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Abstract

In the field of computer vision, pedestrian detection is an important job that is fre-

quently utilised in robots, auto-navigation, and video surveillance. Pedestrian detection is

critical to lowering accident rates and enhancing automation in the transportation sector.

Deep learning has revolutionised object identification in recent years, inspiring the devel-

opment of many architectures for this use. In-depth comparisons of four well-known deep

learning models for pedestrian detection are presented in this thesis: As an illustration,

there are four types of convolutional neural networks: region-based (R-CNN), fast region-

based (Fast R-CNN), faster region-based (Faster R-CNN), and deep convolutional (Deep

CNN). This work’s primary goal is to evaluate these models’ performance on a number of

performance metrics, including sensitivity to various situations, temporal complexity, and

detection rate. Because each model has a unique way of enhancing efficiency, they are all

important milestones in the evolution of object detection architecture. Multiple tests on

a standardized pedestrian detection dataset will be included in this thesis to offer a clear

grasp of the variations and similarities between these models. It also considers a variety

of dynamically changing factors, including pedestrian density, occlusion occurrence, and

illumination conditions. The precision, recall, F1-score, and average precision are among

the metrics used to evaluate the detection task’s accuracy. It also covers how long each

model takes to train and infer, as well as how many resources it uses overall. The re-

sults show how well the four classes of models performed in terms of accuracy and time.

Consequently, Deep CNNs and R-CNNs highlight significant facets of feature extraction

and region-based detection techniques, even if Faster R-CNN keeps a favorable accuracy

and speed ratio throughout the studies. Though it is somewhat less efficient than Fast

R-CNN, which was designed to reach near real-time performance, Faster R-CNN performs

better than both R-CNN and Fast R-CNN.

This thesis also provides the conclusion for the overall findings and discusses the future

scope of this research and future possibilities for the development of pedestrian detection
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systems. The following goals for future research can be identified: introducing the teach-

ing and using the features of several architectures to improve the effect; strengthening

the detection under different environments; expanding the study for other relevant jobs

in computer vision. From this comparative study, the authors have provided a rich set of

lessons that can be used in the continuous improvement of pedestrian detection and can

aid the improvement of numerous intelligent systems in different application areas.
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Chapter 1

INTRODUCTION

Pedestrian detection is one of the foundational activities in computer vision that has sig-
nificant importance and prospective usage in many areas such as autonomous vehicles,
security and surveillance systems, and robotics. Acquiring accurate detection and location
of pedestrians in different terrains is greatly important in increasing the safety, security,
and efficiency of the systems. Another common problem with the increasing popularity
of self-driven cars is the ability to detect pedestrians properly and safely. Likewise in
surveillance applications, accurate detection is helpful to the monitoring and prevention
of crimes as well as in robotics applications, it helps to enhance safe interactions between
humans and robots. Since this is a critical job, much effort has been invested in the cre-
ation of efficient algorithms that can successfully identify pedestrians even under difficult
circumstances[5][6]. To this end, this introduction will begin with a historical perspective
of the field of pedestrian detection starting from basic image processing techniques, the
emergence of computer vision and machine learning, and finally the coming of age of deep
learning; followed by a brief state-of-art in pedestrian detection and then finally describing
the deep learning models that are widely being used in this field[5][6].

1.1 Background

Detection of pedestrians is one of the most important issues in the computer vision field
and has all-embracing applications in areas such as the safety of the people, planning of
cities, and automation. The object of the task is to detect the presence of human figures
in a given image or frame of a video to be used in various applications like autopilot cars,
security systems, and robots. In the past, pedestrian detection systems incorporated cru-
cial features and standard methods of machine learning. Early techniques incorporated
the use of features for example; Haar-like features, edge-based features, and HOG (His-
togram of Oriented Gradients). These features were extracted manually and employed
for experiments concerning classifiers such as Support Vector Machines (SVM) [7] and
Decision Trees. Though the 2 approaches were beneficial in origin and helpful with some
degrees of accomplishment in a contained setting, both offered severe weaknesses in that
they could not be easily applied across various situation types. For example, the HOG
descriptor explained by Dalal et al in 2005 has been a landmark in the development of the
field known as pedestrian detection[8]. The approach used here was to therefore compute
gradients on various parts of the image whereby histograms were to be built depending on
the orientation of such gradients. Actually, the integration of the HOG feature descriptor
with linear SVM yielded fine outcomes in the test using the INRIA person dataset, which

1



is widely used in pedestrian detection. However, a major problem in the application of
the HOG+SVM pipeline was variations in scale, pose, and occlusion, frequently meeting
in a real-life setting [Dalal & Triggs, 2005][8]. In the past, pedestrian detection systems
incorporated crucial features and standard methods of machine learning. Early techniques
incorporated the use of features for example; Haar-like features, edge-based features, and
HOG (Histogram of Oriented Gradients). These features were extracted manually and
employed for experiments concerning classifiers such as Support Vector Machines (SVM)
and Decision Trees. Though the 2 approaches were beneficial in origin and helpful with
some degrees of accomplishment in a contained setting, both offered severe weaknesses
in that they could not be easily applied across various situation types. For example, the
HOG descriptor explained by Dalal et al in 2005 has been a landmark in the develop-
ment of the field known as pedestrian detection. The approach used here was to therefore
compute gradients on various parts of the image whereby histograms were to be built
depending on the orientation of such gradients[8]. Actually, the integration of the HOG
feature descriptor with linear SVM yielded fine outcomes in the test using the INRIA
person dataset, which is widely used in pedestrian detection. However, a major problem
in the application of the HOG+SVM pipeline was variations in scale, pose, and occlusion,
frequently meeting in a real-life setting.

CNN or Convolutional Neural Networks which emerged as a new branch of deep learn-
ing paved a huge way in the field of computer vision. CNNs, motivated by the neurocog-
nitive visual areas in the brain, do not require any manual feature extraction but learn
features in a hierarchical way from raw pixel data. Such an end-to-end learning ca-
pacity enabled CNNs to perform better than the traditional approaches that relied on
the designing of peculiar features. The developments in deep learning for the purpose
of pedestrian detection stemmed from the Deep Convolutional Neural Networks (Deep
CNNs). Amounts of models like AlexNet, which were proposed by Krizhevsky et al. in
2012, proved the efficiency of deep learning techniques by the state-of-art performance on
the ImageNet classification problem [9]. AlexNet succeeded in opening new possibilities
for improving CNN architecture by presenting even more advanced architectures, for in-
stance, VGGNet, GoogLeNet, and ResNet, which positively affected depth, computation
speed, and accuracy.

However, though Deep CNNs were accurate when used in classification, using direct
object detection was another issue. Object detection differs from object recognition in
that object detection also involves localization, in which one needs to predict the bound-
aries of the objects such as rectangles around detected objects. This requirement for both
identification and the determination of the position of the objects led to the creation of
architectures particular to object detection.[4]. It is very crucial to detect pedestrians,
especially in the case of self-driven cars. In cut and shot Detection of pedestrians accu-
rately is very important in terms of the safety of car users and the pedestrians on the
roads. In surveillance systems, pedestrian detection is crucial in the surveillance of open
spaces such as roads, management of crowds, and counteraction of unlawful actions. In
the field of robotics, pedestrian detection helps to avoid collisions and improve the inter-
action between humans and robots and collaboration between them. In the sphere of the
urban environment, pedestrian detection systems also help in building smart cities since
they gather data on the flows of pedestrians and their actions, thus contributing to the
effectiveness of traffic control, public transportation, and infrastructure[10].
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1.2 Motivation

1.2.1 Growing Importance of Pedestrian Detection

In recent years the advancement of autonomous systems and the growing concern for the
safety of citizens in urban areas has raised the requirement for highly accurate pedestrian
detection systems. Self-driving cars, for instance, need to correctly identify all the indi-
viduals on the roads so as to reduce the number of cases of accidents with or without
causalities in congested urban areas. The smashing fails of self-driving cars in terms of
pedestrian detection have made the question of detection systems very essential. Well-
developed pedestrian detection systems do not only improve the safety and utilization
of these cars or add to the trust in self-driving vehicles but are also vital to improve
the effectiveness of the car [5]. Automatic pedestrian detection plays a crucial role in
surveillance systems implemented in streets, airports, and shopping malls among others
because they help in monitoring activities, crowd control, and detecting would-be security
threats. In the current world people are moving to urbanized areas and security issues
are on the rise thus the demand for improved surveillance systems. For these surveil-
lance systems, pedestrian detection is essential in increasing their competency through
the efficient monitoring of these areas and timely detection of mishaps [11].

In the robotics domain, pedestrian detection is a key component in ensuring suitable
collaboration between man and the robot. These robots will be used in environments with
the public, thus vital that the robots can first detect pedestrians and react accordingly
to avoid dying or causing an accident. This capability is useful in applications such
as service robots in public areas to flexible and collaborative robots in industries[12].
Pedestrian detection processes also significantly serve other areas ranging from urban
planning to smart city concepts. This information ensures these systems enhance traffic
control, coordinate and construct proper facilities for pedestrians, as well as enhance the
existing and new systems of public transport in the city. This use of big data in urban
planning optimizes public construction and makes cities welcoming, and accommodative
to increasing human agglomerations.

However, pedestrian detection is still considered to be a very complex task in the
context of deep learning, because of the following main problems. Some of the challenges
include the physical differences of pedestrians vary greatly hence the appearance, pose, or
clothing that pedestrians are wearing influences the detection. Pedestrians are not only of
variable size and pose at different orientations, they also wear a wide variety of clothing,
Repeated patterns complicate the detection. However, occlusions, which can be seen as
situations where the detected object, here a pedestrian, is partially hidden behind other
objects, is another major problem for this detection system since the latter has to make
the best guess based on very few visual clues[12]. The issues of detecting pedestrians are
even more complicated if there are some changes in the lighting conditions or weather, or
if the background is rather cluttered. The systems that are used for detection should be
able to withstand these changes and function correspondingly in all situations. Real-time
processing is yet another factor that is quite essential in many applications, especially in
self-driving cars and security systems where the detection needs to be immediate. Main-
taining the fidelity of the solution while keeping it real-time has thus remained a big
challenge in the field. The arrival of new deeper architectures to solve those challenges
becomes as a great opportunity. Every transition from Deep CNN to Faster R-CNN has
included modifications with the view of enhancing detection competency and efficiency.
Thus, the comparative analysis of these models aimed at pedestrian detection will con-
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tribute to the determination of their advantages and disadvantages. It can help to decide
which model is preferable for a particular task and use it in practice as well as contribute
to the development of new advancements [5].

1.2.2 Challenges and Opportunities

However, pedestrian detection involves some characteristics that make it difficult to solve
even with the help of modern deep-learning techniques. This synthesis reveals some im-
portant points within the detection and recognition tasks because of changes in apparel,
poses, and appearance of pedestrians. The obstacles for pedestrians to be detected range
in shape, size, and orientation, dressed in various clothing which adds to the problem for
detection algorithms. Additionally, it is possible to mention occlusions in which a pedes-
trian is partially or fully behind another object, which constitutes another weakness since
the detection system has to guess where a pedestrian is based on limited vision[5]. In
addition to the mentioned, lighting conditions, changes in the weather, and background
clutter contribute in addition to making the task of pedestrian detection even more chal-
lenging. These variations mean that detection systems need to be immune to the various
situations so that they are efficient in every case. Another requirement that many appli-
cations entail includes real-time processing, especially for applications such as self-driving
cars or monitoring systems. The major issue that researchers are facing at the moment is
to optimize the algorithms to obtain an accurate solution while keeping the computational
time as short as possible[12].

Such a scenario to develop deep learning architectures to solve these problems can be
considered as a promising prospect. Every modification beginning with Deep CNNs to
Faster R-CNN has brought with them advancements that aim at increasing the detecting
precision and rate. Nevertheless, for a proper analysis of these models particularly for
pedestrian detection more elaborate comparisons are still required. It can help to choose
the most appropriate model depending on the specific application and encourage further
development[10]. Summing up, this thesis is justified by the increasing significance of
pedestrian detection in contemporary applications, the multitude of new exciting prob-
lems and possibilities that appeared due to deep learning’s progress, and the lack of an
exhaustive comparative analysis of the methods suitable for further investigations and
practical usage. Thus, by considering these motivations, this thesis tries to contribute to
the progression of pedestrian detection performance and for the enhancement of safety
along with intelligence in different domains[4].

1.3 Objectives

The objectives of this thesis are centered on performing an in-depth comparative analysis
of four significant deep learning models for pedestrian detection: Regions with CNN
features (R-CNN) and Fast R-CNN, and more advanced Faster R-CNN. The purpose of
this analysis is to familiarize the reader with these models’ performance characteristics,
benefits, and drawbacks. The detailed objectives are as follows:

4



1.3.1 Comprehensive Performance Evaluation

The first objective is to assess the identified deep learning models based on their efficiency
indicators. This involves:

Accuracy

Figuring out the true positive, true negative, false positive, and false negative detection
rates of each model under different scenarios involving pedestrian detection. The ratio
of correctly identified positive occurrences to all actual positive cases of the pedestrians
in this case is known as recall. The ratio of accurately identified positive instances to
all positive cases that the model was able to detect is known as precision. The F1-score,
which is the harmonic mean of precision and recall, will be used in addition to accuracy
to provide each model with a fair comparison and lessen the impact of significant variance
among datasets.

Speed

Considering the inference time of each model since it takes an important role in the
application domain that demands a real-time response. This includes the time taken to
process every single frame of an image or video as well as the time taken to produce the
detections.

Computational Efficiency

Evaluating the resource demand of each model: the RAM usage and the CPU load. This
evaluation will aid in finding out on how implementable these models are, starting with
servers all the way to embedded systems.

1.3.2 Robustness Analysis

Another important objective combines the evaluation of the model’s performance under
various situations that resemble real-world pedestrian detection cases. This involves:

Occlusions

Checking the models’ performance against partially occluded pedestrians which is a com-
mon scenario in crowd situations. The gender condition on similar parts of the body will
be tested to determine the level of generalization or specific prediction for the presence of
pedestrians by each model when exposed to different degrees of occlusion.

Lighting Conditions

To compare the effectiveness of the models under different lighting conditions such as
bright light, low light, and different shadows. Development of this analysis will also assist
in finding the model’s stability when in the presence of variation in illumination, especially
that which occurs outside at night.
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Scalability

Testing their capability to identify pedestrians at different scales and at different distances
of the object in question. This involves assessing the capability of identifying pedestrians
on different images where the pedestrians are of different sizes because of perspective or
the distance they are from the camera.

Background Complexity

In the cluttered and dynamic background environments, to determine the models’ ability
to separate the pedestrians from background objects and dynamic scenes.

1.3.3 Comparative Analysis

Thus the main aim of this thesis is to make a comparative analysis of the four models
with the view of determining their strengths and limitations. This analysis will involve:

Model Architecture Comparison

Explain the architectural variations and advancements of each model, as well as how
the stated architectural features influence performance. This will involve analyzing the
techniques used for feature extraction, region proposal, and classification to which each
model subscribes.

Performance Trade-offs

Here it is necessary to define what sacrifices can be made to increase accuracy, computing
speed, and other factors depending on the task. In turn, knowledge of the existing trade-
offs will serve to better choose the appropriate model to solve specific problems, in which
certain indicators of model performance may be more or less important.

Application Suitability

Make suggestions on the appropriateness of each model in different real-life situations.
This entails enhancing the correlation between the various models to the needs of certain
applications like auto-pilot, security, and robotic operations.

1.3.4 Practical Implementation and Evaluation

One of the major goals is to apply each model and compare their results based on the
following grounds using the benchmarks of pedestrian detection. This involves:

Dataset Selection

Select reasonable benchmark datasets that are commonly accepted in the field of pedes-
trian detection to eliminate the discrepancies in the experimental results. Some of the
datasets include the Caltech Pedestrian Dataset, INRIA Person Dataset, and Cityscapes
Dataset.
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Model Training and Testing

To ensure that like is compared with like, the models are trained on the above datasets
using standard and well-thought-out methods with the same level of stringency. This
entails steps such as data cleaning, data generation, and changing model parameters to
get the best results.

Evaluation Metrics

Using AP, IoU measures, and ROC curves to provide a solid to medium to good to
excellent or vice versa measure of the performance of the models.

1.3.5 Identification of Improvement Areas

According to the comparative analysis, one more goal is to reveal which aspects can be
improved in existing models. This includes:

Performance Bottlenecks

Determining concrete aspects of the models that are creating problems, for example, long
times for inference or high memory usage.

Enhancement Strategies

Proposing possible areas for improvement of the model’s performance, e.g., regarding
feature extraction region proposal methods, or development in hardware.

Hybrid Models

Also, consider the idea of refining individual architectures so that the performance of the
best (or some of them) aspects from all of them can be incorporated into one model.

1.3.6 Future Research Directions

Consequently, this thesis also intends to present the possible directions for further research
based on the conducted comparative analysis. This involves:

Emerging Technologies

Analyzing the possibilities of sections like attention mechanisms, transformers, and NAS
for the improvement of pedestrian detection.

Real-world Challenges

Stressing further issues of current attention on pedestrian detection including - the ability
to detect pedestrians during adverse conditions including darkness, rain or fog - The
interactions between multiple pedestrians that can be complex both in their movement
and in the interpretation required to navigate around them.
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Interdisciplinary Applications

Furthering research on the expansions of pedestrian detection gadgets in other sectors
including, health to trace patient mobility or agriculture to track the mobility of human
and robotic systems in farming.
Through these aims, it is the hope of this thesis to contribute to the advancement of
knowledge pertaining to pedestrian detection through deep learning models as well as to
help applicable implementation and encourage subsequent studies and advancements in
the said area that are of significant importance.
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Chapter 2

LITERATURE REVIEW

Throughout the years, a lot of progress has been made in this area; from using general fea-
ture descriptors based on labor-intensive techniques to modern deep-learning approaches.
In this chapter, a thorough literature review regarding pedestrian detection is discussed by
presenting the object detection methods’ historical analysis with a primary focus on the
pedestrian detection area. It also explains historical approaches that include handcrafted
feature-based methods, the incorporation of machine learning techniques, and the revo-
lutionary development of deep learning especially CNNs and other affiliated techniques
including R-CNN, Fast R-CNN, and Faster R-CNN among others.

2.1 Early Methods in Pedestrian Detection

2.1.1 Handcrafted Features

Early pedestrian detection methods primarily relied on handcrafted features designed to
capture essential characteristics of pedestrians in images.

Haar-like Features:

Introduced by Viola and Jones in 2001, Haar-like features became a foundational element
in early object detection methods [2]. This approach used rectangular features similar
to Haar wavelets and applied an integral image for rapid computation. While Haar-like
features were effective for face detection, their application to pedestrian detection faced
challenges due to variations in pedestrian appearance and pose.

Histograms of Oriented Gradients (HOG):

Dalal and Triggs revolutionized pedestrian detection with the introduction of HOG de-
scriptors in 2005 [8]. Using a technique called histogram of gradient directions, HOG
breaks the picture up into small spatial areas in order to capture edge and gradient fea-
tures that are typical of human forms. HOG became a standard technique for pedestrian
identification and greatly enhanced detection performance when coupled with a Support
Vector Machine (SVM) classifier.
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2.1.2 Edgelet Features:

Proposed by Wang et al. in 2009, edgelet features are small, straight edge segments
designed to capture the shape of pedestrians [13]. This approach demonstrated improved
performance in cluttered environments by focusing on local edge patterns, which are less
affected by variations in lighting and background.

2.1.3 Machine Learning Techniques

The fusion of hand-crafted features in combination with machine learning classifiers has
been an improvement in the detection of pedestrians.

Support Vector Machines (SVM):

The integration of the HOG descriptors together with the linear SVMs created a new bar
when it comes to the accuracy of the detection of pedestrians [8]. SVMs offered reliable
classification features especially between the pedestrian and non-pedestrian models from
the HOG features.

Decision Trees and Random Forests:

In their work, Enzweiler and Gavrila combined the decision trees and random forests
in order to use them for pedestrian detection [14]. The advantages of these methods
include; first, the ability to address appearance variation in pedestrians and also the vigor
of environmental situations thus enhancing the classification by using multiple decision
trees.

Boosting Methods:

Algorithms like AdaBoost were used to increase the detection accuracy by using multiple
weak classifiers to come up with a strong classifier. The use of AdaBoost for face detection
by Viola and Jones ref [2] can be considered as the first step to its application in pedestrian
detection also because it facilitated the construction of cascaded classifiers to increase the
detector’s speed and reliability.

2.2 The Advent of Deep Learning

The appearance of deep learning especially Convolutional Neural Networks (CNNs) really
brought a drastic change in object detection including pedestrian detection.

2.2.1 Convolutional Neural Networks (CNNs)

AlexNet:

The major revolution in deep learning for object detection was created in 2012 with the
appearance of AlexNet, which took the championship at the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [9]. The proposed architecture of AlexNet with deep
convolutional layers and using GPUs for the training introduced how CNNs aimed at
learning higher-level features and were superior to previous algorithms.
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VGGNet:

VGGNet was proposed by Simonyan and Zisserman in 2014, the very depth networks
with small convolution filters [11]. The structure of VGGNet was relatively simple yet
had high depth, which made it possible to obtain complex feature hierarchies; this made
the model popular in feature extraction in different detection tasks such as pedestrian
detection.

GoogLeNet:

The GoogLeNet (Inception v1) was proposed by Szegedy et al in 2015, The Inception
module was proposed for deeper networks with less computation and parameters [15].
The inception module makes use of multiple convolution filters where each filter has a
different receptive field size, this ensures that the network can effectively abstract many
of the spatial features of the inputs.

ResNet:

He et al. presented Residual Networks (ResNet) in 2016; this was in an effort to deal with
vanishing gradients with the help of residual connections [16]. Through the capability of
training immensely deep networks, ResNet improved benchmarks, particularly on image
classification and object detection algorithms, provided high generality features.

2.3 Region-Based CNNs (R-CNN)

Region-based CNNs (R-CNN) which we are going to study further as the next advance-
ment was the integration of region proposal mechanisms with the CNNs.

2.3.1 R-CNN

In this paper, first introduced by Girshick et al in 2014, R-CNN took use of CNNs to
employ region proposals produced by the selective search, which showed evident detec-
tion accuracy enhancement . R-CNN operates in three stages: making region proposals,
extracting features with the CNN, and making the final decision with the help of a linear
SVM. However, in terms of accuracy, Regions with CNN (R-CNN) was rather slow, even
though its accuracy was high because the CNN had to be run on each proposal region.
In this paper, first introduced by Girshick et al in 2014, R-CNN took use of CNNs to em-
ploy region proposals produced by the selective search, which showed evident detection
accuracy enhancement [17]. R-CNN operates in three stages: making region proposals,
extracting features with the CNN, and making the final decision with the help of a linear
SVM. However, in terms of accuracy, Regions with CNN (R-CNN) was rather slow, even
though its accuracy was high because the CNN had to be run on each proposal region.

2.3.2 Fast R-CNN

Girshick presented Fast R-CNN in 2015 [14] in an attempt to address the computational
capacity issue with R-CNN. Before using the ROI pooling layer in Fast R-CNN, the input
picture is first processed through CNN’s entire image network to obtain a feature map
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of the same size for each proposal. This also provided a higher detection rate at a lower
level of accuracy and a comparatively shorter calculation time.

2.3.3 Faster R-CNN

In 2016, Ren et al. refined Fast R-CNN to Faster R-CNN that incorporated a Region
Proposal Network (RPN) as a part of CNN [4]. The RPN creates region proposals directly
inside the network, which means that the generation of region proposals mostly does not
come with any additional costs. This single framework provided the mean of attaining
the highest level of accuracy and speed which fulfills real-time criteria.

2.4 Other Advanced Architectures

In addition to the basic family of R-CNN, many other complex structures introduced
significant improvements in the field of pedestrian detection.

2.4.1 YOLO or (You Only Look Once)

Redmon et al. initially presented the YOLO design which reformulated object detection
as a single regression problem [18]. YOLO predicts bounding boxes and classes at the
same time from a full image in one pass, making object detection in real-time possible.
Due to its fast and efficient working ability, YOLO became preferable, particularly for
apps that need the highest accurate detections.

2.4.2 SSD (Single Shot MultiBox Detector)

In their study, Liu et al. employed SSD, wherein the bounding boxes and class scores
of objects in an image are estimated using a single deep neural network [19]. SSD offers
great detection accuracy with minimal processing time by offering feature maps at various
scales to identify objects of varying sizes.

2.5 Improved Architectures

RPN+BF: Cai et al. introduced a boosted forests approach on top of region proposals
generated by RPN, demonstrating enhanced performance in pedestrian detection [20].
This method combines the strengths of deep learning for proposal generation with tra-
ditional boosting techniques for robust classification.MS-CNN: Additionally, Multi-Scale
CNN (MS-CNN) was suggested by Cai et al. [21]. MS-CNN uses a collection of subnet-
works for region proposal and detection in order to identify pedestrians of several sizes.
The difficulty of recognizing pedestrians at varying sizes and distances is addressed by
MS-CNN, which increases detection accuracy over a range of scales.

This chapter included an overview of the advancements in pedestrian identification
techniques and the necessary switch from manually created features to deep learning-
based techniques. The fascinating functions of CNNs and their variations, including
R-CNN, Fast R-CNN, and Faster R-CNN, were discussed. Taking into account the rel-
evant literature, it is demonstrated that while the deep learning approach has improved
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pedestrian detection results, issues including occlusion, scaling, and lighting conditions
are still important areas for research and improvement. The architectures and a compari-
son of Deep CNN, R-CNN, Fast R-CNN, and Faster R-CNN for pedestrian detection will
be covered in the upcoming chapters.
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Chapter 3

RESEARCH METHODOLOGY

Deep learning approaches, particularly CNNs and other upgraded models, are used in the
following study to achieve real-time and state-of-the-art pedestrian identification. An-
other crucial problem in computer vision, which is utilized extensively in security, traffic
monitoring, and self-driving automobiles, is identifying pedestrians. This chapter aims
to provide a detailed overview of the methodology used to assess and contrast the per-
formance of various advanced deep learning models, such as Region-based Convolutional
Neural Networks (R-CNN), Fast R-CNN, Faster R-CNN, and Deep Convolutional Neural
Networks (Deep CNNs). This chapter will aim to give a rich account of how the research
objectives were met in terms of data acquisition and cleaning, selection of the appropriate
models as well as steps of applying the models, and, evaluating their performances. This
section details the methodology applied in order to accomplish the research objectives;
which entails the approach taken with regard to; the selection of datasets and data pre-
processing, selection and application of machine learning models, and metrics of model
performance.

3.1 Dataset Selection and Preprocessing

3.1.1 Dataset Characteristics

The dataset used in this study was carefully sourced from Kaggle, an esteemed site fa-
mous for hosting various datasets from numerous fields. Kaggle was chosen as the primary
source because it is known to contain specified datasets with detailed annotations and bal-
anced datasets appropriate for training and assessing the model performance, especially
for pedestrian detection. This dataset was created with the objective of having an equal
number of images in the three predefined categories and includes a total of 1616 images.
Specifically, the dataset was evenly divided into two distinct categories: About pedestri-
ans, 808 SC images were captured with pedestrians in the scene while 808 other images
were naturally obtained without pedestrians in the scene. It is crucial to establish the
balance of representing each class to prevent model biases and achieve effectiveness when
trained on the created dataset.

This is the reason why there can be no doubt about the choice of making use of a
balanced dataset, as providing equal and adequate representation of both positive and
negative cases is a necessity. In this way, a distinguishing feature of the classification of
the model - the context of its work setting pedestrian or not – increases its efficiency and
generalization. However, more annotations available in the dataset contribute to providing
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significant data support for offering more profound model solutions and assessments.

Figure 3.1: Dataset

Looking at each of the images in the given dataset, all of them are very well described
with various labels separating the presence of a pedestrian and other pertinent informa-
tion if any. Such detailed annotations make the deep learning models more capable of
learning fine-grained features that naturally exist in the detection of pedestrians, thus
increasing their ability to provide accurate and consistent predictions. Furthermore, the
dataset’s diversity is a crucial aspect that underscores its utility in real-world applications.
It encompasses a wide spectrum of scenarios, encompassing varying lighting conditions,
environmental settings, pedestrian densities, and occlusion levels. This diversity not only
enriches the learning experience for the model but also ensures its adaptability to diverse
real-world scenarios, thus enhancing its practical applicability. In summary, the dataset
sourced from Kaggle represents a meticulously curated collection of 1616 images, metic-
ulously divided into two equal categories of 808 images each, featuring pedestrians and
non-pedestrians, respectively. Its rich annotation structure, balanced composition, and
diverse content render it an invaluable resource for training and evaluating deep learning
models tailored for pedestrian detection tasks.

3.1.2 Data Augmentation

To improve the variability of the training dataset and to ensure the model’s ability to
extrapolate to unseen data, several augmentation procedures were incorporated system-
atically. These techniques are very important in training deep networks and especially in
high-risk and difficult problems such as the detection of pedestrians. Here, we detail the
specific augmentation strategies employed, and how they contribute to the model’s per-

15



formance: Here, we detail the specific augmentation strategies employed, and how they
contribute to the model’s performance. For instance, if randomness is applied to rotation,
the convolutional neural network learns how to predict pedestrians in various orientations,
and when flipping is used, the model becomes insensitive to horizontal mirrors. Scaling
and translation make the model familiar with various positions and sizes of the pedestri-
ans and it will make the model immune to distortions of pedestrian size and position. If
the method of data augmentation is applied, then not only the base data set is extended
but it also provides a more complex training environment, which in turn makes the model
learn more comprehensive possible features. Random rotations are rotations of the images
by a certain number of degrees in either direction, either clockwise or anti-clockwise. This
augmentation technique assists the model in being insensitive to the orientation of the
pedestrians and therefore ensures that it learns to recognize the pedestrians irrespective of
how they appear in the image. For example, movements within -30 to +30 degrees allow
for various orientations; therefore, the model can successfully detect pedestrians who are
somewhat crooked or when their image is taken from a different angle. Rotating images
horizontally and vertically also helps the model to be invariant to the images’ reflections
which gives the model an ability to detect pedestrians in whatever position. Horizontal
flips are perhaps useful when the pedestrians might appear in either direction in the scene
as when crossing the streets. Vertical flips, while much less likely to occur in response to
real-world stimuli, can additionally put pressure on the model to seek out more geometric
invariances, because it otherwise solely might have learned to seek out patterns of posi-
tions that were often up or down. Random zooms entail scaling the images either in or
out to justify different distances of the pedestrians as seen by the camera. This technique
presents the model differently from the pedestrian at different scales enabling the model
to respond at short and long ranges.

Figure 3.2: Examples of data augmentation. [1]

The model first, randomly crops out images of the pedestrians which helps it learn all
the small features of the pedestrians and also learn to recognize the pedestrians out of the
overall view. Phases random shifts and translations displace the whole image in random
directions at certain angles. This augmentation makes the position of pedestrians within
the frame slightly more shifted and improves the model’s capability to detect a pedestrian
who is not in the image center. This is particularly helpful when it comes to practical
applications where pedestrians can occur at any region in the field of vision thus avoiding

16



the situation where the model learns to detect pedestrians only in certain regions of the
image. These augmentation techniques were done using strong frameworks such as Opencv
and TensorFlow that are developed in the Python language. OpenCV offers numerous
functions to manipulate an image such as rotation, flipping, zooming, and shifting of
an image. Last but not least, TensorFlow, which is one of the mostly used machine
learning libraries, also has effective tools and functions to make these augmentations
during training flow. These augmentation techniques help when implementing them to
prevent overfitting, it is common to encounter a model that has a high accuracy on the
training data but a poor accuracy on the unseen data. By feeding the model with a very
diverse training dataset, it is trained well, and thus it can generalize well hence becoming
more reliable. Perturbation imitates actual scene fluctuations and issues to ensure that
the model acquires robust and versatile knowledge to enhance pedestrian detection in
complex and fluctuating surroundings once released into the world. Therefore, the usage
of random rotations, flips, zooms, and shifts by utilizing OpenCV and TensorFlow plays a
significant role in expanding the dataset. These techniques augment the training corpus,
promote model relativity, and, therefore, aid in developing a more reliable and precise
pedestrian detection model.

3.1.3 Data Splitting

Data splitting is a complex process that is incorporated into the sequence of operations
for constructing machine learning models, one of the aims of which is the evaluation of
the model on new data samples. In the current paper, the data set has been split in the
ratio of 80/20 for training and testing respectively. This division of available data into
the training and test sets is often beneficiary to provide a large training sample and at
the same time have a highly reliable testing sample.

Detailed Breakdown of the Split

• Total Dataset Composition:

– Total Images: 1620

∗ Images with Pedestrians: 810

∗ Images without Pedestrians: 810

• Training Set Composition (80% of the total data):

– Total Training Images: 1294

∗ Images with Pedestrians: 647

∗ Images without Pedestrians: 647

• Testing Set Composition (20% of the total data):

– Total Testing Images: 326

∗ Images with Pedestrians: 163

∗ Images without Pedestrians: 163
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Rationale Behind the 80/20 Split

• Sufficient Training Data:

– The 80% portion allocated to the training set comprises 1294 images, ensuring
the model has a substantial amount of data to learn from.

– With 647 images of each class, the model can successfully pick up characteristics
that differentiate pedestrians from non-pedestrians.

– A larger training set helps the model recognize various patterns and variations
in the data, such as different pedestrian poses, backgrounds, lighting condi-
tions, etc.

• Robust Evaluation:

– The 20% portion designated for the test set consists of 326 images, providing
a comprehensive dataset to evaluate the model’s performance.

– The test set, which is hidden from view during training, guarantees an objective
assessment of the model’s generalization skills.

– Reliability in the computation of performance metrics, such as F1 score, recall,
accuracy, and precision, is ensured by a suitably large test set.

Importance of Data Splitting in Machine Learning

• Balance Between Training and Testing:

– This ratio creates a balance between the quantity of data kept for assessment
and the quantity accessible for training the model.

– A test set that is too tiny might not offer a trustworthy assessment of the
model’s performance, while a training set that is too small could result in
underfitting.

• Generalization:

– By keeping a separate test set, it is feasible to evaluate the model’s ability to
effectively generalize to new, unknown data.

– This is essential for determining the model’s performance in practical situa-
tions.

• Validation of Model Performance:

– By separating the data, it is ensured that performance measurements like F1
score, accuracy, precision, and recall accurately represent the actual capabilities
of the model.

• Prevention of Data Leakage:

– By clearly separating the training and testing datasets, data leakage is pre-
vented.

– By doing this, it is ensured that the training process is not influenced by
information from the test set.
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This distribution of training data into 80% and testing data in 20% is a good strategy
in making sure that any model that is being built has been tested on a broad range of
features. Hence, while training the model with 1294 images and using 326 images to
test it, enough data is offered to the model for improved learning while at the same time
ensuring that an untampered test set is also given to the model for evaluation. The
devised methodology serves for better feature learning and pattern detection and allows
evaluation of the model’s performance in terms of generalization, which is crucial for
practical applications.

3.2 Model Selection and Implementation

It can be stated that the selection of a suitable model is a critical step in the process of
designing an efficient pedestrian detection system. The ideal model should compute the
various factors that are needed quickly and accurately, and at the same time, it should
be robust and easy to implement. This research is conducted to apply state-of-the-art
deep learning models especially convolutional neural networks (CNN) that showed very
high performance in object detection. The process of selection involves a comparison of
several modern state-of-the-art models in terms of architectural strategies of the model,
performance indices, and their applicability to the field of pedestrian detection. We will
analyze and implement four prominent models: These are Deep Convolutional Neural
Network (Deep CNN), Region-based Convolutional Neural Network (R-CNN), Fast R-
CNN, and Faster R-CNN.

3.2.1 Criteria for Model Selection

When choosing a model for pedestrian detection several important factors have to be
taken into consideration in order to be sure that the chosen model is ready to perform all
the necessary operations at the best rate. The common constraints include the accuracy
of the model, the speed at which the model is executed, the stability of the model, and
the extent to which it is reusable or scalable as well as the easiness in implementing the
model.

Precision is the primary consideration when choosing a model in the case of pedes-
trian detection. An ideal model must generally detect and locate pedestrians in different
conditions for it to be said to be effective. High accuracy is crucial to minimize false
positives and false negatives, which occur when a system fails to identify real pedestrians
or fails to designate non-pedestrians as such. A model’s efficiency may be measured using
metrics like IoU, recall, and accuracy. Precision gives the ratio of the true positive detec-
tion to the overall number of positive detections, whereas recall gives the ratio of all true
positives that have been identified to all genuine true positives. Better item localization
is indicated by higher IoU, which quantifies the area of overlap between the expected and
actual bounding boxes.

Even though real-time applications like autonomous driving or surveillance need max-
imal speed, speed is still a crucial component. The model has to be able to evaluate
pictures quickly in order to recognize pedestrians. A measure of how many pictures the
model can analyze in a second is called the frames per second, and inference time is the
amount of time it takes the model to analyze an image and provide detections. These are
factors of speed. In general, it is desirable to use models with fewer inference time and
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more FPS for utilization in the real-time application because it means that the program
performs its tasks quickly and effectively.

The scalability of a model is preferable when working with larger amounts of data
and complex scenes in the environment. A scalable model means the growth of the
model’s adaptability when factoring in large amounts of data without a drastic drop in its
efficiency. This involves a trade-off where the model is complex enough to handle complex
scenes but not overly complex that it will be slow. Furthermore, the model should be able
to handle and learn from big data efficiently with the least possible usage of resources for
real-world applications.

Therefore, pre-trained models, a user-friendly framework, and well-documented are
some of the factors that contribute to implementation simplicity. The time and resources
required to train a model for pedestrian detection can be significantly reduced by all
of these. The performance of the network may be improved and training times sped
up by using transfer learning from pre-trained models learned on vast amounts of data.
When building the model, such helpful frameworks as TensorFlow and PyTorch make
usage easier and more productive. Model launch and adjustment become simpler for
practitioners as a result of issue-solving and development being encouraged by active
community assistance and documentation.

3.2.2 Candidate Models

Based on these criteria, we have shortlisted four models for detailed analysis and imple-
mentation: Some of the approaches include Deep Convolutional Neural Networks (Deep
CNN), Regions with Convolutional Neural Networks (R-CNN), Fast R-CNN, as well as,
Faster R-CNN. Every model highlights progress in object detection that includes elements
to enhance generality, efficiency, and stability.

Deep Convolutional Neural Networks (Deep CNNs)

Deep CNNs act as one of the leading approaches to perform most computer vision tasks,
including pedestrian detection. In this research paper, the reader will acclimatize with the
Architecture of Deep CNNs, how they are utilized for pedestrian detection, the challenges
associated with the methodology, methods of evaluating results, and improvements of the
Deep CNNs over the conventional techniques.

Introduction to Deep CNNs
Images and other data with a grid layout are used to train a class of deep learning

models called Deep Convolutional Neural Networks, or Deep CNNs. In order to automat-
ically and adaptively learn spatial hierarchies of features from the picture inputs, they are
composed of many layers: convolutional layers, pooling layers, and fully connected layers.

• Convolutional Layers: These layers convolve the input image with filters that
extract features from small local areas including edges, texture, and patterns. The
multiple filters help the model capture many of the aspects of the images.

• Pooling Layers: Many of these layers use techniques like max pooling or average
pooling to reduce the feature map’s spatial dimensions. Ensembling is advantageous
because it splits the labor and, by compressing characteristics, avoids overfitting.
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• Fully Connected Layers: The fully connected layers that are typically known for
arriving at the final conclusions follow the convolutional and pooling layers.

Architecture of Deep CNNs The architecture of Deep CNNs for pedestrian detec-
tion typically involves the following components:

a. Input Layer The input layer takes an image of fixed dimensions, commonly
resized to standard sizes such as 224x224 or 256x256 pixels. The resizing ensures that the
subsequent layers can operate uniformly across all input images.

b. Convolutional Layers: The network core is made up of many convolutional
layers stacked on top of one another. A collection of filters, or kernels, are applied to the
input data by each convolutional layer. The training procedure teaches the filters, which
aid in the detection of characteristics including textures, edges, and corners.

Feature Map = f(W ∗X + b)

where W represents the weights of the filter, X is the input, b is the bias, and f is an
activation function, typically ReLU (Rectified Linear Unit).

c. Activation Functions: The network gains non-linearity via activation functions,
which enables it to recognize intricate patterns. The most common activation function
used in Deep CNNs is ReLU, defined as:

f(x) = max(0, x)

ReLU helps in accelerating the training process and mitigating the vanishing gradient
problem.

d. Pooling Layers: Convolutional layers are followed by pooling layers, which lower
the feature maps’ spatial dimensionality. The most popular pooling procedure is called
max pooling, and it chooses the maximum value from a certain window usually 2x2 across
the feature map.

Pooled Feature Map = max(W )

By using pooling layers, the network may become invariant to slight distortions and
translations in the input picture.

e. Fully Connected Layers: Every neuron in the network’s last few levels is linked
to every other neuron in the one before it, making these layers completely connected. In
order to complete the final classification, these layers combine the extracted characteris-
tics.

f. Output Layer: The output layer provides the final predictions. In pedestrian
detection, this layer usually outputs bounding box coordinates and classification scores
indicating the presence of pedestrians.

Training Deep CNNs for Pedestrian Detection Training a Deep CNN involves
several steps, including data preprocessing, data augmentation, defining a loss function,
and using optimization algorithms.

a. Data Preprocessing: Data preprocessing is crucial for ensuring that the input
images are in a consistent format. This step includes resizing images, normalizing pixel
values, and sometimes applying color space transformations.

b. Data Augmentation: Techniques for augmenting data, such as arbitrary rota-
tions, flips, shifts, and zooms, are utilized to manipulate the data in order to fictitiously
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expand the training dataset. Enhancement enhances the model’s ability to generalize by
exposing it to different training picture modifications.

c. Loss Function: The loss function quantifies the difference between the predicted
output and the ground truth. For pedestrian detection, the loss function typically includes
two components: localization loss and classification loss.

Total Loss = Localization Loss + Classification Loss

Localization Loss: Measures the error in predicting the bounding box coordinates,
often using Smooth L1 loss or IoU-based loss.

Classification Loss: Measures the error in classifying the presence of pedestrians, typ-
ically using binary cross-entropy or focal loss.

d. Optimization: By changing the network’s weights, optimization techniques like
Adam and Stochastic Gradient Descent (SGD) are utilized to minimize the loss function.
Two important hyperparameters that affect how quickly the training process converges
are the learning rate and momentum.

Figure 3.3: Deep CNN

When it comes to pedestrian detection with Deep CNNs, the following difficulties are
observed. Occasionally, people are partially obscured by other objects which complicates
their detection. One of the techniques is context modeling and another one is occlusion-
aware training which can rectify this problem. As it will be possible to observe through
these pages, the model’s performance is highly dependent on aspects like shadows, low
light, and glare. Incorporating high-light conditions by means of data augmentation and
applying the methods of robust feature extraction can enhance robustness. A compli-
cated background can lead the model to provide wrong outputs by creating interference
of objects. For compact feature space, which can also differentiate pedestrians from the
background, one has to incorporate background subtraction techniques as well as use
context-aware models. Speed is a vital characteristic for applications such as autonomous
cars due to the fact that timely identification is mandatory. Deep CNNs are generally ac-
curate but they are also computationally expensive. Peculiarities of network architectures
and application of real-time elements, model pruning, and quantization might be help-
ful. The assessment of Deep CNNs in pedestrian detection implicates various measures.
Precision and recall are the basic measures used to evaluate the model’s performance.
Specificity demonstrates the degree of accuracy of the positive detections and sensitivity
shows the extent of the actual positive detections out of the entire population. IoU is
Intersection over Union, which compares the area of the predicted bounding box to the
ground truth and the localization accuracy is determined based on a larger IoU. Mean
Average Precision (mAP) is a measure that looks into the precision and recall values at
various Intersection over Union (IoU) thresholds and provides an overall score in terms of
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model efficiency. For real-time operation, the time that passes during the model process-
ing of a single picture is the inference time, and the picture frequency, which illustrates
the number of pictures that the model can process within one second, is essential.

Hence, Deep CNNs provide a better solution to pedestrian detection than the tradi-
tional methods. Traditional methods, prior inputs, and hand-crafted features are used
which are not as effective as Deep CNNs which directly learn features from the data
making detections more accurate. What’s more, Deep CNNs enforce end-to-end training,
where every stage is trained at once; this leads to both feature - extraction and classifica-
tion being optimized in order to provide the highest achievable accuracy. They are indeed
‘deep’ and hence can handle more number of images or scenes with a larger number of
objects in them. Well, their hierarchical characteristic makes them suitable to learn both
minor and major details as well as the overall structure. They are less sensitive to pose,
scale, and illumination changes as compared to the traditional methods due to the inte-
grated deep architectures and larger data augmentation. Common architectures such as
deep CNNs have radically transformed the way pedestrian detection is carried out thanks
to improved accuracy, speed, and, more importantly, flexibility of the models. Fitted with
the flexibility to learn features directly from data along with end-to-end training, deep
learning models are also more effective for the above applications. However, due to issues
such as occlusion and variations in light, there has been progress in architecture design
and also optimization techniques, and future research directions to improve their perfor-
mance. Over the years, the roles of Deep Convolutional Neural Networks are expected to
rise in supporting and uncompromised safety for Pedestrian Detection systems that are
based on the technology.

Region-based Convolutional Neural Network (R-CNN)

The region-based Convolutional Neural Networks (R-CNNs) enhance object recognition
since they combine deep learning characteristics with area recommendations. Three com-
prehensive variants of R-CNN were developed by Ross Girshick and associates. For pedes-
trian recognition, the fastest and most advanced region-based convolutional neural net-
work performs better than the conventional methods in both speed and accuracy[17].
This guideline covers the R-CNN structure in detail, along with training and some of
the challenges that are mentioned. It also covers real-world applications of R-CNNs for
pedestrian detection. The R-CNN architecture consists of three main components: The
following are the general steps for DR-Net: region proposal generation, feature extraction,
and classification.

1 Region Proposal Generation
The first operation of the R-CNN is to extract the region proposals. These are candi-

date bounding boxes for pedestrians meaning that they could contain pedestrians. Per-
haps, the most widely known algorithm for this is Selective Search. It incorporates factors
from the full search method and the segmentation process in order to create a reasonable
amount of efficient and precise region proposals.
2 Feature Extraction

After the region proposals are created, each proposal is resized to a fixed dimension
(i. e. 224 * 224 pixels) and fed into a CNN to produce feature maps. Usually, the pre-
trained CNN like AlexNet or VGG16 is applied for this purpose. The CNN, thus, takes
each proposal and converts it into a feature vector comprising important image features.
3 Object Classification and Bounding Box Regression
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The extracted feature vectors are then given as the input to a series of classifiers to
decide the presence of passing pedestrians. Moreover, a bounding box regressor fine-tunes
the proposals’ location parameters to enhance the prognosis of the proposal area.

Training R-CNNs
Several methods are used in training an R-CNN, and these are important to ensure that
the best results are arrived at.
To start with, the CNN must be initialized on a large dataset such as image-net, to learn
generic features. This step makes use of the relatively large database that has been labeled
with the images in ImageNet which helps in creating a very efficient feature extraction
capability for the CNN. The resulting CNN is then fine-tuned on the pedestrian detection
dataset. In this phase, the network refines the parameters to capture more of the model’s
distinctive traits of pedestrians. This entails feeding the CNN with the region proposals
coming from the pedestrian dataset to fine-tune it.

Figure 3.4: R-CNN [2]

Having fine-tuned the CNN, the feature vectors obtained from the region proposals
are used to train the classifiers. Traditionally, linear SVMs are trained to perform clas-
sification and each SVM is trained to identify one of the classes such as pedestrian or
non-pedestrian. A regression model is used to increase the model accuracy of the bound-
ing box coordinates. This model accepts the CNN features and provides the determination
of the adjustment of the region proposal’s coordinates.

Limitations of the R-CNN for the Identification of Traffic Pedestrians
However, R-CNNs have some shortcomings in the pedestrian detection task.
The one major disadvantage is that this approach is computationally very intensive. The
best-known technique among R-CNNs is the two-step approach that includes region pro-
posal and feature extraction stages: the first step may be rather time-consuming. Due
to this, real-time applications present a challenge. Also, learners are mostly viewed as
partially occluded or in multiple poses and sizes as they move or are static, and therefore
detecting them is challenging. Thus, these variations should not significantly affect the
accuracy of training R-CNNs since the latter are also sensitive to variations in scale and
rotation.
Checking for small pedestrians is more difficult due to impoverished information that can
be obtained from small image areas. This issue is usually solved by high-resolution features
and multi-scale detection strategies. Thus, the object detection datasets of pedestrians
are inclined to display class imbalance where pedestrian instances are fewer as compared
to the background. This imbalance can sometimes distort the count of the classifier di-
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recting it to predict the background class. The proposed R-CNNs and their variations
apply in real-life scenarios because they are useful, especially in safety-sensitive domains.
In autonomous driving, it’s vital to recognize the pedestrians especially to minimize the
risk of accidents to both the pedestrians and the car occupants. R-CNNs assist the vehicle
in detecting pedestrians in different traffic situations. Surveillance systems thus apply the
use of pedestrian detection to reduce cases of insecurity and crowd management within
public arenas. R-CNNs have the ability to detect with high probability in complicated
and congested areas. Mobile robots employing the technology interact with people in
social contexts hence the need for pedestrian detection. This puts the robots in a better
position to detect pedestrians and at the same time distinguish them from other objects
making the robots more autonomous and useful.

Despite the advancement in the area of pedestrian detection using R-CNNs, several
future research directions can be identified. Enhancements of the real-time performance of
R-CNNs are still being actively noted. Some of the deployed approaches in an attempt to
reduce the inference times include model compression, pruning besides hardware acceler-
ation. To emphasize the need for making R-CNNs future-proof, it is necessary to prevent
their vulnerability to adversarial attacks. There are efforts to find measures against it
with the present one being the activation of a fallback wireless network. By using a
combination of self-supervised and unsupervised learning methods, the dependence on
large labeled data sets may be eliminated to decrease training time and future learning
occurrences. Extending R-CNNs with other modalities including LiDAR and radar can
improve the object detection performance, especially under adverse conditions such as at
night or objects behind other objects. Despite the advancement in the area of pedestrian
detection using R-CNNs, several future research directions can be identified. Enhance-
ments of the real-time performance of R-CNNs are still being actively noted. Some of the
deployed approaches in an attempt to reduce the inference times include model compres-
sion, pruning besides hardware acceleration. To emphasize the need for making R-CNNs
future-proof, it is necessary to prevent their vulnerability to adversarial attacks. There are
efforts to find measures against it with the present one being the activation of a fallback
wireless network. By using a combination of self-supervised and unsupervised learning
methods, the dependence on large labeled data sets may be eliminated to decrease training
time and future learning occurrences. Extending R-CNNs with other modalities includ-
ing LiDAR and radar can improve the object detection performance, especially under
adverse conditions such as at night or objects behind other objects. R-CNNs have made
a huge breakthrough in pedestrian detection and exhibited a high accuracy rate that is
quite resistant to external factors. Even though there are issues like computational com-
plexity and variation in characteristics of different pedestrians some improvements and
innovations are constantly unfolding to boost their efficiency. As many studies are being
conducted, and new advancements are made, R-CNNs will be incredibly important for
numerous applications, such as autonomous vehicles, security, and robots that are within
environments full of pedestrians to ensure protection and proper functioning.

Fast Region-based Convolutional Neural Networks (Fast R-CNNs)

One may argue that Fast R-CNNs (Fast Region-based Convolutional Neural Networks)
outperform the original R-CNN in more ways than one. Ross Girshick developed Fast
R-CNN in order to reduce computation time compared to R-CNN while maintaining
detection accuracy [3]. This approach is considered a cornerstone in the field of object
identification, particularly where speed and precision measurements are crucial, like in the
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case of detecting pedestrians. It is known as Fast R-CNN because it combines the region
proposal and feature extraction for detection sections into a single, simpler framework,
cutting down on both the training and detection times. This explanation will provide an
understanding of the Fast R-CNN architecture, the training process, the challenges faced,
the enhancements made, and realistic application in the aspect of pedestrian detection.

Fast R-CNN Architecture A Fast R-CNN architecture is a combination of specific
parts, which when used accordingly helps in the fast detection and location of objects
within an image.

• Input Layer

– Takes an entire image as input, predicting a single object per region.

– The input image is usually resized to a fixed scale, like 600x600 pixels.

– Ensures that all user images are of the same dimension for consistency.

• Convolutional Layers

– A series of convolutional and pooling layers to map and extract features from
the image.

– Typically taken from a pre-trained deep convolutional neural network (CNN)
like VGG16 or ResNet.

– Example - VGG16:

∗ Includes 13 convolutional layers and 3 fully connected layers.

∗ Uses small receptive fields of size 3x3 with a stride of 1, capturing fine-
grained features.

– Example - ResNet:

∗ Makes use of skip connections to improve the way gradients move around
the network.

∗ Helps in training deeper networks, known for robustness.

• Region of Interest (RoI) Pooling Layer

– Added specifically to Fast R-CNN to handle region proposals efficiently. create
feature maps, the complete picture is given into the CNN rather than each area
suggestion individually.

– For each region proposal, the ROI pooling layer collects fixed-size feature maps
(such as 7x7) from the feature map of the whole picture. transformation pre-
serves a fixed-size feature map irrespective of the initial size of the region
proposal.

• Fully Connected Layers

– After the ROI pooling layer produces fixed-size feature maps, these maps are
flattened.

– Then, the feature maps are flattened and fully connected layers are applied.

– The features are processed by these layers in order to get them ready for
regression and classification.
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• Output Layers

– Fast R-CNN includes two output layers for each region proposal, each serving
a different purpose.

– One branch is responsible for object classification, estimating the probability
of each class (including the background).

– The second branch handles bounding box regression, adjusting the coordinates
of the region proposal to improve precision.

Figure 3.5: Fast R-CNN [3]

Training Fast R-CNN Training Fast R-CNN involves ensuring that the model can
effectively identify and locate objects. The training process includes several key steps:

• Pre-training of the Convolutional Network

– First, a convolutional network such as VGG16 is pre-trained on a large dataset,
such as ImageNet.

– This pre-training prepares the network for any specific task it will be used for
in the future by learning general features.

• Fine-tuning on the Detection Dataset

– Following pre-training, the convolutional network is re-trained on the specific
detection dataset provided by the researcher.

– This step involves transforming the detection dataset into a classification set
and obtaining initial classification results.

– The entire network, including the newly introduced RoI pooling layer and the
fully connected layers, is trained end-to-end.

– Stochastic gradient descent (SGD) is used for optimization, which helps to
fine-tune the network’s parameters.

– During this stage, the network improves its ability to detect and locate pedes-
trians by fine-tuning its thresholds based on the dataset.
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• Multi-task Loss Function

– Fast R-CNN employs the use of a multi-task loss function for classification and
bounding box regression.

– The classification loss is typically the softmax loss, which quantifies the error
in classifying the region to which the region proposal belongs.

– The bounding box regression loss is commonly the smooth L1 loss, which cal-
culates the error of the predicted bounding box coordinates.

Total Loss = Classification Loss + λ · Bounding Box Regression Loss (3.1)

– Here, λ is a hyperparameter that controls the weights of the two components
of the total loss function.

• Backpropagation and Optimization

– To minimize the combined loss, backpropagation and an optimization technique
like stochastic gradient descent (SGD) is applied.

– Gradients are computed with regard to the network’s parameters, and these
parameters are changed to lower the loss.

– This procedure is carried out repeatedly until the values satisfy a set of prede-
fined standards.

Challenges and Solutions in Fast R-CNN

• Computational Efficiency The speed of Fast R-CNN over its predecessor, R-
CNN, is a primary advantage. However, when applied to high-resolution images
and a large number of suggested areas, Fast R-CNN can still be demanding in
terms of time. Each image must pass through several convolution layers, which
can be slow. Techniques such as pruning, model quantization, and compression are
used to mitigate this problem. Model compression involves reducing the number
of dimensions by eliminating superfluous parameters and irrelevant neurons and
connections. This reduces the computational burden without significantly affecting
accuracy. Utilizing resources like GPUs can speed up complex computations by en-
hancing processing speed. This is beneficial for the parallelism feature of convolution
operations, increasing the potential for real-time GPU applications.

• Handling Occlusions and Variability Pedestrian detection faces issues like oc-
clusions and appearance changes. Pedestrians may appear partially obscured behind
vehicles or other people, and they vary in terms of attire and demeanor. Fast R-CNN
addresses some of these issues through robust feature extraction and data augmen-
tation techniques. Data augmentation enhances the genericity of the training data
for identifying pedestrians in various scenarios by applying transformations such as
rotation, flipping, and altering lighting conditions. These augmentations introduce
scale consciousness for identifying pedestrians at different sizes and distances. In-
cluding contextual information, such as the relationships of people with objects in
their surroundings, improves model performance, particularly under occluded and
varied conditions.
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• Small Object Detection Detecting small pedestrians is challenging due to the
limited image regions and features that can be extracted from them. Small ob-
jects lack distinguishing features that facilitate accurate detection. Fast R-CNN
addresses this problem using Feature Pyramid Networks (FPN) and multi-scale fea-
ture maps. These techniques ensure the network captures precise details necessary
for detecting small objects. Processing images at multiple scales increases the detec-
tion rate by enabling the identification of small pedestrians that might otherwise be
missed. FPNs allow the network to use features from multiple levels simultaneously,
leveraging both general context and specific details.

• Class Imbalance Pedestrian detection datasets often exhibit class imbalance, with
fewer pedestrian samples compared to background or other classes. This imbalance
hampers the model’s ability to generate balanced representations for pedestrian
detection. Various methods are used to address class imbalance, including hard
negative mining and balanced sampling. Hard negative mining focuses on diffi-
cult negative samples during training, helping the model differentiate between the
background and pedestrians. Balanced sampling ensures the model is exposed to
an equal number of background (negative) and pedestrian (positive) samples for
improved learning.

Faster Region-based Convolutional Neural Networks (Faster R-CNNs)

One of the most significant neural architectures for object identification is Faster R-CNN,
which is an advancement over R-CNN and Fast R-CNN by offering techniques to increase
the techniques’ effectiveness and speed. In 2015, Shaoqing Ren, Kaiming He, Ross B.
Girshick, and Jian Sun developed the Faster R-CNN, which included the region proposal
into the network and demonstrated superior speed and sharpness compared to other com-
parable techniques[3][4].

Faster R-CNN Architecture
Faster R-CNN is composed of two primary modules: They both improve on a Fast R-CNN
detector network and the Region Proposal Network (RPN). There are several essential
components that make up the architecture:

• Convolutional Layers

– With Faster R-CNN, high-level features are extracted from the input picture
using the convolutional layers.

– Typically, a deep convolutional neural network such as VGG16 or ResNet that
has already been trained is used to initialize the layer weights.

– These layers are shared by the whole network, which means the RPN and Fast
R-CNN detectors will use the same feature extractors.

– This sharing of layers is a significant improvement to the network’s overall
efficiency.

• Region Proposal Network (RPN) The RPN stands for Region Proposal Net-
work and is a new component in Faster R-CNN that replaces the Selective Search
algorithm, which is expensive and slow. The RPN takes the convolutional feature
map and creates a set of region proposals.
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– Anchor Boxes

∗ The RPN can detect objects of different sizes and orientations through the
use of anchor boxes.

∗ Anchor boxes are placed at the center of the sliding window location on
the feature map.

– Bounding Box Regression

∗ For each anchor, the RPN provides a bounding box regression that fine-
tunes the anchor box to the object it may bound.

∗ This is done based on the prediction of the coordinates of the box offsets.

– Objectness Score

∗ The RPN also provides an objectness score for each anchor, indicating the
probability of the anchor containing an object rather than the background.

∗ This score is useful for excluding proposals that are less likely to contain
objects.

– Non-Maximum Suppression (NMS)

∗ Redundant regions are removed using non-maximum suppression, which
selects high-scoring proposal regions that are not in close proximity to each
other.

• RoI Pooling Layer
The RoI pooling layer addresses the issue of variable-sized region proposals. Every
region proposal from the RPN is projected onto the feature map and processed
through the RoI pooling layer to obtain a fixed-size feature map (e.g., 7x7). This
is achieved by creating sub-windows on the proposal and performing max pooling
within those sub-windows. RoI pooling ensures that the fully connected layers
receive input of the correct size, regardless of the size of the proposals.

• Fast R-CNN Detector
Once fixed-size feature maps are obtained from the RoI pooling layer, they are
passed through a series of fully connected layers for classification and bounding box
regression.

– Classification

∗ The feature maps are used to predict class scores for each proposal.

∗ The classifier returns likelihoods for each class, including a background
class.

– Bounding Box Refinement

∗ In parallel with classification, the network refines the bounding box coor-
dinates for each proposal.

∗ This process refines the proposals and fits them more closely around the
detected objects.

Training Faster R-CNN
Training Faster R-CNN involves two main steps: In the review of the topic, the following
steps were taken: Proposed the training of the RPN and proposed the training of the Fast
R-CNN detector. These steps are usually done interchangeably so that each will function
at its optimal at the same time.

30



Figure 3.6: Faster R-CNN [4]

• The RPN is trained to learn accurate region proposals. The training involves:

– Loss Function: The RPN employs a multi-task loss function that includes
both the objectness score for classifying candidate windows and bounding box
regression for estimating box coordinates.

– Positive and Negative Samples: Positive samples are anchors with IoU ¿
Threshold with the ground-truth box (IoU stands for Intersection over Union),
where the Threshold is typically set to 0.7. Negative samples correspond to
anchors with an IoU less than a lower threshold, for instance, 0.3.

– Stochastic Gradient Descent (SGD): The entire RPN is trained using
mini-batch SGD, where the weights of the network are adjusted iteratively to
minimize the combined loss function.

• Training the Fast R-CNN Detector

– Once the RPN is trained, the Fast R-CNN detector is trained using the region
proposals generated by the RPN.

– RoI Pooling: The proposals are constrained to have fixed-size feature maps
using the RoI pooling layer.

– Multi-task Loss Function: Similar to the RPN, the Fast R-CNN detector
also employs a multi-task loss function that includes classification loss and
regression loss.

– End-to-End Training: As the shared layers (Region Proposal Network and
Fast R-CNN detector) are fully connected, the entire Faster R-CNN network
can be trained end-to-end. This coordinated training ensures that all compo-
nents reach their peak performance simultaneously.

Challenges and Solutions in Faster R-CNN
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• Computational Efficiency

– Despite Faster R-CNN being faster than previous approaches, it still demands
significant computational resources, especially when dealing with high-resolution
images and a large number of proposals.

– Solutions include model pruning, compression, and leveraging hardware accel-
eration such as GPUs to improve inference time.

• Handling Occlusions and Variability

– Pedestrians may appear partially occluded or in various poses, impacting de-
tection accuracy. Faster R-CNN addresses this by employing feature extraction
and data augmentation mechanisms.

– Additional strategies like multi-scale detection and context information en-
hance detection performance in diverse scenarios.

• Small Object Detection

– Identifying small pedestrians is challenging due to limited information in small
regions. Faster R-CNN utilizes feature maps of multiple scales and Feature
Pyramid Networks (FPN) to efficiently detect small objects.

– These methods ensure the network captures relevant features necessary for
distinguishing small pedestrians.

• Class Imbalance

– Datasets for pedestrian detection often suffer from class imbalance, with fewer
pedestrian samples compared to background samples.

– Solutions include techniques like hard negative mining, balanced sampling,
and using focal loss to ensure accurate detection of pedestrians despite class
imbalance.

Faster R-CNN improves the accuracy of object identification algorithms while requiring
less computing time, which is a clear step forward. Faster R-CNN fixed the speed problems
associated with R-CNN and Fast R-CNN models by integrating region proposal genera-
tion into its network. All things considered, Faster R-CNN remains a powerful platform
for both pedestrian identification and generic object recognition, despite problems with
computing cost, modeling of occlusions, recognizing tiny objects, and class imbalance. Be-
cause of its later iterations and advancements, including Mask R-CNN and FPN, which
have been effectively implemented in many real-world contexts, Faster R-CNN has there-
fore come to serve as the basis for contemporary object identification frameworks. These
developments have unintentionally established new standards for future advancement.

3.3 Evaluation Metrics

Considering selected object detection models and focusing on pedestrian detection in
particular, it is necessary to know how to evaluate the model’s performance using different
metrics. These metrics enable one to measure the power of modeling to distinguish as
well as locate the objects hence making the model come up with appropriate results.
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Here, we delve into the most commonly used evaluation metrics: For evaluating the
performance, relevant classification measures include accuracy, precision, recall, F1-score,
AP, and AUC-PR.

3.3.1 Accuracy

The percentage of properly categorized cases (including true positives and true negatives)
by the model over the total number of examples in the dataset is known as accuracy. It
is an unambiguous and straightforward indicator of the model’s overall effectiveness.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

where:

• TP (True Positives): Cases where the pedestrian is detected correctly.

• TN (True Negatives): Cases where the non-pedestrian areas are correctly classi-
fied.

• FP (False Positives): Parts of the image that belong to non-pedestrian areas but
are incorrectly labeled as pedestrians.

• FN (False Negatives): Cases where pedestrians are not predicted by the model.

However, for unbalanced datasets commonly used in pedestrian detection—where the
number of background occurrences substantially exceeds the number of positive exam-
ples—the accuracy that is typically utilized could not be particularly useful. In certain
situations, accuracy may be somewhat misleading because the model might find every
instance in the background class and yet achieve a high degree of accuracy.

3.3.2 Precision

Precision, which is also known as Positive Predictive Value, establishes a relationship
between the chance of mistake and the genuine positive fraction. It gauges how well the
model classified positive data.

Precision =
TP

TP + FP
(3.3)

Precision answers the question: ”Of all the instances predicted to be pedestrians,
how many were truly pedestrians?” A high precision indicates that there are few false
positives, meaning the model does not easily misidentify instances as pedestrians when
they are not. In object detection, precision is particularly important because the detected
objects (pedestrians in this case) need to be correctly and accurately identified, especially
in real-world applications such as self-driving cars.

3.3.3 Recall (Sensitivity)

Recall is the fraction of true positive detections divided by the total of true positives
and false negatives. It is sometimes referred to as True Positive Rate or Sensitivity. It
is a gauge of the model’s correctness and assesses its ability to incorporate all pertinent
instances.
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Recall =
TP

TP + FN
(3.4)

Recall answers the question: ”Out of all the actual pedestrians, how many were clas-
sified as such by the model?” High recall translates into a low number of false negatives,
indicating that the model captures a high percentage of actual pedestrians. In pedestrian
detection, minimizing false negatives is crucial to ensure that as many pedestrians as
possible are detected.

3.3.4 F1-Score

Precision and recall are harmonic means, and the F1-Score strikes a balance between the
two. This metric, which combines measurements of accuracy and sensitivity into a single
score, is especially useful when working with unbalanced datasets.

F1-Score = 2× Precision× Recall

Precision + Recall
(3.5)

The F1-Score manages the trade-off between precision and recall, showing that the
model has achieved good precision in detecting pedestrians while also correctly identi-
fying them with minimal errors of false negatives and false positives. When evaluating
pedestrian detection, the F1-Score is particularly useful because it provides a balanced
estimation of the model’s performance, avoiding high false positive or false negative rates.

3.3.5 Average Precision (AP)

The Average Precision (AP) measures a model’s accuracy over a range of recall levels. It
is especially helpful in addressing class imbalances and is calculated as the area under the
precision-recall curve (PRC).

AP =
∑
n

(Recalln+1 − Recalln)× Precisionn+1 (3.6)

Here, n represents the thresholds at which recall changes.
AP provides a single-valued metric summarizing the model’s ability to balance preci-

sion and recall across different thresholds. Higher AP indicates a model that maintains
high precision and recall over a range of thresholds.

3.3.6 Area Under the Precision-Recall Curve (AUC-PR)

By determining the area under the precision-recall curve, the Area Under the Precision-
Recall Curve (AUC-PR) gauges the model’s overall performance. This measure sheds
light on how well the model performs across all potential thresholds. Plotting precision
vs recall for several threshold levels and calculating the area under the curve yields the
AUC-PR. For object detection applications like pedestrian detection, where datasets are
typically skewed, the precision-recall curve provides more information than the ROC
curve. Better overall performance is shown by a higher AUC-PR, which shows that the
model successfully strikes a balance between recall and accuracy at various thresholds.
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3.3.7 Practical Considerations

When assessing models based on these metrics, it is important to consider the specific
context and requirements of the application. For instance:

• Safety-Critical Applications: In contexts like self-driving cars, recall is critical;
this implies that even though precision may be lower, every pedestrian should be
detected.

• Resource-Constrained Environments: When computational power is limited,
efficiency metrics like the F1-Score become crucial.

• Imbalanced Datasets: For class imbalances, measures such as AP and AUC-PR
provide a richer value measure than accuracy alone.

Several criteria are used in the evaluation of pedestrian detection algorithms, and each
one offers a different perspective on the model’s effectiveness. Although precision has its
uses, unbalanced datasets may lead to misleading results. More detailed perspectives
are provided by precision and recall, which highlight the model’s capacity to accurately
recognise pedestrians and record all pertinent events, respectively. These issues are bal-
anced by the F1-Score, which offers a single score that is especially useful in cases when
there is an imbalance. By taking into account the precision-recall trade-off across several
thresholds, Average Precision and AUC-PR further improve the evaluation and provide a
more thorough analysis of the model’s performance. Through the utilisation of these mea-
sures, scholars and professionals may acquire a thorough comprehension of the advantages
and disadvantages of their models, directing additional refinement and enhancements to
guarantee resilient and dependable pedestrian detecting systems.
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Chapter 4

EXPERIMENTAL SETUP

4.1 Hardware and Software Configuration

In the following sub-section, we describe the hardware and software components that have
been used in this comparative study of deep learning models for pedestrian detection
namely Deep CNN, R-CNN, Fast R-CNN, and Faster R-CNN.

4.1.1 Hardware

The experiments were conducted on a laptop with the following specifications, which were
chosen to balance computational efficiency and cost-effectiveness:

• GPU: Graphics card: 4 GB of dedicated graphics RAM comes with the Nvidia
Geforce GTX 1650. Deep learning may be performed with this mid-range graphics
card, particularly with Convolutional Neural Networks (CNNs). It is not as efficient
as other high-end GPUs, but it does accommodate picture and model complexity
in HD thanks to its 4GB VRAM.

• CPU: Intel Core i7. This processor is ideal for managing data pre-processing func-
tions and other computational exercises inherent in deep learning due to its capa-
bility of handling multiple cores simultaneously.

• RAM: 8GB DDR4. While not excessive for deep learning, this amount of RAM
is sufficient to process the batches used in this study and determines the memory
allocated for training and testing.

• Storage: 1 Terabyte Hard disk + 256 Gigabytes SSD. The SSD is used to read the
operating system and the most frequently accessed files, whereas the HDD stores
datasets and sampled model checkpoints.

• Operating System: Windows 10. This operating system, along with Linux, sup-
ports most deep-learning frameworks and tools.

4.1.2 Software

The software environment was configured to include essential frameworks and libraries
for deep learning and data processing, ensuring compatibility and performance:

36



• Framework: PyTorch 1.8.0. PyTorch is a popular deep-learning framework known
for its flexibility and simplicity. Version 1.8.0 provides the necessary features and
optimizations to effectively train large-scale neural networks.

• CUDA Version: NVIDIA provides the parallel computing platform and appli-
cation programming interface model known as CUDA (Compute Unified Device
Architecture). Supporting the GTX 1650 GPU, CUDA 11.1 offers features that
make the most of the GPU’s power.

• Python Version: 3.8. Python was chosen for this research due to its ease of
learning and its extensive libraries for machine learning and data analysis.

• Libraries:

– NumPy: A module in Python essential for various mathematical operations
and numerical computations on arrays.

– OpenCV: An open-source library used for computer vision applications and
image processing.

– scikit-learn: A tool useful for machine learning, containing methods for model
evaluation, data preprocessing, and other miscellaneous functions.

– torchvision: A PyTorch library that includes commonly used datasets, model
architectures, and image transformations.

When used together, these software tools provide a comprehensive suite of solutions
for the development, training, and evaluation of pedestrian detection models.

4.2 Steps of Implementation

It was possible to perform the comparative analysis of Deep CNN, R-CNN, Fast R-CNN,
and Faster R-CNN for pedestrian detection by means of several time-consuming stages.
Here is a detailed description of each phase: Below are the descriptions of the phases:

4.2.1 Data Collection and Preprocessing

Dataset

The dataset chosen for this task is from Kaggle and contains annotated pedestrian images.
This dataset is perfect for robust model training and assessment since it offers a wide range
of photos with different resolutions and pedestrian positions.

Data Preprocessing

• Image Resizing: The images were resized to 600 x 600 pixels for uniformity. This
resizing preserves the number of input pixels in models, scaled down to a smaller
size.

• Normalization: To prevent high pixel values from overriding low pixel values, the
input pixel intensities were normalized within the [0-1] range based on the mean
and standard deviation of the dataset. This step helps in the faster convergence
of the training process by reducing the range of pixel values to a suitable range
appropriate for CNN models.
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• Data Augmentation: Techniques such as rotation, flipping, and scaling were
applied to enhance the variety of the training dataset. These augmentations help
the model generalize better by exposing it to different transformations of the input
images.

4.2.2 Model Initialization

Deep CNN

• Architecture: In the CNN structure, the architecture consists of kernel layers,
pooling layers, fully linked layers, and activation functions such as rectified linear
units (ReLU).

• Initialization: Xavier initialization was used for weights to ensure that the initial
weights had a fairly good distribution.

R-CNN

• Feature Extraction: The ResNet50 model, pre-trained on the ImageNet database,
was used for extracting features in the object proposal region.

• Selective Search: Selective Search algorithms were applied to obtain approxi-
mately 2000 region proposals for each image.

• SVM and Regression: Support Vector Machines (SVMs) were employed for clas-
sification and regression to classify the bounding boxes and refine them.

Fast R-CNN

• Base Network: It is more effective to fine-tune the proposed model when it is
trained alongside another pre-trained CNN, such as ResNet50.

• RoI Pooling Layer: In order to spatially sample the characteristics of the region
proposals of arbitrary sizes into a fixed-size RoI feature map, the Region of Interest
(RoI) pooling layer was suggested.

• Fully Connected Layers: Following the convolutional layers, fully connected
layers were applied, using linear functions to change the bounding box coordinates
and softmax for classification.

Faster R-CNN

• Region Proposal Network (RPN): By integrating with a backbone network
such as ResNet50, RPN was connected to generate region proposals.

• Anchor Boxes: Since various-sized items may require different-sized anchor boxes,
nine anchor boxes with three distinct aspect ratios and size scales were employed.

• Shared Layers: For better efficiency, shared convolutional layers were used for
both RPN and Fast R-CNN.
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4.2.3 Training Procedure

Deep CNN

• Loss Function: Cross Entropy was used for the classification.

• Optimizer: Adam optimizer using a 0.1 reduction in learning rate every three
epochs after starting with a 0.001 learning rate.

• Training: Fine-tuned for 10 epochs with a batch size of 16, using validation loss
to control overfitting.

R-CNN

• Feature Extraction: Features were extracted from each proposed region using a
pre-trained CNN.

• SVM Training: Support Vector Machines (SVMs) were trained using the extracted
features for classification.

• Bounding Box Regression: Linear regression was used to refine the bounding
box coordinates.

• Hard Negative Mining: Incorporated hard negative samples to enhance the clas-
sifier’s robustness.

Fast R-CNN

• Multi-task Loss: For both bounding box regression (Smooth L1) and classification
(cross-entropy), a combined loss function was employed.

• Optimizer: A 0.9 momentum stochastic gradient descent (SGD) with a 0.001
starting learning rate.

• End-to-End Training: Trained the network end-to-end for 10 epochs without fine-
tuning, allowing both the RoI pooling and fully connected layers to learn together.

Faster R-CNN

• RPN Training: TSpecifically, the Region Proposal Network (RPN) was trained
with a loss function that incorporated bounding box regression and objectness score
in order to generate region suggestions.

• Fast R-CNN Training: Adjusted the network using the recommendations that
RPN produced.

• End-to-End Training: To enhance the whole network, the RPN and Fast R-CNN
were tweaked in tandem for ten epochs.

• Anchor Box Adjustments: To increase the detection rate, the anchor box scales
and ratios were modified in accordance with the validation results.
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4.2.4 Hyperparameter Tuning

• Learning Rate: set at 0.001 at first, and then decreased by 0.1 every three epochs.

• Batch Size: Set to 16 to balance memory usage and stability of the training process.

• Weight Decay: A regularization term with a value of 0.0005 was added to prevent
overfitting.

• Momentum: Used a momentum value of 0.9 to stabilize the learning rate in back-
propagation and to increase the efficiency of gradient descent.

• Number of Epochs: Set to 10 epochs to provide sufficient training while avoiding
overtraining.

4.2.5 Model Evaluation

Metrics

The current performance should be assessed through the growth of such criteria as Ac-
curacy, Precision, Recall, F1-Score, or Average Precision (AP) and Area Under the
Precision-Recall Curve (AUC-PR).

Validation

To stop the model from overfitting, adjust the hyperparameters on the validation set.

Testing

The test on an unseen test set is the ultimate step where the models’ generalization
performance will be estimated.

4.2.6 Results Analysis

• Provide a comparison of the performances of Deep CNN, R-CNN, Fast R-CNN, and
Faster R-CNN.

• Explain the advantages and disadvantages of high accuracy, high speed, and com-
putational cost.

• Describe to what extent each model is suitable for pedestrian detection and discuss
the advantages and disadvantages of each model.

The nature of this chapter is to describe the details of the experimental setup, the hard-
ware and software used, the employed model architectures, and the entire training pro-
cess. A good choice of hyperparameters and equipment, as well as the use of modern
deep-learning frameworks, make the achieved experimental results more reliable. This
arrangement makes it possible to compare Deep CNN, R-CNN, Fast R-CNN, and Faster
R-CNN for the detection of pedestrians and reconstruct the knowledge about the efficiency
of each model.
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Chapter 5

RESULTS AND DISCUSSION

This chapter focuses on discussing the effectiveness of diverse deep CNN models for object
detection. They are Deep CNN, R-CNN, Fast R-CNN, and Faster R-CNN. In each model,
overall accuracy, loss function, precision and recall, and all other related measures have
been described. The results isolated the strengths and weakness of each model and glanced
at their suitability in the consideration of object-detection jobs.

Figure 5.1: Comparative analysis
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5.1 Overall Performance

Using this flowchart, the assessment of the models starts with evaluating the accuracy of
the models on both the training and the validation sets.

5.1.1 Training Accuracy

• Faster R-CNN has the highest training accuracy, achieving up to 99.00%. This
qualifies it as a good method for learning from the training data.

• Deep CNN follows with a training accuracy of approximately 97.50%.

• Fast R-CNN and R-CNN also show very high training accuracy but are still
lagging behind Faster R-CNN.

5.1.2 Validation Accuracy

• Faster R-CNN is slightly better for validation accuracy, achieving 93.47%. This
indicates that the model is very good at generalizing to unseen data as observed in
the testing phase.

• The model, namely Deep CNN, got a validation accuracy of 90.10%, indicating it
works well but it is not as solid as Faster R-CNN.

• Comparing with Faster R-CNN and R-CNN, we can see that validation scores of
Fast R-CNN are lower, suggesting there might be some overfitting and general-
ization problems.

The observation of a large disparity between training accuracy and validation accuracy
for all the models signifies that overfitting might be occurring. This means that the model
is likely to overfit the training data. Hence, there is a need to adopt methods such as data
augmentation, dropout regularization, or any other standard approach used to enhance
generalization.

5.2 Loss Function Analysis

The effectiveness of each of the models in the different learning processes is revealed in a
similar manner by analyzing the loss functions.

5.2.1 Training Loss

• Deep CNN gives the lowest training loss of 0.2024, confirming effective learning
from the training data.

• Faster R-CNN also maintains a better training loss balance of 0.33, accompanied
by high training accuracy.
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5.2.2 Validation Loss

• Faster R-CNN estimates a validation loss of 0.33, which is justifiably low and
indicates better handling of overfitting, as clear from its high validation accuracy.

• Deep CNN has a validation loss of 0.33. Although higher than the training loss,
it still represents a fairly good performance but shows the model’s inability to gen-
eralize.

Thus, it can be concluded that Faster R-CNN manages to learn sufficiently from the
training data while simultaneously not overfitting on the training set.

5.3 Precision and Recall

Precision and recall have become important metrics to use when evaluating the efficiency
of most object detection models.

5.3.1 Precision

• When it comes to consistency, Faster R-CNN is noticeably more precise, providing
the highest value of 0.8539. The threshold values are depicted in Figure 6, and their
true positive and marginal positive implications are identified, proving that it can
give true positives while giving marginal positives at higher threshold values.

• Deep CNN stands with an accuracy of 0.8217, thus suggesting that the detector
appears competent but can generate more false-positive samples than Faster R-
CNN.

5.3.2 Recall

• The Faster R-CNN model has better results in recall aspects with a score of
0.8296, which shows that most true objects can be clearly described by this model
if the parameters are chosen adequately.

• Deep CNN facilitates a slightly lesser recall with a value of 0.8141, based on which
it can be inferred that it may be able to detect certain true objects in comparison
to Faster R-CNN.

Based on these observations, it is clear that Faster R-CNN is more accurate than the
other systems and has a higher recall rate, making it suitable for object detection tasks.

5.4 Evaluation Metrics

Using various evaluations, it is possible to create a clear understanding of the character-
istics of both models and their success rates.
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5.4.1 F1-Score

• Faster R-CNN has the best F1-Score with a value of 0.8415, suggesting that the
tool has good accuracy as far as precision and recall are concerned.

• The accuracies of Deep CNN and other models are lower, which signifies the
trade-off of their F1-Scores concerning precision and recall.

5.4.2 Average Precision (AP)

• Faster R-CNN also shows an improved result with an AP of 0.8417, which clearly
indicates that the ranking mechanism of the algorithm demonstrates impressive
performance in terms of ranking the objects accurately.

• Deep CNN and other models have lower AP values, meaning that they perform
worse in terms of the precision-recall curve, indicating that the models often have
a lower high-precision recall.

5.4.3 Area Under the Precision-Recall Curve (AUC-PR)

• Among all the approaches, it is found that Faster R-CNN had the maximum
AUC-PR of 0.86, substantiating its ability to achieve better precision and recall
values. This further underlines its accuracy in terms of different thresholds.

• Deep CNN and other models presented have lower AUC-PR values, marking lower
performances when it comes to ranking objects correctly depending on the different
conditions.

These metrics repeatedly favor Faster R-CNN, thereby placing it as the most efficient
model out of those used in this comparison for object recognition tasks.

5.5 Comparative Analysis

The comparative analysis of Deep CNN, R-CNN, Fast R-CNN, and Faster R-CNN reveals
significant insights:

5.5.1 Performance Comparison

As we can observe in most of the measures considered, Faster R-CNN gives better
results compared to the other models for detecting the required objects. Several benefits
are thus obtained from Faster R-CNN, even though it offers less accuracy to the R-CNN
and Fast R-CNN because the latter models take longer to train and execute than Faster R-
CNN. However, Deep CNN is less hardware intensive compared to MLB because it took
less time to execute and less resource utilization but cannot be recommended for complex
object detection as it has some demerits such as overfitting or inaccurate classification.
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5.5.2 Advantages and Disadvantages

The proposed model, Faster R-CNN, is more efficient as well as highly accurate, thereby
making it suitable for real-time evidence evaluation but involves complex mathematical
computation. Faster R-CNN is faster compared to the other methodologies though has
slightly lower levels of accuracy than the others but could provide a much superior perfor-
mance if one is looking to reduce the computational cost greatly. Similarly, as it was with
the Deep CNN option, this option seems to be cheaper and relatively fast; however, its
effectiveness, particularly in the identification of complex objects, may seem suboptimal
in comparison to other models.

5.5.3 Suitability for Pedestrian Detection

Because it is substantially less susceptible to variation than R-CNN and has greater accu-
racy and recall than certain other algorithms, Faster R-CNN is therefore a particularly
appropriate technique for use in pedestrian detection. For the pedestrian identification
situation, R-CNN and Fast R-CNN can be used, however they may be nearly computation-
ally demanding and still require optimization. Deep CNN may be helpful in answering
simpler queries or in domains where Deep CNN is used without further tweaks, but it
is not very good at handling more difficult jobs, such as the one related to pedestrian
detection.

In this chapter, Faster R-CNN is introduced to the next level and the research showed
that it performs much better for object detection than the basic R-CNN and Fast R-CNN.
It is important to note at this point that Faster R-CNN performs better than the other
classifiers in terms of recall, accuracy, loss, precision, and all other evaluation metrics; as a
result, it may find use in practical scenarios. Future research might enhance the function-
ality of every model put out in this instance and build on a number of elements related to
the object detection issue. To a certain level of detail, this chapter has constructed an ef-
fective initiating starting point for assessment and benchmarking that sought to evaluate
multiple deep CNN architectures for object detection. In this respect, it can be pointed
out that thanks to presenting the advantages and disadvantages offered by each model
and by utilizing them in their most well-known forms, better-prepared choices can be used
while choosing the required approaches for object detection problems.
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Chapter 6

CONCLUSION

This thesis aimed to assess and compare the efficiency of several deep CNN architec-
tures for pedestrian detection and including Deep CNN, R-CNN, Fast R-CNN, Faster
R-CNN. The purpose of this study was to analyze the effectiveness and efficiency of each
model based on performance evaluation of metric parameters of general performance, loss
functions, precision-recall, and other relevant parameters. The results highlighted that
Deep CNN was able to achieve the lowest training loss; however, the validation loss of
the model was substantially high suggesting that overfitting could be a problem. Faster
R-CNN had a fairly good training and validation loss, which proved that it has a good
learning process. Precision and recall metrics demonstrated that Faster R-CNN provided
a high True Positive Rate (TPR) with low False Positive (FPR) and False Negative (FNR)
rates. From all the evaluated metrics, Faster R-CNN outperformed all other models com-
prehensibly and this clearly depicts the efficiency and applicability of Faster R-CNN in
pedestrian detection tasks. The comparative analysis revealed that Faster R-CNN out-
performs compared models due to improved accuracy and moving forward it can show
an increase in test time required for the model as compared to the others. R-CNN and
Fast R-CNN are good for use on a small scale if real-time performance is not of high
importance. Although Deep CNN’s approach is rather efficient in terms of computation,
it lacks the ability to account for certain characteristics of an object when detecting its
presence. We presented the accuracy of the testing set by using the established model.
To avoid such confusion, visualization like the confusion matrix or the positioning of the
bounding boxes would come in handy in giving a clearer understanding of the model’s
capability. Other improvements may also be suitable for solving tasks, for example, in
calculating fast speeding up or other features that allow working with real values. There-
fore, it is evident from this study that Faster R-CNN is a viable method to be used in
pedestrian detection. In view of this, the findings of this study have pointed out that this
algorithm has high possibilities in terms of its practical applicability owing to increased
performances in different indices. All of the proposed models can be further improved, as
well as the specific issues regarding the object detection methodology can be discussed in
the context of future studies on the subject, which will contribute to the advancements
in the deep learning models required for pedestrian detection.
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