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ABSTRACT 

 

 
Spoken word recognition involves identifying words from spoken input. It specifically 

centers on recognizing and comprehending individual words within spoken language. 

Phonemes and morphemes play crucial roles in spoken word recognition. Phonemes are the 

smallest units of sound in a language, and they help differentiate between different words 

based on their pronunciation. Morphemes, on the other hand, are the smallest units of 

meaning in language, such as prefixes, suffixes, and root words. In spoken word recognition, 

phonemes help in distinguishing between words that sound similar but have different 

meanings. Morphemes provide additional context and meaning to words, aiding in 

understanding the overall message conveyed by the spoken language. By analyzing 

phonemes and morphemes, speech recognition systems can accurately identify and 

understand spoken words, enhancing their ability to convert spoken language into written 

text or commands. The study of spoken word recognition spans various fields like phonetics, 

linguistics, psychology, cognitive science, psycholinguistics, and computer science. Recent 

progress in deep learning and pre-trained models has transformed this field. These 

advancements allow for combining phonological and morphological parsing techniques, 

boosting the precision and effectiveness of recognizing words from spoken input. Uniting 

speech and understanding demands collaboration across multiple disciplines, reflecting the 

intricate and captivating nature of this research domain.  

 

This thesis contributes to the advancement of spoken word recognition technology by 

providing a nuanced understanding of phonological and morphological features and offering 

a versatile fusion framework. The proposed system has potential applications in various 

fields, including speech processing, natural language understanding, and human-computer 

interaction. This thesis focuses on the design and development of a comprehensive fusion 

framework to improve spoken word recognition by integrating phonemes and morphemes. 
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CHAPTER 1 

 

INTRODUCTION 

 
 
 

This thesis contains an investigation of the speech which serves as an innate and effective 

mode of communication. We delve into the examination of spoken word recognition (SWR) 

analysis systems that employ fusion-based techniques to extract spoken words from speech 

cues in natural language. Our aim is to improve current speech  recognition algorithms by 

incorporating fusion-based principles into the analysis of spoken words. This approach 

effectively addresses the inherent vagueness of natural language in a highly efficient and 

automated manner.  

 

1.1        SPOKEN WORD RECOGNITION ANALYSIS- AN OVERVIEW 

 

The inception of automatic speech recognition (ASR) can be traced back to 1952 when 

Peterson and Barney introduced this ground-breaking concept. This field represents an 

interdisciplinary convergence of computational linguistics, signal processing, and the 

artificial intelligence. Within this domain, the integration of intelligent devices  equipped 

with speech recognition capabilities allows for the extraction of information from acoustic 

signals containing spoken language, facilitating the generation of user transcripts. These 

devices can also interpret various predefined expressions as commands, enabling control 

over their actions and functionalities. Research in the utilization of artificial intelligence 

techniques for speech detection and interpretation is strongly influenced by the human 

brain’s innate speech processing mechanisms (Baber, 1991). The applications of Artificial 

Neural Networks (ANNs) in ASR gained traction during the 1980s due to their potential for 

parallel and distributed processing, as well as their ability to adapt to new acoustic patterns. 
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ASR, situated within the realm of artificial intelligence research, strives to develop systems 

capable of transforming the acoustic features of speech signals into digital sequences that 

can be represented as phonemes or written words (Daniel and James, 2009).    

 

The primary objectives of ASR revolve around the advancement and implementation of 

efficient human-machine communication methods. Despite the higher computational 

demands inherent in verbal interactions compared to other interfaces like keyboards or 

touchscreens, ASR technologies offer advantage of quicker computational response times, 

especially for command-based operations. Furthermore, ASR proves to be an invaluable tool 

for individuals with physical-motor impairments (Damper, 1982), those whose occupations 

involve frequent manual tasks (Baber, 1991), and for the automation of both homes and 

businesses (Principi, Squartini, Bonfigli, Ferroni, and Piazza, 2015). The widespread 

adoption of ASR has encountered delays due to various challenges that can degrade the 

quality of the signal to be decoded by the system. Speech recognition is a complex task due 

to the myriad of factors affecting speech signals, such as background noise characteristics, 

speaker-dependent (SD) recognition, the phonetics and speech nuances of different 

languages, and even the semantic rules that influence the speech recognition process 

(Virtanen, Singh, and Raj, 2012). At its core, speech recognition is the process of transcribing 

spoken words into written text, where the fundamental elements of any spoken language are 

composed of its most basic symbols. These linguistic blocks, known as phonemes, serve as 

the foundational units of speech recognition.  

 

The development of speech recognition systems necessitates a fundamental mechanism for 

recognizing phoneme units, as emphasized in Bhatt et al. (2020). In the context of speech 

recognition, the core components are the language model and the acoustic model. The 

performance of the acoustic model is intricately linked to the effectiveness of phoneme 

recognition, as noted in Nahar et al. (2016). To circumvent the challenges associated with 

handling large vocabularies, particularly given that words can be constructed by combining 

a language’s phonemes, phoneme-based speech recognition is employed. However, it’s 

important to acknowledge that this approach demands a substantially larger volume of 

training data compared to word-based models, primarily due to the lower number of 
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phonemes compared to words in each language. To mitigate the complexity of the system, 

neural network (NN), a prevalent tool in speech recognition systems, are leveraged. NN draw 

inspiration from the structural intricacies of the human nervous system and brain, as 

highlighted in Shrestha et al. (2019). These machine learning techniques have gained 

substantial attention owing to their innate capacity to extract latent features, enabling the 

manifestation of generalization across diverse recognition algorithms in various 

applications.  

 

Alsulaiman et al. (2017) conducted a noteworthy study on the influence of Arabic phonemes 

on speaker recognition system performance. The study revealed varying identification rates 

for Arabic consonants, with certain combinations, such as a pharyngeal consonant followed 

by two nasal phonemes, achieving high recognition rates exceeding 80%, with the highest 

reaching 94%. Arabic vowels also displayed recognition rates surpassing 80%, while four 

additional consonants exhibited identification rates ranging from 70% to 80%. In the context 

of Arabic automated recognition systems, Alsharhan and Ramsay (2020) delved into data 

characteristics that can significantly impact system performance. Their experiments 

indicated a substantial reduction in the word error rate (WER) through the development of 

gender- and dialect-specific models. Herbig et al. (2011) demonstrated the creation of 

adaptive systems for unsupervised speaker tracking and speech recognition, while Malcangi 

and Grew (2017) introduced an innovative evolving connectionist method for adaptive 

audio-visual speech recognition. Finally, Koteswararao and Rao (2023) proposed a novel 

approach known as  Multichannel KHMF, aimed at speech separation using enthalpy-based 

Direction of Arrival (DOA) and score-based convolutional neural network (SCNN) 

techniques. This approach has demonstrated efficacy in speech recognition, presenting new 

possibilities for enhancing recognition systems.   

 

In the next chapter a comprehensive literature review is presented.
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CHAPTER 2 

 

LITERATURE REVIEW 

 
 
 
 

 

 

2.1  IMPACT OF  DEEP LEARNING ON SPOKEN WORD RECOGNITION  

 
 
The recent advancements in deep learning (DL) techniques and the availability of extensive 

training datasets have led to significant improvements in speech recognition accuracy 

(Hinton et al. 2012). However, it has been observed that the robustness of deep neural 

network (DNN)-based models is highly contingent on the quality of the training data (Stern 

et al. 2008). Typically, the most substantial performance gains are achieved when the training 

data closely aligns with the test scenarios. Nevertheless, obtaining such a dataset may not 

always be practical. For instance, Google recently introduced Google Home (Li et al. 2017), 

a commercial product designed for far-field applications.  

 

2.2  ANALYSIS ON ACOUSTIC FEATURES  

 
 
Audio data is crucial in Human-Computer Interaction (HCI) across diverse domains. 

However, applying Speech Recognition to phone systems faces challenges requiring 

intelligent feature selection and robust DL algorithms. A comprehensive approach considers 

temporal and sequential emotional cues (Srivastava et al. 2014). Recurrent Neural Networks 

(RNNs) excel in speech-related tasks, but challenges like vanishing gradients hinder long-

term correlation capture (Iqbal & Aftab, 2020). Dealing with exploding gradients involves 

truncation, while vanishing gradients demand holistic solutions. The term "speech 
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modulation spectrum" refers to the magnitude spectrum of the temporal envelope 

(Hermansky, 1997). Distorted temporal dynamics impact speech recognition. Contemporary 

ASR systems generate features at 100 Hz, incorporating speech dynamics using delta, 

double-delta features, or raw/smoothed speech temporal patterns for extensive context 

(Sadhu & Hermansky, 2023). ASR acoustic frontends commonly use time-frequency 

masking techniques (Narayanan & Wang, 2013). In a single-channel setup, a time-frequency 

mask estimates clean speech, forwarded to the ASR model in the complex spectral domain 

(Wang et al. 2020) or feature domain (Narayanan & Wang, 2013). Alternatively, frontend 

processing can occur directly in the time domain (Luo & Mesgarani, 2018). ASR frontend 

systems may inadvertently amplify speech due to misalignment with the training criterion, 

worsened by streaming constraints enforcing unidirectional and causal model architecture 

(Narayanan & Wang, 2013). 

 

Growing interest in neural networks for speech enhancement involves DNNs, especially in 

regression-based speech enhancement (Xu et al. 2014). Parametric and non-parametric 

augmentation methods are utilized, with non-parametric lacking statistical richness and 

parametric potentially underutilizing the speech model (Chen, 2022). Augmentation 

techniques like speed perturbation (Liu et al. 2021) and tempo adjustment (Xiong et al. 2019) 

enhance data quality, with a crucial emphasis on developing a robust feature extractor for 

preserving ASR system recognition capabilities. Recent advancements introduce 

Gammatone Frequency Cepstral Coefficients (GFCC), outperforming Mel-frequency 

Cepstral Coefficients (MFCC), especially in noisy environments (Das & Bhattacharjee, 

2014; Shuai et al. 2021). Power Normalized Cepstral Coefficients (PNCC) offer an 

intriguing alternative, demonstrating significantly improved accuracy in noisy conditions 

compared to MFCC (Kim & Stern, 2016). PNCC's efficacy is attributed to power-law non-

linearity, asymmetric noise reduction, and temporal masking. In speech recognition feature 

extraction, PNCC utilizes a bank of Gammatone filters (Alzahra et al. 2017) to emulate non-

linearly increasing bandwidths similar to the human auditory system. Convolutional Neural 

Networks (CNNs) further enhance feature extraction by emulating structural localization and 

minimizing translational variance within the feature space (Passricha & Aggarwal, 2019). 

For Uzbek and its dialects (Mukhamadiyev et al. 2022), a comprehensive approach involves 
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developing an End-to-End (E2E) DNN-HMM speech recognition model and a hybrid CTC-

Attention network. This innovative method leverages the CTC objective function, reducing 

training time and improving speech recognition accuracy (Mukhamadiyev et al. 2022). To 

address variability in DNN-based ASR systems, feature transformation techniques like f-

MLLR and VLTN have been introduced (Seide et al. 2011; Uebel & Woodland, 1999). 

Commonly employed are speaker-level f-MLLR transforms derived from Gaussian mixture 

model (GMM) -HMM-based ASR systems (Gales, 1998) (Seide et al. 2011). Acoustic 

features (Morshed & Ahsan, 2021) are vital for distinguishing speech classes, mitigating 

external noise, and managing speaker variability (Sadhu et al. 2019). Robustness against 

noise is a central concern in speech processing (Sankari et al. 2023). MFCC historically used 

for speech parameterization mimic human auditory characteristics, proving effective in tasks 

like speaker identification and speech recognition. 

 

2.3 SPOKEN WORD RECOGNITION’S IMPACT ON MULTILINGUAL ASR’S 

POTENTIAL 

 

Numerous multilingual (ML) ASR models, including E2E and hybrid HMM/NN models, 

leverage data and parameters from all languages, enhancing robustness (Sercu et al. 2017). 

Training a unified model for all languages can benefit those with limited resources by 

transferring shared knowledge. Effective models often incorporate language information, 

demonstrated in research on ML representations (Ma et al. 2002) and E2E models (Watanabe 

et al. 2017). To adapt to data distribution variations, additional parameters can be introduced 

(Kannan et al. 2019). Adjusting language sampling ratios helps track shifts within an 

utterance (Jacobs and Bea, 1963). The expandability of ML models to newer languages is 

constrained by linguistic data dependence. This thesis explores challenges and opportunities 

in advancing speech recognition across diverse languages and scenarios. In low-resource 

language (LRL) ASR, adopting ML models, as emphasized by Ghoshal et al. (2013), proves 

promising. Recent projects like Babel (Tüske et al. 2013) and Spoken web search in 

MediaEval Benchmark (Metze et al. 2013) highlight ML model advantages. The Babel 

Optional Period 2 dataset is pivotal for studying speech recognition and keyword search 

technologies, evaluating ML representations (Plah et al. 2010). Developed independently by 
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IBM, Cambridge University, and RWTH Aachen, ML capabilities are a focus. While not 

exhaustive, strategies for expediting neural network training include distributed DNN 

training methods (Heigold et al. 2013) with significant communication costs. An alternative 

strategy by Sainath et al. (2014) uses a mixed hardware/software approach, and Seide et al. 

(2014) suggests 1-bit quantization of gradients to mitigate data communication costs. To 

expedite training, a strategy involves data sampling, as proposed by Byrd et al. (2011). 

Varying sample sizes in batch optimization methods, introduced in their framework, address 

large-scale machine learning challenges, contributing to accelerated training processes. This 

approach is relevant to the ongoing investigation in this thesis. 

 

2.4    EXAMINING THE ROLE OF PHONOLOGY AND MORPHOLOGY IN SHAPING 

SPOKEN WORD RECOGNITION 

 

Several techniques alleviate data requirements for LRLs in speech recognition. Benchmarks 

and probabilistic transcriptions (Glocker et al. 2023) are viable strategies, reducing the need 

for extensive training data. Architectural advancements enable zero-shot phoneme 

recognition for undiscovered languages, relying solely on phoneme inventories (Li et al. 

2020). Allophone-to-phoneme mappings, crucial for handling language intricacies, are 

highlighted by Ladefoged (2014). In the 2010s, neural text-to-speech synthesis (TTS) 

introduces more natural and comprehensible speech output (Tan et al. 2021). Dealing with 

substantial data demands in LRLs poses challenges. A common approach is pre-training the 

acoustic model on a data-rich "source language" before fine-tuning on the limited data of the 

target LRL, as explored by Tu et al. (2019) and Wells and Richmond (2021). This study 

emphasizes employing neural networks for phonetics and phonology modeling, exploring 

unsupervised binary stochastic autoencoders (Shain and Elsner, 2019) and Generative 

Adversarial Networks (GANs) (Begus, 2020). While initially designed for vision and 

language categorization, these frameworks hold promise for language learning applications, 

including identifying phonemic tone contours in tonal languages (Li et al. 2019). This thesis 

focuses on advancing representation learning to address critical issues in speech recognition 

and historical phonology in LRL contexts. 
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Phonemes, the smallest units in speech, crucially distinguish word and sentence meanings, 

categorized as vowels and consonants. Consonants, with stronger airflow constraints, 

produce sounds with weaker amplitudes and noisier attributes (Rabiner and Juang, 1993; 

Deller et al. 1993). In contrast, vowels experience less airflow restriction. Arabic comprises 

36 phonemes, including short and long vowels and consonants (Alghamdi, 2001). 

Understanding these distinct features is crucial for speech analysis and practical applications. 

Major languages, such as Japanese and certain American English variants, have varying 

vowel counts (at least five and 12, respectively). Bengali has 11 vowels, while Arabic 

employs a distinct pattern with three long and three short vowels, where vowel length is 

phonemically significant (Deller et al. 1993). Arabic's phonetic complexity includes 

diacritics serving as vowels. Consonant phonemes in Arabic may vary across dialects; for 

example, Egyptian Arabic replaces /ð/ and /Ø/ with /g/ for the letter /Z/ (Kirchhoff et al. 

2002). Arabic dialects' diverse vowel and consonant phonemes pose intriguing challenges 

for linguistic analysis, showcasing the language's phonetic richness. Newman's (2002) study, 

comparing Arabic to other languages using the IPA framework and the UPSID database (317 

languages, 58 phonetic features), focuses on the distinctive voiced pharyngeal fricative /è/. 

This rare phoneme is present in only eight languages, with five belonging to the Afro-Asiatic 

family. The prolonged variant, unique to Arabic and two other languages, holds significant 

importance in the study. Newman's investigation focused on Arabic's pharyngeal and uvular 

phonemes, highlighting the rare occurrence of sounds like the voiced pharyngeal fricative, 

showcasing Arabic's uniqueness. Brazilian Portuguese, stemming from Portuguese, boasts a 

complex phonological system with 36 phonemes, including 26 consonants and 10 vowels. 

Brazilian Portuguese features phonetic representations for 21 oral diphthongs and 5 nasal 

vowels, enhancing its phonological richness within the Romance language family (Silva & 

Yehia, 2011). The incorporation of vowel digraphs and nasal vowels makes Brazilian 

Portuguese linguistically distinctive, with back vowels conveying crucial information 

through lower frequencies, and front vowels exhibiting distinct characteristics in the higher 

frequency range. Nasal vowels represent a subset of vowel phonemes. Nasal vowels, 

produced by opening the oral cavity and lowering the soft palate for airflow through both 

nasal and oral cavities (Bisol, 2005), contribute to unique acoustic output. This behavior 

defines back and front vowels, along with the distinctive qualities of nasal vowels within the 
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phonological system. In natural speech, pauses rarely occur within individual words, with 

prosodic events, marked by tonic fluctuations, influencing both acoustic and semantic 

attributes based on preceding and following words (O’Shaughnessy, 2008). Nasal vowels, 

with pronounced weightiness in lower frequencies, exhibit longer durations compared to oral 

vowels. Enunciating nasal vowels reveals an initial band transitioning into the nasal sound, 

impacting initial resonance frequencies (Theodor et al. 1994). In the realm of vowel groups, 

diphthongs play a significant role as monosyllabic speech sounds, capable of transitioning 

either upwards or downwards in sound. Rising diphthongs emerge when an additional vowel 

co-occurs in the same syllable with /i/ and /u/, starting as a semivowel and progressing into 

a fully pronounced vowel. In summary, nasal vowels are characterized by weighty, low-

frequency attributes, while diphthongs are essential components of vowel groups, 

showcasing sound variations that can ascend or descend based on specific vowel 

combinations. The performance of an ASR system is significantly influenced by the physical 

environment, including the recording area, devices for sound capture, and communication 

channels. The type of microphone used, particularly its frequency response within the human 

speech range (100 Hz to 8000 Hz), plays a pivotal role in capturing precise characteristics 

for successful transcription. Selecting an appropriate microphone with optimal frequency 

response is crucial for peak ASR system performance. The International Phonetic Alphabet 

(IPA) serves as a standardized system for accurately representing phonetic elements across 

diverse languages (Association, 1999). 

 

2.5 ENHANCING SPOKEN WORD RECOGNITION FOR ASIAN LANGUAGES 

WITH TRANSFORMERS 

 

ASR technology is a vital tool for transcribing and understanding spoken language, with 

applications in voice user interfaces, dictation, interactive voice response systems, and 

language learning platforms. It significantly enhances social interaction and accessibility, 

particularly for individuals with disabilities, promising to simplify daily life. In information 

technology, ASR is widely used in voice-driven applications, automatic language translation, 

and various voice-operated systems (AbuZeina et al. 2011). Arabic speech recognition 

research faces challenges due to limited data, extensive lexical diversity, numerous spoken 
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dialects, and the complexity of Arabic's morphology. Developing acoustic models for 

dialectal Arabic poses a significant obstacle, requiring training with the specific dialect used 

(Boumehdi and Yousfi, 2022). Creating a comprehensive pronunciation dictionary for 

dialectal Arabic words is exceptionally challenging due to the absence of standardized 

spellings in spoken dialects. Diacritization for Arabic dialects is more intricate than for 

Modern Standard Arabic (MSA), requiring a dialectal Arabic morphological analyzer for 

generating various diacritization forms. The absence of a robust language model for dialectal 

Arabic complicates context-based diacritization. Challenges arise due to a larger set of 

vowels in dialectal Arabic, particularly in aligning them with audio input (Abdou and 

Moussa, 2019). European language literature explores various subword modeling 

techniques, including morphological analyzers and n-grams for subword dictionary 

acquisition. Subword ASRs utilizing morphs and rule-based algorithms have been studied 

by Hirsimäki et al. (2006) and Byrne et al. (2000). Morphological analyzers feature in works 

by Erdogan et al. (2005), Laureys et al. (2002), and Hacioglu et al. (2003). Hacioglu et al. 

(2003) and Arısoy et al. (2007) developed subword ASRs using data-driven algorithms. 

Kirchhoff et al. (2006) amalgamated morphological and lexical information for factored and 

joint lexical morphological language models, including direct use of morpheme-based n-

grams. Creutz and Lagus's (2005) Morfessor 1.0 is a renowned approach for morpheme 

segmentation and morphology induction. Additionally, TF-IDF, an earlier technique, is 

recognized as a potent lexical feature (Metze et al. 2013). In English speech recognition 

research, widely used corpora include Switchboard (300 hours), LibriSpeech (960 hours), 

TedLium-3 (450 hours), Common Voice (1400 hours), and SPGISpeech (5000 hours) 

(O'Neill et al. 2021). Except for Switchboard, these corpora are freely available for academic 

and non-profit use. Recent years have seen a substantial reduction in WER in English speech 

recognition, reaching 1.4% on the test-clean LibriSpeech dataset (Panayotov et al. 2015; 

Amodei et al. 2016; Zhang et al. 2020). However, there is a significant challenge in low-

resource Indian languages, lacking a comparable large speech corpus for ASR research. 

Addressing this, Microsoft Billa (2018) released a dataset tailored for low-resource Indian 

languages, providing 50 hours of speech transcriptions in Tamil, Telugu, and Gujarati, 

totaling 150 hours of data. Each language has 40 hours of training data and 5 hours of test 

data, supporting advancements in ASR technology for these underrepresented languages. 
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Efforts to address resource limitations in languages include data augmentation techniques 

demonstrated by Liu et al. in 2019. Creating a substantial speech corpus in Tamil is crucial 

for transfer learning and pre-trained models. Van Huy et al. (2014) introduced the Multi-

Space Probability Distribution Hidden Markov Model (MSD-HMM) for Vietnamese 

speakers, simulating phonemes and incorporating tone information. Using Perceptual Linear 

Prediction  (PLP) and MFCC acoustic features with four unique streams, the Vietnamese 

MSD-HMM improved accuracy by 2.49% compared to the best baseline system and 0.54% 

compared to the best system without MSD-HMM. Markov models, highlighted by He and 

Ferguson in 2022, enhance the efficiency and reliability of speech systems. Tone is crucial 

in tonal languages like Mandarin and Thai, as highlighted by Hu et al. in 2014. Nguyen 

(2016) introduces the use of Scale-Invariant Feature Transform (SIFT) for voice 

categorization, combining it with Local Naïve Bayes (LNBNN) for speech categorization. 

This approach demonstrates significantly higher accuracy in classifying speech signal 

properties. In neural network-based continuous expression identification with a vast 

vocabulary, Gehring et al. (2017) propose a modular synthesis approach. 

 

Deep bottleneck technologies significantly enhance DBN/HMM hybrid systems' 

productivity, as noted by Sainath et al. (2012). Their research shows up to a 21.5% relative 

improvement over the MFCC baseline. In Vietnamese speech recognition, Nga et al. (2021) 

introduce an E2E approach with  Long Short-Term Memory (LSTM) (Hochreiter & 

Schmidhuber (1997)) and TDNN models, demonstrating superior accuracy through deep 

learning. Adaptation to specific language databases while maintaining simplicity for future 

developments remains a key challenge. To enhance ML modeling, modifications to neural 

network models have been proposed. Pratap et al. (2020) demonstrated a multi-decoder ML 

model, while Kannan et al. (2019) used adapter layers in encoder-decoder models to address 

varying data availability. Zhu et al. (2020) and Pratap et al. (2020) parameterized attention 

heads per language in Transformer-based encoders. Mixture of Experts (MOE) models, 

introduced by Jacobs et al. (1991), are common in speech recognition and machine 

translation (Papi et al. 2021; Jain et al. 2019). Lu et al. (2020) applied MOE to a bilingual 

code-switching system, utilizing pre-trained monolingual encoders for effective E2E ML 

ASR. MOE models consist of multiple expert models, each specialized for specific data 
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subsets, integrated using a gating function for effective overall performance. Training ML 

ASR models on large-scale data encounters linguistic differences. An experimental approach 

introduces two challenges: context-free phoneme sequence prediction addresses 

orthographic disparities, and domain adversarial classification enhances adaptability to 

language-specific phenomena (Ganin et al. 2016). Prior work by Krishna et al. (2018) 

combined grapheme and phoneme objectives, but the scale of language adversarial training 

in ASR, as highlighted by Yi et al. (2018), is unprecedented. Speaker-related challenges, 

influenced by emotions, gender, or age, pose complexities in multi-modal analysis and 

fusion (Wu et al. 2022). Variation in accents within the same language, exemplified in 

Arabic, adds another layer of complexity (He and Ferguson, 2022). 

 

2.6  ADVANCES IN SPOKEN WORD RECOGNITION ON SPEECH IMPAIRMENT 

DATASETS 

 
This section provides an overview of the literature on Dysarthric Speech Recognition (DSR) 

in datasets characterized by strong cognitive qualities. It delves into conventional speech 

enhancement and recognition techniques, weighting their respective advantages and 

disadvantages. Classical ASR models often employ HMMs, Support Vector Machines 

(SVMs), ANNs. However, DL techniques have excelled in achieving the SOTA. Individuals 

with dysarthria, a motor speech disorder resulting from brain damage, often struggle with 

speech recognition technology designed for typical speakers. This is due to limited 

availability and inadequate training for those with dysarthria, relying mainly on statistical 

acoustic models (Dhanalakshmi et al. 2018). Dysarthria, linked to neurological conditions 

like Parkinson’s disease, cerebral palsy, strokes, or head injuries, hinders speech production 

with symptoms such as weakness and coordination deficits. Assistive technology aids 

dysarthric individuals in communication and device control, addressing associated physical 

disabilities (Xie et al. 2022; Whitehill & Ciocca, 2000; Enderby, 2013; Hawley et al. 2012, 

2007).  

 

Advances in DNN topologies, demanding substantial training data, further exacerbate the 

issue. Dysarthria is prevalent among older individuals, especially those with neurocognitive 
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conditions like Alzheimer’s disease, impacting their speech patterns (Ye et al. 2021). DSR 

proposes a two-step model adaptation process—initially creating a speaker-independent (SI) 

dysarthria model and then refining a SD dysarthria model (Takashima et al. 2020). This 

approach adapts shared knowledge from SI non-dysarthria models, demonstrating superior 

performance compared to traditional methods. Dysarthria, arising from conditions affecting 

speech motor control, involves muscle weakness and coordination issues, leading to 

inconsistent vowel and inadequate consonant articulation. Preferred over generic systems 

(Enderby, 2013), specialized speech recognition models for dysarthric speakers account for 

these distinctive characteristics (Trinh et al. 2022). In 1995, Jayaram and Abdelhamied 

pioneered a hybrid HMM-ANN dysarthric-specific ASR system using a dataset of dysarthric 

individuals with mild speech intelligibility. While typical speech recognition excels, 

dysarthric speakers face limited access and training, relying on statistical acoustic models 

(Dhanalakshmi et al. 2018). DNNs demand substantial training data, posing challenges in 

dysarthria data collection. The UA-Speech database enhances ASR training, outperforming 

traditional models across dysarthria severity (Kim et al. 2008). The HMM-based dysarthric-

specific recognizer achieves a reported 69.1% recognition rate (Selouani et al. 2009), lacking 

detailed WERs and speech intelligibility assessment. In their 2010 study, Dede and Sazlı 

leveraged ANNs to achieve an impressive 78.25% recognition rate for dysarthric ASR. 

Despite the challenge of a mere 20% speech intelligibility, this breakthrough underscores 

ANNs' prowess in enhancing ASR, particularly in the context of dysarthric speech. ASR, 

prevalent in smartphone personal assistants, relies on deep learning, demanding ample 

training data. Traditional systems, trained on standard speech, often struggle with dysarthric 

speech due to challenges in acquiring sufficient data from individuals with articulation 

difficulties (Xiong et al. 2018; Shahamiri, 2021). Athetoid symptoms in dysarthric 

individuals further complicate recognition. Vachhani et al. 2018) synthesized dysarthric 

speech from healthy speech, classified using a random forest classifier. Dysarthric classes 

trained DNN-HMM-based ASR systems, and a triple-speed perturbation approach enhanced 

data, expanding the dataset (Xiong et al. 2020). Factored TDNN-F, incorporating CNNs, 

achieved an average WER of 30.76% on the UA single-word speech corpus. Dash & Solanki 

(2020) proposed a modified DNN for speech enhancement, improving signal quality but 

maintaining computational costs. Rahiman et al. (2021) utilized DL for channel estimation 
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in ambient noise conditions with enhanced reliability. Haridas et al. (2018) employed the 

delta-AMS method for noise removal, adjusting the delta parameter for varying noise levels. 

Woszczyk et al. (2020) developed an adversarial neural network improving voice recognition 

across severity levels for 11 individuals. The fusion-based speech analysis methodologies 

devised in this thesis serve the purpose of assessing spoken language across audio, video, 

and textual data. Each of the challenges, spanning multimodal speech analysis ad speech 

recognition, hinges upon the application of fusion-based algorithms. These algorithms 

leverage audio, image, and text features to discern and identify spoken language within 

speech data. Solutions to these challenges are achieved through the implementation of 

supervised, unsupervised, and hybrid classification algorithms, incorporating fusion 

techniques that amalgamate phoneme and morpheme-based features.  

 

2.7     THE INSPIRATION FOR TACKLING THE ISSUES EXPLORED IN THE 

THESIS  

 

Nonetheless, the multitude of accents within our globalized society and the presence of 

ambient noise present considerable challenges in automatically identifying speech from real-

world samples. The necessity for robust, streamlined, and genuine interaction has surged due 

to the expanding adaptive landscape of voice interfaces in intelligent devices (Ravuri & 

Stolcke, 2015; Tur & Mori, 2011). Within this context, the significance of natural language 

processing (NLP) is paramount for discerning text and speech category labels (Lin et al. 

2021). Yet, the copious volumes of ML speech data accessible online render voice search 

and unstructured dictation inadequate for encompassing the linguistic spectrum (Cabrera et 

al. 2021). In conjunction with NLP, acoustic characteristics extracted from raw audio, such 

as MFCC, are routinely harnessed for speech recognition Davis & Mermelstein (1980). ASR 

entails converting spoken language into readable text through computational means. This 

endeavour encounters difficulties due to the fact that diverse speakers exhibit varying styles, 

accents, and vocal attributes, making it intricate to derive precise text transcripts from audio 

recordings (Besacier et al. 2014). Recent times have witnessed substantial advancements in 

supervised classification techniques for transcribing spoken content, whereas comparatively 

less emphasis has been placed on exploring unsupervised methodologies. In recent times, 
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voice-activated devices have garnered widespread popularity and have seamlessly integrated 

into our daily routines. Prominent illustrations include Google Home, Amazon’s Alexa, and 

Apple’s Siri. These intelligent systems harness ASR to transform spoken language into text. 

However, transcribing spoken discourse into coherent written form presents a range of 

challenges. These encompass the frequent presence of inaccuracies within the generated 

transcriptions, which can significantly influence the quality of interactions with virtual 

assistants (Ogawa & Hori, 2017). Moreover, although encoding words into character strings 

and converting them into vectors via embedding techniques proves effective for refined text, 

this approach falls short when dealing with transcriptions extracted from audio recordings 

(Fang et al. 2020).  As a remedy, a dependable strategy for robust speech recognition emerges 

through the direct extraction of phonemes from the original audio recordings. This becomes 

especially vital in situations involving speech that is accented or affected by noise. A widely 

embraced method for phoneme extraction from raw audio involves the use of PocketSphinx 

(Huggins-Daines et al. 2006).  

 

Numerous research studies have underscored the substantial influence of accents on ASR 

accuracy. For instance, Feng et al. (2021) conducted experiments that illuminated significant 

variations in system accuracy for native speakers in different geographical locations, 

primarily attributed to accents. These experiments have demonstrated that incorporating 

embeddings as additional inputs can effectively capture accent- and speaker-related 

information, leading to a significant improvement in the accuracy of accented ASR systems 

(Tong et al. 2022).  Additionally, specialized datasets like SUBAK.KO (Kibria et al. 2022) 

have been introduced to capture the diverse regional accented pronunciations, further 

emphasizing the importance of modeling acoustic variabilities introduced by accents in the 

domain of speech recognition (Xie et al. 2022).  An intriguing finding, as highlighted in 

(Dokuz and Tüfekci, 2022) suggests that combining gender and accent features contributes 

to the enhancement of speech recognition performance. One notable technique for improving 

accented speech recognition involves the learning of mappings between accented and 

canonical phones. These mappings can be generated through various means, including 

subject-matter expertise (Richards and Schmidt, 2013), extensive exposure to accented and 

unaccented speech (Goronzy et al. 2004; Loots and Niesler, 2011), or the development of 
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mappings under specific hand-crafted constraints (Humphries et al. 1996). These strategies 

play a crucial role in addressing the challenges posed by accents in speech recognition, a key 

focus of investigation within this thesis.  

 

2.8       RESEARCH GAPS 

 

The current landscape of research in the field of speech processing reveals notable gaps and 

opportunities for advancement. Specifically, there is a noticeable deficit in comprehensive 

studies that integrate multiple speech frameworks. Researchers have not given sufficient 

attention to the classification of audio-phonemes and text-phonemes concurrently, 

representing an untapped potential for understanding the intricate relationship between 

spoken and written language. Furthermore, the realm of feature extraction and classification 

is underexplored when considering both raw audio and speech transcriptions simultaneously. 

This holistic approach could lead to more robust and nuanced models, capable of capturing 

the nuances present in both auditory and linguistic representations. In addition, the 

intersection of phoneme and morpheme classification remains an underdeveloped area of 

inquiry. Combining these linguistic units in classification tasks has the potential to provide 

a deeper understanding of the interplay between sound and structure in language. Addressing 

these gaps in research would not only contribute significantly to the theoretical foundations 

of speech processing but also hold practical implications for the development of more 

accurate and versatile language models.  

 

By fostering interdisciplinary collaboration and encouraging exploration in these overlooked 

areas, researchers can pave the way for ground-breaking advancements in the understanding 

and application of speech and language processing technologies. 

 

2.9     RESEARCH OBJECTIVES 

 

In order to systematically address the identified research gaps in the field of speech 

processing, we propose a comprehensive set of research objectives designed to explore and 
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contribute to the unexplored intersections within the domain. The overarching aim of our 

research is to enhance the understanding and capabilities of speech processing models. Our 

specific objectives include: 

1. Conduction of spectrogram-based phonological studies for spoken word recognition 

(Chapter-3). 

2. Design and development of fusion framework for phoneme-based spoken word 

recognition from raw audio (Chapter-4). 

3. Design and development of fusion framework for phoneme- and morpheme-based 

spoken word recognition from speech transcriptions (Chapter-5). 

4. Design and development of classification framework for phonological and 

morphological features using pre-trained networks for spoken word recognition 

(Chapter-6). 

5. Design and development of fusion framework for spoken word recognition from raw 

audio and speech transcriptions (Chapter-7). 

 

2.10 THE CHALLENGES EXAMINED WITHIN THIS THESIS AND THE 

CORRESPONDING RESOLUTIONS 

 
As evident from the preceding section, there is a compelling need for advanced fusion-based 

algorithms within the context of Speech Analysis. These algorithms should possess the 

capability to accurately assess both phonological and morphological information while 

effectively addressing the inherent ambiguities present in natural language. Following the 

introduction, the thesis is organized into seven chapters. Chapter 2 entails an extensive 

literature review concerning the SOTA developments in the Speech field. Chapter 3 through 

7 delve into innovative methodologies for conducting speech analysis, specifically tailored 

to tackle the imprecision and uncertainty inherent in natural language.  

 

Briefly outlined below are the fusion-based solutions proposed within this thesis to address 

the five identified problems in spoken word analysis.  
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• Problem 1: A new fusion technique for highlighting of spectrogram-based 

phonological studies for spoken word classification is to be developed.  

 

In Chapter 3, we propose a novel approach to investigates the relatively unexplored roles of 

spectrograms and phonology in enhancing the precision of SWR. To achieve this goal, a 

novel dual-pronged approach is employed, utilizing the Speech2Text transformer to 

separately handle text transcript extraction and spectrogram generation. The experimentation 

phase is conducted using the Google Speech Command Dataset (GSCD), which 

encompasses both 10-word and 35-word categories. In order to create two-dimensional 

audio representation, mel spectrogram images (Sakashita & Yono, (2018) are processed and 

resized to dimensions of 256 x 256 pixels. These images are subsequently categorized using 

both the ImageNet and the tiny Swin transformer version 2. Additionally, a grapheme-to-

phoneme (G2P) model is incorporated to convert Speech2Text transcripts into phonemes. 

Through a method called phoneme slicing, essential phonological features like fricatives, 

nasals, liquids, glides, plosives, approximants, taps/flaps, trills, and vowels are extracted, 

with careful consideration of factors such as manner and place of articulation. The study 

aims to decode spoken words accurately, assessing spectrogram and phonological impact 

through ablation analysis. It introduces a late fusion strategy, combining phone and image 

embeddings, achieving impressive accuracy. This surpasses existing methods, setting a new 

benchmark by integrating linguistic insights. The approach harmonizes text and mel 

spectrograms, enhancing ASR precision and highlighting the vital role of phonological 

analysis in speech interpretation.  

 

• Problem 2: A new fusion framework that highlights spoken word classification 

and facilitates phoneme-based spoken word recognition from raw-audio.  

 

In Chapter 4, we present a supervised approach for the recognition of accented speech, 

particularly when dealing with limited resources. One notable gap in previous research is the 

underutilization of phonology in understanding spoken text. Our proposal involves the early 

fusion of phone embeddings to effectively identify accented speech, even when working 

with a small sample dataset. We begin by extracting phonemes from .wav recordings using 
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PocketSphinx. These phonemes are then transformed into vectors using FastText’s character 

n-gram-based subword embeddings. To ensure uniformity, we concatenate and pad the 

vectors. The early fusion of phone embeddings yields an impressive accuracy, when applied 

to the task of accented speech recognition, specifically in the context of the L2-ARCTIC 

accented speech corpus. This accuracy surpasses that of existing techniques. Our work aims 

to demonstrate the significant role that audio phonemes can play in accented speech 

recognition, even in scenarios with a limited number of training samples.  

 

• Problem 3: A new fusion framework that emphasizes both spoken word 

classification and the recognition of spoken words based on phoneme and 

morpheme information extracted from speech transcriptions.   

 

In Chapter 5, we present an unsupervised approach designed to enhance the accuracy of 

speech transcriptions that are initially highly imperfect. This improvement is achieved 

through decision-level fusion, involving stemming and a two-way phoneme pruning process. 

Our transcripts are obtained from videos by first extracting audio using the Ffmpeg 

framework and subsequently converting the audio into text transcripts using the Google API. 

The benchmark dataset used for evaluation is the Lip Reading in the Wild (LRW) dataset, 

comprising 500 word categories, each with 50 videos in mp4 format. Each video consists of 

29 frames, each lasting 1.16 seconds, with the target word positioned in the middle of the 

video. To enhance the baseline accuracy, we applied various techniques including stemming, 

phoneme extraction, filtering, and pruning. The stemming algorithm is applied to the text 

transcript, resulting in a notable accuracy for word recognition. For phoneme conversion, 

we utilized the Carnegie Mellon University (CMU) pronouncing dictionary, which provides 

a phonetic mapping of English words to their pronunciation. Our two-way phoneme pruning 

process phonemes containing vowels and fricatives. After implementing stemming and two-

way phoneme pruning, we incorporated decision-level fusion techniques, ultimately 

achieving a substantial improvement in word recognition rates, reaching an accuracy. This 

approach significantly enhances the accuracy of transcribing highly imperfect speech.  
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• Problem 4: A novel fusion framework that highlights both spoken word 

classification and recognition, encompassing classification frameworks for 

phonological and morphological features using pre-trained networks for spoken 

word recognition.  

 

In Chapter 6, we present a supervised technique for Spoken Word Recognition (SWR), 

especially when dealing with limited input data. Notably, previous research has shown 

limited exploration of the potential of morphemes and phonemes in understanding spoken 

text. To address this, we introduce a late fusion approach involving phone embeddings and 

bigrams embeddings to identify spoken words from a small sample collection. Our audio 

recordings are stored in .OPUS format, and we extract text transcripts from the raw audio 

using the English Large xlsr-Wav2Vec2-53 pre-trained classifier. We recover phonemes from 

the text transcript using the CMU pronouncing dictionary and convert them into vectors 

through ML, language-agnostic sentence embeddings. To ensure uniformity, we concatenate 

and pad the vectors. Additionally, we extract bigrams from the text transcript and vectorize 

them using the same ML language-agnostic sentence embeddings. Both the phoneme 

embeddings and morpheme embeddings are input into a 5-layered dense batch normalization 

model.  

 

The results indicate that the late fusion of phone embeddings and bigrams achieves a good 

accuracy in Arabic, Vietnamese, and Tamil for the 10 spoken word categories in the ML 

spoken words corpus. These accuracies surpass those of existing techniques.  Our work 

underscores the significant role that linguistics, specifically phonemes and morphemes, can 

play in SWR, even when dealing with limited and imbalanced training samples. We also 

propose that text-transcription features extracted from pre-trained models outperform 

existing audio-based feature modeling.  

 

We also developed a supervised strategy tailored for SWR in a ML dataset under resource 

constraints. Addressing the paucity of research exploring the application of morphology and 

phonology in comprehending spoken text is a primary focus, setting it apart from SOTA 

approaches. The ML spoken words corpus stores audio files in .opus format. To obtain text 



 

 21 

transcripts from the original audio, we deploy the pre-trained Arabic Large xlsr-Wav2Vec2-

53 transformer. Our experiment unfolds in two stages, involving two distinct forms of text 

transcripts: “buckwalter transliteration” and “Arabic script”.  In the initial stage, we convert 

the buckwalter transliteration form into phonemes by leveraging the CMU pronouncing 

dictionary with the support of an Arabic-based grapheme-2-phoneme model. These 

phonemes are then translated into vectors using character-n-grams-based subword 

embeddings provided by FastText. Moving to the second stage, Arabic scripts undergo 

stemming, followed by conversion into unigrams. FastText word embeddings facilitate the 

transition from unigrams to vectors. In both scenarios, we concatenate and pad the vectors 

to ensure uniformity.  

 

These vectors, collected in both stages, feed into a three-layered dense model with batch 

normalization to generate probabilistic scores. The results are calculated by averaging the 

outcomes of both stages, yielding satisfactory results that outperform SOTA approaches.  

 

• Problem 5: An innovative fusion framework that accentuates both spoken word 

classification and recognition, encompassing the design and development of 

spoken word recognition from raw audio and speech transcriptions.  

 

In Chapter 7, our study tackles the challenge of effectively integrating multimodal data from 

imperfect text transcripts and raw audio within a deep framework for automatic speech 

recognition. Our approach emphasizes late fusion of audio and text modalities. We introduce 

a SA-deep BiLSTM model to independently process audio and text data. For training each 

feature type, we employ the SA-deep BiLSTM model, which consists of five BiLSTM layers 

and incorporates a self-attention module between the third and fourth layers. We consider 

linguistic data, such as word stems extracted from text transcripts, and acoustic features like 

Mel MFCC and Mel-spectrograms. The GloVe word embedding is utilized to vectorize 

linguistic data.  

 

By combining the posterior class probabilities obtained from SA-deep BiLSTM models 

trained on individual modalities, we achieve an impressive accuracy on the 10-word 
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categories of the Google speech command dataset. Rigorous testing using this dataset and 

ablation analysis demonstrate the superiority of our proposed method, primarily due to the 

consistently high classification accuracies it achieves compared to SOTA approaches. 

 

In the upcoming chapter, we have explored objective 1, delving into the impact of 

spectrogram and phonology on the recognition of spoken words.



 

The contents of this chapter are submitted/accepted/under review in: 

“Evaluating the significance of suprasegmental features in speech command recognition through 

spectrogram and phonological fusion analysis” – Soft Computing. (IF: 3.1).   

& 

“Improving speech command recognition through decision-level fusion of deep filtered speech cues” - 

Signal, Image and Video Processing SIViP (2023), https://doi.org/10.1007/s11760-023-02845-z. (IF: 

2.3). 

& 

“A Deep Learning Approach to Dysarthric Utterance Classification with BiLSTM-GRU, Speech Cue 

Filtering, and Log Mel-Spectrograms” –The Journal of Supercomputing (2024), 

https://doi.org/10.1007/s11227-024-06015-x. (IF: 3.3).    

 

 

 

 

23 

 

CHAPTER 3 

 

CONDUCTION OF SPECTROGRAM-BASED 

PHONOLOGICAL STUDIES FOR SPOKEN WORD 

RECOGNITION  

 
 
 

Simulating the task of identifying words in human speech is challenging due to the complex 

nature of the human mind’s cognitive processes. In this chapter, we propose an advance 

speech recognition by effectively integrating multimodal data, including text transcripts and 

mel spectrograms extracted from raw audio. The study investigates the relatively unexplored 

roles of spectrograms and phonology in accurately recognizing spoken words. To accomplish 

this, we adopt a dual approach by utilizing the Speech2Text transformer to separate the 

acquisition of text transcripts and spectrogram extraction. We conduct experiments on the 

GSCD, which includes both 10-word and 35-word categories. We process mel spectrogram 

images, resizing them to 256 × 256 pixels to create two-dimensional audio representations. 

These images are then categorized using the ImageNet and the tiny Swin transformer version 

2.1

 
1 

https://doi.org/10.1007/s11760-023-02845-z
https://doi.org/10.1007/s11227-024-06015-x
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Additionally, we employ a G2P model to convert Speech2Text transcripts into phonemes. 

Our primary objective is to accurately decode the linguistic information embedded in spoken 

words. To evaluate the impact of spectrograms and phonological characteristics on 

categorization, we conduct an ablation analysis. We propose a late fusion strategy that 

combines phone embeddings and image embeddings. Our strategy outperforms other 

methods, setting a new benchmark by merging linguistic insights with abundant resources. 

By bridging the gap between text transcripts and mel spectrograms, our approach provides 

a robust solution for achieving more accurate and reliable ASR performance. This work 

contributes to the field of ASR by exploring the synergies of multimodal data in a technical 

and comprehensive manner.  The remaining sections of this objective are structured as 

follows: In Section 3.1, we delve into the pre-processing of data transcripts. Section 3.2 is 

dedicated to audio pre-processing and the extraction of features. In Section 3.3, we explore 

phonology, including the study of suprasegmental phonemes. Moving on to Section 3.4, we 

discuss phoneme embeddings.  Our proposed methodology is presented in Section 3.5. 

Experimental details and discussions are covered in Section 3.6. Section 3.7 provides an in-

depth ablation analysis of spectrogram and phonology. Finally, Section 3.8 summarizes the 

key findings of this chapter.  

 

3.1 SPEECH2TEXT TRANSCRIPTS PRE-PROCESSING  

 

As outlined by Alsharhan and Ramsay (2019), a phoneme, the smallest unit of speech in 

linguistics, is characterized by distinct sounds or groups of sounds that carry variations in 

meaning and pronunciation. These pronunciation differences can be influenced by adjacent 

letters, affecting their representation in written language. In our methodology, we leverage 

text transcripts, as depicted in Figure 3.1, to extract these phonemes. To accomplish this, we 

employ a pre-trained transformer model, “Speech2Text”, to extract text transcripts from 

audio samples. Subsequently, we utilize a G2P model to convert the remaining transcripts 

into phonemes. The CMU Pronunciation Dictionary, a comprehensive resource  with over 

125,000 words and their associated phonetic transcription, serves as the foundation for 

representing the possible speech sounds of words. This representation encompasses critical 

aspects such as stress, articulation, and intonation. To enhance clarity and precision, we 
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engage in text normalization, generating a set of phonemes from the aligned transcript. Our 

focus is on capturing the intricate sound patterns of syllables and the stress patterns within 

words or phrases. Notably, we opt for typical phonetic representations for each word, 

omitting numerical stress values. For example, the word “backward” is phonetically 

transcribed as “ “B”, “AE1”, “K”, “W”, “ER0”, “D” ”. In this representation, stress is 

indicated by numerical values, where 0 denotes no stress, 1 signifies primary stress, and 2 

indicates secondary stress. To retain the essential phonetic information, we eliminate these 

numerical stress markers. As illustrated in Figure 3.1, the transcript undergoes segmentation 

into individual words, with each word represented by its corresponding phonemes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Using a G2P model, the text transcription of the word "backward" is analyzed 

to determine the appropriate phonemes that represent the sounds in the word 

 
However, it’s important to acknowledge that achieving an exact match in transcripts can be 

challenging due to the inherent variations in pronunciation resulting from different speakers 

(Hazen, 2006). Our approach relies on the CMU Pronouncing Dictionary, tailored for 

American English phonetic representation, and adept at capturing stress patterns. 



 

 

26 

 

Nevertheless, we remain attentive to the ongoing challenge posed by speaker-related 

variations. The dictionary aligns with the IPA, ensuring a consistent representation of spoken 

language sounds, encompassing vowels, plosives, nasals, glides, and fricatives. Plosives, 

often referred to as stop or oral consonants, exert temporary blockage of the vocal tract, 

resulting in the cessation of airflow. This category encompasses both voiced and voiceless 

consonants. Among the voiced plosives, we find the letters “b”, “d”, and “g”, whereas 

voiceless plosives consist of the letters “p”, “t”, and “k”. Distinguished by their pronounced 

amplitude, notable fricatives encompass the letters “f”, “s”, “v”, and “z”. 

 

Table 3.1 The International Phonetic Alphabet's letters (Association, 1999) 
 

 

The paramount aim of the IPA is to offer a comprehensive representation of sounds prevalent 

in all spoken languages. It accomplishes this by assigning unique identifiers and categories 

to each linguistic unit on the phonetic chart, a fundamental introduction by the IPA as shown 

in Table 3.1. Consonants primarily originate within the vocal tract, particularly the oral tract, 

which encompasses the mouth and pharynx. Based on their specific points of articulation, 

consonants are further classified into dorsal, labial, coronal, and radical categories. In 

contrast, vowels contribute to elevate pitch (Bastanfard et al. 2009) and amplitude, rendering 

them generally distinguishable and easily detectable. The distinction between nasal and oral 

speech is contingent upon the presence or absence of airflow blockage in the oral tract. 

Fricatives, such as “f”, “s”, “v”, and “z”, are produced by pressing the lower lip against the 

upper teeth to create these sounds. Trills and taps, created by active and passive articulators, 

respectively, introduce two additional acoustic elements (Schwartz and Makhoul, 1975). In 

 Bilabial Labio-
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Dental Alveolar Post-
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summary, the process of phoneme filtering, coupled with the utilization of the CMU 

Pronouncing Dictionary ensures a consistent representation of speech sounds. Consonants 

characterized by their high intensity amplitude, often referred to as glottal stops, are 

classified as fricatives.  

3.2 AUDIO PRE-PROCESSING AND FEATURE EXTRACTION 

 

The initial phase of signal pre-processing is a crucial step in ensuring accurate speech 

recognition. It servers to enhance key components of incoming sound signals, thereby 

improving their acoustic attributers proceeding to feature extraction. In this context, the 

application of a median filter proves valuable for the removal of undesirable noise elements 

from input audio signals. The median filter operates by replacing each data point within the 

signal with the median value of its neighbouring data points, utilizing a predefined window 

size specified as the kernel_size. The kernel size, represented by filter_size, is set to 5, 

effectively removing noise and enhancing the quality of the speech signal through median 

filtering (Mehra et al. 2023). Utilizing a median filter for speech signal enhancement offers 

several advantages, including noise reduction (Rabiner and Schafer, 2007), preservation of 

speech features, robustness against outliers, simplicity, efficiency, non-linear noise 

reduction, edge preservation, adaptability, and compatibility with .wav format (Gonzalez and 

Woods, 2008). Subsequent to background noise removal via the median filter, the improved 

speech signals are organized into separate categories and stored in distinct folders. After this 

pre-processing step, Mel spectrograms are generated from the speech audio samples. The 

Mel spectrograms are extracted using the Librosa package, involving the application of the 

short-time Fourier transform (STFT) to the spoken signal. This process includes the 

conversion of signal amplitudes into decibels and the mapping of frequencies onto the Mel 

scale. Consequently, it yields the Mel spectrogram, offering a visual representation of the 

signal’s spectral content. These enhanced Mel spectrograms are then input into the Swin 

transformer, a powerful deep-learning model detailed further below. The Swin transformer 

employs three key techniques to optimize its performance: Residual-post-norm with Cosine 

Attention: This method combines a residual-post-norm architecture with cosine attention, 

contributing to enhanced training stability. The utilization of the residual-post-norm 

approach promotes smoother gradient flow during training, while the cosine attention 

mechanism bolsters the model’s capacity to capture meaningful relationships across different 

input segments. Log-spaced continuous position bias: The Swin transformer employs a log-
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spaced continuous position bias, facilitating the effective capture of long-range 

dependencies. This technique empowers the model to attend to distant elements within the 

input, ultimately augmenting its grasp of the broader context within the Mel spectrograms. 

Self-supervised pretraining A Simple Framework for Masked Image Modeling (SimMIM): 

To reduce reliance on large labeled image datasets, the Swin transformer employs the self-

supervised pretraining approach known as SimMIM. The Swin transformer leverages 

SimMIM to acquire meaningful representations from unlabeled data by predicting image 

patch orders. It categorizes Mel spectrograms with knowledge drawn from 14 million 

annotated ImageNet images, thereby enabling efficient handling of image-to-image tasks. 

Its proficiency in processing Mel spectrograms underscores its potential in the area of speech 

signal processing and speech-related applications. The flowchart depicted in Figure 3.2 

provides a visual representation of the proposed approach.  

 

                

 
Figure 3.2. Workflow of proposed approach 

 

3.3 WITH AND WITHOUT SUPRASEGMENTAL PHONEME 

 

Suprasegmental phonemes, as discussed by Yenkimaleki and Heuven (2021), are 

representations that encompass the prosodic and rhythmic elements of speech, including 
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intonation, stress, and rhythm. These phonemes extend beyond individual phonemes and 

encapsulate the characteristics of entire speech units or phrases. Incorporating 

suprasegmental phonemes into speech-processing tasks can notably enhance the model’s 

capacity to comprehend and generate speech that sounds natural. Their utilization in speech-

processing tasks enables models to capture the subtleties of spoken language more 

effectively, leading to improved performance across various speech-related applications 

such as speech recognition, speech synthesis, and spoken language understanding. This 

integration of prosodic information empowers the model to generate speech output that is 

both natural and expressive. The taxonomy of suprasegmental stress levels, as depicted in 

Figure 3.3, allow for the classification of stress in speech. When suprasegmental phonemes 

are omitted, models may solely rely on segmental phoneme information, potentially resulting 

in speech generation that sounds less natural. This could lead to difficulties in capturing the 

rhythmic and expressive aspects of speech, culminating in a more robotic or monotonic 

speech output (Sönmez and Varol, 2021). In summary, the inclusion of suprasegmental 

phoneme information significantly enhances the model’s ability to produce expressive and 

authentic speech, rendering it more akin to human speech. This supplementary prosodic 

information proves valuable in various speech-related contexts, particularly in conveying 

emotions, emphasis, and rhythm. Our analysis encompassed both scenarios with and without 

suprasegmental phonemes, evaluating their contributions to accurately identifying spoken 

utterances. 

 

 
Figure 3.3. Levels of stress in spoken utterance 

 

3.4 PHONEME EMBEDDINGS 

 

Utilizing the Universal Sentence Encoder (USE) (Cer et al. 2018), we conducted the 

generation of phoneme embeddings. This widely acclaimed pre-trained model, developed 

by Google, excels at producing consistent fixed-length vector representations for sentences 

and texts. In our context, we applied this model to phonemes, both with and without 
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suprasegmental additions, tailored to the spoken utterance category. This yielded 

embeddings of size (512 × 1). The USE, based on the Transformer architecture, is highly 

versatile for a spectrum of NLP applications. Its strength lies in its extensive training on 

diverse textual data, allowing it to effectively capture the semantic meaning of phrases.  On 

another front, we harnessed Sentence-BERT (SBERT) embeddings, an alternative class of 

pre-trained models engineered to create high-quality fixed-length vector representations 

(768 × 1) for sentences and texts. In our study, SBERT played a pivotal role in extracting 

embeddings for both suprasegmental and non-suprasegmental phonemes. SBERT, an 

extension of BERT (Bidirectional Encoder Representations from Transformers), a renowned 

language model for word embeddings, operates by fine-tuning BERT for sentence-level tasks 

through the inclusion of sentence pairs during training. Unlike traditional BERT, where 

masked language modeling is the primary objective, SBERT employs Siamese and triplet 

networks alongside contrastive loss functions to master sentence representations. The 

resultant embeddings obtained from the USE and SBERT encapsulate critical phonological 

attributes, such as fricatives, vowels, and plosives. Their expressiveness is further enriched 

through processing via a three-layered feed-forward network, facilitating the capture of 

intricate speech patterns. The depth of this network leverages hierarchical phonetic features 

to construct a discriminative feature space. Meticulous training, incorporating activation 

functions and regularization, ensures the effective harnessing of phonological information. 

The output of this network evolves into a potent representation for downstream speech-

related tasks, including phoneme recognition, speech synthesis, and accent classification. 

The amalgamation of phonemes and SBERT reinforces both phonological and semantic 

representations, culminating in enhanced speech processing performance.  

 

3.5 3-LAYERED NEURAL NETWORK ARCHITECTURE 

 

The integrated audio and image embeddings are input into a three-layered dense model, as 

depicted in Figure 3.4. These features are processed using the three-layered model, 

comprising a flattened layer and three dense layers with 512, 256, and 64 units, each 

employing the ReLu activation function. The learning rate, regulated by the Adam optimizer 

(Duchi et al. 2011), is controlled in a stochastic gradient descent (SGD) fashion. This 

optimizer stands out for its consistent performance across a variety of tasks. The loss 

function employed is known as sparse categorical cross-entropy.  
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Figure 3.4. 3-layered dense model for classifying the fused image and linguistic 

embeddings 

 

3.6 EXPERIMENTAL DETAILS AND DISCUSSIONS 

 

GSCD version 2 is a widely used collection, featuring 105,937 one-second audio recordings 

of 35 spoken commands, including "yes," "no," "stop," and more. Each clip maintains a 

consistent sampling rate of 16 KHz and follows a single-channel (mono) format. This dataset 

is crucial for training and evaluating machine learning models in speech recognition, 

keyword spotting, and wake-word detection tasks. The 35-word category occupies 13.87 

GB, while the 10-word category variant is 1.25 GB. Researchers and developers leverage its 

diverse commands for advancing speech-related applications. Curated by Google, this 

dataset stands out for its diverse audio recordings, encompassing various speakers, accents, 

and age groups. The 35 spoken commands are recorded in different environments, ensuring 

robustness to environmental variations. It is divided into training (80-90%), validation, and 

test sets for comprehensive model evaluation. Each audio clip is labeled with its 

corresponding command and organized into folders, making it a valuable resource for voice-

controlled apps, wake-word detection, and speech recognition in real-world scenarios. 

 

Table 3.2 Summary of dataset 

CATEGORY TRAIN VALIDATI
ON 

TEST 

RIGHT 3778 363 396 
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The summary of dataset is presented in Table 3.2. This dataset plays a pivotal role in the 

training and assessment of machine learning models for diverse speech-related tasks, 

including speech recognition, keyword spotting, and wake-up word detection. These tasks 

are crucial for ensuring optimal performance in real-world scenarios.  However, it is 

noteworthy that the dataset comes with its share of challenges. These challenges include 

background noise, variations in pronunciation, and commands that sound similar. 

Addressing these challenges is paramount for the development of robust and highly accurate 

models. The dataset finds widespread application in voice-controlled applications, wake-

GO 3880 372 402 

NO 3941 406 405 

LEFT 3801 352 412 

STOP 3872 350 411 

UP 3723 350 425 

DOWN 3917 377 406 

YES 4044 397 419 

ON 3845 363 396 

OFF 3745 373 402 

EIGHT 3787 346 408 

CAT 2031 180 194 

TREE 1759 159 193 

BACKWARD 1664 153 165 

LEARN 1575 127 161 

BED 2014 213 207 

HAPPY 2054 219 203 

DOG 2128 197 220 

WOW 2123 193 206 

FOLLOW 1579 132 172 

NINE 3934 356 408 

THREE 3727 356 405 

SHEILA 2022 204 212 

ONE 3890 351 399 

BIRD 2064 182 185 

ZERO 4052 384 418 

SEVEN 3998 387 406 

VISUAL 1592 139 165 

MARVIN 2100 195 195 

TWO 3880 345 423 

HOUSE 2113 195 191 

SIX 3860 378 394 

FIVE 4052 367 445 

FORWARD 1557 146 155 

FOUR 3728 373 401 
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word detection in smart devices, and speech recognition for voice-activated virtual 

assistants.  

3.6.1 HYPERPARAMETERS 

 

In our investigation, we conducted extensive testing using Python software version 3.10.0 

on a macOS Big Sur platform, equipped with an M1 chip. To ensure the accessibility of our 

code for future studies, we made it available online. Given the computationally intensive 

nature of our experiments, which involved the use of audio samples and transformers, we 

opted for Google Colab Pro with GPU support, alongside the Librosa library to facilitate the 

experimental computations. It’s important to note that Colab Pro offers a maximum of 32 

GB of RAM, which is instrumental in handling our tasks. Our initial steps involved 

generating Mel spectrogram images with dimensions of (256 × 256) to serve as inputs to the 

Swin transformer. Subsequently, we applied a three-layered neural network model to the pre-

trained probabilistic scores, incorporating translation, rescaling, and resizing operations to 

prepare the images for the transformer. In our experimental framework, we utilized pre-

trained probabilistic scores derived from the Swin transformer as input to a feed-forward 

neural network. The training regimen spanned 100 epochs to effectively capture underlying 

data patterns. To introduce nonlinearity and augment the model’s ability to grasp intricate 

relationships within the data, we harnessed the Rectified Linear Unit (ReLU) activation 

function. The choice of ReLU has exhibited its effectiveness in a myriad of classification 

tasks. For efficient regulation of the learning rate during stochastic gradient descent, we 

adopted the Adam optimizer, a well-established choice proposed by Duchi et al. in 2011. 

Renowned for its consistent performance across diverse classification tasks, the Adam 

optimizer computes current gradients by considering an average of previous gradients, 

thereby promoting stable and efficient updates during training. The use of the Adam 

optimizer is instrumental in optimizing our neural network’s convergence and enhancing its 

generalization capabilities, even on unseen data. Within the scope of our research, we 

harnessed the Speech2Text transformer to extract textual transcripts from audio samples. 

Initially, these transcripts are represented as graphemes, which are written symbols 

representing English words. However, our primary objective is to perform the conversion of 

these graphemes into their corresponding phonemes, reflecting the accurate pronunciation 

of words. To accomplish this crucial G2P conversion, we relied on the CMU pronouncing 

dictionary, a valuable linguistic resource introduced by Hazen in 2006. This dictionary offers 
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a comprehensive mapping of English words to their respective phonetic representations. 

Leveraging this resource, we achieved a highly precise transformation of text transcripts into 

their corresponding phonemes. This process of G2P conversion holds significant relevance 

in a variety of language-related tasks, encompassing areas such as speech recognition, 

natural language integration, and linguistic analysis. Having access to phonetic 

representations of words enables us to gain a deeper understanding of pronunciation patterns, 

stress markers, and various phonological features present in spoken text. The IPA defines an 

array of factors, including places of articulation, stress markers, sound articulation, 

production methods, and features related to voiced and voiceless sounds, fricatives, glottal 

sounds, and stop/plosive sounds. Our approach not only enhances the precision of transcript 

representations but also paves the way for further exploration in fields like keyword spotting, 

word correction, and the reduction of WERs. Additionally, this transformation empowers us 

to construct a hierarchical lexical framework that encompasses both morphological and 

phonological elements, ultimately facilitating a more comprehensive understanding of 

linguistic structures within the audio data.  

 

3.7 ABLATION STUDY 

 

In this section, we conducted an ablation study to investigate the impact of audio-based and 

linguistic features, as well as their combination, on a dense model. Our proposed technique 

emphasizes the influence of both audio-based and linguistic factors on speech command 

recognition. Our study reveals a clear advantage in classification scores through the fusion 

of audio-based and linguistic information. Additionally, incorporating stress and intonation 

details into linguistic features positively impacts classification scores. This section covers a 

comparison with other SOTA approaches and discusses the individual impacts of audio-

based and linguistic-based features on spoken command classification. A comprehensive 

comparison of our methodology using the Swin-T embedded 3-layered model with SOTA 

techniques is presented in Tables 3.3 and 3.4.  

 

Table 3.3 Performance evaluation against the SOTA for the Google Speech Command 

Dataset's 10-word category 

Comparison for 10-word categories   ACC (%) 

MFCC + CNN  (Haque et al. 2020)   93.28%                 
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Table 3.4 Performance evaluation against the SOTA for the Google Speech Command 

Dataset's 35-word category 

 

 

 

 

 

 

 

 

 

The results, which attain the highest test accuracy of 99.87%, undeniably demonstrate the 

superiority of our technique in a well-resourced data environment. Our approach 

outperforms a CNN employing MFCCs as input by a margin of 6.59% (Haque et al. 2020) 

for 10-spoken command categories. When compared to alternative methods, our technique 

achieves a higher accuracy of 4.43% compared to Mel spectrogram with LSTM (Wazir et al. 

2019). Our method surpasses EdgeCRNN (Wei et al. 2021), which is a feature-enhanced 

approach based on depth-wise separable convolution and residual structure, by 1.67%. 

Moreover, despite the presumed effectiveness of GFCCs in detecting emotions, our 

technique outperforms the CNN-GFCCs approach (Abdelmaksoud et al. 2021) by 6.78%. 

GFCC + CNN  (Abdelmaksoud et al. 2021)   93.09% 

MFCC + LSTM-RNN (Wazir et al. 2019)   95.44% 

MFCC + LSTM-RNN (Zia and Zahid, 2019)    95.14% 

MelSpec + LSTM (Lezhenin et al. 2019)    95.07% 

DenseNet + BiLSTM (Zeng and Xiao, 2018)    94.88% 

RNN neural attention (de Andrade et al. 2018)    94.11% 

EdgeCRNN  (Wei et al. 2021)    98.20% 

Semi Supervised audio tagging (Cances and Pellegrini, 

2021) 

   95.58% 

Attention based s2s model  (Higy and Bell, 2018)    97.50% 

TripletLoss-res15 (Vygon and Mikhaylovskiy, 2021)    98.38% 

BC-ResNet-8 (Kim et al. 2021)    98.70% 

KWT-3 (Berg et al. 2021)    98.49% 

MatchboxNet-3x2x64 (Majumdar and Ginsburg, 2020)    97.63% 

ConvMixer (Ng et al. 2022)    98.21% 

Embedding + Head (Lin et al. 2020)    97.70% 

Wav2KWS (Seo et al. 2021)    98.52% 

Proposed approach (Spectrogram + Phonemes-SBERT)   99.87% 

Comparison for 35-word categories    ACC (%) 

TripletLoss-res15 (Vygon and Mikhaylovskiy, 2021)   97.00% 

KWT-3 (Berg et al. 2021)   97.69% 

RNN neural attention (de Andrade et al. 2018)   93.90% 

M2D (Niizumi et al. 2023)   98.50% 

Eat-S (Gazneli et al. 2022)   98.15% 

AST (Gong et al. 2021)   98.11% 

HTS-AT (Chen et al. 2022)   98.00% 

ImportantAUG (Trinh et al. 2022)   95.00% 

KW-MLP (Morshed and Ahsan, 2021)   97.56% 

Proposed approach (Spectrogram + Phonemes-SBERT)  98.53% 
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Additionally, our approach excels in comparison to DenseNet-BiLSTM (Zeng and Xiao, 

2018), a model recommended for keyword spotting, achieving a remarkable accuracy of 

94.88%. Furthermore, our method outperforms several commonly used designs. For speech 

command recognition, the accuracy scores using different models are as follows: TripletLoss 

res 15 (Vygon and Mikhaylovskiy, 2021) achieves 98.38%, BC ResNet 8 (Kim et al. 2021) 

attains 98.70% accuracy, Self-attention keyword spotting transformer KWT 3 (Berg et al. 

2021) scores 98.49%, RNN neural attention (de Andrade et al. 2018) reaches 94.11%, 

MatchboxNet 3×2×64 (Majumdar and Ginsburg, 2020) records 97.63%, ConvMixer (Ng et 

al. 2022) obtains 98.21%, keyword spotting with Embedding + Head (Lin et al. 2020) 

achieves 97.70% and Wav2KNWS (Seo et al. 2021) attains 98.52% accuracy for 10-word 

categories. This concise summary is presented in Table 3.3. Our model significantly 

outperforms other transformer-based models. For speech recognition with 35-word 

categories, the accuracy scores using different models are as follows: TripletLoss res15 

(Vygon and Mikhaylovskiy, 2021) achieves 97.00%, KWT 3 (Berg et al. 2021) reaches 

97.69% accuracy, RNN neural attention (de Andrade et al. 2018) scores 93.90%, M2D 

(Niizumi et al. 2023) obtains 98.50%, Eat S (Gazneli et al. 2022) reaches 98.15%, AST: 

Audio spectrogram transformer (Gong et al. 2021) records 98.11%, HTS AT: a hierarchical 

token semantic audio transformer (Chen et al. 2022) achieves 98.00%, ImportantAUG (Trinh 

et al. 2022) scores 95.00%, and KW MLP (Morshed and Ahsan, 2021) attains 97.56% 

accuracy for 35-word categories. In summary, our proposed approach outperforms SOTA 

methods for categorizing both 10-word and 35-word categories on the Google Speech 

Command dataset, achieving excellent accuracy rates of 99.85% and 98.01%, respectively. 

These outstanding results can be attributed to the dataset’s attributes, which include SD 

samples with a variety of accents, and the ideal data sample quantities per category. This 

concise summary is presented in Table 3.4. Visualizations using t-Distributed Stochastic 

Neighbour Embedding (t-SNE), as presented in Figures 3.5 and 3.6, underscore the 

superiority of spectrograms over phonological analysis extracted from text transcripts, for 

both 10-word and 35-word categories. The t-SNE visualization illustrates the influence of 

the Swin Transformer on mel spectrogram images extracted from the Google Speech 

Command dataset. Spectrogram-based clusters are notably distinct and well-separated, 

indicative of the exceptional classification achieved with the Swin-T transformer model. The 

t-SNE visualization showcases the model’s capacity to effectively capture and represent 

intricate patterns and features within the spectrogram data. The clear separation of clusters 
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further emphasizes the model’s ability to discern subtle differences among speech samples, 

leading to highly accurate and reliable classifications. This study highlights the potential for 

significant advancements in speech recognition by leveraging the power of spectrogram-

based representations and sophisticated transformer models.  

 

 

Figure 3.5. 3-layered dense model for classifying 10-word categories using Swin-T 

transformer embeddings 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. 3-layered dense model for classifying 35-word categories using Swin-T 

transformer embeddings 
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Figures 3.7 to 3.10 illustrate the training and testing accuracy results concerning 

phonological attributes, both with and without stress markers, utilizing Sentence BERT and 

USE embeddings in conjunction with a 3-layered neural network. The analysis 

unequivocally demonstrates that the inclusion of stress markers consistently leads to 

enhanced accuracy for both Sentence BERT and USE embeddings. Stress markers emerge 

as pivotal elements in capturing the nuanced aspects of speech, culminating in more precise 

phonological representations and significantly improved classification performance. 

 

Figure 3.7. 3-layered dense model for classifying 10-word categories using phonology 

with stress markers where a) lateral fricatives, b) nasals, c) fricatives, d) glides, e) plosives, 

f) traps, g) liquids and h) trills using 512 USE embeddings 
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Figure 3.8. 3-layered dense model for classifying 10-word categories using phonology 

without stress markers (0,1, and 2) where a) lateral fricatives, b) nasals, c) fricatives, d) 

glides, e) plosives, f) traps, g) liquids and h) trills using 512 USE embeddings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. 3-layered dense model for classifying 10-word categories using phonology 

with stress markers where a) lateral fricatives, b) nasals, c) fricatives, d) glides, e) plosives, 

f) traps, g) liquids and h) trills using 768 Sentence-BERT embeddings 
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Figure 3.10. 3-layered dense model for classifying 10-word categories using phonology 

without stress markers where a) lateral fricatives, b) nasals, c) fricatives, d) glides, e) 

plosives, f) traps, g) liquids and h) trills using 768 Sentence-BERT embeddings 

 

Within the framework of our proposed in-depth analysis and decision-level fusion approach, 

which incorporates our dense model, we scrutinized the significance of individual 

audio/visual components, pairwise combinations of male and female speakers, and the deep 

model itself. The key findings of the ablation analysis, summarized in Tables 3.5 - 3.11, are 

as follows, illustrating the ultimate performance for both audio-based and linguistics-based 

classification within each class. Notably, the combined classification of audio and textual 

features outperforms the suggested dense framework.  

• In the proposed dense framework, image-based classification exhibits superior 

performance compared to text-based classification.  

• Our work employs dual-branch audio and visual modalities, and these outperform 

individual combinations of other widely-used audio/visual components.  

• A significant discovery is that distinct speakers, achieve high accuracy rates, notably 

99.85% for image-based classification and 90.64% for spoken word classification 

using phonemes (without stress markers) on SBERT embeddings. When stress 

markers are introduced, the accuracy rises to 92.36%. This evaluation encompassed 
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a total of 10 subjects. Importantly, the proposed fusion technique led to a substantial 

enhancement in the accuracies across all word categories. The results presented in 

Tables 3.5 to 3.11 consistently demonstrate that SBERT outperforms USE in the 

classification of spoken words, particularly when utilizing phoneme-based text 

transcripts, both with and without stress markers. 

• A similar trend is observed for distinct speakers, where the image-based 

classification approach attains an accuracy rating of 98.02% for spoken word 

classification among 35 subjects. Once again, the proposed fusion technique 

significantly improves the accuracies across all word categories.  

• For the 35-word subjects, the amalgamation of (vowels + plosives) and (vowels + 

fricatives) yields a test accuracy of 74.82% without stress markers in the case of 

SBERT. The same combination achieves a test accuracy of 75.35% without stress 

markers for SBERT in the context of the 35-word subjects. 

• The combination of (vowels + plosives) and (vowels + fricatives) for the 10-word 

subjects exhibits a test accuracy of 84.72% in the absence of stress markers, with 

embeddings sized at 512 × 1. Achieving a test accuracy of 85.01% in the 10-word 

subjects, the combination of (vowels + plosives) and (vowels + fricatives) 

demonstrates effectiveness, particularly in the presence of stress markers, with 

embeddings sized at 512 × 1. 

• Achieving commendable test accuracy, the amalgamation of (vowels + plosives) and 

(vowels + fricatives) for the 10-word subjects proves effective, particularly in the 

presence of stress markers, with embeddings sized at 768 × 1.When stress markers 

are introduced, the accuracy increases to 85.79% with embeddings sized at 768 × 1. 

When stress markers are removed, the accuracy decreases to 85.13% with 

embeddings sized at 768 × 1. Therefore, we favour SBERT over USE for achieving 

superior classification scores. 

• The ablation analysis, conducted on phoneme embeddings (without stress markers) 

using the SBERT transformer, with embeddings sized at 768 × 1 per spoken word 

category among 10 subjects, yields the following results:  

o Combination of vowels and fricatives : 58.20%. 

o Combination of vowels and plosives : 79.29%. 

o Combination of vowels and lateral fricatives : 42.40%. 

o Combination of vowels and glides : 56.38%. 



 

 

42 

o Combination of vowels and nasals : 65.92%. 

o Combination of vowels and taps : 63.23%. 

o Combination of vowels and liquids : 63.74%. 

o Combination of vowels and trills : 62.13%. 

• The ablation analysis, conducted on phoneme embeddings (with stress markers) 

using the SBERT transformer, with embeddings sized at 768 × 1 per spoken word 

category among 10 subjects, yields the following results:  

o Combination of vowels and fricatives : 59.37%. 

o Combination of vowels and plosives : 81.08%. 

o Combination of vowels and lateral fricatives : 43.67%. 

o Combination of vowels and glides : 43.93%. 

o Combination of vowels and nasals : 66.29%. 

o Combination of vowels and taps : 64.54%. 

o Combination of vowels and liquids : 63.94%. 

o Combination of vowels and trills : 70.81%. 

• It becomes evident that, within the scope of in-depth linguistic analysis, stress 

markers play a pivotal role and cannot be disregarded, given their significance in 

identifying spoken words using text transcripts. It’s worth noting that, contrary to 

concerns about high dimensionality leading to the computational challenges, our 

findings indicate that high dimensionality contributes to more accurate results. In our 

specific context, the Sentence-BERT transformer slightly outperforms the USE.  

• Utilizing only nasals and glides yields improved results in the absence of 

suprasegmental information, while the inclusion of suprasegmental information 

enhances the performance of other phonological attributes. 

 

Despite the implementation of our proposed technique, notable improvements in accuracy 

for specific word categories remain elusive. Further exploration and refinement are 

necessary to effectively enhance recognition performance in these specific categories. 

Additional research and experimentation may be required to address the challenges and 

achieve significant accuracy improvements in those word categories. In Tables 3.5 - 3.11, 

we conducted a comprehensive exploration of various phonological and spectrogram 

assessments, with a specific focus on vowels and plosives. Vowels, characterized by their 

production with minimal or no constriction of the vocal tract, allowing the unrestricted 
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airflow through the mouth, hold a central position in forming the core of syllables across 

many languages. Their recognition and proper articulation are crucial for speech 

intelligibility.  

 

Table 3.5 Enhancing Speech Recognition with Phonological Stress Markers: A Sentence-

BERT Based Evaluation on Google Speech Command Dataset’s 10-Word Category 

 

 

Table 3.6 Enhancing Speech Recognition without Phonological Stress Markers: A 

Sentence-BERT Based Evaluation on Google Speech Command Dataset’s 10-Word 

Category 

 

 

 

 

 

LINGUISTIC PHONOLOGICAL 
APPROACH 

(With stress marker) (768 X1) 
Sentence-BERT 

TRAIN 
ACCURACY (%) 

VALIDATION 
ACCURACY (%) 

TEST 
ACCURACY (%) 

Vowels + Plosives  81.54 81.38 81.08 

Vowels + Fricatives 60.09 59.69 59.37 

Vowels + Lateral Fricatives 44.68 43.28 43.67 

Vowels + Glides 44.44 44.34 43.93 

Vowels + Nasals 67.67 67.56 66.29 

Vowels + Traps 65.55 64.84 64.54 

Vowels + Liquids 64.92 64.79 63.94 

Vowels + Trills 72.21 70.90 70.81 

LINGUISTIC PHONOLOGICAL 
APPROACH 

(Without stress marker) (768 X1) 
Sentence-BERT 

TRAIN 
ACCURACY (%) 

VALIDATION 
ACCURACY (%) 

TEST 
ACCURACY (%) 

Vowels + Plosives  81.13 79.90 79.26 

Vowels + Fricatives 59.02 58.49 58.20 

Vowels + Lateral Fricatives 44.75 43.75 42.40 

Vowels + Glides 56.80 56.43 56.38 

Vowels + Nasals 66.68 66.47 65.92 

Vowels + Traps 65.74 64.15 63.23 

Vowels + Liquids 64.69 64.67 63.74 

Vowels + Trills 63.28 62.26 62.13 
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Table 3.7 Enhancing Speech Recognition without Phonological Stress Markers: USE-

based Evaluation on Google Speech Command Dataset’s 10-Word Category  

 

 

Table 3.8 Enhancing Speech Recognition with Phonological Stress Markers: USE-based 

Evaluation on Google Speech Command Dataset’s 10-Word Category 

 

 

Table 3.9 Additional evaluation metrics are considered for the 10-Word Category of the 

Google Speech Command Dataset, specifically without the inclusion of phonological stress 

markers 

 

 

LINGUISTIC PHONOLOGICAL 
APPROACH 

(Without stress marker) (512 X 1)  

USE embeddings 

TRAIN 
ACCURACY (%) 

VALIDATION 
ACCURACY (%) 

TEST 
ACCURACY (%) 

Vowels + Plosives   71.98 71.48   70.66 

Vowels + Fricatives  58.82 58.81   58.23 

Vowels + Lateral Fricatives  43.39 43.28   43.00 

Vowels + Glides  57.14 57.06   55.51 

Vowels + Nasals  67.69 66.69   66.55 

Vowels + Traps  65.39 65.38   65.37 

Vowels + Liquids  64.87 64.77   64.64 

Vowels + Trills  70.91 70.83   70.64 

LINGUISTIC PHONOLOGICAL 
APPROACH (With stress marker) 
(512 X 1) 

USE embeddings  

TRAIN 
ACCURACY (%) 

VALIDATION 
ACCURACY (%) 

TEST 
ACCURACY (%) 

Vowels + Plosives  80.31 80.23 79.54 

Vowels + Fricatives 60.98 60.83 60.19 

Vowels + Lateral Fricatives 44.54 44.45 43.39 

Vowels + Glides 55.89 55.32 55.20 

Vowels + Nasals 53.95 53.72 53.01 

Vowels + Traps 65.64 65.44 65.31 

Vowels + Liquids 65.17 64.98 64.61 

Vowels + Trills 72.69 71.13 72.03 

APPROACH Methodology 

(Without stress 
markers) S-BERT 

TRAIN 
ACCURACY (%) 

VALIDATION 
ACCURACY (%) 

TEST 
ACCURACY (%) 

Phonetic 
approach 

Phonemes   91.28     91.19  90.64 

Phonetic 
approach 

VP + VF    85.83     85.42  85.13 
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Table 3.10 Some more evaluation measures on with phonological stress markers and 

spectrograms for Google Speech Command Dataset’s 10-Word Category 

 

 

Table 3.11 Performance evaluation measures on phonological stress markers (with and 

w/o) and spectrograms for Google Speech Command Dataset’s 35-Word Category 

 

APPROACH Methodology 
proposed on 10-
word categories 

TRAIN 
ACCURACY (%) 

VALIDATION 
ACCURACY (%) 

TEST 
ACCURACY (%) 

Phonetic 
approach 

Phonemes (With 
stress markers) S-
BERT 

  93.40     93.14 92.36 

Phonetic 
approach 

VP + VF (With 
stress markers) S-
BERT   

  88.01     85.88 85.79 

Visual-based 
approach 

Tiny swin   99.85     99.76 98.92 

 

Decision-level 
Fusion  

Phonemes (With 
stress markers) S-
BERT + Tiny swin 

  _     _ 99.87 

APPROACH 35-WORD 
CATEGORIES 

TRAIN 
ACCURACY  

VALIDATION 
ACCURACY  

TEST 
ACCURACY  

Phonetic approach 35-combo of VP + 
VF (Without stress 
markers) S-BERT   

  75.30%     75.00% 74.82% 

Phonetic approach 35-combo of VP + 
VF (With stress 
markers) S-BERT   

  76.89%     75.40% 75.35% 

Phonetic approach 35-combo of VP + 
VT (Without stress 
markers) S-BERT   

  77.45%     77.33% 76.98% 

Phonetic approach 35-combo of VP + 
VT (With stress 
markers) S-BERT   

  78.99%     78.63% 77.69% 

Phonetic approach 35-combo of VP + 
VN (Without stress 
markers) S-BERT   

  67.83%    66.72% 66.51% 

Phonetic approach 35-combo of VP + 
VN (With stress 
markers) S-BERT   

  69.88%    69.81% 68.98% 

Phonetic approach 35-combo of VP + 
VF (Without stress 
markers) S-BERT   

  77.81%    76.68% 76.66% 

Phonetic approach 35-combo of VP + 
VF (With stress 
markers) S-BERT   

  76.96%    76.91% 76.25% 

Visual-based 
approach 

35 swin   98.10%    98.09%  98.02% 

Phonetic approach 
+ Visual-based 
approach 
(Spectrogram 
with tiny Swin) 

Phoneme + 
Spectrogram  

_ _  98.53% 
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Additionally, we adopted a linguistic phonological approach incorporating stress markers 

denoted as 0 (no stress), 1 (primary stress), and 2 (secondary stress). Stress levels wield 

significant influence over spoken utterances and can substantially affect the accuracy of SI 

text transcription methods. Our analysis underscores the significance of incorporating stress 

markers, as they contribute to remarkable accuracy levels in transcription, particularly when 

dealing with vowels and plosives. Specifically, when assessing the test accuracy of 

phonemes involving vowels and plosives, our findings indicate that integrating stress 

markers using Sentence BERT yielded an impressive accuracy of 81.08%, while the USE 

achieved 79.54%. However, without the inclusion of stress markers, the accuracy exhibited 

a slight decline to 79.26% for Sentence BERT and 70.66% for the USE. Notably, Sentence 

BERT outperformed the USE, particularly in the context of plosives, signifying its 

superiority in this domain. Furthermore, it would be beneficial to explore how diverse stress 

patterns in different languages might impact transcription accuracy and identify any 

language-specific adaptations that could enhance performance. Continual refinement and 

expansion of our phonological assessments have the potential to advance the field of speech 

recognition and text transcription, creating opportunities for broader applications in NLP and 

HCI. The tables 3.5 - 3.11 unequivocally depict the variable accuracies observed across 

different phonological attributes. Notably, the consistent augmentation of accuracy 

associated with incorporating stress markers underscores the pivotal role of stress in speech 

recognition and its potential impact on transcription accuracy.  The table 3.11 provides an 

overview of the performance of various phonetic and visual-based approaches concerning 

the 35-word categories. The visual-based approach utilizing the Swin T transformer exhibits 

superior accuracy, nearly achieving perfection in results. Nevertheless, the phonetic 

approaches still showcase commendable accuracy levels, particularly when integrating stress 

markers, which prove instrumental in performance enhancement. Upon comparison with 

other SOTA techniques, our proposed approach clearly stands out as the top-performing 

method. We have demonstrated superior results and attained the highest accuracy among 

competing approaches. While specific word categories may offer room for improvement, 

our overall performance surpasses the current SOTA, accentuating the effectiveness and 

potential of our approach in advancing in the field of speech recognition. In our study, we 

delved into diverse phonological combinations using phoneme slicing. Upon analysing the 

GSCD for the 10-word categories, we achieved impressive training accuracy of 93.40% and 

test accuracy of 92.36%. Among various speech sounds, plosives, nasals, and trills played 
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significant roles in speech recognition. However, the combination of multiple distinct 

phonemes did not contribute significantly, whereas phonemes with stress markers proved to 

be valuable. Throughout our experiments, Sentence BERT consistently demonstrated high 

performance across various phoneme variations. While the judicious application of phoneme 

slicing can lead to improved results, it is imperative not to underestimate the importance of 

audio-based features in attaining enhanced accuracy. Our findings underscore the pivotal 

role of specific phonological attributes, especially stress markers, in enhancing speech 

recognition performance. However, it is equally important to recognize that combining 

diverse phonemes may not consistently result in substantial improvements. To advance our 

research further, it is crucial to continue exploring and optimizing phoneme slicing  

techniques while also investigating additional audio-based features and their potential 

synergies with phonological attributes. Striking the right balance between these elements 

holds the promise of unlocking even more robust and accurate speech recognition systems. 

The integration of both phonological and audio-based features offers the potential for 

superior results in speech recognition tasks. The ROC curves depicted in Figure 3.11 and 

Figure 3.12 provide a multiclass evaluation for classifying the 10-word categories using 

phonology with stress markers (0, 1, and 2). This evaluation encompasses various speech 

sounds, such as lateral fricatives, nasals, fricatives, glides, plosives, traps, liquids, and trills. 

Two types of embeddings, namely the 512 USE embeddings and the 768 sentence BERT 

embeddings, are employed for this analysis. Upon examining the results, it becomes evident 

that certain categories, particularly those with a substantial nasal component, are accurately 

identified when the nasal phoneme is applied. For instance, the category “NO” exhibits high 

accuracy in classification. Similarly, other speech sounds like fricatives, glides, and traps 

also exhibit promising performance in distinguishing specific categories.   
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Figure 3.11. Multiclass evaluation ROC for classifying 10-word categories using 

phonology with stress markers (0,1, and 2) where a) lateral fricatives, b) nasals, c) 

fricatives, d) glides, e) plosives, f) traps, g) liquids and h) trills using 512 USE embeddings 
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Figure 3.12. Multiclass evaluation ROC for classifying 10-word categories using 

phonology with stress markers (0,1, and 2) where a) lateral fricatives, b) nasals, c) 

fricatives, d) glides, e) plosives, f) traps, g) liquids and h) trills using 768 sentence-BERT 

embeddings 
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In summary, the insights gleaned from Figure 3.11 and Figure 3.12 underscore the 

significance of various speech sounds in phonological analysis and their profound influence 

on the multiclass classification of word categories. Remarkably, plosives emerge as the top-

performing speech sound, consistently delivering the highest accuracy in classifying each 

category. Their robust representation and distinctive acoustic characteristics make them 

highly effective in discerning different word categories. Furthermore, the significance of 

trills should not be underestimated. Despite being relatively less explored, trills consistently 

demonstrate excellent performance for both USE embeddings and sentence BERT 

embeddings, underscoring the importance of considering trills as valuable phonological 

features in speech recognition tasks. To further enhance the outcomes, researchers should 

persist in exploring the unique contributions of different speech sounds and optimizing their 

integration into phonological analysis. Moreover, investigating how the amalgamation of 

multiple phonological features can bolster classification accuracy offers a promising avenue 

for future advancements.  The outstanding performance of plosives and the notable role of 

trills underscore the importance of adopting a comprehensive approach to leverage a diverse 

set of phonological attributes for achieving superior results in the area of speech recognition.  

 

The experimental outcomes clearly demonstrated substantial enhancements in voice 

recognition accuracy when compared to existing methodologies. Our system not only 

outperformed current approaches but also set a new benchmark in SWR. By incorporating 

linguistic insights and harnessing diverse resources, we achieved exceptional performance 

in the area of automatic speech recognition. Overall, this study constitutes a significant 

advancement in the field of automatic speech recognition, paving the way for innovative 

avenues in multimodal data analysis. The proposed approach represents a promising 

direction for future research endeavours within the domain of speech recognition, promising 

more sophisticated and efficient speech processing systems.  

 

3.7 SIGNIFICANT OUTCOMES 

 

Our study underscores the pivotal role of vowels and plosives in speech recognition, with 

stress markers significantly contributing to transcription accuracy. Focusing on these 

phonological features and exploring avenues for further improvement can drive 

advancements in speech recognition technologies and their versatile applications, catering 
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to a wide spectrum of users and languages. Trills, involving consonant sounds generated by 

rapid articulator vibrations, produced the second-highest accuracy among the various sounds 

analysed. When stress markers are integrated through Sentence BERT, the test accuracy with 

vowels and trills achieved 70.81%, while the USE scored 72.03%. In the absence of stress 

markers, accuracy dropped to 62.13% (Sentence BERT) and 70.64% USE.  

 

Intriguingly, stress markers contributed to enhance accuracy, and the USE outperformed 

Sentence BERT in this particular context. To optimize results, further research should delve 

into trill variations across different languages and refine the incorporation of stress markers 

for improved speech recognition in diverse linguistic contexts. Nasals, encompassing 

consonant sounds created by allowing air to pass through the nose while obstructing the oral 

cavity, achieved noteworthy accuracy among the assessed sounds. When stress markers are 

included through Sentence BERT, the test accuracy with vowels and nasals is 66.29%, 

whereas the USE achieved 53.01%. Without stress markers, the accuracy remained relatively 

high at 65.92% (Sentence BERT), and 66.55% USE.  

 

Surprisingly, despite stress markers generally improving accuracy, the USE outperformed 

Sentence BERT in this instance. Remarkably, the USE’s embeddings, generated without 

considering stress markers, proved to be the most accurate.  

 

To enhance performance, future investigations should delve into the distinctive aspects of 

nasals in various languages and optimize the utilization of stress markers to refine speech 

recognition across diverse linguistic contexts.  

 

The methodology outlined above is motivated by the work discussed in the forthcoming 

section.  

 

Living organisms communicate through speech, a process that involves the intricate analysis 

of spoken language to identify words and sentences. However, the pervasive influence of 

background noise presents a persistent challenge in achieving optimal speech recognition 

rates.
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The current inadequacy in detection rates under noisy conditions necessitates dedicated 

research and potential interventions in the realm of speech recognition. To ameliorate the 

impact of background noise on speech recognition, this study proposes a novel approach 

employing a combination of median filtering and adaptive filtering. The methodology for 

speech command recognition involves a sequence of five key steps: first, the enhancement 

of signals through two parallel and independent speech enhancement models employing 

median and adaptive filtering; second, the extraction of 2D Mel spectrogram images from 

the enhanced signals; and third, the utilization of the tiny Swin Transformer for classification 

based on the obtained spectrogram images. The classification task involves the extensive 

ImageNet dataset, comprising 14 million images and approximately 150 GB in size. This 

study establishes the efficacy of decision-level fusion utilizing an audio-visual pair for robust 

speech recognition in the presence of background noise. The subsequent sections delineate 

the essential components of our investigation. In Section 3.8, we introduce a novel dense 

architecture designed for merging posterior scores. The experimental design and key 

findings are elucidated in Section 3.9, providing a cohesive overview of our empirical 

approach. The impetus behind engaging in speech recognition research and development 

stems from the overarching goal of elevating communication, expanding accessibility, 

optimizing operational efficiency, and fostering innovation across a spectrum of industries 

and applications. 

 

3.8 PROPOSED METHODOLOGY  

 

In this section, we delve into decision-level fusion (Mehra & Susan, 2021), leveraging 

average weighting scores for amalgamating results from two parallel channels. Past research 

(Mehra & Susan, 2021; Zhang et al. 2023) has underscored the effectiveness of late fusion 

in achieving superior categorization through the integration of features extracted from 

diverse segments of the enhanced input signal.  
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Post the learning phase, late fusion has been widely adopted by researchers to amalgamate 

multiple modalities (Mehra & Susan, 2021) into a cohesive representation (Das & Singh, 

2023;  Zhu et al. 2023). Through the concatenation of probabilistic scores, late fusion is 

anticipated to enhance the overall performance of the speech recognition system (Mehra & 

Susan, 2022). In Section 3.8.1, we expound upon the speech denoising process, while 

Section 3.8.2 delineates the application of the Tiny Swin Transformer for speech 

classification utilizing Mel spectrograms. 

3.8.1 SPEECH DENOISING 

 
Our proposed methodology integrates two distinct channels: the median filter and the 

adaptive filter (Rabiner & Wood, 2007; Gonzalez, 2007), as illustrated in Figure 3.13. The 

speech signals undergo processing through these filters, and the resultant signals are then 

utilized to derive two-dimensional Mel spectrograms. Both the median and adaptive filters 

dynamically adjust their parameters in response to the input signal, enabling them to 

effectively handle diverse types of noise and signal variations. These filters exhibit a 

selective noise removal capability while preserving essential signal features, effectively 

suppressing impulsive noise without distorting the underlying signal. This adaptability 

renders them well-suited for accommodating varying noise levels. In the context of speech 

processing, the median filter proves to be instrumental in reducing various types of noise 

while preserving the integrity of the signal and crucial edge information. Notably, its 

computational efficiency, ease of implementation, and suitability for real-time applications 

enhance its practical utility. The implementation of both median and adaptive filtering 

approaches leverages the SciPy Python library. Following the extraction of filtered speech 

and its conversion into 2-dimensional Mel spectrogram images using the librosa library, the 

subsequent step involves feeding these images into a pre-trained Tiny Swin Transformer 

network for image classification. Further elaboration on this process is provided in the 

ensuing section. 

3.8.2 PRE-TRAINED SWIN-TINY TRANSFORMER MODEL 

 
The filtered speech undergoes processing through two channels: a median filter and an 

adaptive filter. Subsequently, the filtered audio signals are transformed into 2-dimensional 

Mel spectrogram images using the librosa library. These images then undergo pre-processing 
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steps, including translation, rotation, and resizing, ultimately achieving a uniform dimension 

of 256 × 256. The standardized images are input into the Tiny Swin-T version 2 model, 

consisting of sequential layers, Swin Transformer blocks, and patch merging, with a core 

comprising 6 Swin Transformer blocks.  

 

 
 

Figure 3.13. Workflow of Proposed Approach 
 

The Swin Transformer, pre-trained on ImageNet (14 million images, 10,000 classes), stands 

as a benchmark in visual object recognition research. Renowned for its efficiency and 

accuracy, it surpasses the Vision Transformer (ViT) (Dosovitskiy et al. 2020). The Mel 

spectrograms are transformed into posterior scores through the Swin-Tiny Transformer, 

which, pre-trained on ImageNet, generates 10 posterior probabilistic scores for each 

category. The input features possess a dimension of 768. Our study employs a late fusion 

technique that combines posterior probabilistic scores from two distinct channels for speech 

command recognition, as depicted in Figure 3.13.  
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3.9 EXPERIMENTAL RESULTS  

 

The experiments were conducted on Google Colab Pro++ using Python and GPU. The 

optimization utilized the Adam optimizer (Duchi et al. 2011) with a learning rate of 0.001, 

running for 100 epochs with a batch size of 32. The ReLU activation function introduced 

nonlinearity. In the speech-to-image process, embeddings were generated and input into a 

three-layered feed-forward network with unit sizes of 1024, 256, and 64, followed by a 

flattened layer, all employing ReLU activation. The Adam optimizer was chosen for 

optimization, and the model used sparse categorical cross-entropy as the loss function for 

multiclass classification. After obtaining classification scores, a decision-level fusion 

technique considered the average score value from two independent channels. Table 3.12 

outlines the hyperparameters, while Table 3.3 compares our multimodal fusion approach 

with SOTA methods. Notably, our technique achieved a remarkable test accuracy of 99.85%, 

outperforming other methods across various domains, including keyword spotting, acoustic 

modeling, and attention-based encoder–decoder models. In summary, our proposed method 

demonstrated outstanding accuracy on the Google Speech Command dataset, surpassing 

SOTA approaches for categorizing the 10 speech command categories. 

 

 

 

Figure 3.14. Multiclass classification evaluation with t-SNE for Speech Command 

Classification using adaptive filtering technique 
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The late fusion technique, combining outputs from the adaptive and median filtered 

channels, achieved a test accuracy of 99.85%, showcasing significant improvement over 

individual channels. This success can be attributed to the dataset's characteristics, 

encompassing SD samples with diverse accents and optimal data samples per category.  

Figure 3.5 and Figure 3.14 displays the distinct separation of 10 speech command categories 

using t-SNE for median filters, while adaptive filters present challenges in visualization. 

Both Figures 3.5 and 3.14 shows the superior performance of the median filter compared to 

the adaptive filter.  

 

The fusion of these techniques produces the optimal outcome, as evidenced by the confusion 

matrix in Figure 3.15.  

 

Figure 3.15. The confusion matrix is constructed to evaluate the fusion of deep 

frameworks  adaptive and median filtering approaches 

 

This amalgamation capitalizes on the strengths of two successful approaches, yielding 

advancements in classification performance beyond the SOTA benchmark. Table provides 

precision, recall, and F1-scores for each speech command category. Precision, a crucial 

metric, is defined as the ratio of true positives to the total count of positives identified by the 

model, as detailed in (3.1). This metric assesses the model's accuracy in recognizing positive 

instances while minimizing false positives.  
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Table 3.12 Hyperparameters of proposed approach 

 

 

 

 

 

 

 

 

                                precision/ positive predictive value (PPV) = 
𝑡𝑝

[𝑡𝑝+𝑓𝑝]
        (3.1) 

 

Recall, also known as the true positive rate or sensitivity, is a crucial metric measured as the 

ratio of true positives to the total actual positives, as depicted in (3.2). This metric assesses 

the model's effectiveness in capturing all relevant positive instances, aiming to minimize 

false negatives.  

 

                                                sensitivity / recall =  
𝑡𝑝

[𝑡𝑝 + 𝑓𝑛]
                             (3.2) 

 

                                              f1−Score =  
2 ×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

[𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙]
                      (3.3) 

 

True positives, true negatives, false negatives, and false positives are represented by tp, tn, 

fn, and fp, respectively. The F1-score, a critical metric, is calculated as the harmonic mean 

of precision and recall, as shown in (3.3). This metric is essential for a comprehensive 

evaluation of the model's overall accuracy by considering both precision and recall 

simultaneously. In our experimental setup, we observed notably high precision, recall, and 

F1-score metrics, indicating robust classification performance. Table 3.13 presents a 

statistical analysis, affirming accurate classification across the majority of categories, with 

only minor deviations in a few classes. Table 3.13 details instances of misclassifications, 

revealing that specific word categories such as "NO," "LEFT," "STOP," "YES," "ON," and 

"OFF" exhibit zero misclassifications, highlighting the robustness of our method. Compared 

to cutting-edge approaches, our method distinguishes itself by achieving optimal 

classification performance and the highest accuracy. Figure 3.16 visually illustrates the 

tangible outcomes of our approach, demonstrating a test accuracy of 99.80%. The integration 

Parameters Values 

Dataset Size  1,21,30,79,830 bytes, 1.25 GB 

Total Samples 38, 546 

Testing Samples 4074 

Epochs 100 

Fully connected layer activation function ReLU 

Number of neural network layers 3 
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of adaptive and median filtering-based probabilistic results through fusion elevates this 

accuracy to an impressive 99.85%. This enhancement underscores the efficacy of our 

approach in achieving superior classification performance through the synergistic utilization 

of filtering techniques.  

Table 3.13 Statistical analysis per speech command categories 

 
Categories Precision         Recall        F1-score 

Right 1.00                           0.99           0.99 

Go 0.99           1.00                           0.99 

No 1.00                           0.99           1.00            

Left 1.00                           0.99           1.00       

Stop 1.00                           0.99           1.00     

Up 1.00                           0.99           0.99 

Down 0.99           1.00                           0.99 

Yes 1.00                           0.99           1.00                

On 1.00                           0.99           1.00               

Off 1.00                           0.99           1.00                 

 

3.10 SIGNIFICANT OUTCOMES 

 

This thesis introduces an innovative approach to enhance speech command recognition by 

combining audio and image modalities through a late fusion technique. The methodology 

integrates a feed-forward neural network model with median and adaptive filtering methods 

to enhance audio signals. Utilizing the GSCD with 10-word categories, the approach 

achieves an impressive test accuracy of 99.85% through the integration of audio and image 

modalities. The fusion technique employs soft fusion, leveraging posterior class probabilities 

from two filtered channels extracted from each audio file. Feature extraction involves the 

Swin-Tiny Transformer, followed by a 3-layered feed-forward neural network. Compared to 

existing SOTA methods, the proposed fusion technique excels in classification accuracy, 

demonstrating effective capturing and utilization of information from both audio and image 

modalities for fine-grained speech command classification.



 

 

59 

 

The integration of a pre-trained Swin-Tiny Transformer model, trained on an expansive 

image dataset, significantly contributes to the achieved accuracy. Notably, median filtering 

emerges as a superior pre-processing technique compared to adaptive filtering. The fusion 

of adaptive and median filtering-based probabilistic outcomes further enhances accuracy, 

resulting in an exceptional 99.85% success rate. One limitation is the increased memory 

demand, especially when applied to extensive datasets, a challenge shared across research 

endeavours on the same dataset.  

 

Conducting Spectrogram and Analysis.  

 

Given the intricate nature of dysarthric speech and the challenges it poses for 

comprehension, DSR has been proposed as a means to gauge intelligibility. However, its 

implementation requires extensive data and computational resources, rendering current 

techniques for objectively testing speech intelligibility laborious and somewhat arbitrary. 

Generic recognition systems often exhibit subpar performance in DSR. To address the 

complexities associated with speech impairment, this thesis presents a comprehensive 

ablation analysis of DSR across diverse speakers. Two distinct extractive transformer-based 

approaches are introduced for enhancing speech recognition. First, the use of Sepformer 

improves the speech signal, and the input of the enhanced audio signal is further processed 

by another transformer. Second, the Swin transformer is applied to log mel-spectrograms for 

image classification, pre-trained on 14 million annotated images from ImageNet. Pre-trained 

probabilistic scores obtained from both audio (SepFormer) and visual modalities (log mel-

spectrogram) can be fine-tuned to classify spoken utterances. However, fine-tuning 

transformers necessitates considerable computational power and cost, making it impractical 

in the current scenario. To provide a cost-effective alternative, this thesis proposes a deep 

BiLSTM-GRU model for DSR. This model demonstrates outstanding performance on the 

EasyCall speech corpus, which encompasses cognitive characteristics. Remarkably, we 

achieved an accuracy of 98.56% for 20-word categories on dysarthric male speakers, 95.11% 

on dysarthric female speakers, and 97.55% on both dysarthric speakers, leveraging training 

output scores from audio-visual paired modalities trained on the proposed deep BiLSTM-

GRU model.  
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Our approach demonstrates robust accuracy across various scenarios, outperforming other 

SOTA methods without the need for data augmentation. 

 

The research presents several key contributions:  

 

Our research introduces an optimized deep BiLSTM-GRU tailored for the classification of 

spoken utterances. 

• Additionally, we propose a unified architecture for audio and visual pre-trained 

processing networks, employing two distinct transformers to capture essential 

features from both modalities.  

 

• Through comprehensive analysis and testing on challenging dysarthric datasets, 

specifically the EasyCall corpus (Turrisi et al. 2021), we showcase the capability of 

our model to effectively replicate multimodal representations from descriptive audio 

and visuals. The results demonstrate ground-breaking advancements in Dysarthric 

Speech Utterance Classification (DSUC). 

 

The section is organized as follows: Section 3.11, we delve into the details of our proposed 

approach. The intricacies of the experiments, encompassing the findings from the EasyCall 

corpus and the ablation study, are presented in Section 3.12. Finally, Section 3.13 

encapsulates the concluding analysis of the research. 

 

3.11 PROPOSED METHODOLOGY  

 

Our innovative approach delves into the multimodal integration of audio and visual elements 

for DSUC. We introduce a sophisticated deep BiLSTM-GRU designed to classify dysarthric 

spoken utterances by leveraging salient features from both audio and visual domains. The 

subsequent sections outline the step-by-step procedural flow of our novel methodology. 
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3.11.1 DATA-HANDLING AND PRE-PROCESSING 

 
In our innovative approach, we employed the Sepformer to elevate the quality of dysarthric 

audio samples. The Sepformer (Luo et al. 2020) encompasses an encoder, a decoder, and a 

masking network, all organized around a learned-domain masking approach. Within the 

masking network, two transformers operate (Dash & Solanki, 2020) within the dual-path 

processing block (Dash & Solanki, 2020), while the encoder, as detailed in (Nasersharif et 

al. 2023), embraces a fully convolutional design. The decoder reconstructs time-domain split 

signals based on the anticipated masks derived from the masking network. Ensuring 

reproducibility, the Sepformer is incorporated into the SpeechBrain toolkit. The Sepformer 

architecture showcases remarkable results in speech separation. Like other learned-encoder 

models (Ba et al. 2016), it employs short frames, a strategy supported by research for 

superior performance in such scenarios. We applied the Sepformer to each audio sample, 

resulting in enhanced audio samples. 

 

Over the last decade, neural network advancements have significantly impacted speech 

augmentation and general audio source separation tasks. In contrast, traditional speech 

enhancement techniques analyze noise and clean speech spectra using statistical properties 

(Gerkmann & Vincent, 2018).  

 

3.11.2 LOG-MEL SPECTROGRAMS (VOICEGRAMRS) 

 
Following the acquisition of enhanced speech audio samples, we employ the Librosa 

package to generate log mel-spectrograms. This extraction process encompasses applying a 

short-time Fourier transform to the spoken signal, converting amplitude to decibels, and 

subsequently mapping frequencies onto the Mel scale. These 2D log mel-spectrogram 

representations, derived from audio samples featuring a diverse range of speakers, serve as 

inputs for speech classification in both the 10 and 20 spoken utterances of the EasyCall 

corpus. The refined log mel-spectrograms are then fed into the Swin transformer, as detailed 

in the subsequent section. Figure 3.16 illustrates a selection of extracted log mel-

spectrograms derived from enhanced audio samples processed using Sepformer. These 

spectrograms depict the transformed audio data, demonstrating the effectiveness of 
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Sepformer in enhancing audio quality. Subsequently, the enhanced log mel-spectrograms are 

input into the Swin transformer, as detailed in the subsequent section. 

 

Figure 3.16. A snippet of a few samples of extracted log mel-spectrograms 

from enhanced audio samples  

3.11.3 COMPUTER VISION SWIN TRANSFORMER 

 
The Swin transformer incorporates crucial techniques to optimize its performance, including 

a residual-post-norm method with cosine attention to enhance training stability. It also adopts 

a log-spaced continuous position bias method and integrates SimMIM, a self-supervised 

pretraining approach, reducing the dependence on extensive labeled image datasets. In 

practical scenarios, the Swin transformer demonstrates remarkable efficacy in classifying 

log mel-spectrograms derived from 14 million pre-trained ImageNet annotated image 

samples. Its ability to accurately predict labels for provided images highlights its 

effectiveness in speech classification tasks. The Swin transformer's primary objective is to 

generate probabilistic scores for 20 spoken utterances by comparing log mel-spectrograms. 

Utilizing self-attention within a local window, it constructs hierarchical feature maps through 
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intricate computations. The output comprises these probabilistic scores, obtained by 

processing log mel-spectrogram data through a pre-trained network initially trained on 

Annotated ImageNet. It's noteworthy that we maintained the standard Swin model for this 

study, evaluating its impact on dysarthria data without modification. The pre-trained 

probabilistic scores from the Swin Transformer predict the class among 20 sentence 

categories by analyzing the log mel spectrogram from the Annotated ImageNet used during 

training. These scores offer insights into the likelihood of each sentence category. Our 

strategy aims to enhance speech recognition performance by leveraging salient features from 

both acoustic and visual modalities within a unified single-stream deep framework. This 

entails implementing a deep strategy that integrates a single-branch fusion of audio and 

visual modalities shown in Figure 3.17. 

 
 

Figure 3.17. A step-by-step procedure for the proposed approach 

 

3.11.4 PROPOSED UNIFIED DEEP FRAMEWORK FOR SINGLE-BRANCH 

INTEGRATION OF AUDIO AND VISUAL MODALITIES  

 

Our work is predicated on the fundamental assumption that the integration of audio and 

visual modalities within a unified single-stream deep framework significantly improve the 

performance of the speech recognition system. Figure 3.18 illustrates our deep BiLSTM-

GRU model. 
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Figure 3.18. A proposed deep bi-LSTM-GRU model for dysarthric spoken utterance 

classification 
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To enhance classification accuracy, the BiLSTM-GRU is employed to process the output 

scores obtained from the Swin transformer. These scores are extracted from the Swin 

transformer and then input to the BiLSTM-GRU for further processing. The architecture of 

the deep BiLSTM-GRU model, depicted in Figure 3.18, includes a layer of BiLSTM with 

cells denoted by L for the forward LSTM and L' for the backward LSTM. The deep BiLSTM-

GRU model processes the single-branch fusion of audio and visual modalities as inputs, 

computing them for each test sample through the utilization of the pre-trained model. Our 

proposed deep BiLSTM-GRU model features two initial BiLSTM layers with 512 and 256 

units each, a gated recurrent layer with 128 units and the tanh activation function, a high-

level combination of alternate BiLSTM and GRU layers with 64 and 32 units, along with 

dense 32 layers, dropout 32 layers, and dense 10 layers. This model is characterized by its 

depth, incorporating a total of 4 BiLSTM layers and 2 GRU layers. The forward and 

backward hidden states are obtained by feeding the input features into two LSTMs—one 

forward and one backward. The deep BiLSTM-GRU model utilizes the softmax activation 

function to generate probabilities for each class prediction. The primary assumption in our 

work is that merging acoustic and visual usage in single streams in a deep framework 

enhance the performance of the speech recognition system. To achieve this, we employ a 

single stream branching strategy that combines the strengths of both audio and visual 

modalities. The architecture of our proposed deep BiLSTM-GRU model, used for training 

audio and visual modalities together, is described. Basic RNNs face challenges in handling 

lengthy sequences, leading to information loss. To address this, LSTM models are 

introduced, featuring three gates—forget gate, input gate, and output gate—allowing the 

preservation of important information over extended sequences. The bi-directional LSTM 

processes the hidden states from both ends, contributing to the effective classification of 

sequential data such as audio and image data. In the LSTM equations (3.4-3.7), the input and 

previous hidden state combine to form the vector X, denoted as xt, representing audio vectors 

derived from sequential data. The forget, input, and output gates are controlled by the biases 

bi, bf, and bo, along with weight matrices Wi, Wf, and Wo, calculated during the training phase. 

The sigmoid function, denoted as σ, plays a key role in these calculations.  

 
                                                   X = [ht−1; xt]                                                      (3.4)                

 

                                         ft = σ (Wf X + bf)                                               (3.5)  
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                                         it = σ (Wi X + bi)                                                 (3.6)  

 
                                         ot = σ (Wo X + bo)                                               (3.7) 

 
 
(3.5) to (3.7) represent gate activations with symbols f, i, and o. The hyperbolic tangent 

function is denoted as tanh, and the * signifies element-wise multiplication. In (3.8), the 

previous and current cell states are represented by ct-1 and ct, respectively.  

 

                                    ct = ft*ct−1 + it*tanh(Wc*X + bc)                               (3.8) 

 
The hidden state at time-step t is represented as:  

 
                                                                    ht = ot*tanh(ct)                                    (3.9) 

 
BiLSTM utilizes two hidden layers, one for the forward pass and another for the backward 

pass. The final hidden state results from concatenating the hidden states computed in both 

passes—forward (ℎ𝑡 ⃗⃗⃗⃗  ⃗) and backward ( ℎ𝑡⃖⃗⃗⃗⃗⃗ ). The effectiveness of BiLSTM-GRU is 

noteworthy, providing improved outcomes. The incorporation of GRU facilitates smoother 

training, enhancing overall training effectiveness. Leveraging the advantages of bidirectional 

circulation neural networks, this work employs BiLSTM-GRU, integrating advanced 

learning technology. In the neural network, LSTM is initially employed, processing the input 

xt simultaneously with the previous node ℎ𝑡 ⃗⃗⃗⃗  ⃗. It undergoes the forget gate, input gate, and 

output gate to obtain the output htb. Subsequently, the output  ℎ𝑡⃖⃗⃗⃗⃗⃗  serves as the input for the 

preceding stage of GRU, producing the most recent state ht through the update gate and reset 

gate. The model is inherently bidirectional, and the specific machine modifications involve 

inputting all generated eigenvalues into the model for training. After pre-processing life data 

from a few rolling bearings, parameters for LSTM and GRU are initialized. The output layer 

employs softmax for generating the probability distribution, while the RNN's hidden layer 

utilizes tanh as the activation function.  

  
                                   ht = tanh(Wh*ht−1 + Wx*xt)                                         (3.10) 

 
The RNN input at time t is denoted as xt. In the bidirectional RNN, the forward and reverse 

cells employ LSTM and GRU cells, respectively. The data computed in both directions is 

accumulated by these two cells to produce the combined result. 
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3.12 EXPERIMENTAL RESULTS AND DISCUSSIONS  

3.12.1 EASYCALL CORPUS: A DYSARTHRIC SPEECH DATASET 

 
A total of 31 individuals with dysarthria (11 females, 20 males) and 24 healthy speakers (10 

females, 14 males) participated in providing utterances for the EasyCall corpus (Turrisi et 

al. 2021). Inclusion criteria for dysarthric speakers included age greater than or equal to 18 

and dysarthria attributed to specific conditions such as Parkinson's disease, Huntington's 

disease, Amyotrophic Lateral Sclerosis, peripheral neuropathy, or myopathic or myasthenic 

lesions. Exclusion criteria encompassed aphasic syndromes, dementia, and intellectual 

incapacity. The dysarthria severity for each dysarthric speaker was assessed by an expert 

neurologist using the Therapy Outcome Measure (TOM), which assigns scores ranging from 

1 to 5, with 1 indicating mild dysarthria, 2 for mild-moderate, 3 for moderate, 4 for moderate-

severe, and 5 for severe dysarthria. The challenges associated with each word category are 

summarized in Table 3.14. Additionally, Figure 3.19 illustrates the distribution of training 

and testing samples in the dysarthric speech corpus. 

 

 
 

Figure 3.19. Characteristics of EasyCall Corpus for first 20 spoken words 
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Table 3.14 Summary of EasyCall Corpus data used in data pre-processing 

  
Spoken 
Utterance 

Speaker 
code 

Type of dysarthria Therapy Outcome 
Measure (TOM) 

Number of 
Sessions  

Number of 
wav files 

Aggiungi 
ai 
preferiti 

[F01-F11, 
M01-M20]  

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5]  [2, 3, 4, 5, 6] 168 

Aggiungi [F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 168 

Apri 

rubrica 

[F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 168 

Attiva 

vivavoce 

[F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 353 

Bue [F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 167 

Cancella 

contatto 

[F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 168 

Cancella 

tutto 

[F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 167 

Cancella [F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 167 

Cella [F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 166 

Chiama 

emergenz

a 

[F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 167 

Chiama 

ultimo 

numero 

[F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 167 

Chiama [F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 168 

Chiamata [F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 168 
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Chiudi 

applicazi

one 

[F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 168 

Chiudi 

rubrica 

[F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 168 

Chiudi [F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 167 

Cinque [F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 167 

Deselezio

na 

[F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 167 

Disattiva 

vivavoce 

[F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 169 

Due [F01-F11, 
M01-M20] 

Paretic, cerebellar,  
extrapyramidal, 
pyramidal 
 

[_, 1, 2, 3, 4, 5] [2, 3, 4, 5, 6] 166 

 

3.12.2 EXPERIMENTAL DETAILS AND ANALYSIS 

 
The experiments were conducted using Python version 3.10.0 on a Mac system running 

macOS Big Sur with an M1 chip. Due to the computational intensity associated with 

handling audio samples and transformers, we executed the experimental computations using 

the Librosa toolkit on Google Colab Pro, which is equipped with a GPU and provides 32 GB 

of RAM. Before applying the deep BiLSTM-GRU model to the pre-trained probabilistic 

scores, we computed the log mel-spectrogram feature matrix for each raw audio file, 

resulting in a 256 X 256 dimension. This matrix serves as input to the Swin transformer. 

Subsequently, the pre-trained probabilistic scores obtained from the Swin transformer are 

input into the trained deep BiLSTM-GRU model. For the ongoing experiment, we opted for 

100 epochs. The model's nonlinearity is enhanced by the "ReLU" activation function. SGD 

is employed for regulating the learning rate, utilizing the Adam optimizer known for its 

reliable performance across various classification tasks. The Adam optimizer stores and 

utilizes the average of past gradients, contributing to the determination of current gradients 

and preserving the average of earlier gradients. Comparing our multimodal fusion technique 

to current best practices in Table 3.15, the results demonstrate our method's superior 
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performance in the fully-resourced data environment, achieving a maximum test accuracy 

of 97.64%.  

  

Table 3.15 Performance analysis with different techniques by evaluation measures on 

EasyCall corpus 

 
 

Our proposed method, in contrast to CNN with input as a 2D matrix of MFCC features, 

outperforms in speech recognition tests. Even when compared to LSTM using Mel 

Spectrogram as input, our approach exhibits superior performance. The proposed approach 

surpasses the state of the art in classifying 10- and 20-word categories with dysarthric speech 

challenges in both male and female speakers of the EasyCall dataset, achieving a high 

accuracy of 97.64%. Despite the dataset's slight imbalance, the attained high accuracy is 

credited to the multimodal nature of the model, harnessing the synergies of two pre-trained 

models for the integration of audio and image information. The Matthews correlation 

coefficient (3.11) for the proposed approach is 0.9756, indicating a robust performance. Our 

approach demonstrates a Matthews correlation coefficient (MCC) of 0.9756, indicating a 

well-balanced assessment of classification performance, particularly beneficial for 

imbalanced datasets. MCC considers true positives, true negatives, false positives, and false 

negatives, offering a comprehensive measure ranging from -1 to 1, where 1 signifies perfect 

prediction, 0 implies no improvement over random prediction, and -1 indicates complete 

20 Spoken Utterances (Male + 
Female) 

Macro Accuracy (%) Mathew’s 
correlation 
coefficient 

Cohen's kappa 
coefficient 

MFCC + LSTM (Zia & Zahid, 
2019) 

0.4099 40.98% 0.4084 0.4084 

 

MFCC + LSTM (Wazir et al. 
2019) 

0.4361 43.63% 0.4353 0.4353 

 

Mel-Spectrogram + LSTM 
(Lezhenin et al. 2019) 

0.3787 37.85% 0.3777 0.3777 

 

GFCC + CNN (Abdelmaksoud et 
al. 2021) 

0.4345 43.44% 0.4332 0.4332 

 

MFCC + CNN (Haque et al. 
2020) 

0.4123 41.21% 0.4112 0.4112 

 

MFCC + CNN (Kherdekar& 
Naik, 2021) 

0.4325 43.21% 0.4315 0.4315 

 

Hybrid CNN + BiLSTM 
(Passricha & Aggarwal, 2019) 

0.4711 47.08% 0.4701 0.4701 

 

Our proposed deep feature-level 
fusion bi-LSTM-GRU 

0.9769 97.64% 0.9756 0.9756 
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disagreement between prediction and observation. The MCC score, closer to 1, signifies the 

superior performance of our model. Cohen's kappa coefficient serves as a robust metric for 

assessing the level of agreement among individuals when categorizing items, while also 

accounting for agreement that could occur by chance. The scale ranges from 0 to 1, with 1 

indicating perfect agreement. Remarkably, our methodology yielded an exceptionally high 

score of 0.976, underscoring the substantial consensus among various raters or observers in 

the classification process. 

 
                        MCC = (tp*tn – fp*fn) / √(tp + fp)(tp + fn)(tn  + fp)(tn + fn)                    

(3.11)  

 

                                                                          k =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
                                          (3.12) 

The accuracy is calculated based on the values of true positives, true negatives, false 

positives, and false negatives as defined in (3.13). 

 
                           Accuracy (%) = (tp + tn)/( tp + fp + tn + fn) * 100          (3.13) 

 

The negative predicted value (NPV), false positive rate (FPR), false negative rate (FNR), 

and false discovery rate (FDR) for each spoken word category are detailed in Tables 3.16-

3.18. In a symbolic representation, FPR, FNR, and FDR are denoted by (3.15), (3.16), and 

(3.17), respectively. 

 

                                  negative predictive value (NPV) =  
𝑡𝑛

[𝑓𝑛 + 𝑡𝑛]
                            (3.14)   

                                false positive rate (FPR) =  
𝑓𝑝

[𝑓𝑝 + 𝑡𝑛]
                                       (3.15)     

                                false negative rate (FNR) =  
𝑓𝑛

[𝑓𝑛 + 𝑡𝑝]
                                          (3.16) 

                                  false discovery rate (FDR) =  
𝑓𝑝

[𝑓𝑝 + 𝑡𝑝]
                                          (3.17) 

            

3.12.3 ABLATION STUDY 

 
In this section, we conduct ablation research to investigate the impact of individual speakers 

(male or female) as well as their combination on our deep BiLSTM-GRU model. Within the 

proposed single stream branching framework, incorporating our deep BiLSTM-GRU, we 

assess the significance of each audio and visual component, pairwise combinations of male 

and female speakers, and the deep model itself. The ablation analysis results, summarized in 

Tables 3.16, 3.17, and 3.18, reveal the following insights. Table 3.19 presents the final 
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assessment for each speaker and class, emphasizing that combining audio and image features 

outperforms classification for the suggested deep framework. In our work, we have 

employed a single-branch approach for both audio and visual modalities, surpassing the 

performance of individually combining other widely used audio/visual components. Male 

speakers exhibit accuracy rates of 98.56%, female speakers at 95.11%, and both male and 

female speakers together at 97.64% (a total of 20 subjects). The proposed technique 

significantly enhances accuracies across all word categories, which are in Italian and spoken 

by dysarthria patients with mixed levels of speech impairment. The GRU module, positioned 

between the preceding BiLSTM layers and the alternate deeper-level BiLSTM and GRU 

layers, emerges as a crucial component of the proposed deep BiLSTM-GRU model. The 

comprehensive utilization of audio and visual information within a single branch is clearly 

linked to the enhanced accuracy in recognizing each spoken utterance. The success of our 

deep BiLSTM-GRU model, adept at learning from both audio and visual data for each 

modality, likely contributes to the observed high accuracy. 

 

Table 3.16. Results of the classification using our proposed method for 20 spoken 

utterances by male speakers 

Spoken Utterance Sensitivity Specificity NPV FPR FNR FDR Precision 

Aggiungi ai 
preferiti 

0.9411 0.9984 0.9969 0.0015 0.0588 0.0303 0.9696 

Aggiungi 0.9743 1.0000 0.9984 0.0000 0.0256 0.0000 1.0000 

Apri rubrica 0.9655 1.0000 0.9984 0.0000 0.0344 0.0000 1.0000 

Attiva vivavoce 0.9666 0.9968 0.9968 0.0031 0.0333 0.0333 0.9666 

Bue 0.9459 0.9969 0.9969 0.0030 0.0540 0.0540 0.9459 

Cancella contatto 1.0000 0.9984 1.0000 0.0015 0.0000 0.0312 0.9687 

Cancella tutto 0.9130 1.0000 0.9970 0.0000 0.0869 0.0000 1.0000 

Cancella 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Cella 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Chiama 
emergenza 

1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Chiama ultimo 
numero 

0.9565 0.9970 0.9985 0.0029 0.0434 0.0833 0.9166 

Chiama 1.0000 0.9984 1.0000 0.0015 0.0000 0.0285 0.9714 

Chiamata 1.0000 0.9984 1.0000 0.0015 0.0000 0.0238 0.9761 

Chiudi 
applicazione 

0.9428 0.9969 0.9969 0.0030 0.0571 0.0571 0.9428 

Chiudi rubrica 0.9411 0.9969 0.9969 0.0030 0.0588 0.0588 0.9411 

Chiudi 0.9696 1.0000 0.9984 0.0000 0.0303 0.0000 1.0000 

Cinque 1.0000 0.9969 1.0000 0.0030 0.0000 0.0476 0.9523 
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Table 3.17. Results of the classification using our proposed method for 20 spoken 

utterances by female speakers 

  

 

Deseleziona 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Disattiva 
vivavoce 

1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Due 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Spoken 
Utterance 

Sensitivity Specificity NPV FPR FNR  FDR Precision 

Aggiungi ai 
preferiti 

1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Aggiungi 0.9444 1.0000 0.9971 0.0000 0.0555 0.0000 1.0000 

Apri rubrica 1.0000 0.9971 1.0000 0.0028 0.0000 0.0625 0.9375 

Attiva 
vivavoce 

1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Bue 0.9500 1.0000 0.9971 0.0000 0.0500 0.0000 1.0000 

Cancella 
contatto 

0.8888 1.0000 0.9943 0.0000 0.1111 0.0000 1.0000 

Cancella 
tutto 

1.0000 0.9941 1.0000 0.0058 0.0000 0.0689 0.9310 

Cancella 1.0000 0.9971 1.0000 0.0028 0.0000 0.0526 0.9476 

Cella 0.9444 1.0000 0.9971 0.0000 0.0555 0.0000 1.0000 

Chiama 
emergenza 

0.8888 1.0000 0.9943 0.0000 0.1111 0.0000 1.0000 

Chiama 
ultimo 
numero 

1.0000 0.9916 1.0000 0.0083 0.0000 0.2500 0.7500 

Chiama 0.9444 0.9971 0.9971 0.0028 0.0555 0.0555 0.9444 

Chiamata 1.0000 0.9943 1.0000 0.0056 0.0000 0.1333 0.8666 

Chiudi 
applicazione 

0.9230 0.9971 0.9971 0.0028 0.0769 0.0769 0.9230 

Chiudi 
rubrica 

0.9583 0.9941 0.9970 0.0058 0.0416 0.0800 0.9200 

Chiudi 0.8823 1.0000 0.9943 0.0000 0.1176 0.0000 1.0000 

Cinque 0.8235 0.9914 0.9914 0.0085 0.1764 0.1764 0.8235 

Deseleziona 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Disattiva 
vivavoce 

0.8888 0.9971 0.9943 0.0028 0.1111 0.0588 0.9943 

Due 0.9500 0.9971 0.9971 0.0028 0.0500 0.0500 0.9971 
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Table 3.18. Results of the classification using our proposed method for 20 spoken 

utterances, considering both male and female speakers 

 

Table 3.19. Accuracy per speakers per class 

 

Spoken Utterance Sensitivity Specificity NPV FPR FNR FDR Precision 

Aggiungi ai 
preferiti 

0.9705 1.0000 0.9984 0.0000 0.0294 0.0000 1.0000 

Aggiungi 0.9743 1.0000 0.9984 0.0000 0.0256 0.0000 1.0000 

Apri rubrica 0.9642 0.9984 0.9984 0.0015 0.0357 0.0357 0.9642 

Attiva vivavoce 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Bue 1.0000 0.9984 1.0000 0.0015 0.0000 0.0270 0.9729 

Cancella contatto 0.9393 0.9984 0.9969 0.0015 0.0606 0.0312 0.9687 

Cancella tutto 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Cancella 0.9696 1.0000 0.9984 0.0000 0.0303 0.0000 1.0000 

Cella 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Chiama 
emergenza 

1.0000 0.9954 1.0000 0.0045 0.0000 0.0789 0.9210 

Chiama ultimo 
numero 

0.9600 1.0000 0.9985 0.0000 0.0400 0.0000 1.0000 

Chiama 1.0000 0.9984 1.0000 0.0015 0.0000 0.0285 0.9714 

Chiamata 0.9762 0.9984 0.9984 0.0015 0.0238 0.0238 0.9761 

Chiudi 
applicazione 

1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Chiudi rubrica 0.9714 1.0000 0.9984 0.0000 0.0285 0.0000 1.0000 

Chiudi 1.0000 0.9984 1.0000 0.0015 0.0000 0.0312 0.9687 

Cinque 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Deseleziona 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 

Disattiva 
vivavoce 

1.0000 0.9984 1.0000 0.0015 0.0000 0.0285 0.9714 

Due 0.9714 1.0000 0.9984 0.0000 0.0285 0.0000 1.0000 

Spoken Utterance 20 spoken utterances of 
Male Speakers 

20 spoken utterances of 
Female Speakers 

20 spoken 
utterances of 
both Male and 
Female 
Speakers 

Aggiungi ai preferiti 0.9985 1.0000 0.9956 

Aggiungi 0.9985 0.9972 0.9985 

Apri rubrica 0.9971 0.9972 0.9985 

Attiva vivavoce 1.0000 1.0000 0.9942 

Bue 0.9985 0.9972 0.9942 

Cancella contatto 0.9956 0.9945 0.9985 

Cancella tutto 1.0000 0.9945 0.9971 

Cancella 0.9985 0.9972 1.0000 

Cella 1.0000 0.9972 1.0000 

Chiama emergenza 0.9957 0.9945 1.0000 

Chiama ultimo numero 0.9985 0.9918 0.9956 

Chiama 0.9985 0.9945 0.9985 
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In our research, we harnessed single-branch audio and visual modalities, surpassing the 

performance of combinations involving other popular individual audio/visual components. 

The findings revealed impressive accuracy ratings, with male speakers achieving 98.56%, 

female speakers reaching 95.11%, and an overall accuracy of 97.64% for both genders across 

20 spoken utterances. The proposed technique notably elevated the accuracy levels for all 

utterances. Employing a 70:30 train-test ratio with 5-fold cross-validation, it's crucial to 

highlight that the dataset lacks a distinct folder demarcation for training and testing. Figures 

3.20, 3.21, and 3.22 illustrate the confusion matrices of the proposed deep BiLSTM-GRU 

for the first 20 utterances of female speakers, male speakers, and both male and female 

speakers, incorporating a deep-single stream branching of audio and image modalities. The 

y-axis represents actual values, while the x-axis represents predicted values. The confusion 

matrix analysis reveals that the 20 utterances of male speakers exhibit exceptional 

performance, attributed to the enhancement of audio samples with SepFormer and the meta-

learning of output scores from both SepFormer and Swin transformer. In the confusion 

matrix, "c1" and "c2" represent the predictions and actual classes of spoken utterances, 

respectively. "c1" stands for the first utterance on both axes, while "c2" represents the second 

utterance, and so on. 

 

Chiamata 0.9971 0.9945 0.9985 

Chiudi applicazione 1.0000 0.9945 0.9942 

Chiudi rubrica 0.9985 0.9918 0.9942 

Chiudi 0.9985 0.9945 0.9985 

Cinque 1.0000 0.9836 0.9971 

Deseleziona 1.0000 1.0000 1.0000 

Disattiva vivavoce 0.9985 0.9918 1.0000 

Due 0.9985 0.9945 1.0000 
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Figure 3.20. Confusion Matrix of first 20 instance of female speakers 

 

 

Figure 3.21. Confusion Matrix of first 20 instance of male speakers 
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Figure 3.22. Confusion Matrix of first 20 instances of both gender speakers 

 

The ROC curves in Figures 3.23, 3.24, and 3.25 for 10 subjects further demonstrate the 

effectiveness of our technique in accurately determining each speaker's utterance. Similarly, 

Figures 3.26, 3.27, and 3.28 for 20 subjects showcase the superior performance of our 

technique in speaker utterance accuracy. Even in the context of a challenging dataset, our 

approach proves effective in improving dysarthric speech recognition.  

 

 

 

 

 

 

 

 
 
 
  

Figure 3.23. 10 spoken utterances of male          Figure 3.24. 10 spoken utterances of female 
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Figure 3.25. 10 spoken utterances of both       Figure 3.26. 20 spoken utterances of male                                  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.27. 20 speech utterances of female    Figure 3.28.  20 speech utterances of both  
 

                                                                                                       

It is important to acknowledge that dysarthric speech databases need to consider the 

possibility that individuals with speech impairments might use unconventional phrases or 

expressions due to difficulties in pronouncing specific words. Additionally, factors such as 

cultural and generational variations may contribute to differences in vocabulary between 

senior individuals, who are more susceptible to articulatory issues, and younger individuals. 

 

3.13 SIGNIFICANT OUTCOMES 

 
This objective introduces a detailed analysis of deep-salient features from audio and visual 

modalities using a novel deep BiLSTM-GRU model for individual modality learning. 

Leveraging training output scores from the deep BiLSTM-GRU model, our approach 

achieves high accuracies across various dysarthric speaker scenarios. Specifically, accuracy 
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rates include 98.56% for 20 utterances of dysarthric male speakers and 95.11% for 20 

utterances of dysarthric female speakers. We propose a single stream branching of signal 

denoising through Sepformer and utilization of Swin-T for log-mel spectrogram 

classification. The method uses transformer-based engineering, showing promising results. 

While the EasyCall corpus offers more spoken utterances, future exploration will involve 

handling larger datasets and categories. Despite encouraging findings, there are numerous 

opportunities for further research and refinement.  

 

In the next chapter, we have investigated objective 2, examining the effects of employing 

phonemes directly from raw audio, without the need for generating a text transcript. 

Additionally, we have explored the incorporation of phonemes and the development of a 

fusion framework for recognizing spoken words based on phonetic elements. 

 
 
 
 
 
 



 

 

 

 

CHAPTER 4 

 

DESIGN AND DEVELOPMENT OF FUSION 

FRAMEWORK FOR PHONEME-BASED SPOKEN 

WORD RECOGNITION FROM RAW AUDIO  

 
 
 

 

Accented speech can pose challenges for ASR systems. Dialects, which are variations in 

language characterized by differences in words, phrasing, and influence by social and 

geographic factors, further complicate the task (Hinsvark et al. 2021: Holmes and Wilson 

(2017); Oh et al. 2021). Research indicates that DeepSpeech2-RNN holds the most accent-

related information among ASR layers, especially in the initial stages (Prasad and Jyothi, 

2020). Recent work by Winata et al. (2019) introduced model agnostic meta-learning 

(MAML) to accented ASR, demonstrating the potential for models to adapt to unfamiliar 

accents. Meta-learning techniques have also shown promise in training models to handle 

new accents with minimal exposure. While several methods like optimizers and various 

representations remain unexplored, accent embeddings, derived from late hidden layers in 

accent identification neural networks, have gained popularity for enhancing input features. 

Both hybrid acoustic models and E2E models have benefited from these embeddings (Jan et 

al. 2018; Rao et al. 2020).2 

 
2 The content of this chapter is published in: 

“Early Fusion of Phone Embeddings for Recognition of Low-Resourced Accented Speech”. - 2022 4th 

International Conference on Artificial Intelligence and Speech Technology (AIST), 

https://doi.org/10.1109/AIST55798.2022.10064735. 
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The scarcity of adequate training data for accented speech has shown to result in higher 

WERs in ASR experiments (Lüdeling & Kytö, 2008; Lee (2007)). This chapter addresses 

the fundamental challenge associated with accented speech datasets: the lack of sufficient 

resources for model training. 

The key highlights of this work are as follows:  

 

• This chapter introduces a supervised technique for accented speech recognition, 

particularly in situations where resources are limited.  

• Existing research has not extensively explored the use of phonology for 

understanding spoken text in accented speech recognition.  

• The proposed approach employs early fusion of phone embeddings as a novel 

method for recognizing accented speech, especially from a small sample dataset.  

• To ensure consistency, the vectors are concatenated and padded.  

• The study aims to demonstrate the significant role that audio phonemes can play in 

accented speech recognition, even when training samples are limited in number.  

 

The rest of the chapter is organized as follows. In Section 4.1, we outline the proposed dense 

architecture for the early fusion of phonemes. Section 4.2 details the experimental design 

and provides a comprehensive summary of the obtained results. The results are concluded in 

Section 4.3 outlines future research opportunities in the field.  

 

4.1 MODEL DESCRIPTION  

 

Within this section, we present our novel approach for early phoneme fusion in the context 

of accented speech recognition. Numerous researchers have embraced early fusion as a 

means to establish a cohesive representation by amalgamating multiple modalities (Zhao et 

al. 2018). This fusion of features is realized through concatenation and padding processes. 

Subsequently, these amalgamated features are input into a three-layered dense model, thus 

enhancing the performance of the accented speech recognition system. A visual 

representation of this innovative methodology can be observed in the accompanying Figure 

4.1.  
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The initial step involves the transformation of raw audio into phonemes, a process executed 

through PocketSphinx (Mehra & Susan, 2021; Bojanowski et al. 2017; Gao et al. 2018; 

Huggins-Danies et al. 2006). Subsequently, these phonemes are converted into 300-

dimensional vectors employing the FastText subword modeling technique. For this purpose, 

a dataset comprising two million word vectors from Web Crawl, generated using subword 

data (600 billion tokens), is employed. These word vectors are pre-trained representations 

and have been derived from extensive text corpora, including sources such as news 

collections, Wikipedia, and web crawls. Such pre-trained word representations are widely 

utilized in various text-based applications (Mikolov et al. 2017). To convert phonemes into 

vectors, subword modeling is employed. Phonetic characteristics extracted from the .wav 

raw audio files are stored as matrices, each having dimensions of 300 × 1, with the 

dimension measured per phone. To ensure uniformity, early fusion techniques are applied, 

involving the concatenation and padding of these vectors. This process results in vectors 

with dimensions of 43500 × 1. Subsequently, these uniform vectors are input into the 3-

layered dense model, as depicted in Figure 4.2.  

 

 

Figure 4.1. The block diagram of the proposed method 
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In Figure 4.1, the process of generating concatenated and padded features, resulting in a 

dimensionality of 43500 × 1, is illustrated. A sequence of phonemes with a vector 

dimensionality of 300 is concatenated as [phoneme1, phoneme2, …. ,  phoneme145], where 

145 represents the maximum length of the padded sequence of phonemes in a sentence. This 

leads to a vector of dimension 43500 × 1. The resulting feature vectors serve as input to the 

flatten layer, the first dense layer (512 units), the second dense layer (256 units), and the 

third dense layer (64 units) within our 3-layered dense model, as depicted in Figure 4.1. The 

model’s output consists of probabilistic values, with the class label corresponding to highest 

probability (Esfe et al. 2022). For a comprehensive overview of the neural network 

architecture’s parameters, please refer to Table 4.1. 

 

 

Figure 4.2. 3-layered dense model for classifying the fused phone embeddings 

 

Table 4.1. Hyperparameters of our proposed approach 
 

 

 

 

 

 

 

 

Framework Values 

Total Samples                   240        

Training Set Samples                   168 

Testing Samples                     72 

Dimensions               43500 × 1 

Epochs                    100 

Activation function                  ReLu 

Dense layers                   3 
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The 3-layered dense model, detailed in Table 4.1, takes the fused phone embeddings as its 

input. This model is responsible for training the padded features and comprises a flatten layer 

followed by three dense layers with unit sizes of (512, 256, and 64), all activated with the 

“ReLu” activation function. To regulate the learning rate in stochastic gradient descent, the 

Adam optimizer (Duchi et al. 2011) is utilized. This optimizer is renowned for its consistent 

performance across a range of tasks. The model employs a loss function known as sparse 

categorical cross-entropy.  

 

4.2 EXPERIMENTAL RESULTS  

4.2.1 DATASET 

 

Our experimental data is drawn from the L2-ARCTIC English speech corpus designed for 

non-native speakers (Zhao et al. 2018). This dataset offers a balanced distribution in terms 

of gender and native languages (L1) and includes 26,867 utterances from 24 non-native 

speakers. The majority of the speakers from the CMU ARCTIC set recorded their entire 

speech events. Collectively, these speakers contributed an average of 67.7 minutes of speech 

each, resulting in a corpus duration of 27.1 hours, with a standard utterance length of 8.6 

minutes. On average, each utterance spans 3.6 seconds, and the intervals between speech 

samples are typically less than 100 milliseconds. The dataset comprises approximately 

238,702 word segments and 851,830 phone segments, with each speech sample containing 

an average of nine words (excluding silence segments). Annotators meticulously reviewed 

3.599 utterances and identified 1,092 phone additions, 3,420 phone deletions, and 14,098 

phone substitutions. Some sentences are truncated due to incomplete readings by certain 

speakers or subpar recording quality. For the task of spoken sentence categorization, we 

adapted the L2-ARCTIC dataset, which initially featured speakers from six different 

languages-Korean, Arabic, Hindi, Chinese, Spanish, and Vietnamese. Each language 

category included four distinct speakers with diverse accents. However, the dataset had 

primarily been designed for research purposes related to voice and accent conversion, as 

well as mispronunciation identification. Consequently, the number of available audio 

samples per sentence category was relatively limited. Due to the dataset’s handling and 

management, it can be considered under-resourced. Specifically, each sentence category 

comprises only 24 speakers, resulting in a dataset size of 240 samples for ten sentence 
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classes. To conduct our experiments, we adopted a 70:30 split ratio, segregating the dataset 

into training and testing sets, and implemented a 3-fold cross-validation approach.  

 

4.2.2 EXPERIMENTAL SETUP  

 

The experiments are conducted on a system running MAC OS High Sierra, equipped with 

an Intel Core i5 processor featuring Intel Graphics and operating at a clock speed of 1.8 GHz. 

The experiments are implemented using Python version 3.10.4. We adopted a 70:30 train-

to-test split ratio, employing a 3-fold cross validation approach to ensure robust evaluation. 

For optimization, we utilized the Adam optimizer, with a batch size of 16, an extensive 

training duration of 100 epochs, and a learning rate set at 0.01. The non-linearity in the model 

is introduced via the “ReLu” activation function.  

 

4.3 RESULTS AND DISCUSSIONS   

 

We employed PocketSphinx to extract phonemes from the raw audio data. After phoneme 

extraction, we proceeded to normalize the phonemes, which involved eliminating noise 

phones such as SPN and NSN. This pre-processing step effectively removed signal noise 

from the retrieved phonemes. To represent the phonemes as vectors, we employed subword 

embeddings, with each phoneme being transformed into a 300-dimensional vector. 

Additionally, padding was applied to ensure uniformity in the vector dimensions, resulting 

in padded vectors with dimensions of (43500 × 1). These padded vectors served as input for 

the deep dense layered model, as illustrated in Figure 4.1. The experiments are conducted 

with three cross-validations, yielding an average testing accuracy of 49.01% for the proposed 

method. Given the low-resource nature of the dataset and the presence of accented speech, 

the achieved accuracy is within the expected lower range.  

 

Table 4.2 provides a comprehensive classification report, encompassing F1-scores and 

accuracies for the ten sentence classes evaluated using our proposed methodology. The 

results reveal variations in the ease or difficulty of classifying different sentences. Notably, 

our method achieved a remarkable 100% accuracy in recognizing sentence category -5, 

specifically for the sentence “Will we ever forget it”. However, it struggled with sentence 

category -6, where the sentence was “God bless ‘em, I hope I’ll go on seeing them forever”. 
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However, it struggle with sentence category -6, where the sentence was “God bless ‘em, I 

hope I’ll go on seeing them forever”. This performance discrepancy reflects the varying 

levels of success in recognizing sentences, with only a limited number of sentences being 

correctly identified.  This challenge primarily arises from the complexity of the dataset, 

characterized by its challenging accents and distinctive speech patterns. In Figure 4.3, the 

confusion matrix for the early fusion model is presented. It’s evident from this visualization 

that our proposed technique achieves the highest accuracies for sentence category -5. It's 

worth noting that with a larger dataset, the model’s performance could have been 

significantly improved. The accuracy levels for accented speech from non-native speakers 

tend to be relatively lower due to the dataset’s limited size. However, these results still 

provide valuable insights into the effectiveness of different models in handling such 

challenging linguistic variations. The ROC plots in Figure 4.4 align closely with the class-

wise F1-scores and accuracies presented in Table 4.2. In Table 4.3, various evaluation 

metrics for different sentence classes are displayed. These metrics include sensitivity, 

specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV), False 

Positive Rate (FPR), False Negative Rate (FNR), and False Discovery Rate (FDR). It’s 

noteworthy that both specificity and NPV exhibit high values across all classes, while 

sensitivity and PPV are particularly high for specific classes, such as sentence categories -5, 

4, and 8. FPR, FNR, and FDR values are consistently low, with FPR values exhibiting low 

rates across all classes. The most notable performance is observed for sentence category -5.  

 

Table 4.2. F1-Score and accuracy per sentence category 
 

 

 

 

 

 

 

 

 

 

 

Sentence 
Classification Results 

precision recall F1-score Accuracy 

S1  0.50 0.29 0.36 50% 

S2 0.43 0.60 0.50 57% 

S3 0.20 0.50 0.29 80% 

S4 0.42 0.83 0.56 58% 

S5 1.00 1.00 1.00 100% 

S6 0.00 0.00 0.00 0% 

S7 0.67 0.40 0.50 33% 

S8 0.67 0.75 0.71 33% 

S9 0.40 0.25 0.31 60% 

S10 0.75 0.33 0.46 25% 



 

 

87 

 

Figure 4.3. Confusion matrix of proposed method 

 

 

Figure 4.4. Multiclass classification evaluation with receiver operating characteristic curve  

 

We conducted a comparative analysis of our proposed method against other approaches, 

including a CNN using MFCC features as 2D input. Notably, our method demonstrated a 
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superior performance in accented speech recognition, outperforming the MFCC with CNN 

by an impressive margin of 4.18%. Additionally, we benchmarked our approach against a 

technique employing 300-dimensional text-glove word embeddings, which are classified 

using a LSTM model. With a configuration of 100 epochs, 128 neurons, the Adam optimizer, 

and the tanh activation function, our method achieved an accuracy of 42.99% on the accented 

dataset, surpassing the LSTM-text-glove approach by a substantial 6.02%. It’s worth 

highlighting that while CNN has shown effectiveness in sound classification when using Mel 

Spectrogram as an input feature, our proposed approach outperformed Mel Spectrogram 

with LSTM by a notable margin of 5.3%. For detailed performance comparison, please refer 

to Table 4.3. Our results undeniably establish the superiority of our method in the context of 

limited resource availability. In situations where classifying spoken sentences based on raw 

audio is challenged by a scarcity of training and testing examples, achieving satisfactory 

results can be a formidable task. However, our proposed approach shines through these 

challenges, consistently delivering the best performance. Looking ahead, the future of our 

work is poised for further exploration and expansion. The focal point is on investigating a 

broader range of fusion models tailored for low-resourced accented speech corpora.  

 

Table 4.3. Classification report per sentence category 
 

  

 

 

 

 

 

 

 

 

 

 

4.4 SIGNIFICANT OUTCOMES 

 

This study delves into the classification of low-resourced accented speech  through the 

innovative application of early fusion of phoneme embeddings and a dense model. Notably, 

our approach is pioneering in that it introduces the combination of early phone fusion with 
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S1  0.28 0.97 0.50 0.93 0.30 0.71 0.50 

S2 0.60 0.94 0.42 0.97 0.05 0.40 0.58 

S3 0.50 0.82 0.20 0.95 0.19 0.50 0.80 

S4 0.83 0.90 0.42 0.98 0.11 0.17 0.58 

S5 1.00 1.00 1.00 1.00 0.00 0.00 0.00 

S6 0.00 0.97 0.00 0.90 0.03 1.00 1.00 

S7 0.40 0.98 0.66 0.96 0.02 0.60 0.33 

S8 0.75 0.95 0.66 0.96 0.05 0.25 0.33 

S9 0.25 0.95 0.40 0.91 0.05 0.75 0.60 

S10 0.33 0.98 0.75 0.91 0.02 0.67 0.25 
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accented speech, a novel endeavour within the context of low-resourced datasets. The 

amalgamation of early fusion of phoneme embeddings and a 3-layered dense model 

significantly augments the performance of low-resourced accented speech recognition. We 

conducted our experiments using the L2-ARCTIC accented speech dataset, featuring audio 

recordings from 24 non-native English speakers and encompassing 10 sentence categories. 

Our proposed methodology has yielded commendable results in the classification of spoken 

sentences. Our future work will focus on further exploring diverse fusion models tailored to 

low-resourced accented speech corpora, thereby extending the scope of this research. In the 

next chapter, we have explored objective 3, investigating the impact of using phonemes and 

morphemes extracted from raw audio speech transcriptions. The focus is on assessing the 

importance of a fusion framework for recognizing spoken words based on these phonetic 

and morphological element.



 

 

 

 

 

CHAPTER 5 

 

DESIGN AND DEVELOPMENT OF FUSION 

FRAMEWORK FOR PHONEME- AND MORPHEME-

BASED SPOKEN WORD RECOGNITION FROM 

SPEECH TRANSCRIPTIONS 

 
In this thesis, we present an innovative unsupervised technique designed to rectify severely 

flawed speech transcriptions. This approach employs a decision-level fusion strategy, 

combining stemming and a two-way phoneme pruning process. This combination of 

techniques seeks to enhance the accuracy and quality of transcriptions in the context of 

challenging or imperfect speech data. This chapter has been dedicated to the enhancement 

of speech transcription through the implementation of decision fusion, a notably effective 

approach. We conducted experiments encompassing 500 diverse word categories, involving 

multiple speakers representing both male and female genders. Although the transcriptions 

extracted from Google API may not achieved exceptionally high accuracy, they have 

demonstrated practical utility, particularly in real-time applications. The key highlights are: 

• Introduction of an unsupervised approach for improving highly imperfect speech 

transcriptions through decision-level fusion of stemming and two-way phoneme 

pruning.  

• Utilization of the Ffmpeg framework for extracting audio from videos, followed by 

audio-to-text transcription using Google API. Utilization of the LRW dataset, featuring 

500 word categories and 50 videos per class in mp4 format, with each video comprising 

29 frames.3

 
3 The content of this chapter is published in:  

“Improving word recognition in speech transcriptions by decision-level fusion of stemming and two-way 

phoneme pruning. -  Advanced Computing: 10th International Conference” IACC 2020, Panaji, Goa, 

India, December 5–6, 2020, Revised Selected Papers, Part I 10, https://doi.org/10.1007/978-981-16-0401-

0_19.  
90 
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• Aiming to enhance baseline accuracy, resulting in a notable improvement from 9.34%. 

• Incorporation of stemming, phoneme extraction, filtering, and pruning techniques in 

the approach, achieving 23.34% accuracy in word recognition. 

• Leveraging the CMU pronouncing dictionary for G2P conversion.  

• Introduction of a two-way phoneme pruning method, involving non-sequential steps 

for filtering and pruning phonemes containing vowels, plosives, and fricatives.  

• Application of decision-level fusion, ultimately elevating word recognition rates up 

to 32.96%.  

 

This chapter introduces a comprehensive approach that combines stemming techniques with 

two distinct phases of phoneme filtering and pruning to facilitate word recognition and error 

correction in flawed speech transcriptions. The chapter’s structure is as follows: Section 5.1 

outlines the proposed methodology, Section 5.2 provides an in-depth analysis of the 

experimental outcomes, and Section 5.3 presents the significant outcome remarks.  

 

5.1 PROPOSED APPROACH FOR CORRECTING IMPERFECT SPEECH 

TRANSCRIPTION 

5.1.1 TEXT PRE-PROCESSING 

 

The text transcript is relatively concise, exemplified by the word category “significant” in 

Figure 5.1. Speech transcript normalization is a crucial step involving data cleansing, which 

entails the removal of undesirable elements such as stop words and punctuation. 

Additionally, it encompasses the conversion of numeral values into their textual 

representations and transforming all words into lowercase for improved readability. Further, 

the process includes sentence tokenization to facilitate proper content comprehension by 

distinguishing individual words. Text filtering plays a pivotal role in expediting processing 

while concurrently reducing the document’s overall size. The elimination of stop words is a 

crucial step since these words, such as “a”, “the”, “an”, “of”, “like”, and “for”, hold minimal 

significance in the context of information retrieval. Furthermore, we’ve undertaken the task 

of rephrasing commonly used expressions, such as “couldn’t”, by presenting them in their 

grammatical forms, like “could not”. Tokens that incorporate symbols like “.”, “!”, “#”, and 

“$” are tailored to fit the content’s requirements and, where necessary, are either converted 

to word form or removed altogether, as illustrated in Figure 5.2. 
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Figure 5.1. Text transcription after pre-processing 
 

 

 

Figure 5.2. After text normalization (removing all these bold letter words) from a 

transcription 

 

5.1.2 STEMMING 

 

Stemming, employed in information retrieval and linguistic morphology, serves as a 

technique to truncate word suffixes and reduce them to their fundamental root form, also 

referred to as the base form. This process finds wide application in text and NLP. For 

instance, if a word concludes with “ed”, “ies”, “ing”, or “ly”, the trailing portion of the word 

is removed to derive its root or base form. One of the tools used for stemming is the Porter 

Stemmer, which, as illustrated in Figure 5.3, may not always align with the morphological 

root of words. This stemmer algorithm delineates the process of eliminating inflectional 

endings and common morphs from words, aiding in text normalization within information 

retrieval systems (Porter, 1980). Notably, the Porter stemmer exhibits a milder approach 

compared to the Lancaster stemmer, which tends to trim more of the valid text. In the context 

of linguistic morphology, stemming revolves around the quest for a word’s root or base. 

Conversely, lemmatization focuses on identifying the lemma from a lexicon containing 

words with identical senses. The base or word-form can be inferred or inflected. 
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Figure 5.3. After applying stemming using Porter stemmer 

 

In our LRW dataset, the keyword  “absolutely” possesses a lemma as “absolutely” and a 

stem as “absolut”. As we examine the text transcriptions, the prevalence of the stem 

“absolut” surpasses that of the lemma “absolutely”. Therefore, the stemmer brings the 

majority of words closer to their respective categories. This proximity results in higher 

classification scores compared to experiments that adhere to matching words in their original 

form.  

 

5.1.3 PHONEME EXTRACTION FROM TEXT 

 

Phonemes, within the realm of linguistics, constitute the smallest speech units that 

distinguish sounds or groups of sounds, impacting both pronunciation and meaning. The way 

a phoneme is pronounced may vary depending on the surrounding letters and their influence 

on its representation (Alsharhan & Ramsay, 2019). These phonemes encapsulate the sound 

of speech, encompassing aspects like stress, articulation, and intonation. In our work, we 

harnessed the CMU pronunciation dictionary, an extensive lexicon boasting over 125,000 

words and their corresponding phonetic transcriptions.  

 

Following the normalization of text, we proceeded to extract a collection of phonemes from 

the aligned text transcript. This collection focuses solely on the standard sound patterns and 

stress configurations observed in syllables, words, and phrases. For instance, the phonetic 

transcription of the word “about” appears as “AH0 B AW1 T”, wherein “0” signifies the 

absence of stress, “1” denotes primary stress, and “2” indicates secondary stress. We 

meticulously filtered out all numerical values. Consequently, the text underwent 

segmentation into words and was further represented by its constituent phonemes, as 

exemplified in Figure 5.4.  
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Figure 5.4. Overview of phoneme filtering and pruning from a sample phrase. Text 

phoneme is filtered and pruned to include plosives and vowels and alternatively, to include 

vowels and fricatives in the same manner 

 

Distinct speakers bring forth varying pronunciations, making the quest for a precise 

transcript match a formidable challenge (Hazen, 2006). The CMU pronouncing dictionary 

adheres to American English standards when approximating text pronunciations. Notably, 

this dictionary aligns with the standardized representation found in the IPA, a system that 

captures the sounds of spoken language across the globe.  

 

Phoneme filtering is an essential step involving the categorization of phonemes based on 

their content, specifically whether they contain vowels, plosives, or fricatives. This process 

not only reduces the dataset’s size but also enhances category identification, as elucidated 

by the sequence of phonemes depicted in Figure 5.5. These phonemes are extracted from the 

normalized text presented in Figure 5.2. Plosives, also known as stop or oral consonants, 

operate by obstructing the vocal tract, momentarily halting the airflow. They encompass both 

voiced and voiceless consonants. Voiced plosives include “b”, “d”, and “g”, while voiceless 

or unvoiced plosives consist of “p”, “t”, “k’. They are also referred to as glottal stops. 

Fricatives, which primarily comprise voiced consonants characterized by high energy and 
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amplitude, encompass examples such as “f”, “s”, “v”, and “z”. Due to their robust amplitude, 

they are readily detectable. The IPA has introduced a phonetic chart designed to distinguish 

the sounds of various human languages. Consonants, produced within the vocal tract, notably 

the oral tract (encompassing the mouth and pharynx), play a pivotal role in constructing 

spoken language. Consonants can be further categorized as labials, coronals, radicals, and 

dorsals. Vowels contribute to high pitch and amplitude, often rendering them correctly 

detectable. Based on the manner of speech production, sounds are classified as nasal if 

originating from the nose, while sounds created by obstructed airflow are referred to as stops, 

plosives, or orals. Fricatives, typified by consonants like “f”, “s”, “v”, and “z”, involve the 

placement of the lower lip against the upper teeth during their production. Trills are akin to 

taps, while flaps are sounds generated through the interaction of active and passive 

articulators (Richard and Makhoul, 1975.  

 

Figure 5.5. After phoneme extraction and filtering 

 

5.1.4 DECISION FUSION OF STEMMING AND PHONEME 

 

Following the compilation of outcomes from pure stemming and phoneme filtering, we 

proceeded with a phoneme pruning process. This pruning involved two distinct stages, where 

we retained phonemes containing either (i) vowels or plosives or (ii) vowels or fricatives. 

These two stages were executed in a non-sequential manner, constituting what we refer to as 

the two-way phoneme pruning scheme.  

 

Stage I: Phoneme pruning using Vowels and Plosives  

Stage II: Phoneme pruning using Vowels and Fricatives  
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To harness the collective strengths of all these elements, we amalgamated the results 

obtained from stemming, Stage I, and Stage II of the two-way phoneme pruning through a 

decision-level score fusion. Under this scheme, if any of the stages, namely stemming, or 

the presence of Vowels + Plosives, or Vowels + Fricatives, successfully identifies a particular 

word in the transcript, we consider the word as identified. This approach ensures 

comprehensive recognition.   

 

5.2 EXPERIMENTAL RESULTS  

5.2.1 DATASETS 

 

The Lip Reading in the Wild (LRW) dataset (Yang et al. 2019) poses a significant challenge 

for speech recognition in the real-world conditions and has served as a catalyst for numerous 

studies in audio-visual speech recognition (Haubold & Kender, 2007; Torfi et a., 2017). In 

our research, we focused on extracting and processing the audio track from this dataset to 

generate speech transcriptions. The LRW dataset is comprised of 500 distinct word 

categories, each containing 50 samples. For our unsupervised experiments, we exclusively 

utilized the testing data. These videos are all in .MP4 format and consist of 29 frames, each 

lasting 1.16 seconds, with the word typically appearing in the middle of the video. The 

specific word lengths  and details are documented in the metadata. To extract audio from the 

videos, we employed the Ffmpeg framework, a rapid and versatile multimedia file converter 

that ensures no loss in quality during format conversion.  

 

5.2.2 RESULTS OF THE PROPOSED APPROACH USING DECISION-LEVEL 

FUSION 

 

The experiments are conducted using Python 3.7.4 on a Mac OS High Sierra system 

equipped with an Intel Core i5 processor and Intel HD Graphics 6000 (1536 MB) with a 

clock speed of 1.8 GHz. The processing time for a single audio file was approximately 29 

seconds. In our proposed methodology, we engaged in phoneme filtering and pruning, 

selecting vowels and plosives in Stage 1 and vowels and fricatives in Stage 2. After 

implementing stemming, we achieved a word recognition rate of 23.34%. Stage 1 of 

phoneme pruning resulted in a recognition rate of 27.67%, while Stage 2 yielded 28.23%. 
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Figure 5.6. Decision fusion of stemming and two-way phoneme pruning 

 

Notably, when we applied decision-level fusion to combine stemming, Stage 1, and Stage 2 

of phoneme pruning, the word recognition rate significantly improved to 32.96%. This 

represents a substantial enhancement over the baseline method, which yielded a recognition 

rate of 9.36%, as elaborated in the subsequent subsection. A demonstration of decision-level 

fusion for the word category “significant” can be observed in Figure 5.6. A concise summary 

of all results is provided in Table 5.1, accompanied by relevant references to the literature 

that highlights the utilization of individual components in speech text understanding. 

Additionally, we conducted a comparison of our approach with two established automated 

spelling correction tools, namely, autocorrect (Rayson et al. 1998) and Symspell (Gupta, 

2006), the code for which is accessible online at respectively.  

 

Table 5.1 Comparison of various methodologies on LRW dataset 

 

 

 

 

 

 

 

 

 

Methods  Accuracy  

Baseline (Bahl et al. 1984) 

Stemming [(Mathew et al. 2016) 

Phoneme pruning (Vowels & Plosives) (Hemakumar, 2011) 

Phoneme pruning (Vowels & Fricatives) (Haubold and Kender, 2017) 

Autocorrect (Rayson, 1998) 

Symspell (Gupta, 2020)  

Decision Fusion of Stemming and two-way Phoneme pruning  

9.34%  

23.34%  

27.67%  

28.23%  

21.50%  

25.16%  

32.96%  
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5.2.3 SLIDING TEXT WINDOW- THE BASELINE APPROACH 

 

In the baseline method, we employ a window that traverses the text, breaking it into tokens, 

with each token corresponding to a word within the sentence. Upon identifying the category 

word in a sentence, the text window is free to move either to the next sentence or to the 

subsequent line in the text document. As we navigate through the sentence, word by word, 

and traverse through lines, we calculate the frequency of occurrences of the category word, 

as illustrated in Figure 5.7. This approach effectively mitigates issues related to the 

duplication and redundancy of the same category word within a sentence.  

 

   

Figure 5.7. Sliding text window to search for the keyword “significant” in-text 

transcription 

5.2.4 TEST CASES 

 

Let’s examine a few test cases to gain a more precise understanding of the role of decision 

fusion:  

 

Test Case 1: In certain cases, the stem alone is adequate for word recognition. For example, 

in the category “announced”, we have the following probabilities: stem (root form 

“announce”) – 6%, vowels + plosives -4%, vowels + fricatives -2%. Decision fusion  in this 

case strongly favours the stem, as removing “ed” from “announced” increases the stem’s 

probability by 4%. For vowels + plosives, the CMU dictionary pronunciation is “AH”, “N”, 

“AW”, “N”, “S”, and “T”, with the desired pattern “AAT” in the transcript, leading to a 2% 

probability increase. In the case of vowels + fricatives, the CMU dictionary pronunciation is 

“AH”, “N”, “AW”, “N”, “S”, “T”, with the desired pattern “AAWS” in the transcript, 
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resulting in the same probability as the baseline. The stem outperforms the other two cases 

in this specific test case.  

Test Case 2: Let’s consider another category, “agreement”, where the probabilities are as 

follows: stem -44%, vowels + plosives -88%, vowels + fricatives -92%. Here, decision 

fusion strongly favours vowels + fricatives. For the stem, the probability remains the same 

as the baseline. However, for vowels + plosives, the CMU dictionary pronunciation is “AH”, 

“G”, “R”, “IY”, “M”, “AH”, “N”, “T”, with the desired pattern “AGIAT” in the transcript, 

leading to a 22% probability increase. In the case of vowels + fricatives, the CMU dictionary 

pronunciation is “AH”, “G”, “R”, “IY”, “M”, “AH”, “N”, “T”, with the desired pattern “AI” 

in the transcript, resulting in a 70% probability increase. Vowels + fricatives perform best in 

this test case.   

Test Case 3: In the category “affairs”, the probabilities are as follows: stem -4%, vowels + 

plosives -20%, vowels + fricatives -6%. Decision fusion strongly favours vowels + plosives. 

After removing “s” from “affairs”, the probability of the stem “affair” remains the same as 

the baseline. For vowels + plosives, the CMU dictionary pronunciation is “AH”, “F”, “EH”, 

“R”, “Z”, with the desired pattern “AE” in the transcript, leading to a 16% probability 

increase. In the case of vowels + fricatives, the CMU dictionary pronunciation is “AH”, “F”, 

“EH”, “R”, “Z”, with the desired pattern “AFERZ” in the transcript, resulting in a 2% 

probability increase. Vowels + plosives yield the best results in this particular test case.  

 

These test cases demonstrate how decision fusion effectively combines the strengths of 

various methods to provide the highest accuracy for word recognition across different 

categories.  

 

5.3 SIGNIFICANT OUTCOMES 

 

Our approach involves the fusion of two effective techniques, stemming and two-way 

phoneme pruning, for improving word recognition accuracy in highly imperfect speech 

transcriptions extracted from the LRW dataset in mp4 format. We initiate the process by 

extracting audio samples from the videos using the Ffmpeg framework. Subsequently, we 

convert the audio speech into text transcriptions using the publicly available Google API, 

which has versatile applications in speech adaption, speech transcription, and real-time 

speech recognition. To evaluate our results, we begin with a baseline comparison, which 
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involves simple string matching to identify word categories in the text transcription. Our 

first step is text normalization and speech adaption, which entails the removal of stop words, 

the most frequent and extraneous words in the text, to expedite text processing. Next, we 

apply stemming to derive the root form of each word and compare it against various word 

categories. Concurrently, we convert each word into phonemes using the CMU pronouncing 

dictionary. We then map the text transcript to phonemes and proceed to apply phoneme 

filtering, where we selectively filter out phonemes containing vowels, plosives, or fricatives.  

 

The phoneme pruning process comprises two non-sequential stages: Stage I involves 

phoneme pruning using vowels and plosives, while stage II focuses on phoneme pruning 

using vowels and fricatives. Subsequently, we accumulate results from these three methods 

and apply decision fusion to ascertain whether any of these methods successfully detect the 

occurrence of the word. The proposed fusion method proves to be highly effective, 

surpassing existing SOTA techniques. As a result, word recognition accuracy is significantly 

enhanced, elevating it from a baseline accuracy of 9.34% to an impressive 32.96% using our 

fusion approach.  

 

In the next chapter, we have delved into objective 4, exploring the effects of employing a 

classification framework for phonological and morphological features using pre-trained 

networks in the realm of SWR.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

The contents of this chapter are submitted/accepted/under review in: 

“Spoken Word Recognition for Asian Languages using Transformers” - Computer Speech and Language. 

(IF: 4.3).  

& 

“Speaker Independent Recognition of Low-Resourced Multilingual Arabic Spoken Words through 

Hybrid Fusion” – accepted in Multimedia Tools and Applications, https://doi.org/10.1007/s11042-024-

18804-w. (IF: 3.6). 
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CHAPTER 6 

 

DESIGN AND DEVELOPMENT OF 

CLASSIFICATION FRAMEWORK FOR 

PHONOLOGICAL- AND MORPHOLOGICAL 

FEATURES USING PRE-TRAINED NETWORKS 

FOR SPOKEN WORD RECOGNITION 

 

 
 
In this thesis, we proposed two different novel techniques. First, we introduce a method to 

recognize spoken words using minimal input data. Previous research has often overlooked 

the potential of using linguistic elements like morphemes and phonemes to understand 

spoken text. To address this, we present a late fusion approach that combines phone 

embeddings and bigram embeddings for SWR. We work with audio samples in .OPUS 

format and extract text transcripts from them using a pre-trained English classifier called 

xlsr-Wav2Vec2-53. From these transcripts, we obtain phonemes using the CMU 

pronouncing dictionary. These phonemes are then converted into vectors using ML 

language-agnostic sentence embeddings. We also extract bigrams from the text transcripts 

and vectorize them in a similar manner. Both the phoneme embeddings and morpheme 

embeddings are fed into a 5-layered dense batch normalization model. These results 

outperform existing techniques. Our work demonstrates that linguistic elements, such as 

phonemes and morphemes, can significantly contribute to SWR, especially when training 

data is limited and imbalanced. We also show that using text-transcription features from pre-

trained models can be more successful than traditional audio-based feature modeling.  

https://doi.org/10.1007/s11042-024-18804-w
https://doi.org/10.1007/s11042-024-18804-w
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The main contributions of this chapter are outlined as follows:  

• The ML landscape of spoken word classification presents a unique challenge in the 

area of NLP.  

• We propose a supervised approach to tackle this challenge by leveraging the power of 

transformer models for the extraction of text transcripts from audio data in Arabic, Tamil, 

and Vietnamese. 

• In our pursuit of advancing the SOTA, we present a novel late fusion technique that 

synergistically combines phone embeddings and bigrams.  

• Our approach leverages both phone embeddings and bigrams, capitalizing on their 

individual strengths to enhance SWR. By introducing a late fusion technique, we 

enable these two diverse features to complement each other, resulting in a more 

comprehensive representation of spoken words. The late fusion model elegantly 

integrates these features, paving the way for enhanced accuracy in the recognition 

process.  

• To process both phone embeddings and morph embeddings, we employ a 5-layered 

dense batch normalization model. This architecture is meticulously designed to 

extract intricate patterns and relationships within the input data. By utilizing batch 

normalization at each layer, we ensure model stability and faster convergence. The 

model serves as the backbone for our late fusion approach, allowing it to thrive in 

the complex area of ML SWR.  

• Our efforts culminate in superior accuracy within the ML spoken dataset, surpassing 

existing SOTA methods. We benchmark our technique against a set of ten distinct 

word categories, each representing unique linguistic challenges. Through extensive 

experimentation and fine-tuning, we consistently outperform previous recognition 

models, underscoring the effectiveness and versatility of our late fusion approach.  

• This innovation is not confined to a specific language or dialect; it has the potential 

to revolutionize SWR across diverse languages. Our technique is a testament ot the 

evolving landscape of DL in speech processing, setting a new standard for accuracy 

and adaptability.  

• In summary, our late fusion technique, in combination with a robust DL architecture, 

propels the field of ML SWR to new heights. We anticipate that this approach drive 
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advancements in speech technology and foster a deeper understanding of spoken 

language across the world’s linguistic diversity. 

 

The structure of the chapter is as follows: Section 6.1 presents the proposed dense 

architecture for late fusion of phonemes and bigrams. Section 6.2 outlines the experimental 

design and summarizes the results. Section 6.3 concludes the chapter and suggests potential 

directions for future research.  

6.1 PROPOSED APPROACH  

 
In this section, we present our late fusion method designed for the recognition of ML spoken 

words. Table 6.1 offers essential details regarding the training-to-testing sample ratio within 

the ML spoken words corpus.  

Table 6.1 Per category train test samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have employed an under-resourced and significantly imbalanced dataset encompassing 

Arabic, Tamil, and Vietnamese languages. As evident from the information in Table 6.1, it is 

apparent that we are working with a low-resourced dataset. Algorithm provides a detailed 

explanation of our E2E approach.

Languages 

Train – Test 

Arabic Tamil Vietnamese 

category 1 4-2 3-2 4-3 

category 2 13-6 3-2 4-2 

category 3 3-2 2-2 4-3 

category 4 4-2 3-2 3-2 

category 5 8-4 3-2 4-2 

category 6 4-2 46-20 4-2 

category 7 7-3 7-3 10-5 

category 8 9-5 11-6 7-3 

category 9 5-3 4-2 9-4 

category 10 5-3 4-2 6-3 
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Algorithm: Linguistic feature extraction, classification with deep neural network, and Fusion 

 
     Input: Train Set Xtrain, Test Set Xtest, Train Labels Ytrain, Test Labels Ytest 

     Output: ACCURACY 

1. For each audio file in [Xtrain, Xtest] do  

         TEXT_TRANSCRIPT ← Extract Text-Transcript (using     

                                                                English Large xlsr-Wav2Vec2-53  

                                                  pre-trained classifier)  

End for  

2. Convert TEXT_TRANSCRIPT to phonemes and bigrams  

3. For each Phonemes | Bigrams in [Xtrain, Xtest] do  

        LINGUISTIC_FEATURE ← Vectorize Phonemes |   

                                                    Bigrams (using language    

                                                                   agnostics BERT  

                                                     sentence embedding               

                                                     (LaBSE) model) 

End for  

4. Instantiate two separate deep neural networks for training on  

samples of LINGUISTIC_FEATURE, belonging to Xtrain having labels Ytrain. Use deep  

neural networks to predict the category label of the Xtest for the two characteristics. 

5. Create lists to store the posterior category probabilities that the two models have calculated. 

6. SPOKEN_WORD_CATEGORY_PROBABILITY ←  Fusion of posterior probabilities for  

each spoken word category 

7. Ypred← argmax (SPOKEN_WORD_CATEGORY_PROBABILITY) 

8. ACCURACY ← Calculate accuracy using (Ypred, Ytest) 

 
 

6.1.1 ENGLISH LARGE XLSR-WAV2VEC2-53 

 
We selected the Facebook/wav2vec2-large-xlsr-53 model, which is based on the Common 

Voice 6.1 language corpus, as our primary language model. This model has achieved a SOTA 

WER of 14.01% on the Common Voice dataset, making it the ideal choice for English ASR.  

In our proposed method, we employ the English Facebook/wav2vec2-large-xlsr-53 model 

to extract text transcripts from the raw audio. For each language in consideration, we extract 

the respective text transcript. These text transcripts are then processed in two distinct ways. 

First they are converted into phonemes using grapheme-2-phoneme modeling, which is 

elaborated on in the following section. Concurrently, the extracted text transcripts are also 

transformed into bigrams using n-grams NLP.  

 

6.1.2 GRAPHEME-TO-PHONEME MODELING 

 
This module serves the purpose of translating English spelling graphemes into phonemes, 

which are representations of word pronunciations. This capability is of significant 
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importance in various applications, notably in the field of voice synthesis, as highlighted by 

He and Deng (2022). In contrast to many other languages, like Spanish or German, where 

the pronunciation of a word can often be reliably deduced from its spelling, English words 

tend to exhibit frequent deviations from expected pronunciation, as noted by Bisani and Ney 

(2008). Consequently, to determine the correct pronunciation of an English word, it is highly 

advisable to consult a resource like the CMU pronouncing dictionary. In our method, the text 

transcript is subjected to a conversion process that maps graphemes to phonemes based on 

the CMU pronouncing dictionary. Subsequently, these phonemes are further transformed 

into embeddings using LaBSE, a procedure that is detailed in the following section. This 

approach ensures that we accurately capture the phonetic representations of the words, 

enabling more precise and effective speech recognition.  

 

6.1.3 LANGUAGE AGNOSTICS BERT SENTENCE EMBEDDINGS (LABSE) 

 
We harnessed the power of LaBSE to convert the extracted phonemes and morphemes into 

vector representations. LaBSE, a model introduced by Feng et al. in 2020, boasts support for 

a remarkable 109 languages. This ML embedding model is an invaluable tool, seamlessly 

blending semantic information to facilitate language understanding and offering the 

capability to encode text from diverse languages into a shared embedding space. This 

flexibility makes LaBSE suitable for a wide array of downstream tasks, ranging from text 

classification to clustering and beyond. While these ML approaches typically yield 

favourable results from various languages, they may fall short when dealing with languages 

that have resource-intensive demands. In such cases, dedicated bilingual models, equipped 

with techniques like translation ranking tasks and trained on translation pairs, often 

outperform ML models in terms of producing closely aligned representations. Moreover, 

expanding ML models to encompass more languages, while maintaining high performance, 

can be a challenging endeavour due to limitations in model capacity and the occasionally 

suboptimal quality of training data for low-resource languages. Table 6.2 provides an 

overview of the hyperparameters specific to each language, offering insights into the fine-

tuning process for optimal performance. The proposed approach incorporates a five-layered 

dense neural network, complete with batch normalization, as depicted in the block diagram 

presented in Figure 6.1.   
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Table 6.2 Hyperparameters of the 5-layered dense model 

Languages Arabic Tamil Vietnamese 

Training samples 

 

94 86 55 

Testing samples 

 

32 43 29 

Dimensions 

 

768 X 1 768 X 1 768 X 1 

Epochs 

 

100 100 100 

Activation function 

 

ReLu + 

Tanh 

ReLu + 

Tanh 

ReLu + 

Tanh 

Number of Dense layers 

 

5 5 5 

With or without Batch Normalization With With With 

 

 

 
 

Figure 6.1. The block diagram of our proposed method 

 

6.1.4 DEEP DENSE NEURAL NETWORK WITH BATCH NORMALIZATION 

 
A DNN employs a basic nonlinear transformation to mathematically convert an input vector 

(X) into a set of feature maps. The input signals are denoted as an array X = [X1, X2, X3 ,..., 
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XF]. These signals are processed by multiplying them with the corresponding synaptic 

weights, represented as elements in the array W = [W1, W2, W3 ,..., WF]. This operation yields 

the value Z, often referred to as the “activation potential”, as illustrated in the mathematical 

example provided in (6.1).  

 

                                  𝑍 = ∑  𝑋𝐹
𝑖=1 iWi + b                                                         (6.1)  

 

In (6.1), the general operation of the dense layer is outlined with the assistance of the bias 

vectors denoted as ‘b’ and the weight matrices represented as ‘Wi’. 

 

            𝑌1
(1)

 = 𝑅(𝑍1
(1)

) , 𝑌2
(1)

= 𝑅(𝑍2
(1)

) , . . . . . , 𝑌𝐹
(1)

= 𝑅(𝑍𝐹
(1)

)                      (6.2) 

 

𝑌1
(2)

 = 𝑡𝑎𝑛ℎ(𝑍1
(2)

) ,  𝑌2
(2)

=  𝑡𝑎𝑛ℎ(𝑍2
(2)

) , . . . . . , 𝑌 𝐸
(2)

=  𝑡𝑎𝑛ℎ(𝑍𝐸
(2)

)                       (6.3) 

 

The ReLU function is a non-linear activation function widely adopted in DL due to its 

specific advantages. Unlike some other activation methods, ReLU does not activate all 

neurons simultaneously. Its mathematical representation is expressed as ‘R(X)’, and it can 

be defined as follows in (6.4):  

                                 𝑅(𝑋) = max (0, X )                                                          (6.4) 

    
In Equation 6.3, each element (1, 2, 3, and so on) corresponds to a different layer in the 

neural network, with each layer having a specific activation function. The neural network is 

structured as follows: the first layer employs the ReLU activation function, the second layer 

utilizes the tanh activation function, and the third layer again employs the ReLU activation 

function, and so forth. Batch normalization layers are inserted between each dense layer to 

enhance training stability. The subscripts “1” and “2” denote different sample instances 

within the network, while “E” signifies the final layer, which employs the sigmoid activation 

function. The notation “E” indicates the end of this final layer. The sigmoid function is 

represented by the symbol 𝜎. 

 

Historically, the tanh function gained more popularity than the sigmoid function, particularly 

for multi-layer neural networks. However, the vanishing gradient issue that affected 

sigmoids was not completely resolved by tanh. This problem has been more effectively 

addressed with the incorporation of ReLU activations.  
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                        tanh (x) = 𝑒𝑥 - 𝑒−𝑥  / 𝑒𝑥 + 𝑒−𝑥                                              (6.5) 

 
The sigmoid function is employed primarily because it outputs values within the range of 0 

to 1. This characteristic makes it ideal for models focused on probability predictions. Given 

that probabilities naturally fall within the 0 to 1 interval, the sigmoid function is the most 

suitable choice for such applications.  

 
                                                 𝜎 = 1 / 1+ 𝑒−𝑥                                                  (6.6) 

                                                                                                                                                                

As per the (6.4), R(X) can be decomposed into its constituent components. To put it simply, 

this breakdown can be expressed as follows:  

                             f(X) = {0 for X < 0, X for X ≥ 0 }                                   (6.7) 

 
In order to mitigate the issue of internal covariate shift, the inputs of each layer undergo 

normalization using the batch normalization approach. During the training process, which 

typically involves SGD over randomized mini-batches of training data samples represented 

as B ⊂ 𝑋, batch normalization (BN) is commonly incorporated into modern DNN 

architectures. BN serves to centre and normalize the entries of feature maps using four 

additional parameters: 𝜇𝑖, V𝑖, 𝛽𝑖, and 𝛾𝑖 (as introduced by Ioffe and Szegedy in 2015). The 

batch normalization layer fulfills the following functions during training: 

 

It calculates the mean and variance of the input layers, as shown in (6.8). Once the input 

layer's mean and covariance have been determined, it normalizes the layer's inputs using the 

previously calculated batch statistics. After normalization, it employs scaling and shifting to 

produce the layer's output. Mathematically, the batch mean is represented as follows: 

 

                                                     𝜇 = 
1

𝐹
∑ 𝑋𝑖 𝐹

𝑖=1                                                 (6.8) 

 

The mathematical representation for batch variance is denoted by σ2 

 

 

                                                   𝑉2 = 
1

𝐹
∑ (𝑋𝑖 𝐹

𝑖=1 – 𝜇)                                          (6.9) 

 

Once you've calculated the mean and covariance of the input layers, you can proceed to 

normalize the layer inputs using the precomputed batch statistics.  

 

                                                 𝑌i  = Xi – 𝜇 / √𝑠𝑞𝑟𝑡(𝑉)+ ∈                                   (6.10) 
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In addition to the network's original parameters γ and β, during training, new parameters μ 

and σ are also learned. In the context of the BN algorithm, two key elements come into play: 

γ (gamma) and β (beta). These parameters serve distinct roles in the process, with γ being 

utilized for rescaling and β for shifting the vector containing values derived from preceding 

operations. These parameters μ and σ for each mini-batch B are computed directly using the 

mean and standard deviation of the current mini-batch feature maps. So, if there are F 

samples in each batch and B batches, the following formula is used to calculate the inference 

mean:  

                                         Yi = 𝛾𝑋i  +𝛽                                                                                      (6.11) 

  

                                        EX = 
1

𝐹
∑ μ𝐵

𝑖=1
(i)                                                                                    (6.12) 

 

The formula provided below is used to calculate the inference variance  

 

                               Var x = ( 
𝐹

𝐹−1
 ) 

1

𝐹
 ∑  𝐹

𝑖=1 𝑠𝑞𝑟𝑡(𝑉(𝑖))                                  (6.13) 

 
Inference scaling is computed using the following formula:  

 

      Y = 𝛾𝑋/ √Var X + ∈  + ( 𝛽 + 𝛾 EX / √Var X + ∈ )                                  (6.14) 

 
Batch normalization produces the output value Y, which is then fed into the neural network. 

During testing or inference, the mean and variance remain constant and are determined using 

the mean and variance values from previous training batches. Batch normalization acts as a 

straightforward linear transformation of the preceding layer's output, often a convolution, 

during inference. Its purpose is to enhance the partition areas around the training data, 

allowing for a more accurate approximation by adjusting the input space's spline partition to 

minimize the total least squares (TLS) distance between the spline partition boundaries and 

the layer's DN inputs.  

 

𝑌 ∶ {  𝑌1 = 𝜎(𝑍1
(𝑁)

), 𝑌2 = 𝜎(𝑍2
(𝑁)

), 𝑌3 = 𝜎(𝑍3
(𝑁)

), . . . . . . ,   𝑌L = 𝜎(𝑍𝐹
(𝑁)

)}  (6.15) 

 

PClass should refer to the posterior class probability connected to the spoken word's class. We 

employ the functions outlined below to amalgamate the two probabilistic decision scores 

derived from the dense + batch normalization model. This model is trained on the fusion of 

the English LARGE xlsr-Wav2Vec2-53 text transcript converted to phonemes and the 
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English LARGE xlsr-Wav2Vec2-53 text transcript converted to bigrams. The final results of 

layer categorization are shown by the 𝑌 . The test sample's class is determined using the 

formula below:  

                                               PClass  = max (PClass𝑌  )                                  (6.16) 

 

 

                                               class = ∀c argmax (PClass)                               (6.17) 

 

6.2 EXPERIMENTAL RESULTS  

6.2.1 DATASET 

 
The multilingual spoken words Corpus (MSWC) (Mazumder et al. 2021) is a valuable 

resource used for both commercial applications like keyword and spoken phrase searches 

and academic research. It boasts a massive and continually growing audio dataset, 

encompassing more than 5 billion individuals who speak 50 different languages. This corpus, 

released under the CC-BY 4.0 license, is extensive, comprising 23.4 million 1-second spoken 

instances and over 340,000 keywords (equating to over 6,000 hours of audio). The 

applications of this dataset are diverse, ranging from automated contact centres to voice-

activated consumer electronics. The dataset was created using forced alignment techniques 

on crowdsourced sentence-level audio, providing precise per-word time estimates for 

extraction. It is noteworthy that every alignment is meticulously included in the dataset.  

 

 

Figure 6.2. The number of samples in Arabic Multilingual Spoken Words Corpus 
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Figure 6.3. The number of samples in Tamil Multilingual Spoken Words Corpus 

 

 

Figure 6.4. The number of samples in Vietnamese Multilingual Spoken Words Corpus 

 

Furthermore, the dataset includes methods for identifying potential outliers and offers a 

comprehensive analysis of its contents. Additionally, it provides benchmark accuracy values 

for evaluating keyword detection algorithms in comparison to models trained on manually 

recorded keyword datasets. The total number of samples for each language is visually 

represented in Figure 6.2, 6.3, 6.4. The MSWC database comprises spoken words in a diverse 

set of 50 languages, encompassing both high-resource languages such as English and 

Spanish, and LRLs like Dhivehi and Oriya (an Indo-Aryan language spoken in the Indian 
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state of Odisha and in the Maldives). To classify the Arabic, Tamil, and Vietnamese 

languages, we customized the multilingual spoken words corpus, which was originally 

designed for various purposes such as academic research, commercial applications, keyword 

spotting, and spoken term search. However, we focused on a limited set of 10-word 

categories, resulting in a dataset with fewer audio samples. While this dataset is extensive, 

our specific adaptations for these 10 spoken word categories have created a significant bias. 

The MSWC collection encompasses spoken word audio from 26 low-resource languages, 12 

medium-resource languages, and 12 high-resource languages, making it versatile for real-

world applications, although it is predominantly utilized in academic research. 

 

6.2.2 EXPERIMENTAL SETUP 

 
The experiments were conducted using Python 3.10.4 on a Mac OS High Sierra system 

equipped with an Intel Core i5 CPU and Intel Graphics, operating at 1.8 GHz. We adopted a 

70:30 train-to-test split ratio with 5-fold cross-validation for our research. Optimization was 

performed with the Adam optimizer, employing parameters such as a batch size of 16, 100 

training epochs, and a learning rate of 0.01. In our experiments, we utilized both the "ReLU" 

and "tanh" activation functions. "tanh" showed superior performance for multi-layer neural 

networks, while "ReLU" introduced non-linearity. Therefore, we leveraged the strengths of 

both activation functions in our chapter. 

 

6.2.3 RESULTS AND DISCUSSIONS 

 

Developing speech recognition systems for languages with numerous phonemes and 

intricate stress and intonation patterns poses a significant challenge. Accents and dialects 

further complicate the accurate recognition of spoken words and phrases. However, 

Wav2Vec2.0 has proven to be a substantial improvement in speech recognition accuracy. 

This advancement can have considerable advantages for languages with complex phoneme 

systems and intonation patterns, such as Arabic, Tamil, and Vietnamese. Leveraging 

Wav2Vec2.0 for speech recognition in these languages can lead to more precise and efficient 

systems, better equipped to handle their distinctive characteristics. To process the English 

LARGE xlsr-Wav2Vec2-53 phonemes and bigrams, we transformed them into vectors. 

Before vectorization, we eliminated noisy phonemes and signal noise (silence) from the 



 

 

113 

collected phonemes. The phonemes were then converted into 768-dimensional vectors using 

language-agnostic embeddings. Although we initially attempted an early fusion of phone 

embeddings, the results were unsatisfactory, leading us to focus solely on late fusion. The 

five-layered dense model with batch normalization received the language-agnostic 

embeddings as input. The model's performance is at the forefront of various bi-text retrieval 

and mining tasks, offering extended language coverage. Each language's (Arabic, Tamil, and 

Vietnamese) feature matrix for each embedding is a 768 x 1 matrix. These matrices were 

input into the five-layered dense model with batch normalization, yielding superior results 

compared to current methods. The first layer of the dense model comprises 2048 neurons 

with ReLu activation. Subsequently, batch normalization is applied. The second layer 

consists of 1024 neurons with tanh activation, followed by batch normalization. The third 

layer includes 512 neurons with ReLu activation and, once again, batch normalization. The 

fourth layer features 256 neurons with tanh activation, followed by batch normalization. The 

fifth and final layer consists of 64 neurons with ReLu activation, and it culminates with ten 

neurons using the Softmax activation function, representing the ten spoken word categories. 

The confusion matrices for the fusion of phonemes and bigrams are illustrated in Figures 6.5 

to 6.7.  

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Confusion Matrix of Fusion Framework of Arabic Multilingual Spoken Words 

Corpus 

Additionally, Tables 6.3 to 6.5 provide information on the classification of spoken words 

within specific languages. The evaluation of each language and category is presented 

through tables and figures, providing classification results. The assessment metrics for the 

various spoken word classes, including Sensitivity, Specificity, PPV, NPV, FPR, FNR, and 
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FDR, are outlined in Tables 6.6 to 6.8. While some classes exhibit high Sensitivity and PPV 

values, all classes show high Specificity and NPV values. The FPR values are consistently 

low for all classes, while FNR and FDR values vary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Confusion Matrix of Fusion Framework of Tamil Multilingual Spoken Words 

Corpus 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. Confusion Matrix of Fusion Framework of Vietnamese Multilingual Spoken 

Words Corpus 
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Table 6.3 The classification results of fusion framework in Arabic Multilingual Spoken 

Words Corpus 

 

 

 

 

 

 

 

 

 

Table 6.4 The classification results of fusion framework in Vietnamese Multilingual 

Spoken Words Corpus 

 

 

 

 

 

 

 

 

 

Table 6.5 The classification results of fusion framework in Tamil Multilingual Spoken 

Words Corpus 

 

Arabic Spoken word categories 

 

Accuracy  

 

 WER 

 

 0.00 1.00 اخٓذ

 0.00 1.00 اخٓر

 0.07 0.93103448 آذار 

 0.10 0.89655172 اسٓف

 0.10 0.89655172 آكل

 0.03 0.96551724 الٓة 

 0.10 0.89655172 الٓي

 0.14 0.86206897 آمل

 0.10 0.89655172 أباه 

 0.04 0.96551724 أبحث

 

Vietnamese Spoken word categories 

 

Accuracy  

 

WER  

anh 0.93103448 0.07 

bên 0.86206897 0.14 

cái 0.82758621 0.17 

chết 0.93103448 0.07 

cho 0.86206897 0.14 

chuyện 0.89655172 0.11 

con 0.79310345 0.21 

còn 0.86206897 0.14 

của 0.72413793 0.28 

cũng 0.79310345 

 

0.21 

 

 

Tamil Spoken word categories 

 

 

Accuracy  

 

WER 

அங்க 0.95348837 0.04 

அஞ்சாத 0.95348837 0.04 

அடுத்த 0.93023256 0.07 

அண்ண 0.95348837 0.04 

அந்த 0.95348837 0.04 

அந்திய 0.8372093 0.16 
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The provided Table (6.6 – 6.8) contains evaluation metrics for each word class, including 

accuracy, NPV, FPR, FNR, and FDR. NPV, or Negative Predictive Value, is a metric that 

assesses the proportion of cases with negative test results that are truly negative samples. It 

quantifies the percentage of subjects whose test results correctly identify them as negative 

cases out of all test-negative participants, including both true negatives and those incorrectly 

identified as true negatives. In an ideal test that doesn't produce any false negatives, the NPV 

value is 1, indicating 100% accuracy in identifying true negatives. Conversely, in a test that 

doesn't produce any true negatives, the NPV value is 0, meaning it fails to correctly identify 

any true negatives. For PPV, in a perfect test, the highest achievable result is 1 (100%), while 

the lowest possible value is 0. PPV represents the percentage of positive test results that 

correspond to true positives. The false negative rate (FNR), also referred to as the conditional 

likelihood of a negative test result given the presence of the positives being tested for, 

indicates the proportion of positive cases that are incorrectly identified as negative. The False 

Discovery Rate (FDR) quantifies the expected percentage of Type I errors. Table (6.9 – 6.11) 

presents evaluation metrics for spoken word categories in three languages, comparing our 

proposed technique (*) with seven other methods: (1) Zia and Zahid (2019), (2) Lezhenin et 

al. 2019, (3) Wazir et al. 2019, (4) Abdelmaksoud et al. 2021, (5) Haque et al. 2020, (6) 

Kherdekar and Naik, 2021, and (7) Passricha and Aggarwal, 2020. 

                          

Table 6.6 The classified results of fusion framework in Arabic MSWC compared with 

SOTA 

Spoken 
word 

categories 
 

 
Precision 

 
Recall 

 
f 1-

Score 

  
Sensitivity 

  
Specificity 

 
NPV 

 
FPR 

 
FNR 

 
FDR 

 
PPV 

خذ 
ٓ
 (1) 0.20 ا

0.00 (2) 
0.00 (3) 
0.25 (4) 
0.00 (5) 
0.25 (6) 
0.25 (7) 
0.00 (*) 

0.50 (1) 
0.00 (2) 
0.00 (3) 
0.12 (4) 
0.00 (5) 
0.10 (6) 
0.10 (7) 

0.00 (*) 

0.29 (1) 
0.00 (2) 
0.00 (3) 
0.17 (4) 
0.00 (5) 
0.14 (6) 
0.14 (7) 
0.00 (*) 

0.50 (1) 
0.00 (2) 
0.00 (3) 
0.13 (4) 
0.00 (5) 
0.10 (6) 
0.10 (7)  
0.00 (*) 

0.85 (1) 
0.93 (2) 

0.92 (3) 

0.95 (4) 
1.00 (5) 
0.95 (6) 
0.95 (7) 
1.00 (*) 

0.96 (1) 
0.96 (2) 
0.88 (3) 
0.89 (4) 
0.86 (5) 
0.85 (6) 
0.85 (7) 
0.94 (*) 

0.15 (1) 
0.08 (2) 
0.08 (3) 
0.05 (4) 
0.00 (5) 
0.05 (6) 
0.05 (7) 
0.00 (*) 

0.50 (1) 
1.00 (2) 
1.00 (3) 
0.88 (4) 
1.00 (5) 
0.90 (6) 
0.90 (7) 
1.00 (*) 

0.80 (1) 
1.00 (2) 
1.00 (3) 
0.75 (4) 
1.00 (5) 
0.75 (6) 
0.75 (7) 
1.00 (*) 

0.20 (1) 
0.00 (2) 
0.00 (3) 
0.25 (4) 
0.00 (5) 
0.25 (6) 
0.25 (7) 
0.00 (*) 

அமுத 0.97674419 0.02 

அரச 0.90697674 0.09 

அலாதன 0.95348837 0.04 

அவனுடைய 0.97674419 

 

0.02 
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خر
ٓ
 (1) 0.00 ا

0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
1.00 (6) 
0.67 (7) 
0.45 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.50 (6) 
0.50 (7) 
0.83 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.67 (6) 
0.57 (7) 
0.59 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.50 (6) 
0.50 (7) 
0.83 (*) 

1.00 (1) 
1.00 (2) 
0.97 (3) 
0.97 (4) 
1.00 (5) 
1.00 (6) 
0.98 (7) 
0.77 (*) 

0.79 (1) 
0.90 (2) 
0.94 (3) 
0.97 (4) 
0.94 (5) 
0.97 (6) 
0.97 (7) 
0.95 (*) 

0.00 (1) 
0.00 (2) 
0.03 (3) 
0.03 (4) 
0.00 (5) 
0.00 (6) 
0.02 (7) 
0.23 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
0.50 (6) 
0.50 (7) 
0.17 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
0.00 (6) 
0.33 (7) 
0.55 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
1.00 (6) 
0.67 (7) 
0.45 (*) 

ذار
ٓ
 (1) 0.00 ا

0.33 (2) 
0.10 (3) 
0.21 (4) 
0.18 (5) 
0.17 (6) 
0.17 (7) 
0.50 (*) 

0.00 (1) 
0.50 (2) 
0.20 (3) 
0.50 (4) 
0.33 (5) 
0.29 (6) 
0.29 (7) 
0.50 (*) 

0.00 (1) 
0.40 (2) 
0.13 (3) 
0.29 (4) 
0.24 (5) 
0.21 (6) 
0.21 (7) 
0.50 (*) 

0.00 (1) 
0.50 (2) 
0.20 (3) 
0.50 (4) 
0.33 (5) 
0.28 (6) 
0.28 (7) 
0.50 (*) 

0.89 (1) 
0.73 (2) 
0.66 (3) 
0.57 (4) 
0.67 (5) 
0.83 (6) 

0.83 (7) 
0.97 (*) 

0.92 (1) 
0.85 (2) 
0.82 (3) 
0.84 (4) 
0.82 (5) 
0.91 (6) 
0.91 (7) 
0.97 (*) 

0.11 (1) 
0.26 (2) 
0.34 (3) 
0.43 (4) 
0.33 (5) 
0.17 (6) 
0.17 (7) 
0.03 (*) 

1.00 (1) 
0.50 (2) 
0.80 (3) 
0.50 (4) 
0.67 (5) 
0.71 (6) 
0.71 (7) 
0.50 (*) 

1.00 (1) 
0.67 (2) 
0.91 (3) 
0.79 (4) 
0.82 (5) 
0.83 (6) 
0.83 (7) 
0.50 (*) 

0.00 (1) 
0.00 (2) 
0.10 (3) 
0.21 (4) 
0.18 (5) 
0.17 (6) 
0.17 (7) 
0.50 (*) 

سف 
ٓ
 (1) 0.00 ا

0.00 (2) 
0.00 (3) 
0.14 (4) 
0.14 (5) 
0.60 (6) 
0.60 (7) 
0.67 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3)  
0.25 (4) 
0.80 (5) 
0.50 (6) 
0.50 (7) 
1.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.18 (4) 
0.24 (5) 
0.55 (6) 
0.55(7)  
0.80 (*) 

0.00 (1)  
0.00 (2) 
0.00 (3) 
0.25 (4) 
0.80 (5) 
0.50 (6)   
0.50 (7)   
1.00 (*) 

1.00 (1) 
1.00 (2) 
0.98 (3) 
0.90 (4) 
0.59 (5) 
0.97 (6) 
0.97 (7) 
0.97 (*) 

0.86 (1) 
0.93 (2) 
0.89 (3) 
0.95 (4) 
0.97 (5) 
0.95 (6) 
0.95 (7) 
1.00 (*) 

0.00 (1) 
0.00 (2) 
0.02 (3) 
0.10 (4) 
0.41 (5) 
0.03 (6) 
0.03 (7) 
0.03 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
0.75 (4) 
0.20 (5) 
0.50 (6) 
0.50 (7) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
0.86 (4) 
0.87 (5) 
0.40 (6) 
0.40 (7) 
0.33 (*) 

0.00 (1) 
0.00 (2) 
0.10 (3) 
0.14 (4) 
0.14 (5) 
0.60 (6) 
0.60 (7) 
0.67 (*) 

كل
ٓ
 (1) 0.00 ا

0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
1.00 (7)  
0.80 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.20 (7) 
1.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.33 (7) 
0.89 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.20 (7) 
1.00 (*) 

1.00 (1) 
1.00 (2) 
0.94 (3) 
0.98 (4) 
0.90 (5) 
1.00 (6) 
1.00 (7) 
0.97 (*) 

0.90 (1) 
0.96 (2) 
0.95 (3) 
0.94 (4) 
0.91 (5) 
0.92 (6) 
0.94 (7) 
1.00 (*) 

0.00 (1) 
0.00 (2) 
0.06 (3) 
0.02 (4) 
0.10 (5) 
0.00 (6) 
0.00 (7) 
0.04 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
0.80 (7) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
0.00 (7) 
0.20 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
1.00 (7) 
0.80 (*) 

لة
ٓ
 (1) 0.00  ا

0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
1.00 (6) 
1.00 (7) 
0.50 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.33 (6) 
0.33 (7) 
0.50 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.50 (6) 
0.50 (7) 
0.50 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.33 (6) 
0.33 (7) 
0.50 (*) 

1.00 (1) 
1.00 (2) 
0.93 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.97 (*) 

0.96 (1) 
0.93 (2) 
0.92 (3) 
0.94 (4) 
0.94 (5) 
0.97 (6) 
0.97 (7) 
0.96 (*) 

0.00 (1) 
0.00 (2) 
0.06 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.03 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
0.67 (6) 
0.67 (7) 
0.50 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
0.00 (7) 
0.50 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3)   
0.00 (4) 
0.00 (5) 
1.00 (6) 
1.00 (7)  
0.50 (*) 

ل  
ٓ
 (1) 0.50 ا

0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.22 (6) 
0.22 (7) 
0.50 (*) 

0.50 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.33 (6) 
0.33 (7) 
0.67 (*) 

0.50 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.27 (6) 
0.27 (7) 
0.57 (*) 

0.50 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.33 (6) 
0.33 (7) 
0.67 (*) 

0.96 (1) 
0.89 (2) 
1.00 (3) 
1.00 (4) 
0.97 (5) 
0.88 (6) 
0.88 (7) 
0.93 (*) 

0.96 (1) 
0.92 (2) 
0.94 (3) 
0.93 (4) 
0.92 (5) 
0.93 (6) 
0.93 (7) 
0.96 (*) 

0.04 (1) 
0.92 (2) 
0.00 (3) 
0.00 (4) 
0.03 (5) 
0.11 (6) 
0.12 (7) 
0.07 (*) 

0.50 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
0.67 (6) 
0.67 (7) 
0.33 (*) 

0.50 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
0.78 (6) 
0.78 (7) 
0.50 (*) 

0.50 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.22 (6) 
0.22 (7) 
0.50 (*) 

مل
ٓ
 (1) 0.33 ا

0.33 (2) 
0.21 (3) 
0.29 (4) 
0.00 (5) 
0.19 (6) 
0.20 (7) 
1.00 (*) 

0.67 (1) 
0.50 (2) 
0.46 (3) 
0.40 (4) 
0.00 (5) 
0.38 (6) 
0.38 (7) 
0.60 (*) 

0.44 (1) 
0.40 (2) 
0.29 (3) 
0.33 (4) 
0.00 (5) 
0.25 (6) 
0.26 (7) 
0.75 (*) 

0.67 (1) 
0.50 (2) 
0.00 (3) 
0.04 (4) 
0.00 (5) 
0.38 (6) 
0.38 (7) 
0.60 (*) 

0.65 (1) 
0.74 (2) 
0.56 (3) 
0.71 (4) 
1.00 (5) 
0.58 (6) 
0.62 (7) 
1.00 (*) 

0.88 (1) 
0.85 (2) 
0.81 (3) 
0.80 (4) 
0.80 (5) 
0.79 (6) 
0.80 (7) 
0.93 (*) 

0.35 (1) 
0.85 (2) 
0.43 (3) 
0.29 (4) 
0.00 (5) 
0.41 (6) 
0.38 (7) 
0.00 (*) 

0.33 (1) 
0.50 (2) 
0.54 (3) 
0.60 (4) 
1.00 (5) 
0.62 (6) 
0.62 (7) 
0.40 (*) 

0.67 (1) 
0.67 (2) 
0.54 (3) 
0.71 (4) 
1.00 (5) 
0.81 (6) 
0.80 (7) 
0.00 (*) 

0.33 (1) 
0.33 (2) 
0.21 (3) 
0.29 (4) 
0.00 (5) 
0.19 (6)  
0.20 (7) 
1.00 (*) 

باه
ٔ
 (1) 0.17 ا

0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.33 (6) 
0.33 (7) 
1.00 (*) 

0.50 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.25 (6) 
0.25 (7) 
0.33 (*) 

0.25 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.29 (6) 
0.29 (7) 
0.50 (*) 

0.50 (1) 
0.00 (2) 
0.46 (3) 
0.00 (4) 
0.00 (5) 
0.25 (6) 
0.25 (7) 
0.33 (*) 

0.81 (1) 
0.77 (2) 
1.00 (3) 
1.00 (4) 
0.93 (5) 
0.93 (6) 
0.93 (7) 
1.00 (*) 

0.96 (1) 
0.87 (2) 
0.88 (3) 
0.89 (4) 
0.92 (5) 
0.90 (6) 
0.90 (7) 
0.94 (*) 

0.19 (1) 
0.87 (2) 
0.00 (3) 
0.00 (4) 
0.06 (5) 
0.07 (6) 
0.07 (7) 
0.00 (*) 

0.50 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
0.75 (6)  
0.75 (7) 
0.67 (*) 

0.83 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
0.67 (6) 
0.67 (7) 
0.00 (*) 

0.17 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.33 (6) 
0.33 (7) 
1.00 (*) 

بحث
ٔ
 (1) 0.00 ا

0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 
 
 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 
 
 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 
 

0.96 (1) 
1.00 (2) 
1.00 (3) 
0.97 (4) 
0.95 (5) 
1.00 (6) 
1.00 (7) 
0.97 (*) 

0.96 (1) 
0.89 (2) 
0.92 (3) 
0.92 (4) 
0.94 (5) 
0.94 (6) 
0.94 (7) 
0.90 (*) 

0.03 (1) 
0.90 (2) 
0.00 (3) 
0.03 (4) 
0.05 (5) 
0.00 (6) 
0.00 (7) 
0.03 (*) 
 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 
 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 
 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 
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Table 6.7 The classified results of fusion framework in Tamil MSWC compared with 

SOTA 

 
Spoken word 

categories 
 

 
Precision 

 
Recall 

 
f 1-

Score 

 
Sensitivity 

  
Specificity 

 
NPV 

 
FPR 

 
FNR 

 
FDR 

 
PPV 

அங்க 0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.00 (2) 

0.00 (3) 

0.00 (4) 

0.00 (5) 

0.00 (6) 

0.00 (7) 

0.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

0.95 (1) 
0.95 (2) 
0.95 (3) 
0.95 (4) 
0.95 (5) 
0.95 (6) 
0.95 (7) 
0.95 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

அஞ்சாத 0.00 (1) 
0.00 (2) 
1.00 (3) 
0.00 (4) 
1.00 (5) 
0.00 (6) 
0.33 (7) 
0.00 (*) 

0.00 (1) 
0.00 (2) 
0.50 (3) 
0.00 (4) 
0.50 (5) 
0.00 (6) 
0.50 (7) 
0.00 (*) 

0.00 (1) 
0.00 (2) 
0.67 (3) 
0.00 (4) 
0.67 (5) 
0.00 (6) 
0.40 (7) 
0.00 (*) 

0.00 (1) 
0.00 (2) 
0.50 (3) 
0.00 (4) 
0.50 (5) 
0.00 (6) 
0.50 (7) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
0.98 (6) 
0.95 (7) 
1.00 (*) 

0.95 (1) 
0.95 (2) 
0.97 (3) 
0.95 (4) 
0.98 (5) 
0.95 (6) 
0.97 (7) 
0.95 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.02 (6) 
0.05 (7) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
0.50 (3) 
1.00 (4) 
0.50 (5) 
1.00 (6) 
0.50 (7) 
1.00 (*) 

1.00 (1) 
1.00 (2) 
0.00 (3) 
1.00 (4) 
0.00 (5) 
1.00 (6) 
0.67 (7) 
1.00 (*) 

0.00 (1) 
0.00 (2) 
1.00 (3) 
0.00 (4) 
1.00 (5) 
0.00 (6) 
0.33 (7) 
0.00 (*) 

அடுத்த 0.00 (1) 
0.00 (2) 
0.00 (3) 
1.00 (4) 
0.00 (5) 
1.00 (6) 
0.00 (7) 
0.33 (*) 

0.00 (1)  
0.00 (2) 
0.00 (3) 
0.50 (4) 
0.00 (5) 
0.50 (6) 
0.00 (7) 
0.50 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.67 (4) 
0.00 (5) 
0.67 (6) 
0.00 (7) 
0.40 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.50 (4) 
0.00 (5) 
0.50 (6) 
0.00 (7) 
0.50 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.95 (*) 

0.95 (1) 
0.95 (2) 
0.95 (3) 
0.98 (4) 
0.95 (5) 
0.97 (6) 
0.95 (7) 
0.97 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.05 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
0.50 (4) 
1.00 (5) 
0.50 (6) 
1.00 (7) 
0.50 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
0.00 (4) 
1.00 (5) 
0.00 (6) 
1.00 (7) 
0.67 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
1.00 (4) 
0.00 (5) 
1.00 (6) 
0.00 (7) 
0.33 (*) 

அண்ண 0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

0.95 (1) 
0.95 (2) 
0.95 (3) 
0.95 (4) 
0.95 (5) 
0.95 (6) 
0.95 (7) 
0.95 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

அந்த 0.00 (1) 
0.11 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.50 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.18 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.50 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

1.00 (1) 
0.80 (2) 
0.85 (3) 
0.98 (4) 
0.85 (5) 
0.90 (6) 
0.95 (7) 
1.00 (*) 

0.95 (1) 
0.97 (2) 
0.94 (3) 
0.95 (4) 
0.94 (5) 
0.95 (6) 
0.95 (7) 
0.95 (*) 

0.00 (1) 
0.20 (2) 
0.15 (3) 
0.03 (4) 
0.15 (5) 
0.10 (6) 
0.05 (7) 
0.00 (*) 

1.00 (1) 
0.50 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

1.00 (1) 
0.88 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

0.00 (1) 
0.11 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

அந்திய  0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.76 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.95 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.84 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.95 (*) 

1.00 (1) 
0.98 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.74 (*) 

0.95 (1) 
0.95 (2) 
0.95 (3) 
0.95 (4) 
0.95 (5) 
0.95 (6) 
0.95 (7) 
0.94 (*) 

0.00 (1) 
0.03 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.26 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.05 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.05 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.76 (*) 

அமுத 0.45 (1) 
0.53 (2) 
0.58 (3) 
0.50 (4) 
0.55 (5) 
0.56 (6) 
0.56 (7) 
0.75 (*) 

1.00 (1) 
0.89 (2) 
1.00 (3) 
1.00 (4) 
0.95 (5) 
1.00 (6) 
0.95 (7) 
1.00 (*) 

0.62 (1) 
0.67 (2) 
0.73 (3) 
0.67 (4) 
0.69 (5) 
0.72 (6) 
0.71 (7) 
0.86 (*) 

1.00 (1) 
0.89 (2) 
1.00 (3) 
1.00 (4) 
0.95 (4) 
0.72 (6) 
0.95 (7) 
1.00 (*) 

0.00 (1) 
0.35 (2) 
0.39 (3) 
0.17 (4) 
0.35 (5) 
0.34 (6) 
0.39 (7) 
0.98 (*) 

1.00 (1) 
0.80 (2) 
1.00 (3) 
1.00 (4) 
0.89 (5) 
1.00 (6) 
0.90 (7) 
1.00 (*) 

1.00 (1) 
0.65 (2) 
0.61 (3) 
0.83 (4) 
0.65 (5) 
0.65 (6) 
0.60 (7) 
0.03 (*) 

0.00 (1) 
0.11 (2) 
0.00 (3) 
0.00 (4) 
0.05 (5) 
0.00 (6) 
0.05 (7) 
0.00 (*) 

0.55 (1) 
0.47 (2) 
0.42 (3) 
0.50 (4) 
0.45 (5) 
0.44 (6) 
0.05 (7) 
0.00 (*) 

0.45 (1) 
0.53 (2) 
0.58 (3) 
0.50 (4) 
0.55 (5) 
0.56 (6) 
0.56 (7) 
0.75 (*) 

அரச 0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.62 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.83 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.71 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.83 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
0.97 (5) 
1.00 (6) 
0.95 (7) 
0.92 (*) 

0.95 (1) 
0.93 (2) 
0.93 (3) 
0.93 (4) 
0.93 (5) 
0.93 (6) 
0.93 (7) 
0.97 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.02 (5) 
0.00 (6) 
0.05 (7) 
0.08 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.17 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.17 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.62 (*) 

அலாதன 0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
0.98 (6) 
1.00 (7) 
1.00 (*) 

0.95 (1) 
0.95 (2) 
0.95 (3) 
0.95 (4) 
0.95 (5) 
0.95 (6) 
0.95 (7) 
0.95 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.03 (6) 
0.00 (7) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 
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அவனுடைய 0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.67 (7) 
0.67 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.33 (7) 
1.00 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.44 (7) 
0.80 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.33 (7) 
1.00 (*) 

1.00 (1) 
1.00 (2) 
0.94 (3) 
0.94 (4) 
0.97 (5) 
0.97 (6) 
0.97 (6) 
0.98 (*) 
 

0.86 (1) 
0.86 (2) 
0.85 (3) 
0.85 (4) 
0.85 (5) 
0.85 (6) 
0.90 (7) 
1.00 (*) 

0.00 (1) 
0.00 (2) 
0.06 (3) 
0.06 (4) 
0.03 (5) 
0.03 (6) 
0.03 (7) 
0.02 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
0.67 (7) 
0.00 (*) 
 
 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
0.33 (7) 
0.33 (*) 
 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.67 (7) 
0.67 (*) 

Table 6.8 The classified results of fusion framework in Vietnamese MSWC compared with 

SOTA 

 

Spoken 
word 

categories 
 

 

Precision 

 

Recall 

 

f 1-Score 

 

 Sensitivity 

  

Specificity 

 

NPV 

 

FPR 

 

FNR 

 

FDR 

 

PPV 

anh 0.00 (1) 
1.00 (2) 
0.00 (3) 
0.00 (4) 
1.00 (5) 
0.08 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.50 (2) 
0.00 (3) 
0.00 (4) 
0.50 (5) 
1.00 (6) 
0.00 (7) 
0.00 (*)  

0.00 (1) 
0.67 (2) 
0.00 (3) 
0.00 (4) 
0.67 (5) 
0.15 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.50 (2) 
0.00 (3) 
0.00 (4) 
0.50 (5) 
1.00 (6) 
0.00 (7) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
0.19 (6) 
1.00 (7) 
1.00 (*) 

0.93 (1) 
0.96 (2) 
0.93 (3) 
0.93 (4) 
0.96 (5) 
1.00 (6) 
0.93 (7) 
0.93 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.81 (6) 
0.00 (7) 
0.00 (*) 

1.00 (1) 
0.50 (2) 
1.00 (3) 
1.00 (4) 
0.50 (5) 
0.00 (6) 
1.00 (7) 
1.00 (*) 

1.00 (1) 
0.00 (2) 
1.00 (3) 
1.00 (4) 
0.00 (5) 
0.92 (6) 
1.00 (7) 
1.00 (*) 

0.00 (1) 
1.00 (2) 
0.00 (3) 
0.00 (4) 
1.00 (5) 
0.08 (6) 
0.00 (7) 
0.00 (*) 

bên 0.06 (1) 
0.00 (2) 
0.14 (3) 
0.50 (4) 
0.05 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.50 (1) 
0.00 (2) 
0.50 (3) 
0.50 (4) 
0.50 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.11 (1) 
0.00 (2) 
0.22 (3) 
0.09 (4) 
0.09 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.50 (1) 
0.00 (2) 
0.50 (3) 
0.50 (4) 
0.50 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.41 (1) 
1.00 (2) 
0.78 (3) 
0.30 (4) 
0.29 (5) 
1.00 (6) 
0.78 (7) 
0.93 (*) 

0.92 (1) 
0.93 (2) 
0.95 (3) 
0.89 (4) 
0.89 (5) 
0.93 (6) 
0.92 (7) 
0.93 (*) 

0.59 (1) 
0.00 (2) 
0.22 (3) 
0.70 (4) 
0.70 (5) 
0.00 (6) 
0.22 (7) 
0.07 (*) 

0.50 (1) 
1.00 (2) 
0.50 (3) 
0.50 (4) 
0.50 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

0.94 (1) 
1.00 (2) 
0.86 (3) 
0.95 (4) 
0.95 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

0.06 (1) 
0.00 (2) 
0.14 (3) 
0.50 (4) 
0.05 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

cái 0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.25 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.33 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.29 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.33 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.88 (*) 

0.90 (1) 
0.90 (2) 
0.90 (3) 
0.90 (4) 
0.90 (5) 
0.90 (6) 
0.90 (7) 
0.92 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.12 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.67 (*)  

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.75 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.25 (*) 

chết 0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.67 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.67 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.67 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.67 (*) 

1.00 (1) 
1.00 (2) 
0.92 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
0.96 (7) 
0.96 (*) 

0.90 (1) 
0.90 (2) 
0.89 (3) 
0.90 (4) 
0.90 (5) 
0.90 (6) 
0.89 (7) 
0.96 (*) 

0.00 (1) 
0.00 (2) 
0.08 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.03 (7) 
0.04 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.33 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.33 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.67 (*) 

cho 0.08 (1) 
0.00 (2) 
0.00 (3) 
0.25 (4) 
0.33 (5) 
0.00 (6) 
0.11 (7) 
0.00 (*) 

0.33 (1) 
0.00 (2) 
0.00 (3) 
0.33 (4) 
0.33 (5) 
0.00 (6) 
0.33 (7) 
0.00 (*) 

0.13 (1) 
0.00 (2) 
0.00 (3) 
0.29 (4) 
0.33 (5) 
0.00 (6) 
0.17 (7) 
0.00 (*) 

0.33 (1) 
0.00 (2) 
0.00 (3) 
0.33 (4) 
0.33 (5) 
0.00 (6) 
0.33 (7) 
0.00 (*) 

0.57 (1) 
0.96 (2) 
0.92 (3) 
0.88 (4) 
0.92 (5) 
0.80 (6) 
0.69 (7) 
0.96 (*) 

0.88 (1) 
0.90 (2) 
0.89 (3) 
0.92 (4) 
0.92 (5) 
0.88 (6) 
0.90 (7) 
0.90 (*) 

0.42 (1) 
0.04 (2) 
0.08 (3) 
0.12 (4) 
0.07 (5) 
0.19 (6) 
0.30 (7) 
0.04 (*) 

0.67 (1) 
1.00 (2) 
1.00 (3) 
0.67 (4) 
0.67 (5) 
1.00 (6) 
0.67 (7) 
1.00 (*) 

0.92 (1) 
1.00 (2) 
1.00 (3) 
0.75 (4) 
0.67 (5) 
1.00 (6) 
0.89 (7) 
1.00 (*) 

0.08 (1) 
0.00 (2) 
0.00 (3) 
0.25 (4) 
0.33 (5) 
0.00 (6) 
0.11 (7) 
0.00 (*) 

chuyện 0.00 (1) 
1.00 (2) 
0.17 (3) 
1.00 (4) 
1.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.50 (2) 
0.50 (3) 
0.50 (4) 
0.50 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.67 (2) 
0.25 (3) 
0.67 (4) 
0.67 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

0.00 (1) 
0.50 (2) 
0.50 (3) 
0.50 (4) 
0.50 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
0.81 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
0.96 (7) 
0.96 (*) 

0.93 (1) 
0.96 (2) 
0.95 (3) 
0.96 (4) 
0.96 (5) 
0.93 (6) 
0.93 (7) 
0.93 (*) 

0.00 (1) 
0.00 (2) 
0.18 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.04 (7) 
0.04 (*) 

1.00 (1) 
0.50 (2) 
0.50 (3) 
0.50 (4) 
0.50 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

1.00 (1) 
0.00 (2) 
0.83 (3) 
0.00 (4) 
0.00 (5) 
1.00 (6) 
1.00 (7) 
1.00 (*) 

0.00 (1) 
1.00 (2) 
0.17 (3) 
1.00 (4) 
1.00 (5) 
0.00 (6) 
0.00 (7) 
0.00 (*) 

con  0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.29 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.67 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.40 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.67 (*) 

1.00 (1) 
0.92 (2) 
1.00 (3) 
0.85 (4) 
0.85 (5) 
1.00 (6) 
0.92 (7) 
0.81 (*) 

0.90 (1) 
0.88 (2) 
0.90 (3) 
0.88 (4) 
0.88 (5) 
0.90 (6) 
0.88 (7) 
0.95 (*) 

0.00 (1) 
0.08 (2) 
0.00 (3) 
0.15 (4) 
0.15 (5) 
0.00 (6) 
0.08 (7) 
0.19 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.33 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.71 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.29 (*) 

còn 0.00 (1) 
0.10 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 

0.00 (1) 
1.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 

0.00 (1) 
0.17 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 

0.00 (1) 
1.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 

1.00 (1) 
0.30 (2) 
0.59 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 

0.93 (1) 
1.00 (2) 
0.89 (3) 
0.93 (4) 
0.93 (5) 
0.93 (6) 

0.00 (1) 
0.70 (2) 
0.40 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 

1.00 (1) 
0.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 

1.00 (1) 
0.90 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 

0.00 (1) 
0.10 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
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0.00 (7) 
0.00 (*) 

0.00 (7) 
0.00 (*) 

0.00 (7) 
0.00 (*) 

0.00 (7) 
0.00 (*) 

1.00 (7) 
0.93 (*) 

0.93 (7) 
0.93 (*) 

0.00 (7) 
0.07 (*) 

1.00 (7) 
1.00 (*) 

1.00 (7) 
1.00 (*) 

0.00 (7) 
0.00 (*) 

của  0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.20 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.20 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.20 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.20 (*) 

1.00 (1) 
1.00 (2) 
0.96 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.83 (*) 

0.83 (1) 
0.83 (2) 
0.82 (3) 
0.83 (4) 
0.83 (5) 
0.83 (6) 
0.83 (7) 
0.83 (*) 

0.00 (1) 
0.00 (2) 
0.04 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.17 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.80 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
1.00 (7) 
0.80 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.00 (7) 
0.20 (*) 

cũng 0.00 (1) 
0.33 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.10 (7) 
0.25 (*) 

0.00 (1) 
0.25 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.25 (7) 
0.25 (*) 

0.00 (1) 
0.29 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.14 (7) 
0.25 (*) 

0.00 (1) 
0.25 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.25 (7) 
0.25 (*) 

1.00 (1) 
0.92 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
0.64 (7) 
0.88 (*) 

0.86 (1) 
0.88 (2) 
0.86 (3) 
0.86 (4) 
0.86 (5) 
0.86 (6) 
0.84 (7) 
0.88 (*) 
 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.36 (7) 
0.12 (*) 

1.00 (1) 
0.75 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
0.75 (7) 
0.75 (*) 

1.00 (1) 
0.67 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (6) 
0.90 (7) 
0.75 (*) 

0.00 (1) 
0.33 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (6) 
0.10 (7) 
0.25 (*) 
 

 
 

                                                  WER = 1 – ACC                                                     (6.18) 
                                   

 
We compared our proposed approach with several alternative methodologies, and the 

effectiveness of our late fusion model is showcased in Table (6.9 – 6.11). A CNN utilizing 

MFCC as input features (Haque et al. 2020) was outperformed by our technique in Arabic 

by 47.26%, Vietnamese by 10.34%, and Tamil by 24.54%. In sound categorization, it was 

observed that CNN with Mel Spectrogram as input outperforms LSTM (Lezhenin et al. 

2019). Our method outperforms Mel Spectrogram with LSTM, achieving results of 38.69% 

in Arabic, 26.91% in Tamil, and 6.89% in Vietnamese. RNNs have made significant progress 

in audio modeling, but they haven't been widely utilized for Urdu acoustics due to 

vocabulary limitations and high computational costs. Even modern LSTM and GRU models 

(Zia and Zahid et al. 2019) did not surpass our approach. GFCC (Abdelmaksoud et al. 2021) 

and MFCC with CNN (Haque et al. 2020; Kherdekar and Naik, 2021) were found to be less 

effective with the MSWC than our method, surpassing even hybrid CNN and Bi-directional 

Long Short-Term Memory (BiLSTM) techniques. Table (6.9 – 6.11) provides evaluation 

metrics for spoken word categories across three languages and seven comparative methods: 

(1) Zia and Zahid et al. 2019, (2) Lezhenin et al. 2019, (3) Wazir et al. 2019, (4) 

Abdelmaksoud et al. 2021, (5) Haque et al. 2020, (6) Kherdekar and Naik, 2021, (7) 

Passricha and Aggarwal, 2020, and (*) our proposed technique. Our late fusion of phone 

embeddings and bigrams achieves an accuracy of 59.38% (Arabic), 24.13% (Vietnamese), 

and 69.77% (Tamil) for the 10 spoken word categories in the multilingual spoken words 

corpus, surpassing existing methods. This research highlights the potential of linguistics 

(phonemes and morphemes) in SWR, even with limited and imbalanced training samples. 
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By utilizing text-based embeddings and ML sentence embeddings techniques, we can 

achieve high accuracy levels comparable to cutting-edge methods. 

 Table 6.9 The classification results of fusion framework in Arabic MSWC compared with 

SOTA 

 

Table 6.10 The classification results of fusion framework in Tamil MSWC Corpus 

compared with SOTA 

 

Comparison Method 

 

Accuracy 

 

MCC 

 

Macro 

 

Micro 

MFCC + BiLSTM + GRU ( Zia and Zahid et al. 2019) 45.23% 0.0000 0.0622 0.4523 

Mel-Spectrogram + BiLSTM (Lezhenin et al. 2019) 42.857% 0.1368 0.0848 0.4285 

MFCC + LSTM (Wazir et al. 2019) 47.61% 0.2036 0.1397 0.4761 

GFCC + CNN (Abdelmaksoud et al. 2021) 47.61% 0.1578 0.1333 0.4761 

MFCC + CNN (Haque et al. 2020) 45.23% 0.1609 0.1358 0.4523 

MFCC + CNN (Kherdekar and Naik, 2021) 47.61% 0.1967 0.1383 0.4761 

Hybrid CNN + BiLSTM (Passricha and Aggarwal, 2020) 50.00% 0.2462 0.1550 0.5000 

Proposed Method (*) 69.77% 0.5768 0.3615 0.6976 

 

Table 6.11 The classification results of fusion framework in Vietnamese MSWC compared 

with SOTA 

COMPARISON METHOD 
 

Accuracy 

 

MCC 

 

Macro 

 

Micro 

MFCC + BiLSTM + GRU ( Zia and Zahid et al. 2019) 6.89% -0.0217 0.0238 0.0689 

Mel-Spectrogram + BiLSTM (Lezhenin et al. 2019) 17.24% 0.1455 0.1792 0.1724 

MFCC + LSTM (Wazir et al. 2019) 6.89% -0.0102 0.0472 0.0689 

GFCC + CNN (Abdelmaksoud et al. 2021) 10.34% 0.0380 0.1043 0.1034 

MFCC + CNN (Haque et al. 2020) 13.79% 0.0916 0.1757 0.1379 

 

Comparison Method 

 

Accuracy 

 

 

MCC 

 

Macro 

 

Micro 

 

MFCC + BiLSTM + GRU ( Zia and Zahid et al. 2019) 24.14% 0.1458 0.1480 0.2413 

Mel-Spectrogram + BiLSTM (Lezhenin et al. 2019) 20.69% 0.0590 0.0800 0.2068 

MFCC + LSTM (Wazir et al. 2019) 12.12 % -0.0414 0.0414 0.1212 

GFCC + CNN (Abdelmaksoud et al. 2021) 21.21% 0.0544 0.0974 0.2121 

MFCC + CNN (Haque et al. 2020) 12.12% 0.0139 0.0470 0.1212 

MFCC + CNN (Kherdekar and Naik, 2021) 27.27% 0.1597 0.2867 0.2727 

Hybrid CNN + BiLSTM (Passricha and Aggarwal, 

2020) 

28.78% 0.1803 0.3119 0.2878 

Proposed Method (*) 59.38% 0.5470 0.5098 0.5937 
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MFCC + CNN (Kherdekar and Naik, 2021) 0.68% -0.0118 0.0153 0.0689 

Hybrid CNN + BiLSTM (Passricha and Aggarwal, 2020) 0.68% -0.0470 0.0309 0.0689 

Proposed Method (*) 24.13% 0.1462 0.1802 0.2413 

 

Table 6.12 Ablation studies of various NLP techniques in three Asian languages 

Language NLP Techniques Training Accuracy Test Accuracy 

 

Arabic  

Unigrams 100% 56.25% 

Bigrams 100% 59.38% 

Trigrams 100% 56.20% 

 

Tamil 

Unigrams 95.35% 62.79% 

Bigrams 100% 69.77% 

Trigrams 96.51% 61.36% 

 

Vietnamese 

Unigrams 90.01% 17.24% 

Bigrams 92.73% 27.59% 

Trigrams 92.73% 13.33% 

 
 

6.3 SIGNIFICANT OUTCOMES 

  

This research explores the classification of low-resource single-word audio datasets using a 

novel approach: a dense model formed by the late fusion of phoneme embeddings and 

bigram embeddings. What sets our approach apart is the application of late fusion to a single 

voice dataset with limited resources, a novel approach in itself. We found that the 

performance of the low-resource keyword spotting dataset significantly improved when 

integrating phoneme embeddings and bigrams embeddings into a 5-layered dense model 

with batch normalization. Our experiments utilized the MSWC dataset, featuring natural 

speaker audio recordings and ten-word categories. The results from our proposed approach 

for spoken word classification were promising. Interestingly, we observed that text 

transcripts can have a substantial impact on spoken word classification, outperforming 

audio-based features. We compared our approach with existing SOTA methods and 

conducted an ablation analysis of various NLP techniques for the selected Asian languages.  
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The next section In the same chapter discusses the crafting and Implementation of a 

classification framework for phonological and morphological features using pre-trained 

networks in spoken word recognition. 

 

In this segment, we propose a supervised strategy for SWR in a resource-constrained 

environment within a ML dataset. Addressing a gap in the current SOTA methods, our 

approach integrates morphology and phonology for comprehending spoken text. The MSWC 

provides raw audio files in .OPUS format. To extract text transcripts, we employ the pre-

trained Arabic Large xlsr-Wav2Vec2-53 transformer. Our experimental design consists of 

two stages, utilizing two forms of text transcripts: "buckwalter transliteration" and "Arabic 

script." In the initial stage, we convert the buckwalter transliteration form to phonemes using 

the CMU pronouncing dictionary and an Arabic-based grapheme 2-phoneme model. The 

obtained phonemes are then transformed into vectors through character n-gram-based 

subword embeddings from FastText. In the second stage, Arabic scripts are processed into 

stems using a Stemming algorithm, and the resulting stemmed Arabic script is further 

converted to unigrams. Transitioning from unigrams to vectors, we employ FastText word 

embeddings. To ensure consistency, we concatenate and pad the vectors in both scenarios. 

For the subsequent analysis, a three-layered dense and batch normalization model is 

employed, receiving the collected vectors to generate probabilistic scores. The outcomes of 

the two stages are averaged for result calculation. Comparing our findings with the SOTA 

approach, the results demonstrate a satisfactory performance, validating the effectiveness of 

our proposed methodology. This research contributes to the advancement of SWR, 

particularly in ML datasets, under resource constraints, and incorporates novel techniques 

involving morphology and phonology. This section makes significant contributions in the 

following areas:  

 

• Extraction of Arabic script and buckwalter transliteration from text transcripts using 

transformers for the purpose of spoken word classification on Arabic Multilingual 

Spoken Words.  
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• Conversion of extracted buckwalter transliteration to phonemes using the G2P 

model, followed by transformation into embeddings using Fast-Text word 

embeddings. Concatenation and padding techniques are applied to ensure vector 

uniformity.  

• Transformation of authentic Arabic Script into unigrams and subsequent conversion 

to embeddings using Fast-Text word embeddings. 

• Utilization of the Dense + Batch Normalization model to process both sets of 

embeddings. The combination of unigrams and the phoneme technique is assessed 

using accuracy and f1-score parameters, demonstrating superior performance 

compared to the SOTA approach.  

 

The remainder of this objective is organized as follows: Section 6.4 details the proposed 

modeling approach, encompassing early and late fusion techniques. Section 6.5 outlines the 

experimental design and presents a summary of the findings. Finally, Section 6.6 concludes 

the objective, suggesting avenues for future research. 

 

6.4 PROPOSED APPROACH  

6.4.1 SPEECH-TO-TEXT TRANSCRIPT EXTRACTION AND PRE-PROCESSING 

 
In our proposed method, we converted raw audio to text using a pretrained Arabic LARGE 

xlsr-Wav2Vec2-53 model, known for its effectiveness in cross-lingual pretraining and 

supporting low-resource speech understanding. Combining CTC for ASR and transformers, 

as depicted in Figure 6.8, provides efficient pre-trained models across various frameworks 

and modalities. ML masked model pretraining, backed by wav2vec 2.0, and neural style 

transfer contribute to task versatility. Transcripts are obtained in both Buckwalter 

transliteration and Arabic script. The Buckwalter transliteration is further processed into 

phonemes using a G2P model and transformed into vectors with sub-word embeddings. 

Meanwhile, the Arabic script is initially transformed to its root form using the Arabic Porter 

Stemmer, and the stemmed script is further converted into unigrams using NLP techniques. 

In our approach, text transcripts closely approximate actual words, thanks to the use of a pre-

trained model. 
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a) 

 
b) 
 

Figure 6.8. a) The generation of text transcripts and embeddings. b) LARGE xlsr-

Wav2Vec2-53 

 

6.4.2 PHONEME AND AUTHENTIC ARABIC EMBEDDINGS  

 

The acquired phonemes are transformed into 300-dimensional vectors using FastText 

subword modeling, leveraging a pre-trained set of two million word vectors trained on Web 

Crawl data (600 billion tokens). These pre-trained word representations, derived from 

extensive text corpora encompassing news collections, Wikipedia, and web crawls, are 
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widely employed in various text-based applications (Mikolov et al. 2017). Simultaneously, 

the second text transcript, derived from authentic Arabic script using the pre-trained Arabic 

LARGE xlsr-Wav2Vec2-53 model, undergoes a distinct process. The authentic Arabic text 

is converted into root words, or "stems," utilizing the Porter Stemmer (Porter, 1980), chosen 

for its nuanced treatment of word dissections compared to other stemmer algorithms. The 

stems of the authentic Arabic text are further transformed into words-to-characters 

(unigrams), and subsequently converted into pre-trained word embeddings for the Arabic 

language. The standard Arabic word segmenter ICU tokenizer is employed in this context. 

FastText is utilized to train the unigrams for pre-trained word vectors using Common Crawl 

and Wikipedia. These models are trained employing CBOW with position weights in a 300-

dimensional space, character n-grams of length 5, a window size of 5, and 10 negatives. 

Figure 6.8 illustrates the process of generating two forms of text transcripts from LARGE 

xlsr-Wav2Vec2-53. The buckwalter transliteration transcripts are converted to phonemes 

using the CMU pronouncing dictionary (Weide, 1998). These phonemes are further 

transformed into vectors, serving as input to the 3-layered dense + Batch Normalization (BN) 

model, from which probabilistic scores are extracted and stored. Conversely, the text 

transcript from authentic Arabic script is processed into characters or unigrams, and Arabic 

FastText Embeddings are applied in a 300-dimensional size per unigram. The resulting 

embeddings, concatenated and padded for uniformity, are then fed into the 3-layered dense 

model, yielding probabilistic scores that are extracted and stored. 

                           
Figure 6.8 showcases the text transcript generation process using the LARGE xlsr-

Wav2Vec2-53 model. For Buckwalter transcripts, the CMU dictionary transforms them into 

phonemes, which are then converted into vectors. These vectors serve as input for a 3-layer 

dense + Batch Normalization (BN) model, generating scores. In the case of Arabic script, 

the LARGE xlsr-Wav2Vec2-53 model produces an authentic transcript. The script is further 

processed into unigrams, applied to Arabic FastText Embeddings (300-dimensional each). 

Concatenated and padded unigrams are fed into a 3-layer dense model, storing resultant 

scores. Figure 6.9 depicts the flow of information from both transcripts to the neural network, 

resulting in an average score that combines early and late fusion, creating a hybrid approach. 
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Figure 6.9. Proposed pipelines for Arabic spoken word recognition 

 

6.5 EXPERIMENT AND DISCUSSIONS   

6.5.1 DATASET 

 
The MSWC, licensed under CC-BY 4.0, serves commercial keyword and spoken phrase 

search applications and academic research. With audio instances from over 5 billion people 

speaking 50 languages, the dataset contains 23.4 million 1-second spoken instances and 

340,000 keywords. Applications range from contact centres to consumer electronics. The 

MSWC database includes spoken words in 50 languages, categorized by resource 

availability. However, for focused research on 10 and 50 spoken word categories, the dataset 

has been intentionally skewed, resulting in 94 and 722 samples, respectively. Despite its size, 

modifications cater to specific academic and commercial research objectives, emphasizing 

real-world applications. The MSWC was adapted for Arabic language categorization, 

aligning with the study's focus on academic research, commercial applications, keyword 
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spotting, and spoken term search. Despite the dataset's substantial size, it has been 

strategically modified for the specific exploration of 10- and 50-word categories, resulting 

in a tailored dataset for targeted research objectives. 

 

 

 

Figure 6.10. The Number of samples for 50-spoken word categories 
 

6.5.2 EXPERIMENTAL SETUP  

 
The investigations were conducted using Python 3.10.4 on a MAC OS High Sierra system 

equipped with an Intel Core i5 CPU featuring Intel Graphics, operating at a clock speed of 

1.8 GHz. The experimental setup employed a 70:30 train:test split ratio with 5-fold cross-

validation. The optimization process utilized the Adam optimizer, employing a batch size of 

16, 100 epochs, and a learning rate of 0.01. Nonlinearity was introduced into the model 

through the use of the "ReLU" activation function. 

 

6.5.3 RESULTS AND DISCUSSIONS   

 
Utilizing an under-resourced and highly unbalanced dataset, Arabic SWR is approached 

using the pre-trained Arabic LARGE xlsr-Wav2Vec2-53 model. Text transcripts are 

extracted in buckwalter transliteration and authentic Arabic script, with the former 
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transformed into phonemes and further into 300-dimensional vectors using FastText 

subword modeling.  

 

Experimentation targets 10 and 50-word categories, posing challenges in handling dataset 

imbalance. The authentic Arabic script is processed into stems and unigrams, converted into 

vectors via concatenation and padding. Vector dimensions are 3900 X 1 for both 10 and 50-

spoken word categories. Buckwalter transliteration text transcripts undergo phoneme 

conversion, resulting in vectors of sizes 2700 X 1 and 3000 X 1 for 10 and 50-spoken word 

categories, respectively. Hyperparameters, define a 3-layered model with batch 

normalization, "ReLU" activation, and Adam optimizer. A 70:30 train:test split ratio with 5-

fold cross-validation is applied, using a batch size of 16, 100 epochs, and a learning rate of 

0.01. The dataset's imbalance is addressed through concatenation and padding, maintaining 

consistency in vector dimensions for both transcript forms. Early feature fusion is achieved 

by training independently on the padded features for 10 and 50 spoken words. In comparison, 

the buckwalter transliteration form surpasses the Arabic script in accuracy. Stemming is 

applied to the latter, but resource constraints limit its study. Dataset imbalance further 

complicates understanding spoken Arabic speech. For the 10-spoken words category in 

buckwalter transliteration, after concatenation and padding, the output shape is (2700) with 

a total parameter count of 1,534,410. For the 50-spoken word category, the output shape is 

(3000), with a total parameter count of 1,690,610, comprising 1,689,074 trainable and 1,536 

non-trainable parameters. The input shape of Arabic script padded vectors is (3900) for both 

10 and 50 spoken words. These vectors, after training, are fed into a flattened layer and three 

dense layers, totalling 2,148,810 parameters. The early fusion accuracy for phoneme and 

unigram embeddings in the MSWC is 68.96% and 44.83%, respectively, for 10-word 

categories and 67.28% and 52.78% for 50-word categories. Late fusion, combining the 

probabilistic scores from both procedures, yields 72.41% and 70.97% accuracy for 10 and 

50 spoken word categories, respectively.  

 

The confusion matrix in Figures 6.11 and 6.12 shows the early fusion hypothesis results, 

highlighting the highest accuracy for spoken word-2 category for 10 classes and category-

37 for 50 spoken word categories. Limited dataset quantity impacts model performance, with 

varying accented speech contributing to lower accuracies. Comparison with established 

experiments reveals our method's superiority over MFCC-based models, achieving higher 
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accuracy than CNN-based and hybrid CNN + BiLSTM models. Evaluation measures for 

specificity, FNR, and FDR are high across all classes, while sensitivity and PPV show 

variations. The utilization of linguistic features, particularly bigrams and phonemes, in 

transformer-generated text transcripts contributes to the success of our approach in handling 

low-resourced languages and skewed datasets. Table 6.13 presents the classified spoken 

words for both 10- and 50-word categories following the late fusion approach. The outcomes 

of late fusion demonstrate notable satisfaction when compared with the methods outlined in 

Table 6.15. The utilization of text-based features, as opposed to audio-based features, 

contributes to the superior quality of the final results. In Figure 6.13, the classification report 

illustrates the performance of our proposed method across 10 Arabic spoken word 

categories. The evident superiority of our approach, characterized by substantial accuracy 

and minimal WER, surpasses that of the comparative methods. 

 

Table 6.13 Number of classified spoken words after training for 50-word categories 
 

Spoken word categories Number of classified spoken words Accuracy  WER 

 0.00         1.00000000 1 اخٓذ

 0.01 0.99078341 4 اخٓر

 0.00 0.99539171 0 آذار 

 0.00 0.99539171 2 اسٓف

 0.01 0.98617512 2 آكل

 0.01 0.98617512 0 الٓة 

 0.01 0.99078341 4 الٓي

 0.04 0.96313364 3 آمل

 0.03 0.97235023 0 أباه 

 0.00           1.00000000 2 أبحث

 0.00 0.99539171 0 أبعد 

 0.03 0.97235023 22 أبي

 0.00 0.99539171 0 أبيض

 0.00 0.99539171 0 أبيه

 0.00 0.99078341 1 أتأكل

 0.01 0.98617512 1 أتت

 0.01 0.98617512 3 أتحب

 0.00 0.99078341 2 أتحدث

 0.00 0.99539171 1 أتدرس

 0.00 0.99078341 2 أتذكر

 0.00 0.99078341 2 أتريد 

 0.00 0.99539171 0 أتساءل

 0.01 0.99078341 2 أتستطيع

 0.01 0.99078341 1 أتعرف 

 0.00 0.99539171 1 أتعلم

 0.01 0.98617512 1 أتكلم

 0.00 0.99078341 2 أتمنى 

 0.05 0.94930876 3 أتى

 0.01 0.99078341 2 أتيت 

 0.00 0.99539171 3 أجب

 0.01 0.98617512 2 أجد
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 0.00 0.99539171 0 أجرة

 0.00 0.99539171 1 أجزاء

 0.01 0.99078341 1 أجل 

 0.00 0.99539171 4 أجمل

 0.00 0.99539171 2 أحاول 

 0.05 0.94930876 31 أحب

 0.01 0.98617512 1 أحبك

 0.01 0.99078341 0 أحبه

 0.02 0.98156682 10 أحتاج

 0.06 0.94470046 16 أحد

 0.01 0.98617512 0 أحدهم

 0.01 0.99078341 0 أحدهما 

 0.00 0.99539171 5 أحضر

 0.00 0.99078341 1 أحل 

 0.00 0.99078341 4 أحمر

 0.00 0.99078341 1 أحمق

 0.00 0.99078341 0 أخاك 

 0.00        00000000 .1 1 أخبرتني 

 0.00          00000000 .1 5 أخبرني 

 

 

Figure 6.11. Confusion matrix for 10-spoken word categories after hybrid fusion 
 

Table 6.14 Proposed evaluation metric with 5-fold cross-validation 
 

 

 

 

Accuracy 

 

Mathew’s correlation 

coefficient (MCC) 

 

 

Macro 

 

Micro 

Proposed Method  

 

70.97% 0.6166 0.4971 0.7097 
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Figure 6.12. Confusion matrix for 50-spoken word categories after hybrid fusion 

 

Figure 6.13. Classification results of late fusion of Buckwalter transliteration and authentic 

Arabic Script to detect Arabic Spoken Words for 10-word categories 
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Table 6.15 Accuracy results on comparison and proposed methods with 5-fold cross-

validation                              

 

Spoken 
word 
categories 
 

 
Precision 

 
Recall 

 
f 1-Score 

  
Sensitivity 

  
Specificity 

 
NPV 

 
FPR 

 
FNR 

 
FDR 

 
PPV 

 
 
خذا  0.00 (1) 

0.25 (2) 
0.25 (3) 
0.20 (4) 
0.00 (5) 
1.00 (*) 
 

0.00 (1) 
0.10 (2) 
0.10 (3) 

0.50 (4) 
0.00 (5) 
1.00 (*) 

0.00 (1) 
0.14 (2) 
0.14 (3) 
0.29 (4) 
0.00 (5) 
1.00 (*) 

0.00 (1) 
0.10 (2) 
0.10 (3)  
0.50 (4) 
0.00 (5) 
1.00 (*) 

1.00 (1) 
0.95 (2) 
0.95 (3) 
0.85 (4) 

0.92 (5) 

1.00 (*) 

0.86 (1) 
0.85 (2) 
0.85 (3) 
0.96 (4) 
0.88 (5) 
1.00 (*) 

0.00 (1) 
0.05 (2) 
0.05 (3) 
0.15 (4) 
0.08 (5) 
0.00 (*) 

1.00 (1) 
0.90 (2) 
0.90 (3) 
0.50 (4) 
1.00 (5) 
0.00 (*) 

1.00 (1) 
0.75 (2) 
0.75 (3) 
0.80 (4) 
1.00 (5) 
0.00 (*) 

0.00 (1) 
0.25 (2) 
0.25 (3) 
0.20 (4) 
0.00 (5) 
1.00 (*) 

 
 
خرا  0.00 (1) 

1.00 (2) 
0.67 (3) 
0.00 (4) 
0.00 (5) 
1.00 (*) 
 

0.00 (1) 
0.50 (2) 
0.50 (3) 
0.00 (4) 
0.00 (5) 
1.00 (*) 

0.00 (1) 
0.67 (2) 
0.57 (3) 
0.00 (4) 
0.00 (5) 
1.00 (*) 

0.00 (1) 
0.50 (2) 
0.50 (3) 
0.00 (4) 
0.00 (5) 
1.00 (*) 

1.00 (1) 
1.00 (2) 
0.98 (3) 
1.00 (4) 
0.97 (5) 
1.00 (*) 

0.94 (1) 
0.97 (2) 
0.97 (3) 
0.79 (4) 
0.94 (5) 
1.00 (*) 

0.00 (1) 
0.00 (2) 
0.02 (3) 
0.00 (4) 
0.03 (5) 
0.00 (*) 

1.00 (1) 
0.50 (2) 
0.50 (3) 
1.00 (4) 
1.00 (5) 
0.00 (*) 

1.00 (1) 
0.00 (2) 
0.33 (3) 
1.00 (4) 
1.00 (5) 
0.00 (*) 

0.00 (1) 
1.00 (2) 
0.67 (3) 
0.00 (4) 
0.00 (5) 
1.00 (*) 

ذار 
 
 (1) 0.18 ا

0.17 (2) 
0.17 (3) 
0.00 (4) 
0.10 (5) 
0.00 (*) 
 

0.33 (1) 
0.29 (2) 
0.29 (3) 
0.00 (4) 
0.20 (5) 
0.00 (*) 

0.24 (1) 
0.21 (2) 
0.21 (3) 
0.00 (4) 
0.13 (5) 
0.00 (*) 

0.33 (1) 
0.28 (2) 
0.28 (3) 
0.00 (4) 
0.20 (5) 
0.00 (*) 

0.67 (1) 
0.83 (2) 

0.83 (3) 
0.89 (4) 
0.66 (5) 
1.00 (*) 

0.82 (1) 
0.91 (2) 
0.91 (3) 
0.92 (4) 
0.82 (5) 
0.93 (*) 

0.33 (1) 
0.17 (2) 
0.17 (3) 
0.11 (4) 
0.34 (5) 
0.00 (*) 

0.67 (1) 
0.71 (2) 
0.71 (3) 
1.00 (4) 
0.80 (5) 
1.00 (*) 

0.82 (1) 
0.83 (2) 
0.83 (3) 
1.00 (4) 
0.91 (5) 
1.00 (*) 

0.18 (1) 
0.17 (2) 
0.17 (3) 
0.00 (4) 
0.10 (5) 
0.00 (*) 

سف
 
 (1) 0.14 ا

0.60 (2) 
0.60 (3) 
0.00 (4) 
0.00 (5) 
1.00 (*) 
 

0.80 (1) 
0.50 (2) 
0.50 (3) 
0.00 (4) 
0.00 (5)  
0.25 (*) 

0.24 (1) 
0.55 (2) 
0.55 (3)  
0.00 (4) 
0.00 (5) 
0.40 (*) 

0.80 (1) 
0.50 (2)   
0.50 (3)   
0.00 (4)  
0.00 (5) 
0.25 (*) 

0.59 (1) 
0.97 (2) 
0.97 (3) 
1.00 (4) 
0.98 (5) 
1.00 (*) 

0.97 (1) 
0.95 (2) 
0.95 (3) 
0.86 (4) 
0.89 (5) 
0.89 (*) 

0.41 (1) 
0.03 (2) 
0.03 (3) 
0.00 (4) 
0.02 (5) 
0.00 (*) 

0.20 (1) 
0.50 (2) 
0.50 (3) 
1.00 (4) 
1.00 (5) 
0.75 (*) 

0.87 (1) 
0.40 (2) 
0.40 (3) 
1.00 (4) 
1.00 (5) 
0.00 (*) 

0.14 (1) 
0.60 (2) 
0.60 (3) 
0.00 (4) 
0.10 (5) 
1.00 (*) 

كل
 
 (1) 0.00 ا

0.00 (2) 
1.00 (3)  
0.00 (4) 
0.00 (5) 
0.50 (*) 
 

0.00 (1) 
0.00 (2) 
0.20 (3) 
0.00 (4) 
0.00 (5) 
1.00 (*) 

0.00 (1) 
0.00 (2) 
0.33 (3) 
0.00 (4) 
0.00 (5) 
0.67 (*) 

0.00 (1) 
0.00 (2) 
0.20 (3) 
0.00 (4) 
0.00 (5) 
1.00 (*) 

0.90 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
0.94 (5) 
0.88 (*) 

0.91 (1) 
0.92 (2) 
0.94 (3) 
0.90 (4) 
0.95 (5) 
1.00 (*) 

0.10 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.06 (5) 
0.12 (*) 

1.00 (1) 
1.00 (2) 
0.80 (3) 
1.00 (4) 
1.00 (5) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
0.00 (3) 
1.00 (4) 
1.00 (5) 
0.50 (*) 

0.00 (1) 
0.00 (2) 
1.00 (3) 
0.00 (4) 
0.00 (5) 
0.05 (*) 

 
 
لةا  0.00 (1) 

1.00 (2) 
1.00 (3) 
0.00 (4) 
0.00 (5) 
0.00 (*) 
 

0.00 (1) 
0.33 (2) 
0.33 (3) 
0.00 (4) 
0.00 (5) 
0.00 (*) 

0.00 (1) 
0.50 (2) 
0.50 (3) 
0.00 (4) 
0.00 (5) 
0.00 (*) 

0.00 (1) 
0.33 (2) 
0.33 (3) 
0.00 (4) 
0.00 (5) 
0.00 (*) 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
0.93 (5) 
1.00 (*) 

0.94 (1) 
0.97 (2) 
0.97 (3) 
0.96 (4) 
0.92 (5) 
0.97 (*) 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.06 (5) 
0.00 (*) 

1.00 (1) 
0.67 (2) 
0.67 (3) 
1.00 (4) 
1.00 (5) 
1.00 (*) 

1.00 (1) 
1.00 (2) 
0.00 (3) 
1.00 (4) 
1.00 (5) 
1.00 (*) 

0.00 (1) 
1.00 (2) 
1.00 (3) 
0.00 (4) 
0.00 (5)    
0.00 (*) 

 
 
ل  ا  0.00 (1) 

0.22 (2) 
0.22 (3) 
0.50 (4) 
0.00 (5) 
0.40 (*) 
 

0.00 (1) 
0.33 (2) 
0.33 (3) 
0.50 (4) 
0.00 (5) 
1.00 (*) 

0.00 (1) 
0.27 (2) 
0.27 (3) 
0.50 (4) 
0.00 (5) 
0.57 (*) 

0.00 (1) 
0.33 (2) 
0.33 (3) 
0.50 (4) 
0.00 (5) 
1.00 (*) 

0.97 (1) 
0.88 (2) 
0.88 (3) 
0.96 (4) 
1.00 (5) 
0.88 (*) 

0.92 (1) 
0.93 (2) 
0.93 (3) 
0.96 (4) 
0.94 (5) 
1.00 (*) 

0.03 (1) 
0.11 (2) 
0.12 (3) 
0.04 (4) 
0.00 (5) 
0.11 (*) 

1.00 (1) 
0.67 (2) 
0.67 (3) 
0.50 (4) 
1.00 (5) 
0.00 (*) 

1.00 (1) 
0.78 (2) 
0.78 (3) 
0.50 (4) 
1.00 (5) 
0.60 (*) 

0.00 (1) 
0.22 (2) 
0.22 (3) 
0.50 (4) 
0.00 (5) 
0.04 (*) 

 
 
ملا  0.00 (1) 

0.19 (2) 
0.20 (3) 
0.33 (4) 
0.21 (5) 
0.67 (*) 
 

0.00 (1) 
0.38 (2) 
0.38 (3) 
0.67 (4) 
0.46 (5) 
0.67 (*) 

0.00 (1) 
0.25 (2) 
0.26 (3) 
0.44 (4) 
0.29 (5) 
0.67 (*) 

0.00 (1) 
0.38 (2) 
0.38 (3) 
0.67 (4) 
0.00 (5) 
0.67 (*) 

1.00 (1) 
0.58 (2) 
0.62 (3) 
0.65 (4) 
0.56 (5) 
0.91 (*) 

0.80 (1) 
0.79 (2) 
0.80 (3) 
0.88 (4) 
0.81 (5) 
0.91 (*) 

0.00 (1) 
0.41 (2) 
0.38 (3) 
0.35 (4) 
0.43 (5) 
0.09 (*) 

1.00 (1) 
0.62 (2) 
0.62 (3) 
0.33 (4) 
0.54 (5) 
0.33(*) 

1.00 (1) 
0.81 (2) 
0.80 (3) 
0.67 (4) 
0.54 (5) 
0.33(*) 

0.00 (1) 
0.19 (2)  
0.20 (3) 
0.33 (4) 
0.21 (5) 
0.67 (*) 

 (1) 0.00 ابٔاه
0.33 (2) 
0.33 (3) 
0.17 (4) 
0.00 (5) 
0.00 (*) 
 

0.00 (1) 
0.25 (2) 
0.25 (3) 
0.50 (4) 
0.00 (5) 
0.00 (*) 

0.00 (1) 
0.29 (2) 
0.29 (3) 
0.25 (4) 
0.00 (5) 
0.00 (*) 

0.00 (1) 
0.25 (2) 
0.25 (3) 
0.50 (4) 
0.46 (5) 
0.00 (*) 

0.93 (1) 
0.93 (2) 
0.93 (3) 
0.81 (4) 
1.00 (5) 
0.96 (*) 

0.92 (1) 
0.90 (2) 
0.90 (3) 
0.96 (4) 
0.88 (5) 
0.93 (*) 

0.06 (1) 
0.07 (2) 
0.07 (3) 
0.19 (4) 
0.00 (5) 
0.03 (*) 

1.00 (1) 
0.75 (2)  
0.75 (3) 
0.50 (4) 
1.00 (5) 
1.00 (*) 

1.00 (1) 
0.67 (2) 
0.67 (3) 
0.83 (4) 
1.00 (5) 
1.00 (*) 

0.00 (1) 
0.33 (2) 
0.33 (3) 
0.17 (4) 
0.00 (5) 
0.00 (*) 

 
 
بحثا  0.00 (1) 

0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.50 (*) 
 
 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
1.00 (*) 
 
 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.67 (*) 
 
 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
1.00 (*) 
 

0.95 (1) 
1.00 (2) 
1.00 (3) 
0.96 (4) 
1.00 (5) 
0.96 (*) 

0.94 (1) 
0.94 (2) 
0.94 (3) 
0.96 (4) 
0.92 (5) 
1.00 (*) 

0.05 (1) 
0.00 (2) 
0.00 (3) 
0.03 (4) 
0.00 (5) 
0.03 (*) 
 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
0.00 (*) 
 

1.00 (1) 
1.00 (2) 
1.00 (3) 
1.00 (4) 
1.00 (5) 
0.50 (*) 
 

0.00 (1) 
0.00 (2) 
0.00 (3) 
0.00 (4) 
0.00 (5) 
0.50 (*) 
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6.6 SIGNIFICANT OUTCOMES 

  

In this study, we propose a supervised technique for SWR in a resource-limited ML corpus, 

addressing the underexplored aspects of morphology and phonology. Using early fusion, 

combining phone embeddings and unigrams yields accuracies of 68.96% and 44.83% for 10 

spoken word categories; for 50 categories, accuracies are 67.28% and 52.78%. Late fusion 

of probabilistic scores from both approaches outperforms prior methods, achieving 

accuracies of 72.41% and 70.97% for 10 and 50 spoken word categories. Our findings 

highlight the significant impact of phonemes from raw audio on multilingual SWR, with 

future work aiming to expand to more languages and explore the role of audio phonemes.  

 

In the next chapter, we have investigated the impact of a fusion framework on recognizing 

spoken words, incorporating both raw audio and speech transcriptions.
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CHAPTER 7 

 

DESIGN AND DEVELOPMENT OF FUSION 

FRAMEWORK FOR SPOKEN WORD 

RECOGNITION FROM RAW-AUDIO AND SPEECH 

TRANSCRIPTIONS 

 
 
 
 
In this chapter, our research focuses on the effective integration of multi-modal data, 

encompassing imperfect text transcripts and raw audio, within a DL framework for 

automatic speech recognition. Our approach involves the late fusion of audio and text 

modalities during the recognition process. We introduce a novel model, termed the SA-deep 

BiLSTM, which is designed to independently process audio and text data. For training each 

feature type, we employ the SA-deep BiLSTM model, comprising five BiLSTM layers with 

a self-attention module positioned between the third and fourth layers. This model 

accommodates both linguistic data, such as word stems extracted from text transcripts, and 

acoustic features like MFCC and Mel-spectrograms. To vectorize linguistic data, we employ 

GloVe word embeddings. By fusing the posterior class probabilities obtained from SA-deep 

BiLSTM models trained on individual modalities, we achieve a remarkable accuracy of 

98.80% when classifying 10-word categories within the Google speech command dataset.  

4

 
4 The contents of this chapter are submitted/accepted/under review in: 

“Deep fusion framework for speech command recognition using acoustic and linguistic features - 

Multimedia Tools and Applications (2023): Vol 82.” 38667–38691 (2023), 

https://doi.org/10.1007/s11042-023-15118-1. (IF: 3.6).   

& 

“Multimodal integration of mel spectrograms and text transcripts for enhanced automatic speech 

recognition: Leveraging extractive transformer-based approaches and late fusion strategies” Currently 

under review in Computational Intelligence (2024)”. (IF: 2.1).  
 

https://doi.org/10.1007/s11042-023-15118-1


 

 

136 

 

Our approach undergoes rigorous testing using the Google speech command dataset, 

including ablation analysis, which demonstrates its superiority over SOTA methods. This 

performance improvement is attributed to the high classification accuracies we consistently 

attain. In summary, our research presents an innovative SA-deep BiLSTM model that excels 

in combining multi-modal data for automatic speech recognition, and it achieves outstanding 

results, particularly evident in the high classification accuracies achieved when applied to 

challenging datasets. 

 

Our work contributes significantly in the following ways:  

1. We introduce a SA-deep BiLSTM architecture that autonomously learns acoustic 

and linguistic features from raw audio and text transcripts, respectively.  

2. Linguistic features, represented by word stems in the text transcripts, are 

vectorized using GloVe embeddings, while acoustic features include MFCC and 

Mel-spectrogram.  

3. We employ late fusion on the probabilistic predictions generated by individual 

SA-deep BiLSTM models to identify speech commands.  

4. To highlight the effectiveness of our fusion framework compared to models 

trained on smaller subsets of audio and text modalities, we present an ablation 

analysis.  

5. Our work includes an extensive comparative analysis with SOTA methods, 

demonstrating the efficacy of our approach in speech command recognition. 

 

The chapter is organized as follows: In Section 7.1, we introduce our advanced fusion 

framework, which combines acoustic and linguistic features in a DL context. Section 7.2 

delineates our experimental setup, providing a concise summary of our methodology and the 

outcomes we obtained. Finally, in Section 7.3, we draw significant outcomes and offer 

insights into potential avenues for future research. 
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7.1 PROPOSED DEEP FUSION FRAMEWORK FOR ACOUSTIC AND LINGUISTIC 

FEATURES   

  

In this study, we investigate the fusion of audio and text modalities for speech command 

recognition. We introduce a SA-deep BiLSTM model designed to classify speech 

commands. This model leverages acoustic features like MFCC and Mel-spectrogram, as well 

as linguistic features, specifically the word stems extracted from text transcripts. Our core 

hypothesis centres around the idea that the performance of the speech recognition system 

can be significantly enhanced by merging the decision streams from acoustic and linguistic 

modalities within a DL framework. To achieve this, we employ a late fusion strategy, which 

probabilistically combines the output predictions. The complete algorithm for our proposed 

approach is outlined below. We begin by describing the architecture of the proposed SA-

deep BiLSTM model, which is employed to autonomously learn acoustic and linguistic 

modalities. The fundamental challenge with basic RNNs is their inability to effectively 

handle long sequences and capture critical information. To address this limitation and 

capture relevant information from extended data sequences, LSTMs were developed. 

LSTMs consist of a cell state (network's memory), a hidden state, and three crucial gates that 

facilitate the continuous flow of gradients, crucial for making predictions. The trio comprises 

an output gate, an input gate, and a forget gate. The forget gate plays a pivotal role in 

determining which information should be retained or discarded from the cell state. When 

data (xt) and the previous hidden state (ht-1) are provided as inputs, this gate, effectively 

modelled as a sigmoid function, outputs a value between 0 and 1 for each component of the 

cell state. A value of 0 signifies the discarding of information, while a value of 1 signifies 

retaining the information. The data (xt) and the previous hidden state (ht-1) first pass through 

a sigmoid layer in the output gate. The new hidden state (ht) is then generated by multiplying 

the result with ct (after passing through a “tanh” layer). The term "bi-directional LSTM" 

indicates the technique of first computing hidden states from front to rear and then in the 

reverse direction, followed by the combination of the two results. LSTMs accept input in the 

form of samples × features × time-steps and link each time-step input recursively to the 

previous memory. They are widely used for classifying sequential data, including audio and 

text. Let's denote xt as the LSTM input, representing audio or text vectors from sequential 

data. ht represents the hidden state at the current timestamp, and ht-1 is the hidden state from 

the previous timestamp. The input and the previous hidden state combine to create the vector 
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X, serving as the input for the forget, input, and output gates. Weight matrices Wi, Wf, Wo, 

and biases bi, bf, bo are determined during the training phase. σ represents the sigmoid 

function. In summary, the SA-deep BiLSTM model, with its LSTM architecture, plays a 

crucial role in processing sequential data, making it a valuable tool for tasks involving audio 

and text data analysis.  

  
                                         X = [ht-1, xt]                                                              (7.1)  

                       

                                         ft = σ (Wf  X + bf)                                                     (7.2) 

  

                                        it = σ (Wi  X + bi)                                                       (7.3) 

                                                             

                                        ot = σ (Wo X + bo)                                                      (7.4) 

 
 
In (7.2) to (7.4), the symbols f, i, and o correspond to the gate activations. The "tanh" denotes 

the hyperbolic tangent function, and the "*" symbol indicates element-wise multiplication. 

In (7.5), ct-1 and ct represent the previous and current cell states, respectively.   

 
                         ct = ft * ct-1 + it *  tanh (Wc * X + bc)                                      (7.5) 

 
The hidden state at time-step t is computed as:  

                                          ht = ot *  tanh (ct)                                           (7.6) 

 
The primary distinction among LSTM, BiLSTM, and Deep BiLSTM lies in their directional 

processing. LSTM is unidirectional and retains information solely from the past. In contrast, 

BiLSTM processes inputs both from the past to the future and from the future to the past, 

effectively capturing information bidirectionally. Deep BiLSTM takes this bidirectional 

processing further by incorporating multiple recurrent layers, enhancing the overall 

efficiency of the BiLSTM model. In a BiLSTM, there exist two hidden layers, one for the 

forward pass and one for the backward pass. The final hidden state results from 

concatenating the hidden states computed in both the forward and backward passes, as 

demonstrated in (7.7).  

 

                                          ht = [ℎ𝑡 ⃗⃗⃗⃗  ⃗ ;  ℎ𝑡⃖⃗⃗⃗⃗⃗ ]                                                        (7.7) 

  
Attention mechanisms play a crucial role in enabling the model to access contextual 

information by examining the neighbouring words of the target word. Self-attention, also 
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referred to as intra-attention, differs from the inter-attention mechanism proposed by 

Bahdanau et al. (2014). Attention mechanisms empower the model to directly observe and 

extract information from previous vectors. The practical value of attention mechanisms was 

demonstrated in the context of neural machine translation (NMT) (Vaswani et al., 2017). The 

computations for self-attention are outlined in (7.8) to (7.10).  

 

 
                                           lt   = ∑ 𝛼𝑡′ t, t’  xt’                                                                         (7.8) 

 
                                      𝛼t, t’   = softmax (𝜎(Wa ht,t’  + ba))                                (7.9) 

 
                                        ℎt, t’ = tanh (𝑥𝑡

𝑇
Wt +𝑥𝑡′

𝑇
Wx + bt )                                      (7.10) 

 
Our hypothesis posits that the incorporation of self-attention into the deep BiLSTM model 

would yield superior results when fusing information from audio and linguistics compared 

to learning from these modalities independently. We derive predictions from individual deep 

models trained on acoustic and linguistic features and combine these predictions using a soft 

fusion technique. Soft fusion of prediction probabilities is a well-established technique in 

machine learning, commonly used for aggregating predictions from individual models in an 

ensemble. In our work, we adopt a late fusion strategy, where we fuse the probabilistic 

predictions by either averaging or selecting the maximum probabilistic score associated with 

each class. The soft fusion process in our deep fusion framework is as follows: Let pc denote 

the posterior class probability associated with the spoken word category c. We combine the 

three probabilistic decision scores obtained from the SA-Deep BiLSTM model trained on 

MFCC, Mel-spectrogram (ms), and stem, using both maximum and average functions, as 

outlined below.   

                pc = max (pc (mfcc), pc (ms), pc (stem))                                       (7.11) 

               pc = mean (pc (mfcc), pc (ms), pc (stem))                                      (7.12) 

 
The class of the test sample is calculated:  

 
               class = ∀c argmax(pc)                                                                      (7.13) 

 
To capture both the spectral characteristics of audio and the linguistic properties of the 

transcript, we process the data as follows:  
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1. We extract acoustic features, specifically MFCC and Mel-Spectrograms, from 

the raw .WAV audio files. These features are transformed into matrices with 

dimensions samples × features.  

2. To preserve linguistic information, we employ the Porter stemming algorithm 

(Porter, 1999) on the text transcript obtained through the Google API. The 

stemmed transcript is then converted into a feature matrix using GloVe word 

embeddings (Pennington, 2014). In Figure 7.1, we depict the architecture of our 

proposed SA-deep BiLSTM model. The "MATRIX" in Figure 7.1 represents the 

feature vectors extracted from two modalities: audio and text. The frame length 

is standardized to 44 for all audio files. The dimensions of the MFCC matrix are 

(44 × 39), the Mel-spectrogram has a shape of (44 × 128), and the GloVe word-

embedded vectors for the stems have a shape of (50 × 1).  

3. After extracting the acoustic and linguistic features (MFCC, Mel-spectrogram, 

stem), each feature serves as input to the SA-deep BiLSTM model. The trained 

model generates posterior class probabilities for each test sample. This 

comprehensive approach allows us to capture the complex interplay of acoustic 

and linguistic information in the data.  

 

Our deep BiLSTM model is structured with three initial BiLSTM layers, comprising 512, 

256, and 128 units, followed by a self-attention layer with 128 units. Additionally, we 

incorporate two high-level BiLSTM layers with 256 and 128 units. Further, our model 

includes a dense layer with 32 units, a dropout layer with 32 units, and another dense layer 

with 10 units. In total, the model consists of five BiLSTM layers, rendering it considerably 

deep. The input features are processed through both forward and backward LSTMs to obtain 

the forward and backward hidden states. The final layer of our SA-deep BiLSTM model is 

a dense layer with a "softmax" activation function, responsible for generating class 

probability predictions. In Figure 7.1, L represents the cells of the forward LSTM, while L' 

represents the cells of the backward LSTM, forming one layer of the BiLSTM. Figure 7.2  

provides a flowchart depicting how predictions are generated by the three deep models 

within our fusion framework. We perform decision fusion using both maximum and average 

functions, as illustrated in (7.11) and (7.12), to determine the most appropriate choice 

between the two. This comprehensive model architecture allows us to capture and integrate 

complex features from audio and text data effectively. 
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Figure 7.1. Proposed Architecture of Deep BiLSTM with Self-attention 

 

7.2 EXPERIMENTAL SETUP AND RESULTS   

7.2.1 RESULTS AND DISCUSSIONS    

 

The experiments were conducted using Python version 3.9.0 on a macOS High Sierra 

machine with an Intel Core i5 processor clocked at 1.8GHz. Our code is made accessible 

online to support future research endeavours. The Librosa library is utilized for extracting 

MFCC and Mel-spectrogram features. For extracting MFCC features from raw audio files, 

we use a hop length of 512 and a sampling rate of 22,050 sample points per second. We 

extract the 13 MFCC features and concatenate them with the delta (1st order) and delta-delta 

(2nd order) cepstral coefficients. After obtaining 39 MFCC features for each timestamp, 

standardized to a length of 44, the resulting feature matrix with dimensions 44×39 serves as 

input to the SA-deep BiLSTM model. In Figure 7.2, you can observe 2D representations of 
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frame-wise MFCC coefficients computed from raw audio files for the ten word categories 

of the Google speech command dataset. The Mel-spectrogram is extracted from audio using 

the Librosa package, following a process involving short-time Fourier transform, conversion 

of amplitudes to decibels, and further transformation of frequencies to the Mel scale. Figure 

7.2  displays 2D representations of the Mel-spectrogram features for samples of the ten word 

categories from the Google speech command dataset. The Mel-spectrogram feature matrix, 

with dimensions 44×128, derived from 44 timestamps of each raw audio file, serves as input 

to the SA-deep BiLSTM model. The trained model generates probabilistic scores for each 

prediction. We conducted each experiment over 100 epochs, employing the "ReLu" 

activation function to introduce nonlinearity into the model. We utilized the Adam optimizer 

for managing the learning rate in stochastic gradient descent. The Adam optimizer is known 

for its robust performance in various classification tasks, offering fast convergence and a 

stable learning rate. The loss function employed is sparse categorical cross-entropy. The 

linguistic characteristics are captured using the text transcript obtained through the Google 

API. Stemming and conversion of text words into 50-dimensional GloVe word embeddings 

are performed before feeding them as input to the SA-deep BiLSTM model.  

 

 

Figure 7.2. Proposed deep fusion framework for speech command recognition using the 

acoustic and linguistic features 

 

As described in Section 7.1, the posterior class probabilities generated by the three deep 

models are combined. This comprehensive approach leverages both acoustic and linguistic 

features for improved speech command recognition. The proposed SA-deep BiLSTM model 

remains consistent for each of the input modalities within our fusion framework. The 
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probabilistic scores associated with each class are fused using a soft fusion approach, 

employing either the average or mean function, as outlined in Eq. (7.11–7.13). The 

maximum function, as shown by subsequent results, is less effective compared to the average 

function. The maximum (fused) probability indicates the class of the test sample. In Table 

7.1, a presented is presented between the performance of our multimodal fusion approach 

and SOTA methods. The results reveal that in an adequately resourced data environment, our 

technique outperforms alternatives, achieving the highest test accuracy of 98.80%. We 

compared our suggested approach with a CNN that takes a 2D matrix of MFCC features as 

input. Our technique surpasses the performance of MFCC with CNN by 5.52%. When using 

the Mel Spectrogram as an input feature, LSTMs are known to perform well in sound 

classification. However, our suggested method outperforms Mel Spectrogram with LSTM 

by 3.73%, achieving an accuracy of 95.44%. EdgeCRNN, which utilizes a feature-enhanced 

method based on residual structure and depth-wise separable convolution, achieves an 

accuracy of 98.20% on 10 spoken word categories, which is 0.60% less accurate than our 

method. Our approach also outperforms (Abdelmaksoud et al. 2021), which uses CNN and 

GFCC as input, by 5.71%. GFCCs are occasionally considered superior signal 

representations for emotion perception. Additionally, the combination of DenseNet and 

BiLSTM, as proposed recently by Zeng and Xiao for keyword spotting, demonstrates an 

accuracy of 94.88%, while our approach surpasses it by 3.92%. These findings underscore 

the effectiveness of our proposed multimodal fusion approach in speech recognition. In our 

comparative analysis, we also evaluated our results against the LSTM Architecture explored 

by Zia and Zahid in for Urdu acoustic modeling. The utterances were pre-processed using 

the Python Speech Features Toolkit's MFCC approach, with a frame size of 10ms, frame 

shift of 5ms, 40 filter bank channels, 20 cepstral coefficients, and 58 cepstral parameters. 

Our approach outperforms this method by 3.66%. For the Google Speech Command dataset, 

accuracy is presented as the mean of five runs, and the standard deviation, which consistently 

remains at 0.1%, is not reported. Our method also surpassed the Deep CO-Training algorithm 

(DCT) by 3.22%. Furthermore, our approach outperformed the attention convolutional RNN 

by 4.69%. This architecture takes raw .WAV files as inputs, computes mel-scale 

spectrograms using a non-trainable Keras layer, extracts short- and long-term dependencies, 

and employs an attention mechanism to determine the most useful information region, which 

is then fed to a series of dense layers. In a short vocabulary keyword classification challenge, 

attention-based encoder-decoder models have been shown to outperform baselines, 
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achieving 97.5% accuracy on TensorFlow's Speech Commands dataset. However, our 

method surpasses these results by 1.30%. In summary, the results from Table 7.1 demonstrate 

that our proposed method achieved a high accuracy of 98.80%, outperforming the SOTA for 

the categorization of the 10-word categories within the Google Speech Command dataset. 

Table 7.1 Performance comparison with the state of the art for the 10-word category of 

Google Speech Command Dataset 

 

Methods                                                                                                                      Accuracy (%) 

                                                  

Attention based sequence to sequence model (Higy and Bell 2018)                               97.50% 

Semi supervised audio tagging (Cances and Pellegrini 2021)                                         95.58% 

EdgeCRNN  (Wei et al. 2021)                                                                                         98.20% 

RNN Neural attention (de Andrade et al. 2018)                                                                  94.11% 

DenseNet + BiLSTM (Zeng and Xiao 2018)                                                                   94.88% 

MFCC + LSTM-RNN (Zia and Zahid 2019)                                                                   95.14% 

Mel Spectrogram with LSTM (Lezhenin et al. 2019)                                                      95.07% 

MFCC + LSTM-RNN (Wazir et al. 2019)                                                                       95.44% 

GFCC + CNN (Abdelmaksoud et al. 2021)                                                                     93.09% 

MFCC + CNN (Haque et al. 2020)                                                                                  93.28% 

Proposed Method                                                                                                             98.80% 

 

7.2.3 ABLALTION STUDY    

 

In this analysis, we delve into the impact of individual features, whether acoustic or 

linguistic, in an ablation study concerning our SA-deep BiLSTM model. The objective is to 

assess the significance of each component (MFCC, Mel-spectrogram, stem), as well as their 

pairwise combinations, within our deep fusion framework that employs the SA-deep 

BiLSTM model. The results of the ablation analysis, summarized in Tables 7.2, and 7.3, have 

led to the following observations:  

 

Table 7.2 Ablation-analysis of each method with accuracy score obtained for each class 

 
Speech command MFCC (%)      MS (%)            Stem (%) OURS (%) 

 

RIGHT 97.47               97.98                64.90           98.23 

GO 97.26               95.77                52.99 97.26 

NO 99.75               99.01                67.16 99.75 

LEFT 99.51               99.76                47.57 100 
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STOP 99.51               99.76                53.28 99.51 

UP 99.76               99.06                27.29 99.53 

DOWN 96.06               96.80                49.26 96.80 

YES 98.28               99.04                63.96 99.52 

ON 98.23               97.73                44.95 98.48 

OFF 98.26               98.26                97.26 98.76 

 

Table 7.3 The results of soft fusion by averaging on combination of features for the 10-

word Google speech command dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here are the key findings:  

• Within our proposed deep framework, audio feature-based classification outperforms 

text-based classification. 

• We have incorporated acoustic and text modalities, specifically MFCC, Mel-

spectrogram, and stem, which have demonstrated superior performance compared to 

combinations of other popular acoustic and linguistic features like GFCC, Log Mel 

Filterbank, Linear Predictive Cepstral Coefficients (LPCC), and lemma.  

• A crucial component in SWR is the self-attention module, integrated between the 

three initial BiLSTM layers and the two higher-level BiLSTM layers in our SA-deep 

BiLSTM model. Self-attention serves to emphasize context in the input sequence that 

is specifically relevant to the classification task at hand.  

Combinatory Results Type of Combination  Accuracy  

Single Component  Stem  56.70% 

Single Component Lemma 56.31% 

Single Component MFCC 98.53% 

Single Component Mel-Spectrogram 98.33% 

Two Components MFCC + LEMMA 98.60% 

Two Components MS + LEMMA 98.43% 

Two Components MFCC + STEM  98.67% 

Two Components MS + STEM  98.53% 

Two Components  MFCC + MS  98.70% 

Two Components LEMMA + STEM  62.13% 

Three Components MFCC + LEMMA + STEM  98.64% 

Three Components MS + LEMMA + STEM 98.43% 

Three Components MS + LEMMA + MFCC  98.72% 

Three Components MS + STEM + MFCC  98.80% 
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• The individual accuracy values for MFCC and Mel-Spectrogram were 98.53% and 

98.33%, respectively. Through fusion, the accuracy was further enhanced to 98.80%.  

• When stemming was applied independently, the word recognition rate was 56.70%. 

However, incorporating stemming within our fusion framework elevated the 

accuracy to 98.80%. Substituting stemming with lemmatization resulted in a 

marginal drop to 98.72%. Lemmatization alone achieved an accuracy of 56.31%, 

which is slightly lower than the performance of stemming.  

• It's evident that our suggested deep-BiLSTM attention strategy following soft fusion 

achieved nearly 100% accuracy in identifying the speech command "LEFT."  

• Several word categories, including "RIGHT," "STOP," "NO," "LEFT," "UP," "YES," 

"ON," and "OFF," demonstrated high accuracies.  

• However, for some word categories, our proposed technique did not yield significant 

accuracy improvements. Table 3 displays the results of our ablation study, 

showcasing the accuracy obtained per word category when applying stemming, 

MFCC, and Mel-spectrogram individually and after decision-level fusion. It's 

evident that the recognition accuracy for each word category increased significantly 

due to the soft fusion technique. The high accuracies can also be attributed to the 

effectiveness of our SA-deep BiLSTM model, which adeptly learns from each 

modality separately.  

 

Tables 7.2 and 7.3 present the results of various combinations of auditory and linguistic 

features used in our investigation, both homogeneous and heterogeneous. Morphological 

text analysis is a common practice in NLP and information retrieval. Stemming and 

lemmatization are two common morphemes. The stemming algorithm reduces words to their 

root form or morpheme, thereby supporting vocabulary and text transcript size reduction in 

information retrieval. In contrast, lemmatization involves removing inflectional endings to 

reveal the basic structure of a word via morphological analysis. Lemmas carry contextual 

meaning, whereas stemming focuses on affix removal without considering semantics. The 

results of soft fusion by averaging (7.13) for various combinations of acoustic/linguistic 

features are shown in above tables. From our ablation study, we draw the outcomes that 

improved spoken word categorization can be achieved by combining acoustic and linguistic 

modalities. Table 7.3 demonstrates that, of the three feature types (MFCC, Mel-Spectrogram, 

and stem), stemming performed the least effectively due to inaccurate transcriptions from 
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raw audio files. However, when stem and lemma morphological features are combined, it 

results in significant improvements of 5.43% and 5.82%, respectively, over their respective 

baselines. The improvement over separate techniques can be as high as 42.10% for Stem, 

42.49% for Lemma, 0.27% for MFCC, and 0.47% for Mel-Spectrogram, for the average 

metrics score, when MFCC, Mel-Spectrogram, and stem are optimally fused.  

 

7.2.4 IMPLEMENTATION CHALLENGES    

 

Working with multiple modalities, including signals, speech, text, face, and motion data, 

presents both intriguing possibilities and challenges. One of the primary challenges is the 

computational complexity involved in training deep networks from scratch on large datasets. 

Our framework addresses this challenge partially through independent learning for different 

modalities. It's important to note that the computational complexity is primarily dependent 

on the length of the input rather than the processing speed of the machine. The operational 

complexity of our model can be described as follows: the operations for each BiLSTM layer 

are O(Lp2), and the self-attention layer is O(Lp2), where p represents the model dimension 

of hidden states, and L is the length of the input features. To mitigate this complexity, one 

potential approach is to use restricted self-attention, although this may come at the cost of 

reduced accuracy. Additionally, when dealing with larger datasets, it's advisable to work with 

smaller mini-batch sizes to manage computational demands. Our experiments encountered 

significant challenges related to error-prone text transcripts obtained from online speech 

translators like the Google API. These transcripts introduced errors into our data, making the 

task more challenging. However, the inclusion of the acoustic modality derived from raw 

audio in our deep framework played a crucial role in mitigating these errors to a considerable 

extent. Accents represent one of the major hurdles in speech recognition, adding complexity 

and variability to the spoken language. Furthermore, the diverse nature of speakers, with 

variations in pronunciation, intonation, and speaking styles, further complicates the task of 

speech recognition. The presence of a wide range of phonemes, including vowels and 

diphthongs, in any language can significantly affect pronunciation, translation, word 

recognition, and keyword tagging. The development of ASR systems can also be impeded 

by factors such as a lack of diverse training utterances, disorganized speech data, or simple 

machine errors. These challenges highlight the intricacies of speech recognition and the need 

for robust approaches to address them. 
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7.3 SIGNIFICANT OUTCOMES  

 

In this chapter, we present a novel approach involving late fusion of audio and text modalities 

using the SA-deep BiLSTM model for independent learning of each modality. Our 

experiments, conducted on the GSCD with 10-word categories, achieved an impressive 

accuracy of 98.80% by training each modality with a deep self-attention BiLSTM model. 

We describe a soft fusion method that leverages posterior class probabilities derived from 

linguistic (stem) and acoustic (MFCC and Mel-spectrogram) features extracted from each 

audio file. To train these features, we propose the SA-deep BiLSTM model, which comprises 

five BiLSTM layers and integrates a self-attention module between the third and fourth 

layers. Our fusion method demonstrates superior classification accuracy compared to the 

current SOTA techniques for SWR. Notably, our approach excels in correctly predicting the 

"LEFT" word category. In future investigations, it would be intriguing to explore early-cum-

late fusion approaches. Addressing the issue of errors introduced during the Google speech 

translation process, which leads to the loss of audio-to-text data, could further enhance the 

results. Additionally, incorporating articulatory features and handling background noise 

represent potential extensions of this research. Our work harmoniously merges linguistic and 

acoustic elements, effectively compensating for the shortcomings of each modality. By 

integrating both acoustic and linguistic information within a deep fusion framework, we 

achieve more accurate spoken word classification, capturing the valuable insights 

contributed by both audio and text modalities. 

 

We have conducted additional research aimed at enhancing the accuracy of spoken word 

recognition by employing a fusion framework that combines raw audio and speech 

transcriptions. 

 

We explore the potential of combining spectrograms and linguistic data to improve SWR 

accuracy. Using the GSCD, we extract and resize Mel Spectrogram images for categorization 

by ImageNet, RegNet, and ConvNext. We employ RegNet and ConvNext architectures, 

trained on ImageNet, along with the Speech2Text transformer to enhance ASR performance. 

Probabilistic scores from these models are refined within a deep dense model for spoken 

utterance classification, augmented by SBERT embeddings for text transcript conversion. 
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Experiments on the Google Speech Command dataset show impressive accuracy rates, with 

ConvNext achieving 95.87%, RegNet 99.95%, and text transcripts 85.93%. A late fusion 

strategy combining word and image embeddings enhances performance. 

Our work contributes significantly in the following ways:  

• Integration of textual transcripts and mel spectrograms enhances ASR accuracy.  

• Transformer-based methods, including RegNet, ConvNext, and Speech2Text, are 

employed to process audio data and transcripts, leading to remarkable accuracy rates 

on the Google Speech Command dataset. 

The chapter is structured as follows: Section 7.4 outlines our proposed approach and 

experimental setup, summarizing our methodology and results concisely. Section 7.5 

discusses key findings and suggests directions for future research. 

 

7.4 PROPOSED APPROACH AND SETUP  

 

We delve into the unexplored potential of spectrograms and linguistic data to enhance the 

accuracy of SWR. Our experiments revolve around the GSCD, featuring 35-word categories. 

Initially, we extract Mel Spectrogram images from audio samples. After resizing these 

images to 256 x 256 pixels for two-dimensional audio representation, they undergo 

individual categorization by ImageNet, RegNet, and ConvNext. To boost ASR performance, 

we leverage RegNet and ConvNext architectures, initially trained on ImageNet's vast dataset 

of 14 million annotated images. Furthermore, we utilize the Speech2Text transformer to 

segregate text transcript acquisition from raw audio, generating probabilistic scores. These 

scores, along with pre-trained ones from RegNet and ConvNext, undergo further refinement 

within a deep dense model comprising five layers and batch normalization, facilitating 

spoken utterance classification. Additionally, we employ SBERT embeddings via Siamese 

BERT-networks to convert Speech2Text transcripts into vectors.  

 

For our experiments, we utilized Google Colab Pro++ with GPU acceleration and Python as 

the programming language. We employed the Adam optimizer with a learning rate of 0.001 

over 100 epochs and a batch size of 32. Nonlinearity was introduced using ReLU activation. 

Speech-to-image conversion involved generating embeddings and passing them through a 

densely layered feed-forward network. This network consisted of dense layers with varying 

neuron counts and batch normalization layers, culminating in 35 output neurons for posterior 
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probability scores. We used the Adam optimizer and sparse categorical cross-entropy loss 

function for optimization during training. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. The Proposed deep fusion framework 

7.5 SIGNIFICANT OUTCOMES  

 

Our research unveils a novel late fusion strategy that combines word and image embeddings, 

resulting in remarkable test accuracy rates: 95.87% for ConvNext, 99.95% for RegNet, and 

85.93% for text transcripts. Overall, our study not only pushes the boundaries of ASR but 

also demonstrates the vast potential of integrating multimodal data and advanced 

transformer-based techniques to achieve exceptional accuracy in spoken word recognition, 

paving the way for significant advancements in speech recognition systems. 

 

In the next chapter, we have covered the conclusion and outline future directions for our 

work. 
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CHAPTER 8 

 

CONCLUSION AND FUTURE WORK 

 

 
 

This thesis introduces a fusion-based spoken word classification system designed to assess 

spoken words and sentences within audio-video datasets. The conceptual framework 

addresses various challenges in speech analysis, including: 

 

• Insufficient research has been conducted on multiple speech frameworks.  

• Limited exploration exists on the concurrent classification of audio-phonemes and 

text-phonemes. 

• There is a gap in the existing literature regarding the joint extraction and 

classification of features from both raw audio and speech transcription.  

• The simultaneous classification of phonemes and morphemes has been an 

underexplored area in current research. 

 

A novel supervised fusion-based system has been developed for multimodal speech 

classification, proficient in identifying speech through the integration of both acoustic 

and linguistic information. This system incorporates five innovative fusion rules, 

leveraging the joint utilization of linguistic and acoustic features. In conclusion, this 

thesis addresses the pressing need for advanced fusion-based algorithms in Speech 

Analysis. The challenges identified in spoken word analysis, encompassing phonological 

and morphological aspects, prompt the development of innovative solutions across seven 

chapters. The proposed fusion-based frameworks offer nuanced approaches to enhance 

spoken word classification and recognition, demonstrating their effectiveness in 

handling the inherent ambiguities of natural language. Each chapter presents a unique 

solution to a specific problem:  

Phonological Studies and Spectrogram-based Spoken Word Classification (Chapter 3): 

Novel dual-pronged approach integrating spectrograms and phonology. Speech2Text 

transformer for text transcript extraction and spectrogram generation. Late fusion 
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strategy combining phone and image embeddings. Achieved benchmark accuracy, 

surpassing existing methods. Phoneme-Based SWR (Chapter 4): Supervised approach 

for accented speech recognition using phonology. Early fusion of phone embeddings to 

identify accented speech. Superior accuracy in the context of the L2-ARCTIC accented 

speech corpus. Enhanced Speech Transcription Accuracy (Chapter 5): Unsupervised 

approach for improving imperfect speech transcriptions. Decision-level fusion involving 

stemming and two-way phoneme pruning. Significant improvement in word recognition 

rates on the LRW dataset. Morphological and Phonological Classification (Chapter 6): 

Supervised technique for SWR using phonemes and bigrams. Late fusion approach 

incorporating phone and bigram embeddings. Improved accuracy in Arabic, Vietnamese, 

and Tamil for multilingual spoken words. Multimodal Data Integration (Chapter 7): Late 

fusion of audio and text modalities for deep speech recognition. SA-deep BiLSTM model 

processes audio and text data independently. Impressive accuracy on the Google speech 

command dataset, outperforming SOTA approaches.  

In the pursuit of these solutions, each chapter contributes to advancing the field of Speech 

Analysis by embracing fusion-based strategies. The proposed frameworks exhibit 

versatility in handling diverse challenges, from phonological studies to ML SWR. 

Overall, this thesis establishes the efficacy of fusion-based algorithms in 

comprehensively addressing the complexities of spoken word analysis.  

In the concluding remarks of Chapter 3, we introduced three innovative approaches 

inspired by spectrogram and phonological stress-level studies. Our study highlights the 

significant role played by vowels and plosives in speech recognition, with stress markers 

notably contributing to transcription accuracy. By focusing on these crucial phonological 

features, further advancements in speech recognition technologies can be achieved, 

catering to a broad range of users and languages. Among the various sounds analysed, 

trills, characterized by rapid articulator vibrations, demonstrated the second-highest 

accuracy. Integration of stress markers through Sentence BERT resulted in a test 

accuracy of 70.81% for vowels and trills, while the USE achieved 72.03%. In the absence 

of stress markers, accuracy dropped to 62.13% (Sentence BERT) and 70.64% USE. 

Interestingly, stress markers proved instrumental in enhancing accuracy, with the USE 

outperforming Sentence BERT in this specific context. To optimize results, future 

research should delve into trill variations across different languages and refine the 

incorporation of stress markers for improved speech recognition in diverse linguistic 
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contexts. Nasals, which involve consonant sounds produced by allowing air to pass 

through the nose while obstructing the oral cavity, exhibited noteworthy accuracy in the 

assessed sounds. Integration of stress markers through Sentence BERT resulted in a test 

accuracy of 66.29% for vowels and nasals, while the USE achieved 53.01%. Without 

stress markers, accuracy remained relatively high at 65.92% (Sentence BERT) and 

66.55% USE. Surprisingly, despite the general trend of stress markers improving 

accuracy, the USE outperformed Sentence BERT in this instance. Remarkably, the USE's 

embeddings, generated without considering stress markers, proved to be the most 

accurate. To enhance performance, future investigations should delve into the distinctive 

aspects of nasals in various languages and optimize the utilization of stress markers to 

refine speech recognition across diverse linguistic contexts.  

This thesis presents a novel approach to boost speech command recognition by 

employing a late fusion technique that combines audio and image modalities. The 

methodology incorporates a feed-forward neural network model along with median and 

adaptive filtering techniques to enhance audio signals. Employing the GSCD featuring 

10-word categories, the approach achieves an impressive test accuracy of 99.85% by 

integrating information from both audio and image modalities. The fusion technique 

employs soft fusion, utilizing posterior class probabilities obtained from two filtered 

channels derived from each audio file. The feature extraction process involves the Swin-

Tiny Transformer, followed by a 3-layered feed-forward neural network. In comparison 

to existing SOTA methods, the proposed fusion technique excels in classification 

accuracy, showcasing its efficacy in capturing and utilizing information from both audio 

and image modalities for detailed speech command classification. The integration of a 

pre-trained Swin-Tiny Transformer model, trained on an extensive image dataset, 

significantly contributes to the achieved high accuracy. Notably, median filtering 

emerges as a superior pre-processing technique when compared to adaptive filtering. The 

fusion of probabilistic outcomes from adaptive and median filtering further enhances 

accuracy, resulting in an exceptional success rate of 99.85%. It's important to note that 

one limitation is the increased memory demand, particularly when applied to extensive 

datasets, a challenge shared across similar research endeavours using the same dataset.  

 

This research presents an extensive statistical analysis of deep-feature-level fusion 

involving audio and visual modalities through an innovative deep BiLSTM-GRU model, 
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dedicated to learning each modality. Leveraging training output scores from audio and 

image modalities, our approach attains notable accuracies: 98.56% for 20 utterances of 

dysarthric male speakers, 98.07% for 10 utterances of dysarthric male speakers, 95.11% 

for 20 utterances of dysarthric female speakers, 94.87% for 10 utterances of dysarthric 

female speakers, 97.55% for 20 utterances of both male and female dysarthric speakers, 

and 94.80% for 10 utterances of both male and female dysarthric speakers, utilizing 10- 

and 20-word categories from the Dysarthria speech corpus. Our proposed feature-level 

fusion method incorporates transformers-based feature engineering, ultimately 

generating posterior class probabilities for both audio and image modalities. Despite the 

promising results, there remain various avenues for further exploration. Future work will 

involve integrating linguistic aspects into the multi-modal feature fusion module, 

ongoing refinement of feature extraction methodologies, and extending our model to 

encompass aspect-based multi-modal speech recognition. Additionally, exploration of 

other multimedia data types, such as text, will be pursued.  

In Chapter 4, this research investigates the categorization of low-resourced accented 

speech by employing an innovative approach involving the early fusion of phoneme 

embeddings and a dense model. Notably, our method breaks new ground by combining 

early phone fusion with accented speech, representing a novel initiative within the realm 

of low-resourced datasets. The integration of early fusion of phoneme embeddings with 

a 3-layered dense model significantly enhances the performance of recognizing low-

resourced accented speech. Our experiments were conducted using the L2-ARCTIC 

accented speech dataset, which includes audio recordings from 24 non-native English 

speakers across 10 sentence categories. The proposed methodology has yielded 

commendable results in the classification of spoken sentences. Our future research will 

concentrate on further exploring diverse fusion models tailored to low-resourced 

accented speech corpora, thereby expanding the scope of this study.  

In Chapter 5, our methodology revolves around combining two potent techniques, 

stemming and two-way phoneme pruning, to enhance word recognition accuracy in 

highly imperfect speech transcriptions extracted from the LRW dataset in mp4 format. 

The process begins with the extraction of audio samples from videos using the Ffmpeg 

framework, followed by converting the audio speech into text transcriptions using the 

publicly available Google API, versatile in applications such as speech adaption, speech 

transcription, and real-time speech recognition. To assess our results, we start with a 
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baseline comparison involving simple string matching to identify word categories in the 

text transcription. Our initial step involves text normalization and speech adaption, which 

includes removing stop words—the most frequent and extraneous words in the text—to 

expedite text processing. Subsequently, we apply stemming to derive the root form of 

each word, comparing it against various word categories. Simultaneously, we convert 

each word into phonemes using the CMU pronouncing dictionary. The text transcript is 

then mapped to phonemes, followed by phoneme filtering where we selectively filter out 

phonemes containing vowels, plosives, or fricatives. The phoneme pruning process 

consists of two non-sequential stages: Stage I involves phoneme pruning using vowels 

and plosives, while Stage II focuses on phoneme pruning using vowels and fricatives. 

We then aggregate results from these three methods and apply decision fusion to 

determine whether any of these methods successfully detect the occurrence of the word. 

The proposed fusion method proves highly effective, surpassing existing SOTA 

techniques. Consequently, word recognition accuracy sees a significant improvement, 

elevating it from a baseline accuracy of 9.34% to an impressive 32.96% using our fusion 

approach.  

In Chapter 6, this investigation delves into the classification of low-resource single-word 

audio datasets through an innovative approach: a dense model created by the late fusion 

of phoneme embeddings and bigram embeddings. What distinguishes our method is the 

application of late fusion to a single voice dataset with limited resources, a novel 

approach in itself. We observed a significant enhancement in the performance of the low-

resource keyword spotting dataset when integrating phoneme embeddings and bigram 

embeddings into a 5-layered dense model with batch normalization. Our experiments 

employed the MSWC dataset, comprising natural speaker audio recordings and ten-word 

categories. The outcomes from our proposed approach for spoken word classification 

were promising. Interestingly, we noted that text transcripts can exert a substantial 

impact on spoken word classification, surpassing audio-based features. We conducted 

comparisons with existing SOTA methods and carried out an ablation analysis of various 

NLP techniques for the selected Asian languages.  

 

In another study, we presented a supervised technique for SWR in a ML corpus with 

limited resources. A significant gap in the current state of the art lies in the insufficient 

exploration of morphology and phonology in deciphering spoken text. For the 10 spoken 
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word categories in the MSWC, the early fusion of phone embeddings and unigrams 

embeddings yielded accuracies of 68.96% and 44.83%, respectively. In the case of 50 

spoken word categories, these accuracies were 67.28% and 52.78%. Following early 

fusion, the late fusion of probabilistic scores from both approaches was applied. In 

comparison to prior methods, the late fusion of phone embeddings and unigrams 

embeddings for SWR achieved accuracies of 72.41% and 70.97% for 10 and 50 spoken 

word categories in the MSWC, respectively. Our research aims to underscore that even 

with a limited number of training samples, phonemes derived from raw audio can 

significantly impact MSWC. Future work includes expanding our research to more 

native languages and exploring the potential role of audio phonemes in spoken word 

recognition.   

In Chapter 7, we introduce a ground-breaking method that involves the late fusion of 

audio and text modalities using the SA-deep BiLSTM model for independent learning of 

each modality. Our experiments, conducted on the GSCD with 10-word categories, 

yielded an impressive accuracy of 98.80% by training each modality with a deep self-

attention BiLSTM model. We detail a soft fusion technique that utilizes posterior class 

probabilities derived from linguistic (stem) and acoustic (MFCC and Mel-spectrogram) 

features extracted from each audio file. To train these features, we propose the SA-deep 

BiLSTM model, consisting of five BiLSTM layers and integrating a self-attention 

module between the third and fourth layers. Our fusion method showcases superior 

classification accuracy compared to current SOTA techniques for SWR. Notably, our 

approach excels in correctly predicting the "LEFT" word category. In future 

investigations, exploring early-cum-late fusion approaches could be intriguing. 

Addressing errors introduced during the Google speech translation process, leading to 

the loss of audio-to-text data, could further enhance the results. Additionally, 

incorporating articulatory features and addressing background noise represent potential 

extensions of this research. Our work seamlessly combines linguistic and acoustic 

elements, effectively compensating for the shortcomings of each modality. By 

integrating both acoustic and linguistic information within a deep fusion framework, we 

achieve more accurate spoken word classification, capturing valuable insights 

contributed by both audio and text modalities. 
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