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ABSTRACT 
 

 

GAN’s have emerged as a powerful technique for generating high-quality 

images due to their unique characteristics and capabilities. In this report, there is a 

discussion for the motivation behind using GANs over other generative models for 

example Restricted Boltzmann Machines (RBMs), Deep Belief Networks (DBMs), 

and Variational Autoencoders (VAEs). This research highlights the advantages of 

GAN’s in terms of image quality generation. To gain a comprehensive understanding 

of GAN’s and their practical implementations, several studies have been conducted 

that aided in the creation of a GA-GAN framework. This research provides insights 

into the theoretical foundations and practical considerations of GANs for image 

synthesis. This paper introduces unsupervised learning techniques specifically 

designed for GANs, enabling their effective utilization with small datasets such as 

MNIST and CIFAR-10. Driven by the knowledge gained from these resources, this 

report shows a novel implementation on Genetic algorithm-based GAN model which 

are supported by learning rate schedulers. The approach incorporates various essential 

concepts and techniques to enhance the quality of image generation using limited 

datasets. Specifically, methods like normalization, data augmentation, batch 

normalization, and Adam optimizer were used to enhance the overall accuracy of GAN 

model. However, this report uses genetic algorithm instead of gradient based approach 

and also generate high quality image than the real images. For these experiments, the 

Anime Face Dataset was collected from Kaggle through API integration. This dataset 

comprises approximately 63,565 anime face images, which is similar in scale to the 

widely used CIFAR-10 dataset. By employing GA-GAN model with genetic algorithm 

for optimization, this research work aims to generate high-quality anime face images.  

The proposed framework employs two performance metrics termed as real_score of 

0.9722 and fake_score of 0.0452. Binary cross entropy loss function was used for both 

generator and discriminator. These metrics provide valuable insights into the quality 

and diversity of the generated images. Additionally, the Fréchet inception distance 

(FID) score was also discussed, which is a widely used metric for evaluating the 

quality of generated images. The FID score compares the feature embeddings of the 

generated images and the original dataset using a pre-trained Inception model. A lower 

FID score indicates a closer similarity among original images and generated images, 

highlighting the success of the GAN network in capturing the underlying data 

distribution. 
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1. CHAPTER 1 
 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

 

Deep learning has experienced remarkable success in computer vision, 

showcasing impressive performance in various practical applications like image 

classification, object detection, and image segmentation. Unsupervised learning tasks, 

like image generation, may not consistently achieve the same level of performance as 

supervised learning tasks, for example detection of objects and classification of 

images. Image generation aims to acquire the ability to generate images as illustrated 

in  Fig. 1.1. 

 

 

 
Fig. 1.1 Image synthesis [11] 

 

 

Generative models are trained to understand the underlying distribution of 

images, enabling them to generate new images. However, image generation presents 

several challenges. Firstly, unlike supervised learning problems, image generation 

lacks explicit correspondence between the input and output. The generative model 

must therefore learn to effectively capture and represent this mapping. Secondly, image 

generation involves a significantly larger output dimension compared to many 

supervised learning tasks. For instance, when dealing with high-resolution images like 

1024 x 1024, the output dimension can exceed three million, necessitating efficient 

feature learning. After having these problems, image generation is still a worthy tool 

which can enhance the performance of various issues related to computer vision, like 

image-to-image translation [6], image compression [7], image super-resolution [5]. 
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GAN is meant for Generative Adversarial Network in which this specific AI 

architecture comprises of two neural networks the discriminator and the generator 

where through a process of competition these networks are trained at a time. A GAN 

comprises of two main components: a generator and a discriminator. Let’s talk about 

then in depth: 

 

a) Generator: It is a neural network that creates artificial data. It takes 

input in the form of a random noise and learns to transform it into outputs that match 

the original dataset. The generator's purpose is to produce data which is very similar 

to real data, thereby "deceiving" the discriminator. 

 

b) Discriminator: It is another neural network used to evaluate whether 

data is true or fallacious. It takes input from both the generator's results and real 

dataset. The discriminator's intention is to correctly distinguish which data is legitimate 

and which is synthetic. 

 

 

GANs are trained in such a manner that the generator and discriminator 

fight against one another like in a game: The purpose generator is to output data which 

is alike from the original dataset by the discriminator whereas the goal of discriminator 

is to revamp its potential to disfavour between genuine and fallacious data. In this way 

this adversarial training permits both networks to improve with the passage of time. 

Since the generator network outputs more genuine data, the discriminator network has 

to become better at detecting fakes, giving the generator a chance to provide even 

better outcomes. This iterative algorithm produces a generator that is capable of 

producing data that approximately resembles the distribution of the original dataset. 

 

 

Generative Adversarial Networks (GANs) are widely used picture 

synthesis technology that can generate realistic images from a diversity of inputs. It’s 

time to see how GANs can be used for image synthesis: 

 

 Random Noise to Images: The generator in GANs starts with taking 

random noise as input and then it learns to convert this noise into pragmatic images 

with the passage of time. This method is employed in many models like DCGAN 

(Deep Convolutional GAN), which translate a plain noise vector into sophisticated, 

realistic images like animals, human faces or some scenes. 

 

 Image-to-Image Translation: GANs can translate images from one 

realm to another. Models like Pix2Pix and CycleGAN permit to have transformations 

like as turning crocodiles to alligator, day to night, and leopard to cheetah. This 

technique is often used in art, design, and data augmentation. 

 

 Super – Resolution: GANs can convert the images  of lower resolution 

to the images of higher resolution while keeping finer details and enhancing quality. 

Super-resolution GAN (SRGAN) and Enhanced SRGAN (ESRGAN) are famous 
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algorithms for increasing the augmentation of vintage images, satellite images, and 

medical imaging. 

 

 Style Transfer: GANs can apply exclusive aesthetic styles to images, 

resulting in new era graphics. The StyleGAN series allows users to create images in a 

variety of styles, including paintings and realistic portraits, with authority over some 

characteristics such as hair, facial expressions, and background. 

 

 Image Completion: GANs can impute missing or flawed image 

segments, a process known as inpainting. This tool can be harnessed to regain old 

photographs, tweak images, and even create mutations for data augmentation. 

 

 Text–to–Image Generation: Text description visuals can be produced 

by some GANs. DALL-E and VQGAN-CLIP, for example, can accept a spoken 

directive and generate a picture in response, allowing for innovative image amalgam 

based on inputs of users. 

 

 Images Anomaly Detection: GANs can yield "normal" images which 

can be used as an assistant to detect abnormalities in a given dataset. This is especially 

pertinent in medical imaging, as GANs have the ability to generate imitated healthy 

images to spot issues in scans. 

 

 

1.2 Motivation 

 

 

Image generation is the foremost task in the field of computer vision, 

addressing to gain the knowledge of underlying distribution of images and generate 

rational images that are identical from real ones. Conventional deep generative models 

like restricted Boltzmann machines (RBMs) [1], deep Boltzmann machines (DBMs) 

[2], and variational autoencoders (VAEs) [3] often deal with difficulties due to 

intransigent functions and interpretation challenges. Nevertheless, generative 

adversarial networks (GANs) can provide us with an alternative approach that 

facilitate end-to-end training without having any dependency on approximate 

inference. GANs are used to train a generator and a discriminator, where the generator 

generates new images and the discriminator differentiate between genuine and fake 

images. With the help of adversarial learning, GANs expedite a cutthroat give-and-

take between the generator and discriminator to produce highly optimised and efficient 

realistic images. GANs have shown their strength in propagating authentic images 

across disparate realms, including faces, animals, objects, and scenes such as 

landscapes and cityscapes. In spite of their potentiality, GANs can display challenges 

in terms of nature of image and strength in the training process. 

 

For image generation there are a category of machine learning models 

which are called as Deep directed generative models. They engage by sampling from 

a forthright distribution, generally a Gaussian distribution. The obtained samples are 
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afterwards processed through a neural network, which learns to transform the 

distribution shown in Fig. 1.2. 

 

 

 
Fig. 1.2 Deep directed generative model flow [10] 

 

 

Generative Adversarial Networks (GANs) have arisen as a potent class of 

deep directed generative models well-known for their poignant potential to produce 

lifelike images. GANs is comprised of two networks. Firstly, the foremost purpose of 

generator is to generate innovative images, secondly, the discriminator is liable for 

sagacious between various real and fabricated images. With the help of an adversarial 

training mechanism, the generator is responsible to create images which are deemed 

authentic by discriminator, while the discriminator continuously tries to work on its 

discrimination skills. This iterative training keeps on happening until the generator is 

gets the capability of producing images that closely matches with genuine ones, 

leading to the formation of exceedingly realistic generated images. 

 

GANs are endorsed over other generative models including RBMs, DBMs, 

and VAEs due to the behaviour of them producing greater image quality and diversity. 

GANs are specifically useful for image-to-image translation, style transfer and super-

resolution. In spite of their benefits, GANs have its own challenges such as training 

instability and the necessity for large-scaled datasets. To improve the training 

efficiency and stability there is a need to study which combines Genetic Algorithms 

with GANs, so that the high-quality images can be produced in a shorter amount of 

time by the goal of creating a strong picture synthesis framework 

 

In conclusion, the boost for this research comes from the need to take 

advantage of GAN benefits while resolving their challenges using novel 

methodologies such as Genetic Algorithms. The sole purpose is to create a more 

optimized and stable image generation framework which has the ability of producing 

high-quality images while lowering training time and improving resilience. 

 

 

This paper starts with the introduction of a comprehensive summary of the 

study's research background, motivation, and contributions. This chapter deals with 

the introduction of the challenges of efficient image synthesis with the Genetic 



5 

 

Algorithm and Generative Adversarial Networks (GA-GAN) then followed by a 

thorough evaluation of the existing literature reviews on generative models, 

specifically GANs. Key articles addressing image quality and training stability 

challenges are presented, highlighting research gaps and the need for the suggested 

study. There are limitations of current GAN approaches, particularly in dealing with 

limited data and including form and texture elements. This chapter emphasizes the 

need of real-time optimization as well as robustness to variations.  

 

 

The GA-GAN system used includes the network designs of the 

discriminator and generator, as well as the use of genetic algorithms to improve 

training efficiency. The training techniques for both networks are thoroughly 

described. Then I discussed the tools and datasets utilized in the experiments, such as 

Jupyter Notebook, TensorFlow, and the Anime Face dataset. This chapter includes a 

detailed explanation of the experimental setup and implementation. I assessed the 

performance of the GA-GAN model using a variety of measures, including real_score, 

fake_score, and FID score. Visual outcomes of created images at several epochs are 

provided, as well as score and loss plots over epoch. I summarized the research 

findings and contributions, including a discussion of the GA-GAN model's 

effectiveness. This chapter discusses potential future studies, such as hybrid model 

development and application to larger datasets. 
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2. CHAPTER 2  

 

 

LITERATURE REVIEW 

 

 

 
Despite their effectiveness in generating high-quality images, generative 

adversarial networks (GANs) still encounter challenges, particularly two problems i.e. 

quality of image they produce and the stability of their training process. In this 

literature review, I will discuss the following papers that have addressed these 

challenges. Generative Adversarial Networks for Image Generation [11], Improved 

Techniques for Training GANs [12], Training Generative Adversarial Networks with 

Limited Data [13], Comparative Analysis of Deep Convolutional Generative 

Adversarial Network and Conditional Generative Adversarial Network using 

Handwritten Digits [14], Auxiliary Conditional Generative Adversarial Networks for 

Image Data Set Augmentation [15]. 

 

 

In [11], the model’s presented in the study were implemented using a 

TensorFlow implementation of DCGANs available in the public domain. The learning 

rate was set to 0.0002, except for the LSUN-scenes dataset, where it was adjusted to 

0.001. A mini-batch size of 64 was used, and the model's variables were initialized 

from a Gaussian distribution with a mean of zero and a standard deviation of 0.02. 

Consistent with DCGANs, the β1 value for the Adam optimizer was having a value 

0.5. The pixel values of the images were scaled to the range of -1 to 1(closed interval) 

because the generator utilized the Tanh activation function. Both LSGANs and NS-

GANs have similar architecture while working on the dataset of LSUN-bedroom. 

 

 

The network architecture includes different types of layers: convolutional 

(CONV), transposed convolutional (TCONV), fully-connected (FC), batch 

normalization (BN), and leaky rectified linear unit (LReLU). Every layer is described 

with specific parameters, such as kernel size, stride, and the number of output filters. 

For example, (K3, S2, O256) refers to 3x3 dimension of kernel, with a stride of 2, and 

there are 256 number of output filters. The images in Fig. 2.1 represents the LSUN 

dataset. The generated by LSGANs and NS-GANs, are scaled down to a dimension of 

112 pixels by 112 pixels. LSGANs produce images with more intricate texture details, 

particularly in areas like beds, resulting in sharper overall appearance compared to NS-

GANs. Additionally, LSGANs were trained on four other scene datasets such as 

church, dining room, kitchen, and conference room. 
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Fig. 2.1 LSUN-bedroom dataset [11] 

 

 

In Fig. 2.1 The images include: NS-GANs generated images with a 

resolution of 64 × 64, as mentioned in [8]. NS-GANs generated images with a 

resolution of 112 × 112. LSGANs generated images with a resolution of 112 × 112. 

 

 

LSGANs were subjected to further evaluation using the cat dataset [16]. 

The initial step involved obtaining cat head images with resolutions exceeding 128 × 

128 through pre-processing techniques sourced from a publicly available project. 

Subsequently, all images were resized. 

 

 

To facilitate a performance comparison between LSGANs and NS-GANs, 

both models were trained using an identical architecture on the cat dataset. In between 

the process of training, checkpoints of the models and batches of generated images 

were periodically saved every 1000 iterations. The best models among LSGANs and 

NS-GANs were selected based on the image quality saved at each 1k iteration interval.  
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At last, the selected model was employed to randomly generate cat images. 

Fig. 2.2 visually presents the cat dataset, used by LSGANs model and NS-GANs 

model. Notably, LSGANs exhibited a notable advantage by generating cats with 

sharper hair in comparison to NS-GANs. To provide a closer examination of the cat 

eyebrow hair, Fig. 2.2 includes detailed views (parts (c), (d), and (e)) achieved by 

zooming specific regions of the used image. A summary of all the review done so far 

can be seen in Table 2.1. 

 

Table 2.1 Summary of reviewed paper 

Paper Technique Used Dataset 

Used 

Metrics 

Used 

Restricted Boltzmann 

Machines for Collaborative 

Filtering [1] 

Restricted Boltzmann 

Machines (RBMs) 

Netflix 

dataset 

Error rates 

comparison 

Deep Boltzmann Machines 

[2] 

Deep Boltzmann 

Machines (DBMs) 

MNIST, 

OCR, 

NORB 

datasets 

Classificati

on 

performanc

e, test error 

rates 

Auto-Encoding Variational 

Bayes [3] 

Variational 

Autoencoder (VAE) 

Frey Face, 

MNIST 

Log-

likelihood 

estimates 

Generative Image Models 

with LAPGAN [4] 

 

Laplacian Pyramid 

Generative 

Adversarial Networks 

(LAPGAN) 

 

CIFAR10, 

LSUN 

scenes 

 

MOS 

scores, 

realism 

evaluation 

 

Single Image Super-

Resolution Using GAN [5] 

Generative 

Adversarial Networks 

(GANs) 

Set5, Set14 

datasets 

PSNR, 

SSIM, 

MOS scores 

Image-to-Image Translation 

with cGANs [6] 

Conditional GANs 

(cGANs) 

Cityscapes 

dataset 

Per-class 

accuracy, 

Class IOU 

Extreme Image 

Compression with GANs 

[7] 

Generative 

Adversarial Networks 

(GANs) 

Custom 

image 

datasets 

Bitrate 

savings, 

user study 

preferences 

Deep Generative Stochastic 

Networks [8] 

Deep Generative 

Stochastic Networks 

Unspecified Qualitative 

and 

quantitative 

evaluations 

Conditional Image 

Synthesis with Auxiliary 

Classifier GANs [9] 

Auxiliary Classifier 

GANs (AC-GANs) 

MNIST, 

CIFAR10 

datasets 

Classificati

on 

accuracy, 

visual 

fidelity 
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Generative Adversarial 

Networks with Applications 

[10] 

Generative 

Adversarial Networks 

(GANs) 

MNIST, 

CIFAR-10, 

SVHN 

Classificati

on 

accuracy, 

FID scores 

Advanced Image 

Generation with DCGANs 

[11] 

Deep Convolutional 

Generative 

Adversarial Networks 

(DCGANs) 

CelebA 

dataset 

Visual 

fidelity, FID 

scores 

Improved Techniques for 

Training GANs [12] 

Generative 

Adversarial Networks 

(GANs) 

MNIST, 

CIFAR-10, 

SVHN, 

ImageNet 

Semi-

supervised 

classificatio

n, visual 

Turing test 

Training GANs with 

Limited Data [13] 

Generative 

Adversarial Networks 

(GANs) with adaptive 

discriminator 

augmentation 

Several 

datasets 

Fréchet 

Inception 

Distance 

(FID) 

Comparative Analysis of 

DCGAN and CGAN [14] 

Deep Convolutional 

GANs, Conditional 

GANs 

MNIST Image 

quality, 

generative 

capabilities 

Auxiliary Conditional 

GANs for Image Dataset 

Augmentation [15] 

Auxiliary Conditional 

Generative 

Adversarial Networks 

(AC-GANs) 

FMNIST Accuracy of 

image 

classifiers, 

segmentatio

n 

techniques 

Cat Head Detection: 

Exploiting Shape and 

Texture [16] 

Joint shape and 

texture detection, 

Haar-like features on 

oriented gradients 

10,000 

well-labeled 

cat head 

images, 

PASCAL 

2007 cat 

data 

Detection 

rate 

Multi-Object Detection with 

Neural Networks [17] 

Convolutional Neural 

Networks (CNNs) 

COCO 

dataset 

Intersection 

over Union 

(IoU), 

detection 

accuracy 

Improved Techniques for 

Training GANs [18] 

Generative 

Adversarial Networks 

(GANs) with new 

training techniques 

MNIST, 

CIFAR-10, 

SVHN, 

ImageNet 

Semi-

supervised 

classificatio

n accuracy, 

human error 

rate in 
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visual 

Turing test 

Real-Time Object 

Recognition Systems [19] 

Deep Learning, 

Feature Matching, 

Real-Time Systems 

Custom 

real-world 

datasets 

System 

latency, 

recognition 

accuracy 

 

 

 
Fig. 2.2 Shows generated images of cats [7] 

 

 

In Fig. 2.2 the a) part represents cat images used by NS-GANs. model part 

(b) by LSGANs. part (c) by NS-GANs. part (d) by LSGANs. (e) original images. 

LSGANs generate cats with more defined, detailed hair compared to the NS-GANs 

model, resulting in sharper and more exquisite features. Our observations indicate 

generated hair of cats from NS-GANs exhibits more noise as compared to the cat hair 

generated by LSGANs. Furthermore, we noticed that LSGANs produce images of 

higher overall quality compared to NS-GANs. 

 

 

To quantitatively evaluate LSGANs, we measure the FID metric [17]. It 

quantifies the dissimilarity among the real original images and generated fake images 

by estimating feature dimensional space of the model named as inception model like 

a Gaussian distribution in multiple dimensions. FID has been demonstrated to align 

more closely with human perception compared to the inception score. A lower FID 
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value indicates a smaller distance between the generated images and the original 

images, implying higher similarity in terms of visual quality [18]. 

 

 

FID is utilized to assess the performance of WGANs-GP, NS-GANs, 

LSGANs and WGANs-GP on various dataset. The comparison includes the 

performance of LSGANs (-110) and LSGANs (011) using a loss function. The 

architecture was same for all models and also noise input dimension was same defined 

in [8], which consists of 4 Conv layer for generator as well as discriminator. In order 

to ensure a fair comparison, the official implementation of WGANs-GP is used for 

evaluation. The image dimension of LSUN is 64×64, Cat is 128×128, ImageNet is 

64×64, and CIFAR-10 is 32×32. For each model, 50k images are randomly generated 

every 4k iterations, and the score of FID is calculated. The following conclusion was 

discovered: LSGANs (-110) outperforms NS-GANs across all 4 data. LSGANs (-110) 

also demonstrates superior performance compared to WGANs-GP on three datasets, 

particularly the dataset of cat images shown in Fig 2.2. Hence, LSGANs (-110) 

performs way finer than LSGANs (011) on all 4 datasets. LSGANs (011) shows 

comparable performance to NS-GANs. 

  

 

LSGAN’s and NS-GANs initially exhibit similar score of FID values for 

the first 25k iterations [17]. However, LSGANs shows improvement by reducing its 

FID values after 25k iterations and ultimately outperforms NS-GANs. LSGAN’s and 

WGANs-GP eventually achieve comparable optimal FID values. Nonetheless, 

LSGANs achieve this optimal FID value much faster than WGANs-GP. Specifically, 

LSGANs requires 1100 minutes to reach an FID value of 22, whereas WGANs-GP 

takes 4600 minutes. In conclusion, LSGANs is able to achieve better performance than 

NS-GANs and WGANs-GP, and it is able to do so faster than WGANs-GP. This is 

because LSGANs does not require multiple updates for the discriminator, and hence 

for the gradient penalty it does not require extra computational time. 

  

 

Semi-supervised were performer experiments on MNIST, CIFAR-10, 

where in [11][12] they performed unsupervised experiments. For the MNIST dataset, 

which comprises 60k labeled images depicting digits from 0 to 9, a semi-supervised 

training approach was adopted. In this approach, a small fraction of the dataset was 

randomly selected, containing 20, 50, 100, or 200 labeled examples. Their network has 

five hidden layers each. The generator produces samples that are not visually appealing 

shown on the left side of  Fig. 2.3 but when using minibatch discrimination, it can 

improve the quality of image shown on the right side of Fig. 2.3.  

 



12 

 

 
Fig. 2.3 MNIST Dataset [11][12] 

 

[15] This research investigates the use of auxiliary conditional generative 

adversarial networks (AC-GANs) to improve image datasets, with a particular 

emphasis on increasing image classifier accuracy through label conditioning and 

creating new images with global coherence using the FMNIST dataset. 

 

The authors propose various novel architectural features and training 

approaches to improve GAN performance, particularly in semi-supervised learning 

and image production. Their algorithms produce cutting-edge results in semi-

supervised classification on datasets such as MNIST and CIFAR-10 [18]. 

 

[16] This research proposes a method for recognizing cat heads that has 

the capability of efficiently using both the shape and texture data. The authors describe 

a two-step strategy that highly involves the use of training form and texture detectors 

separately so that they can be combined into a combination classifier for enhanced 

accuracy. 

 

This study presents a two-time scale update rule (TTUR) [19] for training 

GANs that demonstrates convergence to a stationary local Nash equilibrium. The 

paper also presents the Fréchet Inception Distance (FID), which is a more consistent 

assessment metric for GANs.  
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3. CHAPTER 3  

 

RESEARCH GAP 
 

 

 

1. Efficiency in Limited Data Scenarios: 

Current methodologies, such as Generative Adversarial Networks (GANs), 

demonstrate challenges in handling datasets with inadequate samples. 

Research could focus on developing models that maintain performance 

robustness even with limited data availability. 

 

2. Integration of Shape and Texture Features: 

While existing studies explore the integration of shape and texture for specific 

detection tasks (e.g., cat head detection), there is a broader potential for 

applying these combined features across various domains. Future research 

could investigate the generalization of these features for improved and 

optimized object recognition. 

 

3. Optimization for Real-Time Processing: 

Real-time object recognition systems demand further optimization to work 

effectively in dynamic environments where decision speed remains critical 

without relaxing accuracy. 

 

4. Expanding Semi-Supervised Learning with GANs: 

Even though it seems promising, the application of GANs in semi-supervised 

learning area needs further inspection to boost model stability and to 

comprehend the mechanics affecting their training dynamics. 

 

5. Enhanced Robustness to Variations: 

Despite advancements in handling intra-class variation and environmental 

conditions, there remains a substantial need for developing detection systems 

that are more resilient to changes in lighting, pose, and background. 

6. Innovative Augmentation Techniques: 

Data augmentation strategies that are specifically tailored to address the 

challenges of highly imbalanced datasets and rare object occurrences require 

development to better represent complex real-world scenarios. 

 

7. Cross-modal Data Integration: 

Integrating diverse data types (such as audio, text, or sensor data) with visual 

data to enrich the contextual understanding of object detection systems is 

under-explored and represents a significant opportunity for research. 

 

8. Feature Extraction and Optimization: 

There is potential for innovation in the discovery of new feature extraction 

techniques or the optimization of existing features tailored to specific 
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applications, which could lead to improved performance in object detection 

systems. 

 

9. Addressing Ethical and Bias Considerations: 

As object detection technologies find broader application, it is crucial to 

address potential biases and ensure that these systems operate fairly and 

equitably across diverse user groups. 

 

 

These gaps underscore the necessity for continued research to overcome 

current limitations and to propel the field of computer vision towards more 

sophisticated and practical solutions. Addressing these challenges will not only 

enhance the theoretical understanding but also improve the practical applications of 

machine learning and object detection technologies. 
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4. CHAPTER 4  

 

METHODOLOGY 
 

 

 
4.1 Proposed Work 

 

 

While DNN are commonly associated with supervised learning tasks like 

regression and classification, GAN’s employ neural nets for distinct purposes such as 

generative modeling. Unlike supervised learning, generative modeling belongs to the 

domain of unsupervised learning in ML. It considers the exploration and acquisition 

of patterns and regularities within input data without explicit labels or guidance. By 

leveraging these learned patterns, GANs have the capability to generate novel 

examples that closely match with the real dataset, expanding the model's capacity 

beyond mere prediction tasks. It is known that there are various techniques of 

generative modeling, a Generative Adversarial Network (GAN’s) uses the Fig. 4.1  

system to generate images. 

 

 

Table 4.1 Algorithm of proposed work 
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To evaluate the ability of discriminator to differentiate b/w real images and 

images that are generated, the binary cross entropy loss/objective function (as 

illustrated in Equation 4.1) is commonly employed. This loss function quantifies the 

performance of the discriminator as a binary classification model, measuring its 

effectiveness in accurately classifying the input images. By minimizing this objective 

function, the discriminator network is trained to improve its discriminatory capabilities 

and enhance its ability to differentiate between the two types of images. 

 

 

𝐿𝑜𝑠𝑠 =  −
1

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒
∑ 𝑦𝑖 . log 𝑦�̂� + (1 − 𝑦𝑖). log (1 − 𝑦𝑖)̂

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒

𝑖=1

 

Equation 4.1 Binary cross entropy loss function 

 

 

 

 
Fig. 4.1 Trainable GAN System 

 

 

 

Within the GAN framework, two architectures of neural nets coexist: the 

generator and the discriminator in which generator's primary function is to generate 

synthetic samples, also known as "fake" samples, based on a random vector or matrix 

input. Discriminator is used to differentiate between real images and fake images. The 

process for training of these networks occurs concurrently, but in alternating epochs. 
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 First, the discriminator undergoes training for a few epochs, followed by 

training of the generator for a few epochs. This iterative process is repeated to enhance 

the capabilities of both networks over time. The training of GANs is challenging and 

highly dependent on various factors such as hyperparameters, activation functions, and 

regularization techniques. They require careful tuning to achieve desirable results. In 

this tutorial, our goal is to be able to train generator and discriminator simultaneously 

that helps us to generate images of faces of some anime characters. To accomplish this, 

I will utilize the nature inspired genetic Algorithm technique which updates the 

parameters of both discriminator and generator in order to reach a global optimum. 

Genetic Algorithm has many benefits, one such is that it does not allows the parameters 

to get stuck on a local optimum for long generation/epochs. 

 

 

Genetic Algorithms are based on natural evolution and genetics of living 

beings. This algorithm does not require gradient information hence I computationally 

inexpensive and also takes less epochs to converge. It was also found during the 

experimentation that GA based GAN takes lees training time, unlike in my previous 

work of GAN where it took me around 1 week to train for 25 epochs, the new proposed 

algorithm took almost only 2 days to train for 30 epochs. Fig. 4.2 shows the High-level 

system of GA-GAN used for this research work. 

 

  
Fig. 4.2 GA-GAN high level system 

 

 

 

The Dataset of Anime Faces, which comprises around 63k cropped out 

faces of anime characters, is illustrated in Fig. 4.3. It is crucial to emphasize that 
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generative modeling falls under the realm of unsupervised learning, meaning that the 

dataset does not come with any pre-existing labels or annotations. 

 

 
Fig. 4.3 Shows the original set of images from Anime face dataset 

 

 

4.1.1 Discriminator Network 

 

 

The main work of discriminator is to receive a whole dataset of images as 

input and determine whether it is a real original image from the original set or a fake 

image produced by the generator. In essence, the discriminator operates like a standard 

neural network. In our implementation, we employ a CNN that produces only one 

numerical output for each input image. By utilizing a stride of 2, we gradually decrease 

the size of the derived feature map, following the process shown in Fig. 4.4. 

 

 

 
Fig. 4.4 The process of a convolutional operation to generate feature map. 
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The discriminator architecture created is a CNN having seven 

convolutional layers, followed by a flattening layer and also a sigmoid layer. The 

convolutional layers are responsible for extracting all the features from the image, 

while the layer for flattening converts the extracted matrix of features into a vector. 

The sigmoid layer then classifies the input image as genuine or fake. The discriminator 

takes an input image of size 64x64x3 and generates a value from 0 to 1 denoting a 

probability of being a real image or a fake image. Discriminator is trained to increase 

the chances of probability of the classification between real images as real and fake 

images as fake. The block diagram of the network architecture of the discriminator 

illustrated in Fig. 4.5. 

 

 
Fig. 4.5 Network architecture of the Discriminator 

 

 

4.1.2 Generator Network 

 

 

The generator is fed with a random matrix or vector of random numbers 

as input (referred to as a latent tensor/space). The generator then transforms this vector 

into an image. The generator transforms a latent space (or mathematically tensor) with 

dimensions 128 x 1 x 1 to a tensor of image with dimensions 3(channels) x 28 x 28. 

This conversion is achieved by employing the ConvTranspose2d (or transpose 

convolution layer) layer in PyTorch library, which performs an inverse convolution 

operation (also known as a transposed convolution or deconvolution). 

 The ConvTranspose2d layer is a convolutional layer that works in reverse. Instead of 

taking an input image and extracting features from it, the ConvTranspose2d layer is 

fed with an input vector that in response generates an output image. The 

ConvTranspose2d layer uses a transposed convolution kernel to do this.  

The ConvTranspose2d layer is used to generate images from random vectors. The 

ConvTranspose2d layer takes a random vector and creates an output image as shown 

in Fig. 4.6. The output image is a realistic image that looks like it was generated by a 

human. The ConvTranspose2d layer is a powerful tool for generating images. It can 

be used to generate images of any size and any complexity.  
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Fig. 4.6 Working of ConvTranspose2d layer 

 

 

The generator that designed is a CNN with five transpose convolutional 

layers, with 4 layers of batch normalization layer just after each transpose 

convolutional layer, similarly 4 ReLU activation function is used just after each 

transpose convolutional layer, at last a activation function known as hyperbolic tangent 

Tanh function. The convolutional layers are responsible for upsampling the input 

vector into an image. The layer of batch normalization transformation helps us to 

stabilize the training process. The ReLU activation functions allow the generator to 

learn non-linear features from the input vector. The hyperbolic tangent activation 

function ensures that the generator’ output is a real number between -1 and 1, which is 

the range of values for an RGB image. 

 

1. The first transpose convolutional layer consists of 512 filters, 4 as kernel size, 

with a stride of 1. The filters are initialized randomly. The output of this layer is a 

tensor of size 512x4x4.  

2. The second transpose convolutional layer consists of 256 filters, 4 as kernel 

size, with a stride of 2. The filters are initialized randomly. The output of this layer is 

a tensor of size 256x8x8.  

3. The third transpose convolutional layer consists of 128 filters, 4 as kernel size, 

with stride of 2. The filters are initialized randomly. The output of this layer is a tensor 

of size 128x16x16.  

4. The fourth transpose convolutional layer consists of 64 filters,4 as kernel size, 

with a stride of 2. The filters are initialized randomly. The output of this layer is a 

tensor of size 64x32x32.  

5. The fifth transpose convolutional layer consists of 3 filters, 4 as kernel size, 

with a stride of 2. The filters are initialized randomly. The output of this layer is a 

tensor of size 3x64x64 as shown in Fig. 4.7. 
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Fig. 4.7 Network architecture of the Generator 

 

 

4.1.3 Genetic Architecture 

 

 

A single Genetic algorithm is implemented for both discriminator as well 

as generator. A Fitness values in the genetic algorithm is calculated to perform survival 

of the fittest in order to eliminate the bad solution and more forward with the good 

solution. Genetic algorithm is a population-based technique hence we will denote a 

random but fixed initial population size. Crossover was performed then mutate 

function after creating a mating pool generated by selection layer. Hence the above 

algorithm will be in a loop until it finds optimal parameters for GAN models. The 

parameters are updated for one model at a time i.e. there is synchronous 

communication between models. 

 

Now, we can generate our first set of images and visualize them by 

applying transformations and denormalization techniques, as depicted in Fig. 4.8. At 

this stage, generator has not undergone any training. Consequently, the generated 

outputs are expected to resemble random noise rather than meaningful images. 
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Fig. 4.8 Output of the generator at epoch 0 

 

 

4.2 Training Process of Discriminator 

 

 

The discriminator is trained to output 1 when presented with real images 

from the Anime Face Dataset and 0 when presented with images generated by network 

of generator. Initially, a mini batch of the original real set of images is fed into the 

discriminator, and the loss is calculated by setting the target labels to 1. This step helps 

the discriminator learn to correctly classify real images. Next, a mini batch of fake 

generated set of images that are generated by generator is passed through 

discriminator. The loss is computed by setting a value of 0 to the target class labels. 

The losses from both real and fake image batches are combined, and the overall loss 

is used to perform gradient descent. Updating of weights is done in this phase to 

improve its performance to discriminate between real and generated images. 

 

 

4.3 Training Process of Generator 

 

 

During the training of the generator, a unique approach is employed to 

optimize its performance. Since the generator produces image outputs, it is not 

immediately apparent how we can train it effectively. Here is an overview of how this 

process works:  

 

1. First, a mini batch/set of images are generated from the generator. These 

generated images are then passed through the discriminator. 
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2. After that loss function is calculated by setting 1 to the target class labels for 

the generated images, that tells us that they are actual real images.  

 

3. Gradient descent is applied using the calculated loss, resulting in updates to the 

weights of the generator. This process aims to enhance the generator's ability to 

produce images that closely resemble real images and deceive the discriminator.  

 

This approach ensures that the generator learns to generate more authentic and realistic 

images by continuously improving its performance based on the feedback from the 

discriminator. 

 

 

4.4 Training Process of Full Architecture 

 

 

We will implement a complete training loop to simultaneously train the 

discriminator and generator using the fit function. Instead of a gradient based learning 

technique to update the parameters we will use GA. It was seen that the training time 

was very less as compared to previous works. it was seen also seen in [19] that almost 

30 hours were taken on a single GPU to train LSUN dataset. Additionally, we will 

periodically save a selection of generated images during the training process for visual 

examination and analysis. 

 

The training method begins by assigning random weights to the 

populations of both the discriminator and generator. The Genetic Algorithm will then 

evolve these populations using selection, crossover, and mutation processes. Each 

individual's fitness in the population is estimated using a bespoke fitness function that 

considers the discriminator's accuracy as well as the quality of the images reproduced 

by the generator. 

 

To improve the stability of the training process, we will use a dual-

objective method for the fitness function. The fitness function will assess the ability of 

discriminator to distinguish between genuine & produced images. The fitness function 

for the generator prioritizes creating images that are progressively alike from genuine 

images as determined by the discriminator. 

 

Each generation, the top performers will be chosen to pass on their genes 

to the following generation. This selection procedure ensures that only the best-

performing weights are carried forward, which improves the discriminator and 

generator's overall performance across future generations. 

 

By using Genetic Algorithms for training, we hope to accomplish a more 

efficient and effective method, lowering overall training time while preserving or 

improving image quality. This method opens up new opportunities for alternate 

optimization strategies in GAN training, with generated images saved at regular 

intervals for qualitative evaluation and early issue discovery. 
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1. CHAPTER 5 

 

EXPERIMENTAL SETUP 

 
 

 

5.1 Tools Used 

 

 

 Jupyter Notebook: It is used for a wide variety of tasks of data science, 

including exploratory data analysis (EDA), data wrangling (cleansing) and 

transformation, data visualization, predictive modelling, machine 

learning, and deep learning. 

 

 Pandas: It is a Python toolkit for working with data collections. It includes 

functions for analysing, wrangling, cleansing, and modifying data. The 

word "Pandas" refers to both "Panel Data". 

 

 Matplotlib: Matplotlib is a comprehensive Python package that permits 

you to create static and interactive visualizations. Matplotlib allows for 

both easy and difficult tasks. It helps us create plots that are suitable for 

visualisation. It helps us create reciprocal figures that can zoom, pan, and 

update. 

 

 Seaborn: It is a Python package for plotting statistical graphs. It is built 

atop of matplotlib and combines seamlessly with Pandas data structures. 

 

 Scikit-learn: It is one of the most helpful machine learning libraries in 

Python. The sklearn package includes several beneficial methods for 

machine learning and statistical modelling, like classification, regression, 

clustering, and dimensionality reduction. 

 

 TensorFlow: It is an open-source library created by Google, mainly used 

for deep learning applications. It also reinforces conventional machine 

learning. It was primarily built for huge numerical computations without 

taking deep learning into consideration. 

 

The Anime Face Dataset, often found on Kaggle, contains a comprehensive collection 

of images focused on anime-style faces. The dataset contains roughly 63,565 photos, 

making it an excellent resource for training and testing machine learning projects. All 

of the photographs depict anime-style faces, with a variety of expressions, haircuts, 

and character designs typical of anime and manga art genres. Images are often 

delivered in standard formats such as JPEG or PNG, allowing for simple integration 

into machine learning pipelines and frameworks. 
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6 CHAPTER 6 
 

 

RESULTS AND ANALYSIS 
 

 

 

6.1 Generation of images from generator 

 

 

Below are some sample sets of images generated as outputs using the 

generator during different training epochs. We then tried to compare those sets of 

images (from a human standpoint) from the original set of images given in Fig. 4.3. At 

this stage, the output is essentially random noise since the generator has not undergone 

any training yet shown in Fig. 4.8. As a result, the generated images lack meaningful 

structure or resemblance to the target data. At epoch 1 the generated set of images from 

the generator can be seen in Fig. 6.1, similarly at epoch 16,25,30 the generated set of 

images from the generator can be seen in Fig. 6.2, Fig. 6.3 and Fig. 6.4 respectively. 
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Fig. 6.1 New generated images from 

generator at epoch 1 

 

 
Fig. 6.2 New generated images from 

generator at epoch 16 

 

 
Fig. 6.3 New generated images from 

generator at epoch 25 

 

 
Fig. 6.4 New generated images from 

generator at epoch 30 

 

 

 

 

6.2 Plot scores v/s epochs 

 

 

After training both the model (generator and discriminator) simultaneously 

for 30 epochs we found the real_score as 0.9722 and fake_score as 0.0452 that can be 

observed in Fig. 6.5. 
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Fig. 6.5 Plot of real_score v/s epochs and fake_score v/s epochs 

 

 

 
6.3 Plot loss v/s epochs 

 

 

After training both the model (generator and discriminator) simultaneously for 

30 epochs we found the results as loss_g: 5.9757, loss_d: 0.0781 that can be seen in 

Fig. 6.6. 

 

 

 
Fig. 6.6 Plot of generator loss(loss_g) v/s epochs and discriminator_loss(loss_d) v/s 

epochs 
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6.4 Performance Analysis 

 

 

In a GAN, the discriminator evaluates images, assigning scores to genuine 

(real_score) and created (fake) images. Here's a condensed description of these 

metrics: 

 

 Real_score is the discriminator's level of confidence in predicting real images. 

A high score (around 1) implies that the discriminator correctly recognizes 

actual data. 

 Fake_score indicates the discriminator's confidence in classifying created 

(fake) images. A low score (around zero) indicates that the discriminator 

correctly detects fabricated data. 

 

 

A good discriminator has a high real_score and a low fake_score. When 

training the generator, the goal is to mislead the discriminator by minimizing the 

fake_score. Effective training produces realistic generated images, as evidenced by a 

low fake_score. After 30 epochs, the real_score was 0.9722 whereas the fake_score 

was 0.0452. This implies that the discriminator properly identifies actual photos while 

recognizing fraudulent ones, indicating a good training procedure. To fully evaluate 

the GAN's performance, a final assessment should take into account visual quality and 

binary cross-entropy loss. 
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2. CHAPTER 7 
 

 

CONCLUSION AND FUTURE SCOPE 

 

 

 

In this study, I explored various techniques such as data normalization, 

data augmentation, batch normalization, and the genetic algorithm to generate a set of 

images that closely resemble the original set of images. After 30 epochs of iteration, I 

achieved promising results with a real_score of 0.9722 and a fake_score of 0.0452. 

These results indicate a high similarity between the generated and real images, as a 

higher real_score and a lower fake_score contribute to a lower Frechet Inception 

Distance (FID) score. Furthermore, the fact that significant image quality 

improvement was achieved in just 30 epochs demonstrates the potential of our 

approach. As part of future work, I plan to perform more meta heuristic algorithm to 

make a hybrid model that further enhance the model's performance, aiming to achieve 

even higher real_scores and lower fake_scores compared to the existing 

implementation.  

 

 

Additionally, due to resource limitations in terms of GPU compute units, I 

was unable to train the model on large datasets such as LSUN, Cat, and CIFAR100 

datasets. Therefore, another future endeavor will involve implementing our own 

Hybrid GAN architecture on these datasets and comparing the results using FID as a 

metric. By customizing the architecture and employing the LSGAN objective/loss 

function (-110), we aim to develop a Hybrid GAN model that excels in generating 

high-quality images from limited image datasets.  

 

Furthermore, future study will investigate the integration of sophisticated 

approaches such as attention mechanisms and progressive GAN growth to improve 

image quality and training efficiency. Implementing transfer learning to use pre-

trained models on huge datasets may also improve model performance with fewer 

resources. 

 

The findings of this study highlight the potential for further advancements 

in GANs and image generation techniques, providing valuable insights for future 

research in the field. This study lays the groundwork for more advanced generative 

models capable of producing highly realistic images efficiently. 
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