conditions of inadequate lighting. It
can be encountered in various scenarios such as indoor setup with bad lighting condi-
tions like dimly lit spaces, nighttime photography including landscapes, and underwa-
ter photography with diminished natural light. Enhancing low-light images involves
methods aimed at boosting visibility, diminishing noise, and restoring details to pro-
duce visually pleasing and information-rich images.

The restraints of global enhancement methods become evident when we deal with
images that contain both under-exposed and over-exposed regions. To address this
issue user can specify region of interest manually to apply local edits. But, this manual
process can be burdensome for smartphone users. Users must prudently delineate the
area they want to enhance and meticulously trace boundaries.

So, we use a unified illumination embedding which represents the overall light-
ing of the image. The favorable results of denoising diffusion models have translated
into image restoration tasks. Their capacity to model the natural distribution, iterative
refinement, and adeptness makes them superior to many existing methodologies. To
further amplify this process we use additional conditioning elements which eases the
optimisation process. We condition the process with low-light image features, color
map, SNR map. It results in a higher degree of improvement.

1.4 Research Objective and Contribution

The diffusion model architecture involves iteratively translating a simple distribution
like Gaussian noise into a complex data distribution like natural image using a series
of denoising steps.

A suitable choice for the neural network in diffusion models is the U-Net design.
U-Net architecture is suited for image translation tasks owing to symmetric encoder
and decoder structure along with skip connections. The encoder progressively down-
samples the image, extracting high-level features. The decoder upsamples the encoded
features, again creating the image and incorporating information from corresponding
encoder layers through skip connections.

The noise schedule demonstrates how we add noise during the forward process
and how it is removed during the reverse process. This is important for maintaining
the stability and effectiveness of the model.

Here, we aim to enhance a low-light image using a denoising diffusion probabilistic
model. We also condition the diffusion model with additional inputs like illumination
embedding, normalized color map,SNR map, and binary masks. In this research, we
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enhanced and analyzed the model by following procedures:

U-Net Size: We increase the size of U-Net by adding convolutional layers to the
model. By adding more convolutional layers IT can learn more intricate features, it can
capture finer details and more nuanced patterns in data, leading to better efficiency.

Noise Schedule: The noise schedule is an important part that remarkably affects
the performance and stability of the model. It defines how noise is iteratively added
during each forward step and removed during the reverse denoising step.

Here, we analyze the model by adding different noise schedules and compare the
performance of model for each schedule. We incorporate the following noise schedule
in our model:

• Quadratic noise schedule

• WarmUp10 noise schedule

• Warmup50 noise schedule

• Linear schedule

• Constant noise schedule
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Chapter 2

LITERATURE REVIEW

2.1 Traditional Light Enhancement Method

These procedures are used for single low light enhancement. A histogram of an image
denotes the distribution of pixel magnitude values. Traditional histogram equalization
is an image processing method used to intensify the contrast of a picture. It works by
rearranging the pixel intensity values of a picture to cover a wider range, efficiently
making dark regions lighter and vice versa. Traditional HE techniques, while effective
in many cases, can sometimes result in over-enhancement, where image details are
lost, or the introduction of unwanted artifacts.

DHE [1], introduces process for image contrast enhancement. Instead of applying
histogram equalization uniformly across the entire image, DHE dynamically partitions
the histogram based on the local features of the image. This partitioning is adaptive
and varies depending on the image content. After partitioning, histogram equalization
is applied to each sub-histogram individually. This process leads to more localized
enhancement improving contrast in specific regions of the image without affecting the
overall balance. An important factor of DHE is its ability to preserve the original
brightness of the image.

CLAHE [20] presents an improved approach to traditional histogram equalization.
Unlike global histogram equalization, AHE intensifies contrast in a local way within
small regions of the image, making it more efficient for enhancing details in local-
ized areas but it can amplify noise in homogeneous regions in an excessive manner.
CLAHE introduces a contrast-limiting step to AHE. That is the histogram is clipped
at a predefined value before computing the CDF hence limiting the amplification of
noise.

[19] presents an approach for enhancing low-light images at the same time ad-
dressing the issue of noise. The limitations associated with low light image enhance-
ment, mainly the trade-off between amplifying image details and compressing noise.
Existing methods generally either enhance the image at the cost of increased noise or
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denoise the image at the expense of losing important details. The aim is to propose
a method that efficiently enhances low-light images while simultaneously denoising
them, thereby improving both visibility and image quality.

Here, a two-stage approach is proposed. This technique is used to enhance the
overall brightness and contrast of the low-light image. However, traditional AHE can
introduce noise, so modifications are made to mitigate this issue. The gamma correc-
tion is applied to accomodate the brightness and contrast further. It makes the darker
regions of the image brighter and amplifies the clarity of details.

After enhancing the image we use a bilateral filter to cut down the noise. Bilateral
filtering is chosen because it can smooth the image while preserving edges, which is
critical for maintaining important details in the image. In addition to bilateral filtering
wavelet-based denoising techniques are used.

Retinex theory [18], presents a model to explain how humans perceive and discern
colors consistently under changing lighting conditions. This model integrates both the
physiological activity of the retina and the cognitive processes of the visual cortex.

In the initial stage retinal cells captures the light that is reflected from objects. This
light is measured across different wavelengths corresponding to the primary colors red,
green, and blue. The visual cortex of the brain processes these signals to interpret the
final observed colors. This involves complex computations that consider the relative
intensities of light in different parts of the visual field.

The image is decomposed into red, green, and blue components and is processed
independently. For each pixel intensity of light is measured for each color channel.
The intensity is compared for each pixel in a color channel to the intensities of sur-
rounding pixels. This can be done using ratios or differences. The computed ratios are
normalized to ensure they fit within a standard range. This step helps in maintaining
the consistency of color perception. The processed color channels are then combined
to form the final color-corrected image. This image should have consistent color per-
ception across different lighting conditions.

2.2 Learning Type Light Enhancement Methods

Many learning based techniques for light improvement have been developed recently
as a result of deep learning’s speedy growth. These techniques enhance the grade of
photos taken in low light by utilizing deep neural network feature extraction methods.
They are especially helpful for difficult tasks like light enhancement because they can
automatically learn to extract pertinent characteristics from raw image data without
the need for human interaction. End-to-end training of deep learning models allows
for optimization of the entire process, from input image to good quality image. Con-
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volutional Neural Networks can manage spatial hierarchies in images, they can effec-
tively capture both local and global properties that are essential for light enhancement.
Multiple convolutional layers with different filters stacked on top of each other allows
CNNs to gradually improve and refine picture attributes.

Supervised learning algorithms require paired datasets of low-light images and
their corresponding high-quality images. The network learns mapping from low light
images to enhanced images using training examples. Typical loss functions that aid
in the model’s ability to generate visually appealing outcomes are mean squared error
(MSE) and perceptual loss.

For unsupervised learning algorithms, we use these when generally unpaired data
is not available. We use methods like Generative Adversarial Networks. CycleGAN is
an example of an unpaired technique that makes advantage of cycle consistency loss to
guarantee that the enhanced image corresponds to the original low-light image when it
is converted back to the low-light domain.

Some techniques optimize the picture enhancement process based on feedback
from the environment by using reinforcement learning to learn policies.

A Deep Autoencoder Approach [12], is a deep autoencoder created especially to
improve low-light photos by enhancing low-light photos while maintaining important
information and reducing noise, it seeks to increase their visibility and quality. An
encoder and a decoder are incorporated the deep autoencoder framework. While the
decoder reconstructs the enhanced image from this representation, it squeezes the in-
put image into a lower-dimensional representation, learning crucial information. In
addition to incrementing brightness, the network is made to reduce noise, which is fre-
quently seen in photos clicked in low light. The autoencoder’s structure and training
procedure provide this dual capacity. A dataset of photos in low light and their equiva-
lent well-lit images is used to train the autoencoder. Reducing the difference between
the network’s augmented image and the well-lit ground truth image is the training goal.
A loss function mean squared error (MSE) is used for this. In order for LLNet to be
trained effectively, it needs training data that is diversified. It can be tedious to accumu-
late sizable datasets of matched high-quality and low-light photos. Instead, methods
that mimic noise and low light levels are used to synthesize the training data.

This synthesis involves gamma correction. It mimics the many brightness lev-
els found in pictures. The training dataset mimics low-light settings by incorporating
photos with varying brightness levels through the application of random Gamma cor-
rections. improves the model’s capacity to generalize to many low-light situations and
aids in its learning of how to handle a broad variety of brightness changes.

Deep Retinex [22] for low-light image enhancement, leverages the Retinex theory
within a deep learning construct. The Retinex theory, states that colours are seen by the
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human eye by breaking down images into components of illumination and reflectance.
The technique breaks down an image into its illumination (lighting circumstances) and
reflectance (object intrinsic qualities) components by integrating the Retinex theory
into a deep learning framework. To separate the illumination and reflectance com-
ponents of a low-light image, a deep neural network is utilized. By processing the
illumination individually and maintaining the reflectance, this decomposition helps in
improving the image. The method optimizes the decomposition and enhancement pro-
cesses at the same time since it is trained from start to finish. This guarantees that the
network acquires the ability to generate improved photos that are true to the original
scene and aesthetically pleasant.

Enlightengan [16] is a research paper that has an approach for enhancing low-light
images using a Generative Adversarial Network without utilizing paired datasets. By
employing this method low-light image enhancement through deep learning becomes
more feasible for real-world scenarios when paired datasets are limited. By leveraging
the power of GANs, it can produce appealing and high-quality enhanced images from
low-light inputs. The method uses a cycle-consistency loss to guarantee the quality
and consistency of the enhanced images. This means that when the enhanced image
is converted back to the low-light domain, it should resemble the original low-light
image. Adversarial training is used by this model to raise the realism and calibre of the
augmented images. The generator generates images that are indistinguishable from
enhanced photos, and the discriminator network is trained to differentiate between
real enhanced images and images produced by the generator. Numerous benchmark
datasets are used to assess this model, showing its efficacy in a range of low-light sce-
narios and image formats. It enables better flexibility and applicability in real-world
scenarios where such datasets are not accessible, by doing away with the requirement
for matched low-light and well-lit photos. The technique is appropriate for a broad
range of applications, such as photography, surveillance, and any circumstance need-
ing low-light picture augmentation. It may be used to many kinds of low-light pho-
tographs.

[11] presents a zero-reference deep learning framework for low-light image en-
hancement, that is it does not rely on reference images for training. It estimates
pixel-wise enhancement curves which regulate the illumination of low-light images
efficiently while maintaining important details and colors. It works without the need
for paired datasets of enhanced and low-light images, in contrast to typical supervised
algorithms. It makes the model simpler to implement. To calculate pixel-wise en-
hancement curves, which modify the brightness and contrast of each pixel in the im-
age, the technique uses deep neural network. The input low-light photos are used to
immediately learn these curves. The technique may handle various illumination con-
ditions within that image more properly by adjusting and enhancing different portions
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of the image by predicting enhancement curves at the pixel level. A lightweight con-
volutional neural network is at the heart of the model, and its purpose is to predict
enhancement curves for every pixel in the image. The network outputs the enhance-
ment curve parameters after receiving an image with low light levels as input. These
curves are put into the input image, accommodating the illumination and contrast to
generate the enhanced image. This model is checked on varied benchmark datasets,
showcasing its effectiveness across diverse types of low-light image contents.

CERL [5] is a research paper that has a comprehensible approach for enhancing
low-light images while considering realistic noise. It incorporates many upgrading
ways to enhance image quality by at once enhancing light and diminishing noise. Light
enhancement and noise reduction are combined into a single, coherent framework by
this model. This devised plan ensures that improvements in light don’t result in in-
creased noise. To improve the resilience and efficacy of the enhancement process, the
framework includes realistic noise models that faithfully capture the noise characteris-
tics found in low-light photos. By increasing the contrast of low-light photos, it raises
the visibility of details and raises the overall quality of the image. The framework
mimics the noise characteristics commonly present in low-light photos by employ-
ing realistic noise models. The light Enhancement component targets to improve the
image’s brightness and contrast to make it more aesthetically pleasing. It separates
undesirable artifacts and simultaneously reduces the noise in the image, preserving
important features and textures. The strength is to combine these two modules’ opti-
mizations, guaranteeing that the final output image achieves a high degree of clarity
and enhancement without adding undue noise.

RECORO [23]: is a research paper that proposes a procedure for enhancing low-
light images with the extra capacity of user-controlled regional adjustments. It allows
people to dictate regions of interest for target brightness using masks, improving the
flexibility of the enhancement process. It offers precise control over how low-light
photos are enhanced. With imperfect masks—rough sketches or broad strokes—users
can designate portions of the image that require enhancement. The model then refines
these masks to produce exact and high-quality light enhancement. This technique is es-
pecially helpful in situations where some areas of an image need to be processed more
carefully than others, like in surveillance, medical imaging, or photography. Users
can designate regions of interest with rough masks. The model precisely enhances the
specified locations meanwhile maintaining the image quality by tuning these imperfect
masks. The imprecise mask is handled by the refinement network to provide an exact,
precise mask that defines the areas that need to be improved.
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2.3 Challenges

A stable and generalizable mapping from low-light to enhanced images is challenging
for the neural network to learn because of the inconsistent brightness levels throughout
the training set. Since the network is always attempting to adjust to new brightness
targets, it may find it difficult to converge to an answer that performs well for all
images. To solve this issue unified illumination embedding can be used where the
brightness level is represented using the average pixel intensities.
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Chapter 3

METHODOLOGY

3.1 Diffusion Models

A family of machine learning generative models produces new data samples using a
learned representation of the training data distribution. They are able to create new
data that are absent in the training set as they have grasped the underlying patterns,
structures, and distributions of the input data.

GANs need careful tuning and instability handling, but they are good for appli-
cations that demand realistic, high-quality image production. Diffusion models are
for applications where quality and flexibility are important as they provide consistent
training and varied sampling at the expense of a slower generation speed. Although
they often produce images of inferior quality, VAEs offer a structured probabilistic
framework with consistent training, making them appropriate for problems demanding
explicit density modeling and latent space manipulations.

Figure 3.1: Comparison [10]
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3.1.1 Workflow

Diffusion models came into inception due to disequilibrium thermodynamics. Here,
we have steps to gradually add noise to data and then imbibe to reverse the method
to create desired data from noise. It functions by dismantling training data via the
consecutive addition of Gaussian noise and then understanding to recuperate the data
by back-pedaling this process.

Figure 3.2: Working Of the Model [13]

It mainly comprises of two steps:

• Forward Process: The forward diffusion process is a method of slowly and
iteratively adding noise in the data in a series of time steps, translating the sample
into a noise distribution. In this process each step only depends on the previous
state.

Figure 3.3: Forward Diffusion Process [3]
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Let, q(x0) be the dispersal of the original images, then we can sample to get an
image, x0from q(x0).We can define the forward diffusion process q(xt |x(t − 1))
which adds Gaussian noise at each time step t following to variance schedule β

as:
q(xt |xt−1) = N(xt ;

√
1−βtxt−1,βtI) (3.1)

In closed form from x0 to xt can be reached in a tractable way. So,we can use
reparameterization trick and equation(??) can be rewritten as:

q(xt |x0) = N(xt ;
√

ᾱtx0,(1− ᾱtI) (3.2)

where αt = 1−βt . The variance parameter can be fixed or singled out as a sched-
ule over T time steps. Various types of variance schedules can be used like linear,
cosine, and quadratic.

Figure 3.4: Variance Schedules [9]

• Reverse Process: The reversed process is the method in which the noise is
progressively eliminated from the noisy data to produce samples that resemble
the original data distribution. This process is essentially the opposite of the
forward diffusion process and is used to produce new data points starting from
pure noise.

Figure 3.5: Reverse Process [4]

Mean has to be predicted as the variance is added according to the schedule. The
final objective is to predict noise in the image between two timesteps. Mathe-
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matically,
p(xt−1|xt) = N(xt−1; µ(xt , t),Σθ (xt , t)) (3.3)

For loss function, negative likelihood is used: − log(pθ).

− log(pθ)<=− log(pθ)+DKL(q(x1:T |x0)||pθ (x1:T |x0))) (3.4)

Here KL divergence is added because it is being minimized. The above equation(??)
is not computable either so some reformulation is done. After reformulation, our
loss function reduces to:

Lsimple = Et,x,ε [||ε − εθ (xt , t)||2] (3.5)

εt is the pure noise generated at t.

3.1.2 Components Of Diffusion Model

Components of diffusion model comprises mainly two components-

• U-Net: It captures both local and global features of the data, the U-Net [21]
design is a good choice for neural networks in diffusion models.

Figure 3.6: U-Net [7]

An encoder and a decoder make up the U-Net architecture. Skip links between
the encoder and decoder directly link appropriate layers. Because of its architec-
ture, the network can integrate high-level contextual data with low-level details,
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which is essential for jobs that need exact reconstructions, including the creation
of images for diffusion models.

Encoder(Downsampler)-The encoder of a U-Net architecture is accountable for
withdrawing features from the input data by progressively downsampling it via
a sequence of convolutional neural network and max-pooling layers with help of
skip connections. This allows the neural network to capture hierarchical features
of the input, ranging from low-level details to high-level attributes. These stages
are often referred to as blocks or layers.

Each block starts with convolutional layers which can be many. They put in
convolutional filters to the input, producing feature maps that filter out aspects
of the input data, such as edges and textures. The convolutional layers are usually
followed by a non-linear activation functions.

Batch normalization layers can be appended after the convolutional layers to nor-
malize the output, which aids in maintaining and speeding the training process.

Each block ends with a downsampling operation, typically max pooling. It de-
creases the structural dimensions of the feature maps while holding the most
crucial part. This step increases the receptive field of subsequent layers, allow-
ing the network to capture more contextual information.

As the input goes via each block of the encoder, the spatial dimensions of the
feature maps decrease due to the pooling operations, while the depth increases
which makes it possible for the network to capture and condense important spa-
tial features.

An essential component of the encoder is skip connections, they directly transmit
the output of each encoder block to their corresponding decoder block. This
helps in preserving spatial features that might be lost during the downsampling
process. It enables the network to combine low level structural information from
the encoder with high level information in the decoder.

Decoder(Upsampler)-It is responsible for upsampling the feature maps pro-
duced by the encoder to generate output. It echoes the encoder’s arrangement
but in opposite manner, slowly incrementing the structural dimensions while di-
minishing the deepness of the feature maps.

Each block commences with an upsampling function to increase the spatial di-
mensions of the feature maps. Transposed convolution also known as deconvolu-
tion, is commonly used for upsampling. It understands to upsample the feature
maps meanwhile learning missing information. Simple interpolation methods
like bilinear or nearest-neighbor interpolation can be used for upsampling, fol-
lowed by a regular convolution to filter the feature maps.
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Each block mostly contains one or more convolutional layers to filter the up-
sampled feature maps. These layers apply convolutional filters to capture and
intensify features, making sure that the produced output is of good quality and
coordinates with the input data. This ceasless process allows to recuperate spatial
details which got disoriented while in the downsampling process in the encoder
and attach low-level and high-level information from the skip connections for
precise reformulation.

The decoder also uses skip connections to transfer feature maps from the encoder
to the decoder. These connections make sure that the decoder has an approach
to both low-level spatial information and high-level semantic information, facil-
itating precise reconstruction of the input data.

Timestep Embedding: In the U-Net architecture, timestep embeddings are im-
portant for conditioning the model on the particular diffusion step it is handling.
These embeddings supply temporal context to the model, helping it comprehend
the gradual increment of the diffusion process.

The diffusion process involves slowly adding noise to the data over many timesteps.
During training and generation, the model wants to know the particular timestep
it is dealing with to accurately predict and remove noise. Timestep embeddings
encode this temporal information and integrate it into the neural network.

Timestep embeddings can be formed using sinusoidal functions, learned em-
beddings, or other methods. The common approach is sinusoidal embeddings,
motivated by the positional encodings used in transformers. Sinusoidal embed-
dings encode the timesteps which is a combination of sine and cosine functions
of different frequencies, allowing the model to grasp periodic patterns through-
out timesteps.

The timestep embedding is concatenated to the input data or intermediate feature
maps at a multitude of points in the network. This makes sure that the temporal
context is considered throughout the processing. The embedding is processed
through a fully connected layer to match the dimensionality of the feature maps
before being integrated.

Attention Layers: Attention layers mechanisms are consolidated into the dif-
fusion models to strengthen the ability of the model to apprehend long reliance
and enhance the quality of the produced outputs. It assists the model to zoom in
on the most appropriate components of the input data. This ability is crucial for
reconstructing the intricate patterns in the data.

Model reflects on the importance of different pieces of the input when generating
a piece of the output. It computes a weighted sum of the input features, wherein
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weights are demonstrated by the similarity between features. Query (Q): Rep-
resents the feature to be updated. Key (K): Represents the features to compare
with. Value (V): Represents the features to be aggregated. The self-attention
mechanism is computed as:

Attention(Q,K,V ) = so f tmax
(

QKT
√

dk

)
V (3.6)

Figure 3.7: Attention [8]

In a U-Net used for diffusion models, attention layers are mainly appended at
varied stages to improve the network’s ability to deal with complex data. They
can be placed in the bottleneck layer and in many places in both the encoder and
decoder. It helps grasp dependence between distant parts of the input, which
is crucial for generating coherent and detailed outputs. By focusing on impor-
tant features, attention layers upgrades the quality of the learned representations,
gearing towards better performance.

• Noise Schedule: In diffusion models, the noise schedule states how the noise is
infused in the data with a sequence of timesteps. The choice of noise schedule
is important because it affects the learning method and the grade of the created
samples. There are many types of noise schedules:

Linear Schedule: In a linear noise schedule, the noise level increments in a
linear manner over time. It can be defined as:

βt = βstart + t
(

βend −βstart

T

)
(3.7)
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where βt is the noise variance, βstart is the initial noise variance, βend is the final
noise variance, and T is the number of time steps.

Quadratic Noise Schedule: This noise schedule increments the noise variance
in a quadratic fashion over time. It is defined as:

βt = βstart +

(
1− cos

(
2π

2T

))
(βend −βstart) (3.8)

where βt is the noise variance, βstart is the initial noise variance, βend is the
final noise variance, and T is the count of time steps. It is inspired by the use of
cosine annealing in learning rate schedules, providing a non-linear but smooth
progression of noise.

Exponential Noise Schedule: An exponential noise schedule increments the
noise level in exponential fashion over time. It is defined as:

βt = βstart ∗
(

βend
βstart

)( t
T )

(3.9)

where βt is the noise variance, βstart is the initial noise variance, βend is the final
noise variance, and T is the count of time steps.

Sigmoid Noise Schedule : It uses a sigmoid function to increment the noise
level, which leads to a smooth transition that speeds up in the middle. It is
defined as:

βt = βstart +

(
1

1+(exp−k(t −T/2)

)
(βend −βstart) (3.10)

WarmUp10 Noise Schedule: It begins with a small noise variance and grad-
ually increases it over a warmup period that is the first ten percent of the total
timesteps. After this initial period, the noise variance increases more slowly.
This helps the model stabilize in the early stages of training by avoiding large
noise levels too soon.

WarmUp50 Noise Schedule: It works in a a similar pattern to Warmup10 but
with a longer warmup period which is the first 50 percent of the total timesteps.
It starts with a small noise variance and incrments more slowly over a longer
period before transitioning to a more linear increase.

JSD (Jensen-Shannon Divergence) Noise Schedule: It is designed to minimize
the Jensen-Shannon Divergence between the data distribution and the noise dis-
tribution over the diffusion process. It employs a logarithmic or other non-linear
scaling of the noise variance to achieve a more balanced and grounded diffusion
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process. It can be defined as:

βt = βstart

(
log(1+ t)
log(1−T )

)
(βend −βstart)+βstart (3.11)

Constant Noise Schedule: It maintains a fixed noise variance throughout all
timesteps. It can be defined as:

βT = βconstant (3.12)

Choosing the right noise schedule is crucial for the performance and stability
of diffusion models, and it depends on the specific requirements of the task and
data.

3.2 Addendum to the Model

1. Color Map:When enhancing low-light images, a common problem is the ap-
pearance of unnatural color shifts. It happens because the enhancement task
can disproportionately amplify noise or color imbalances, which leads to color
distortion that do not presents the true appearance of the locale.

To handle this problem we can use a color map to normalize the range of the
three color channels red, green, and blue in the input images. This normalization
helps in preserving the balance between the color channels, and reducing color
distortion, and keeping intact the natural appearance of the image.

The three color channels are individually dealt with so that their values lie within
a predicted normalized range. This is done so that no single channel commands
the color balance of the image. This adjustment is crucial for maintaining the
relative intensity levels across all channels.

Let, an input image x be divided into three channels:

x = [xr,xg,xb] (3.13)

where xr is red channel,xg is green channel,xb is blue channel.Let, the maximum
pixel value for each channel be:

xmax = [xrmax,xgmax,xbmax] (3.14)
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Then, the color map can be calculated as:

C(x) =
x

xmax
(3.15)

The color map takes care that the process is uniform across all channels, thus
maintaining the natural color relationships in the image.

2. SNR Map: Noise in images can notably deteriorate the grade of the image, it be-
comes difficult to discern details and true colors. Noise is more evidently present
in low-light images. One such method is to use an SNR-aware transformer for
effective enhancement.

SNR is a metric that compares the level of the true signal of image content to the
level of background noise. A higher value indicates clearer and superior-quality
images with less noise. In low-light conditions, the SNR decreases because the
signal is weak and the noise is more pertinent.

An SNR map is designed to focus on regions of the image with low signal-to-
noise ratios. This map mainly highlights areas where noise is more likely to be
a trouble. The transformer applies the map for spatial attention. This means
the model focuses more on regions with low SNR that is high noise and treat
them differently compared to regions with high SNR that is low noise. By draw-
ing attention to low-SNR regions, the transformer can allocate greater resources
and apply much better noise reduction techniques in these areas. This targeted
approach helps in reducing noise effectively. The capacity of the transformer
to comprehend contextual relationships within the image makes it possible to
enhance the image quality. The SNR map can be calculated as follows:

S(x) =
F(x)

|x−F(x)+ ε|
(3.16)

where F is a low pass filter and ε is used for stability.

3. Brightness Control Module: Here, brightness is taken as a continuous class
which means that instead of distinct categories, we represent brightness levels
on a continuum. The vanilla brightness level lambda of an image is calculated
by taking the average pixel value of a normal-lit image. This step makes sure
that the brightness information is embedded in a way that maintains its proper-
ties also maintaining smooth interpolation. The illumination embedding, which
now contains the encoded brightness information, is integrated into a U-net ar-
chitecture using a Brightness Control Module.

4. Region Controllability: To address the need for judiciously increasing bright-
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ness in particular regions of an image instead of globally illuminating the entire
image, region controllability is incorporated.

A binary mask is used to describe the regions of interest in the image where
brightness enhancement is the priority. The mask is a matrix of a similar size
as the image with values of 1 in regions where enhancement is needed and 0
otherwise. It is appended with the original image inputs that allows the model
to discriminate between regions that require brightness magnification and those
which do not. By incorporating the mask [23], the model can zoom in on its
enhancement efforts on the areas indicated by the mask.

To train the model effectively, synthetic data is generated using randomly sam-
pled free-form masks having feathered boundaries. Feathered boundaries aid in
the creation of smooth transitions between regions which are enhanced and not
enhanced avoiding harsh edges. The synthetic target images are created by alpha
blending low-light and normal-light images from existing low-light datasets [2].
Alpha blending is a technique where each pixel value of the target image is a
weighted sum of the corresponding pixel values from the low-light and normal-
light images, based on the mask.

3.3 Implementation

• We select a pair of low-lit and normal-lit images in random manner.

• We prepare supplemental information like a color map and SNR map, and then
we generate a noisy version of the normal-light image using a forward diffusion
process.

• Then we concatenate these maps and the low lit image which becomes the input
to the model. Then we train the model to enhance the low-light image by lever-
aging the input, boosting both brightness and quality throughout maintaining
color accuracy, and reducing noise.

• We treat brightness levels as ”class” labels for training a conditional diffusion
model. Overall we train two models, a conditional [15] diffusion model and an
unconditional model.

The brightness level of an image is treated as a continuous class label. This lets
the model handle varied brightness levels smoothly and adjust the brightness of
images during the process. For conditional model:

εθ (yt ,x,C(x),S(x)|λ ) (3.17)
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where yt is the image obtained after forward diffusion, x is the low lit image,
C(x) is colour map, S(x) is SNR map, λ is the brightness level embedding. This
model is learned to improve the image by conditioning on the brightness level λ .
It uses the provided brightness level to adjust the enhancement process so that
the output image meets the desired brightness.

For the Unconditional Model:

εθ (yt ,x,C(x),S(x)|0) (3.18)

where yt is the image obtained after forward diffusion, x is the low light image,
C(x) is the color map, and S(x) is the SNR map, Instead of a brightness level,
a zero embedding (an array of zeros with the same shape as the brightness em-
bedding) is used. The unconditional model is trained without conditioning on a
specific brightness level.

• Users can enhance particular regions of an image by simply selecting the de-
sired area with a click. This utilizes a binary mask to designate the regions for
enhancement and combines the results from both the conditional and uncondi-
tional models. Users can click on the image to pick the region they want to
enhance. This action creates a binary mask M, where the selected region is
marked with ones and the rest of the image is marked with zeros. The binary
mask is infused into the model inputs. This mask describes which parts of the
image should be enhanced.

For conditional model:

εθ (yt ,x,C(x),S(x),M|λ ) (3.19)

where yt is the image obtained after forward diffusion, x is the low light image,
C(x) is the color map, S(x) is the SNR map, λ is the brightness level embedding,
M is the binary mask indicating the selected region. This model enhances the
selected region based on the specified brightness level λ .

For the Unconditional Model:

εθ (yt ,x,C(x),S(x),M|0) (3.20)

where yt is the image obtained after forward diffusion, x is the low light image,
C(x) is the color map, S(x) is the SNR map, instead of a brightness level a zero
embedding is used, and M is the binary mask. The unconditional model is trained
without conditioning on a specific brightness level.

The output procured from the conditional model, which targets the specified
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brightness level is used for the regions marked by the mask M. The output from
the unconditional model is used for the rest of the image. The results from both
models are mixed using the binary mask. It can be achieved by alpha blending,
where the mask M controls the mixing of the two outputs. This means that only
the selected regions are enhanced according to the specified brightness level,
while the rest of the image receives a general enhancement.

Dataset: The LOL dataset comprises of five hundres low light and normal light
image pairs which is sliced into four hundred eighty five training pairs and fifteen
testing pairs. Here, low light images have noise generated during the photo-clicking
process. Mostly the photos are captured in indoor background. All the photos are of
400×600 resolution.

3.4 Loss Function

• Lsimple: With the reference to the loss function of the diffusion model (3.5) we
concatenate the color map, SNR map, and a noisy image yt generated using
forward diffusion process.

Lsimple = Et,y,ε [||ε − εθ (yt , t,x,C(x),S(x)||2] (3.21)

where x is the low-light image, C(x) is the color map, S(x) is the SNR map, and
yt is the noised image produced using the diffusion process.

While training the model might produce images with color distortions and un-
precedented noise. It happens because the simple loss function might not suffi-
ciently direct the model to focus on criteria like color fidelity and noise reduc-
tion. To deal with these issues we use auxiliary losses which provide additional
guidance on the denoised images. These losses help the model to learn more
efficiently by enforcing constraints that enhance color accuracy and noise reduc-
tion.

• Brightness Loss: The brightness loss aims to maintain the total brightness or
luminance level of the enhanced images so that they are visually consistent with
the original images in the aspect of brightness. The angular color loss focuses
on maintaining the color distribution of the brightened images so that the colors
remain in accordance with the original images.

• Angular Colour Loss: It measures the angular difference between the color vec-
tors of the upgraded images and the ground truth images in a color space
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• SSIM Loss: SSIM loss calculates the structural likeness in between the bright-
ened images and the ground truth images considering both luminance, contrast,
and structural information.

• Perceptual Loss: It aims to make sure that the enhanced images have similar
perceptual qualities to the ground truth images by comparing high-level features
extracted from both.
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Chapter 4

RESULTS AND ANALYSIS

For low-light image enhancement, PSNR and SSIM are principal parameters to evalu-
ate the standard of enhanced images comparison to the original ground truth images.

• PSNR: It guages the correlation between the largest potential of a signal in an
image and the capacity of corrupting noise which impacts the correctness of its
presentation. It is measured in decibels.

For low light image upgardation PSNR is used to quantify how similar the en-
hanced image is to the reference image. A higher PSNR shows that the algorithm
produces images that are closer to the reference in terms of pixel accuracy infer-
ring better enhancement quality.

• SSIM: It measures the likeness between two images based on their luminance
and shape. It is designed to simulate human visual perception more closely than
PSNR. SSIM evaluates how nicely the enhanced image maintains the structural
information of the reference image. An SSIM value near to one indicates high
similarity demonstrating that the enhancement algorithm maintains the structural
coherence of the image.

A blend of high PSNR and SSIM values indicates a successful enhancement algo-
rithm.

U-Net: It enhances the ability to capture and rebuild complex image details while
efficiently handling noise which is core to the success of diffusion models. Relative to
the base paper CLE Diffusion [24], here we increase the size of the U-Net model by
stacking convolutional layers in the head of the model. Here, we have performed 1500
epochs.

Model/Metrics PSNR SSIM Average PSNR Average SSIM

Base 23.124 0.778 23.352 0.794

Ours 24.5514 0.882 24.551 0.882

Table 4.1: Correlation
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We can observe that by increasing the size of the U-Net accuracy of the model
increases as PSNR value and SSIM value has increased.

Noise Schedule: It is a critical integrant that impacts the performance and pro-
ductivity of the model. A noise schedule refers to the sequence and intensity of noise
levels added to data during the forward process and removed during reverse process.
We analyzed the performance of the model by integrating various noise schedules one
by one. Here, we have performed 1500 epochs.

Schedule,Metrics PSNR SSIM Average PSNR Average SSIM

Linear 23.123 0.779 23.352 0.794

Quadratic 18.468 0.646 18.847 0.646

Constant 5.3136 0.0131 5.314 0.013

WarmUp50 17.695 0.374 17.695 0.374

WarmUp10 5.378 0.0135 5,378 0.0135

Table 4.2: Analysis Using Various Noise Schedules

We can observe that by applying different noise schedules there is variation in the
calibre of the model. We get the best conduct using a linear schedule, then by quadratic
schedule followed by the WarmUp50 schedule and constant schedule.

Visual Presentation of Results:

Base Model:

Epoch 0:

Figure 4.1: Image1
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Figure 4.2: Image2

Figure 4.3: Image3

Epoch 1500:

Figure 4.4: Image4
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Figure 4.5: Image5

Figure 4.6: Image6

Upgraded Model:

Epoch 0:
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Figure 4.7: Image7

Figure 4.8: Image8

Figure 4.9: Image9
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Epoch 1500:

Figure 4.10: Image10

Figure 4.11: Image11

Figure 4.12: Image12
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Quadratic Noise Schedule:

Epoch 0:

Figure 4.13: Image13

Figure 4.14: Image14
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Figure 4.15: Image15

For 1500 epoch:

Figure 4.16: Image16

Figure 4.17: Image17
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Figure 4.18: Image18

WarmUp 10:

Epoch 0:

Figure 4.19: Image19
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Figure 4.20: Image20

Figure 4.21: Image21

Epoch 1500:

Figure 4.22: Image22
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Figure 4.23: Image23

Figure 4.24: Image24

Linear Schedule:

Epoch 0:
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Figure 4.25: Image25

Figure 4.26: Image26

Figure 4.27: Image27
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Epoch 1500:

Figure 4.28: Image28

Figure 4.29: Image29

Figure 4.30: Image30
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Chapter 5

CONCLUSION, FUTURE SCOPE AND SOCIAL IM-
PACT

The model comprises a diffusion model prepared with an illumination embedding
which gives precise check over the brightness of images in the inference stage. By
conditioning the diffusion process on an illumination embedding, the framework al-
lows for intuitive control of image brightness. The addition of SAM complements the
usability of CLE by allowing users to choose particular regions of an image with a
single click. This capability is powerful for targeted light enhancement, making the
framework versatile and user-friendly.

We can extend the framework to other types of image enhancement tasks other
than light control. We can further explore enhancements to the diffusion model and
illumination embeddings for even better performance.

The social impact of the model can be substantial and multidimensional covering
various domains from personal photography to professional media production and ac-
cessibility. We can extend the framework to other types of image enhancement tasks
other than light control. We can further probe improvements to the diffusion model
and illumination embeddings for even better performance. Using this model individu-
als can easily improve the lighting of their photos leading to higher-quality images for
personal use and sharing on social media platforms. This can increase user satisfac-
tion and engagement. For photographers, videographers, and media producers, it can
simplify the post-production task by providing an efficient tool for enhancing lighting
in images and videos. This can save one from manual editing.

The model can help maintain persistent lighting across a series of images or video
frames, which is important for professional media production and keeping a high stan-
dard of visual quality. By enhancing the lighting in images it can make visual content
more approachable to people with low vision helping them see details more clearly
and enjoy visual media more fully. Educators can use models to enhance the quality
of visual substance allowing them to be clearer and more engaging for students.
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