
i

EFFICIENT IMAGE SYNTHESIS USING

GENETIC ALGORITHM – GENERATIVE

ADVERSARIAL NETWORK

Thesis Submitted

in Partial Fulfillment of the Requirements for the

Degree of

MASTER OF TECHNOLOGY
in

Data Science

by

Rohit Kumar
(2K22/DSC/13)

Under the supervision of

Mr. Sanjay Patidar

Assistant Professor, Department of Software Engineering,

Delhi Technological University

Department of Software Engineering

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Bawana Road, Delhi - 110042, India

May, 2024

iv

Efficient Image Synthesis Using Genetic Algorithm – Generative

Adversarial Network

Rohit Kumar

ABSTRACT

GAN’s have emerged as a powerful technique for generating high-quality

images due to their unique characteristics and capabilities. In this report, there is a

discussion for the motivation behind using GANs over other generative models for

example Restricted Boltzmann Machines (RBMs), Deep Belief Networks (DBMs),

and Variational Autoencoders (VAEs). This research highlights the advantages of

GAN’s in terms of image quality generation. To gain a comprehensive understanding

of GAN’s and their practical implementations, several studies have been conducted

that aided in the creation of a GA-GAN framework. This research provides insights

into the theoretical foundations and practical considerations of GANs for image

synthesis. This paper introduces unsupervised learning techniques specifically

designed for GANs, enabling their effective utilization with small datasets such as

MNIST and CIFAR-10. Driven by the knowledge gained from these resources, this

report shows a novel implementation on Genetic algorithm-based GAN model which

are supported by learning rate schedulers. The approach incorporates various essential

concepts and techniques to enhance the quality of image generation using limited

datasets. Specifically, methods like normalization, data augmentation, batch

normalization, and Adam optimizer were used to enhance the overall accuracy of GAN

model. However, this report uses genetic algorithm instead of gradient based approach

and also generate high quality image than the real images. For these experiments, the

Anime Face Dataset was collected from Kaggle through API integration. This dataset

comprises approximately 63,565 anime face images, which is similar in scale to the

widely used CIFAR-10 dataset. By employing GA-GAN model with genetic algorithm

for optimization, this research work aims to generate high-quality anime face images.

The proposed framework employs two performance metrics termed as real_score of

0.9722 and fake_score of 0.0452. Binary cross entropy loss function was used for both

generator and discriminator. These metrics provide valuable insights into the quality

and diversity of the generated images. Additionally, the Fréchet inception distance

(FID) score was also discussed, which is a widely used metric for evaluating the

quality of generated images. The FID score compares the feature embeddings of the

generated images and the original dataset using a pre-trained Inception model. A lower

FID score indicates a closer similarity among original images and generated images,

highlighting the success of the GAN network in capturing the underlying data

distribution.

v

 DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)

 Shahbad Daulatpur, Main Bawana Road, Delhi-42

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my project guide Mr. Sanjay Patidar,

Assistant Professor, Department of Software Engineering, Delhi Technological

University, for his guidance with unsurpassed knowledge and immense

encouragement. I am also grateful to Prof. Ruchika Malhotra, Head of the Department,

Software Engineering, for providing us with the required facilities for the completion

of the Dissertation.

I'd also like to thank our lab assistants, seniors, and peer group for their aid and

knowledge on a variety of subjects. I would like to thank my parents, friends, and

classmates for their encouragement throughout the project period.

ROHIT KUMAR

2K22/DSC/13

vi

TABLE OF CONTENTS

CANDIDATE’S DECLARATION ii

CERTIFICATE BY THE SUPERVISOR(s) iii

ABSTRACT iv

ACKNOWLEDGEMENTS v

TABLE OF CONTENTS vi

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS ix

CHAPTER 1: INTRODUCTION 1

1.1 Background 1

1.2 Motivation 3

CHAPTER 2: LITERATURE REVIEW 6

CHAPTER 3: RESEARCH GAP 13

CHAPTER 4: METHODOLOGY 15

4.1 Proposed Work 15

4.1.1 Discriminator Network 18

4.1.2 Generator Network 19

4.1.3 Genetic Architecture 21

4.2 Training Process of Discriminator 22

4.3 Training Process of Generator 22

4.4 Training Process of Full Architecture 23

CHAPTER 5: EXPERIMENTAL SETUP 24

5.1 Tools Used 24

CHAPTER 6: RESULTS AND ANALYSIS 25

6.1 Generation of images from generator 25

6.2 Plot scores v/s epochs 26

6.3 Plot loss v/s epochs 27

6.4 Performance Analysis 28

CHAPTER 7: CONCLUSION AND FUTURE WORK 29

REFERENCES 30

vii

LIST OF TABLES

Table 2.1 Summary of reviewed paper 8

Table 4.1 Algorithm of proposed work 15

viii

LIST OF FIGURES

Fig. 1.1 Image synthesis [11] 1

Fig. 1.2 Deep directed generative model flow [10] 4

Fig. 2.1 LSUN-bedroom dataset [11] 7

Fig. 2.2 Shows generated images of cats [7] 10

Fig. 2.3 MNIST Dataset [11][12] 12

Fig. 4.1 Trainable GAN System 16

Fig. 4.2 GA-GAN high level system 17

Fig. 4.3 Shows the original set of images from Anime face dataset 18

Fig. 4.4 The process of a convolutional operation to generate feature map. 18

Fig. 4.5 Network architecture of the Discriminator 19

Fig. 4.6 Working of ConvTranspose2d layer 20

Fig. 4.7 Network architecture of the Generator 21

Fig. 4.8 Output of the generator at epoch 0 22

Fig. 6.1 New generated images from generator at epoch 1 26

Fig. 6.2 New generated images from generator at epoch 16 26

Fig. 6.3 New generated images from generator at epoch 25 26

Fig. 6.4 New generated images from generator at epoch 30 26

Fig. 6.5 Plot of real_score v/s epochs and fake_score v/s epochs 27

Fig. 6.6 Plot of generator loss(loss_g) v/s epochs and discriminator_loss(loss_d) v/s

epochs 27

ix

LIST OF ABBREVIATIONS

GAN Generative Adversarial Network

GA Genetic Algorithm

FID Fréchet Inception Distance

RBM Restricted Boltzmann Machine

CNN Convolution Neural Networks

RNN Recurrent Neural Networks

GPU Graphics Processing Unit

EDA Exploratory Data Analysis

DNN Deep Neural Networks

ANN Artificial Neural Networks

ReLU Rectified Linear Unit

1

1. CHAPTER 1

INTRODUCTION

1.1 Background

Deep learning has experienced remarkable success in computer vision,

showcasing impressive performance in various practical applications like image

classification, object detection, and image segmentation. Unsupervised learning tasks,

like image generation, may not consistently achieve the same level of performance as

supervised learning tasks, for example detection of objects and classification of

images. Image generation aims to acquire the ability to generate images as illustrated

in Fig. 1.1.

Fig. 1.1 Image synthesis [11]

Generative models are trained to understand the underlying distribution of

images, enabling them to generate new images. However, image generation presents

several challenges. Firstly, unlike supervised learning problems, image generation

lacks explicit correspondence between the input and output. The generative model

must therefore learn to effectively capture and represent this mapping. Secondly, image

generation involves a significantly larger output dimension compared to many

supervised learning tasks. For instance, when dealing with high-resolution images like

1024 x 1024, the output dimension can exceed three million, necessitating efficient

feature learning. After having these problems, image generation is still a worthy tool

which can enhance the performance of various issues related to computer vision, like

image-to-image translation [6], image compression [7], image super-resolution [5].

2

GAN is meant for Generative Adversarial Network in which this specific AI

architecture comprises of two neural networks the discriminator and the generator

where through a process of competition these networks are trained at a time. A GAN

comprises of two main components: a generator and a discriminator. Let’s talk about

then in depth:

a) Generator: It is a neural network that creates artificial data. It takes

input in the form of a random noise and learns to transform it into outputs that match

the original dataset. The generator's purpose is to produce data which is very similar

to real data, thereby "deceiving" the discriminator.

b) Discriminator: It is another neural network used to evaluate whether

data is true or fallacious. It takes input from both the generator's results and real

dataset. The discriminator's intention is to correctly distinguish which data is legitimate

and which is synthetic.

GANs are trained in such a manner that the generator and discriminator

fight against one another like in a game: The purpose generator is to output data which

is alike from the original dataset by the discriminator whereas the goal of discriminator

is to revamp its potential to disfavour between genuine and fallacious data. In this way

this adversarial training permits both networks to improve with the passage of time.

Since the generator network outputs more genuine data, the discriminator network has

to become better at detecting fakes, giving the generator a chance to provide even

better outcomes. This iterative algorithm produces a generator that is capable of

producing data that approximately resembles the distribution of the original dataset.

Generative Adversarial Networks (GANs) are widely used picture

synthesis technology that can generate realistic images from a diversity of inputs. It’s

time to see how GANs can be used for image synthesis:

 Random Noise to Images: The generator in GANs starts with taking

random noise as input and then it learns to convert this noise into pragmatic images

with the passage of time. This method is employed in many models like DCGAN

(Deep Convolutional GAN), which translate a plain noise vector into sophisticated,

realistic images like animals, human faces or some scenes.

 Image-to-Image Translation: GANs can translate images from one

realm to another. Models like Pix2Pix and CycleGAN permit to have transformations

like as turning crocodiles to alligator, day to night, and leopard to cheetah. This

technique is often used in art, design, and data augmentation.

 Super – Resolution: GANs can convert the images of lower resolution

to the images of higher resolution while keeping finer details and enhancing quality.

Super-resolution GAN (SRGAN) and Enhanced SRGAN (ESRGAN) are famous

3

algorithms for increasing the augmentation of vintage images, satellite images, and

medical imaging.

 Style Transfer: GANs can apply exclusive aesthetic styles to images,

resulting in new era graphics. The StyleGAN series allows users to create images in a

variety of styles, including paintings and realistic portraits, with authority over some

characteristics such as hair, facial expressions, and background.

 Image Completion: GANs can impute missing or flawed image

segments, a process known as inpainting. This tool can be harnessed to regain old

photographs, tweak images, and even create mutations for data augmentation.

 Text–to–Image Generation: Text description visuals can be produced

by some GANs. DALL-E and VQGAN-CLIP, for example, can accept a spoken

directive and generate a picture in response, allowing for innovative image amalgam

based on inputs of users.

 Images Anomaly Detection: GANs can yield "normal" images which

can be used as an assistant to detect abnormalities in a given dataset. This is especially

pertinent in medical imaging, as GANs have the ability to generate imitated healthy

images to spot issues in scans.

1.2 Motivation

Image generation is the foremost task in the field of computer vision,

addressing to gain the knowledge of underlying distribution of images and generate

rational images that are identical from real ones. Conventional deep generative models

like restricted Boltzmann machines (RBMs) [1], deep Boltzmann machines (DBMs)

[2], and variational autoencoders (VAEs) [3] often deal with difficulties due to

intransigent functions and interpretation challenges. Nevertheless, generative

adversarial networks (GANs) can provide us with an alternative approach that

facilitate end-to-end training without having any dependency on approximate

inference. GANs are used to train a generator and a discriminator, where the generator

generates new images and the discriminator differentiate between genuine and fake

images. With the help of adversarial learning, GANs expedite a cutthroat give-and-

take between the generator and discriminator to produce highly optimised and efficient

realistic images. GANs have shown their strength in propagating authentic images

across disparate realms, including faces, animals, objects, and scenes such as

landscapes and cityscapes. In spite of their potentiality, GANs can display challenges

in terms of nature of image and strength in the training process.

For image generation there are a category of machine learning models

which are called as Deep directed generative models. They engage by sampling from

a forthright distribution, generally a Gaussian distribution. The obtained samples are

4

afterwards processed through a neural network, which learns to transform the

distribution shown in Fig. 1.2.

Fig. 1.2 Deep directed generative model flow [10]

Generative Adversarial Networks (GANs) have arisen as a potent class of

deep directed generative models well-known for their poignant potential to produce

lifelike images. GANs is comprised of two networks. Firstly, the foremost purpose of

generator is to generate innovative images, secondly, the discriminator is liable for

sagacious between various real and fabricated images. With the help of an adversarial

training mechanism, the generator is responsible to create images which are deemed

authentic by discriminator, while the discriminator continuously tries to work on its

discrimination skills. This iterative training keeps on happening until the generator is

gets the capability of producing images that closely matches with genuine ones,

leading to the formation of exceedingly realistic generated images.

GANs are endorsed over other generative models including RBMs, DBMs,

and VAEs due to the behaviour of them producing greater image quality and diversity.

GANs are specifically useful for image-to-image translation, style transfer and super-

resolution. In spite of their benefits, GANs have its own challenges such as training

instability and the necessity for large-scaled datasets. To improve the training

efficiency and stability there is a need to study which combines Genetic Algorithms

with GANs, so that the high-quality images can be produced in a shorter amount of

time by the goal of creating a strong picture synthesis framework

In conclusion, the boost for this research comes from the need to take

advantage of GAN benefits while resolving their challenges using novel

methodologies such as Genetic Algorithms. The sole purpose is to create a more

optimized and stable image generation framework which has the ability of producing

high-quality images while lowering training time and improving resilience.

This paper starts with the introduction of a comprehensive summary of the

study's research background, motivation, and contributions. This chapter deals with

the introduction of the challenges of efficient image synthesis with the Genetic

5

Algorithm and Generative Adversarial Networks (GA-GAN) then followed by a

thorough evaluation of the existing literature reviews on generative models,

specifically GANs. Key articles addressing image quality and training stability

challenges are presented, highlighting research gaps and the need for the suggested

study. There are limitations of current GAN approaches, particularly in dealing with

limited data and including form and texture elements. This chapter emphasizes the

need of real-time optimization as well as robustness to variations.

The GA-GAN system used includes the network designs of the

discriminator and generator, as well as the use of genetic algorithms to improve

training efficiency. The training techniques for both networks are thoroughly

described. Then I discussed the tools and datasets utilized in the experiments, such as

Jupyter Notebook, TensorFlow, and the Anime Face dataset. This chapter includes a

detailed explanation of the experimental setup and implementation. I assessed the

performance of the GA-GAN model using a variety of measures, including real_score,

fake_score, and FID score. Visual outcomes of created images at several epochs are

provided, as well as score and loss plots over epoch. I summarized the research

findings and contributions, including a discussion of the GA-GAN model's

effectiveness. This chapter discusses potential future studies, such as hybrid model

development and application to larger datasets.

6

2. CHAPTER 2

LITERATURE REVIEW

Despite their effectiveness in generating high-quality images, generative

adversarial networks (GANs) still encounter challenges, particularly two problems i.e.

quality of image they produce and the stability of their training process. In this

literature review, I will discuss the following papers that have addressed these

challenges. Generative Adversarial Networks for Image Generation [11], Improved

Techniques for Training GANs [12], Training Generative Adversarial Networks with

Limited Data [13], Comparative Analysis of Deep Convolutional Generative

Adversarial Network and Conditional Generative Adversarial Network using

Handwritten Digits [14], Auxiliary Conditional Generative Adversarial Networks for

Image Data Set Augmentation [15].

In [11], the model’s presented in the study were implemented using a

TensorFlow implementation of DCGANs available in the public domain. The learning

rate was set to 0.0002, except for the LSUN-scenes dataset, where it was adjusted to

0.001. A mini-batch size of 64 was used, and the model's variables were initialized

from a Gaussian distribution with a mean of zero and a standard deviation of 0.02.

Consistent with DCGANs, the β1 value for the Adam optimizer was having a value

0.5. The pixel values of the images were scaled to the range of -1 to 1(closed interval)

because the generator utilized the Tanh activation function. Both LSGANs and NS-

GANs have similar architecture while working on the dataset of LSUN-bedroom.

The network architecture includes different types of layers: convolutional

(CONV), transposed convolutional (TCONV), fully-connected (FC), batch

normalization (BN), and leaky rectified linear unit (LReLU). Every layer is described

with specific parameters, such as kernel size, stride, and the number of output filters.

For example, (K3, S2, O256) refers to 3x3 dimension of kernel, with a stride of 2, and

there are 256 number of output filters. The images in Fig. 2.1 represents the LSUN

dataset. The generated by LSGANs and NS-GANs, are scaled down to a dimension of

112 pixels by 112 pixels. LSGANs produce images with more intricate texture details,

particularly in areas like beds, resulting in sharper overall appearance compared to NS-

GANs. Additionally, LSGANs were trained on four other scene datasets such as

church, dining room, kitchen, and conference room.

7

Fig. 2.1 LSUN-bedroom dataset [11]

In Fig. 2.1 The images include: NS-GANs generated images with a

resolution of 64 × 64, as mentioned in [8]. NS-GANs generated images with a

resolution of 112 × 112. LSGANs generated images with a resolution of 112 × 112.

LSGANs were subjected to further evaluation using the cat dataset [16].

The initial step involved obtaining cat head images with resolutions exceeding 128 ×

128 through pre-processing techniques sourced from a publicly available project.

Subsequently, all images were resized.

To facilitate a performance comparison between LSGANs and NS-GANs,

both models were trained using an identical architecture on the cat dataset. In between

the process of training, checkpoints of the models and batches of generated images

were periodically saved every 1000 iterations. The best models among LSGANs and

NS-GANs were selected based on the image quality saved at each 1k iteration interval.

8

At last, the selected model was employed to randomly generate cat images.

Fig. 2.2 visually presents the cat dataset, used by LSGANs model and NS-GANs

model. Notably, LSGANs exhibited a notable advantage by generating cats with

sharper hair in comparison to NS-GANs. To provide a closer examination of the cat

eyebrow hair, Fig. 2.2 includes detailed views (parts (c), (d), and (e)) achieved by

zooming specific regions of the used image. A summary of all the review done so far

can be seen in Table 2.1.

Table 2.1 Summary of reviewed paper

Paper Technique Used Dataset

Used

Metrics

Used

Restricted Boltzmann

Machines for Collaborative

Filtering [1]

Restricted Boltzmann

Machines (RBMs)

Netflix

dataset

Error rates

comparison

Deep Boltzmann Machines

[2]

Deep Boltzmann

Machines (DBMs)

MNIST,

OCR,

NORB

datasets

Classificati

on

performanc

e, test error

rates

Auto-Encoding Variational

Bayes [3]

Variational

Autoencoder (VAE)

Frey Face,

MNIST

Log-

likelihood

estimates

Generative Image Models

with LAPGAN [4]

Laplacian Pyramid

Generative

Adversarial Networks

(LAPGAN)

CIFAR10,

LSUN

scenes

MOS

scores,

realism

evaluation

Single Image Super-

Resolution Using GAN [5]

Generative

Adversarial Networks

(GANs)

Set5, Set14

datasets

PSNR,

SSIM,

MOS scores

Image-to-Image Translation

with cGANs [6]

Conditional GANs

(cGANs)

Cityscapes

dataset

Per-class

accuracy,

Class IOU

Extreme Image

Compression with GANs

[7]

Generative

Adversarial Networks

(GANs)

Custom

image

datasets

Bitrate

savings,

user study

preferences

Deep Generative Stochastic

Networks [8]

Deep Generative

Stochastic Networks

Unspecified Qualitative

and

quantitative

evaluations

Conditional Image

Synthesis with Auxiliary

Classifier GANs [9]

Auxiliary Classifier

GANs (AC-GANs)

MNIST,

CIFAR10

datasets

Classificati

on

accuracy,

visual

fidelity

9

Generative Adversarial

Networks with Applications

[10]

Generative

Adversarial Networks

(GANs)

MNIST,

CIFAR-10,

SVHN

Classificati

on

accuracy,

FID scores

Advanced Image

Generation with DCGANs

[11]

Deep Convolutional

Generative

Adversarial Networks

(DCGANs)

CelebA

dataset

Visual

fidelity, FID

scores

Improved Techniques for

Training GANs [12]

Generative

Adversarial Networks

(GANs)

MNIST,

CIFAR-10,

SVHN,

ImageNet

Semi-

supervised

classificatio

n, visual

Turing test

Training GANs with

Limited Data [13]

Generative

Adversarial Networks

(GANs) with adaptive

discriminator

augmentation

Several

datasets

Fréchet

Inception

Distance

(FID)

Comparative Analysis of

DCGAN and CGAN [14]

Deep Convolutional

GANs, Conditional

GANs

MNIST Image

quality,

generative

capabilities

Auxiliary Conditional

GANs for Image Dataset

Augmentation [15]

Auxiliary Conditional

Generative

Adversarial Networks

(AC-GANs)

FMNIST Accuracy of

image

classifiers,

segmentatio

n

techniques

Cat Head Detection:

Exploiting Shape and

Texture [16]

Joint shape and

texture detection,

Haar-like features on

oriented gradients

10,000

well-labeled

cat head

images,

PASCAL

2007 cat

data

Detection

rate

Multi-Object Detection with

Neural Networks [17]

Convolutional Neural

Networks (CNNs)

COCO

dataset

Intersection

over Union

(IoU),

detection

accuracy

Improved Techniques for

Training GANs [18]

Generative

Adversarial Networks

(GANs) with new

training techniques

MNIST,

CIFAR-10,

SVHN,

ImageNet

Semi-

supervised

classificatio

n accuracy,

human error

rate in

10

visual

Turing test

Real-Time Object

Recognition Systems [19]

Deep Learning,

Feature Matching,

Real-Time Systems

Custom

real-world

datasets

System

latency,

recognition

accuracy

Fig. 2.2 Shows generated images of cats [7]

In Fig. 2.2 the a) part represents cat images used by NS-GANs. model part

(b) by LSGANs. part (c) by NS-GANs. part (d) by LSGANs. (e) original images.

LSGANs generate cats with more defined, detailed hair compared to the NS-GANs

model, resulting in sharper and more exquisite features. Our observations indicate

generated hair of cats from NS-GANs exhibits more noise as compared to the cat hair

generated by LSGANs. Furthermore, we noticed that LSGANs produce images of

higher overall quality compared to NS-GANs.

To quantitatively evaluate LSGANs, we measure the FID metric [17]. It

quantifies the dissimilarity among the real original images and generated fake images

by estimating feature dimensional space of the model named as inception model like

a Gaussian distribution in multiple dimensions. FID has been demonstrated to align

more closely with human perception compared to the inception score. A lower FID

11

value indicates a smaller distance between the generated images and the original

images, implying higher similarity in terms of visual quality [18].

FID is utilized to assess the performance of WGANs-GP, NS-GANs,

LSGANs and WGANs-GP on various dataset. The comparison includes the

performance of LSGANs (-110) and LSGANs (011) using a loss function. The

architecture was same for all models and also noise input dimension was same defined

in [8], which consists of 4 Conv layer for generator as well as discriminator. In order

to ensure a fair comparison, the official implementation of WGANs-GP is used for

evaluation. The image dimension of LSUN is 64×64, Cat is 128×128, ImageNet is

64×64, and CIFAR-10 is 32×32. For each model, 50k images are randomly generated

every 4k iterations, and the score of FID is calculated. The following conclusion was

discovered: LSGANs (-110) outperforms NS-GANs across all 4 data. LSGANs (-110)

also demonstrates superior performance compared to WGANs-GP on three datasets,

particularly the dataset of cat images shown in Fig 2.2. Hence, LSGANs (-110)

performs way finer than LSGANs (011) on all 4 datasets. LSGANs (011) shows

comparable performance to NS-GANs.

LSGAN’s and NS-GANs initially exhibit similar score of FID values for

the first 25k iterations [17]. However, LSGANs shows improvement by reducing its

FID values after 25k iterations and ultimately outperforms NS-GANs. LSGAN’s and

WGANs-GP eventually achieve comparable optimal FID values. Nonetheless,

LSGANs achieve this optimal FID value much faster than WGANs-GP. Specifically,

LSGANs requires 1100 minutes to reach an FID value of 22, whereas WGANs-GP

takes 4600 minutes. In conclusion, LSGANs is able to achieve better performance than

NS-GANs and WGANs-GP, and it is able to do so faster than WGANs-GP. This is

because LSGANs does not require multiple updates for the discriminator, and hence

for the gradient penalty it does not require extra computational time.

Semi-supervised were performer experiments on MNIST, CIFAR-10,

where in [11][12] they performed unsupervised experiments. For the MNIST dataset,

which comprises 60k labeled images depicting digits from 0 to 9, a semi-supervised

training approach was adopted. In this approach, a small fraction of the dataset was

randomly selected, containing 20, 50, 100, or 200 labeled examples. Their network has

five hidden layers each. The generator produces samples that are not visually appealing

shown on the left side of Fig. 2.3 but when using minibatch discrimination, it can

improve the quality of image shown on the right side of Fig. 2.3.

12

Fig. 2.3 MNIST Dataset [11][12]

[15] This research investigates the use of auxiliary conditional generative

adversarial networks (AC-GANs) to improve image datasets, with a particular

emphasis on increasing image classifier accuracy through label conditioning and

creating new images with global coherence using the FMNIST dataset.

The authors propose various novel architectural features and training

approaches to improve GAN performance, particularly in semi-supervised learning

and image production. Their algorithms produce cutting-edge results in semi-

supervised classification on datasets such as MNIST and CIFAR-10 [18].

[16] This research proposes a method for recognizing cat heads that has

the capability of efficiently using both the shape and texture data. The authors describe

a two-step strategy that highly involves the use of training form and texture detectors

separately so that they can be combined into a combination classifier for enhanced

accuracy.

This study presents a two-time scale update rule (TTUR) [19] for training

GANs that demonstrates convergence to a stationary local Nash equilibrium. The

paper also presents the Fréchet Inception Distance (FID), which is a more consistent

assessment metric for GANs.

13

3. CHAPTER 3

RESEARCH GAP

1. Efficiency in Limited Data Scenarios:

Current methodologies, such as Generative Adversarial Networks (GANs),

demonstrate challenges in handling datasets with inadequate samples.

Research could focus on developing models that maintain performance

robustness even with limited data availability.

2. Integration of Shape and Texture Features:

While existing studies explore the integration of shape and texture for specific

detection tasks (e.g., cat head detection), there is a broader potential for

applying these combined features across various domains. Future research

could investigate the generalization of these features for improved and

optimized object recognition.

3. Optimization for Real-Time Processing:

Real-time object recognition systems demand further optimization to work

effectively in dynamic environments where decision speed remains critical

without relaxing accuracy.

4. Expanding Semi-Supervised Learning with GANs:

Even though it seems promising, the application of GANs in semi-supervised

learning area needs further inspection to boost model stability and to

comprehend the mechanics affecting their training dynamics.

5. Enhanced Robustness to Variations:

Despite advancements in handling intra-class variation and environmental

conditions, there remains a substantial need for developing detection systems

that are more resilient to changes in lighting, pose, and background.

6. Innovative Augmentation Techniques:

Data augmentation strategies that are specifically tailored to address the

challenges of highly imbalanced datasets and rare object occurrences require

development to better represent complex real-world scenarios.

7. Cross-modal Data Integration:

Integrating diverse data types (such as audio, text, or sensor data) with visual

data to enrich the contextual understanding of object detection systems is

under-explored and represents a significant opportunity for research.

8. Feature Extraction and Optimization:

There is potential for innovation in the discovery of new feature extraction

techniques or the optimization of existing features tailored to specific

14

applications, which could lead to improved performance in object detection

systems.

9. Addressing Ethical and Bias Considerations:

As object detection technologies find broader application, it is crucial to

address potential biases and ensure that these systems operate fairly and

equitably across diverse user groups.

These gaps underscore the necessity for continued research to overcome

current limitations and to propel the field of computer vision towards more

sophisticated and practical solutions. Addressing these challenges will not only

enhance the theoretical understanding but also improve the practical applications of

machine learning and object detection technologies.

15

4. CHAPTER 4

METHODOLOGY

4.1 Proposed Work

While DNN are commonly associated with supervised learning tasks like

regression and classification, GAN’s employ neural nets for distinct purposes such as

generative modeling. Unlike supervised learning, generative modeling belongs to the

domain of unsupervised learning in ML. It considers the exploration and acquisition

of patterns and regularities within input data without explicit labels or guidance. By

leveraging these learned patterns, GANs have the capability to generate novel

examples that closely match with the real dataset, expanding the model's capacity

beyond mere prediction tasks. It is known that there are various techniques of

generative modeling, a Generative Adversarial Network (GAN’s) uses the Fig. 4.1

system to generate images.

Table 4.1 Algorithm of proposed work

16

To evaluate the ability of discriminator to differentiate b/w real images and

images that are generated, the binary cross entropy loss/objective function (as

illustrated in Equation 4.1) is commonly employed. This loss function quantifies the

performance of the discriminator as a binary classification model, measuring its

effectiveness in accurately classifying the input images. By minimizing this objective

function, the discriminator network is trained to improve its discriminatory capabilities

and enhance its ability to differentiate between the two types of images.

𝐿𝑜𝑠𝑠 = −
1

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒
∑ 𝑦𝑖 . log 𝑦�̂� + (1 − 𝑦𝑖). log (1 − 𝑦𝑖)̂

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒

𝑖=1

Equation 4.1 Binary cross entropy loss function

Fig. 4.1 Trainable GAN System

Within the GAN framework, two architectures of neural nets coexist: the

generator and the discriminator in which generator's primary function is to generate

synthetic samples, also known as "fake" samples, based on a random vector or matrix

input. Discriminator is used to differentiate between real images and fake images. The

process for training of these networks occurs concurrently, but in alternating epochs.

17

 First, the discriminator undergoes training for a few epochs, followed by

training of the generator for a few epochs. This iterative process is repeated to enhance

the capabilities of both networks over time. The training of GANs is challenging and

highly dependent on various factors such as hyperparameters, activation functions, and

regularization techniques. They require careful tuning to achieve desirable results. In

this tutorial, our goal is to be able to train generator and discriminator simultaneously

that helps us to generate images of faces of some anime characters. To accomplish this,

I will utilize the nature inspired genetic Algorithm technique which updates the

parameters of both discriminator and generator in order to reach a global optimum.

Genetic Algorithm has many benefits, one such is that it does not allows the parameters

to get stuck on a local optimum for long generation/epochs.

Genetic Algorithms are based on natural evolution and genetics of living

beings. This algorithm does not require gradient information hence I computationally

inexpensive and also takes less epochs to converge. It was also found during the

experimentation that GA based GAN takes lees training time, unlike in my previous

work of GAN where it took me around 1 week to train for 25 epochs, the new proposed

algorithm took almost only 2 days to train for 30 epochs. Fig. 4.2 shows the High-level

system of GA-GAN used for this research work.

Fig. 4.2 GA-GAN high level system

The Dataset of Anime Faces, which comprises around 63k cropped out

faces of anime characters, is illustrated in Fig. 4.3. It is crucial to emphasize that

18

generative modeling falls under the realm of unsupervised learning, meaning that the

dataset does not come with any pre-existing labels or annotations.

Fig. 4.3 Shows the original set of images from Anime face dataset

4.1.1 Discriminator Network

The main work of discriminator is to receive a whole dataset of images as

input and determine whether it is a real original image from the original set or a fake

image produced by the generator. In essence, the discriminator operates like a standard

neural network. In our implementation, we employ a CNN that produces only one

numerical output for each input image. By utilizing a stride of 2, we gradually decrease

the size of the derived feature map, following the process shown in Fig. 4.4.

Fig. 4.4 The process of a convolutional operation to generate feature map.

19

The discriminator architecture created is a CNN having seven

convolutional layers, followed by a flattening layer and also a sigmoid layer. The

convolutional layers are responsible for extracting all the features from the image,

while the layer for flattening converts the extracted matrix of features into a vector.

The sigmoid layer then classifies the input image as genuine or fake. The discriminator

takes an input image of size 64x64x3 and generates a value from 0 to 1 denoting a

probability of being a real image or a fake image. Discriminator is trained to increase

the chances of probability of the classification between real images as real and fake

images as fake. The block diagram of the network architecture of the discriminator

illustrated in Fig. 4.5.

Fig. 4.5 Network architecture of the Discriminator

4.1.2 Generator Network

The generator is fed with a random matrix or vector of random numbers

as input (referred to as a latent tensor/space). The generator then transforms this vector

into an image. The generator transforms a latent space (or mathematically tensor) with

dimensions 128 x 1 x 1 to a tensor of image with dimensions 3(channels) x 28 x 28.

This conversion is achieved by employing the ConvTranspose2d (or transpose

convolution layer) layer in PyTorch library, which performs an inverse convolution

operation (also known as a transposed convolution or deconvolution).

 The ConvTranspose2d layer is a convolutional layer that works in reverse. Instead of

taking an input image and extracting features from it, the ConvTranspose2d layer is

fed with an input vector that in response generates an output image. The

ConvTranspose2d layer uses a transposed convolution kernel to do this.

The ConvTranspose2d layer is used to generate images from random vectors. The

ConvTranspose2d layer takes a random vector and creates an output image as shown

in Fig. 4.6. The output image is a realistic image that looks like it was generated by a

human. The ConvTranspose2d layer is a powerful tool for generating images. It can

be used to generate images of any size and any complexity.

20

Fig. 4.6 Working of ConvTranspose2d layer

The generator that designed is a CNN with five transpose convolutional

layers, with 4 layers of batch normalization layer just after each transpose

convolutional layer, similarly 4 ReLU activation function is used just after each

transpose convolutional layer, at last a activation function known as hyperbolic tangent

Tanh function. The convolutional layers are responsible for upsampling the input

vector into an image. The layer of batch normalization transformation helps us to

stabilize the training process. The ReLU activation functions allow the generator to

learn non-linear features from the input vector. The hyperbolic tangent activation

function ensures that the generator’ output is a real number between -1 and 1, which is

the range of values for an RGB image.

1. The first transpose convolutional layer consists of 512 filters, 4 as kernel size,

with a stride of 1. The filters are initialized randomly. The output of this layer is a

tensor of size 512x4x4.

2. The second transpose convolutional layer consists of 256 filters, 4 as kernel

size, with a stride of 2. The filters are initialized randomly. The output of this layer is

a tensor of size 256x8x8.

3. The third transpose convolutional layer consists of 128 filters, 4 as kernel size,

with stride of 2. The filters are initialized randomly. The output of this layer is a tensor

of size 128x16x16.

4. The fourth transpose convolutional layer consists of 64 filters,4 as kernel size,

with a stride of 2. The filters are initialized randomly. The output of this layer is a

tensor of size 64x32x32.

5. The fifth transpose convolutional layer consists of 3 filters, 4 as kernel size,

with a stride of 2. The filters are initialized randomly. The output of this layer is a

tensor of size 3x64x64 as shown in Fig. 4.7.

21

Fig. 4.7 Network architecture of the Generator

4.1.3 Genetic Architecture

A single Genetic algorithm is implemented for both discriminator as well

as generator. A Fitness values in the genetic algorithm is calculated to perform survival

of the fittest in order to eliminate the bad solution and more forward with the good

solution. Genetic algorithm is a population-based technique hence we will denote a

random but fixed initial population size. Crossover was performed then mutate

function after creating a mating pool generated by selection layer. Hence the above

algorithm will be in a loop until it finds optimal parameters for GAN models. The

parameters are updated for one model at a time i.e. there is synchronous

communication between models.

Now, we can generate our first set of images and visualize them by

applying transformations and denormalization techniques, as depicted in Fig. 4.8. At

this stage, generator has not undergone any training. Consequently, the generated

outputs are expected to resemble random noise rather than meaningful images.

22

Fig. 4.8 Output of the generator at epoch 0

4.2 Training Process of Discriminator

The discriminator is trained to output 1 when presented with real images

from the Anime Face Dataset and 0 when presented with images generated by network

of generator. Initially, a mini batch of the original real set of images is fed into the

discriminator, and the loss is calculated by setting the target labels to 1. This step helps

the discriminator learn to correctly classify real images. Next, a mini batch of fake

generated set of images that are generated by generator is passed through

discriminator. The loss is computed by setting a value of 0 to the target class labels.

The losses from both real and fake image batches are combined, and the overall loss

is used to perform gradient descent. Updating of weights is done in this phase to

improve its performance to discriminate between real and generated images.

4.3 Training Process of Generator

During the training of the generator, a unique approach is employed to

optimize its performance. Since the generator produces image outputs, it is not

immediately apparent how we can train it effectively. Here is an overview of how this

process works:

1. First, a mini batch/set of images are generated from the generator. These

generated images are then passed through the discriminator.

23

2. After that loss function is calculated by setting 1 to the target class labels for

the generated images, that tells us that they are actual real images.

3. Gradient descent is applied using the calculated loss, resulting in updates to the

weights of the generator. This process aims to enhance the generator's ability to

produce images that closely resemble real images and deceive the discriminator.

This approach ensures that the generator learns to generate more authentic and realistic

images by continuously improving its performance based on the feedback from the

discriminator.

4.4 Training Process of Full Architecture

We will implement a complete training loop to simultaneously train the

discriminator and generator using the fit function. Instead of a gradient based learning

technique to update the parameters we will use GA. It was seen that the training time

was very less as compared to previous works. it was seen also seen in [19] that almost

30 hours were taken on a single GPU to train LSUN dataset. Additionally, we will

periodically save a selection of generated images during the training process for visual

examination and analysis.

The training method begins by assigning random weights to the

populations of both the discriminator and generator. The Genetic Algorithm will then

evolve these populations using selection, crossover, and mutation processes. Each

individual's fitness in the population is estimated using a bespoke fitness function that

considers the discriminator's accuracy as well as the quality of the images reproduced

by the generator.

To improve the stability of the training process, we will use a dual-

objective method for the fitness function. The fitness function will assess the ability of

discriminator to distinguish between genuine & produced images. The fitness function

for the generator prioritizes creating images that are progressively alike from genuine

images as determined by the discriminator.

Each generation, the top performers will be chosen to pass on their genes

to the following generation. This selection procedure ensures that only the best-

performing weights are carried forward, which improves the discriminator and

generator's overall performance across future generations.

By using Genetic Algorithms for training, we hope to accomplish a more

efficient and effective method, lowering overall training time while preserving or

improving image quality. This method opens up new opportunities for alternate

optimization strategies in GAN training, with generated images saved at regular

intervals for qualitative evaluation and early issue discovery.

24

1. CHAPTER 5

EXPERIMENTAL SETUP

5.1 Tools Used

 Jupyter Notebook: It is used for a wide variety of tasks of data science,

including exploratory data analysis (EDA), data wrangling (cleansing) and

transformation, data visualization, predictive modelling, machine

learning, and deep learning.

 Pandas: It is a Python toolkit for working with data collections. It includes

functions for analysing, wrangling, cleansing, and modifying data. The

word "Pandas" refers to both "Panel Data".

 Matplotlib: Matplotlib is a comprehensive Python package that permits

you to create static and interactive visualizations. Matplotlib allows for

both easy and difficult tasks. It helps us create plots that are suitable for

visualisation. It helps us create reciprocal figures that can zoom, pan, and

update.

 Seaborn: It is a Python package for plotting statistical graphs. It is built

atop of matplotlib and combines seamlessly with Pandas data structures.

 Scikit-learn: It is one of the most helpful machine learning libraries in

Python. The sklearn package includes several beneficial methods for

machine learning and statistical modelling, like classification, regression,

clustering, and dimensionality reduction.

 TensorFlow: It is an open-source library created by Google, mainly used

for deep learning applications. It also reinforces conventional machine

learning. It was primarily built for huge numerical computations without

taking deep learning into consideration.

The Anime Face Dataset, often found on Kaggle, contains a comprehensive collection

of images focused on anime-style faces. The dataset contains roughly 63,565 photos,

making it an excellent resource for training and testing machine learning projects. All

of the photographs depict anime-style faces, with a variety of expressions, haircuts,

and character designs typical of anime and manga art genres. Images are often

delivered in standard formats such as JPEG or PNG, allowing for simple integration

into machine learning pipelines and frameworks.

25

6 CHAPTER 6

RESULTS AND ANALYSIS

6.1 Generation of images from generator

Below are some sample sets of images generated as outputs using the

generator during different training epochs. We then tried to compare those sets of

images (from a human standpoint) from the original set of images given in Fig. 4.3. At

this stage, the output is essentially random noise since the generator has not undergone

any training yet shown in Fig. 4.8. As a result, the generated images lack meaningful

structure or resemblance to the target data. At epoch 1 the generated set of images from

the generator can be seen in Fig. 6.1, similarly at epoch 16,25,30 the generated set of

images from the generator can be seen in Fig. 6.2, Fig. 6.3 and Fig. 6.4 respectively.

26

Fig. 6.1 New generated images from

generator at epoch 1

Fig. 6.2 New generated images from

generator at epoch 16

Fig. 6.3 New generated images from

generator at epoch 25

Fig. 6.4 New generated images from

generator at epoch 30

6.2 Plot scores v/s epochs

After training both the model (generator and discriminator) simultaneously

for 30 epochs we found the real_score as 0.9722 and fake_score as 0.0452 that can be

observed in Fig. 6.5.

27

Fig. 6.5 Plot of real_score v/s epochs and fake_score v/s epochs

6.3 Plot loss v/s epochs

After training both the model (generator and discriminator) simultaneously for

30 epochs we found the results as loss_g: 5.9757, loss_d: 0.0781 that can be seen in

Fig. 6.6.

Fig. 6.6 Plot of generator loss(loss_g) v/s epochs and discriminator_loss(loss_d) v/s

epochs

28

6.4 Performance Analysis

In a GAN, the discriminator evaluates images, assigning scores to genuine

(real_score) and created (fake) images. Here's a condensed description of these

metrics:

 Real_score is the discriminator's level of confidence in predicting real images.

A high score (around 1) implies that the discriminator correctly recognizes

actual data.

 Fake_score indicates the discriminator's confidence in classifying created

(fake) images. A low score (around zero) indicates that the discriminator

correctly detects fabricated data.

A good discriminator has a high real_score and a low fake_score. When

training the generator, the goal is to mislead the discriminator by minimizing the

fake_score. Effective training produces realistic generated images, as evidenced by a

low fake_score. After 30 epochs, the real_score was 0.9722 whereas the fake_score

was 0.0452. This implies that the discriminator properly identifies actual photos while

recognizing fraudulent ones, indicating a good training procedure. To fully evaluate

the GAN's performance, a final assessment should take into account visual quality and

binary cross-entropy loss.

29

2. CHAPTER 7

CONCLUSION AND FUTURE SCOPE

In this study, I explored various techniques such as data normalization,

data augmentation, batch normalization, and the genetic algorithm to generate a set of

images that closely resemble the original set of images. After 30 epochs of iteration, I

achieved promising results with a real_score of 0.9722 and a fake_score of 0.0452.

These results indicate a high similarity between the generated and real images, as a

higher real_score and a lower fake_score contribute to a lower Frechet Inception

Distance (FID) score. Furthermore, the fact that significant image quality

improvement was achieved in just 30 epochs demonstrates the potential of our

approach. As part of future work, I plan to perform more meta heuristic algorithm to

make a hybrid model that further enhance the model's performance, aiming to achieve

even higher real_scores and lower fake_scores compared to the existing

implementation.

Additionally, due to resource limitations in terms of GPU compute units, I

was unable to train the model on large datasets such as LSUN, Cat, and CIFAR100

datasets. Therefore, another future endeavor will involve implementing our own

Hybrid GAN architecture on these datasets and comparing the results using FID as a

metric. By customizing the architecture and employing the LSGAN objective/loss

function (-110), we aim to develop a Hybrid GAN model that excels in generating

high-quality images from limited image datasets.

Furthermore, future study will investigate the integration of sophisticated

approaches such as attention mechanisms and progressive GAN growth to improve

image quality and training efficiency. Implementing transfer learning to use pre-

trained models on huge datasets may also improve model performance with fewer

resources.

The findings of this study highlight the potential for further advancements

in GANs and image generation techniques, providing valuable insights for future

research in the field. This study lays the groundwork for more advanced generative

models capable of producing highly realistic images efficiently.

30

REFERENCES

[1] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. 2007. Restricted Boltzmann

machines for collaborative filtering. In Proceedings of the 24th international conference on

Machine learning (ICML '07). Association for Computing Machinery, New York, NY, USA,

791–798.

[2] Salakhutdinov, Ruslan, and Hugo Larochelle. "Efficient learning of deep Boltzmann

machines." Proceedings of the thirteenth international conference on artificial intelligence and

statistics. JMLR Workshop and Conference Proceedings, 2010.

[3] Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint

arXiv:1312.6114 (2013).

[4] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In

Proceedings of the 27th International Conference on Neural Information Processing Systems

- Volume 2 (NIPS'14). MIT Press, Cambridge, MA, USA, 2672–2680.

[5] Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative

adversarial network." Proceedings of the IEEE conference on computer vision and pattern

recognition. 2017.

[6] Kushwaha, R.S., Rakhra, M., Singh, D. and Singh, A., 2022, December. An overview:

super-image resolution using generative adversarial network for image enhancement. In 2022
5th International Conference on Contemporary Computing and Informatics (IC3I) (pp. 1243-

1246). IEEE.

[7] P. Isola, J. -Y. Zhu, T. Zhou and A. A. Efros, "Image-to-Image Translation with Conditional
Adversarial Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Honolulu, HI, USA, 2017, pp. 5967-5976, doi: 10.1109/CVPR.2017.632.

[8] Agustsson, Eirikur, et al. "Extreme learned image compression with gans." Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018.

[9] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning

with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434

(2015).

[10] Denton, Emily L., Soumith Chintala, and Rob Fergus. "Deep generative image models

using a￼ laplacian pyramid of adversarial networks." Advances in neural information

processing systems 28 (2015).

[11] Metz, Luke, et al. "Unrolled generative adversarial networks." arXiv preprint

arXiv:1611.02163 (2016).

[12] Mao, Xudong, and Qing Li. Generative adversarial networks for image generation.

Springer, 2021.

31

[13] Salimans, Tim, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi

Chen. "Improved techniques for training gans." Advances in neural information processing

systems 29 (2016).

[14] Karras, Tero, et al. "Training generative adversarial networks with limited data."

Advances in neural information processing systems 33 (2020): 12104-12114.

[15] Vishwakarma, Dinesh Kumar. "Comparative analysis of deep convolutional generative

adversarial network and conditional generative adversarial network using hand written digits."

2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS).
IEEE, 2020.

[16] Mudavathu, Kalpana Devi Bai, MVP Chandra Sekhara Rao, and K. V. Ramana.
"Auxiliary conditional generative adversarial networks for image data set augmentation." 2018

3rd International Conference on Inventive Computation Technologies (ICICT). IEEE, 2018.

[17] Zhang, W., Sun, J., Tang, X. (2008). Cat Head Detection - How to Effectively Exploit
Shape and Texture Features. In: Forsyth, D., Torr, P., Zisserman, A. (eds) Computer Vision –

ECCV 2008. ECCV 2008. Lecture Notes in Computer Science, vol 5305. Springer, Berlin,

Heidelberg.

[18] Heusel, Martin, et al. "Gans trained by a two time-scale update rule converge to a local

nash equilibrium." Advances in neural information processing systems 30 (2017).

[19] Salimans, Tim, et al. "Improved techniques for training gans." Advances in neural

information processing systems 29 (2016).

[20] Wang, Chaoyue, Chang Xu, Xin Yao, and Dacheng Tao. "Evolutionary generative

adversarial networks." IEEE Transactions on Evolutionary Computation 23, no. 6 (2019): 921-

934.

[21] Brock, A., Donahue, J. and Simonyan, K., 2018. Large scale GAN training for high

fidelity natural image synthesis. arXiv preprint arXiv:1809.11096.

[22] Dhawan, S. and Kumar, S., 2020, November. Improving resolution of images using

Generative Adversarial Networks. In 2020 4th International Conference on Electronics,

Communication and Aerospace Technology (ICECA) (pp. 880-887). IEEE.

[23] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A. and Bengio, Y., 2014. Generative adversarial nets. Advances in neural
information processing systems, 27.

[24] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A.,

Tejani, A., Totz, J., Wang, Z. and Shi, W., 2017. Photo-realistic single image super-resolution
using a generative adversarial network. In Proceedings of the IEEE conference on computer

vision and pattern recognition (pp. 4681-4690).

[25] Li, Y., Sixou, B. and Peyrin, F., 2021. A review of the deep learning methods for medical

images super resolution problems. Irbm, 42(2), pp.120-133.

32

[26] Shim, S., Kim, J., Lee, S.W. and Cho, G.C., 2022. Road damage detection using super-

resolution and semi-supervised learning with generative adversarial network. Automation in

construction, 135, p.104139.

[27] Liu, Q.M., Jia, R.S., Liu, Y.B., Sun, H.B., Yu, J.Z. and Sun, H.M., 2021. Infrared image

super-resolution reconstruction by using generative adversarial network with an attention
mechanism. Applied Intelligence, 51, pp.2018-2030.

[28] Zhang, K., Hu, H., Philbrick, K., Conte, G.M., Sobek, J.D., Rouzrokh, P. and Erickson,

B.J., 2022. SOUP-GAN: Super-resolution MRI using generative adversarial networks.
Tomography, 8(2), pp.905-919.

[29] Yun, J.U., Jo, B. and Park, I.K., 2020. Joint face super-resolution and deblurring using
generative adversarial network. IEEE Access, 8, pp.159661-159671.

[30] Dong, C., Loy, C.C., He, K. and Tang, X., 2015. Image super-resolution using deep

convolutional networks. IEEE transactions on pattern analysis and machine intelligence,
38(2), pp.295-307.

[31] Lim, B., Son, S., Kim, H., Nah, S. and Mu Lee, K., 2017. Enhanced deep residual
networks for single image super-resolution. In Proceedings of the IEEE conference on

computer vision and pattern recognition workshops (pp. 136-144).

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1. CHAPTER 1
	1.1 Background
	1.2 Motivation

	2. CHAPTER 2
	3. CHAPTER 3
	4. CHAPTER 4
	4.1 Proposed Work
	4.1.1 Discriminator Network
	4.1.2 Generator Network
	4.1.3 Genetic Architecture

	4.2 Training Process of Discriminator
	4.3 Training Process of Generator
	4.4 Training Process of Full Architecture

	1. CHAPTER 5
	5.1 Tools Used

	6 CHAPTER 6
	6.1 Generation of images from generator
	6.2 Plot scores v/s epochs
	6.3 Plot loss v/s epochs
	6.4 Performance Analysis

	2. CHAPTER 7
	REFERENCES

