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Abstract

Soil is essential to the environmental process and growing crops. An accurate as-
sessment of soil moisture and chemical characteristics is essential for agricultural and
land management decisions to be well-informed. Precision agriculture has advanced
significantly because of machine learning.

Firstly the paper address the study of hyperspectral images with the help of Riese
and Keller’s dataset on Very Near Infrared Rays (VNIR) dataset captured by a Cubert
UHD-285 snapshot camera for estimating soil moisture that measures real-time band
reflectance values. They proposed a framework of Self Organizing Maps (SOM) for
regression to estimate soil moisture. Results indicate that MLP performs better than
all the machine learning regression-based techniques and SOM framework. It shows
promising results and provides a new and suitable regression method to predict soil
moisture from the hyperspectral soil moisture dataset. Results indicate that MLP
performs better than all the machine learning regression-based techniques and SOM
framework. It shows promising results and provides a suitable regression method to
predict soil moisture from the hyperspectral soil moisture dataset.

Secondly the paper address the study of multispectral images with the help of the
"Land Use/Cover Area Frame Statistical Survey Soil" (LUCAS), a comprehensive and
frequent topsoil survey conducted throughout the European Union to get data pertinent
to policy about how land management affects soil properties. The data covers 28
European Union States. This work analyses and predicts the chemical properties of
the soil of Hungary based on the LUCAS 2015 dataset that includes CaCO3, N, P, K,
EC, pH. It estimates them using LUCAS and Landsat 8 satellite images using different
regression-based algorithms like GPR, SVR, MLP, AdaBoost, Ridge and compares
them. The Lucas survey data points and Landsat 8 satellite images (multispectral) are
integrated for forecasting different soil nutrients.
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Chapter 1

Introduction

1.1 Problem Statement

1.1.1 Hyperspectral
The Cubert UHD 285 snapshot camera’s high-resolution hyperspectral data presents
an exclusive chance to investigate and comprehend the changes in space and time that
occur in soil moisture within Germany. Nevertheless, there are still many things about
the use of this hyperspectral data for producing precise and dependable forecasts of
soil moisture that we do not know. Producing reliable predictive algorithms that can
distinguish patterns in the hyperspectral data and correlate them with soil moisture is
very difficult. This research address this gap by predicting with the help of machine
learning and remote sensing techniques for predicting soil moisture of Germany with
the help of Cubert UHD 285 hyperspectral .

1.1.2 Multispectral
Hints about the spatial distributions of soil attributes are available from multispectral
satellite images like those from Landsat 8 and the LUCAS 2015. This study intends
to predict soil chemical properties in a particular region by integrating multispectral
satellite data with ground truth information derived from LUCAS 2015. To determine
soil chemical properties, this work simply needs to come up with reliable predictive
models that can accurately incorporate spectral information from Landsat 8 and other
contextual variables available in LUCAS 2015. The outcomes of this research generates
more accurate forecasting of soil parameters through the better understanding of how
satellite data is related to measurements on ground surface.

1.2 Background
Multispectral imaging involves capturing and analyzing data at different wavelengths
across the electromagnetic spectrum. Multispectral sensors capture information in
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several distinct bands, allowing for the extraction of particulars pertaining to vegetation
health, land cover, and other environmental variables. Multispectral imaging involves
capturing data in multiple bands or channels, each sensitive to a specific range of
wavelengths. Nevertheless, the accuracy could be more promising due to spectral
resolution limitations, which do not help detect early signs of crop diseases or nutrient
deficiency.

This constraint is mitigated by hyperspectral imaging, which offers hundreds of bands.
With the ability to capture more precise spectral responses, hyperspectral images—like
those produced by satellites like Hyperion, Comprehensive Adolescent Severity Inven-
tory (CASI), and Headwall Micro-Hyperspec—may be better suited to detect minute
variations in ground covers and how those variations change over time. Hyperspectral
photography helps overcome the mentioned difficulties and enables more precise and
fast identification of crop physiological state [3]. Table 1.1 presents the details of dif-
ferent types of sensors used for hyperspectral imaging. Hyperspectral pictures can be
used for a variety of purposes in vegetation trait monitoring, including the calculation
of the Leaf Area Index (LAI), crop type differentiation, crop biomass extraction, and
leaf nitrogen content determination. Despite its exceptional performance, hyperspectral
imaging has been comparatively less used in operational agricultural applications over
the past two decades due to high costs associated with sensors and imaging missions,
low signal-to-noise ratios, and enormous data sets.

Pre-processed hyperspectral images can further be examined using powerful and effec-
tive analytical techniques for the vast quantity of data in the images (such as spectral,
spatial, and textural variables) and extract target qualities (e.g., crop and soil characteris-
tics). Previous studies propose different methods, such as Radiative Transfer Modeling
(RTM, such as PROSPECT and PROSAIL), empirical regression (e.g., linear regres-
sion, Partial Least Square Regression (PLSR), and Multi-variable Regression (MLR),
machine learning (e.g., Random Forest (RF), deep learning (e.g., Convolutional Neural
Network (CNN)) [4–7].

Table 1.1: Different types of hyperspectral sensors [1]

Satellite-Mounted Aircraft-Mounted UAV-Based

Sensor Name Hyperion FTHSI on AVIRIS HYDICE AISA Hymap Headwall UHD
MightySat II Hyperspec 285-firefly

Spectral Range(nm) 357–2576 475–1050 400–2500 400-2500 400–970 440–2500 400–1000 450–950

number of spectral 220 256 224 210 244 128 270 (Nano) 125
bands 324 (Macro)

Spectral Resolution 10 > 1.7 17 8-15 <3.5 3.3 15 8
(nm)

Operational 705 500-600 1-20 <0.15
altitudes (km)

Spatial resolution 30 30 1-20 0.01–0.5
altitudes (km)

Organization NASA, USA Air Force Jet Naval Research Specim, Integrated Headwall Cubert
Research Propulsion Lab Finland Spectronics Photonics, GmbH,
(OH, USA) Laboratory, (Washington, Australia USA Germany

USA DC, USA)
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1.3 Motivation
The agricultural sector is increasingly facing many challenges worldwide, these include
crop diseases, climate change, environmental pollution, fast growing population and
depletion of natural resources. Precision agriculture is a viable solution for addressing
these problems by improving farming practices for example adjustable inputs promised
results, such as crop productivity and biomass production, like water and fertilizer as
well as minimal environmental effects.Remote sensing can be used to identify crop and
soil variability within a field, which is useful information for site-specific management
strategies. [8]. Precise application of water, fertilizers, and pesticides is made possible in
precision agriculture through the assessment of soil parameters. Farmers can minimize
waste and expenses by optimizing resource utilization by customizing inputs to the
unique requirements of every section within a field. Estimating soil qualities mitigates
the negative environmental impacts of farming operations and aids in delaying the loss
of natural resources. [8]. They are using techniques for remote sensing, such as satellite
imagery. Farmers may monitor crop conditions and spot pests using drones and a field’s
hot spots for stress or illness. This knowledge allows for prompt measures like targeted
irrigation or pest control, which may increase crop yields and decrease losses.

There are two categories of remote sensing technologies based on the energy source:
passive (like optical) and active (like radar and LiDAR). Imaging from multispectral
and hyperspectral sensors is included in passive remote sensing.

1.4 Proposed Solution
In the hyperspectral domain, such a benchmark dataset for soil moisture was presented
by Riese and Keller in [2]. Images were acquired during a multi-sensor field campaign
at Cubert, Germany on the pedon-scale. As measures, they used 125 spectral bands
in two different wavelengths with soil temperature and soil moisture. Soil surface
reflectance values in this dataset was collected using visible and near infrared (VNIR)
method.

In light of this information, the researchers propose that a SOM based regression
framework could be used to forecast soil moisture contents in an efficient manner. It
should be compared to other popular models in soil temperature prediction, such as
RF or SVR. From all of them, SOM model obtained significant performance which its
RMSE is equal to 0.66 and 𝑅2 value of 96.78%. These are some of the advantages of
neural network-based regression models which take less computation time or may even
provide much better outcomes while predicting soil moisture on this data set.

For instance, a feed-forward neural network known as Multilayer Perceptron (MLP),
is used to improve accuracy for predicting the soil moisture content in Hyperspectral
Benchmark Soil Moisture dataset by Riese and Keller [2]. On the other hand, compar-
isons were made between SOM regression framework and different machine learning
methods. Improved results were obtained through MLP. 𝑅2 of 97.47% and an RMSE
value of 0.58 are obtained. For the purpose of achieving ideal testing parameters, the
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model fine-tunes using the grid-search method.

Bing Lu et al. [1] reviewed different machine learning deep learning-based approaches
adopted by researchers to estimate and classify different soil and plant properties.
Shagun et al. [9] reviewed various machine learning approaches for soil properties
estimation.

Ballabio et al. [10] focused their research on estimating the chemical properties of all
25 countries in the LUCAS dataset using Modis Satellite using LUCAS data points of
2012 survey. In contrary, the current study directs its focus to capture the chemical
soil properties of a particular country, Hungary, from the LUCAS 2015 dataset using
Landsat8 Satellite. The LUCAS 2018 survey is just an extended version of the 2015
dataset, and some of the land classification is added without any modification or addition
of data points.x‘ This study focuses on a particular region for better estimation of the
chemical properties in Hungary and also captures enhanced information introduced in
the LUCAS 2015 dataset [11].

This work utilizes multispectral data from the Landsat8 satellite to estimate the chemical
soil nutrients for Hungary. It focuses on remote sensing and machine learning to
estimate chemical properties, helping agricultural professionals and researchers make
well-informed decisions without physically testing the soil in the laboratory. It estimates
CaCO3, N, P, K, EC, pH from LUCAS topsoil data 2015 [11]. It consists of data from
28 EU countries consisting of ground truth values of soil properties, coordinates of
points, and a shape file of the points collected. It is crucial for reliable prediction
models.

1.5 Contributions
The contributions of this work are :

1. Hyperspectral Image

(a) Presents a novel neural network-based MLP regressor to determine soil
moisture using VNIR hyperspectral imaging on UHD-285 firefly.

(b) It compares it with popular algorithms like XGBoost, AdaBoost, and Mul-
tilayer Perceptron (MLP).

(c) It contrasts the suggested model’s performance with that of other machine
learning models and SOM for regression.

2. Multispectral Image

(a) Using ground truth values from the LUCAS 2015 dataset for Hungary and
publicly available Landsat8 satellite image data, it provides a comparative
analysis of many machine learning algorithms.

(b) Estimation of the chemical soil properties in Hungary Region.
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1.6 Thesis Layout
The following sections go into detail about each step. Chapter 2 explores the Technical
Background of this study including Smart agriculture, Chemical Properties, Landsat 8
satellite, Hyper and multi spectral images, pre-propcessing of the same and many of
the machine learning and deep learning models used in this study. Chapter 3 explores
the Hyperspectral Image, with deep dive into 3.1 as the objective, 3.2 as the related
work in this field, and 3.3 deep dives into the methodology describing the dataset ,
models used , the model framework and regression models. Similarly Chapter 4 deep
explores the Multispectral Image with deep dive into 4.1 as the objective, 4.2 as the
related work in this field, and 4.3 deep dives into the methodology describing the
dataset , pre-processing satellite images and describing LUCAS data, models used , the
model framework and regression models. Chapter 5 deep dives into the discussions
of the results achieved by the paper by fulfilling the objectives. Chapter 6 focuses on
concluding the study and lays out a plan line for the work to be further done in this
area.
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Chapter 2

Technical Background

2.1 Smart Agriculture
Maximizing farming technique depends on smart agriculture that incorporates technol-
ogy, notably remote sensing.

Decision support systems, monitoring of crops and precision farming are some of
the agriculture functions for which drones, satellite imaging and other technologies are
used. Farmers are able to make well-informed decisions about pest control, fertilization,
and irrigation thanks to real-time data from remote sensing. Customizing farming
methods to particular field conditions is known as precision farming. Precise planting,
fertilizing, and harvesting are made possible by GPS-guided tractors and equipment,
which maximize resource efficiency and reduce waste. Drones and satellite images are
commonly used in keeping an eye on large areas of agriculture to improve food security.

These technologies are useful for tracking crops, identifying diseases and even pre-
dicting yields. Smart farming is a way of operating that helps achieve sustainability
targets by optimizing resource utilization and minimizing the environmental footprint.
Reduced use of water, fertilizers, and pesticides helps protect natural ecosystems and
promotes long-term agricultural viability.

2.2 Chemical Properties of Soil
The chemical properties of soil, including nutrient levels, pH, and organic matter,
significantly impact crop growth. Remote sensing technologies, such as hyperspectral
imaging, can be used to infer soil properties based on the spectral reflectance of the
soil surface. pH measures the acidity or alkalinity of the soil on a scale from 0 to
14. CEC represents the soil’s ability to hold and exchange cations (positively charged
ions) such as calcium, magnesium, potassium, and sodium. Soil nutrients include
essential elements like N, P, K, S, Ca, Mg and others. Organic matter in soil comes
from decomposed plant and animal residues. The relative amounts of sand, silt, and
clay particles in the soil are referred to as its texture. EC measures the soil’s ability
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to conduct electrical currents, indicating its salinity. The ratio of carbon to nitrogen in
organic matter influences its decomposition and nutrient release.

2.3 Satellite Images for Soil
In order to obtain data on different soil qualities without the need for physical sample,
satellite photos are used in the analysis of soils.

Some spectral bands in satellite imaging can be correlated to properties of soils like
moisture content, organic matter content and mineral composition.

Remote sensing technology enables a wide range view of large agricultural regions and
allows for quick and efficient monitoring of soil. When viewed from space, various
earth materials show dissimilar spectral patterns. Spectral features are created through
the processes that take place between soils and incoming energy of different wave
lengths.

Such marks can be affected by a number of soil properties: for instance moisture
content, organic matter level, mineral types present as well as texture among others.

Spatial resolution is a crucial aspect in satellite-based soil investigation. The ability
to capture finer details of even small variations in soil attributes can be enhanced with
higher quality images.

There exist some satellites including Sentinel series and commercial high resolution
ones which have spatial resolutions that fit well into comprehensive soil mapping.

2.4 Landsat8
Featuring the "Thermal Infrared Sensor" (TIRS) and "Operational Land Imager" (OLI),
Landsat 8 is a satellite that provides multispectral data in many bands. High-resolution
imagery from Landsat 8 is available worldwide and is useful for tracking changes in
land cover, evaluating crop health, and researching environmental trends. Following
in the footsteps of its predecessors, For a variety of uses, including forestry, urban
planning, environmental research, agriculture, and land cover monitoring, Landsat 8
seeks to provide essential data. The two main instruments included with Landsat 8
are the Thermal Infrared Sensor (TIRS) and the Operational Land Imager (OLI). Data
collected by Landsat 8 in various spectral bands spans a significant section of the
electromagnetic spectrum. Visible (blue, green, and red), near-infrared, shortwave
infrared, and thermal infrared are among the bands. Because Landsat 8 orbits around
the sun, it can take pictures of the whole planet at around the same local solar time on
each pass. It covers the entire planet every 16 days and completes an orbit in around
99 minutes.
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2.5 Hyperspectral Images
The Cubert UHD 285 snapshot camera’s high-resolution hyperspectral data presents
an exclusive chance to investigate and comprehend the changes in space and time that
occur in soil moisture within Germany. Nevertheless, there are still many things about
the use of this hyperspectral data for producing precise and dependable forecasts of
soil moisture that we do not know. Producing reliable predictive algorithms that can
distinguish patterns in the hyperspectral data and correlate them with soil moisture is
very difficult. This research address this gap by investigating cutting-edge machine
learning and remote sensing techniques for predicting soil moisture using Cubert UHD
285 data over Germany.

2.6 Multispectral Images
Multispectral satellite images (like those collected by Landsat 8 or LUCAS2015 dataset)
already contain information about the spatial distributions of soil attributes. In this
regard, accurate prediction of soil chemical properties was further aimed by combining
multispectral satellite observation data with ground truth information obtained from
LUCAS 2015 for a certain region. Our aim is to develop suitable predictive models that
accurately integrates spectral information of Landsat 8 with other spatial contextual
variables provided in LUCAS 2015 in order ot infer soil chemical properties. ‘The
results of this research give us more accurate predictions of soil parameters because we
better understand how satellite data relates to measurements on ground surface.

2.7 PreProcessing of Hyperspectral And Multispectral
Images

Common procedures in the processing of hyperspectral data include atmospheric cor-
rection, radiometric correction, orthorectification, and geometric correction. The ge-
ometry and orthorectification correction for satellite- and aircraft-based hyperspectral
pictures is often handled by data providers, while the radiometric and atmospheric
adjustments can be handled by following normal image processing procedures made
accessible by remote sensing software. Contrarily, with UAV-based photos, users must
carry out these processing stages and select the best processing strategies and related
parameters. To convert digital values of images to radiance, radiometric correction is
applied using calibration coefficients provided by the sensor manufacturer. Over time,
these coefficients may need to be modified due to the spectral materials employed in
the construction of the hyperspectral sensors deteriorating.

The signals are nonetheless affected by various atmospheric absorptions and scat-
terings even when the UAVs are flown at low altitudes, necessitating atmospheric
adjustment. Numerous bands in hyperspectral images—which frequently contain hun-
dreds of them are closely connected. As a result, dimension reduction is a crucial step
in the pre-processing of hyperspectral images. Numerous prior investigations utilizing
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hyperspectral images have examined the difficulties associated with redundant data and
have employed various techniques for dimension reduction. For instance, Miglani et
al. [12] ’s PCA of hyperspectral pictures revealed that the top 10 main components
could account for 99% of the information.

Numerous algorithms have been proposed in previous studies for band selection: a
column subset selection-based method that maximizes the volume of the selected subset
of columns (i.e., bands) while being robust to noisy bands; an unsupervised fast volume
gradient-based method that removes the most redundant bands sequentially based on
the gradient of volume; and so on. Pre-processing is a crucial step in enhancing the
quality of hyperspectral pictures and setting up subsequent data analysis, in general.
After pre-processing, the analytical techniques that is covered in the next section may
be utilised to analyse the hyperspectral data and look at various agricultural aspects on
the ground.

2.8 Machine Learning Models
1. PLSR: PLSR is a regression method combining features from PCA and multiple

linear regression. PLSR creates new variables, known as latent variables or com-
ponents, that are linear combinations of the original predictors and are optimized
to explain the variance in the target variable [13].

2. SVR: Support vector machines (SVM) are used in SVR, a regression technique, to
predict the hyperlink between the target variable and the data that was provided.
When addressing non-linear correlations between predictors and the target vari-
able, it is advantageous. SVR looks for the hyperplane that most closely matches
the data in order to minimize the size of the coefficients and allow for an error
margin (epsilon tube) [14].

3. MLP: A form of artificial neural network (ANN) called a Multilayer Perceptron
(MLP) has several layers of linked nodes or neurons. Regression and classifi-
cation are two prominent machine learning tasks that employ it. Using hidden
layers and activation functions to restructure the input data, MLP can simulate
intricate non-linear connections in data [15].

4. GPR: A non-parametric probabilistic regression method called GPR represents
the target variable as a Gaussian process. It offers estimates of prediction un-
certainty in addition to point forecasts. When working with tiny datasets and
accurately expressing uncertainty in forecasts is crucial, GPR is helpful [10].

5. AdaBoost: AdaBoost is an ensemble learning technique used mainly for classifi-
cation tasks but can be adapted for regression. It combines several weak learners
to produce a powerful prediction model (usually decision trees). AdaBoost is
particularly efficient at enhancing model performance because it weights data
points differently and concentrates on samples incorrectly identified in each iter-
ation [16].
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6. Ridge: Ridge regression is a linear regression technique that introduces L2 regu-
larization to the linear regression model. Forbidding high coefficients improves
the cost function by adding a penalty term that helps avoid overfitting. Ridge re-
gression is helpful when multi-collinearity is present, and a more straightforward,
understandable model is sought [17].

2.9 Applications of Hyperspectral And Multispectral
Images

In smart agriculture, hyperspectral and multispectral imaging has a variety of uses,

1. Crop Biochemical and Biophysical Property Estimation.

Retrieval of crop biochemical and biophysical properties includes chlorophyll,
nitrogen content, Leaf Area Index(LAI). Agricultural soil characteristics, such
as moisture content, organic matter, salinity, and roughness, significantly impact
crop growth and final output [18]. Additionally, each of these aspects of vege-
tation (such as chlorophyll, water, and LAI) affects crop production. In order to
understand agricultural productivity and apply effective management strategies.
Remote sensing is also essential for yield prediction and crop biomass estimation.
Yang [19].estimated agricultural yield using both multispectral and hyperspectral
data, and discovered that the hyperspectral imagery-based model outperformed
the other two.

2. Evaluating Crop Nutrient Status Evaluating plant biochemical qualities.

In precision farming, crop nutrient status is assessed, and suggestions for resource
management that match the demands of the crop are made.Hyperspectral pictures
have been used in previous research to estimate the nitrogen content of various
crop kinds. Akhtman et al. [20] analysed the temporal fluctuation of these features
while assessing the nitrogen content and phytomass in maize and wheat fields
using UAV-based hyperspectral pictures. Cilia et al. [21] in an experimental
maize field, measured estimates of nitrogen content and dry mass were obtained
using airborne hyperspectral pictures, with the goal of determining the nitrogen
deficiency and offering a map of variable rate fertilisation. The authors also
offered a method for determining how little nitrogen should be used to maintain
crop output and prevent over fertilization.

3. Classifying Imagery to Identify Crop Types, Speicies or Disease

Hyperspectral and multispectral images find their use to categorise crops and
measure their characteristics, such as weed or invasive species classification,
crop type differentiation, crop growth phases, and disease detection. Infestation
of weeds is a serious problem in agricultural areas and may have a significant
impact on crop development and productivity. Using remote sensing to locate
and map weeds in agricultural fields will be very helpful for the field’s variable
rate treatment. Since many weeds are small and mixed with crops, weed identi-
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fication generally calls for a high spatial resolution. To minimise financial and
produce losses, farmers must pay close attention to crop disease. Hyperspectral
imaging might potentially detect early signs of crop disease and help prompt
treatments since it gathers signals at fine spectral resolutions (e.g., fewer than
10-nm intervals).

4. Obtaining Fertility, Soil Moisture, and Additional Physical and Chemical Prop-
erties.

By combining airborne sensor imagery with linear regression to estimate soil
moisture at three distinct depths, Finn et al. [22] also explored the benefits and
drawbacks of employing hyperspectral remote sensing to study soil moisture.
Many other soil features are investigated, like soil texture [23], soil nitrogen
[24], copper concentration [25], potassium content [26], and CO2 leaks [27].
SOC is an essential part of soil fertility, which has a significant impact on crop
development and output. Fine spectral features from hyperspectral data are
essential for estimating SOC content.For examining SOC, earlier research have
utilised hyperspectral pictures gathered by various platforms. Overall, there is
great potential for using hyperspectral imaging to measure soil organic matter
and carbon. In total, the evaluation of organic matter and carbon content in soil is
highly promising by using hyperspectral imaging. The analysis of soil moisture
and plant cover has a great impact on the study of soil organic matter and carbon.
In this regard, one possible approach could be to accumulate hyperspectral images
in non-growing periods.
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Chapter 3

Hyperspectral Image for Soil Moisture
Prediction

3.1 Objective
The article by Riese and Keller presents a Very Near Infrared Rays (VNIR) data set
from the Cubert UHD-285 snapshot camera for real-time measurement of soil moisture
estimation using band reflectance values. They suggested an architecture based on Self
Organizing Maps (SOM) for soil moisture prediction through regression.

This study proposes a Neural Network based Multilayer Perceptron (MLP) approach
for estimating soil moisture values using regression analysis on the dataset. It compares
it with machine learning regression models and the SOM framework.

The work proposes a forward neural network, MLP to improve accurate predictions of
soil moisture in Riese and Keller’s Hyperspectral Benchmark Soil Moisture dataset [2].
This is being compared to other machine learning algorithms as well as the SOM
framework in regression. Its MLP has better 𝑅2 of 97.47% and RMSE values at 0.58
than MLPs. Optimal test parameters were achieved by fine tuning of this model with
grid search method.

MLP is a computationally effective algorithm as the parallelization is done efficiently.
It is an adaptive learning technology that does tasks based on given data based on
training data. In contrast, SOM needs adequate and relevant data to create meaningful
clusters. The weight vectors work based on information that correctly classifies and
separates inputs. The groupings will become random if there is no data or redundant
data in the weight vectors [28].

3.2 Motivation
The agricultural sector is increasingly facing many challenges worldwide, these include
crop diseases, climate change, environmental pollution, fast growing population and
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depletion of natural resources. Precision agriculture is a viable solution for addressing
these problems by improving farming practices for example adjustable inputs promised
results, such as crop productivity and biomass production, like water and fertilizer as
well as minimal environmental effects.Remote sensing can be used to identify crop and
soil variability within a field, which is useful information for site-specific management
strategies. [8]. Precise application of water, fertilizers, and pesticides is made possible in
precision agriculture through the assessment of soil parameters. Farmers can minimize
waste and expenses by optimizing resource utilization by customizing inputs to the
unique requirements of every section within a field. Estimating soil qualities mitigates
the negative environmental impacts of farming operations and aids in delaying the loss
of natural resources. [8]. They are using techniques for remote sensing, such as satellite
imagery. Farmers may monitor crop conditions and spot pests using drones and a field’s
hot spots for stress or illness. This knowledge allows for prompt measures like targeted
irrigation or pest control, which may increase crop yields and decrease losses.

3.3 Research Gap
Since its inception, a number of challenges have made it challenging to analyse and
work with hyperspectral images. It was initially plagued by spectroscopic technology
because of poor hyperspectral sensor quality and inadequate data quality. Though things
have gotten easier as applied science has advanced, there are still a few well-known
nondispersible obstacles to be solved. Here are a few of them as stated:

• Absence of high-resolution, noise-free Earth observation (EO) photos When
spectrometers were originally discovered, they were not very effective. As a
result, for Earth observation purposes, sounds from water vapour, air pollution,
and other atmospheric perturbations alter the signals originating from the surface
of the Earth. Over the past few decades, numerous attempts have been undertaken
to provide high-quality hyperspectral data for Earth observation and to create
a variety of high-performance spectrometers that combine the capabilities of
spectroscopy, digital photography, and the extraction of numerous embedded
spatial-spectral properties.

• Obstacles to feature extraction: duplication between adjacent spectrum bands
during data collection leads to the availability of duplicated information, both
spectrally and geographically, making it difficult to retrieve spatial-spectral char-
acteristics in an optimal and discriminative manner.

• The large spatial variability and interclass similarity: The hyperspectral dataset
collected contains unusable noisy bands due to mistakes in the acquisition that
result in information loss in terms of the unique identity, that is, the spectral
signatures and excessive intraclass variability. Furthermore, with poor resolution,
each pixel comprises broad spatial regions on the Earth’s surface, generating
spectral signature mixing, contributing to the enhanced interclass similarity in
border regions, thus creating inconsistencies and uncertainties for employed
classification algorithms.
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3.4 Related Work
Deep learning is widely used in remote sensing for image categorization, such as
the identification of land cover [29] and land cover categorization [30]. Examples
of current research include detecting plant diseases using CNN and photos from a
smartphone [31], as well as estimating agricultural yields using CNN and multispectral
photographs along with climatic data [32] and crop categorization using 3-D CNN
and multi-temporal multispectral images [33]. Siegmann and Jarmer [34] assessed the
effectiveness of RF, SVM, and PLSR for estimating crop LAI using ground-based hy-
perspectral reflectance data collected by an ASD spectroradiometer and validated RF’s
strong performance. Table 4.1 presents various techniques for classifying crops or pre-
dicting soil properties of hyperspectral data using machine learning and deep learning
applications. A few examples of previous research include the classification of crops
using 3-D CNN and multi-temporal multispectral images, the estimation of crop yield
using CNN and multispectral images along with climate data, and the classification of
agricultural land cover using deep recurrent neural network and multi-temporal SAR
images. In conclusion, there are varying degrees of complexity, performance, and
transferability across various analytical techniques (such as RTM, advanced regres-
sion, machine learning, and deep learning). Overall, linear regression is the simplest
approach to apply, and it performs rather well, albeit the quality of the sample data
and the selection of predictor variables can have a significant impact on this method’s
effectiveness. Since advanced regression (like PLSR) incorporates multiple variables
and is less sensitive to data noise than linear regression, it generally outperforms linear
regression. RTM (for instance, PROSAIL) has the ability to provide a variety of data
outputs with reassuringly high accuracy, including chlorophyll, water, and LAI. The
great transferability of this approach is one of its key benefits. However, due to its
extensive programming and requirement for a wide range of parameters, this approach
is the most complex. Numerous well-known machine learning algorithms, such as RF
and SVM, have shown good performance in prior research. To get the most out of
this strategy, some programming and model modifications are required. Deep learning
is a relatively new technique that has grown in popularity recently. For this strategy,
appropriate model design and programming are essential. To obtain a decent model
performance, it also needs a lot of training data and computer power.

3.5 Methodology

3.5.1 DataSet Description
A Cubert UHD 285 sensor captures the image used in the dataset proposed by Riese
and Keller [2]. This dataset contains actual measurements of soil moisture in real-time.
The measured reflectance contains the spectral signatures of plants growing on the
soil’s surface. Each hyperspectral image has 50 x 50 pixels and 125 spectral channels
with a wavelength range of 450 nm to 950 nm and a spectral resolution of 4 nm [2].
Fig.4.4 and Fig.4.3 show the visual representation of the features. Riese and Kellar [2]
documented the pre-processed hyperspectral image’s reflectance values in an Excel file.
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Table 3.1: Comparison of Machine Learning and Deep Learning Methods on hyper-
spectral data

Application Previous Study Research Focuses Accuracy
Weed Detection Bing Lu [6] Estimating Vegetation Chlorophyll Content 𝑅2=0.86,RMSE=12.1

Species classification Bing Lu [35] Classification using UAV 86%

Land Cover Sharma [29] Pixel Based Recurrent Neural Network 97.21%

Plant Disease Mohanty [31] Image Based Plant Disease Detection 99.34%

Crop Categorisation Shunping Ji [33] 3D CNN with Multi-Temporal Remote Sensing Images 79.4%

Wheat leaf area index Siegmann [34] Comparing different regression models to determine the leaf area index 𝑅2=0.924,RMSE=0.367

Soil Nutrients Riese and Keller [36] Soil Moisture Estimation using UAV 𝑅2=96.78%,RMSE=12.1

The dataset has 679 records of high-dimensional data, defined by 125 spectral bands
ranging from 450-950 nm (Table 1.1).

(a) Soil Moisture vs 1 band (b) Soil Moisture vs 2 band

Figure 3.1: Visualization of soil moisture with bands

3.5.2 Model Description
This work proposes and compares the MLP model with other machine-learning-based
regression analyses to approximate soil moisture’s value. The regression performs
specific steps, including data cleaning, feature selection, data pre-processing, normal-
ization, and splitting data into train and test sets. Further steps include an algorithm
selection following training and scoring the model by evaluation metrics (R-squared
and Root Mean Squared Error). Then it is repeated for all the algorithms tested in this
work (Fig.4.2).

The MLP model comprises two hidden layers with sizes of 300 and 100, obtained by
the primary grid search method, with an activation function of relu, a learning rate of
0.05, and a solver of lbfgs. Fig. 3.4 shows the visual representation of the implemented
MLP (not to scale).
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Figure 3.2: Parallel graph with soil moisture and bands

Figure 3.3: Flow diagram for regression

3.5.3 Feature Selection
In the hyperspectral soil-moisture dataset proposed by Riese and Keller [2], 679 data
points capture high dimensional data consisting of 125 spectral bands and soil temper-
ature. The features consist of 125 spectral bands along with the soil temperature. This
work predicts the value of soil moisture by different regression models. It compares
the regression models with reduced features to the model without feature selection.
The model’s accuracy is compared by reducing the number of features to 115 spectral
bands and removing the first and final five bands [37]. The model’s accuracy declines
by reducing the number of features to 115 spectral bands.

3.5.4 Data Pre-Processing and normalization
PCA reduces the dataset dimension in data pre-processing. The layer of the VNIR re-
flectance values undergoes PCA. Regression is applied on the first 20 main components
since they account for the majority of the variances in the dataset. The dimensionality
of the band is 20, retaining the feature importance without lowering the number of
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Figure 3.4: MLP Neural Network (not to scale)

features. Also, the model uses min-max scaling to normalize the data values to a range
of 0 to 1 by applying them to the entire dataset without any feature selection.

This study uses PCA or min-max scaling and then compares the results of predicting
soil moisture with different pre-processing and normalization techniques on the whole
and reduced datasets (with 115 features). Then the dataset is split into training and test
subset consisting of 339 and 340 data points, respectively.

3.5.5 Different Regression Models
Different regression models are applied in this study to predict soil moisture based
on the given dataset. They include Linear regression, PLS regression, Ridge, Lasso,
Elastic Net Regression, K-NN, Decision Tree Regression (DT), RF regression, Extreme
Gradient Boosting (XGB), Adaptive Boosting (AdaBoost) and Multilayer Perceptron
(MLP). All the Learning Algorithms are supervised and implemented using the sklearn
python library [38].

Hyperparameters and model parameters make up a regression model’s parameters.
Hyperparameters are predetermined, whereas the training step involves fine-tuning the
model parameters. Depending on the pre-processing techniques used in step 2 of the
regression framework, the optimal setting of the hyperparameters varies. The method
used in this study obtains the optimal hyperparameter setting by a primary grid search
method and extracts the best parameter.

In the model, the evaluation metrics chosen are the coefficient of determination (𝑅2) and
Root Mean Squared Error (RMSE) for evaluating the model performance. (𝑅2) is the
percentage of variation in the dependant variable that the statistical model predicts.The
RMSE is a quadratic scoring mechanism used to determine the amount of the average
mistake. A good performance indicates a high value of 𝑅2 and a low value of RMSE.
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Chapter 4

Multispectral LUCAS Image for Soil
Chemical Property Estimation

4.1 Objective
This paper analyses and predicts the chemical properties of the soil of Hungary based
on the LUCAS 2015 dataset that includes Calcium Carbonates (CaCO3), Nitrogen (N),
Phosphorus (P), Potassium (K), Electrical Conductivity (EC), pH. It estimates them
using LUCAS and Landsat 8 satellite images by using different regression-based al-
gorithms like Partial Least Square Regression (PLSR), Gaussian Process Regression
(GPR), Support Vector Regression (SVR), Multilayer Perceptron (MLP), AdaBoost,
Ridge and compares them. Ballabio et al. [10] focused their research on estimating
the chemical properties of all 25 countries in the LUCAS dataset using Modis Satellite
using LUCAS data points of 2012 survey. In contrary, the current study directs its
focus to capture the chemical soil properties of a particular country, Hungary, from
the LUCAS 2015 dataset using Landsat8 Satellite. The LUCAS 2018 survey is just
an extended version of the 2015 dataset, and some of the land classification is added
without any modification or addition of data points. This study focuses on a particular
region for better estimation of the chemical properties in Hungary and also captures
enhanced information introduced in the LUCAS 2015 dataset [11]. This paper utilizes
multispectral data from the Landsat8 satellite to estimate the chemical soil nutrients
for Hungary. It focuses on remote sensing and machine learning to estimate chemi-
cal properties, helping agricultural professionals and researchers make well-informed
decisions without physically testing the soil in the laboratory. It estimates CaCO3, N,
P, K, EC, pH from LUCAS topsoil data 2015 [11]. It consists of data from 28 EU
countries consisting of ground truth values of soil chemical and physical properties,
coordinates of the points, and a shape file of the points collected. It is crucial for
definative prediction models.
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4.2 Motivation
The agricultural sector is increasingly facing many challenges worldwide, these include
crop diseases, climate change, environmental pollution, fast growing population and
depletion of natural resources. Precision agriculture is a viable solution for addressing
these problems by improving farming practices for example adjustable inputs promised
results, such as crop productivity and biomass production, like water and fertilizer as
well as minimal environmental effects.Remote sensing can be used to identify crop and
soil variability within a field, which is useful information for site-specific management
strategies. [8]. Precise application of water, fertilizers, and pesticides is made possible in
precision agriculture through the assessment of soil parameters. Farmers can minimize
waste and expenses by optimizing resource utilization by customizing inputs to the
unique requirements of every section within a field. Estimating soil qualities mitigates
the negative environmental impacts of farming operations and aids in delaying the loss
of natural resources. [8]. They are using techniques for remote sensing, such as satellite
imagery. Farmers may monitor crop conditions and spot pests using drones and a field’s
hot spots for stress or illness. This knowledge allows for prompt measures like targeted
irrigation or pest control, which may increase crop yields and decrease losses.

4.3 Research Gaps
Numerous important applications have profited from multispectral imageries’ distinc-
tive qualities. However, because of their fluctuating temporal aspects, these qualities
also present practical implementation challenges. Significant adjustments are made
to the spatial, spectral, temporal, and data sources (single or many data sources) of
multispectral images based on its temporal feature. Although multispectral data has
several benefits, there are a few issues that have also been discussed in the literature.

• Spatial : High resolution data and less accuracy of super resolution.

• Temporal: Change detection when the detection outline shifts with respect to time
falls within the spatial-temporal pattern. To identify the shift in multi-temporal
remote sensing image detection

• Spectral: Selection of Spectral bands for distinguished applications (the indi-
vidual spectral band has different kinds and levels of details). Such as land-use
mapping, land-cover mapping, forest inventory, and urban-area monitoring

• multi Data sources: A potent method for producing more detailed features is the
integration of data from multiple heterogeneous data sources.

4.4 Related Work
Many researchers have attempted to explore multispectral data from satellites and used
it for soil analysis and prediction of soil features and crop type classification. The
LUCAS dataset is a significant leap due to its vast coverage of 28 countries and actual
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ground truth values. This section attempts to capture all the significant work previously
done in this area. Table 4.1 refers to the researchers’ previous work using the LUCAS
dataset and satellite images combined to produce significant predictions about the
soil properties. Ballabio et al.(2019). [10] provided a GPR regression technique to
estimate the chemical properties of the soil based on Modis satellite data and LUCAS
2012 topsoil data. The chemical properties include CaCO3, N, P, K, EC, and pH.
Ballabio et al.(2016) also provided Multivariate Adaptive Regression Splines (MARS)
to predict the physical soil properties with the help of Modis satellite data points
and LUCAS 2012 database. The physical properties include sand, clay, silt, and
gravel. In both the above papers, the authors achieved good accuracies. Pflugmacher
et al. (2019). [39] used Landsat8 satellite data and LUCAS 2015 data to classify
land/cover classes across Europe using Random Forest. The overall accuracy achieved
was 75.1%. Various variables can affect crop development and yield, including soil
moisture, soil type, and topographic conditions. Due to the extensive spectrum data in
hyperspectral photography, crop nutrient status may be assessed accurately. Crop output
can also be improved with a more comprehensive management strategy considering
the crop’s nutritional status and other contributing variables. The analysis of these
aspects can benefit tremendously from hyperspectral remote sensing. While some of
these variables may overlap spectrally, different soil characteristics impact the spectral
signals in various bands and varying degrees. So, while analyzing a specific soil
characteristic, it is crucial to collect adequate soil samples while controlling other soil
factors.

Table 4.1: Comparison of Machine Learning and Deep Learning Methods on LUCAS
using Multispectral data

Previous Study Lucas Dataset Research Focuses Accuracy
Year

Pflugmacher [39] 2015 Mapping Pan European Data using Landsat8 data and LUCAS Dataset Random Forest:75.1%

Ballabio [40] 2012 Predicting LUCAS Topsoil Physical Properties using Modis Sattelite Multiplicative Adaptive
Regression Splines(MARS):

𝑅2= 0.47 - 0.5

Ballabio [10] 2012 Predicting LUCAS Topsoil Chemical Properties using Modis Sattelite Gaussian Process Regression(GPR):
RMSE= 0.78 - 121.89

Ghassemi [41] 2018 Crop type classification using Sentinel 2 and LUCAS dataset SVM : 76.8%

Riese [42] 2012 LUCAS dataset-based hyperspectral data-based soil texture classification CNN : 74%

Castaldi [43] 2012 SOC Prediction using XDS Rapid content analyzer spectroradiometer PLSR : RMSE - 3.7

Castaldi [44] 2012 SOC Prediction using Normalised Burn Ratio(NBR) NBR : RMSE - 6.8 - 26.6
for North-Eastern Germany RPD - 0.9 - 4.4
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Figure 4.1: Image Processing Step

4.5 Methodology
This section covers the approach for the models for estimating soil nutrients. Fig. 4.2
describes the methodology adopted in this work.

4.5.1 DataSet Description
Land Use/Cover Area frame Statistical Survey (LUCAS) 2015 dataset [11] is used in
this survey. Also Landsat 8-9 OLI/TIRS C2 L2 satellite imagery captures multispectral
images. This study uses the dataset for Hungary. It estimates the chemical properties
CaCO3, N, P, K, EC, and pH from the LUCAS dataset.

LUCAS 2015 topsoil dataset covers 28 European Union countries with ground truth
data. The LUCAS dataset consists of a ground truth CSV file and a shp file comprising
all the collected data points. Approximately 22000 data samples are collected from all
of the 28 European countries. In this study, we only use a subset of the data of Hungary
that consists of 412 points. It consists of all the ground truth values of soil texture, pH
levels, organic carbon content, nutrient concentrations, and soil type. It offers extensive
information about the soil features in Europe.

The Landsat 8-9 OLI/TIRS C2 L2 satellite captures image from Hungary. The data
used is a satellite image from 2015 (same as LUCAS). It is a multispectral dataset that
captures different electromagnetic spectrum bands [45].

Fig. 4.4 represents the key maps of Hungary using the Inverse Distance Weighting
(IDW) interpolation technique, which shows all the chemical properties of the soil.
The maps show the distribution of the nutrient levels from low to high. The lighter
tone represents a lower range, while a brighter tone represents a high range. A specific
color represents the range of the nutrient value present in that region.

4.5.2 Satellite Data Processing
Data processing for Landsat 8-9 OLI/TIRS C2 L2 satellite imagery is critical for
accurate soil properties prediction. This section discusses the essential steps to process
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Figure 4.2: Flow diagram for Research Methodology

satellite images: band composition, mosaicing, clipping, selection by location, and
extracting multi-value to points. Fig. 4.1 describes Landsat 8 multispectral data
processing steps for a broad area and combining it for a target area.

• Band Composite: The multispectral Landsat 8 data consists of 7 bands. For each
band, a tiff image is present for a particular tile. The seven different images are
combined into a single image using this step.

• Mosaicing: Multiple tiles are needed for a broad coverage area. Each tile has
data that has seven images that are combined using the previous step. The total
tiff images are the same as the number of tiles. This step combines all the tiff
images into one single tiff file.

• Clipping: The data obtained from the previous step is raw data from the specified
region with outliers. The shape file of Hungary is superimposed on the raw data
to trim out the target region (Hungary). To obtain the area of the excess portion
is clipped out to get only the area of interest.

• Selection By Location: The clipped data is to choose the shape file from the
LUCAS topsoil 2015 data. The collected data points are marked on the image
and spatially aligned. It ensures optimal comparison and integration of the
satellite image with the ground data.

• Extracting MultiValue to points: The final tiff image now consists of the relevant
data and features of the LUCAS data and the band information of Landsat 8
satellite data. This work converts the LUCAS data and the bands into point
values, where each tuple consists of the soil features and the reflectance values
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of each of the seven bands.

Figure 4.3: Regression Algorithm Flow

4.5.3 Materials and Methods
Reflectance Calculation and Normalization

This work calculates the reflectance index from Landsat 8 data. The OLI sensor in
Landsat 8 captures the images for 7 bands (Band 1-7). The data is downloaded from
the United States Geological Service (USGS). The data is converted into 16 bits DNs
from 0-65536. The reflectance is used to determine Normalized Difference Vegetation
Index(NDVI) and Proportion of Vegetation (Pv). NDVI and Pv for Landsat 8-9 is
defined as

𝑁𝐷𝑉𝐼 = (𝐵𝑎𝑛𝑑5˘𝐵𝑎𝑛𝑑4)/(𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4)
𝑃v = ((𝑁𝐷𝑉𝐼˘𝑁𝐷𝑉𝐼min)/(𝑁𝐷𝑉𝐼max˘𝑁𝐷𝑉𝐼min))2

The dataset is normalized using Standard Scalar, which normalizes the bands in the
range of 0-1. This method facilitates the data to be converged and free from outliers
for the model to be applied.

Feature Selection

Landsat 8-9 OLI/TIRS C2 L2 has 7 bands and a spatial resolution of 30m. Band 2,
Band 3, and Band 4 represent Blue, Green, and Red, respectively; Band 1 represents
indigo for Coastal/Aerosols, and Band 5 represents Near Infrared Rays(NIR). Water
in the leaves of healthy plants reflects this portion of the spectrum. Bands 6 and 7
represent Short Wave Infrared Rays(SWIR) - I and II for identifying dry and moist
regions. This study utilizes every band within this dataset.

LUCAS data extraction

The primary nutrients for this study are the chemical properties CaCO3, N, P, K, EC,
and pH. The Lucas topsoil dataset from 2015 [11] served as this study’s ground truth
data source. It estimates the soil fertility and other important aspects of the ground.
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The area of interest for this study is Hungary, so out of 22,000 soil sample data, 412
data are extracted and combined with the reflectance values of bands extracted from
Landsat data. The combined data is the data source to develop and validate the model.

(a) Topsoil Map EC (b) Topsoil Map CaCO3

(c) Topsoil Map N (d) Topsoil Map K

(e) Topsoil Map P (f) Topsoil Map pH

Figure 4.4: Topsoil Map of Hungary

4.5.4 Model Description
This work proposes and compares different machine learning algorithms such as PLSR,
GPR, SVR, MLP, AdaBoost and Ridge. The regression algorithm performs specific
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steps, including data cleaning, feature selection, data preprocessing, normalization,
and splitting data into train and test sets. Further steps include an algorithm selection
following training and scoring the model by evaluation metrics (RMSE and RPD ). The
methodology adopted in this work is to repeat the steps for all the tested algorithms.
Fig. 4.3 shows the regression methodology adopted in this work. All the Learning
Algorithms are supervised and implemented using the sklearn python library [38].

• PLSR: PLSR is a regression method combining features from PCA and multiple
linear regression. PLSR creates new variables, known as latent variables or com-
ponents, that are linear combinations of the original predictors and are optimized
to explain the variance in the target variable [13].

• SVR: SVR is a regression approach that models the association between input
data and the target variable using support vector machines (SVM). It is beneficial
when dealing with non-linear correlations between predictors and the target
variable. In order to minimise the size of coefficients and account for an error
margin (epsilon tube), SVR seeks to identify the hyperplane that best matches
the data [14].

• MLP: A form of artificial neural network (ANN) called a Multilayer Perceptron
(MLP) has several layers of linked nodes or neurons. Regression and classifi-
cation are two prominent machine learning tasks that employ it. Using hidden
layers and activation functions to restructure the input data, MLP can simulate
intricate non-linear connections in data [15].

• GPR: A non-parametric probabilistic regression method called GPR represents
the target variable as a Gaussian process. It offers estimates of prediction un-
certainty in addition to point forecasts. When working with tiny datasets and
accurately expressing uncertainty in forecasts is crucial, GPR is helpful [10].

• AdaBoost: AdaBoost is an ensemble learning technique used mainly for classifi-
cation tasks but can be adapted for regression. It combines several weak learners
to produce a powerful prediction model (usually decision trees). AdaBoost is
particularly efficient at enhancing model performance because it weights data
points differently and concentrates on samples incorrectly identified in each iter-
ation [16].

• Ridge: Ridge regression is a linear regression technique that introduces L2 regu-
larization to the linear regression model. Forbidding high coefficients improves
the cost function by adding a penalty term that helps avoid overfitting. Ridge re-
gression is helpful when multi-collinearity is present, and a more straightforward,
understandable model is sought [17].

4.5.5 Hyper parameter Tuning
Hyperparameters and model parameters make up a regression model’s parameters.
Hyperparameters are predetermined, whereas the training step involves fine-tuning the
model parameters. The hyperparameters’ optimal setting varies depending on the soil
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nutrient and its variation with the bands’ reflectance value. The method used in this
work obtains the optimal hyperparameter setting by a primary grid search method and
extracts the best parameter. Table 5.3 refers to all the hyperparameters used in this
work for the different models and all the chemical properties.

4.5.6 Performance Metrics
The evaluation metrics chosen in the model are the RMSE and RPD for evaluating the
model performance (RPD). The RMSE is a quadratic scoring rule gauges the average
error’s magnitude. RPD is a relationship between range and standard deviation. A
good performance indicates a low value of RMSE while a high value of RPD. RMSE
ranges from 0 - any finite range [46], while RPD values usually range above 2 [46].

𝑅𝑀𝑆𝐸 =

√︂
1
𝑛
Σ𝑛
𝑖=1

(
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑎𝑐𝑡𝑢𝑎𝑙

)2

𝑅𝑃𝐷 = 𝑅𝑎𝑛𝑔𝑒𝑅𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒/𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
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Chapter 5

Results And Discussion

5.1 Hyperspectral Image
This study consists of three techniques :

• Using min-max scaling without any feature selection (Baseline with scaling).

• PCA without any feature selection as a dimensionality reduction technique.

• Reducing features (115) and applying min-max scaling (Reduced Features).

Table 5.1: Results of Regression for Estimating Soil Moisture (Test Set)

Model Baseline with scaling with PCA Reduced Features

(sklearn) R2(%) RMSE R2(%) RMSE R2(%) RMSE Hyperparameter Setup
Linear 82.59 1.59 87.87 1.29 82.08 1.56 -

PLS 86.59 1.29 86.59 1.35 87.87 1.66 n_components=11,max_iter=10000

Ridge 88.8 1.1 80.42 1.63 87.62 1.3 alpha=0.05,max_iter=15000

Lasso 81.63 1.25 75.09 1.84 79.75 1.66 alpha=1,max_iter=15000,solver=lsqr

Elastic Net 80.12 1.28 73.95 1.88 78.56 1.71 alpha=0.1, l1_ratio=0.5

Decision Tree 74.74 1.64 77.76 1.57 75.33 1.64 max_depth=3

KNN [47] 96.55 0.62 81.36 1.59 96.52 0.69 k=3

XGBoost [48] 94.67 0.84 94.44 0.87 94.93 0.91 colsample_bytree= 0.3, gamma= 0.1, learning_rate= 0.15
max_depth=8, min_child_weight=5,n_estimators=600

AdaBoost [49] 93.92 0.91 400–2500 23 93.53 0.93 DecisionTreeRegressor(max_depth=6),
learning_rate=0.05,n_estimators=2000, random_state=1

MLP [50] 97.47 0.58 91.59 1.07 94.34 0.87 hidden_layer_sizes=(300,100,),activation=relu,
max_iter=20000,solver=lbfgs,

learning_rate_init=0.05, random_state=1

SOM [36] 96.65 0.65 - - - - 50 × 50 grid with 5000 iterations of the input SOM
and 10 000 iterations of the output SOM [36]

Table 5.1 contains all the regression results. The baseline model with all the features
gives the best performance. Linear Regression, Partial Least Squares (PLS), Ridge,
Lasso, and Elastic Net perform the worst, along with Decision Tree Regression. The
algorithms are not capable of solving this high-dimensional problem. Among other
algorithms, XGBoost and AdaBoost give promising results, along with KNN, which
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gives the optimal value at k=3. MLP gives the best working model with an R2 of
97.47% and the least RMSE of 0.58.

This data shows that using PCA or reducing features hampers accuracy and increases
the error. So applying min-max scaling with no feature selection yields the best model.

This study implements and compares the various regression models for the hyperspec-
tral data-based regression of soil moisture, such as Random Forest (RF), Support Vector
Regression (SVR), and Self Organizing Maps (SOM) on the Hyperspectral Moisture
dataset [36]. The MLP outperforms all the other algorithms although by a small margin
but in a cost efficient manner with respect to the SOM. All models undergo optimiza-
tion of the hyperparameter. Table 5.1 compares the regression performance using the
metrics R2 and RMSE.

Table 5.2: Comparing results with the previous study

Model My Model Riese and Keller [36]
R2(%) RMSE R2(%) RMSE

KNN 96.55 0.62 - -
XGBOOST 94.67 0.84 - -

SOM 96.65 0.65 96.78 0.66
SVR 96.65 0.64 96.03 0.74
RF 94.01 0.9 93.06 0.94

AdaBoost 93.92 0.91 - -
MLP 97.47 0.58 - -

Results indicate that MLP performs better than all the models. It also provides a new
method of predicting hyperspectral data. Fine-tuning the model parameters increases
the performance of MLP. It also shows that MLP regressor can handle high dimensional
data with precision. Fine-Tuning the parameters of MLP can be time-consuming and
requires computational power. Table 5.2 compares the algorithms used in this dataset
with the previous work on this dataset.

5.2 Multispectral LUCAS Image
This work consists of three techniques:

• Processing Landsat 8 data for Hungary.

• Combining it with LUCAS data for Hungary.

• Develop and compare the different machine learning models.

The regression models, namely Partial Least Squares Regression (PLSR), Support
Vector Regression (SVR), Gaussian Process Regression (GPR), MultiLayer Perceptron
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(MLP), AdaBoost and Ridge predict the chemical properties of soil, Electrical Conduc-
tivity(EC), Calcium Carbonate (CaCO3), Potassium(K), Nitrogen(N), Phosphorus(P),
pH_h2O and pH_CaCl2. RMSE and RPD are the two methods used to evaluate and
validate the models. This study reveals the prediction of the chemical properties of soil
in Hungary. Adaboost is a boosting algorithm that performs better by combining all the
weak learners and outperforms all the traditional algorithms by a significant margin.
The R2 of the models are not at par with the base paper as there is less significant
amount of data in comparison with the base paper of this study. The data fetched
only depicts Hungary as a focus and estimates all the chemical properties of Hungary
soil. This provides a more focused research although a few more data points could
significantly improve the accuracy.

Table 5.3 contains all the regression results for different soil nutrient predictions. PLSR,
GPR, AdaBoost, and Ridge Regressors perform comparably. The regression results
show that the soil nutrients EC, P, N, pH_H2O, pH_CaCl2 can be predicted with rea-
sonable accuracy as the RMSE value is low and the RPD value is high. In comparison,
SVR and MLP do not perform consistently for all the properties. EC (RMSE = 16.73
and RPD = 7.19), P(RMSE=23.69 and RPD=4.89), N(RMSE=0.93 and RPD=7.07),
K(RMSE=197.16 and RPD=7.33), pH_H2O(RMSE=0.93 and RPD=4.69) achieved
best results using Ridge regressor. While CaCO3(RMSE=72.45 and RPD=4.89) and
pH_CaCl2(RMSE=0.87 and RPD=4.24) achieved best results using AdaBoost regres-
sor. The study fully explains the various regression models’ propensities to predict soil
properties. This work enhances the science of soil analysis by creating prediction tools
with substantial implications for agricultural and environmental research.

GPR models are less interpretable in this study due to their non-parametric nature and
complex function representations.

The study fully explains the various regression models’ propensities to predict soil
properties. Ballabio et al. [40] accuracies mentioned in table 5.3 are of the full LUCAS
dataset consisting of approximately 22,000 points. At the same time, this paper focuses
on predicting soil chemical properties in Hungary only with only 400 points. This study
proposes an AdaBoost algorithm to predict the chemical properties when working with
a smaller dataset. The GPR algorithm, due to its complex function, is unable to perform
well on a smaller dataset. AdaBoost performs better and more efficiently than GPR on
a region-specific survey with minimal data points.

29



Table 5.3: Results of chemical property estimation by regression models

Electrical Conductivity(EC) Calcium Carbonate (CaCO3)
Model RMSE RPD Parameters Model RMSE RPD Parameters

PLSR 16.86 7.25 n_components=5,
scale=False,max_iter=200 PLSR 75.37 4.93 n_components=2,scale=False,

max_iter=100
SVR 19.15 6.37 kernel = ’rbf’,C=100,gamma=1.15 SVR 73.91 5.11 kernel = ’rbf’,C=100,gamma=1.15

MLP 19.36 7.17

hidden_layer_sizes=(3,2,),
activation=’relu’,
max_iter=20000,solver=’lbfgs’,
learning_rate_init=0.05

MLP 78.37 4.94

hidden_layer_sizes=(3,2,),
activation=’relu’,
max_iter=20000,solver=’lbfgs’,
learning_rate_init=0.05

GPR 17.07 7.16
normalize_y=False, random_state=1,
alpha=10,length_scale=3.0,
length_scale_bounds="fixed"

GPR 72.48 4.91
normalize_y=False, random_state=1,
alpha=0.8,length_scale=10.0,
length_scale_bounds="fixed"

AdaBoost 16.92 7.19
n_estimators=8000,learning_
rate=0.0001,random_state=5,
base_estimator=DTR

AdaBoost 72.45 4.99 n_estimators=3000,learning_rate=0.01,
random_state=1, base_estimator=DTR

Ridge 16.73 7.27 alpha=0.01,max_iter=15000,
solver=’lsqr’ Ridge 73.9 4.89 alpha=10000,max_iter=50000,solver=’svd’

Ballabio [3]
GPR 11.02 - - Ballabio [3]

GPR 78.29 -

Pottasium(K) Phosphorus(P)
Model RMSE RPD Parameters Model RMSE RPD Parameters

PLSR 201.41 7.32 n_components=5,
scale=False,max_iter=500 PLSR 23.77 4.88

SVR 207.37 7.19 kernel = ’rbf’,C=100,gamma=1.15 SVR 24.37 4.83 kernel = ’rbf’,C=100,gamma=1.15

MLP 208.56 7.37

hidden_layer_sizes=(3,2,),
activation=’relu’,
max_iter=20000,solver=’lbfgs’,
learning_rate_init=0.05

MLP 23.75 3.56

hidden_layer_sizes=(3,2,),
activation=’relu’,
max_iter=20000,solver=’lbfgs’,
learning_rate_init=0.05

GPR 199.42 7.3
normalize_y=False, random_state=1,
alpha=18,length_scale=5.0,
bounds="fixed"

GPR 23.97 4.86
normalize_y=False, random_state=1,
alpha=15 length_scale=13.0,
length_scale_bounds="fixed"

AdaBoost 199.81 7.24

n_estimators=3000,learning_
rate=0.001,
random_state=1, base_estimato
r=DTR

AdaBoost 23.85 4.88
n_estimators=3000,learning_rate=0.01,
random_state=1,
base_estimator=DTR

Ridge 197.16 7.33 alpha=0.01,max_iter=15000,
solver=’lsqr’ Ridge 23.69 4.89 alpha=0.5,max_iter=15000,solver=’lsqr’

Ballabio [3]
GPR 199.17 - - Ballabio [3]

GPR 17.52 -

Nitrogen(N) pH H2O
Model RMSE RPD Parameters Model RMSE RPD Parameters

PLSR 1.21 7.3 n_components=1,
scale=False,max_iter=200 PLSR 0.93 4.54 n_components=2,

scale=False,max_iter=200
SVR 1.31 5.91 kernel = ’rbf’,C=100,gamma=1.15 SVR 1.28 3.49 kernel = ’rbf’,C=100,gamma=1.15

MLP 1.20 7.45

hidden_layer_sizes=(3,2,),
activation=’relu’,
max_iter=20000,solver=’lbfgs’,
learning_rate_init=0.05

MLP 0.98 4.69

hidden_layer_sizes=(3,2,),
activation=’relu’,
max_iter=20000,solver=’lbfgs’,
learning_rate_init=0.05

GPR 1.05 7.44
normalize_y=False, random_state=1,
alpha=18,length_scale=10.0,
length_scale_bounds="fixed"

GPR 0.99 4.52
length_scale=10.0, length_scale
_bounds="fixed",normalize_y=False,
random_state=1, alpha=18

AdaBoost 1.08 7.22

n_estimators=3000,learning_
’rate=0.0005,
random_state=1, base_estimator
=DTR

AdaBoost 0.95 4.59

n_estimators=4000
,learning_rate=0.01,
random_state=1, base_estimator
=DTR

Ridge 1.12 7.07 alpha=1,max_iter=15000,solver=’svd’ Ridge 0.93 4.69 alpha=0.5,max_iter=1000,solver=’saga’
Ballabio [3]
GPR 0.78 - - Ballabio [3]

GPR 0.78 - -

pH CaCl2
Model RMSE RPD Parameters

PLSR 0.88 4.22 n_components=7,
scale=False,max_iter=200

SVR 1.22 3.1 kernel = ’rbf’,C=100
,gamma=1.15

MLP 0.89 4.15

hidden_layer_sizes=(3,2,),
activation=’relu’,
max_iter=20000,solver=’lbfgs’,
learning_rate_init=0.05

GPR 0.91 4.06

length_scale=9.0, length_scale_
bounds="fixed",normalize_y=False,
random_state=1,
alpha=10, n_restarts_optimizer=10

AdaBoost 0.87 4.24 n_estimators=3000,learning_rate=0.1,
random_state=1, base_estimator=DTR

Ridge 0.88 4.22 alpha=0.1,max_iter=15000,solver=’svd’
Ballabio [3]
GPR 0.68 - -
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Chapter 6

Conclusion

This study discusses the estimation of soil moisture by regression using hyperspectral
data. It aims to improve the accuracy score of the SOM framework on the hyperspectral
soil moisture dataset proposed by Riese and Keller. Different machine learning algo-
rithms perform the regression on high dimensional hyperspectral pre-processed data.
MultiLayer Perceptron Regressor (MLP) without any feature selection and applying
normalization outperforms all the other regression models. MLP can handle high-
dimensional data. Nevertheless, the time required to fine-tune the parameters to obtain
the optimal results is time-consuming with a high-dimensional dataset. The regression
framework’s findings show the potential of various data-driven models when combined
with the input data utilized in various real-world measurement scenarios. It also shows
the potential for predicting soil/crop properties using VNIR hyperspectral data using
different machine-learning approaches.

This work discusses estimating soil chemical properties by regression using Landsat 8
multispectral data. Different machine learning algorithms perform the regression on
multispectral data combined with LUCAS. It accurately predicts the chemical proper-
ties of the soil of Hungary. Such region-specific analyses can yield valuable insights
and recommendations tailored to that area’s unique soil and environmental conditions.
Ridge and AdaBoost outperform all the machine learning models and previous stud-
ies [10]. The models’ predictive capacity may be useful for monitoring land, the
environment, and precision agriculture. This work showcases the detailed processing
of combining and processing satellite images with soil properties.

This study can address the specific challenges and opportunities related to soil and land
management of the Hungary region along with digital soil mapping and spatial analysis
of the region. Future Research may examine long-term trends of soil properties,
the climate change’s effects on Hungary’s soils, or the development of site-specific
management practices.
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