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ABSTRACT 

 
In the last ten years, there has been a notable surge in the fields of Artificial Intelligence (AI), 

Machine Learning (ML), and Data Science, offering several prospects across various sectors 

like healthcare, banking, and transportation. Particularly, the area of Natural  

 

Within AI and ML, the field of language processing (NLP) has advanced significantly. NLP is 

the study and application of machine learning to human language. Text summarization is a 

popular application because it allows computers to summarise long texts into short summaries. 

The use of several extractive text summarising methods, including as BERT, GPT-2, 

KLsummerizer, Luhn, LEX, and Word Rank, is highlighted in this research. The resulting 

extractive summaries are then assessed using Rouge Score, BERT Score, and Mover Score—

three different scoring techniques—against human-generatedThe extractive summaries that are 

produced are then assessed using Rouge Score, BERT Score, and Mover Score in comparison 

to human-generated summaries. Through this study, we evaluate the quality of the generated 

summaries and show how effective these techniques are in producing summaries by comparing 

them to human-produced summaries using the predetermined scoring standards. 
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CHAPTER 1 

INTRODUCTION 

Text summary is the process of reducing the amount of information in a text, such as an article, 

paper, or web page, while keeping the essential points and important details. Text 

summarization seeks to convey a clear, cogent summary of the original text that conveys its 

main ideas. 

Text summarization can be classified into two main types: extractive text summarization and 

abstractive text summarization. These approaches differ in how they generate summaries from 

given texts. 

Extractive Summarization: The most significant sentences or phrases from the source material 

are chosen and extracted using this technique to create a summary. The algorithms used in 

extractive summarization techniques frequently rate phrases according to their applicability, 

significance, or salience. To generate the summary, the chosen sentences are then put together. 

Abstractive Summarization: Abstractive summarization seeks to provide a summary by 

comprehending the original text and conveying the key concepts in a clear, succinct manner, 

even if the summary includes information that isn't explicitly stated in the original text. This 

strategy uses deep learning models and natural language generation to produce summaries of 

the provided text that are more like human speech. 

Here are some differences between Extractive Text summarization and Abstractive Text 

summarization. 

 

Extractive Text summarization Abstractive Text summarization 

In order to provide a summary, extractive 

summarization chooses and rearranges 

already sentences or phrases from the 

original material. It uses sentence scoring 

algorithms to evaluate each sentence's 

significance before choosing the top-scoring 

sentences for the summary. 

In order to effectively summarise an original 

text, abstractive summarization seeks to 

create new phrases that do so. It entails 

comprehending the content and context of 

the material and coming up with creative 

language to communicate the essential 

ideas. Techniques for generating natural 

language naturally used in this process 

include neural networks or language 

models. 
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Sentences that have been taken verbatim 

from the source text make up the extractive 

summarization's output. A portion of the 

original sentences have been rearranged or 

changed for coherence to create the 

summary. 

A summary produced using abstractive 

summarization may include sentences that 

were absent from the original text. The 

programme creates new phrases that 

effectively convey the main ideas while 

rephrasing or rearranging the material. 

Extractive methods tend to preserve the 

original information present in the source 

text. The summary is a concise 

representation of the most salient sentences, 

but it may not capture the entire context or 

provide additional insights. 

Abstractive techniques have the ability to 

provide summaries that go beyond the 

original text and effectively convey the 

topic. Even though they weren't specifically 

mentioned in the original text, they can 

introduce new phrases that communicate the 

important information. 

Extractive methods face challenges in 

maintaining coherence and flow in the 

summary since sentences are selected 

independently. They might struggle to 

handle information that requires combining 

multiple sentences or paraphrasing. 

Abstractive methods face challenges in 

generating linguistically and contextually 

accurate sentences. They need to overcome 

difficulties related to language 

understanding, semantic representation, and 

ensuring the generated sentences are 

coherent and faithful to the original text. 

Extractive methods are generally less 

complex computationally since they rely on 

sentence scoring and selection rather than 

generating new sentences. They can be 

more computationally efficient for large- 

scale summarization tasks. 

Abstractive methods involve more complex 

natural language processing and generation 

techniques, often utilizing neural networks 

or language models. They require more 

computational resources and can be slower 

compared to extractive methods. 

 

Both extractive and abstractive summarization have their own strengths and weaknesses. While 

abstractive summarising has the ability to provide more human-like summaries and offer a 

better comprehension of the topic, extractive summary is simpler and maintains the original 

text. The task's precise needs and the trade-offs between accuracy, fluency, and efficiency will 

determine which option is best. 

 

1.1. OBJECTIVE 

 
• Outline a few extractive text summarization algorithms that can pick out the most pertinent 

phrases from a given textual unit. 
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• To generate summaries, our strategy involves utilizing several techniques and models, namely 

Word Frequency, Lex, Luhn, Kl Summarizer, GPT-2, and BERT. These approaches and 

models have been selected with the aim of achieving effective summarization outcomes. 

• Furthermore, we showcase the quantitative value of our proposed methodology by employing 

various metrics, namely ROUGE, BERT, and MoverScore. These metrics serve as objective 

measures to evaluate the effectiveness and performance of our approach. By utilizing these 

quantitative assessment tools, we can quantitatively assess the quality and efficacy of our 

suggested method in generating summaries. 

 

1.2. APPLICATION 

 
Extractive text summarising is a method for creating a brief summary of a lengthy text by 

highlighting the key clauses or phrases in the original text. It has several practical applications 

across different domains. Here are some common applications of extractive text summarization: 

 

1. News Summarization: By automatically creating summaries of news items, extractive 

summarization enables readers to rapidly understand a story's essential points without 

having to read the full piece. News aggregation platforms often use extractive 

summarization to provide users with a brief overview of various news stories. 

 

2. Document Summarization: Extractive summarization can help summarize lengthy 

documents, reports, or research papers. It enables users to get a quick overview of the 

document's content and key findings. Researchers, students, or other professions who need 

to process a lot of information may find this to be extremely helpful. 

  

3. Social Media Summarization: Extractive summarization techniques can be employed to 

summarize social media posts or threads, such as Twitter feeds or online discussions. By 

extracting the most relevant and informative sentences, it becomes easier to comprehend 

the overall sentiment, trending topics, or important updates from a large volume of social 

media content. 
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4. Legal Document Analysis: Extractive text summarization can assist legal professionals in 

analysing and summarizing legal documents, such as court rulings, contracts, or legal 

opinions. By extracting key sentences or sections, lawyers can quickly identify important 

arguments, rulings, or clauses without having to read the entire document. 

 

5. Customer Feedback Analysis: Extractive summarization can be applied to analyse customer 

feedback, reviews, or survey responses. By extracting important sentences or phrases, 

businesses can gain insights into customer sentiment, identify recurring issues, or extract 

actionable information for product improvements or marketing strategies. 

 

6. Meeting Summaries: Extractive summarization can aid in summarizing the minutes or 

transcripts of business meetings, conferences, or interviews. It helps in capturing the main 

discussion points, decisions, and action items, saving time for participants who may need 

to review or reference the meeting outcomes later. 

 

7. E-commerce Product Descriptions: In e-commerce platforms, extractive summarising 

techniques may be utilised to provide succinct summaries of product descriptions. By 

extracting the most relevant features, benefits, and customer reviews, it helps potential 

buyers quickly understand the key attributes of a product before making a purchase 

decision. 

 

These are just a few examples of how extractive text summarization can be applied across 

various domains to efficiently process and comprehend large volumes of textual data. 

 

 

1.3. USAGE 

 
Extractive text summarization has various applications and can be used in different scenarios 

to help extract important information from a given text. Here are some specific use cases and 

examples of how extractive text summarization can be utilized: 

 

1. Content Aggregation: Extractive summarization can be employed by news aggregators or 

content curation platforms to create short summaries of articles from multiple sources. This 
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allows users to quickly browse through summaries and decide which articles they want to 

read in detail. 

 

2. Search Engine Result Summaries: Search engines can use extractive summarization to 

generate snippets or summaries for search results. These summaries provide users with a 

brief overview of the content on a webpage, helping them assess the relevance of the search 

result without clicking through to the full page. 

 

3. Document Summarization: Extractive text summarization can be used to summarize 

lengthy documents, research papers, or reports. Researchers, students, or professionals can 

save time by quickly reviewing the summarized content and identifying the key points 

without having to read the entire document. 

 

4. Social Media Monitoring: Extractive summarization techniques can be applied to social 

media monitoring tools to summarize and analyse trending topics, discussions, or user- 

generated content. By extracting important sentences or phrases, companies can gain 

insights into public sentiment, identify emerging trends, or monitor the impact of their 

brand or products on social media. 

 

5. Email Summarization: Extractive text summarization can help individuals manage their 

email overload by automatically summarizing the content of incoming emails. This allows 

users to quickly prioritize and respond to important messages without spending excessive 

time on each email. 

 

6. Legal Case Analysis: Extractive summarization can assist legal professionals in analyzing 

and summarizing legal cases, court rulings, or lengthy legal documents. By extracting key 

arguments, legal precedents, or important sections, lawyers can efficiently review and 

understand the essence of complex legal texts. 

 

7. Audio and Video Transcription: Extractive summarization techniques can be utilized to 

summarize audio or video recordings, such as lectures, interviews, or conference 

presentations. By extracting important sentences or segments, users can quickly review the 

content and find relevant information without listening to the entire recording. 
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8. Chatbot Responses: Chatbots and virtual assistants can use extractive summarization to 

generate concise and informative responses to user queries. By extracting key information 

from a knowledge base or a database of frequently asked questions, chatbots can provide 

quick and relevant answers to users. 

 

These are just a few examples highlighting the practical applications of extractive text 

summarization. The method may be used in a wide range of situations and sectors where it is 

advantageous to extract key details or provide succinct summaries. 
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CHAPTER 2 

LITERATURE REVIEW 

 
A natural language processing (NLP) approach called extractive text summarising seeks to 

provide a brief summary of a given document by extracting the key words or sentences. 

Contrasting with abstractive summarising, which generates summaries by paraphrasing and 

rephrasing the information, is this method. The history of extractive summarization is lengthy, 

and it has made tremendous strides over time. I'll give a thorough account of the development 

of extractive text summarization in this response. 

     

Early Approaches: The origins of extractive text summarization may be found in the first NLP 

studies. In the 1950s and 1960s, researchers explored rule-based methods to automatically 

summarize texts. These approaches involved using linguistic rules and heuristics to identify 

key sentences based on sentence length, word frequency, and position within the document. 

However, these early attempts faced challenges in dealing with the nuances of language and 

producing coherent summaries. 

 

Statistical Approaches: In extractive summarization, statistical approaches became more 

popular in the 1990s. To evaluate phrases according to their relevance, researchers started using 

algorithms like Term Frequency-Inverse Document Frequency (TF-IDF) and cosine similarity. 

In order to identify important phrases, TF-IDF applies weights to words based on their 

frequency inside a document and throughout the corpus. Based on a vector representation of 

the TF-IDF weights in the sentences, cosine similarity calculates how similar the phrases are. 

By employing these techniques, researchers were able to extract sentences that were most 

similar to the overall content of the document. 

 

Graph-Based Approaches: Graph-based techniques became an important new area of study for 

extractive text summarization. In these methods, sentences are visualised as nodes in a graph, 

with the similarity between phrases represented by the edges. Sentences were ranked based on 

their centrality and relevance inside the network using algorithms like PageRank, which were 

influenced by Google's web page ranking algorithm. By applying graph-based algorithms, 
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researchers were able to identify key sentences that were well-connected to other important 

sentences, thus providing a more coherent summary. 

 

Supervised Machine Learning: With the advent of machine learning techniques, supervised 

methods for extractive text summarization gained traction. Researchers started using labelled 

datasets, where human-generated summaries were paired with their corresponding source 

documents. An important new area of research for extractive text summarization is graph-based 

approaches. In these techniques, sentences are represented as nodes in a graph, with edges 

signifying phrase similarity. Using methods like PageRank, which were influenced by Google's 

web page ranking algorithm, sentences were rated according to their centrality and significance 

within the network. These models were trained on large corpora and demonstrated improved 

performance over previous techniques. 

 

Deep Learning and Neural Networks: The discipline of NLP, especially extractive 

summarization, underwent a revolution in the 2010s with the emergence of deep learning. To 

successfully mimic the sequential character of phrases, recurrent neural networks (RNNs), 

especially the Long Short-Term Memory (LSTM) form, were used. By processing the source 

document sequentially and encoding the information in a hidden state, LSTM networks were 

able to capture contextual dependencies and learn sentence representations. Extractive 

summarization's effectiveness was further enhanced by attention methods, including the 

Transformer model, which allowed the model to concentrate on pertinent sections of the 

material. These deep learning-based methods produced cutting-edge outcomes and showed 

their capacity to provide well-organized, useful summaries. 

 

Transformer-Based Models: The introduction of the Transformer model in 2017 marked a 

significant milestone in NLP, and extractive summarization also benefited from this 

breakthrough. BERT (Bidirectional Encoder Representations from Transformers), one of the 

transformer models, excelled at extractive summarization among other NLP tasks. BERT-based 

models learn contextualised word representations by pretraining on sizable corpora, which are 

subsequently refined on datasets tailored for summarization [27]. 
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CHAPTER 3 

PROPOSED METHODOLOGY 

3.1. BERT 

 
One of the many natural languages processing (NLP) tasks that BERT (Bidirectional Encoder 

Representations from Transformers) has been successfully used to is text summarization. 

BERT is a potent language model. While BERT is primarily designed for contextual word 

representation and understanding, it can be adapted for extractive text summarization. In this 

article, we will explore BERT-based extractive text summarization in detail, discussing its 

steps, advantages, limitations, and potential future directions. 

 

Fig 1- [1] 

 

 

The pretrained language model BERT, released by Google Research in 2018, has transformed 

NLP tasks. It is built using the Transformer architecture, which enables it to recognise links 

between words and contextual information in a document. BERT models may be fine-tuned 
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for certain downstream tasks, such as text categorization, question-answering, and 

summarization, and are pretrained on substantial volumes of unlabelled text data. 

In BERT-based extractive text summarising, key sentences or phrases from a document are 

selected in order to provide a summary. 

 

3.1.1. WORKING OF BERT ALGORITHM 

An outline of the key phases in the BERT-based extractive summarization procedure is 

provided below: 

1. BERT was designed with a focus on handling larger amounts of text. The availability of 

vast and informative databases has greatly contributed to BERT's ability to comprehend 

various languages, including English. Training BERT using a larger dataset requires more 

time. The transformer architecture plays a crucial role in making the training of BERT 

feasible, and the utilization of Tensor Processing Units can accelerate the training 

procedure. 

 

Fig 2 – [1] 

 

2. Masked Language Model: By considering the surrounding words both preceding and 

following the concealed text, which provide contextual clues, we can make educated 

predictions about the absent word. The bidirectional method employed in this approach 
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greatly enhances the accuracy level. In the training process, approximately 15% of the 

tokenized words are randomly concealed, and BERT's objective is to infer the missing 

word. 

 

3. Next Sentence Prediction: Next Sentence Prediction (NSP) is a method employed by BERT 

to comprehend the links between sentences by foretelling if a certain sentence will be 

followed by another. Half of the accurate predictions are rewarded with random utterances 

during training to increase BERT's accuracy, which helps BERT function better. 

 

 

Fig 3 – [1] 

 

4. Transformers: Machine learning training is effectively parallelized using the transformer 

architecture. The model can be trained fast on a large amount of data when we use massive 

parallelization. Transformers use attention to their advantage. It is an effective deep- 

learning technique that was originally used in computer vision models. Machine learning 

models must have the ability to focus on the most important information because human 

brains have limited memory. When the machine learning model achieves that, we may 
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prevent the wastage of computing resources and utilise them for processing irrelevant data. 

By providing signals to the words in a phrase that are important for subsequent processing, 

transformers establish differential weights [9]. 
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Fig 4 – [1] 
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In order to do this, a transformer must effectively process an input through levels of its 

transformer stack known as encoders. Decoders, a further stack of transformer layers, will aid 

in predicting the result. Transformers excel in unsupervised learning because they can handle 

more data points quickly. 

 

5. Fine-tuning BERT 

 

 

Fig 5 – [1] 

 

It is usual practise to employ BERT (Bidirectional Encoder Representations from 

Transformers) to modify the pre-trained BERT model for certain downstream natural language 

processing (NLP) applications. BERT may use its overall language comprehension skills while 

acquiring knowledge tailored to a given job through fine-tuning. 

Here's an overview of how fine-tuning BERT works: 

 

 

1. Pre-training: Initial pre-training for BERT involves a sizable corpus of unlabelled text. 

BERT gains the ability to identify missing words in sentences (Masked Language Model) 

and comprehend the connections between phrases (Next Sentence Prediction) during pre- 

training. This pre-training phase aids BERT's acquisition of generic linguistic 

representations. 
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2. Task-specific data: To fine-tune BERT for a specific NLP task, you need a labelled dataset 

specific to that task. This dataset should consist of input texts and their corresponding labels 

or annotations. 

 

3. Tokenization: The input texts in your task-specific dataset need to be tokenized into 

subword units called "word pieces." BERT uses the Word Piece tokenization scheme to 

break down words into smaller subword units. Tokenization ensures that the input texts 

align with BERT's vocabulary. 

 

4. Model architecture: Each Transformer layer in the BERT system has a different set of 

attention heads. Contextual information is captured by the layers, and word dependencies 

are discovered by the attention heads. The model architecture stays the same as the pre- 

trained BERT during fine-tuning, but the weights are changed. 

 

5. Fine-tuning procedure: Using task-specific data, the pre-trained BERT model's weights are 

updated during fine-tuning. The procedure typically consists of the following steps: 

 

 Input representation: The tokenized input texts are converted into numerical 

representations that BERT can process. This involves adding special tokens, segment 

IDs, and positional embeddings. 

 

 Forward pass: The input representations are fed through the BERT model, and the 

output representations are obtained. These representations capture contextualized 

information about the input texts. 

 

 Task-specific layers: Depending on the downstream task, additional task-specific layers 

can be added on top of BERT. These layers can include dense layers, convolutional 

layers, or recurrent layers, depending on the nature of the task. 

 

 Loss computation: The output from the task-specific layers is compared to the ground 

truth labels using a task-specific loss function (e.g., cross-entropy loss). 
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 Backpropagation and parameter updates: Gradient descent optimisation techniques like 

Adam or SGD are used to update the weights of all the layers, including BERT, as the 

loss propagates through the network. 

 

 Iterative fine-tuning: Fine-tuning is an iterative process. The performance of the refined 

BERT model is assessed on a validation set, and the hyperparameters—such as learning 

rate, batch size, and number of training epochs—can be changed in accordance with the 

results. This process is repeated until satisfactory performance is achieved [8]. 

 

6. Inference: The BERT model may be adjusted and then used to draw conclusions from 

brand-new, untested data. The input texts are tokenized, converted into numerical 

representations, and passed through the model to obtain predictions or output 

representations, depending on the specific task. 

 

It is vital to highlight that because to the enormous number of parameters in the model, fine- 

tuning BERT necessitates extensive computing resources, particularly potent GPUs or TPUs. 

the large number of parameters in the model. Additionally, fine-tuning BERT typically requires 

a substantial amount of labelled data specific to the target task for effective performance [7]. 

 

3.1.2. ADVANTAGES OF BERT 

BERT-based extractive text summarization offers several advantages: 

 

 Contextual Understanding: BERT's ability to capture contextual information and 

relationships between words helps in understanding the meaning and importance of 

sentences within a document. This leads to more accurate identification of important 

sentences for the summary. 

 

 Semantic Representation: BERT's pretrained representations encode rich semantic 

information, allowing for a nuanced understanding of the text. This enables the model to 

capture intricate relationships between words and generate more coherent summaries. 

 

 Generalization: BERT is pretrained on a vast amount of data from diverse sources, which 

helps it generalize well to different domains and styles of text. This makes BERT-based 

extractive summarization applicable to a wide range of documents. 
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 Fine-Tuning Flexibility: BERT models can be fine-tuned on specific summarization 

datasets or with additional task-specific objectives, allowing for better alignment with the 

summarization task at hand [1]. 

 

3.1.3. LIMITATIONS AND ENHANCEMENTS OF BERT 

BERT-based extractive summarization also has certain limitations and challenges: 

 

 Computational Resources: BERT models are computationally expensive, requiring 

significant computational resources and memory. Fine-tuning a BERT model for extractive 

summarization can be time-consuming and resource-intensive. 

 

 Sentence Compression: Extractive summarization typically involves selecting sentences as 

they appear in the original document. However, these sentences may still contain redundant 

information. Additional techniques like sentence compression or paraphrasing may be 

required to further condense the summary. 

 

 Lack of Abstractive Ability: BERT-based extractive summarization focuses on selecting 

and combining sentences, which limits its ability to generate novel or abstractive 

summaries. Abstractive summarization, which involves paraphrasing and generating new 

sentences, is a separate research direction. 

 

Researchers are actively exploring enhancements and variations of BERT-based extractive text 

summarization. Some potential directions for improvement include: 

 Joint Training: BERT-based models can be trained in a joint manner with other 

summarization-specific objectives, such as sentence compression, to improve the overall 

quality and coherence of the generated summaries. 

 

 Transfer Learning: The effectiveness of extractive summarization can be improved by 

combining BERT models with other models or methodologies, such as graph-based 

approaches or reinforcement learning, to take use of their complementing qualities. 

 

 Multimodal Summarization: Integrating BERT with multimodal information, such as 

images or videos associated with the text, can enable more comprehensive and informative 

summaries. 
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 Evaluation Metrics: Developing robust evaluation metrics specific to extractive 

summarization, beyond traditional metrics like ROUGE, can provide a better assessment 

of the quality, coherence, and informativeness of the generated summaries. 

 

BERT-based extractive text summarization leverages the contextual understanding and 

semantic representation capabilities of BERT models to select important sentences from a 

document and generate a summary. Despite its limitations and challenges, BERT-based 

extractive summarization offers significant advantages in terms of contextual understanding, 

generalization, and flexibility. 

 

As research in NLP progresses, ongoing advancements and improvements in BERT-based 

models, fine-tuning techniques, and evaluation metrics will continue to push the boundaries of 

extractive text summarization. With further developments, BERT-based approaches have the 

potential to play a crucial role in generating accurate and informative summaries from a wide 

range of textual data. 

 

3.2. GPT-2 

 
GPT-2 is primarily known for its capabilities in generating abstractive text rather than 

extractive summarization. While GPT-2 can be used for extractive summarization by ranking 

and selecting sentences based on their relevance, it is not specifically designed for this task. 

Extractive summarization techniques usually involve algorithms and models that focus on 

sentence selection based on saliency, coherence, and relevance. 

 

A language model called GPT-2 (Generative Pre-trained Transformer 2) was created by 

OpenAI and launched in 2019. It is an expansion of its forerunner, GPT, that generates coherent 

and contextually appropriate text using a transformer architecture with a considerable number 

of parameters (1.5 billion). GPT-2 was trained using a sizable corpus of freely accessible text 

obtained from the internet, enabling it to pick up on linguistic statistical trends and structures. 

 

A language model is essentially a machine learning model that can analyse a portion of a phrase 

and predict the following word. This concept is covered in The Illustrated Word2vec [10]. 

Smartphone keyboards that suggest the next word based on what you've just written are the 

most well-known language models. 
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Fig 6- [2] 

 

In this way, we can say that the GPT-2 is like a keyboard app's next word prediction tool, only 

much larger and more advanced than the keyboard app on your phone. The 40GB WebText 

dataset, which the OpenAI researchers scraped from the internet as part of their research, served 

as the basis for training the GPT-2. My preferred keyboard programme, SwiftKey, uses 78MBs 

of storage space, for comparison. The trained GPT-2's smallest form requires 500 MB of 

storage to keep all of its settings. Given that the biggest GPT-2 model is 13 times larger, it may 

use more than 6.5 GB of storage. 
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Fig 7 - [2] 

 

The AllenAI GPT-2 Explorer [11] is a fantastic tool for GPT-2 experimentation. Ten potential 

predictions for the following word are shown (along with their likelihood score) using GPT-2. 

The next round of predictions will appear once you choose a word to continue composing the 

paragraph. 

 

3.2.1. WORKING OF GPT- 2 

 
3.2.1.1. LANGUAGE MODELING TRANSFORMER 

The encoder and decoder, each of which is a stack of what we might refer to as transformer 

blocks, make up the original transformer model, as we have seen in The Illustrated Transformer 

[12]. Because the model dealt with machine translation, an issue where encoder-decoder 

designs have had success in the past, that architecture seemed acceptable. 
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Fig 8 – [2] 

 

Many of the succeeding studies' architectures employed simply one stack of transformer 

blocks instead of an encoder or a decoder. They were given massive volumes of training 

material, subjected to tremendous amounts of processing power, and stacked as high as was 

physically possible (some of these language models cost hundreds of thousands of dollars to 

train, and AlphaStar undoubtedly cost millions). 

 

 

Fig 9 – [2] 

 

It appears that one of the primary differences between the various GPT2 model sizes is this: 
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Fig 10 - [2] 

 

3.2.1.2. GPT 2 AND BERT DIFFERENCE 

Utilising transformer decoder blocks, the GPT-2 is constructed. Contrarily, BERT makes use 

of transformer encoder blocks. In the part that follows, we'll look at the distinction. However, 

one significant distinction between the two is that GPT2 outputs one token at a time, much like 

conventional language models. For instance, ask a skilled GPT-2 to repeat the first rule of 

robotics: 

 

 

 

 

Fig 11 - [2] 

 

These models really operate by adding each token that is created to the input sequence one at 

a time. And in the model's following phase, the new sequence serves as its input. The concept 

of "auto-regression" is this. One of the concepts behind RNNs' excessive effectiveness [13] is 

this one. 
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Fig 12 - [2] 

 

The auto-regressive character of the GPT2 and certain subsequent variants, such 

TransformerXL and XLNet[28], is evident. It is not BERT. That is a compromise. BERT 

obtained the capacity to take into account the context on both sides of a word in order to get 

better outcomes by removing auto-regression. XLNet finds a different technique to include the 

context on both sides while bringing back autoregression. 

 

3.2.1.3. TRANSFORMATION BLOCK DEVELOPMENT 
 

Two different types of transformer blocks were first introduced in the transformer paper [14]: 

 

THE BLOCK ENCODER 

 

The encoder block comes first: 
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A transformer paper's initial encoder block can accept inputs for up to a predetermined maximum sequence length 

(for example, 512 tokens). If an input sequence is less than this threshold, it is OK; the remaining characters will 

simply be padded. 

Fig 13 - [2] 

 

THE BLOCK DECODER 

 

Second, there is the decoder block, which differs slightly architecturally from the encoder 

block by adding a layer that enables it to focus on particular encoder segments: 

 

Fig 14 - [2] 
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One significant distinction is that, unlike BERT, this self-attention layer covers future tokens 

by interfering with the computation of self-attention and obstructing information from tokens 

that are to the right of the location being computed. 

 

The route of position #4, for instance, demonstrates that only the present and preceding tokens 

are permitted to be attended to: 

 

Fig 15 - [2] 

 

It's critical to understand how self-attention (what BERT utilises) and veiled self-attention 

(what GPT-2 uses) differ from one another. A position may peek at tokens to its right thanks 

to a typical self-attention block. Self-attention that is concealed prevents that from occurring: 

 

Fig 16 - [2] 
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THE BLOCK FOR DECODERS 

Following the first study, Generating Wikipedia by Summarising Long Sequences [15] 

suggested a different configuration of the transformer block that may do language modelling. 

The Transformer encoder was discarded in this variant. Let's call the design "Transformer- 

Decoder" as a result. A stack of six transformer decoder blocks comprised this early 

transformer-based language model: 

 

The decoder blocks match one another. You can tell that the first one's self-attention layer is the veiled variation 

since I have enlarged it. Observe that the model has significantly improved from the 512 tokens in the initial 

transformer to being able to address up to 4,000 tokens in a specific section. 

Fig 17 - [2] 

 

With the exception of eliminating the second self-attention layer, these blocks were quite 

identical to the original decoder blocks. To develop a language model that predicts one letter 

or character at a time, a similar architecture was looked at in Character-Level Language 

Modelling with Deeper Self-Attention [16]. 

These decoder-only blocks are used by the OpenAI GPT-2 model. 

 

3.2.1.4. EVALUATING GPT-2 
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Fig 18 - [2] 

 

 

Allowing a trained GPT-2 to ramble on its own is the easiest approach to run it; this is known 

as producing unconditional samples. Alternatively, we may give it instructions to talk about a 

certain subject (creating interactive conditional samples). In the instance of rambling, we can 

just give it the start token and tell it to begin producing words (the trained model uses the token 

|endoftext|> as its start token). Call it "s" instead, please. 
 

 

Fig 19 - [2] 
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Since the model only accepts a single input token, only that path would be operational. The 

token is processed via each layer in turn, and then a vector is created along that route. The 

vocabulary of the model (all 50,000 words in the instance of GPT-2) may be used to score that 

vector. 'the' was the token we chose in this instance since it had the highest probability. 

However, we can absolutely change things up. For example, if you repeatedly click the 

recommended word in your keyboard app, it may get stuck in a cycle that cannot be broken 

without selecting the second or third suggested word. Here, the same is possible. We may 

instruct the GPT-2 model to sample words other than the top word by setting the top-k 

parameter to 1 (which instructs the model to do so). 

 

The result from the previous step is added to our input sequence in the following phase, when 

the model is asked to generate its next prediction: 

 

Fig 20 - [2] 

 

 

Keep in mind that this computation only has the second route active. In order to analyse the 

second token, each layer of the GPT-2 has preserved its own interpretation of the first token, 

which it will apply (we'll go into more depth about this in the next section on self-attention). In 

light of the second token, GPT-2 does not reinterpret the first token. 

 

3.2.2. IMPACT OF GPT – 2 

 
GPT-2's Impact in NLP: 
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 Language Generation: GPT-2 excels in generating realistic and coherent text, making it a 

significant advancement in the field of natural language generation. Its ability to produce 

human-like responses has found applications in various areas, including chatbots, content 

generation, and creative writing. 

 

 Question Answering: GPT-2 has been employed for question answering tasks, where it can 

generate relevant answers based on given questions. By conditioning the model on the 

question, it can generate plausible responses, although it may not always provide accurate 

or factual information. 

 

 Language Translation: GPT-2's powerful language modeling capabilities have been 

leveraged for machine translation tasks. By conditioning the model on the source language 

and generating text in the target language, it can generate translations that preserve the 

contextual information. 

 

 Sentiment Analysis: GPT-2 has been utilized for sentiment analysis tasks, where it can 

predict the sentiment of a given text. By training the model on labelled datasets, it can learn 

to classify text as positive, negative, or neutral based on the context and linguistic cues. 

 

 Text Completion: GPT-2 can be used for text completion tasks, where it generates coherent 

text to complete partially written sentences or paragraphs. This application has been 

employed in various scenarios, including writing assistance and content generation. 

 

Language Understanding: GPT-2 has demonstrated impressive language understanding 

capabilities. It can comprehend and generate text that exhibits a nuanced understanding of 

grammar, context, and semantics. This feature has found applications in tasks such as language 

modeling, document classification, and information retrieval. 

 

3.2.3. CHALLENGES WITH GPT-2: 

 
Challenges with Extractive Text Summarization using GPT-2: 

 

While GPT-2 is a powerful language model, it poses certain challenges when applied to 

extractive summarization tasks: 



30  

 Lack of Control: GPT-2 is a generative model that does not provide fine-grained control 

over the output. Extractive summarization, on the other hand, requires precise sentence 

selection based on relevance and importance. GPT-2 may generate summaries that are 

coherent but not necessarily extractive in nature. 

 

 Information Compression: Extractive summarization aims to condense the essential 

information from a document into a concise summary. GPT-2, being a generative model, 

tends to produce text of a similar length to the input, which may not fulfill the goal of 

compression and conciseness. 

 

 Coherence and Redundancy: GPT-2 tends to generate fluent and coherent text, but it may 

also introduce redundancy and repetition. In extractive summarization, redundancy is 

undesirable as it hampers the concise representation of the document's key information. 

 

 Overemphasis on Context: GPT-2's language modeling capabilities are based on contextual 

information from the training corpus. While this is advantageous for generating coherent 

text, it may lead to an overemphasis on the immediate context rather than extracting the 

most salient sentences across the entire document. 

 

3.2.4. ADDRESSING OF GPT-2 

 
To leverage GPT-2 for extractive summarization, additional techniques can be employed to 

select relevant sentences from the generated text. These techniques include: 

 

 Sentence Scoring: Apply scoring mechanisms based on sentence length, importance, or 

relevance to rank the generated sentences. This allows the extraction of the most relevant 

sentences from the output. 

 

 Cosine Similarity: Utilize techniques like TF-IDF and cosine similarity to measure the 

similarity between generated sentences and the source document. Sentences with higher 

similarity scores can be considered for extraction. 



31  

 Supervised Learning: Train a separate model on labelled data with sentence-level 

annotations for importance. This model can rank and select sentences based on their 

relevance to the source document, leveraging the generative capabilities of GPT-2 for 

sentence generation. 

 

 Reinforcement Learning: Apply reinforcement learning techniques to fine-tune GPT-2 for 

extractive summarization. By defining a reward function based on the quality and relevance 

of extracted sentences, the model can be trained to generate summaries that align with the 

extractive summarization objective. 

 

These approaches aim to combine the generative capabilities of GPT-2 with additional 

techniques to extract salient information effectively. By addressing the challenges specific to 

extractive summarization, these methods strive to produce concise and coherent summaries. 

 

In conclusion, while GPT-2 is primarily known for its abstractive text generation capabilities, 

it can still be employed in extractive summarization tasks by integrating it with complementary 

techniques. GPT-2's impact in NLP has been substantial, with its ability to generate realistic 

and contextually relevant text opening up numerous possibilities for various language-related 

tasks. 

 

3.3. KL-SUMMARIZER 

 
Another popular approach for extractive summarization is the KL-Sum algorithm, which 

utilizes Kullback-Leibler (KL) divergence to measure the relevance and importance of 

sentences. In this article, we will delve into the details of extractive text summarization, 

specifically focusing on the KL-Summarizer and how it operates. KL-Summarizer, also known 

as KL-Sum, is an extractive algorithm that utilizes statistical measures to identify important 

sentences. 

 

The importance of sentences in a given text is determined by the Kullback-Leibler (KL) 

divergence, which is used by the KL-Sum method. KL divergence is a metric for comparing 

the differences between two probability distributions. The difference between the probability 

distribution of the sentences in the document and the probability distribution of sentences in a 

generic document is quantified in the context of KL-Sum. 
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3.3.1. KL-SUM ALGORITHM 

 
The KL-Sum algorithm is composed of the following key steps: - 

 

Kl Summarizer describes a greedy optimization approach for selecting sentences and ordering 

them based on a value called "Pi." Here is a breakdown of the steps outlined: 

1. Initialize an empty set S and set d to 0. 

2. Repeat the following loop until the size of S (|S|) reaches a specified limit L: 

3. Iterate over a range of values i from 1 to ND (the total number of documents). 

4. Calculate a value di using the Kullback-Leibler divergence (KL) between the probability 

distribution Ps and PD. This value measures the difference between the probability 

distribution of the selected sentences (Ps) and the probability distribution of the entire 

document (PD). 

5. Add the sentence Si with the minimum di to the set S, and update d to the value of di. 

6. If there is no i such that di is less than the current value of d, stop the loop. 

7. Finally, the selected sentences in the target document are ordered based on a position index 

pi, which reflects their position within their respective source documents. 

8. For each selected sentence Si extracted from document Dj, compute a position index pi 

ranging from 0 to 1. 

9. The sentences in the target document are then ordered based on the value of pi, following 

the order of sentences in the source documents. 

This strategy seeks to choose the most pertinent sentences from the source documents and 

arrange them in accordance with where they appear in the source documents [14]. 

 

3.3.2. ADVANTAGES OF KL – SUMMARIZER 

 
The KL-Summarizer algorithm offers several advantages: 

 

 Extractive Approach: KL-Sum extracts sentence directly from the input document, 

preserving the original wording and reducing the risk of introducing errors or 

misinterpretations. 

 

 Simplicity: The algorithm's implementation is relatively straightforward, making it easier 

to understand and apply. 

 

 Interpretable Results: The sentence scores generated by KL-Sum provide a measure of 

importance, allowing users to interpret the basis of sentence selection.
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3.3.3. LIMITATIONS AND ENHANCEMENT OF KL - SUMMARIZER 

 
However, KL-Summarizer also has some limitations: 

 

 Dependency on Generic Document: KL-Sum requires a generic document as a reference to 

compute sentence scores. The quality and relevance of the generic document can 

significantly impact the summarization results. 

 

 Lack of Semantic Understanding: KL-Sum does not capture semantic relationships 

between words or sentences. It relies solely on statistical measures, which may not always 

reflect the true importance of sentences. 

 

 Sentence Redundancy: KL-Sum may select redundant sentences if they have similar word 

distributions to important sentences. This redundancy can affect the overall coherence and 

quality of the summary. 

 

Researchers have proposed several enhancements to address the limitations of KL-Sum and 

improve the effectiveness of extractive summarization. Some of these include: 

 

 Incorporating Word Embeddings: Word embeddings capture semantic relationships 

between words, allowing algorithms to better understand the meaning and context of 

sentences. Integrating word embeddings into KL-Sum could enhance its performance. 

 

 Graph-Based Models: Graph-based models use edge weights to describe the connections 

between phrases as nodes in a graph. These models can improve coherence and eliminate 

redundancy in the generated summaries. 

 

 Neural Network-Based Approaches: In text summarization tasks, neural network designs 

including recurrent neural networks (RNNs) and transformer models have demonstrated 

promising outcomes. These methods can capture intricate relationships and produce 

summaries that are more precise. 

 

 Reinforcement Learning: Reinforcement learning techniques can be employed to optimize 

the summarization process by training models to generate summaries that maximize 

predefined metrics like ROUGE (Recall-Oriented Understudy for Gisting Evaluation) 

scores.
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Extractive text summarization is a valuable technique for condensing large amounts of text 

while preserving important information. The KL-Sum algorithm, which utilizes KL divergence, 

offers a simple and interpretable approach to extractive summarization. By comparing the word 

distributions of a document with those of a generic document, KL-Sum assigns scores to 

sentences and selects the most relevant ones for the summary. 

 

While KL-Sum has its limitations, ongoing research and advancements in NLP and machine 

learning techniques hold the promise of addressing these challenges and improving the overall 

effectiveness of extractive text summarization. With further developments, extractive 

summarization algorithms like KL-Sum can continue to play a significant role in automatically 

generating concise and informative summaries from large textual data. 

 

3.4. LUHN 

 
One popular algorithm for extractive summarization is the LUHN algorithm, which was 

developed by Hans Peter Luhn in the late 1950s. LUHN's method is based on the assumption 

that important sentences in a document tend to contain significant and frequent terms. In this 

article, we will explore the LUHN algorithm in detail, discussing its steps, advantages, 

limitations, and potential future directions. 

 

The LUHN algorithm is one such approach to extractive text summarization that relies on 

statistical measures to identify significant sentences. 

 

The LUHN algorithm, proposed by Hans Peter Luhn in 1958, follows a set of steps to generate 

extractive summaries. It focuses on the frequency of important terms to measure the relevance 

of sentences. 

3.4.1. LUHN’s ALGORITHM 

 

The LUHN algorithm's key steps are broken down as follows: 

 

1. In the initial stage, our goal is to identify the words that hold greater significance in 

conveying the meaning of a document. According to Luhn's approach, this is achieved 

through a frequency analysis, followed by the identification of important words that are not 

considered unimportant English words. For example,



35  

 

 

 

Fig 21 - [3] 

 

We can observe from the above table that stop words like a and an are not taken into account 

while evaluating. 

 

2. Moving on to the second phase, we determine the most frequently occurring words in the 

document. From this set, we select a subset that excludes the commonly used English words 

but still retains words of importance. This phase typically involves three steps: 

 

i. The process begins by converting the sentences' content into a mathematical expression 

or vector, often represented as a binary representation. To accomplish this, we utilize a 

bag-of-words approach that disregard filler words. Filler words are typically auxiliary 

words that do not significantly contribute to the document's meaning. Then, we tally up 

all the valuable words that remain. 

 

ii. In this step, we access sentences using a sentence scoring technique. One possible 

scoring method, as demonstrated below, involves calculating a score based on the 

number of meaningful words squared divided by the span of those meaningful words. 

Here, the span refers to the portion of the sentence (or document) that contains all the 

meaningful words. Additionally, tf-idf can be employed to prioritize words within a 

sentence based on their rarity across a broader corpus. 

 

iii. Once the sentence scoring process is complete, the final step involves selecting 

sentences with the highest overall rankings. 

 

To summarize, Luhn's algorithm for text summarization entails determining the significance of 

words in the document, evaluating sentences based on their meaningful word count and span, 

and ultimately selecting the sentences with the highest scores to form the summary [2][18].
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3.4.2. ADVANTAGES OF LUHN ALGORITHM 

 

The LUHN algorithm offers several advantages: 

 

 Simplicity: The LUHN algorithm is relatively simple to implement and understand, making 

it accessible for various applications. 

 

 Extractive Approach: By selecting sentences directly from the original document, the 

LUHN algorithm preserves the exact wording and reduces the risk of introducing errors or 

misinterpretations. 

 

 Computational Efficiency: The algorithm's straightforward nature makes it 

computationally efficient, allowing it to handle large volumes of text with reasonable 

processing times. 

 

3.4.3. LIMITATIONS AND ENHANCEMENTS OF LUHN ALGORITHM 

 

However, the LUHN algorithm also has some limitations: 

 

 Lack of Semantic Understanding: The algorithm solely relies on statistical measures and 

term frequency. It does not capture the semantic relationships between words or sentences, 

potentially leading to the inclusion of less relevant sentences in the summary. 

 

 Sentence Redundancy: The LUHN algorithm may select multiple sentences conveying 

similar information if they contain the same or similar important terms. This redundancy 

can affect the overall coherence and quality of the summary. 

 

 Sensitivity to Term Frequency: The LUHN algorithm heavily relies on term frequency as a 

measure of importance. This sensitivity can lead to the inclusion of sentences that may be 

less informative but contain frequently occurring terms. 

 

Researchers have proposed several enhancements and variations to the LUHN algorithm to 

address its limitations and improve the effectiveness of extractive summarization. Some of 

these include: 
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 Word Embeddings: Integrating word embeddings, such as Word2Vec or GloVe, into the 

LUHN algorithm can enhance its performance by capturing semantic relationships between 

words. Word embeddings provide a more nuanced representation of word meanings and 

can improve the selection of important terms and sentences. 

 

 Graph-Based Models: The relevance of sentences is determined using graph algorithms, 

which are used in graph-based models like LexRank and TextRank that represent sentences 

as nodes in a graph. These models can assist in reducing repetition and enhancing the 

summary's coherence. 

 

 Neural Network-Based Approaches: In text summarization tasks, neural network designs 

including recurrent neural networks (RNNs) and transformer models have demonstrated 

promising outcomes. These methods may capture intricate relationships and semantic data, 

allowing for more precise and thorough summaries. 

 

 Evaluation Metrics: The quality of the produced summaries may be evaluated objectively 

by creating more reliable assessment measures for extractive summarization. It is possible 

to leverage established metrics like ROUGE (Recall-Oriented Understudy for Gisting 

Evaluation) and develop new metrics to measure qualities like coherence and readability. 

 

The LUHN algorithm, proposed by Hans Peter Luhn, is a popular extractive text summarization 

method that relies on term frequency to identify important sentences in a document. By 

assigning weights to terms and scoring sentences based on the presence of these terms, the 

LUHN algorithm generates extractive summaries. 

 

While the LUHN algorithm has its limitations, ongoing research and advancements in NLP and 

machine learning techniques offer promising avenues for improvement. By incorporating 

semantic understanding, graph-based models, and neural network-based approaches, extractive 

summarization algorithms like LUHN can enhance their effectiveness and produce more 

coherent and informative summaries. With further developments, extractive summarization 

techniques will continue to play a vital role in automatically generating concise and relevant 

summaries from large textual data. 
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3.5. LEX 

 
LexRank is one of the popular algorithms used for extractive summarization. It leverages 

graph-based ranking methods to identify key sentences based on their similarity and importance 

within the document. In this article, we will explore LexRank in detail, discussing its steps, 

advantages, limitations, and potential future directions. 

 

The critical task of text summarization in natural language processing (NLP) is reducing the 

amount of information in a document while maintaining its vital content. In order to provide a 

summary, extractive summarising techniques choose and extract pertinent lines or phrases from 

the original text. This strategy is favoured since it may preserve the original phrasing and 

lowers the possibility of adding mistakes or misinterpretations. 

 

LexRank is an extractive summarization algorithm that utilizes graph-based ranking methods 

to identify important sentences within a document. 

 

The LexRank algorithm was introduced by Erkan and Radev in 2004. It draws inspiration from 

the PageRank algorithm, which is used by search engines to rank web pages based on their 

importance. LexRank applies similar principles to rank sentences within a document. 

 

3.5.1. LEX ALGORITHM 

 
Here's an overview of the main steps involved in the LexRank algorithm: 

  

1. Pre-processing: Pre-processing operations on the input document include stemming, stop 

word removal, and tokenization. The paper may be broken down into individual phrases 

using these processes, and unnecessary words can be eliminated. 

 

2. Similarity Matrix Construction: The bag of words model, where N is the total number of 

words in a particular language, is used to characterise N-dimensional vectors in order to 

determine similarity. The idf of the word multiplied by the number of times it appears in 

the phrase determines the value of the related dimension in the sentence's vector 

representation. 
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(Eq.1) 

 

 

The number of times the word w appears in the sentence s is shown by the symbol tfw,s. 
 

3. Graph Construction: The similarity matrix is converted into a graph representation, where 

phrases are represented as nodes, and relationships between them are shown as edges. In 

order to create a weighted graph, each sentence is linked to other sentences that it is 

comparable to. 

 

 

Fig 22 – [4] 

Where Si corresponds to the sentences at each of the vertices and Wij to the weights along 

the edges. 

 

4. PageRank Calculation: The PageRank algorithm is applied to the graph to rank the 

sentences based on their importance. PageRank assigns higher scores to sentences that are 

connected to other sentences with high similarity scores. 

 

5. Sentence Selection: Sentences with the highest PageRank scores are selected to form the 

summary. The number of sentences included in the summary can be predefined or based on 

a desired summary length. 

 

6. Summary Generation: The selected sentences are combined to create the final summary, 

preserving the original order as they appeared in the document[4]. 
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3.5.2. ADVANTAGES OF LEXRANK 

 
The LexRank algorithm offers several advantages: 

 

 Graph-Based Approach: LexRank utilizes a graph-based representation to capture the 

relationships and similarities between sentences. This approach helps improve the 

coherence and eliminate redundancy in the generated summaries. 

 

 Importance-Based Ranking: The algorithm assigns importance scores to sentences based 

on their similarity to other sentences. This ranking ensures that the most relevant and 

representative sentences are selected for the summary. 

 

 Language Independence: LexRank can be applied to documents in various languages 

without requiring language-specific modifications. It relies on the inherent structure of the 

text and does not rely on language-specific linguistic features. 

 

3.5.3. LIMITATIONS AND ENHANCEMENTS OF LEXRANK 

 
However, LexRank also has some limitations: 

 

 Lack of Semantic Understanding: While LexRank captures similarity between sentences 

based on their textual content, it does not capture semantic relationships or deeper meaning. 

As a result, it may include sentences that are similar but convey different information. 

 

 Sensitivity to Similarity Measure: The choice of similarity measure used to construct the 

similarity matrix can impact the performance of LexRank. Different similarity measures 

may yield different results, and selecting an appropriate measure is crucial. 

 

 Computationally Intensive: The LexRank algorithm involves the construction and 

manipulation of a similarity matrix and graph, which can be computationally intensive for 

large documents. However, various optimizations and approximations can be applied to 

mitigate this issue. 

 

Researchers have proposed several enhancements and variations to the LexRank algorithm to 

address its limitations and further improve extractive summarization. Some of these include: 
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 Extended Context: Incorporating a wider context by considering not only sentence-level 

similarity but also document-level information can improve the selection of important 

sentences. This can be achieved by incorporating document-level features or by using 

context-aware embeddings. 

 

 Neural Network-Based Approaches: Neural network architectures, such as recurrent neural 

networks (RNNs) and transformer models, have shown promising results in text 

summarization tasks. These approaches can capture complex dependencies and semantic 

information, enabling more accurate and coherent summaries. 

 

 Domain-Specific Modifications: Adapting the LexRank algorithm to specific domains or 

genres of text can enhance its performance. Domain-specific modifications can include 

incorporating domain-specific features, adjusting similarity measures, or fine-tuning the 

ranking process based on domain-specific criteria. 

 

 Multi-Document Summarization: Extending LexRank to handle multiple documents can 

enable summarization of collections of related texts. Techniques such as cross-document 

similarity calculation and clustering can be employed to generate summaries that capture 

the key information from multiple sources. 

 

LexRank is a graph-based algorithm that ranks sentences within a document based on their 

similarity and importance. By leveraging graph-based ranking methods, LexRank generates 

extractive summaries by selecting sentences with high importance scores. 

 

While LexRank has its limitations, ongoing research and advancements in NLP and machine 

learning techniques offer potential solutions. By incorporating semantic understanding, 

exploring different similarity measures, and adapting the algorithm to specific domains, 

extractive summarization algorithms like LexRank can continue to improve their effectiveness 

and generate more coherent and informative summaries. With further developments, extractive 

summarization techniques will play a vital role in automatically generating concise and relevant 

summaries from large textual data. 
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3.6. WORD RANK 

 
Word Rank is an extractive text summarising algorithm that chooses sentences that include key 

phrases from a document and uses them to build a summary. Unlike other algorithms that focus 

on sentence-level analysis, Word Rank operates at the word level. In this article, we will explore 

Word Rank in detail, discussing its steps, advantages, limitations, and potential future 

directions. 

 

Word Rank is an extractive summarization algorithm that operates by identifying significant 

terms and selecting sentences containing those terms. 

 

The Word Rank algorithm, introduced by Aliaksei Severyn and Alessandro Moschitti in 2015, 

focuses on the importance of terms within a document. Word Rank establishes the importance 

of sentences by giving words weights depending on their frequency and placement in the text. 

 

3.6.1. WORD RANK ALGORITHM 

 
Here is an overview of the main steps involved in the Word Rank algorithm: 

 

1. Pre-processing: The initial document undergoes several pre-processing procedures to 

enhance its suitability for further analysis. These steps involve tokenization, the elimination 

of stop words, and stemming. Through tokenization, the document is fragmented into 

individual sentences or smaller units, facilitating a more detailed examination. Stop words, 

which are inconsequential words that do not carry substantial meaning, are then eliminated 

from the document. This removal aids in focusing on the more essential content that 

contributes significantly to the summary. Lastly, stemming is applied to reduce words to 

their root form, enabling consolidation of related words and reducing redundancy. Overall, 

these pre-processing steps work together to break down the input document, eliminate 

unnecessary words, and extract the core information that holds relevance for generating a 

concise summary. 
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2. Term Frequency Calculation: In order to determine the occurrence of each term in the 

document, the frequency of each term is computed. This process entails tallying the number 

of times each term appears within the document. The terms considered can range from 

individual words to phrases, depending on the desired level of detail and specificity. By 

performing this frequency calculation, we obtain a quantitative representation of how often 

each term occurs, enabling further analysis and insights into the document's content. The 

purpose of this step is to provide a clear understanding of the distribution and prominence 

of different terms within the document, helping to identify significant patterns or key 

elements that contribute to its overall meaning. 

 

3. Term Position Weighting: When assessing the importance of each term within the 

document, special consideration is given to its position, and a weighting scheme is applied. 

This scheme grants higher weights to terms that appear at the beginning of sentences. The 

underlying assumption is that terms occurring early in sentences carry more significance 

and serve as better representatives of the content. By assigning these higher weights to such 

terms, the weighting scheme acknowledges their potential impact on conveying essential 

information and conveying the core message of the document. This approach aims to 

capture the relative importance of terms based on their placement within sentences, 

emphasizing the belief that terms appearing earlier hold greater relevance and contribute 

more significantly to the overall meaning. Thus, by considering the position of each term 

and implementing this weighting scheme, we can effectively highlight and prioritize the 

terms that are likely to be more crucial in understanding the document's content. 

 

4. Sentence Scoring: To determine the significance of sentences within the document, a 

scoring process is employed, which relies on the weights assigned to the terms they contain. 

The scores for each sentence are computed by adding up the weights of the terms present 

within that particular sentence. Consequently, sentences with higher scores are deemed 

more important and are chosen to be included in the summary. This scoring mechanism 

enables the identification of sentences that encompass the most relevant and crucial 

information by considering the cumulative weight of the terms they contain. By selecting 

sentences with higher scores, the summary can effectively capture the key points and 

essential content from the document, prioritizing those sentences that carry more weight 

and contribute significantly to conveying its overall meaning. 
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5. Sentence Selection: The summary is constructed by choosing sentences with the most 

elevated scores. The selection process entails identifying sentences that have achieved the 

highest scores and including them in the summary. The number of sentences to be included 

in the summary can be determined in advance or determined based on the desired length of 

the summary. This approach ensures that the most important and informative sentences are 

incorporated, as they have attained the highest scores through the scoring mechanism. By 

curating the summary from these highly scored sentences, a concise and representative 

overview of the document can be generated. The flexibility of determining the number of 

sentences in the summary allows for customization based on specific requirements, such as 

the desired level of detail or the designated length for the summary output. 

 

6. Summary Generation: The final summary is generated by merging the selected sentences, 

preserving their original order as they appeared in the document. This process involves 

combining the chosen sentences in a cohesive manner, ensuring that their sequence is 

maintained to reflect the original flow of information. By adhering to the original order, the 

summary retains the logical progression and coherence present in the source document. 

This approach aims to provide a concise representation of the document's key points while 

maintaining the contextual integrity of the information. By combining the selected 

sentences in their original arrangement, the final summary effectively captures the essence 

of the document and presents it in a condensed form that aligns with the structure and 

coherence of the original content[19][20]. 

 

3.6.2. ADVANTAGES OF WORD RANK 

 

The Word Rank algorithm offers several advantages: 

 

 Term-Level Analysis: Word Rank operates at the word level, allowing for a more granular 

analysis of the document. By focusing on individual terms and their positions, the algorithm 

captures important information that might be missed by sentence-level approaches. 

 

 Simplicity: The algorithm's implementation is relatively simple, making it easy to 

understand and apply. The straightforward nature of Word Rank enables efficient 

processing of large volumes of text. 
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 Extractive Approach: Word Rank directly selects sentences from the original document, 

preserving the original wording and reducing the risk of introducing errors or 

misinterpretations. 

 

3.6.3. LIMITATIONS AND ENHANCEMENT OF WORD RANK 

 

However, Word Rank also has some limitations: 

 

Lack of Semantic Understanding: The algorithm does not capture semantic relationships 

between words or sentences. It relies solely on statistical measures, which may not always 

reflect the true importance or relevance of sentences. 

 

Sensitivity to Term Frequency and Position: Word Rank heavily relies on term frequency and 

position in the document. While these factors can indicate importance, they may not always 

align with the overall content significance. 

 

Sentence Redundancy: Word Rank may select multiple sentences that convey similar 

information if they contain the same or similar important terms. This redundancy can impact 

the coherence and quality of the summary. 

 

Researchers continue to explore enhancements and variations of the Word Rank algorithm to 

address its limitations and improve extractive summarization. Some potential directions for 

improvement include: 

 

 Semantic Analysis: Integrating semantic understanding into the Word Rank algorithm can 

enhance the selection of relevant sentences. Techniques such as word embeddings or 

semantic similarity measures can be employed to capture semantic relationships and 

improve the accuracy of term importance estimation. 

 

 Contextual Information: Incorporating contextual information, such as document-level or 

discourse-level features, can provide a more comprehensive view of the text. This 

additional information can help identify key terms and sentences that contribute to the 

overall meaning and coherence of the document. 
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 Hybrid Approaches: Combining Word Rank with other extractive summarization 

algorithms or techniques can leverage the strengths of different methods. For example, 

incorporating graph-based methods or neural network-based approaches can improve the 

overall performance and effectiveness of the summarization process. 

 

 Evaluation Metrics: Developing robust evaluation metrics specific to extractive 

summarization can enable better assessment and comparison of the quality of generated 

summaries. Traditional metrics such as ROUGE (Recall-Oriented Understudy for Gisting 

Evaluation) can be utilized, along with new metrics that capture aspects like coherence, 

informativeness, and readability. 

 

Word Rank is an extractive summarization algorithm that selects sentences based on the 

importance of terms within a document. By assigning weights to terms and considering their 

frequency and position, Word Rank generates extractive summaries that capture key 

information. 

 

While Word Rank has its limitations, ongoing research and advancements in NLP and machine 

learning offer promising avenues for improvement. By incorporating semantic understanding, 

contextual information, and hybrid approaches, extractive summarization algorithms like Word 

Rank can enhance their effectiveness and produce more coherent and informative summaries. 

With further developments, extractive summarization techniques will continue to play a 

significant role in automatically generating concise and relevant summaries from large textual 

data. 

 

3.7. ROUGE SCORE 

 
A popular metric for assessing the effectiveness of automatic summarization systems is the 

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) score. The process of creating 

succinct and insightful summaries of lengthy materials, such as articles, papers, or 

conversations, is known as automatic summarising. 
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Automatic summary aims to extract the essential details from the source material and present 

them in a streamlined way so that consumers may quickly understand the major ideas without 

having to read the full thing. ROUGE scores serve as a quantitative evaluation of the efficacy 

of the summarising method by measuring how similar the generated summary is to one or more 

reference summaries. 

 

ROUGE scores are typically calculated at different levels, such as ROUGE-N and ROUGE-L. 

Let's explore these in more detail: 

 

ROUGE-N: This ROUGE version counts the number of n-grams that overlap between the 

reference summary and the produced summary. A continuous run of n words is known as an n- 

gram. Based on the matching n-grams between the two summaries, ROUGE-N determines the 

accuracy, recall, and F-measure. Frequently used answers for n are 1 (unigrams), 2 (bigrams), 

or 3 (trigrams). 

 

ROUGE-L: The longest common subsequence (LCS) between the produced summary and the 

reference summary is calculated by ROUGE-L. Regardless of the word arrangement, the LCS 

is the longest string of words to occur in either summary. ROUGE-L calculates precision, recall, 

and F-Measureby taking into consideration the length of the LCS as well as the lengths of the 

produced and reference summaries. 

 

The calculation of ROUGE scores involves several steps: 

 

 Tokenization: Both the produced and the reference summaries are tokenized into discrete 

words or units. Depending on the required degree of analysis, the text is divided into smaller 

components called tokens, such as words, phrases, or paragraphs. 

 

 N-gram extraction: N-grams are extracted from both the reference and generated 

summaries based on the chosen value of n. For example, if we consider bigrams (n=2), the 

summaries are split into sequences of two adjacent words. The n-gram extraction captures 

the local word order information. 

 

 Overlap computation: It is determined how many n-grams in the reference and produced 

summaries coincide. This is done for ROUGE-N by calculating the percentage of n-grams 

from the produced summary that match n-grams in the reference summary.
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 Counting: Recall (R) and precision (P) are calculated by comparing the number of 

overlapping n-grams to the total n-grams in the reference summary and the total n-grams 

in the produced summary, respectively. Precision measures the amount of created 

information that is pertinent to the reference summary, whereas recall measures the amount 

of pertinent information from the reference summary that is recorded by the generated 

summary. 

 

 F-measure: The F-Measure provides a fair assessment of the performance of the 

summarization system by combining recall and precision into one score. F = (2 * P * R) / 

(P + R) is the formula used to compute the harmonic mean of recall and accuracy. The F- 

Measure encourages a balance between the two by accounting for situations in which 

accuracy and recall may have distinct values. 

 

 Aggregation: Different ROUGE scores, such as ROUGE-1, ROUGE-2, or ROUGE-L, can 

be computed. To obtain an overall evaluation, the F-measures for each level can be 

averaged or combined using a weighted average. The specific aggregation method may 

depend on the evaluation requirements or preferences. 

 

The similarity between produced and reference summaries is quantified by ROUGE scores. 

Greater content overlap and better alignment between the produced and reference summaries 

are both indicated by higher ROUGE ratings. These results enable researchers and developers 

to evaluate their models, compare various summarising systems, and monitor the advancement 

of autonomous summarization research. 

 

It is important to note that ROUGE scores have limitations. They rely on the availability of 

reference summaries, which may not always be present or may introduce bias if they are 

generated by humans. Additionally, ROUGE scores primarily focus on lexical overlap and do 

not capture other important aspects of summary quality, such as coherence, fluency, or the 

ability to capture salient information. 

 

Nevertheless, ROUGE scores serve as a valuable tool in the evaluation and development of 

automatic summarization systems. They provide a standardized and objective measure of 

summary quality, facilitating the advancement of research in this field and enabling the 

comparison of different approaches and techniques [21]. 
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3.7.1. PRECISION 

The percentage of correctly predicted positive outcomes (true positives) is a measure of 

precision. Its formulation is: 

 
 

TRUE POSITIVES 
 

 

TRUE POSITIVES+FALSE POSITIVES 

NO.OF CORRECTLY PREDICTED 
POSTIVE INSTANCES 

NO.OF TOTAL POSITIVE 
PREDICTED YOU MADE 

NO.OF CORRECTLY PREDICTED 
PEOPLE WITH CANCER 
NO,OF PEOPLE YOU 

PREDICTED TO HAVE CANCER 

(Eq. 2)

 

3.7.2. RECALL 

Recall is a measurement of the proportion of positive cases in the data that the classifier 

correctly predicted out of all of them. At times, it is also referred to as sensitivity. The following 

is its formula: 

 

 

TRUE POSITITVES 
 

 

TRUE POSITIVES+FALSE NEGATIVES 

NO.OF CORRECTLY PREDICTED 
POSITIVE INSTANCE 

NO,OF TOTAL POSITIVE 
INSTANCE IN THE DATASET 

NO.OF CORRECTLY PREDICTED 
PEOPLE WITH CANCER 
NO.OF PEOPLE WITH 
CANCER IN THE DATASET 

(Eq. 3) 

 

3.7.3. F1-MEASURE 

A measurement that combines recall and accuracy is the F1-Measure. It is commonly referred 

to as the harmonic mean of the two. The harmonic mean is another way to calculate a "average" 

of numbers; it is often seen to be better suited for ratios than the traditional arithmetic mean 

(such as recall and accuracy). The F-Measure computation in this case is as follows: 

 

F-MEASURE = 2 * 
PRECISION+RECALL 

PRECISION∗RECALL 
(Eq. 4) 

= = 

= = 
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3.8. BERT SCORE 

 

 

Fig 23 – [5] 

 

A statistic known as BERTScore is used to assess the quality of produced text or translations 

by contrasting them with reference material. It is based on Google's state-of-the-art language 

model, the Bidirectional Encoder Representations from Transformers (BERT) model. To 

determine how comparable the generated and reference texts are, BERTScore makes use of the 

contextualised word embeddings generated by BERT. 

 

To understand BERTScore in more detail, let's explore the following aspects: 

 

Contextualized Word Embeddings: BERT, as a transformer-based model, produces 

contextualized word embeddings. Unlike traditional word embeddings that represent words in 

a static manner, contextualized embeddings capture the meaning of words within the context 

of the sentence. BERT achieves this by considering both left and right context during the 

training process. These embeddings are more informative and can better represent the nuances 

and meaning of words. 

 

Similarity Calculation: BERTScore uses contextualized word embeddings to compute the 

similarity between the generated and reference text. Instead of relying solely on lexical or 

surface-level matching, BERTScore takes into account the contextual information encoded in 

the embeddings. This allows for a more nuanced assessment of the similarity between the two 

texts. 

 

Sentence Segmentation: Before computing the BERTScore, the generated and reference texts 

are segmented into sentences or smaller units. This step ensures that the comparison is 

performed at a more granular level, capturing the similarity between corresponding segments 

of the two texts. 
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Word Alignment: BERTScore calculates a word alignment matrix that captures the similarity 

between individual words in the generated and reference text. The alignment matrix is 

computed by comparing the contextualized word embeddings of each word pair. The alignment 

matrix reflects how well each word in the generated text aligns with the words in the reference 

text. 

 

Greedy Matching: To determine the best alignment between the words in the generated and 

reference text, BERTScore employs a greedy matching algorithm. This algorithm maximizes 

the similarity between the aligned words while ensuring that each word is aligned only once. It 

starts by finding the highest similarity score and then moves to the next highest until all words 

are aligned. 

 

Precision, Recall, and F1-Measure: Based on the word alignment matrix, BERTScore computes 

precision, recall, and F1-Measure. Precision measures the proportion of generated words that 

align well with the reference words, while recall measures the proportion of reference words 

that align well with the generated words. F-Measure is the harmonic mean of precision and 

recall, providing a balanced evaluation metric. 

 

BERTScore Calculation: BERTScore aggregates the precision, recall, and F-Measure across 

all sentences or units to obtain an overall BERTScore. This aggregated score provides a 

comprehensive measure of the similarity between the generated and reference text. 

 

Tokenization and Subword Units: BERTScore handles tokenization and subword units to 

ensure consistency and accuracy in the comparison process. It uses the same tokenization 

methods as BERT to ensure that the generated and reference text are aligned at the subword 

level. 

 

BERTScore offers several advantages over traditional evaluation metrics. Firstly, it leverages 

the power of contextualized embeddings to capture the semantic similarity between texts. This 

allows for a more fine-grained and accurate evaluation, as it considers the overall meaning 

rather than relying solely on lexical overlap. Secondly, BERTScore can handle variations in 

sentence length and structure, making it suitable for evaluating texts of different lengths. 

Finally, BERTScore aligns words between the generated and reference text, providing insights 

into specific word correspondences and mismatches. 
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BERTScore has gained popularity in various natural language processing tasks, including 

machine translation, text summarization, and text generation. Its use in evaluating the quality 

of generated text has become increasingly common, as it offers a robust and context-aware 

metric that aligns with human judgments. 

 

In summary, BERTScore is a metric that utilizes contextualized word embeddings from the 

BERT model to compute the similarity between generated and reference text. By considering 

the context and leveraging alignment techniques, BERTScore provides a comprehensive 

evaluation of the quality of generated text, enabling researchers and developers to assess and 

compare the performance of their models accurately [22]. 

 

3.9. MOVER SCORE 

 

 
Fig 24 – [6] 

 

 

The MoverScore statistic compares produced text or translations against reference material to 

assess the quality of each. It is based on the idea of "Word Mover's Distance" (WMD), which 

computes the least amount of work necessary to change the word embeddings of one text 

document into another to determine how different two text documents are. MoverScore extends 

the idea of WMD to provide a more fine-grained and robust evaluation of generated text. 
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To understand MoverScore in more detail, we must explore the following aspects: 

 

Word Mover's Distance (WMD): Word Mover's Distance is a measure of semantic similarity 

between two text documents. It quantifies the "distance" between two sets of word embeddings 

by computing the minimum amount of "movement" or "effort" required to transform the word 

embeddings of one document into the other. The WMD considers the semantic meaning of 

words based on their contextualized embeddings and captures the overall similarity between 

documents beyond surface-level matching. 

 

Contextualized Word Embeddings: Similar to BERTScore, MoverScore relies on 

contextualized word embeddings to capture the meaning of words in the context of the 

document. These embeddings are produced by models such as BERT or GPT, which take into 

account the surrounding context to generate word representations. Contextualized word 

embeddings allow for a more nuanced and accurate assessment of the similarity between words 

and documents. 

 

Word Embedding Similarity: To compute the WMD, MoverScore utilizes the similarity 

between word embeddings. The similarity can be measured using different distance metrics, 

such as Euclidean distance or cosine similarity. The choice of similarity metric depends on the 

specific implementation and requirements of the evaluation. 

 

Word Embedding Space: MoverScore operates in the space of word embeddings, where each 

word is represented as a vector. These word embeddings are learned during the training of 

models like BERT or GPT, and they capture the semantic information of words based on the 

context in which they appear. By leveraging this embedding space, MoverScore can measure 

the similarity between words and documents using geometric distances. 

 

Sentence Segmentation: Similar to other evaluation metrics, MoverScore segments the 

generated and reference text into sentences or smaller units. This segmentation allows for a 

more granular comparison and evaluation of corresponding segments between the two texts. It 

ensures that the evaluation captures the quality of the generated text at a more local level, 

considering the coherence and fluency of individual sentences. 
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Word Alignment and Transport Plan: MoverScore aligns words between the generated and 

reference text to compute the Word Mover's Distance. It finds the optimal assignment of words 

from the generated text to words in the reference text based on their semantic similarity. The 

alignment process produces a transport plan, which represents how words from the generated 

text should be "transported" to match the words in the reference text. The transport plan 

indicates the movement required to transform the generated text into the reference text, forming 

the basis of the MoverScore calculation. 

 

MoverScore Calculation: MoverScore calculates the Word Mover's Distance by considering 

the transport plan and the distances between the aligned word embeddings. The WMD 

represents the minimum "effort" or "distance" required to transform the word embeddings of 

the generated text into the reference text. MoverScore then converts the WMD into a 

normalized score by scaling it based on the lengths of the generated and reference texts. The 

resulting MoverScore provides a measure of the dissimilarity between the generated and 

reference text, where a lower score indicates a higher level of similarity. 

 

Sentence and Document-level Aggregation: MoverScore can be computed at both the sentence 

and document levels. At the sentence level, MoverScore calculates the WMD and aggregates 

the scores across all sentences to obtain an overall MoverScore for the entire document. At the 

document level, MoverScore takes into account the lengths of the generated and reference texts 

to ensure fairness in the evaluation. Aggregating scores at different levels provides insights into 

the quality of the generated text at varying granularities. 

 

MoverScore offers several advantages in evaluating the quality of generated text. Firstly, it 

captures semantic similarity beyond surface-level matching, as it considers the overall meaning 

and context encoded in word embeddings. This allows for a more accurate assessment of the 

semantic quality and coherence of the generated text. Secondly, MoverScore considers the 

alignment and movement of words, providing insights into how well the generated text matches 

the reference text in terms of word choices and semantics. Thirdly, MoverScore is versatile and 

can be applied to various natural language processing tasks, such as machine translation, text 

summarization, or text generation. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

In this case, we employed the Bert Model, developed by HuggingFace [9]. The Bert Model 

utilized for our purposes possesses certain characteristics: a vocabulary size of 30,522 words, 

a hidden size of 768, 12 hidden layers, 12 attention layers, and feed-forward layers consisting 

of 3,072 units. These specifications outline the essential framework of the transformers used in 

our approach. 

 

Furthermore, an alternative version of the GPT-2 models, known as GPT-2 Medium, was 

introduced by OpenAI [24] in 2019. With a substantial parameter count of 355 million, GPT-2 

Medium surpasses the smaller GPT-2 models in both size and computational power, although 

it remains smaller than the largest GPT-2 model, which boasts a staggering 1.5 billion 

parameters. 

 

The primary objective of this model is to forecast the subsequent word in a sequence based on 

the preceding words. To achieve this, pre-training is carried out utilizing a causal language 

modeling objective, using an extensive corpus of English literature. Through this pre-training 

process, the model gains proficiency in generating coherent and contextually appropriate text 

by learning the underlying patterns and structures within the provided data. 

 

We worked with the BCC New Datasets [25] and the Dailymail/CNN datasets [26]. 

 

 

4.1. DAILYMAIL/CNN DATASET 

 
The statistic was sourced from the Dailymail/CNN news outlet. The collection includes 500 

unique articles for various news stories. Extractive text summaries have been removed after 

going over every news item. The summary evaluation measure is computed when an extractive 

synthesis and a human-generated summary are compared. 
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TABLE I 

 

Rouge Score Rouge 1 Rouge 1 Rouge 1 Rouge 2 Rouge 2 Rouge 2 Rouge L Rouge L Rouge L 

 Recall Precision F- 
Measure 

Recall Precision F- 
Measure 

Recall Precision F- 
Measure 

BERT 0.47 0.23 0.29 0.18 0.08 0.1 0.44 0.21 0.27 

GPT 2 0.47 0.23 0.3 0.18 0.08 0.11 0.44 0.21 0.27 

KL SUMMARIZER 0.32 0.24 0.27 0.12 0.08 0.09 0.3 0.22 0.25 

LUHN 0.44 0.24 0.3 0.17 0.08 0.11 0.4 0.22 0.28 

LEX 0.42 0.25 0.31 0.15 0.08 0.1 0.38 0.23 0.28 

WORD FREQUENCY 0.49 0.21 0.29 0.2 0.07 0.1 0.46 0.2 0.27 

 

The table provided displays the rouge scores for seven distinct models, namely Word 

Frequency, Lex, Luhn, Kl Summarizer, GPT-2 and BERT. 

 

TABLE II 

 

 

 

The table above presents the BERT scores for seven different models, which include Word 

Frequency, Lex, Luhn, Kl Summarizer, GPT-2 and BERT. 

TABLE III 

 

 

The table provided displays the Mover scores for seven distinct models, namely Word 

Frequency, Lex, Luhn, Kl Summarizer, GPT-2 and BERT. 
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4.2. BBC NEWS DATASETS 

 
The BBC News Databases encompass news archives from diverse sectors such as business, 

entertainment, politics, sports, and technology. Among the merged dataset of 2225 articles, 

there are 510 articles related to business, 386 articles on entertainment, 417 articles covering 

politics, 511 articles centered around sports, and 401 articles focusing on technology. For these 

2225 articles, the table presented below illustrates the average approximate scores for recall, 

accuracy, and F-Measure in terms of the Rouge metric. Table V provides the BERT Score, 

while Table VI showcases the MoverScore. 

TABLE IV 

 

Rouge Score Rouge 1 Rouge 1 Rouge 1 Rouge 2 Rouge 2 Rouge 2 Rouge L Rouge L Rouge L 

 Recall Precision F- 
Measure 

Recall Precision F- 
Measure 

Recall Precision F- 
Measure 

BERT 0.43 0.57 0.47 0.3 0.43 0.34 0.42 0.55 0.46 

GPT 2 0.43 0.58 0.48 0.3 0.45 0.34 0.42 0.57 0.47 

KL SUMMARIZER 0.48 0.46 0.46 0.34 0.33 0.33 0.47 0.45 0.45 

LUHN 0.75 0.56 0.63 0.65 0.46 0.53 0.74 0.55 0.63 

LEX 0.66 0.53 0.58 0.53 0.43 0.47 0.64 0.52 0.57 

WORD 
FREQUENCY 

 

0.56 
 

0.51 
 

0.51 
 

0.41 
 

0.39 
 

0.38 
 

0.55 
 

0.5 
 

0.5 

 

The table provided displays the rouge scores for seven distinct models, namely Word 

Frequency, Lex, Luhn, Kl Summarizer, GPT-2 and BERT. 

 

Table V 
 

 

The table above presents the BERT scores for seven different models, which include Word 

Frequency, Lex, Luhn, Kl Summarizer, GPT-2 and BERT. 
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Table VI 

 

 

 

The table above presents the MoverScores for seven different models, which include Word 

Frequency, Lex, Luhn, Kl Summarizer, GPT-2 and BERT. 
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CHAPTER 5 

CONCLUSIONS 

 
Extractive summarization has emerged as a valuable tool for enhancing operational efficiency 

when confronted with copious amounts of material. By condensing lengthy texts into concise 

summaries, this approach enables users to navigate through information swiftly and effectively. 

However, it is important to acknowledge that extractive summarization does have limitations 

in terms of its ability to fully and accurately preserve the context and content of the original 

document. 

 

Despite these shortcomings, extractive summarization finds utility across a wide range of 

activities, including the composition of news articles, academic papers, and legal documents. 

While the summarization process may not capture every intricate detail, it still offers significant 

benefits by distilling the main ideas and key points from extensive textual sources. By 

providing a condensed version of the content, extractive summarization empowers individuals 

to grasp the essence of a document quickly and efficiently. 

 

In order to assess the effectiveness of extractive summarization techniques, we employed two 

prominent datasets: the Dailymail/CNN Dataset and the BBC News Dataset. These datasets 

serve as valuable resources for training and evaluating summarization models. By utilizing a 

diverse range of textual materials from reputable news sources, we aimed to ensure the 

robustness and generalizability of the summarization models. 

 

To evaluate the performance of the summarization models, we employed several metrics such 

as Rouge, BERT, and MoverScore. These metrics allow for a comprehensive analysis of the 

summarization quality by comparing the generated model summaries with human-generated 

summaries. By assessing various aspects, including overlap in content and linguistic features, 

these metrics provide valuable insights into the efficacy of the extractive summarization 

process. 

 

Based on the operating mechanism and performance evaluation, the top model for the 

Dailymail/CNN Dataset was found to be GPT-2. GPT-2 is a state-of-the-art language model 
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that has demonstrated exceptional capabilities in generating coherent and informative 

summaries. Its ability to capture important details while maintaining readability and coherence 

made it the preferred choice for the Dailymail/CNN Dataset. 

 

On the other hand, for the BBC News Dataset, the best-performing model was identified as 

Luhn. Luhn's approach to summarization relies on the identification of key phrases in the text 

and their subsequent selection to form a coherent summary. This model demonstrated a 

remarkable ability to extract relevant information and construct summaries that effectively 

conveyed the essence of the original documents from the BBC News Dataset. 

 

In conclusion, extractive summarization serves as a powerful tool for operating efficiently in 

the face of vast amounts of information. While it may not capture every aspect of the original 

context and content, it offers substantial benefits in various domains, including news articles, 

academic papers, and legal documents. The use of datasets such as the Dailymail/CNN Dataset 

and the BBC News Dataset, coupled with performance evaluation metrics like Rouge, BERT, 

and MoverScore, enables us to assess the effectiveness of summarization models. By 

identifying top-performing models like GPT-2 for the Dailymail/CNN Dataset and Luhn for 

the BBC News Dataset, we can leverage the strengths of these models to enhance the 

summarization process and improve operational efficiency. 
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