
i 
 
 

Development of a new Fuzzy based Neural 

Network and its application in water flow 

control in canal  

 
Thesis Submitted 

in Partial Fulfillment of the 

Requirements for the Degree of 

 

POST-GRADUATION MTech. 

in 

ARTIFICIAL INTELLIGENCE 

by 

KESHAV BHARDWAJ 

(ROLL NO. 2K22/AFI/010) 

Under the Supervision of 

Asst. Prof. NIPUN BANSAL 

Assistant Professor, Department of Computer Science Engineering 

Delhi Technological University (DTU) 

 

To the  

Department of Computer Science Engineering 

DELHI TECHNOLOGICAL UNIVERSITY 
(Formerly Delhi College of Engineering) 

Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India  

May, 2024 



ii 
 
 

 

DELHI TECHNOLOGICAL UNIVERSITY 

(Formerly Delhi College of Engineering) 

Shahbad Daulatpur, Main Bawana Road, Delhi-42 

 

 

CANDIDATE’S DECLARATION 

 
 

I KESHAV BHARDWAJ hereby certify that the work which is being presented in 

the thesis entitled Development of a new Fuzzy based Neural Network and its 

application in water flow control in canal in partial fulfillment of requirements for 

the award of the Degree of Masters of Technology (MTECH.), submitted in the 

Department of Computer Science Engineering, Delhi Technological University is an 

authentic record of my own work under the supervision of Asst. Prof. Nipun Bansal. 

 

The matter presented in the thesis has not been submitted by me for the award of any 

other degree of this or any other Institute. 

 

 

 

 

Candidate's Signature 

 

 

 

 

 

 

 

 



iii 
 
 

 

DELHI TECHNOLOGICAL UNIVERSITY 

(Formerly Delhi College of Engineering) 

Shahbad Daulatpur, Main Bawana Road, Delhi-42 

 

CERTIFICATE BY THE SUPERVISOR 
 

 

Certified that Keshav Bhardwaj (2K22/AFI/010) has carried out their search work 

presented in this thesis entitled “Development of a new Fuzzy based Neural 

Network and its application in water flow control in canal” for the award of 

Master of Technology from Department of Computer Science Engineering, Delhi 

Technological University, Delhi, under my supervision. The thesis embodies 

results of original work, and studies are carried out by the student himself and the 

contents of the thesis do not form the basis for the award of any other degree to 

the candidate or to anybody else from this or any other University/Institution. 

 

 

 

Asst. Prof. Nipun Bansal 

Assistant Professor               (Signature) 

Department of CSE, DTU 

 

 

 

Date: 
 

 

 

 

 

 

 



iv 
 
 

ABSTRACT 

A novel method is being proposed in this thesis named Fuzzy Neural Network (FNN) 

and it used to predict the inlet to outlet key width’s ratio of the PKW. In FNN, the 

fuzzy logic and Neural Network (NN) is used and combined for the benefits of both. 

Fuzzy logic is not like traditional binary system where it tells the results in 0 and 1, 

but the fuzzy logic deals with the degree of membership where it tell the degree of 

truth, just like the probability, the values of fuzzy logic lies between 0 and 1. NN is 

inspired by the biological neurons in humans, as biological neurons are interconnected 

and used to transmit information from one point to another in human brain, similarly 

the NN is the collection of well-connected neurons which are used to process the 

information in different ways, it can be used to predict the values in regressive manner, 

or can be used to classify in different categories and also can be used to recognize 

patterns and analyse those, in similar ways NN has multiple benefits. The FNN model 

combines the benefits of both and allows to predict the hydraulic behaviours of PKW 

with very high accuracy.  

The dataset used in this thesis is not pre-defined, it is used collected experimentally 

from the laboratory. Different values were recorded for different ratios of inlet to outlet 

key width and then that dataset is used to test the FNN model for the prediction. The 

dataset includes crucial data that is essential for understanding the hydraulic 

performance of PKWs, including energy dissipation and discharge flow rates.  

The popular metrics used for the validation of the model are RMSE and MAE. The 

RMSE of 0.0305 and MAE of 0.0222 showcased the FNN model's exceptional 

accuracy and reliability. As the values for these metrics fall in the ideal range , it 

depicts the accurate prediction of the model.  

These findings tells that the relevance of FNN model can go beyond the predictions 

for PKW. It can be applied in the multiple fields of problem solving and pattern 

recognition. It can offer useful insights in different sectors of engineering.  
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CHAPTER 1: INTRODUCTION 

Technology is advancing at a fast pace, and engineering problems are becoming more 

complicated. This calls for creative solutions that make use of artificial intelligence 

and machine learning. Within the field of hydraulic engineering, the safety and 

effectiveness of water management systems are greatly dependent on the optimisation 

of structures like spillways. Of them, the piano key weir (PKW) is one of the most 

innovative because of its improved energy dissipation and discharge efficiency. This 

thesis investigates the hydraulic behaviour of a particular variety, the Type A piano 

key weir, using a brand-new model built on a fuzzy neural network (FNN). Labyrinth 

weirs called piano key weirs are made to resemble a piano's keys from a plan 

perspective by maximising the length of the crest within a certain width. The hydraulic 

performance of the Type A PKW is improved by its alternating inlet and output keys. 

The nonlinear and dynamic nature of water flow makes optimising PKW design 

parameters—like the ratio of intake key width to output key width—a challenging 

undertaking, even with its benefits. Extensive physical modelling and empirical 

analysis are required in traditional approaches of optimising PKW designs, which may 

be resource- and time-intensive. NN is inspired by the biological neurons in humans, 

as biological neurons are interconnected and used to transmit information from one 

point to another in human brain, similarly the NN is the collection of well-connected 

neurons which are used to process the information in different ways, it can be used to 

predict the values in regressive manner, or can be used to classify in different 

categories and also can be used to recognize patterns and analyse those, in similar ways 

NN has multiple benefits. The FNN model combines the benefits of both and allows 

to predict the hydraulic behaviours of PKW with very high accuracy. Machine learning 

presents a possible substitute in this situation. The inherent uncertainties and 

nonlinearities of hydraulic systems may be efficiently handled by machine learning 

models, especially those that use fuzzy logic. Fuzzy logic allows  for blending 

approximations and human-like reasoning into  decision-making  while  neural 

networks excels at spotting patterns in vast sets of data.  The aim of this study  is to 

forecast the inlet to outlet key width ratio  in PKW through the proposed FNN model. 

Utilizing real data from laboratory tests on PKW hydraulic activities, such as energy 

dissipation and discharge rates,  the FNN model aims to  offer accurate  predictions. 

Handling unbalanced experimental data with the fuzzy  part and utilizing NN for data 

analysis and prediction  helps enhance predictive  capabilities without extensive 

physical models. This not only reduces the need  for detailed modelling but also boosts 

predictive accuracy under  different hydraulic conditions. This change not only lessens 

the need for in-depth physical modelling but also improves the model's capacity for 

prediction and flexibility in response to various hydraulic circumstances. To ensure 

that the suggested FNN model accurately predicts the ideal design parameters, 

experimental data is compared to the model. This finding has implications that go 
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beyond the particular use of PKWs. It illustrates how sophisticated machine learning 

methods may be used to solve challenging engineering challenges and data-drivingly 

optimise design parameters. The proposed model FNN provides a complete new 

approach for the prediction of hydraulic behaviours and it can be used later in multiple 

areas. This thesis is organised as follows: The next chapters provide a thorough 

analysis of the literature on PKWs and machine learning models, including the 

underlying theories and earlier studies in these fields. A thorough explanation of the 

experimental design and data gathering techniques utilised to compile the Type A 

PKWs' hydraulic behaviour data is then provided. After that, the architecture, training 

procedure, and specifics of the FNN model's implementation are provided. The 

performance of the FNN model in predicting the ideal ratio of inlet key width to outlet 

key width is covered in the results chapter and is backed up by a comparison with 

conventional techniques. The thesis ends with a review of the results, suggestions for 

further study, and possible uses for the suggested model. 

The suggested approach and a real-world dataset were utilised to illustrate the 

contribution. An outline of the contribution would look something like this:  

• A novel model known as the Fuzzy Neural Network (FNN) is put out; this approach 

has never been employed previously. By suggesting FNN, a research gap in hydraulic 

behaviour pattern prediction for piano key weirs will be addressed. 

• The dataset used in this study is not pre-defined; rather, it was obtained experimentally 

and used to assess suggested approaches. Experimentation was used to obtain the 

dataset used in this paper. The study provides a unique dataset, which improves the 

validity of the data, in contrast to typical methods that rely on pre-defined datasets. 
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CHAPTER 2: LITERATURE REVIEW 

The Piano Key Weir (PKW) is a kind of spillway used in dam water control. There are 

height and space constraints in dam engineering; under certain circumstances, PKW is 

a highly effective management solution and has a non-linear design. It looks like piano 

keys, as the name implies, with the keys arranged in a stepped pattern to provide the 

desired effect. PKW has much superior discharge capacity, energy dissipation, and 

material utilisation in comparison to conventional linear spillways. This is a fairly 

modern structure that controls and monitors water flows in dams. PKW is an improved 

version of labyrinth weirs, which were first studied and became well-known as a more 

efficient and cost-effective weir (Lempérière & Ouamane, 2003). PKW is being used 

in a growing number of recent projects in France to increase the water release capacity 

of the nation's existing suction dams (Laugier et al., 2017) and as a potential dam weir 

on derailed constructions in Vietnam (Khanh, 2017). Reference material summarising 

the present status of PKW technology has been compiled since 2011 thanks to 

substantial information exchanged via geographical conferences (Erpicum et al., 2011; 

Erpicum et al., 2013; and Erpicum et al., 2017). In the UK, Algeria, South Africa, 

France, Switzerland, Vietnam, India, Australia, and Sri Lanka, among other countries, 

more than 35 PKWs have been constructed successfully (Crookston et al. 2019). The 

Goulours Dam in France erected the first PKWs in 2006, while the Hazelmere Dam in 

South Africa installed them more recently. They greatly raised the likelihood of 

spillway and reservoir releases. Tzaneen Dam is in the process of implementing PKW 

(Deventer et al., 2015; Chemaly, 2017). Interestingly, in addition to the main emphasis 

on using PKWs as lateral weirs for runoff release, there has been a new interest in 

PKW implementations for interior weir applications (Karimi et al., 2018). In the last 

twenty years, Singh & Kumar (2021) and Abhash & Pandey (2020) have provided 

comprehensive overviews of PKW geometry and hydraulic behaviour. Geometric 

parameters that significantly affect head-discharge efficiency and energy dissipation 

are weir altitude (P), relative advancement L/W ratio (crest length), (Ht/P) ratio, 

alveolar width (Wi/Wo), and cycle number (N) for a constant channel width (where L 

= overall development length, W = weir's width, Ht is cumulative head over the weir, 

and P is weir altitude). The style of crest, overhang lengths, upstream apex walls, and 

elevating the crest with a parapet wall all have an additional impact on PKW behaviour 

(Anderson & Tullis, 2013). Scientific theories, case studies, and original research on 

PKW energy loss and labyrinths have all been the subject of several investigations 

(Ribeiro et al., 2011; Bieri et al., 2011; and Khanh, 2013). According to Silvestri et al. 

(2013), residual energy in PKWs with stepped chutes was lowest at the spillway toe 

and grew as the spillway length and release occurred. Al-Shukur et al.'s (2018) 

investigation on the relationship between the PKW slope and energy loss revealed that 

as the slope declined, so did the percentage of energy dissipation. PKW hydraulic 

behaviour has been defined using computational methods that leverage AI models 



4 
 
 

including MLPNN, ANFIS, PSO, GA, MFO, and FA based on geometrical parameters 

(Zounemat-Kermani & Mahdavi-Meymand, 2019). For hydraulic jump aspects across 

a rocky bed, Karbasi & Azamathulla (2016) used GEP and compared its performance 

with traditional AI techniques, such as SVR and ANN. Numerous studies (Rashki et 

al., 2019; Ghasempour et al., 2021; Emadi et al., 2022; Pandey et al., 2020, Pandey et 

al., 2020, Singh et al., 2022, and Birbal et al., 2021) have attempted to determine the 

depth to which scour may occur along dikes, weirs, and piers that are partly 

submerged. To advance PKW technology, we therefore need more fresh concepts and 

competitors. et al. (2022) have released in-depth analyses of PKWs for power 

dissipation and discharge measurement, emphasising the need of carrying out 

exhaustive computational and experimental research to fully understand PKW 

hydraulic properties. Important information on energy loss in free streams under 

rectangular sharp-crested weirs has been presented by Amin et al. (2019). They 

emphasise the need of carefully designing hydraulic systems to maximise efficiency 

and minimise adverse impacts on the environment and structure. The purpose of this 

research is to investigate how PKW flow and energy loss are affected by the variation 

in the width of the air sacs at the entry and the exit (Wi/Wo). Only the effects of the 

Wi/Wo ratio on the discharge capacity, coefficient, and energy dissipation in PKWs 

have been investigated in previous research. On the other hand, there is still a dearth 

of information on this subject. Thus, with a primary emphasis on Type A PKWs, this 

experimental study was carried out to provide thorough insights into how the Wi/Wo 

ratio affects hydraulic efficiency and downstream energy dissipation. The research 

makes use of a fuzzy neural network to improve our comprehension of this crucial 

PKW performance and design characteristic. (Poonia et al., 2021) concentrate on the 

issue of resource allocation and inadequate disaster response, which exacerbates 

natural catastrophes. The goal is to address problems such as inadequate 

communication, delayed reactions, and corruption within the relevant organisations. 

The author suggests a methodical approach to disaster management based on 

blockchain technology. Data management is the first phase, which involves a 

blockchain architecture that guarantees the prompt exchange of reliable and traceable 

information pertaining to different elements of catastrophes. The second phase, 

automated assistance distribution, is based on smart contracts and aims to distribute 

help intelligently, avoid corruption in its usage, and automate the quick transmission 

of emergency relief. (Kumar et al., 2021) examine and comprehend the shift in harsh 

conditions in order to create solutions that are long-lasting and productive. The booklet 

lists India's drought- and flood-prone areas so that people may lower their risk and 

prepare ahead of time. The author provides a sound methodology for risk assessment 

and increasing the resilience of critical infrastructure. The suggested method builds 

methods that can endure climate-related problems after first evaluating the possible 

effect of severe weather on vital infrastructure. (Tiwari et al., 2024) investigate the 

connection between water quality and climate change by concentrating on the 
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Narmada basin's electrical conductivity. Water quality may be predicted using AI 

algorithms. In order to forecast the EC levels at the Sandia station in the Narmada 

basin, the author creates 10 AI models. The management of the area's drinking water, 

irrigation, and other purposes may be done using this knowledge. Out of all the models, 

Model 8 performs the best, with an R2 score of 0.889. The absence of a thorough 

examination of the combined dependency of drought duration and its impact across 

Indian river basins was addressed by (Poonia et al., 2021). The lack of research is 

impeding the creation of successful drought mitigation plans. The author proposes to 

use a bivariate copula-based approach to represent the joint dependency structure of 

drought features. The author wants to pinpoint trends and areas in India where severe 

and protracted drought episodes occur. The goal of (Poonia et al., 2021) is to close the 

knowledge gap on the uncertainty of climate model forecasts and scenarios while 

evaluating CWR and CIR in the Eastern Himalayan area, particularly in Sikkim. A 

detailed examination of the effects of climate change on a Sikkim agricultural field is 

given by Das et al. (2020), with a focus on rice, wheat, and maize. They forecast crop 

yields under various emission scenarios and GCMs using calibrated AquaCrop 

simulations based on historical data. They also use possibility theory in their analysis 

of uncertainty using GCMs. (Jamal et al., 2024) seek to address the issue of land loss 

in Indian states such as West Bengal. Various materials and techniques are used in the 

current riverbank protection systems to assess the size and efficacy of stones under 

various temporal fluctuations. The author points out that not enough study has been 

done to determine which stone is best for preventing bank collapse. The goal of Poonia 

et al. (2020)'s physical model approach to assessing a riverbank's response to varying 

stone sizes is to meet the need for rainfall-runoff modelling in the Hoshangabad 

Narmada River watershed of Madhya Pradesh. Since floods often occur in this region, 

accurate runoff estimate is essential for effective flood control. The author proposes 

simulating water flow in the Hoshangabad region using ANN-based models. Various 

metrics are used to assess the models' performance, including their accuracy, degree 

of improvement over the original data, and degree of closeness to the actual data. The 

goal of Kantharia et al.'s (2024) study is to determine how successfully soil and 

precipitation data may be used to forecast the daily flow of water out of the 

Damanganga River. The aim of the project is to close this gap by developing a 

customised ANFIS model for the Damanganga basin that incorporates input variables 

for soil moisture at different depths. The R2 and the NSE are the two statistics we use 

to gauge how well the model fits the data. The Urban Heat Island (UHI) phenomenon 

and its effects are becoming more well known, but there aren't many comprehensive 

studies on the subject, particularly in areas with hot, semiarid climates like India, as 

Sharma et al. (2023) found. By using remote sensing and geospatial analytic 

techniques to investigate how surface temperatures and UHI effects change throughout 

the course of the year, particularly taking into account the impact of land use and water 

body cooling, the author's model aims to close the existing knowledge gaps on UHI 
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impacts. In areas like South Gujarat, India, precise rainfall forecast models are 

essential, as Baudhanwala et al. (2024) point out. The region is seeing increasingly 

severe rainstorms, which has an adverse effect on the local water supply, agriculture, 

infrastructure, and quality of life. Four different machine learning approaches are used 

by the author: RF (Random Forest), DT (Decision Tree), MLR (Multiple Linear 

Regression), and SVR (Support Vector Regression). Based on the study, the maximum 

discharge coefficient indicates that the hydraulic efficiency is achieved at a width ratio 

between 1.25 and 1.30. Energy dissipation rises and returns become less significant 

beyond this range. In the end, improving civil engineering and water resource 

management techniques, this study underscores the usefulness of fuzzy neural 

networks in hydraulic engineering and provides insightful information for PKW 

design. 

 

 

Figure 1 Schematic experimental setup plan view 
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CHAPTER 3: EXPERIMENTAL SETUP AND DATASET 

The width ratio data from the PKW that Singh & Kumar provided in their 2023 

publication is used in this research. A horizontal flume with a rectangular cross-section 

of 0.516 metres in width, 0.6 metres in height, and 10 metres in length was used for a 

variety of laboratory testing. The discharge flow rate was measured with an accuracy 

limit of ±0.2% using an electromagnetic flowmeter. A metal monitor gate was installed 

on the flume headbox to increase the upstream approach flow's homogeneity. The 

average flow velocity was determined using an Acoustic Doppler Velocimeter (ADV). 

The models, as seen in Fig. 1, were constructed from 8 mm-thick transparent acrylic 

sheets and assembled using chloroform. A thorough explanation of the geometrical 

characteristics and data collected throughout the investigation may be found in Table 

1.  

Table 1 indicates that Wi is the width of the input key and Wo is the width of the outlet 

key. Whereas W is the width of the PKW channel, Ht is the total head, Q is the 

discharge flow of PKW, P is the height of PKW, EL is the relative energy dissipation, 

and E1 or E2 is the energy dissipation at a specific section.  

 

 

Table 1: Sample of data collected in the present study 
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CHAPTER 4: METHODOLOGY 

4.1 Fuzzy Logic 

Fuzzy logic is a mathematical framework that allows for thinking about erroneous or 

imprecise information. Unlike standard binary logic, which requires variables to be 

either 0 or 1, true or false, fuzzy logic incorporates the notion of partial truth, where 

variables may have values between 0 and 1. This delicate approach to logic is 

particularly useful in replicating complex systems where uncertainty, ambiguity, and 

vagueness are common. The idea of fuzzy logic was introduced by Lotfi A. Zadeh in 

the 1960s. Zadeh recognized that traditional binary logic was insufficient for dealing 

with the intricacy of real-world situations where information is often erroneous or 

incomplete. He presented fuzzy logic as a strategy to bridge the gap between human 

thinking and the rigid binary logic applied in computers. At the heart of fuzzy logic is 

the idea of a fuzzy set. A fuzzy set is a collection of components with a continuum of 

degrees of membership. Each element in a fuzzy set is linked with a membership value, 

which ranges from 0 to 1. This membership value represents the degree to which the 

element belongs to the set. For example, in a fuzzy set representing "tall people," a 

person who is 6 feet tall may have a membership value of 0.8, but a person who is 5 

feet 8 inches tall would have a membership value of 0.5. This enables for a more 

flexible and accurate depiction of categories. Fuzzy logic also encompasses the use of 

linguistic variables, which are variables expressed in terms of words rather than 

numbers. These linguistic variables are associated with fuzzy sets and may be altered 

using a series of rules known as fuzzy if-then rules. For instance, in a temperature 

management system, the language variables may be "cold," "warm," and "hot," and 

the rules may be stated as: "If the temperature is cold, then increase the heater output," 

or "If the temperature is hot, then decrease the heater output." These rules allow the 

machine to make decisions based on erroneous input data. One of the primary aspects 

of fuzzy logic is its capacity to handle uncertainty and ambiguity. This is done by the 

use of membership functions, which explain how each point in the input space is 

transformed to a membership value between 0 and 1. These functions may adopt 

different shapes, such as triangular, trapezoidal, or Gaussian, depending on the unique 

application. The choice of membership function effects the performance of the fuzzy 

logic system and is generally decided by trial and expert knowledge. Fuzzy logic 

systems usually consist of four essential components: fuzzification, rule basis, 

inference engine, and defuzzification. 

1. Fuzzification: This step comprises changing crisp input values into fuzzy values 

employing membership functions. For example, if the input temperature is 18°C, it 

may be fuzzified into a degree of membership for the fuzzy sets "cool" and "warm." 



9 
 
 

2. Rule Base: The rule base contains a set of fuzzy if-then rules that construct the 

relationships between fuzzy input and output variables. These recommendations are 

produced from expert knowledge or empirical evidence. 

3. Inference Engine: The inference engine analyses the fuzzy input values according 

to the rules in the rule base to produce fuzzy output values. This includes assessing the 

degree of match between the fuzzy inputs and the criteria of each rule. 

4. Defuzzification: The final step is to turn the fuzzy output values back into crisp 

ones. This is done utilizing many defuzzification procedures, such as the centroid 

method, which calculates the centre of gravity of the aggregated fuzzy set. 

To explain the usage of fuzzy logic, use the example of a fuzzy logic-based washing 

machine. Traditional washing machines work using predetermined cycles and settings, 

which may not always be best for all sorts of laundry.   

 

Figure 2 Fuzzy logic 

A fuzzy logic-based washing machine, on the other hand, may dynamically adjust its 

washing cycle depending on the sort and amount of laundry, dirtiness degree, and 

fabric type. In this system, sensors monitor numerous factors such as the load size, 

water temperature, and dirt level. These measurements are then fuzzified into language 

variables such as "small," "medium," or "large" for load size, and "low," "medium," or 

"high" for dirt level. The fuzzy if-then rules might comprise statements like: "If the 

load size is small and the dirt level is low, then set a short wash cycle," or "If the load 

size is large and the dirt level is high, then set a long wash cycle with a high agitation 

level." The inference engine understands these rules and combines them to yield fuzzy 

outputs, which are then defuzzied to establish the exact parameters for the wash cycle, 

such as the duration, water level, and agitation intensity. This results in a more efficient 

and effective washing technique that is customized to the particular needs of each load 

of laundry. Another example of fuzzy logic in action is in the subject of driverless 

automobiles. Self-driving cars need to make real-time decisions based on a range of 

inputs, such as speed, distance to other vehicles, road conditions, and traffic signals. 
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Fuzzy logic assists these autos to handle the inherent ambiguity and variability of the 

driving environment. For instance, the automobile's control system may apply fuzzy 

logic to compute the ideal speed based on the distance to the vehicle ahead and the 

road conditions. The laws might include: "If the distance to the car ahead is close and 

the road is wet, then reduce speed significantly," or "If the distance to the car ahead is 

far and the road is dry, then maintain current speed." The fuzzy logic system examines 

these inputs and generates a result that balances safety and efficiency, ensuring that 

the vehicle changes effortlessly to changing scenarios. This capability is crucial for 

delivering the high degree of reliability and safety required for autonomous driving. 

Fuzzy logic has also found applications in various other areas, including climate 

control systems, financial modelling, medical diagnostics, and robotics. In climate 

control systems, fuzzy logic may enhance heating and cooling by considering 

parameters such as room temperature, humidity, and occupancy levels. Financial 

models apply fuzzy logic to handle the ambiguity and vagueness in market movements 

and investment decisions. In medical diagnosis, fuzzy logic assists in establishing 

conclusions based on faulty symptoms and patient history, boosting the accuracy of 

diagnoses and treatment regimens. In robotics, fuzzy logic helps robots to execute hard 

tasks and interact with their environment in a more human-like fashion. The versatility 

of fuzzy logic rests in its potential to accommodate human-like reasoning and deal 

with ambiguity, making it a valuable tool in a wide range of applications. Its 

combination with other computing technologies, such as neural networks, further 

improves its potential. Fuzzy Neural Networks (FNN), for instance, combine the 

approximate reasoning of fuzzy logic with the learning capabilities of neural networks, 

providing excellent models for sophisticated problem-solving. These hybrid systems 

are particularly useful in cases when accurate mathematical models are difficult to 

develop or when the system must adapt to changing conditions. 

4.2 Neural Network 

Neural networks, a subtype of machine learning, have emerged as a pioneering 

technology in the realm of artificial intelligence. Inspired by the human brain's 

structure and function, neural networks consist of connected nodes, or neurons, that 

interact collectively to solve challenging problems. This section delves at the design, 

functioning, and different forms of neural networks, presenting a complete 

understanding of this remarkable technology. At the hub of a neural network is the 

neuron, a computer unit that accepts inputs and provides an output. Each neuron 

receives one or more inputs, which are later blended using a weighted sum. This sum 

is delivered via an activation function to form the neuron's output. The activation 

function introduces non-linearity into the network, enabling it to model intricate 

interactions between inputs and outputs. Common activation functions include the 

sigmoid, hyperbolic tangent (tanh), and rectified linear unit (ReLU). A neural network 

normally consists of three layers: the input layer, hidden layers, and the output layer. 

The input layer receives the original data, which is later transmitted by one or more 
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hidden layers. These hidden layers are where most of the computation occurs, as they 

convert the inputs into meaningful patterns. Finally, the output layer produces the 

network's predictions or classifications based on the processed data. Training a neural 

network requires adjusting the weights of the connections between neurons to lower 

the inaccuracy in the network's predictions. This technique is carried out using an 

algorithm called backpropagation, which is a supervised learning approach. During 

backpropagation, the network's output is compared to the actual target values, and the 

error is communicated backward through the network. The weights are then updated 

using a gradient descent approach, which minimizes the error by modifying the 

weights in the direction of the steepest decline in error. One of the important 

components of neural networks is their potential to learn from data. This learning 

capability is what enables neural networks to accomplish tasks such as image 

recognition, natural language processing, and game playing with astounding accuracy. 

The training technique frequently entails feeding vast amounts of labelled data into the 

network, allowing it to detect patterns and make predictions based on new, unknown 

data. 

 

Figure 3 Neural Network 

There are numerous sorts of neural networks, each created for particular activities and 

goals. The most basic form is the feedforward neural network, where the data goes in 

one manner from the input layer to the output layer. These networks are well-suited 

for applications such as picture classification and regression analysis. Convolutional 

neural networks (CNNs) are a special form of feedforward network built for processing 

grid-like input, such as photos. CNNs utilize convolutional layers, which apply filters 

to the input data to distinguish properties such as edges, textures, and shapes. These 

features are then applied to classify the input data. CNNs have been particularly 

successful in picture recognition tasks, reaching state-of-the-art performance in 

various benchmarks. Recurrent neural networks (RNNs) are meant to handle 

sequential data, such as time series or spoken language. Unlike feedforward networks, 

RNNs have connections that loop back on themselves, allowing them to preserve a 
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recall of earlier inputs. This makes RNNs well-suited for applications such as language 

modelling, speech recognition, and machine translation. However, conventional RNNs 

suffer from issues such as vanishing gradients, which may make training difficult. 

Long short-term memory (LSTM) networks and gated recurrent units (GRUs) are 

variations of RNNs that alleviate these challenges by integrating gating mechanisms 

to regulate the flow of information. Another notable kind of neural network is the 

generative adversarial network (GAN), which consists of two networks: a generator 

and a discriminator. The generator generates synthetic data samples, while the 

discriminator attempts to discern between genuine and false samples. The two 

networks are trained simultaneously in a process that may be likened to a game, with 

the generator growing its ability to create realistic samples and the discriminator 

raising its capacity to recognize fakes. GANs have been used to make realistic 

graphics, create art, and even develop innovative pharmaceutical molecules. 

Autoencoders are another sort of neural network employed for unsupervised learning 

applications such as dimensionality reduction and anomaly detection. An autoencoder 

consists of an encoder that compresses the input data into a lower-dimensional 

representation and a decoder that reconstructs the original data from this 

representation. By training the network to minimize the reconstruction error, 

autoencoders may learn significant features that describe the fundamental structure of 

the data. Despite their incredible capacities, neural networks are not without 

restrictions. One of the primary difficulties is the necessity for enormous amounts of 

labeled data for training. Collecting and categorizing such data may be time-

consuming and expensive. Additionally, neural networks may be computationally 

demanding, necessitating extensive processing power and memory, especially for deep 

networks with many layers. Another challenge is the interpretability of neural 

networks. Unlike standard machine learning models, which often expose apparent and 

intelligible linkages between inputs and outputs, neural networks behave as "black 

boxes," making it hard to fathom how they arrive at their predictions. This lack of 

transparency may be detrimental in areas where explain ability is crucial, such as in 

healthcare or finance. Overfitting is another key issue in neural networks. When a 

network is too intricate or trained for too long on a restricted dataset, it may learn to 

recall the training data rather than generalize from it. This results in poor performance 

on new, unexplored data. Regularization approaches such as dropout, where randomly 

picked neurons are removed during training, and early stopping, where training is 

halted anytime performance on a validation set starts to deteriorate, are widely applied 

to minimize overfitting. Recent achievements in neural network research have focused 

on overcoming these difficulties and enhancing the capabilities of neural networks. 

Transfer learning, where a pre-trained network is fine-tuned on a new job, has emerged 

as a potential approach for utilizing existing knowledge and minimizing the 

requirement for massive datasets. Additionally, improvements in technology, such as 

the advent of specialized processors like GPUs and TPUs, have considerably sped 

neural network training and inference. Neural networks have also experienced 

considerable improvements in architectural design. Techniques such as batch 

normalization, which normalizes the inputs to each layer, and residual connections, 

which enable gradients to flow more freely across deep networks, have facilitated the 

training of significantly deeper and more powerful networks. Architectures like the 

Transformer, which focuses on self-attention processes to handle sequential input, 
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have revolutionized natural language processing, resulting to the introduction of 

models such as BERT and GPT that attain outstanding performance on multiple 

language tasks. 

4.3 The FNN Model 

The fuzzification layer, the production layer, the hidden layers of the neural network, 

and the output layer comprise the four main layers of the suggested model. Because 

each layer is carefully crafted to take use of the advantages of both fuzzy logic and 

neural networks, the model is able to properly manage the inherent uncertainties and 

nonlinearities in hydraulic data. The input variables are converted into fuzzy sets at the 

fuzzification layer, which is the first layer of the model. Membership functions, which 

measure the extent to which each input belongs to a fuzzy set, are used to accomplish 

this transition. Depending on the kind of input data and the needs of the particular 

application, membership functions might be triangular, trapezoidal, or Gaussian. The 

membership functions used in this investigation are shown in Figure 4. 

 
Figure 4 Trapezoidal membership function 

 

The production layer comes after the fuzzification layer and uses the fuzzified inputs 

to create fuzzy rules. The links between the input variables and the intended result are 

captured in these rules, which are based on expert knowledge and empirical 

observations. The production layer efficiently converts the fuzzy sets received as input 

into a rule base that controls the behaviour of the model. The production layer's fuzzy 

outputs are used as inputs by the neural network's hidden layers. These hidden layers 

are made up of several linked neurons, each of which performs an activation function 

after a weighted sum of its inputs. The model's ability to learn and generalise from the 

data is dependent on important design characteristics, including the architecture and 

number of hidden layers. To reduce the inaccuracy in the model's predictions, the 

weights of the connections between neurons are adjusted throughout the training 

phase. The backpropagation algorithm, a supervised learning method, is used to do 

this. Iteratively updating the weights based on the gradient of the loss function with 

respect to the weights is how this is done. The mean squared error between the actual 
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and predicted values, which measures the difference between the model's predictions 

and the actual results, is often used as the loss function in this situation. 

The output layer, the last layer of the neural network, has only one neuron in it. The 

final prediction of the model is generated by this neuron by averaging the outputs from 

the last hidden layer. An important factor in the construction of effective hydraulic 

structures is the output, which shows the expected ideal ratio of the PKW's intake to 

outlet key widths. Since the output layer's objective is to provide a continuous value 

rather than a categorical label, a linear activation function is usually used. The model's 

ability to provide an accurate and comprehensible prediction is ensured by its single 

output neuron, which allows for easy validation by comparison with actual data. 
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CHAPTER 5: RESULTS 

The experimental dataset is gathered, pre-processed, and fed into the FNN model. Data 

validation is accomplished by dividing the data into two groups: training and testing 

data. The two datasets are split 4:1 and selected at random. By adjusting the 

hyperparameters, the model is trained using the training data. The testing data is then 

used to verify the model. This approach makes it possible to evaluate the model's 

performance in a balanced manner.  

 

 
Table 2 Performance evaluation of predicted parameters by FNN model for training and testing dataset 

RMSE and MAE are the metrics used to assess the model. The average error, which 

provides a clear indication of the model's performance, is what MAE informs us about. 

Significant mistakes are given greater weight by RMSE, making it a more sensitive 

metric for assessing how accurate the forecasts are. RMSE and MAE values are 

tabulated in Table 2 and shown visually in Fig 5. 

 

 

Figure 5 RMSE and MAE values 

When evaluating the developed length, one finds the PKW (PKW) discharge 

coefficient within the range of 0.24 < Ht/P < 0.79. One essential feature of any flow 

measuring arrangement is the stage-discharge relationship. As shown in Fig. 6, it is 

represented as a curve that plots discharge against the head for all Wi/Wo values 
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between 1.0 and 2.0. As shown in Figure 4, the performance metrics of the Fuzzy 

Neural Network (FNN) model show an RMSE (Root Mean Square Error) value of 

0.0582 and a MAE (Mean Absolute Error) value of 0.0383. These metrics are essential 

markers of how well the model predict the provided data. Table 2 shows that the mean 

absolute difference between the predicted and actual values is 0.0383, and the average 

magnitude of prediction errors is 0.0582. These measures play a crucial role in 

evaluating the model's accuracy and dependability in studies, therefore advancing a 

thorough comprehension of its predictive powers. 
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Figure 6 Stage-discharge curve Q [L/s] v/s Ht [m]  

We outline the findings in Fig. 7, which shows CDL as a function of Ht/P, and take into 

consideration the greatest CDL values that indicate peak discharge efficiency to 

determine the ideal Wi/Wo proportion range. Fig. 7 amply demonstrates that the highest 

increases in discharge efficiency are obtained with Wi/Wo ratios of 1.25 and 1.3. Wi/Wo 

values of 1, 1.1, 1.2, 1.25, 1.3, 1.35, 1.4, 1.5, and 2 occur in close succession with 

them. This finding emphasises that the Wi/Wo range of 1.25 to 1.3 is where the best 

discharge performance is located. As can be seen from the figures, the model's 

predictions for the ratio of widths and parameters nearly always coincide. As a result, 

the model shows to be useful in predicting the hydraulic behaviours resulting from 

changes in the inlet and outlet keys' width. 

 Moreover, Wi/Wo = 1.25 obtains a much greater discharge efficiency than Wi/Wo = 1.3 

for Ht/P < 0.35, according to the results in Fig 7. On the other hand, Wi/Wo = 1.3 

outperforms Wi/Wo = 1.25 in terms of discharge efficiency over the interval 0.35 < 

Ht/P < 0.44. Among the configurations with the maximum discharge capacity in the 

range of 0.44 < Ht/P < 0.81, Wi/Wo = 1.4 is particularly noteworthy. PKW 

configurations with Wi/Wo values of 1.25 and 1.3, in particular, show an impressive 7–

17% rise in efficiency over Wi/Wo = 1.0 and an estimated 8–13% gain over Wi/Wo = 

2.0. It is noteworthy that the Fuzzy Neural Network (FNN) model performs very well 

in terms of accuracy, as shown by Figure 5's RMSE of 0.0206 and MAE of 0.0150.  
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Figure 7 Discharge Coefficient variation curve CDL v/s Ht/P 

The FNN models demonstrated steady trends in relative energy dissipation, and their 

results were very accurately measured and confirmed against prior research. In this 

study, we observed that, for all PKW models, energy dissipation rates are often greater 

when Ht/P is smaller than 0.42. This finding contradicts other studies that found less 

energy dissipation at these levels. On the other hand, when Ht/P values were higher 

than 0.55 and fell between 0.42 < Ht/P < 0.55, the relative energy dissipation rate, or 

EL = (E1-E2)/E1, exhibited a more intricate and mixed pattern. The relative energy 

dissipation [EL = (E1-E2)/E1] fluctuation at the base of PKWs as a function of the 

upstream head ratio (Ht/P) is shown in Figures 8 and 9. 
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Figure 8 Energy dissipation curve [EL v/s Ht/P] 
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Figure 9 Residual energy curve [E2/E1 v/s Ht/P] 
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CHAPTER 6: CONCLUSION 

To precisely calculate the optimal inlet-to-outlet key width ratio of PKW and the 

impact of various width ratios on energy dissipation, Singh and Kumar (2023) 

employed experimental data to create the Fuzzy Neural Network (FNN) algorithm-

based model in this study. The proposed model for predicting the width ratio of the 

key indicates that the strategies established a highly nonlinear link between the width 

ratio and input parameters, with promising prediction outcomes. Three hydraulic 

behaviours are measured by this procedure: discharge flow over the piano key weir, 

coefficient of discharge along the crest length (CDL), and relative energy dissipation 

(EL). The highest efficiency is obtained at a width ratio (Wi/Wo) of around 1.2755–

1.28, with an efficiency boost of 7–17% over Wi/Wo = 1 and 8–13% over Wi/Wo = 2.0. 

The energy losses over the weir decrease as the Wi/Wo ratio increases, with the highest 

relative energy dissipation corresponding to the lowest width ratio (i.e., EL = 0.8093 

or 80.93%, the corresponding Wi/Wo = 1) and the lowest energy loss corresponding to 

the highest width ratio (i.e., EL = 0.5818 or 58.18%, the related Wi/Wo = 2.0). This 

implies that with Wi/Wo = 2.0, there is 12–23% less energy dissipation across the weir 

compared to Wi/Wo = 1. The Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE) figures are computed to assess the algorithm's performance. More 

investigation is needed into forecasting and other soft computing techniques. 

Furthermore, taking scaling effects into account makes it possible to carry out an 

experimental investigation or a CFD simulation. 
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