
A MAJOR PROJECT-II REPORT

ON

ADVANCEMENT IN AUTOMATIC TEXT

SUMMARIZATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY (M. TECH.)

IN

COMPUTER SCIENCE AND ENGINEERING

Submitted by

SUSHIL KR SONI

2K22/CSE/24

Under the Supervision of

Prof. Manoj Kumar

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi 110042

MAY, 2024

II

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Sushil Kr Soni, 2K22/CSE/24 students of M.Tech., hereby declare that the project

Dissertation titled “Advancement in Automatic Text Summarization” which is submitted

by me to the Department of Computer Science and Engineering, Delhi Technological

University, Delhi in partial fulfilment of the requirement for the award of degree of Master of

Technology in Computer Science and Engineering, is original and not copied from any

source without proper citation. This work has not previously formed the basis for the award of

any Degree, Diploma Associateship, Fellowship or other similar title or recognition.

Place: Delhi Sushil Kr. Soni

Date: 2K22/CSE/24

III

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Advancement in Automatic Text

Summarization” which is submitted by Sushil Kr Soni, 2K22/CSE/24, Department of

Computer Science and Engineering, Delhi Technological University, Delhi in partial

fulfilment of the requirement for the award of the degree of Master of Technology in

Computer Science And Engineering, is a record of the project work carried out by the student

under my supervision. To the best of my knowledge this work has not been submitted in part

or full for any Degree or Diploma to this University or elsewhere.

Place: Delhi Prof. Manoj Kumar

Date

IV

ABSTRACT

In the last ten years, there has been a notable surge in the fields of Artificial Intelligence (AI),

Machine Learning (ML), and Data Science, offering several prospects across various sectors

like healthcare, banking, and transportation. Particularly, the area of Natural

Within AI and ML, the field of language processing (NLP) has advanced significantly. NLP is

the study and application of machine learning to human language. Text summarization is a

popular application because it allows computers to summarise long texts into short summaries.

The use of several extractive text summarising methods, including as BERT, GPT-2,

KLsummerizer, Luhn, LEX, and Word Rank, is highlighted in this research. The resulting

extractive summaries are then assessed using Rouge Score, BERT Score, and Mover Score—

three different scoring techniques—against human-generatedThe extractive summaries that are

produced are then assessed using Rouge Score, BERT Score, and Mover Score in comparison

to human-generated summaries. Through this study, we evaluate the quality of the generated

summaries and show how effective these techniques are in producing summaries by comparing

them to human-produced summaries using the predetermined scoring standards.

V

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

ACKNOWLEDGEMENT

I wish to express my sincerest gratitude to Prof. Manoj Kumar for his continuous guidance and

mentorship that he provided us during the project. His direction helped me understand and

accomplish my objectives, emphasizing the significance and industrial relevance of this

project. He was always available to assist and clarify any doubts we encountered. This project

would not have been successful without his continuous support and encouragement.

I would like to extend my sincere thanks to “Prof. Vinod Kumar”, Head of Department,

Department of Computer Engineering, Delhi Technological University, Delhi for his valuable

suggestions and feedback on our project work.

Finally, I would like to thank all the participants who participated in the study, without whom

this research would not have been possible. I express my sincere gratitude to all the individuals

who have directly or indirectly contributed to the success of my project.

Sushil Kr Soni

(2K22/CSE/24)

VI

TABLE OF CONTENT

CANDIDATE’S DECLARATION II

CERTIFICATE III

ABSTRACT IV

ACKNOWLEDGEMENT V

TABLE OF CONTENTS VI

LIST OF TABLES VIII

LIST OF FIGURES IX

LIST OF ABBREBIATIONS AND EQUATIONS X

1.INTRODUCTION 1

1.1. OBJECTIVES 2

1.2. APPLICATION 3

1.3. USAGE 4

2.LITERTURE REVIEW 7

3. PROPOSED METHODOLOGY 9

3.1. BERT 9

3.1.1. WORKING OF BERT ALGORITHM 10

3.1.2. ADVANTAGES OF BERT ALGORITHM 16

3.1.3. LIMITATIONS AND ENHANCEMENTS OF BERT 17

3.2. GPT-2 18

3.2.1. WORKING OF GPT-2 20

3.2.1.1. LANGUAGE MODELING TRANSFORMER 20

3.2.1.2. GPT 2 AND BERT DIFFERENCE. 22

3.2.1.3. TRANSFORMATION BLOCK DEVELOPMENT 23

3.2.1.4. EVALUATING GPT-2 26

3.2.2. IMPACT OF GPT-2 28

3.2.3. CHALLENGES WITH GPT-2 29

3.2.4 ADDRESSING OF GPT-2 30

3.3. KL-SUMMARIZER 31

3.3.1. KL-SUM ALGORITHM 32

3.3.2. ADVANTAGES OF KL – SUMMARIZER 32

VII

3.3.3. LIMITATIONS AND ENHANCEMENT OF KL - SUMMARIZER 33

3.4. LUHN 34

3.4.1. LUHN’s ALGORITHM 34

3.4.2. ADVANTAGES OF LUHN ALGORITHM 36

3.4.3. LIMITATIONS AND ENHANCEMENTS OF LUHN ALGORITHM36

3.5. LEX 38

3.5.1. LEX ALGORITHM 38

3.5.2. ADVANTAGES OF LEXRANK 40

3.5.3. LIMITATIONS AND ENHANCEMENTS OF LEXRANK 40

3.6. WORD RANK 42

3.6.1. WORD RANK ALGORITHM 42

3.6.2. ADVANTAGES OF WORD RANK 44

3.6.3. LIMITATIONS AND ENHANCEMENT OF WORD RANK 45

3.7. ROUGE SCORE 46

3.7.1. PRECISION 49

3.7.2. RECALL 49

3.7.3. F-MEASURE 49

3.8. BERT SCORE 50

3.9. MOVER SCORE 52

4. EXPERIMENTAL RESULTS 56

4.1. DAILYMAIL/CNN NEWS DATASETS 56

4.2. BBC NEWS DATASETS 56

5. CONCLUSIONS 60

6. REFERENCES 62

LIST OF TABLES

TABLE 1. CNN/DAILYMAIL ROUGE METRICS 57

TABLE II. CNN/DAILYMAIL BERT METRIC 57

TABLE III. CNN/DAILMAIL MOVERSCORE METRIC 57

TABLE IV. BBC NEWS DATA SET ROUGE METRICS 58

TABLE V. BBC NEWS DATA SET BERT METRIC 58

TABLE VI. BBC NEWS DATA SET MOVERSCORE METRIC 59

VIII

VIII

LIST OF FIGURES

1. BERT BASE VS BERT LARGE PARAMETER STRUCTURE 9

2. BERT MASKED LANGUAGE MODEL 10

3. NEXT SENTENCE PREDICTION 11

4. BERT STRUCTURE 13

5. FINE TUNING BERT STRUCTURE 14

6. MOBILE KEYPAD (NEXT WORD PREDICTION) 19

7. GPT-2 DIFFERENT PARAMETERS 20

8. TRANSFORMER – ENCODER STACK VS DECODER STACK 21

9. ENCODER AND DECODER STRUCTURE (GPT -2 VS BERT) 21

10. GPT-2 DIFFERENT MODEL DIMENSIONALITY 22

11. GPT-2 ADDING TOKEN 22

12. GPT 2 AUTO REGRESSION 23

13. TRANSFORMER ENCODER BLOCK 24

14. TRANSFORMER DECODER BLOCK 24

15. TRANSFORMER DECODER BLOCK WITH INPUT TOKENS 25

16. SELF-ATTENTION VS MASKED SELF-ATTENTION 25

17. TRANSFORMER DECODER BLOCK WITH TOKEN ORDERING 26

18. GPT 2 STACK OF DECODER BLOCKS -1 27

19. GPT 2 STACK OF DECODER BLOCKS -2 27

20. GPT 2 STACK OF DECODER BLOCKS -3 28

21. STOP WORD 35

22. SIMILARITY MATRIX GRAPH 39

23. BERT SCORE STRUCTURE 50

24. MOVERSCORE STRUCTURE 52

X

LIST OF ABBREVIATIONS AND EQUATIONS

ABBREVIATION

1. NLP - NATURAL LANGUAGE PROCESSING

2. TF-IDF- TERM FREQUENCY INVERSE DOCUMENT FREQUENCY

3. RNN - RECURRENT NEURAL NETWORK

4. LSTM - LONG SHORT-TERM MEMORY

5. BERT- BIDIRECTIONAL ENCODER REPRESENTATIONS FROM

TRANSFORMERS

6. MLM - MASKED LANGUAGE MODEL

7. NSP - NEXT SENTENCE PREDICTION

8. GPU - GRAPHICS PROCESSING UNIT

9. TPU - TENSOR PROCESSING UNIT

10. GPT-2 – GENERATIVE PRETRAINED TRANSFORMER

11. KL - KULLBACK-LEIBLER DIVERGENCE

12. ROUGE - RECALL-ORIENTED UNDERSTUDY FOR GISTING EVALUATION

13. WMD - WORD MOVER'S DISTANCE

EQUATIONS

1. TF-IDF EQUATION 39

2. PRECISION 49

3. RECALL 49

4. F-MEASURE 49

1

CHAPTER 1

INTRODUCTION

Text summary is the process of reducing the amount of information in a text, such as an article,

paper, or web page, while keeping the essential points and important details. Text

summarization seeks to convey a clear, cogent summary of the original text that conveys its

main ideas.

Text summarization can be classified into two main types: extractive text summarization and

abstractive text summarization. These approaches differ in how they generate summaries from

given texts.

Extractive Summarization: The most significant sentences or phrases from the source material

are chosen and extracted using this technique to create a summary. The algorithms used in

extractive summarization techniques frequently rate phrases according to their applicability,

significance, or salience. To generate the summary, the chosen sentences are then put together.

Abstractive Summarization: Abstractive summarization seeks to provide a summary by

comprehending the original text and conveying the key concepts in a clear, succinct manner,

even if the summary includes information that isn't explicitly stated in the original text. This

strategy uses deep learning models and natural language generation to produce summaries of

the provided text that are more like human speech.

Here are some differences between Extractive Text summarization and Abstractive Text

summarization.

Extractive Text summarization Abstractive Text summarization

In order to provide a summary, extractive

summarization chooses and rearranges

already sentences or phrases from the

original material. It uses sentence scoring

algorithms to evaluate each sentence's

significance before choosing the top-scoring

sentences for the summary.

In order to effectively summarise an original

text, abstractive summarization seeks to

create new phrases that do so. It entails

comprehending the content and context of

the material and coming up with creative

language to communicate the essential

ideas. Techniques for generating natural

language naturally used in this process

include neural networks or language

models.

2

Sentences that have been taken verbatim

from the source text make up the extractive

summarization's output. A portion of the

original sentences have been rearranged or

changed for coherence to create the

summary.

A summary produced using abstractive

summarization may include sentences that

were absent from the original text. The

programme creates new phrases that

effectively convey the main ideas while

rephrasing or rearranging the material.

Extractive methods tend to preserve the

original information present in the source

text. The summary is a concise

representation of the most salient sentences,

but it may not capture the entire context or

provide additional insights.

Abstractive techniques have the ability to

provide summaries that go beyond the

original text and effectively convey the

topic. Even though they weren't specifically

mentioned in the original text, they can

introduce new phrases that communicate the

important information.

Extractive methods face challenges in

maintaining coherence and flow in the

summary since sentences are selected

independently. They might struggle to

handle information that requires combining

multiple sentences or paraphrasing.

Abstractive methods face challenges in

generating linguistically and contextually

accurate sentences. They need to overcome

difficulties related to language

understanding, semantic representation, and

ensuring the generated sentences are

coherent and faithful to the original text.

Extractive methods are generally less

complex computationally since they rely on

sentence scoring and selection rather than

generating new sentences. They can be

more computationally efficient for large-

scale summarization tasks.

Abstractive methods involve more complex

natural language processing and generation

techniques, often utilizing neural networks

or language models. They require more

computational resources and can be slower

compared to extractive methods.

Both extractive and abstractive summarization have their own strengths and weaknesses. While

abstractive summarising has the ability to provide more human-like summaries and offer a

better comprehension of the topic, extractive summary is simpler and maintains the original

text. The task's precise needs and the trade-offs between accuracy, fluency, and efficiency will

determine which option is best.

1.1. OBJECTIVE

• Outline a few extractive text summarization algorithms that can pick out the most pertinent

phrases from a given textual unit.

3

• To generate summaries, our strategy involves utilizing several techniques and models, namely

Word Frequency, Lex, Luhn, Kl Summarizer, GPT-2, and BERT. These approaches and

models have been selected with the aim of achieving effective summarization outcomes.

• Furthermore, we showcase the quantitative value of our proposed methodology by employing

various metrics, namely ROUGE, BERT, and MoverScore. These metrics serve as objective

measures to evaluate the effectiveness and performance of our approach. By utilizing these

quantitative assessment tools, we can quantitatively assess the quality and efficacy of our

suggested method in generating summaries.

1.2. APPLICATION

Extractive text summarising is a method for creating a brief summary of a lengthy text by

highlighting the key clauses or phrases in the original text. It has several practical applications

across different domains. Here are some common applications of extractive text summarization:

1. News Summarization: By automatically creating summaries of news items, extractive

summarization enables readers to rapidly understand a story's essential points without

having to read the full piece. News aggregation platforms often use extractive

summarization to provide users with a brief overview of various news stories.

2. Document Summarization: Extractive summarization can help summarize lengthy

documents, reports, or research papers. It enables users to get a quick overview of the

document's content and key findings. Researchers, students, or other professions who need

to process a lot of information may find this to be extremely helpful.

3. Social Media Summarization: Extractive summarization techniques can be employed to

summarize social media posts or threads, such as Twitter feeds or online discussions. By

extracting the most relevant and informative sentences, it becomes easier to comprehend

the overall sentiment, trending topics, or important updates from a large volume of social

media content.

4

4. Legal Document Analysis: Extractive text summarization can assist legal professionals in

analysing and summarizing legal documents, such as court rulings, contracts, or legal

opinions. By extracting key sentences or sections, lawyers can quickly identify important

arguments, rulings, or clauses without having to read the entire document.

5. Customer Feedback Analysis: Extractive summarization can be applied to analyse customer

feedback, reviews, or survey responses. By extracting important sentences or phrases,

businesses can gain insights into customer sentiment, identify recurring issues, or extract

actionable information for product improvements or marketing strategies.

6. Meeting Summaries: Extractive summarization can aid in summarizing the minutes or

transcripts of business meetings, conferences, or interviews. It helps in capturing the main

discussion points, decisions, and action items, saving time for participants who may need

to review or reference the meeting outcomes later.

7. E-commerce Product Descriptions: In e-commerce platforms, extractive summarising

techniques may be utilised to provide succinct summaries of product descriptions. By

extracting the most relevant features, benefits, and customer reviews, it helps potential

buyers quickly understand the key attributes of a product before making a purchase

decision.

These are just a few examples of how extractive text summarization can be applied across

various domains to efficiently process and comprehend large volumes of textual data.

1.3. USAGE

Extractive text summarization has various applications and can be used in different scenarios

to help extract important information from a given text. Here are some specific use cases and

examples of how extractive text summarization can be utilized:

1. Content Aggregation: Extractive summarization can be employed by news aggregators or

content curation platforms to create short summaries of articles from multiple sources. This

5

allows users to quickly browse through summaries and decide which articles they want to

read in detail.

2. Search Engine Result Summaries: Search engines can use extractive summarization to

generate snippets or summaries for search results. These summaries provide users with a

brief overview of the content on a webpage, helping them assess the relevance of the search

result without clicking through to the full page.

3. Document Summarization: Extractive text summarization can be used to summarize

lengthy documents, research papers, or reports. Researchers, students, or professionals can

save time by quickly reviewing the summarized content and identifying the key points

without having to read the entire document.

4. Social Media Monitoring: Extractive summarization techniques can be applied to social

media monitoring tools to summarize and analyse trending topics, discussions, or user-

generated content. By extracting important sentences or phrases, companies can gain

insights into public sentiment, identify emerging trends, or monitor the impact of their

brand or products on social media.

5. Email Summarization: Extractive text summarization can help individuals manage their

email overload by automatically summarizing the content of incoming emails. This allows

users to quickly prioritize and respond to important messages without spending excessive

time on each email.

6. Legal Case Analysis: Extractive summarization can assist legal professionals in analyzing

and summarizing legal cases, court rulings, or lengthy legal documents. By extracting key

arguments, legal precedents, or important sections, lawyers can efficiently review and

understand the essence of complex legal texts.

7. Audio and Video Transcription: Extractive summarization techniques can be utilized to

summarize audio or video recordings, such as lectures, interviews, or conference

presentations. By extracting important sentences or segments, users can quickly review the

content and find relevant information without listening to the entire recording.

6

8. Chatbot Responses: Chatbots and virtual assistants can use extractive summarization to

generate concise and informative responses to user queries. By extracting key information

from a knowledge base or a database of frequently asked questions, chatbots can provide

quick and relevant answers to users.

These are just a few examples highlighting the practical applications of extractive text

summarization. The method may be used in a wide range of situations and sectors where it is

advantageous to extract key details or provide succinct summaries.

7

CHAPTER 2

LITERATURE REVIEW

A natural language processing (NLP) approach called extractive text summarising seeks to

provide a brief summary of a given document by extracting the key words or sentences.

Contrasting with abstractive summarising, which generates summaries by paraphrasing and

rephrasing the information, is this method. The history of extractive summarization is lengthy,

and it has made tremendous strides over time. I'll give a thorough account of the development

of extractive text summarization in this response.

Early Approaches: The origins of extractive text summarization may be found in the first NLP

studies. In the 1950s and 1960s, researchers explored rule-based methods to automatically

summarize texts. These approaches involved using linguistic rules and heuristics to identify

key sentences based on sentence length, word frequency, and position within the document.

However, these early attempts faced challenges in dealing with the nuances of language and

producing coherent summaries.

Statistical Approaches: In extractive summarization, statistical approaches became more

popular in the 1990s. To evaluate phrases according to their relevance, researchers started using

algorithms like Term Frequency-Inverse Document Frequency (TF-IDF) and cosine similarity.

In order to identify important phrases, TF-IDF applies weights to words based on their

frequency inside a document and throughout the corpus. Based on a vector representation of

the TF-IDF weights in the sentences, cosine similarity calculates how similar the phrases are.

By employing these techniques, researchers were able to extract sentences that were most

similar to the overall content of the document.

Graph-Based Approaches: Graph-based techniques became an important new area of study for

extractive text summarization. In these methods, sentences are visualised as nodes in a graph,

with the similarity between phrases represented by the edges. Sentences were ranked based on

their centrality and relevance inside the network using algorithms like PageRank, which were

influenced by Google's web page ranking algorithm. By applying graph-based algorithms,

8

researchers were able to identify key sentences that were well-connected to other important

sentences, thus providing a more coherent summary.

Supervised Machine Learning: With the advent of machine learning techniques, supervised

methods for extractive text summarization gained traction. Researchers started using labelled

datasets, where human-generated summaries were paired with their corresponding source

documents. An important new area of research for extractive text summarization is graph-based

approaches. In these techniques, sentences are represented as nodes in a graph, with edges

signifying phrase similarity. Using methods like PageRank, which were influenced by Google's

web page ranking algorithm, sentences were rated according to their centrality and significance

within the network. These models were trained on large corpora and demonstrated improved

performance over previous techniques.

Deep Learning and Neural Networks: The discipline of NLP, especially extractive

summarization, underwent a revolution in the 2010s with the emergence of deep learning. To

successfully mimic the sequential character of phrases, recurrent neural networks (RNNs),

especially the Long Short-Term Memory (LSTM) form, were used. By processing the source

document sequentially and encoding the information in a hidden state, LSTM networks were

able to capture contextual dependencies and learn sentence representations. Extractive

summarization's effectiveness was further enhanced by attention methods, including the

Transformer model, which allowed the model to concentrate on pertinent sections of the

material. These deep learning-based methods produced cutting-edge outcomes and showed

their capacity to provide well-organized, useful summaries.

Transformer-Based Models: The introduction of the Transformer model in 2017 marked a

significant milestone in NLP, and extractive summarization also benefited from this

breakthrough. BERT (Bidirectional Encoder Representations from Transformers), one of the

transformer models, excelled at extractive summarization among other NLP tasks. BERT-based

models learn contextualised word representations by pretraining on sizable corpora, which are

subsequently refined on datasets tailored for summarization [27].

9

CHAPTER 3

PROPOSED METHODOLOGY

3.1. BERT

One of the many natural languages processing (NLP) tasks that BERT (Bidirectional Encoder

Representations from Transformers) has been successfully used to is text summarization.

BERT is a potent language model. While BERT is primarily designed for contextual word

representation and understanding, it can be adapted for extractive text summarization. In this

article, we will explore BERT-based extractive text summarization in detail, discussing its

steps, advantages, limitations, and potential future directions.

Fig 1- [1]

The pretrained language model BERT, released by Google Research in 2018, has transformed

NLP tasks. It is built using the Transformer architecture, which enables it to recognise links

between words and contextual information in a document. BERT models may be fine-tuned

10

for certain downstream tasks, such as text categorization, question-answering, and

summarization, and are pretrained on substantial volumes of unlabelled text data.

In BERT-based extractive text summarising, key sentences or phrases from a document are

selected in order to provide a summary.

3.1.1. WORKING OF BERT ALGORITHM

An outline of the key phases in the BERT-based extractive summarization procedure is

provided below:

1. BERT was designed with a focus on handling larger amounts of text. The availability of

vast and informative databases has greatly contributed to BERT's ability to comprehend

various languages, including English. Training BERT using a larger dataset requires more

time. The transformer architecture plays a crucial role in making the training of BERT

feasible, and the utilization of Tensor Processing Units can accelerate the training

procedure.

Fig 2 – [1]

2. Masked Language Model: By considering the surrounding words both preceding and

following the concealed text, which provide contextual clues, we can make educated

predictions about the absent word. The bidirectional method employed in this approach

11

greatly enhances the accuracy level. In the training process, approximately 15% of the

tokenized words are randomly concealed, and BERT's objective is to infer the missing

word.

3. Next Sentence Prediction: Next Sentence Prediction (NSP) is a method employed by BERT

to comprehend the links between sentences by foretelling if a certain sentence will be

followed by another. Half of the accurate predictions are rewarded with random utterances

during training to increase BERT's accuracy, which helps BERT function better.

Fig 3 – [1]

4. Transformers: Machine learning training is effectively parallelized using the transformer

architecture. The model can be trained fast on a large amount of data when we use massive

parallelization. Transformers use attention to their advantage. It is an effective deep-

learning technique that was originally used in computer vision models. Machine learning

models must have the ability to focus on the most important information because human

brains have limited memory. When the machine learning model achieves that, we may

12

prevent the wastage of computing resources and utilise them for processing irrelevant data.

By providing signals to the words in a phrase that are important for subsequent processing,

transformers establish differential weights [9].

13

Fig 4 – [1]

14

In order to do this, a transformer must effectively process an input through levels of its

transformer stack known as encoders. Decoders, a further stack of transformer layers, will aid

in predicting the result. Transformers excel in unsupervised learning because they can handle

more data points quickly.

5. Fine-tuning BERT

Fig 5 – [1]

It is usual practise to employ BERT (Bidirectional Encoder Representations from

Transformers) to modify the pre-trained BERT model for certain downstream natural language

processing (NLP) applications. BERT may use its overall language comprehension skills while

acquiring knowledge tailored to a given job through fine-tuning.

Here's an overview of how fine-tuning BERT works:

1. Pre-training: Initial pre-training for BERT involves a sizable corpus of unlabelled text.

BERT gains the ability to identify missing words in sentences (Masked Language Model)

and comprehend the connections between phrases (Next Sentence Prediction) during pre-

training. This pre-training phase aids BERT's acquisition of generic linguistic

representations.

15

2. Task-specific data: To fine-tune BERT for a specific NLP task, you need a labelled dataset

specific to that task. This dataset should consist of input texts and their corresponding labels

or annotations.

3. Tokenization: The input texts in your task-specific dataset need to be tokenized into

subword units called "word pieces." BERT uses the Word Piece tokenization scheme to

break down words into smaller subword units. Tokenization ensures that the input texts

align with BERT's vocabulary.

4. Model architecture: Each Transformer layer in the BERT system has a different set of

attention heads. Contextual information is captured by the layers, and word dependencies

are discovered by the attention heads. The model architecture stays the same as the pre-

trained BERT during fine-tuning, but the weights are changed.

5. Fine-tuning procedure: Using task-specific data, the pre-trained BERT model's weights are

updated during fine-tuning. The procedure typically consists of the following steps:

 Input representation: The tokenized input texts are converted into numerical

representations that BERT can process. This involves adding special tokens, segment

IDs, and positional embeddings.

 Forward pass: The input representations are fed through the BERT model, and the

output representations are obtained. These representations capture contextualized

information about the input texts.

 Task-specific layers: Depending on the downstream task, additional task-specific layers

can be added on top of BERT. These layers can include dense layers, convolutional

layers, or recurrent layers, depending on the nature of the task.

 Loss computation: The output from the task-specific layers is compared to the ground

truth labels using a task-specific loss function (e.g., cross-entropy loss).

16

 Backpropagation and parameter updates: Gradient descent optimisation techniques like

Adam or SGD are used to update the weights of all the layers, including BERT, as the

loss propagates through the network.

 Iterative fine-tuning: Fine-tuning is an iterative process. The performance of the refined

BERT model is assessed on a validation set, and the hyperparameters—such as learning

rate, batch size, and number of training epochs—can be changed in accordance with the

results. This process is repeated until satisfactory performance is achieved [8].

6. Inference: The BERT model may be adjusted and then used to draw conclusions from

brand-new, untested data. The input texts are tokenized, converted into numerical

representations, and passed through the model to obtain predictions or output

representations, depending on the specific task.

It is vital to highlight that because to the enormous number of parameters in the model, fine-

tuning BERT necessitates extensive computing resources, particularly potent GPUs or TPUs.

the large number of parameters in the model. Additionally, fine-tuning BERT typically requires

a substantial amount of labelled data specific to the target task for effective performance [7].

3.1.2. ADVANTAGES OF BERT

BERT-based extractive text summarization offers several advantages:

 Contextual Understanding: BERT's ability to capture contextual information and

relationships between words helps in understanding the meaning and importance of

sentences within a document. This leads to more accurate identification of important

sentences for the summary.

 Semantic Representation: BERT's pretrained representations encode rich semantic

information, allowing for a nuanced understanding of the text. This enables the model to

capture intricate relationships between words and generate more coherent summaries.

 Generalization: BERT is pretrained on a vast amount of data from diverse sources, which

helps it generalize well to different domains and styles of text. This makes BERT-based

extractive summarization applicable to a wide range of documents.

17

 Fine-Tuning Flexibility: BERT models can be fine-tuned on specific summarization

datasets or with additional task-specific objectives, allowing for better alignment with the

summarization task at hand [1].

3.1.3. LIMITATIONS AND ENHANCEMENTS OF BERT

BERT-based extractive summarization also has certain limitations and challenges:

 Computational Resources: BERT models are computationally expensive, requiring

significant computational resources and memory. Fine-tuning a BERT model for extractive

summarization can be time-consuming and resource-intensive.

 Sentence Compression: Extractive summarization typically involves selecting sentences as

they appear in the original document. However, these sentences may still contain redundant

information. Additional techniques like sentence compression or paraphrasing may be

required to further condense the summary.

 Lack of Abstractive Ability: BERT-based extractive summarization focuses on selecting

and combining sentences, which limits its ability to generate novel or abstractive

summaries. Abstractive summarization, which involves paraphrasing and generating new

sentences, is a separate research direction.

Researchers are actively exploring enhancements and variations of BERT-based extractive text

summarization. Some potential directions for improvement include:

 Joint Training: BERT-based models can be trained in a joint manner with other

summarization-specific objectives, such as sentence compression, to improve the overall

quality and coherence of the generated summaries.

 Transfer Learning: The effectiveness of extractive summarization can be improved by

combining BERT models with other models or methodologies, such as graph-based

approaches or reinforcement learning, to take use of their complementing qualities.

 Multimodal Summarization: Integrating BERT with multimodal information, such as

images or videos associated with the text, can enable more comprehensive and informative

summaries.

18

 Evaluation Metrics: Developing robust evaluation metrics specific to extractive

summarization, beyond traditional metrics like ROUGE, can provide a better assessment

of the quality, coherence, and informativeness of the generated summaries.

BERT-based extractive text summarization leverages the contextual understanding and

semantic representation capabilities of BERT models to select important sentences from a

document and generate a summary. Despite its limitations and challenges, BERT-based

extractive summarization offers significant advantages in terms of contextual understanding,

generalization, and flexibility.

As research in NLP progresses, ongoing advancements and improvements in BERT-based

models, fine-tuning techniques, and evaluation metrics will continue to push the boundaries of

extractive text summarization. With further developments, BERT-based approaches have the

potential to play a crucial role in generating accurate and informative summaries from a wide

range of textual data.

3.2. GPT-2

GPT-2 is primarily known for its capabilities in generating abstractive text rather than

extractive summarization. While GPT-2 can be used for extractive summarization by ranking

and selecting sentences based on their relevance, it is not specifically designed for this task.

Extractive summarization techniques usually involve algorithms and models that focus on

sentence selection based on saliency, coherence, and relevance.

A language model called GPT-2 (Generative Pre-trained Transformer 2) was created by

OpenAI and launched in 2019. It is an expansion of its forerunner, GPT, that generates coherent

and contextually appropriate text using a transformer architecture with a considerable number

of parameters (1.5 billion). GPT-2 was trained using a sizable corpus of freely accessible text

obtained from the internet, enabling it to pick up on linguistic statistical trends and structures.

A language model is essentially a machine learning model that can analyse a portion of a phrase

and predict the following word. This concept is covered in The Illustrated Word2vec [10].

Smartphone keyboards that suggest the next word based on what you've just written are the

most well-known language models.

19

Fig 6- [2]

In this way, we can say that the GPT-2 is like a keyboard app's next word prediction tool, only

much larger and more advanced than the keyboard app on your phone. The 40GB WebText

dataset, which the OpenAI researchers scraped from the internet as part of their research, served

as the basis for training the GPT-2. My preferred keyboard programme, SwiftKey, uses 78MBs

of storage space, for comparison. The trained GPT-2's smallest form requires 500 MB of

storage to keep all of its settings. Given that the biggest GPT-2 model is 13 times larger, it may

use more than 6.5 GB of storage.

20

Fig 7 - [2]

The AllenAI GPT-2 Explorer [11] is a fantastic tool for GPT-2 experimentation. Ten potential

predictions for the following word are shown (along with their likelihood score) using GPT-2.

The next round of predictions will appear once you choose a word to continue composing the

paragraph.

3.2.1. WORKING OF GPT- 2

3.2.1.1. LANGUAGE MODELING TRANSFORMER

The encoder and decoder, each of which is a stack of what we might refer to as transformer

blocks, make up the original transformer model, as we have seen in The Illustrated Transformer

[12]. Because the model dealt with machine translation, an issue where encoder-decoder

designs have had success in the past, that architecture seemed acceptable.

21

Fig 8 – [2]

Many of the succeeding studies' architectures employed simply one stack of transformer

blocks instead of an encoder or a decoder. They were given massive volumes of training

material, subjected to tremendous amounts of processing power, and stacked as high as was

physically possible (some of these language models cost hundreds of thousands of dollars to

train, and AlphaStar undoubtedly cost millions).

Fig 9 – [2]

It appears that one of the primary differences between the various GPT2 model sizes is this:

22

Fig 10 - [2]

3.2.1.2. GPT 2 AND BERT DIFFERENCE

Utilising transformer decoder blocks, the GPT-2 is constructed. Contrarily, BERT makes use

of transformer encoder blocks. In the part that follows, we'll look at the distinction. However,

one significant distinction between the two is that GPT2 outputs one token at a time, much like

conventional language models. For instance, ask a skilled GPT-2 to repeat the first rule of

robotics:

Fig 11 - [2]

These models really operate by adding each token that is created to the input sequence one at

a time. And in the model's following phase, the new sequence serves as its input. The concept

of "auto-regression" is this. One of the concepts behind RNNs' excessive effectiveness [13] is

this one.

23

Fig 12 - [2]

The auto-regressive character of the GPT2 and certain subsequent variants, such

TransformerXL and XLNet[28], is evident. It is not BERT. That is a compromise. BERT

obtained the capacity to take into account the context on both sides of a word in order to get

better outcomes by removing auto-regression. XLNet finds a different technique to include the

context on both sides while bringing back autoregression.

3.2.1.3. TRANSFORMATION BLOCK DEVELOPMENT

Two different types of transformer blocks were first introduced in the transformer paper [14]:

THE BLOCK ENCODER

The encoder block comes first:

24

A transformer paper's initial encoder block can accept inputs for up to a predetermined maximum sequence length

(for example, 512 tokens). If an input sequence is less than this threshold, it is OK; the remaining characters will

simply be padded.

Fig 13 - [2]

THE BLOCK DECODER

Second, there is the decoder block, which differs slightly architecturally from the encoder

block by adding a layer that enables it to focus on particular encoder segments:

Fig 14 - [2]

25

One significant distinction is that, unlike BERT, this self-attention layer covers future tokens

by interfering with the computation of self-attention and obstructing information from tokens

that are to the right of the location being computed.

The route of position #4, for instance, demonstrates that only the present and preceding tokens

are permitted to be attended to:

Fig 15 - [2]

It's critical to understand how self-attention (what BERT utilises) and veiled self-attention

(what GPT-2 uses) differ from one another. A position may peek at tokens to its right thanks

to a typical self-attention block. Self-attention that is concealed prevents that from occurring:

Fig 16 - [2]

26

THE BLOCK FOR DECODERS

Following the first study, Generating Wikipedia by Summarising Long Sequences [15]

suggested a different configuration of the transformer block that may do language modelling.

The Transformer encoder was discarded in this variant. Let's call the design "Transformer-

Decoder" as a result. A stack of six transformer decoder blocks comprised this early

transformer-based language model:

The decoder blocks match one another. You can tell that the first one's self-attention layer is the veiled variation

since I have enlarged it. Observe that the model has significantly improved from the 512 tokens in the initial

transformer to being able to address up to 4,000 tokens in a specific section.

Fig 17 - [2]

With the exception of eliminating the second self-attention layer, these blocks were quite

identical to the original decoder blocks. To develop a language model that predicts one letter

or character at a time, a similar architecture was looked at in Character-Level Language

Modelling with Deeper Self-Attention [16].

These decoder-only blocks are used by the OpenAI GPT-2 model.

3.2.1.4. EVALUATING GPT-2

27

Fig 18 - [2]

Allowing a trained GPT-2 to ramble on its own is the easiest approach to run it; this is known

as producing unconditional samples. Alternatively, we may give it instructions to talk about a

certain subject (creating interactive conditional samples). In the instance of rambling, we can

just give it the start token and tell it to begin producing words (the trained model uses the token

|endoftext|> as its start token). Call it "s" instead, please.

Fig 19 - [2]

28

Since the model only accepts a single input token, only that path would be operational. The

token is processed via each layer in turn, and then a vector is created along that route. The

vocabulary of the model (all 50,000 words in the instance of GPT-2) may be used to score that

vector. 'the' was the token we chose in this instance since it had the highest probability.

However, we can absolutely change things up. For example, if you repeatedly click the

recommended word in your keyboard app, it may get stuck in a cycle that cannot be broken

without selecting the second or third suggested word. Here, the same is possible. We may

instruct the GPT-2 model to sample words other than the top word by setting the top-k

parameter to 1 (which instructs the model to do so).

The result from the previous step is added to our input sequence in the following phase, when

the model is asked to generate its next prediction:

Fig 20 - [2]

Keep in mind that this computation only has the second route active. In order to analyse the

second token, each layer of the GPT-2 has preserved its own interpretation of the first token,

which it will apply (we'll go into more depth about this in the next section on self-attention). In

light of the second token, GPT-2 does not reinterpret the first token.

3.2.2. IMPACT OF GPT – 2

GPT-2's Impact in NLP:

29

 Language Generation: GPT-2 excels in generating realistic and coherent text, making it a

significant advancement in the field of natural language generation. Its ability to produce

human-like responses has found applications in various areas, including chatbots, content

generation, and creative writing.

 Question Answering: GPT-2 has been employed for question answering tasks, where it can

generate relevant answers based on given questions. By conditioning the model on the

question, it can generate plausible responses, although it may not always provide accurate

or factual information.

 Language Translation: GPT-2's powerful language modeling capabilities have been

leveraged for machine translation tasks. By conditioning the model on the source language

and generating text in the target language, it can generate translations that preserve the

contextual information.

 Sentiment Analysis: GPT-2 has been utilized for sentiment analysis tasks, where it can

predict the sentiment of a given text. By training the model on labelled datasets, it can learn

to classify text as positive, negative, or neutral based on the context and linguistic cues.

 Text Completion: GPT-2 can be used for text completion tasks, where it generates coherent

text to complete partially written sentences or paragraphs. This application has been

employed in various scenarios, including writing assistance and content generation.

Language Understanding: GPT-2 has demonstrated impressive language understanding

capabilities. It can comprehend and generate text that exhibits a nuanced understanding of

grammar, context, and semantics. This feature has found applications in tasks such as language

modeling, document classification, and information retrieval.

3.2.3. CHALLENGES WITH GPT-2:

Challenges with Extractive Text Summarization using GPT-2:

While GPT-2 is a powerful language model, it poses certain challenges when applied to

extractive summarization tasks:

30

 Lack of Control: GPT-2 is a generative model that does not provide fine-grained control

over the output. Extractive summarization, on the other hand, requires precise sentence

selection based on relevance and importance. GPT-2 may generate summaries that are

coherent but not necessarily extractive in nature.

 Information Compression: Extractive summarization aims to condense the essential

information from a document into a concise summary. GPT-2, being a generative model,

tends to produce text of a similar length to the input, which may not fulfill the goal of

compression and conciseness.

 Coherence and Redundancy: GPT-2 tends to generate fluent and coherent text, but it may

also introduce redundancy and repetition. In extractive summarization, redundancy is

undesirable as it hampers the concise representation of the document's key information.

 Overemphasis on Context: GPT-2's language modeling capabilities are based on contextual

information from the training corpus. While this is advantageous for generating coherent

text, it may lead to an overemphasis on the immediate context rather than extracting the

most salient sentences across the entire document.

3.2.4. ADDRESSING OF GPT-2

To leverage GPT-2 for extractive summarization, additional techniques can be employed to

select relevant sentences from the generated text. These techniques include:

 Sentence Scoring: Apply scoring mechanisms based on sentence length, importance, or

relevance to rank the generated sentences. This allows the extraction of the most relevant

sentences from the output.

 Cosine Similarity: Utilize techniques like TF-IDF and cosine similarity to measure the

similarity between generated sentences and the source document. Sentences with higher

similarity scores can be considered for extraction.

31

 Supervised Learning: Train a separate model on labelled data with sentence-level

annotations for importance. This model can rank and select sentences based on their

relevance to the source document, leveraging the generative capabilities of GPT-2 for

sentence generation.

 Reinforcement Learning: Apply reinforcement learning techniques to fine-tune GPT-2 for

extractive summarization. By defining a reward function based on the quality and relevance

of extracted sentences, the model can be trained to generate summaries that align with the

extractive summarization objective.

These approaches aim to combine the generative capabilities of GPT-2 with additional

techniques to extract salient information effectively. By addressing the challenges specific to

extractive summarization, these methods strive to produce concise and coherent summaries.

In conclusion, while GPT-2 is primarily known for its abstractive text generation capabilities,

it can still be employed in extractive summarization tasks by integrating it with complementary

techniques. GPT-2's impact in NLP has been substantial, with its ability to generate realistic

and contextually relevant text opening up numerous possibilities for various language-related

tasks.

3.3. KL-SUMMARIZER

Another popular approach for extractive summarization is the KL-Sum algorithm, which

utilizes Kullback-Leibler (KL) divergence to measure the relevance and importance of

sentences. In this article, we will delve into the details of extractive text summarization,

specifically focusing on the KL-Summarizer and how it operates. KL-Summarizer, also known

as KL-Sum, is an extractive algorithm that utilizes statistical measures to identify important

sentences.

The importance of sentences in a given text is determined by the Kullback-Leibler (KL)

divergence, which is used by the KL-Sum method. KL divergence is a metric for comparing

the differences between two probability distributions. The difference between the probability

distribution of the sentences in the document and the probability distribution of sentences in a

generic document is quantified in the context of KL-Sum.

32

3.3.1. KL-SUM ALGORITHM

The KL-Sum algorithm is composed of the following key steps: -

Kl Summarizer describes a greedy optimization approach for selecting sentences and ordering

them based on a value called "Pi." Here is a breakdown of the steps outlined:

1. Initialize an empty set S and set d to 0.

2. Repeat the following loop until the size of S (|S|) reaches a specified limit L:

3. Iterate over a range of values i from 1 to ND (the total number of documents).

4. Calculate a value di using the Kullback-Leibler divergence (KL) between the probability

distribution Ps and PD. This value measures the difference between the probability

distribution of the selected sentences (Ps) and the probability distribution of the entire

document (PD).

5. Add the sentence Si with the minimum di to the set S, and update d to the value of di.

6. If there is no i such that di is less than the current value of d, stop the loop.

7. Finally, the selected sentences in the target document are ordered based on a position index

pi, which reflects their position within their respective source documents.

8. For each selected sentence Si extracted from document Dj, compute a position index pi

ranging from 0 to 1.

9. The sentences in the target document are then ordered based on the value of pi, following

the order of sentences in the source documents.

This strategy seeks to choose the most pertinent sentences from the source documents and

arrange them in accordance with where they appear in the source documents [14].

3.3.2. ADVANTAGES OF KL – SUMMARIZER

The KL-Summarizer algorithm offers several advantages:

 Extractive Approach: KL-Sum extracts sentence directly from the input document,

preserving the original wording and reducing the risk of introducing errors or

misinterpretations.

 Simplicity: The algorithm's implementation is relatively straightforward, making it easier

to understand and apply.

 Interpretable Results: The sentence scores generated by KL-Sum provide a measure of

importance, allowing users to interpret the basis of sentence selection.

33

3.3.3. LIMITATIONS AND ENHANCEMENT OF KL - SUMMARIZER

However, KL-Summarizer also has some limitations:

 Dependency on Generic Document: KL-Sum requires a generic document as a reference to

compute sentence scores. The quality and relevance of the generic document can

significantly impact the summarization results.

 Lack of Semantic Understanding: KL-Sum does not capture semantic relationships

between words or sentences. It relies solely on statistical measures, which may not always

reflect the true importance of sentences.

 Sentence Redundancy: KL-Sum may select redundant sentences if they have similar word

distributions to important sentences. This redundancy can affect the overall coherence and

quality of the summary.

Researchers have proposed several enhancements to address the limitations of KL-Sum and

improve the effectiveness of extractive summarization. Some of these include:

 Incorporating Word Embeddings: Word embeddings capture semantic relationships

between words, allowing algorithms to better understand the meaning and context of

sentences. Integrating word embeddings into KL-Sum could enhance its performance.

 Graph-Based Models: Graph-based models use edge weights to describe the connections

between phrases as nodes in a graph. These models can improve coherence and eliminate

redundancy in the generated summaries.

 Neural Network-Based Approaches: In text summarization tasks, neural network designs

including recurrent neural networks (RNNs) and transformer models have demonstrated

promising outcomes. These methods can capture intricate relationships and produce

summaries that are more precise.

 Reinforcement Learning: Reinforcement learning techniques can be employed to optimize

the summarization process by training models to generate summaries that maximize

predefined metrics like ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

scores.

34

Extractive text summarization is a valuable technique for condensing large amounts of text

while preserving important information. The KL-Sum algorithm, which utilizes KL divergence,

offers a simple and interpretable approach to extractive summarization. By comparing the word

distributions of a document with those of a generic document, KL-Sum assigns scores to

sentences and selects the most relevant ones for the summary.

While KL-Sum has its limitations, ongoing research and advancements in NLP and machine

learning techniques hold the promise of addressing these challenges and improving the overall

effectiveness of extractive text summarization. With further developments, extractive

summarization algorithms like KL-Sum can continue to play a significant role in automatically

generating concise and informative summaries from large textual data.

3.4. LUHN

One popular algorithm for extractive summarization is the LUHN algorithm, which was

developed by Hans Peter Luhn in the late 1950s. LUHN's method is based on the assumption

that important sentences in a document tend to contain significant and frequent terms. In this

article, we will explore the LUHN algorithm in detail, discussing its steps, advantages,

limitations, and potential future directions.

The LUHN algorithm is one such approach to extractive text summarization that relies on

statistical measures to identify significant sentences.

The LUHN algorithm, proposed by Hans Peter Luhn in 1958, follows a set of steps to generate

extractive summaries. It focuses on the frequency of important terms to measure the relevance

of sentences.

3.4.1. LUHN’s ALGORITHM

The LUHN algorithm's key steps are broken down as follows:

1. In the initial stage, our goal is to identify the words that hold greater significance in

conveying the meaning of a document. According to Luhn's approach, this is achieved

through a frequency analysis, followed by the identification of important words that are not

considered unimportant English words. For example,

35

Fig 21 - [3]

We can observe from the above table that stop words like a and an are not taken into account

while evaluating.

2. Moving on to the second phase, we determine the most frequently occurring words in the

document. From this set, we select a subset that excludes the commonly used English words

but still retains words of importance. This phase typically involves three steps:

i. The process begins by converting the sentences' content into a mathematical expression

or vector, often represented as a binary representation. To accomplish this, we utilize a

bag-of-words approach that disregard filler words. Filler words are typically auxiliary

words that do not significantly contribute to the document's meaning. Then, we tally up

all the valuable words that remain.

ii. In this step, we access sentences using a sentence scoring technique. One possible

scoring method, as demonstrated below, involves calculating a score based on the

number of meaningful words squared divided by the span of those meaningful words.

Here, the span refers to the portion of the sentence (or document) that contains all the

meaningful words. Additionally, tf-idf can be employed to prioritize words within a

sentence based on their rarity across a broader corpus.

iii. Once the sentence scoring process is complete, the final step involves selecting

sentences with the highest overall rankings.

To summarize, Luhn's algorithm for text summarization entails determining the significance of

words in the document, evaluating sentences based on their meaningful word count and span,

and ultimately selecting the sentences with the highest scores to form the summary [2][18].

36

3.4.2. ADVANTAGES OF LUHN ALGORITHM

The LUHN algorithm offers several advantages:

 Simplicity: The LUHN algorithm is relatively simple to implement and understand, making

it accessible for various applications.

 Extractive Approach: By selecting sentences directly from the original document, the

LUHN algorithm preserves the exact wording and reduces the risk of introducing errors or

misinterpretations.

 Computational Efficiency: The algorithm's straightforward nature makes it

computationally efficient, allowing it to handle large volumes of text with reasonable

processing times.

3.4.3. LIMITATIONS AND ENHANCEMENTS OF LUHN ALGORITHM

However, the LUHN algorithm also has some limitations:

 Lack of Semantic Understanding: The algorithm solely relies on statistical measures and

term frequency. It does not capture the semantic relationships between words or sentences,

potentially leading to the inclusion of less relevant sentences in the summary.

 Sentence Redundancy: The LUHN algorithm may select multiple sentences conveying

similar information if they contain the same or similar important terms. This redundancy

can affect the overall coherence and quality of the summary.

 Sensitivity to Term Frequency: The LUHN algorithm heavily relies on term frequency as a

measure of importance. This sensitivity can lead to the inclusion of sentences that may be

less informative but contain frequently occurring terms.

Researchers have proposed several enhancements and variations to the LUHN algorithm to

address its limitations and improve the effectiveness of extractive summarization. Some of

these include:

37

 Word Embeddings: Integrating word embeddings, such as Word2Vec or GloVe, into the

LUHN algorithm can enhance its performance by capturing semantic relationships between

words. Word embeddings provide a more nuanced representation of word meanings and

can improve the selection of important terms and sentences.

 Graph-Based Models: The relevance of sentences is determined using graph algorithms,

which are used in graph-based models like LexRank and TextRank that represent sentences

as nodes in a graph. These models can assist in reducing repetition and enhancing the

summary's coherence.

 Neural Network-Based Approaches: In text summarization tasks, neural network designs

including recurrent neural networks (RNNs) and transformer models have demonstrated

promising outcomes. These methods may capture intricate relationships and semantic data,

allowing for more precise and thorough summaries.

 Evaluation Metrics: The quality of the produced summaries may be evaluated objectively

by creating more reliable assessment measures for extractive summarization. It is possible

to leverage established metrics like ROUGE (Recall-Oriented Understudy for Gisting

Evaluation) and develop new metrics to measure qualities like coherence and readability.

The LUHN algorithm, proposed by Hans Peter Luhn, is a popular extractive text summarization

method that relies on term frequency to identify important sentences in a document. By

assigning weights to terms and scoring sentences based on the presence of these terms, the

LUHN algorithm generates extractive summaries.

While the LUHN algorithm has its limitations, ongoing research and advancements in NLP and

machine learning techniques offer promising avenues for improvement. By incorporating

semantic understanding, graph-based models, and neural network-based approaches, extractive

summarization algorithms like LUHN can enhance their effectiveness and produce more

coherent and informative summaries. With further developments, extractive summarization

techniques will continue to play a vital role in automatically generating concise and relevant

summaries from large textual data.

38

3.5. LEX

LexRank is one of the popular algorithms used for extractive summarization. It leverages

graph-based ranking methods to identify key sentences based on their similarity and importance

within the document. In this article, we will explore LexRank in detail, discussing its steps,

advantages, limitations, and potential future directions.

The critical task of text summarization in natural language processing (NLP) is reducing the

amount of information in a document while maintaining its vital content. In order to provide a

summary, extractive summarising techniques choose and extract pertinent lines or phrases from

the original text. This strategy is favoured since it may preserve the original phrasing and

lowers the possibility of adding mistakes or misinterpretations.

LexRank is an extractive summarization algorithm that utilizes graph-based ranking methods

to identify important sentences within a document.

The LexRank algorithm was introduced by Erkan and Radev in 2004. It draws inspiration from

the PageRank algorithm, which is used by search engines to rank web pages based on their

importance. LexRank applies similar principles to rank sentences within a document.

3.5.1. LEX ALGORITHM

Here's an overview of the main steps involved in the LexRank algorithm:

1. Pre-processing: Pre-processing operations on the input document include stemming, stop

word removal, and tokenization. The paper may be broken down into individual phrases

using these processes, and unnecessary words can be eliminated.

2. Similarity Matrix Construction: The bag of words model, where N is the total number of

words in a particular language, is used to characterise N-dimensional vectors in order to

determine similarity. The idf of the word multiplied by the number of times it appears in

the phrase determines the value of the related dimension in the sentence's vector

representation.

39

(Eq.1)

The number of times the word w appears in the sentence s is shown by the symbol tfw,s.

3. Graph Construction: The similarity matrix is converted into a graph representation, where

phrases are represented as nodes, and relationships between them are shown as edges. In

order to create a weighted graph, each sentence is linked to other sentences that it is

comparable to.

Fig 22 – [4]

Where Si corresponds to the sentences at each of the vertices and Wij to the weights along

the edges.

4. PageRank Calculation: The PageRank algorithm is applied to the graph to rank the

sentences based on their importance. PageRank assigns higher scores to sentences that are

connected to other sentences with high similarity scores.

5. Sentence Selection: Sentences with the highest PageRank scores are selected to form the

summary. The number of sentences included in the summary can be predefined or based on

a desired summary length.

6. Summary Generation: The selected sentences are combined to create the final summary,

preserving the original order as they appeared in the document[4].

40

3.5.2. ADVANTAGES OF LEXRANK

The LexRank algorithm offers several advantages:

 Graph-Based Approach: LexRank utilizes a graph-based representation to capture the

relationships and similarities between sentences. This approach helps improve the

coherence and eliminate redundancy in the generated summaries.

 Importance-Based Ranking: The algorithm assigns importance scores to sentences based

on their similarity to other sentences. This ranking ensures that the most relevant and

representative sentences are selected for the summary.

 Language Independence: LexRank can be applied to documents in various languages

without requiring language-specific modifications. It relies on the inherent structure of the

text and does not rely on language-specific linguistic features.

3.5.3. LIMITATIONS AND ENHANCEMENTS OF LEXRANK

However, LexRank also has some limitations:

 Lack of Semantic Understanding: While LexRank captures similarity between sentences

based on their textual content, it does not capture semantic relationships or deeper meaning.

As a result, it may include sentences that are similar but convey different information.

 Sensitivity to Similarity Measure: The choice of similarity measure used to construct the

similarity matrix can impact the performance of LexRank. Different similarity measures

may yield different results, and selecting an appropriate measure is crucial.

 Computationally Intensive: The LexRank algorithm involves the construction and

manipulation of a similarity matrix and graph, which can be computationally intensive for

large documents. However, various optimizations and approximations can be applied to

mitigate this issue.

Researchers have proposed several enhancements and variations to the LexRank algorithm to

address its limitations and further improve extractive summarization. Some of these include:

41

 Extended Context: Incorporating a wider context by considering not only sentence-level

similarity but also document-level information can improve the selection of important

sentences. This can be achieved by incorporating document-level features or by using

context-aware embeddings.

 Neural Network-Based Approaches: Neural network architectures, such as recurrent neural

networks (RNNs) and transformer models, have shown promising results in text

summarization tasks. These approaches can capture complex dependencies and semantic

information, enabling more accurate and coherent summaries.

 Domain-Specific Modifications: Adapting the LexRank algorithm to specific domains or

genres of text can enhance its performance. Domain-specific modifications can include

incorporating domain-specific features, adjusting similarity measures, or fine-tuning the

ranking process based on domain-specific criteria.

 Multi-Document Summarization: Extending LexRank to handle multiple documents can

enable summarization of collections of related texts. Techniques such as cross-document

similarity calculation and clustering can be employed to generate summaries that capture

the key information from multiple sources.

LexRank is a graph-based algorithm that ranks sentences within a document based on their

similarity and importance. By leveraging graph-based ranking methods, LexRank generates

extractive summaries by selecting sentences with high importance scores.

While LexRank has its limitations, ongoing research and advancements in NLP and machine

learning techniques offer potential solutions. By incorporating semantic understanding,

exploring different similarity measures, and adapting the algorithm to specific domains,

extractive summarization algorithms like LexRank can continue to improve their effectiveness

and generate more coherent and informative summaries. With further developments, extractive

summarization techniques will play a vital role in automatically generating concise and relevant

summaries from large textual data.

42

3.6. WORD RANK

Word Rank is an extractive text summarising algorithm that chooses sentences that include key

phrases from a document and uses them to build a summary. Unlike other algorithms that focus

on sentence-level analysis, Word Rank operates at the word level. In this article, we will explore

Word Rank in detail, discussing its steps, advantages, limitations, and potential future

directions.

Word Rank is an extractive summarization algorithm that operates by identifying significant

terms and selecting sentences containing those terms.

The Word Rank algorithm, introduced by Aliaksei Severyn and Alessandro Moschitti in 2015,

focuses on the importance of terms within a document. Word Rank establishes the importance

of sentences by giving words weights depending on their frequency and placement in the text.

3.6.1. WORD RANK ALGORITHM

Here is an overview of the main steps involved in the Word Rank algorithm:

1. Pre-processing: The initial document undergoes several pre-processing procedures to

enhance its suitability for further analysis. These steps involve tokenization, the elimination

of stop words, and stemming. Through tokenization, the document is fragmented into

individual sentences or smaller units, facilitating a more detailed examination. Stop words,

which are inconsequential words that do not carry substantial meaning, are then eliminated

from the document. This removal aids in focusing on the more essential content that

contributes significantly to the summary. Lastly, stemming is applied to reduce words to

their root form, enabling consolidation of related words and reducing redundancy. Overall,

these pre-processing steps work together to break down the input document, eliminate

unnecessary words, and extract the core information that holds relevance for generating a

concise summary.

43

2. Term Frequency Calculation: In order to determine the occurrence of each term in the

document, the frequency of each term is computed. This process entails tallying the number

of times each term appears within the document. The terms considered can range from

individual words to phrases, depending on the desired level of detail and specificity. By

performing this frequency calculation, we obtain a quantitative representation of how often

each term occurs, enabling further analysis and insights into the document's content. The

purpose of this step is to provide a clear understanding of the distribution and prominence

of different terms within the document, helping to identify significant patterns or key

elements that contribute to its overall meaning.

3. Term Position Weighting: When assessing the importance of each term within the

document, special consideration is given to its position, and a weighting scheme is applied.

This scheme grants higher weights to terms that appear at the beginning of sentences. The

underlying assumption is that terms occurring early in sentences carry more significance

and serve as better representatives of the content. By assigning these higher weights to such

terms, the weighting scheme acknowledges their potential impact on conveying essential

information and conveying the core message of the document. This approach aims to

capture the relative importance of terms based on their placement within sentences,

emphasizing the belief that terms appearing earlier hold greater relevance and contribute

more significantly to the overall meaning. Thus, by considering the position of each term

and implementing this weighting scheme, we can effectively highlight and prioritize the

terms that are likely to be more crucial in understanding the document's content.

4. Sentence Scoring: To determine the significance of sentences within the document, a

scoring process is employed, which relies on the weights assigned to the terms they contain.

The scores for each sentence are computed by adding up the weights of the terms present

within that particular sentence. Consequently, sentences with higher scores are deemed

more important and are chosen to be included in the summary. This scoring mechanism

enables the identification of sentences that encompass the most relevant and crucial

information by considering the cumulative weight of the terms they contain. By selecting

sentences with higher scores, the summary can effectively capture the key points and

essential content from the document, prioritizing those sentences that carry more weight

and contribute significantly to conveying its overall meaning.

44

5. Sentence Selection: The summary is constructed by choosing sentences with the most

elevated scores. The selection process entails identifying sentences that have achieved the

highest scores and including them in the summary. The number of sentences to be included

in the summary can be determined in advance or determined based on the desired length of

the summary. This approach ensures that the most important and informative sentences are

incorporated, as they have attained the highest scores through the scoring mechanism. By

curating the summary from these highly scored sentences, a concise and representative

overview of the document can be generated. The flexibility of determining the number of

sentences in the summary allows for customization based on specific requirements, such as

the desired level of detail or the designated length for the summary output.

6. Summary Generation: The final summary is generated by merging the selected sentences,

preserving their original order as they appeared in the document. This process involves

combining the chosen sentences in a cohesive manner, ensuring that their sequence is

maintained to reflect the original flow of information. By adhering to the original order, the

summary retains the logical progression and coherence present in the source document.

This approach aims to provide a concise representation of the document's key points while

maintaining the contextual integrity of the information. By combining the selected

sentences in their original arrangement, the final summary effectively captures the essence

of the document and presents it in a condensed form that aligns with the structure and

coherence of the original content[19][20].

3.6.2. ADVANTAGES OF WORD RANK

The Word Rank algorithm offers several advantages:

 Term-Level Analysis: Word Rank operates at the word level, allowing for a more granular

analysis of the document. By focusing on individual terms and their positions, the algorithm

captures important information that might be missed by sentence-level approaches.

 Simplicity: The algorithm's implementation is relatively simple, making it easy to

understand and apply. The straightforward nature of Word Rank enables efficient

processing of large volumes of text.

45

 Extractive Approach: Word Rank directly selects sentences from the original document,

preserving the original wording and reducing the risk of introducing errors or

misinterpretations.

3.6.3. LIMITATIONS AND ENHANCEMENT OF WORD RANK

However, Word Rank also has some limitations:

Lack of Semantic Understanding: The algorithm does not capture semantic relationships

between words or sentences. It relies solely on statistical measures, which may not always

reflect the true importance or relevance of sentences.

Sensitivity to Term Frequency and Position: Word Rank heavily relies on term frequency and

position in the document. While these factors can indicate importance, they may not always

align with the overall content significance.

Sentence Redundancy: Word Rank may select multiple sentences that convey similar

information if they contain the same or similar important terms. This redundancy can impact

the coherence and quality of the summary.

Researchers continue to explore enhancements and variations of the Word Rank algorithm to

address its limitations and improve extractive summarization. Some potential directions for

improvement include:

 Semantic Analysis: Integrating semantic understanding into the Word Rank algorithm can

enhance the selection of relevant sentences. Techniques such as word embeddings or

semantic similarity measures can be employed to capture semantic relationships and

improve the accuracy of term importance estimation.

 Contextual Information: Incorporating contextual information, such as document-level or

discourse-level features, can provide a more comprehensive view of the text. This

additional information can help identify key terms and sentences that contribute to the

overall meaning and coherence of the document.

46

 Hybrid Approaches: Combining Word Rank with other extractive summarization

algorithms or techniques can leverage the strengths of different methods. For example,

incorporating graph-based methods or neural network-based approaches can improve the

overall performance and effectiveness of the summarization process.

 Evaluation Metrics: Developing robust evaluation metrics specific to extractive

summarization can enable better assessment and comparison of the quality of generated

summaries. Traditional metrics such as ROUGE (Recall-Oriented Understudy for Gisting

Evaluation) can be utilized, along with new metrics that capture aspects like coherence,

informativeness, and readability.

Word Rank is an extractive summarization algorithm that selects sentences based on the

importance of terms within a document. By assigning weights to terms and considering their

frequency and position, Word Rank generates extractive summaries that capture key

information.

While Word Rank has its limitations, ongoing research and advancements in NLP and machine

learning offer promising avenues for improvement. By incorporating semantic understanding,

contextual information, and hybrid approaches, extractive summarization algorithms like Word

Rank can enhance their effectiveness and produce more coherent and informative summaries.

With further developments, extractive summarization techniques will continue to play a

significant role in automatically generating concise and relevant summaries from large textual

data.

3.7. ROUGE SCORE

A popular metric for assessing the effectiveness of automatic summarization systems is the

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) score. The process of creating

succinct and insightful summaries of lengthy materials, such as articles, papers, or

conversations, is known as automatic summarising.

47

Automatic summary aims to extract the essential details from the source material and present

them in a streamlined way so that consumers may quickly understand the major ideas without

having to read the full thing. ROUGE scores serve as a quantitative evaluation of the efficacy

of the summarising method by measuring how similar the generated summary is to one or more

reference summaries.

ROUGE scores are typically calculated at different levels, such as ROUGE-N and ROUGE-L.

Let's explore these in more detail:

ROUGE-N: This ROUGE version counts the number of n-grams that overlap between the

reference summary and the produced summary. A continuous run of n words is known as an n-

gram. Based on the matching n-grams between the two summaries, ROUGE-N determines the

accuracy, recall, and F-measure. Frequently used answers for n are 1 (unigrams), 2 (bigrams),

or 3 (trigrams).

ROUGE-L: The longest common subsequence (LCS) between the produced summary and the

reference summary is calculated by ROUGE-L. Regardless of the word arrangement, the LCS

is the longest string of words to occur in either summary. ROUGE-L calculates precision, recall,

and F-Measureby taking into consideration the length of the LCS as well as the lengths of the

produced and reference summaries.

The calculation of ROUGE scores involves several steps:

 Tokenization: Both the produced and the reference summaries are tokenized into discrete

words or units. Depending on the required degree of analysis, the text is divided into smaller

components called tokens, such as words, phrases, or paragraphs.

 N-gram extraction: N-grams are extracted from both the reference and generated

summaries based on the chosen value of n. For example, if we consider bigrams (n=2), the

summaries are split into sequences of two adjacent words. The n-gram extraction captures

the local word order information.

 Overlap computation: It is determined how many n-grams in the reference and produced

summaries coincide. This is done for ROUGE-N by calculating the percentage of n-grams

from the produced summary that match n-grams in the reference summary.

48

 Counting: Recall (R) and precision (P) are calculated by comparing the number of

overlapping n-grams to the total n-grams in the reference summary and the total n-grams

in the produced summary, respectively. Precision measures the amount of created

information that is pertinent to the reference summary, whereas recall measures the amount

of pertinent information from the reference summary that is recorded by the generated

summary.

 F-measure: The F-Measure provides a fair assessment of the performance of the

summarization system by combining recall and precision into one score. F = (2 * P * R) /

(P + R) is the formula used to compute the harmonic mean of recall and accuracy. The F-

Measure encourages a balance between the two by accounting for situations in which

accuracy and recall may have distinct values.

 Aggregation: Different ROUGE scores, such as ROUGE-1, ROUGE-2, or ROUGE-L, can

be computed. To obtain an overall evaluation, the F-measures for each level can be

averaged or combined using a weighted average. The specific aggregation method may

depend on the evaluation requirements or preferences.

The similarity between produced and reference summaries is quantified by ROUGE scores.

Greater content overlap and better alignment between the produced and reference summaries

are both indicated by higher ROUGE ratings. These results enable researchers and developers

to evaluate their models, compare various summarising systems, and monitor the advancement

of autonomous summarization research.

It is important to note that ROUGE scores have limitations. They rely on the availability of

reference summaries, which may not always be present or may introduce bias if they are

generated by humans. Additionally, ROUGE scores primarily focus on lexical overlap and do

not capture other important aspects of summary quality, such as coherence, fluency, or the

ability to capture salient information.

Nevertheless, ROUGE scores serve as a valuable tool in the evaluation and development of

automatic summarization systems. They provide a standardized and objective measure of

summary quality, facilitating the advancement of research in this field and enabling the

comparison of different approaches and techniques [21].

49

3.7.1. PRECISION

The percentage of correctly predicted positive outcomes (true positives) is a measure of

precision. Its formulation is:

TRUE POSITIVES

TRUE POSITIVES+FALSE POSITIVES

NO.OF CORRECTLY PREDICTED
POSTIVE INSTANCES

NO.OF TOTAL POSITIVE
PREDICTED YOU MADE

NO.OF CORRECTLY PREDICTED
PEOPLE WITH CANCER
NO,OF PEOPLE YOU

PREDICTED TO HAVE CANCER

(Eq. 2)

3.7.2. RECALL

Recall is a measurement of the proportion of positive cases in the data that the classifier

correctly predicted out of all of them. At times, it is also referred to as sensitivity. The following

is its formula:

TRUE POSITITVES

TRUE POSITIVES+FALSE NEGATIVES

NO.OF CORRECTLY PREDICTED
POSITIVE INSTANCE

NO,OF TOTAL POSITIVE
INSTANCE IN THE DATASET

NO.OF CORRECTLY PREDICTED
PEOPLE WITH CANCER
NO.OF PEOPLE WITH
CANCER IN THE DATASET

(Eq. 3)

3.7.3. F1-MEASURE

A measurement that combines recall and accuracy is the F1-Measure. It is commonly referred

to as the harmonic mean of the two. The harmonic mean is another way to calculate a "average"

of numbers; it is often seen to be better suited for ratios than the traditional arithmetic mean

(such as recall and accuracy). The F-Measure computation in this case is as follows:

F-MEASURE = 2 *
PRECISION+RECALL

PRECISION∗RECALL
(Eq. 4)

= =

= =

50

3.8. BERT SCORE

Fig 23 – [5]

A statistic known as BERTScore is used to assess the quality of produced text or translations

by contrasting them with reference material. It is based on Google's state-of-the-art language

model, the Bidirectional Encoder Representations from Transformers (BERT) model. To

determine how comparable the generated and reference texts are, BERTScore makes use of the

contextualised word embeddings generated by BERT.

To understand BERTScore in more detail, let's explore the following aspects:

Contextualized Word Embeddings: BERT, as a transformer-based model, produces

contextualized word embeddings. Unlike traditional word embeddings that represent words in

a static manner, contextualized embeddings capture the meaning of words within the context

of the sentence. BERT achieves this by considering both left and right context during the

training process. These embeddings are more informative and can better represent the nuances

and meaning of words.

Similarity Calculation: BERTScore uses contextualized word embeddings to compute the

similarity between the generated and reference text. Instead of relying solely on lexical or

surface-level matching, BERTScore takes into account the contextual information encoded in

the embeddings. This allows for a more nuanced assessment of the similarity between the two

texts.

Sentence Segmentation: Before computing the BERTScore, the generated and reference texts

are segmented into sentences or smaller units. This step ensures that the comparison is

performed at a more granular level, capturing the similarity between corresponding segments

of the two texts.

51

Word Alignment: BERTScore calculates a word alignment matrix that captures the similarity

between individual words in the generated and reference text. The alignment matrix is

computed by comparing the contextualized word embeddings of each word pair. The alignment

matrix reflects how well each word in the generated text aligns with the words in the reference

text.

Greedy Matching: To determine the best alignment between the words in the generated and

reference text, BERTScore employs a greedy matching algorithm. This algorithm maximizes

the similarity between the aligned words while ensuring that each word is aligned only once. It

starts by finding the highest similarity score and then moves to the next highest until all words

are aligned.

Precision, Recall, and F1-Measure: Based on the word alignment matrix, BERTScore computes

precision, recall, and F1-Measure. Precision measures the proportion of generated words that

align well with the reference words, while recall measures the proportion of reference words

that align well with the generated words. F-Measure is the harmonic mean of precision and

recall, providing a balanced evaluation metric.

BERTScore Calculation: BERTScore aggregates the precision, recall, and F-Measure across

all sentences or units to obtain an overall BERTScore. This aggregated score provides a

comprehensive measure of the similarity between the generated and reference text.

Tokenization and Subword Units: BERTScore handles tokenization and subword units to

ensure consistency and accuracy in the comparison process. It uses the same tokenization

methods as BERT to ensure that the generated and reference text are aligned at the subword

level.

BERTScore offers several advantages over traditional evaluation metrics. Firstly, it leverages

the power of contextualized embeddings to capture the semantic similarity between texts. This

allows for a more fine-grained and accurate evaluation, as it considers the overall meaning

rather than relying solely on lexical overlap. Secondly, BERTScore can handle variations in

sentence length and structure, making it suitable for evaluating texts of different lengths.

Finally, BERTScore aligns words between the generated and reference text, providing insights

into specific word correspondences and mismatches.

52

BERTScore has gained popularity in various natural language processing tasks, including

machine translation, text summarization, and text generation. Its use in evaluating the quality

of generated text has become increasingly common, as it offers a robust and context-aware

metric that aligns with human judgments.

In summary, BERTScore is a metric that utilizes contextualized word embeddings from the

BERT model to compute the similarity between generated and reference text. By considering

the context and leveraging alignment techniques, BERTScore provides a comprehensive

evaluation of the quality of generated text, enabling researchers and developers to assess and

compare the performance of their models accurately [22].

3.9. MOVER SCORE

Fig 24 – [6]

The MoverScore statistic compares produced text or translations against reference material to

assess the quality of each. It is based on the idea of "Word Mover's Distance" (WMD), which

computes the least amount of work necessary to change the word embeddings of one text

document into another to determine how different two text documents are. MoverScore extends

the idea of WMD to provide a more fine-grained and robust evaluation of generated text.

53

To understand MoverScore in more detail, we must explore the following aspects:

Word Mover's Distance (WMD): Word Mover's Distance is a measure of semantic similarity

between two text documents. It quantifies the "distance" between two sets of word embeddings

by computing the minimum amount of "movement" or "effort" required to transform the word

embeddings of one document into the other. The WMD considers the semantic meaning of

words based on their contextualized embeddings and captures the overall similarity between

documents beyond surface-level matching.

Contextualized Word Embeddings: Similar to BERTScore, MoverScore relies on

contextualized word embeddings to capture the meaning of words in the context of the

document. These embeddings are produced by models such as BERT or GPT, which take into

account the surrounding context to generate word representations. Contextualized word

embeddings allow for a more nuanced and accurate assessment of the similarity between words

and documents.

Word Embedding Similarity: To compute the WMD, MoverScore utilizes the similarity

between word embeddings. The similarity can be measured using different distance metrics,

such as Euclidean distance or cosine similarity. The choice of similarity metric depends on the

specific implementation and requirements of the evaluation.

Word Embedding Space: MoverScore operates in the space of word embeddings, where each

word is represented as a vector. These word embeddings are learned during the training of

models like BERT or GPT, and they capture the semantic information of words based on the

context in which they appear. By leveraging this embedding space, MoverScore can measure

the similarity between words and documents using geometric distances.

Sentence Segmentation: Similar to other evaluation metrics, MoverScore segments the

generated and reference text into sentences or smaller units. This segmentation allows for a

more granular comparison and evaluation of corresponding segments between the two texts. It

ensures that the evaluation captures the quality of the generated text at a more local level,

considering the coherence and fluency of individual sentences.

54

Word Alignment and Transport Plan: MoverScore aligns words between the generated and

reference text to compute the Word Mover's Distance. It finds the optimal assignment of words

from the generated text to words in the reference text based on their semantic similarity. The

alignment process produces a transport plan, which represents how words from the generated

text should be "transported" to match the words in the reference text. The transport plan

indicates the movement required to transform the generated text into the reference text, forming

the basis of the MoverScore calculation.

MoverScore Calculation: MoverScore calculates the Word Mover's Distance by considering

the transport plan and the distances between the aligned word embeddings. The WMD

represents the minimum "effort" or "distance" required to transform the word embeddings of

the generated text into the reference text. MoverScore then converts the WMD into a

normalized score by scaling it based on the lengths of the generated and reference texts. The

resulting MoverScore provides a measure of the dissimilarity between the generated and

reference text, where a lower score indicates a higher level of similarity.

Sentence and Document-level Aggregation: MoverScore can be computed at both the sentence

and document levels. At the sentence level, MoverScore calculates the WMD and aggregates

the scores across all sentences to obtain an overall MoverScore for the entire document. At the

document level, MoverScore takes into account the lengths of the generated and reference texts

to ensure fairness in the evaluation. Aggregating scores at different levels provides insights into

the quality of the generated text at varying granularities.

MoverScore offers several advantages in evaluating the quality of generated text. Firstly, it

captures semantic similarity beyond surface-level matching, as it considers the overall meaning

and context encoded in word embeddings. This allows for a more accurate assessment of the

semantic quality and coherence of the generated text. Secondly, MoverScore considers the

alignment and movement of words, providing insights into how well the generated text matches

the reference text in terms of word choices and semantics. Thirdly, MoverScore is versatile and

can be applied to various natural language processing tasks, such as machine translation, text

summarization, or text generation.

55

CHAPTER 4

EXPERIMENTAL RESULTS

In this case, we employed the Bert Model, developed by HuggingFace [9]. The Bert Model

utilized for our purposes possesses certain characteristics: a vocabulary size of 30,522 words,

a hidden size of 768, 12 hidden layers, 12 attention layers, and feed-forward layers consisting

of 3,072 units. These specifications outline the essential framework of the transformers used in

our approach.

Furthermore, an alternative version of the GPT-2 models, known as GPT-2 Medium, was

introduced by OpenAI [24] in 2019. With a substantial parameter count of 355 million, GPT-2

Medium surpasses the smaller GPT-2 models in both size and computational power, although

it remains smaller than the largest GPT-2 model, which boasts a staggering 1.5 billion

parameters.

The primary objective of this model is to forecast the subsequent word in a sequence based on

the preceding words. To achieve this, pre-training is carried out utilizing a causal language

modeling objective, using an extensive corpus of English literature. Through this pre-training

process, the model gains proficiency in generating coherent and contextually appropriate text

by learning the underlying patterns and structures within the provided data.

We worked with the BCC New Datasets [25] and the Dailymail/CNN datasets [26].

4.1. DAILYMAIL/CNN DATASET

The statistic was sourced from the Dailymail/CNN news outlet. The collection includes 500

unique articles for various news stories. Extractive text summaries have been removed after

going over every news item. The summary evaluation measure is computed when an extractive

synthesis and a human-generated summary are compared.

56

TABLE I

Rouge Score Rouge 1 Rouge 1 Rouge 1 Rouge 2 Rouge 2 Rouge 2 Rouge L Rouge L Rouge L

 Recall Precision F-
Measure

Recall Precision F-
Measure

Recall Precision F-
Measure

BERT 0.47 0.23 0.29 0.18 0.08 0.1 0.44 0.21 0.27

GPT 2 0.47 0.23 0.3 0.18 0.08 0.11 0.44 0.21 0.27

KL SUMMARIZER 0.32 0.24 0.27 0.12 0.08 0.09 0.3 0.22 0.25

LUHN 0.44 0.24 0.3 0.17 0.08 0.11 0.4 0.22 0.28

LEX 0.42 0.25 0.31 0.15 0.08 0.1 0.38 0.23 0.28

WORD FREQUENCY 0.49 0.21 0.29 0.2 0.07 0.1 0.46 0.2 0.27

The table provided displays the rouge scores for seven distinct models, namely Word

Frequency, Lex, Luhn, Kl Summarizer, GPT-2 and BERT.

TABLE II

The table above presents the BERT scores for seven different models, which include Word

Frequency, Lex, Luhn, Kl Summarizer, GPT-2 and BERT.

TABLE III

The table provided displays the Mover scores for seven distinct models, namely Word

Frequency, Lex, Luhn, Kl Summarizer, GPT-2 and BERT.

57

4.2. BBC NEWS DATASETS

The BBC News Databases encompass news archives from diverse sectors such as business,

entertainment, politics, sports, and technology. Among the merged dataset of 2225 articles,

there are 510 articles related to business, 386 articles on entertainment, 417 articles covering

politics, 511 articles centered around sports, and 401 articles focusing on technology. For these

2225 articles, the table presented below illustrates the average approximate scores for recall,

accuracy, and F-Measure in terms of the Rouge metric. Table V provides the BERT Score,

while Table VI showcases the MoverScore.

TABLE IV

Rouge Score Rouge 1 Rouge 1 Rouge 1 Rouge 2 Rouge 2 Rouge 2 Rouge L Rouge L Rouge L

 Recall Precision F-
Measure

Recall Precision F-
Measure

Recall Precision F-
Measure

BERT 0.43 0.57 0.47 0.3 0.43 0.34 0.42 0.55 0.46

GPT 2 0.43 0.58 0.48 0.3 0.45 0.34 0.42 0.57 0.47

KL SUMMARIZER 0.48 0.46 0.46 0.34 0.33 0.33 0.47 0.45 0.45

LUHN 0.75 0.56 0.63 0.65 0.46 0.53 0.74 0.55 0.63

LEX 0.66 0.53 0.58 0.53 0.43 0.47 0.64 0.52 0.57

WORD
FREQUENCY

0.56

0.51

0.51

0.41

0.39

0.38

0.55

0.5

0.5

The table provided displays the rouge scores for seven distinct models, namely Word

Frequency, Lex, Luhn, Kl Summarizer, GPT-2 and BERT.

Table V

The table above presents the BERT scores for seven different models, which include Word

Frequency, Lex, Luhn, Kl Summarizer, GPT-2 and BERT.

58

Table VI

The table above presents the MoverScores for seven different models, which include Word

Frequency, Lex, Luhn, Kl Summarizer, GPT-2 and BERT.

60

CHAPTER 5

CONCLUSIONS

Extractive summarization has emerged as a valuable tool for enhancing operational efficiency

when confronted with copious amounts of material. By condensing lengthy texts into concise

summaries, this approach enables users to navigate through information swiftly and effectively.

However, it is important to acknowledge that extractive summarization does have limitations

in terms of its ability to fully and accurately preserve the context and content of the original

document.

Despite these shortcomings, extractive summarization finds utility across a wide range of

activities, including the composition of news articles, academic papers, and legal documents.

While the summarization process may not capture every intricate detail, it still offers significant

benefits by distilling the main ideas and key points from extensive textual sources. By

providing a condensed version of the content, extractive summarization empowers individuals

to grasp the essence of a document quickly and efficiently.

In order to assess the effectiveness of extractive summarization techniques, we employed two

prominent datasets: the Dailymail/CNN Dataset and the BBC News Dataset. These datasets

serve as valuable resources for training and evaluating summarization models. By utilizing a

diverse range of textual materials from reputable news sources, we aimed to ensure the

robustness and generalizability of the summarization models.

To evaluate the performance of the summarization models, we employed several metrics such

as Rouge, BERT, and MoverScore. These metrics allow for a comprehensive analysis of the

summarization quality by comparing the generated model summaries with human-generated

summaries. By assessing various aspects, including overlap in content and linguistic features,

these metrics provide valuable insights into the efficacy of the extractive summarization

process.

Based on the operating mechanism and performance evaluation, the top model for the

Dailymail/CNN Dataset was found to be GPT-2. GPT-2 is a state-of-the-art language model

61

that has demonstrated exceptional capabilities in generating coherent and informative

summaries. Its ability to capture important details while maintaining readability and coherence

made it the preferred choice for the Dailymail/CNN Dataset.

On the other hand, for the BBC News Dataset, the best-performing model was identified as

Luhn. Luhn's approach to summarization relies on the identification of key phrases in the text

and their subsequent selection to form a coherent summary. This model demonstrated a

remarkable ability to extract relevant information and construct summaries that effectively

conveyed the essence of the original documents from the BBC News Dataset.

In conclusion, extractive summarization serves as a powerful tool for operating efficiently in

the face of vast amounts of information. While it may not capture every aspect of the original

context and content, it offers substantial benefits in various domains, including news articles,

academic papers, and legal documents. The use of datasets such as the Dailymail/CNN Dataset

and the BBC News Dataset, coupled with performance evaluation metrics like Rouge, BERT,

and MoverScore, enables us to assess the effectiveness of summarization models. By

identifying top-performing models like GPT-2 for the Dailymail/CNN Dataset and Luhn for

the BBC News Dataset, we can leverage the strengths of these models to enhance the

summarization process and improve operational efficiency.

62

REFERENCES

[1] https://www.turing.com/kb/how-bert-nlp-optimization-model-works

[2] https://jalammar.github.io/illustrated-gpt2/

[3] https://iq.opengenus.org/luhns-heuristic-method-for-text-summarization/

[4] https://iq.opengenus.org/lexrank-text-summarization/

[5] https://github.com/Tiiiger/bert_score

[6] https://github.com/AIPHES/emnlp19-moverscore

[7] Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-

training of deep bidirectional transformers for language understanding." arXiv preprint

arXiv:1810.04805 (2018).

[8] Liu, Yang. "Fine-tune BERT for extractive summarization." ArXiv preprint

arXiv:1903.10318 (2019). arXiv:1810.04805 (2018).

[9] https://github.com/huggingface/transformers

[10] https://jalammar.github.io/illustrated-word2vec/

[11] https://demo.allennlp.org/next-token-lm

[12] https://jalammar.github.io/illustrated-transformer/

[13] https://karpathy.github.io/2015/05/21/rnn-effectiveness/

[14] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan

N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances

in neural information processing systems 30 (2017).

[15] Liu, Peter J., Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz

Kaiser, and Noam Shazeer. "Generating wikipedia by summarizing long sequences."

arXiv preprint arXiv:1801.10198 (2018).

[16] Al-Rfou, Rami, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones.

"Character- level language modeling with deeper self-attention." In Proceedings of the

AAAI conference on artificial intelligence, vol. 33, no. 01, pp. 3159-3166. 2019.

[17] https://iq.opengenus.org/k-l-sum-algorithm-for-text-summarization/

[18] H. P. Luhn, "The Automatic Creation of Literature Abstracts," in IBM Journal of

Research and Development, vol. 2, no. 2, pp. 159-165, Apr. 1958, doi:

10.1147/rd.22.0159.

[19] https://medium.com/@ashins1997/text-summarization-4e0b2cf252f2

http://www.turing.com/kb/how-bert-nlp-optimization-model-works
http://www.turing.com/kb/how-bert-nlp-optimization-model-works
https://medium.com/%40ashins1997/text-summarization-4e0b2cf252f2

63

[20] Fang, Changjian, Dejun Mu, Zhenghong Deng, and Zhiang Wu. "Word-sentence co-

ranking for automatic extractive text summarization." Expert Systems with Applications

72 (2017): 189-195.

[21] Lin, Chin-Yew. "Rouge: A package for automatic evaluation of summaries." In Text

summarization branches out, pp. 74-81. 2004.

[22] Zhang, Tianyi, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.

"Bertscore: Evaluating text generation with bert." ArXiv preprint arXiv:1904.09675

(2019).

[23] Zhao, Wei, Maxime Peyrard, Fei Liu, Yang Gao, Christian M. Meyer, and Steffen

Eger. "MoverScore: Text generation evaluating with contextualized embeddings and

earth mover distance." arXiv preprint arXiv:1909.02622 (2019).

[24] https://en.wikipedia.org/wiki/OpenAI

[25] https://www.kaggle.com/datasets/gowrishankarp/newspaper-textsummarization-

cnn- dailymail

[26] https://www.kaggle.com/datasets/pariza/bbc-news-summary

[27] https://en.wikipedia.org/wiki/Natural_language_processing

[28] https://huggingface.co/docs/transformers/model_doc/xlnet

http://www.kaggle.com/datasets/gowrishankarp/newspaper-textsummarization-cnn-
http://www.kaggle.com/datasets/gowrishankarp/newspaper-textsummarization-cnn-
http://www.kaggle.com/datasets/gowrishankarp/newspaper-textsummarization-cnn-
http://www.kaggle.com/datasets/pariza/bbc-news-summary
http://www.kaggle.com/datasets/pariza/bbc-news-summary

Similarity Report

PAPER NAME

Sushil Kr Soni Thesis.pdf

WORD COUNT

15435 Words
CHARACTER COUNT

89141 Characters

PAGE COUNT

73 Pages
FILE SIZE

2.5MB

SUBMISSION DATE

May 29, 2024 9:08 PM GMT+5:30
REPORT DATE

May 29, 2024 9:09 PM GMT+5:30

7% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

6% Internet database 3% Publications database

Crossref database Crossref Posted Content database

Excluded from Similarity Report

Submitted Works database Bibliographic material

Quoted material Cited material

Small Matches (Less then 10 words)

Summary

Similarity Report

PAPER NAME

529.pdf
AUTHOR

Sushil Soni

WORD COUNT

4773 Words
CHARACTER COUNT

31907 Characters

PAGE COUNT

6 Pages
FILE SIZE

220.5KB

SUBMISSION DATE

May 20, 2024 10:48 PM GMT+5:30
REPORT DATE

May 20, 2024 10:49 PM GMT+5:30

14% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

8% Internet database 7% Publications database

Crossref database Crossref Posted Content database

9% Submitted Works database

Excluded from Similarity Report

Bibliographic material Cited material

Small Matches (Less then 8 words)

Summary

Similarity Report

PAPER NAME

692.pdf
AUTHOR

Sushil Soni

WORD COUNT

4355 Words
CHARACTER COUNT

27780 Characters

PAGE COUNT

6 Pages
FILE SIZE

285.4KB

SUBMISSION DATE

May 20, 2024 11:18 PM GMT+5:30
REPORT DATE

May 20, 2024 11:18 PM GMT+5:30

14% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

8% Internet database 6% Publications database

Crossref database Crossref Posted Content database

9% Submitted Works database

Excluded from Similarity Report

Bibliographic material Cited material

Small Matches (Less then 8 words)

Summary

	CANDIDATE’S DECLARATION
	CERTIFICATE
	ABSTRACT
	ACKNOWLEDGEMENT
	TABLE OF CONTENT
	LIST OF TABLES
	LIST OF FIGURES
	1. BERT BASE VS BERT LARGE PARAMETER STRUCTURE 9
	2. BERT MASKED LANGUAGE MODEL 10
	3. NEXT SENTENCE PREDICTION 11
	4. BERT STRUCTURE 13
	5. FINE TUNING BERT STRUCTURE 14
	6. MOBILE KEYPAD (NEXT WORD PREDICTION) 19
	7. GPT-2 DIFFERENT PARAMETERS 20
	8. TRANSFORMER – ENCODER STACK VS DECODER STACK 21
	9. ENCODER AND DECODER STRUCTURE (GPT -2 VS BERT) 21
	10. GPT-2 DIFFERENT MODEL DIMENSIONALITY 22
	11. GPT-2 ADDING TOKEN 22
	12. GPT 2 AUTO REGRESSION 23
	13. TRANSFORMER ENCODER BLOCK 24
	14. TRANSFORMER DECODER BLOCK 24
	15. TRANSFORMER DECODER BLOCK WITH INPUT TOKENS 25
	16. SELF-ATTENTION VS MASKED SELF-ATTENTION 25
	17. TRANSFORMER DECODER BLOCK WITH TOKEN ORDERING 26
	18. GPT 2 STACK OF DECODER BLOCKS -1 27
	19. GPT 2 STACK OF DECODER BLOCKS -2 27
	20. GPT 2 STACK OF DECODER BLOCKS -3 28
	21. STOP WORD 35
	22. SIMILARITY MATRIX GRAPH 39
	23. BERT SCORE STRUCTURE 50
	24. MOVERSCORE STRUCTURE 52
	ABBREVIATION
	EQUATIONS
	CHAPTER 1 INTRODUCTION
	1.1. OBJECTIVE
	1.2. APPLICATION
	1.3. USAGE

	CHAPTER 2 LITERATURE REVIEW
	CHAPTER 3 PROPOSED METHODOLOGY
	3.1. BERT
	3.1.1. WORKING OF BERT ALGORITHM
	3.1.2. ADVANTAGES OF BERT
	3.1.3. LIMITATIONS AND ENHANCEMENTS OF BERT

	3.2. GPT-2
	3.2.1. WORKING OF GPT- 2
	3.2.1.1. LANGUAGE MODELING TRANSFORMER
	3.2.1.2. GPT 2 AND BERT DIFFERENCE
	3.2.1.3. TRANSFORMATION BLOCK DEVELOPMENT
	THE BLOCK ENCODER
	THE BLOCK DECODER
	THE BLOCK FOR DECODERS

	3.2.1.4. EVALUATING GPT-2

	3.2.2. IMPACT OF GPT – 2
	3.2.3. CHALLENGES WITH GPT-2:
	3.2.4. ADDRESSING OF GPT-2
	3.3. KL-SUMMARIZER
	3.3.1. KL-SUM ALGORITHM
	3.3.2. ADVANTAGES OF KL – SUMMARIZER
	3.3.3. LIMITATIONS AND ENHANCEMENT OF KL - SUMMARIZER

	3.4. LUHN
	3.4.2. ADVANTAGES OF LUHN ALGORITHM
	3.4.3. LIMITATIONS AND ENHANCEMENTS OF LUHN ALGORITHM

	3.5. LEX
	3.5.1. LEX ALGORITHM
	3.5.2. ADVANTAGES OF LEXRANK
	3.5.3. LIMITATIONS AND ENHANCEMENTS OF LEXRANK

	3.6. WORD RANK
	3.6.1. WORD RANK ALGORITHM
	3.6.2. ADVANTAGES OF WORD RANK
	3.6.3. LIMITATIONS AND ENHANCEMENT OF WORD RANK

	3.7. ROUGE SCORE
	3.7.1. PRECISION
	3.7.2. RECALL
	3.7.3. F1-MEASURE

	3.8. BERT SCORE
	3.9. MOVER SCORE

	CHAPTER 4 EXPERIMENTAL RESULTS
	4.1. DAILYMAIL/CNN DATASET
	TABLE I
	TABLE II
	TABLE III

	4.2. BBC NEWS DATASETS
	TABLE IV

	CHAPTER 5 CONCLUSIONS
	REFERENCES

