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ABSTRACT 

 

Agriculture emphasizes the need to automate quality improvement and enable uniform defect 

classification due to high efficiency for that matter. This is particularly due to the cases of 

inefficient practices notable in the procedures now in place. According to this thesis, we assert an 

innovative approach introducing the application of the YOLOv7 deep learning model to automate 

the process of identifying defects and classifying quality in fruits with around 88% accuracy. The 

YOLOv7 model, which is effective in object detection and subsequent classification, has been 

optimized to detect a wide range of fruits. This is critical in ensuring that the evaluations can be 

uniform hence trustworthy. Moreover, the model training time has been reduced using simpler 

computers hence more feasible when handling many data. This project draws data from many 

fruits to ascertain different quality ranges. Therefore, the project utilizes deep learning approaches 

including Convolutional Neural Networks to identify and learn essential features from the images. 

With extensive training and validation, which sometimes includes data expansion, the model is 

significantly enhanced for its generalization and robustness. Quality assessment using the 

YOLOv7 model in automation reflects considerable gain. The model has a practical 

implementation with an accuracy level of around 79.6%. The model minimizes errors and 

enhances uniform evaluation by reducing the dependence on manual workers. Farm input will, 

thus, experience high output through this automation system with low entry and economic results. 
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CHAPTER 1 

  INTRODUCTION 

 
   1.1 Overview of Fruit Quality Assessment 

Fruit quality evaluation is a multi-dimensional process that primarily focuses on the 

overall condition of the fruits and their suitability for processing, consumption, or even 

marketing. An evaluation of physical, chemical, and sensory attributes touches on 

features indicating, apart from others, freshness, maturity, taste, nutritional value, and 

aesthetic quality. In agriculture, the assessment [1] of fruit quality usually begins with 

an on-site examination of primary indicators of the fruit's health and maturity, such as 

size, shape, color, and external blemishes. The next steps might be the conduction of 

more sophisticated measurements such as firmness, content of sugars (Brix), acidity 

levels (pH), and aroma with the help of non-destructive tests by using spectroscopy and 

imaging or electronic nose technologies. 

 

Moreover, apart from the stated basic parameters, the modern fruit quality assessment 

is based on the implementation of techniques, among which the most important are 

chromatography, mass spectrometry, and near-infrared spectroscopy techniques 

intended for the quantitative assessment of biochemical composition and detection of 

trace amounts of contaminants or adulterants. So, not only do they allow for the 

detection [2] of a set of ingredients, i.e., antioxidants, vitamins, pesticides, or 

pathogens, but also allow for information about nutritional values, safety, or shelf life 

predictions to be provided. 

 

On the other hand, the sensory evaluation techniques: descriptive analysis, consumer 

preference testing, and trained panel evaluation are taken into use to deal with the 

subjective attributes of taste, texture, juiciness, and overall acceptability. 
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Figure 1.1 A general overview of our proposed approach 

 

Now, these techniques build human perception within the frame of fruit quality 

assessment; hence, objective measurements are tuned with the consumer's expectation and 

the market's preference. On the commercial scale, fruit quality [3] assessment forms an 

integral part of quality control and assurance programs for producers, processors, and 

distributors to maintain the variegated facets of consistency, compliance, and 

competitiveness in both domestic and international markets. It is maintained at all costs 

up to the required standards of quality between farm and fork in such a way that it ensures 

the health and satisfaction of the consumer, and simultaneously builds trust, brand loyalty, 

and market differentiation in an industrial landscape that is increasingly demanding and 

competitive. 

 

1.2 Issues in Fruit Quality Assessment 

By the same token, traditional frameworks face several problems in the context of 

assessing fruit quality. Quality assessment processes are, by nature, subjective and, 

therefore, lack repeatability, particularly when their attributes are subjective 
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characteristics like taste and texture. Also, while visual inspection informs as to surface 

defects, low potential to assess intrinsic or internal quality parameters like sugar content 

or the presence of microorganisms is there. Further, the results of manual sorting and 

grading are laborious, tedious, and intensive resource-wise, with poor scalability in high-

throughput production environments. 

 

Apart from the above, sensory evaluation also has problems of biases and inter-assessor 

variability. The process of multi-attribute evaluation is complex and further requires 

methodologies of high-end analysis. Defects like internal bruising or even pesticide 

residues remain invisible and undetectable through conventional methods, hence a 

potential source of risk for the health of the consumer and the integrity of the product. 

Small inconsistencies in protocols from region to region and amongst organizations lead 

to differences in the quality of the grading. Further, advanced analytical technologies are 

not well inducted because of their high cost and limited resources for smaller producers. 

Life cycle real-time monitoring, by way of its logistic challenges, is tantamount to a strong 

tracking and surveillance system to ascertain quality standards for product safety in the 

supply chain. There is, therefore, a need for innovative solutions of efficiency, accuracy, 

and objectivity in the procedures for the assessment of fruit quality to enhance the quality, 

safety, and market competitiveness of the product. 

 

1.3 Importance of Addressing Challenges in Fruit Quality Assessment 

It can be said that conquering the identified challenges can be the key directly to impacting 

the different sub-sectors in agriculture, food processing, and retail industries. Reliable 

quality standards are fundamental in the interest of consumer health, operation efficiency, 

international trade, and innovation. Objective assessment methods are critical at the 

forefront of overcoming subjectivity and inconsistency of quality evaluation. Advanced 

analytical techniques, using spectroscopy and chromatography, coupled with automated 

grading systems go a long way in reducing human bias and significantly increasing the 

accuracy and reproducibility of assessments.  
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In addition, there is a need to increase the precision of quality assessment in detecting and 

managing risks to consumers. Conventional methods are unreliability since they cannot 

detect concealed defects and/or contaminants. Such undermines public health and brand 

value. The use of advanced detection technologies and strict quality control will be crucial 

in the capability of pinpointing and managing sources of risk for consumer welfare and 

regulatory compliance. It is essential to standardize protocols within regions and sectors 

in quality evaluation. Easily accessible standardized guidance and protocols reduce 

market access time and simplify interoperability, fostering international cooperation that 

will be beneficial to both producer and consumer or processor. This eventually focuses on 

innovation and technological development in the fields of agriculture and food. 

Investment in research and development work for overcoming already existing limitations 

leads to new opportunities in value addition, product differentiation, and market 

expansion, which sustain growth and competitiveness. From the above points, it is obvious 

that the quality evaluation of fruit surely puts the assurance and competitiveness of the 

product at the orchard to the retail level. Therefore, it is only through collective efforts to 

integrate innovations, standardization, and cooperation that these stakeholders are likely 

to overcome these challenges and harness the potential of the fruit industry. 

 

1.4 Advancements in Fruit Quality Assessment Technologies 

The last years have seen a great boost of technologies for fruit quality assessment with the 

progress of innovative sensor technology, data analytics, and machine methodologies on 

top. Broadly speaking, such developments promise great opportunity for the issues more 

commonly observable in present-day fruit quality evaluation methods and hence promise 

the possibility of better accurate, efficient, and objective processes of evaluation. A great 

deal of this umbrella of technological advances includes the following: Advanced sensor 

technologies have been developed that can capture a large amount of information and 

characteristics belonging to a fruit under high resolution and high detail. The use of 

hyperspectral imaging can provide detailed spectra of the fruit, thus giving out information 

about its biochemical composition, state, ripeness, and structural integrity. Upon this, the 
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means for acoustic resonance and impedance spectroscopy methods for fruit firmness, 

density, and internal characterization are explained, and lastly, in line with advanced 

sensor techniques, there is provision for the use of advanced data analytics methods—

both machine learning and statistical modeling—for extraction of valuable information 

from complex, multi-view datasets. In a general sense, this applies to the technology of 

deep learning, in an automated fashion, to learn complex patterns and features from large-

scale data, likewise, enhancing the accuracy and robustness of the fruit quality assessment 

models. The deep neural network architecture in the form of convolutional and recurrent 

neural networks yields a very powerful tool for analyzing diverse data modalities like 

images, spectral profiles, and text descriptions for fruit classification[4] and defect 

detection.  

 

 

Figure 1.2 Visualization of healthy and unhealthy lemons (mouldy, gangrenous, and 

those with a dark style remaining are all considered unhealthy). 
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Meanwhile, ensemble methods and fine-tuning are advanced techniques that significantly 

increase the ability to generalize deep learning models and their performance, especially 

in data-limited and few-shot scenarios of labeled data, due to processes of training and 

inference of deep learning models that are much faster on accelerated hardware 

technologies, such as GPUs and TPUs, making these processes accessible and scalable in 

practice for fruit quality assessment. Data analytics, sensor technologies, and machine-

learning methodologies have fully come together to develop new novelties in assessing 

the quality of fruits [5], and all of them jointly hold great promise for further improvement 

in the efficiency, accuracy, and objectiveness of the fruit-quality-evaluation process, 

translating into the gain of all stakeholders across the entire fruit supply chain. 

 

1.5 Potential Applications of Deep Learning in Fruit Quality Assessment 

Also, deep learning, a branch of machine learning, holds the potential for revolutionizing 

the determination of fruit quality since it automatically learns the details of patterns and 

features within often highly unstructured and noisy datasets. In this regard, using deep 

neural networks, such as convolutional neural networks [6] (CNNs) and recurrent neural 

networks (RNNs, researchers and practitioners, have managed to build models with 

increasing complexity that can derive meaningful information from multimodal data, 

which is very common in fruit quality assessment. One of the most common applications 

of DL in the context of fruit quality inspection is image-based classification and defect 

detection.  

 

By training a CNN on the widely available and accessible large datasets of fruit images, 

with annotations of quality attributes and defects, it, in turn, can follow classification tasks 

coming from the ripeness, size, shape, color, and texture of the fruits, and resist to common 

defects such as bruising, blemishes, and mold. In this context, hierarchical feature learning 

of CNNs allows identifying subtle visual cues indicative of the fruits' quality even if 

accompanied by noise and variations. Other types of data that could be analyzed with deep 

or other DL techniques are spectral data obtained by techniques like hyperspectral imaging 
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or spectroscopy. Therefore, CNNs built for other types of neural network structures can 

analyze the spectral profiles to define characteristic absorption patterns associated with 

some biochemical compounds or quality markers in the fruits. This leads to non-

destructive, fast fruit freshness testing, measuring sugar content, acidity, or other chemical 

features of fruits, which directly emails the grading and sorting of fruits. In addition, the 

models based on deep learning can deploy different sources of multimodal data—in this 

case, images, spectral signatures, or textual descriptions—to allow comprehensive 

assessments of the quality of fruits. Such models can then integrate information from 

multiple sources to encapsulate complementary information and improve the overall 

accuracy and reliability of such quality assessments.  

 

For example, the fusion of extracted image visual features [7] with spectroscopic 

measurements in terms of spectral signatures allows a more integrated characterization of 

fruit properties and defects. Moreover, the employed deep learning techniques are easily 

adaptable to new fruit quality detection tasks. They can work in the online mode within 

the process of detecting fruit quality. The most important advantage of the deep learning-

based approaches is the scalability and adaptability of the models toward their successful 

deployment for real-time monitoring and decision-making applications in quality 

assessment of different fruits. These models can be applied in practice by any stakeholders 

using edge devices or embedded system solutions, including IoT sensors and smart 

cameras capable of performing on-site quality inspection and sorting optimization to 

ensure the freshness and safety of products in the whole supply chain. In conclusion, deep 

learning can be extensively applied across image-based classification and defect detection 

to spectral analysis and multimodal fusion for fruit quality assessment. Deep neural 

networks provide on one side opportunities for the stakeholders to enhance the efficiency, 

accuracy, and robustness of the fruit quality evaluation process and on the other side 

enhance the delivered product quality, satisfaction of the consumer, and competitiveness 

in the market. 
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1.6 Challenges and Opportunities in Implementing Deep Learning for 

Fruit Quality Assessment 

This, on the one hand, illustrates a set of challenges and opportunities for implementing 

deep learning techniques into practice as these technologies feature promising capabilities 

for increasing the efficiency and precision of quality evaluation processes. In practice, 

though, their implementation would first require clearing several technical, logistic, and 

operational hurdles. The problems herein are related to data scarcity during deep learning 

model training. The annotation of such large datasets capturing such diversity of fruit 

types and defect classes using labor-intensive and time-consuming processes has been 

quite prohibitive in terms of resources and time. 

 

The other, most important fact to take into account is maintaining the correctness and 

consistency of the annotations to robustly train models that will generalize to new data. 

These efforts have to be collaborative between researchers, industrial partners, and data 

providers to target the issues of data scarcity that directly support the development of high-

quality training datasets. Deep neural networks are often treated as black-box models, and 

it is very challenging to grasp the interpretation of the inner decision-making processes to 

understand sources of potential error or bias. Deep model interpretability and the 

development of uncertainty estimation are crucial to assure acceptance—in this case, 

before industry—which the decisions a deep learning-based quality evaluation system will 

take. In addition, deep learning, in principle, is computationally and infrastructure-

intensive, raising practical problems for deploying such methods in real-world scenarios. 

The training of such complex or deep neural networks on large datasets is considerably 

computationally intensive and requires heavy computational resources, such as high-

performance computing clusters or cloud-based infrastructure. Besides, the deployment 

of trained models on embedded or edge systems, whose processing power and memory 

are generally limited, has further constraints that need enforcement by optimization and 

model. 
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These challenges notwithstanding, deep learning in fruit quality assessment holds huge 

potential for innovation and growth. In this regard, one can work on a solution to fruit 

quality assessment by using transfer learning, domain adaptation, and semi-supervised 

learning to circumvent issues linked with data scarcity and make the development of 

models faster. Furthermore, such software and framework improvements, supported by 

hardware level acceleration, make deep learning models computationally more efficient 

and hence practically more feasible in a real-world scenario. Moreover, modular and 

flexible architectures support customization and reconfiguration of these architectures for 

peculiar cases and requirements. Therefore, deep learning researchers and practitioners 

have the opportunity to formulate deep learning architectures, loss functions, and 

optimization strategies by the unique characteristics and constraints brought about by the 

tasks of fruit quality assessment. 

 

 On the other hand, the rapid evolution of deep learning research projects, accompanied 

by interdisciplinary cooperation, opens a new frontier in solving highly complex 

challenges and unlocking newer capabilities with fruit quality assessment. In a nutshell, 

the application of deep learning in fruit quality assessment produces a myriad of 

predicaments but is equally promising regarding innovation and growth. In effect, the 

advancement in algorithmic techniques and hardware technologies, specifically 

addressing issues related to data scarcity, interpretability, and infrastructure constraints, is 

further raised to unlock the full potential of deep learning for the enhancement of 

efficiency, accuracy, and reliability in the evaluation of fruit quality and, in turn, in 

product quality, safety, and competitiveness in the market. 
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1.7 DISSERTATION ORGANIZATION 

The content of the dissertation is organized into s ix chapters: 

 

• Chapter I INTRODUCTION TO AUTONOMOUS DRIVING 

• Chapter II LITERATURE SURVEY 

• Chapter III BACKGROUND TECHNIQUES  

• Chapter IV PROPOSED METHODOLOGY  

• Chapter V EXPERIMENTAL RESULTS 

• Chapter VI CONCLUSION AND FUTURE SCOPE 

Chapter I – Includes the introduction of the overview of fruit quality assessment 

Chapter II – This chapter is a literature survey, which gives an insight into the research papers 

published based on object classification, segmentation, and multi-task approaches. 

Chapter III – This chapter gives an insight into the background techniques that are being used in 

the implementation of the proposed work. 

Chapter IV – This chapter covers the methodology that includes the classification detection-

segmentation architecture of YOLOv7 and system architecture along with the model losses. 

Chapter V – This chapter includes the experimental results. The results also involve the 

performance of YOLOv7 and CNN. 

Chapter VI – This includes the conclusion about the research work and future scope. 
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CHAPTER 2 

                          LITERATURE SURVEY 

  Quality assessment of fruits and classification of fruit defects are key operations in food and 

processing agro-based enterprises to ensure consumer satisfaction, product safety, and 

market competitiveness. Conventional methods for the measurement of fruit quality and 

classification of defects mainly depend on hand inspection and subjective judgment; hence 

they are bound to be irrational and unstable during the process of quality evaluation. The 

application of deep learning methods in this revolution was analyzed in this study. Several 

investigations about the application of deep learning methods focused on automated 

assessment, especially using the convolutional neural networks for fruit classification 

through visual appearance data described by size, shape, color, and surface defects. Trained 

with a large number of annotated image datasets, CNNs can produce quality labels, and in 

most cases, such networks produce high-quality and robust results compared to traditional 

methods and human experts. 

 

 

Figure 2.1 custom interpretation and output layer which is used for binary image 

classification 
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   Data science methods have recently gone beyond visual inspection in analyses of other 

data modalities that one typically encounters in fruit quality assessment, including spectral 

and chemical composition data. CNNs process spectral profiles to predict the biochemical 

attributes of fruits, while RNNs crunch real-time time-series sensor data during the storage 

and transportation of fruits for quality monitoring [8]. Problems related to data scarcity, 

high cost of annotation, and interpretability are not solved, so very close multidisciplinary 

approaches are required when defining real-world standard protocols and validation 

frameworks. 

 

2.1 Advancements in Fruit Quality Prediction Using Deep Learning 

Algorithms 

Here we report a pioneering approach to predicting fruit quality based on state-of-the-art 

deep-learning methodologies. Fruit quality assessment traditionally has been labor-

intensive and subjective through manual inspection techniques. Deep learning, 

particularly using convolutional neural networks, automates extraction [9] from images of 

characteristics associated with fruits, making the process much faster and more objective. 

Since CNNs enable the recognition of complex visual patterns, it is possible to predict the 

maturities of fruits in a precise and scalable way, leading to superior efforts in guiding 

harvesting decisions toward optimal timings at an unprecedented level of accuracy. 

Moreover, if RNNs are added, non-destructive fruit quality assessment may rise to the 

other level due to the rich tapestry of data inputs and analyses it undertakes. In this way, 

RNNs excel at decoding the underlying temporal complexities in sequential data, so the 

essentiality is in understanding the dynamical attributes of fruit quality over time. 

Bringing together different insights from images, spectral signals, and physical 

measurements, the RNN-based models offer a holistic vantage of evaluation. The quality 

prediction fidelity is enhanced with the holistic approach further, which unleashes 

operations from such labor-intensive and subjective evaluations.  
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This is because the neural networks on which algorithms based on CNNs and RNNs use 

large data sets to develop and estimate fruit maturity, quality, and life effects with pinpoint 

accuracy and completely automated approaches. These provide more operational agility 

in reducing waste that could support more sustainable and durable economic practices 

within the food industry. These methodologies would help the agricultural sector to get 

better, more precise, and more scalable quality appraisals, which would consequently lead 

to benefits for the producer and consumer. 

 

2.2 Automated Fruit Quality Assessment through Machine Learning 

Automation [10] of fruit quality assessment has lately gained a lot of interest and seems 

to be a productive, quick, and innovative evaluation method useful to agriculture and the 

food industry. Current manual inspection methods for fruit quality evaluation are highly 

subjective, inconsistent, and labor-intensive. With the rise of machine learning, in 

particular deep learning, automation of quality assessment has also conducted a revolution 

in the ability to develop and train algorithms for fruit quality analysis from images. It is 

shown that a lot of effort has been put towards building a fruit-dedicated machine learning 

model for the task of quality assessment from images. One of the most widespread is the 

application of CNNs, as they are outstanding in learning complex patterns and features 

from large datasets of annotated fruit images. The designed models are required to observe 

small changes in the features of the fruits, such as color, shape, size, and texture, which 

enable the classification and quality assessment of the fruit. Therefore, this type of system 

fused imaging processing with machine learning to improve the efficiency of automated 

systems for fruit quality assessment. 

 Most of the preprocessing techniques include feature extraction, image segmentation, and 

object detection, which play an important role in improving the quality of machine 

learning models' input data. As such, these preprocessing steps ease the operation of 

extracting information from regions of interest and help filter the noise so that the focus 
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of the machine learning model is on the relevant aspects of fruit quality, which in turn 

increases overall accuracy and efficiency. Moreover, the progress made in transfer 

learning, data augmentation, and model optimization have further impacted the 

performances and robustness of machine-learning-based fruit-quality assessment systems. 

For instance, transfer learning enables fine-tuning pre-trained models on smaller, domain-

specific datasets that speed up the training and improve generalization on unseen data. 

Similarly, data augmentation techniques introduce variations into the training data that 

enrich the generalization ability of the model toward different types of fruits and 

environmental conditions.  

For instance, ongoing studies in model optimization are being driven to expedite the speed 

and resource efficiency of machine-learning-based models to make them accessible when 

deployed in real-world settings. How machine learning impacts image-based fruit quality 

assessment. Machine learning models provide a scalable, objective, and efficient solution 

to challenges imposed by conventional methods of manual assessment in the automated 

analysis of images of fruit, through the application of advanced algorithms and techniques. 

For development in model architectures [11] , data preprocessing techniques, and maybe 

deployment strategy, research in this area is expected to advance further and will 

eventually enable wide use of automated fruit quality assessment at work in the agriculture 

and food industry. 

 

2.3 Advancements in Fruit Quality Assessment Techniques 

Fruits are excellent, and their quality assessment has seen breathtaking advancement after 

the integration of various technologies. Conventional methodologies, based on manual 

inspection, are being replaced by automated systems, which are empowered by the 

machine vision and machine learning regimen. The systems show advanced objectivity 

and are efficient as well as scalable to that of their manual counterparts. Significantly, the 

use of sophisticated image processing techniques for the extraction of intrinsic features of 

the fruits and their analysis of color and size attributes.  
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Machine learning models, for example, support vector machines and artificial neural 

networks, have greatly contributed to this data to categorize fruits based on quality into 

different categories with previously unseen accuracy levels. Considering color features as 

the primary indicators of fruit quality, they have gained maximum attention in modern 

ways of fruit quality assessment. Features of color are based on color variation, which 

indicates the ripeness level and physiological changes. The extraction of color features is 

thus based on color space transformations and histogram-based feature extraction. On the 

other hand, the size features being based on geometric parameters like length, width, and 

volume indicate the maturity of the fruits and yield. Researchers are trying to develop the 

classification models in a robust manner that could help in enabling the differentiation of 

quality grades of the fruits, including mangoes, based on their color and size 

characteristics. Therefore, these are attempts in interdisciplinarity: computer vision and 

machine learning with agricultural sciences trying to bring better practices about quality 

assessment of fruits in the food industry. 

 

2.4 Technological Advancements in Fruit Categorization and Ripeness 

Assessment 

It is the classification of fruit and its ripeness that has been driven by this recent confluence 

of advanced methodologies and cutting-edge technologies. Ultimately, the old paradigms 

do give in to the new powerful frameworks; thus, quite a bit of these strategies are 

dependent on machine learning optimization algorithms [12] and ensemble modeling, 

which relies heavily on subjective assessment by human beings or the use of rudimentary 

color-centric metrics. These frontiers, in turn, struggle to overcome the inherent 

limitations of traditional methodologies, characterized by a general lack of precision, and 

provide robust, objective, and data-informed solutions for the evaluation of fruit quality. 

Based on the latest studies on fruit categorization [13], the emphasis on fusing divergent 

data modalities, which include the colorimetric, textural, spectral, and biochemical, to 

form a holistic ripeness assessment framework, has been accentuated. 
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These frontiers galvanize themselves on account of the utility of ensemble machine 

learning methods and, in particular, those that use particle swarm optimization to distill 

the salient inferences from heterogeneous data ensembles, as indicators of higher levels 

of fidelity and reliability within ripeness classification [14] models. Because of collective 

intelligence embedded in the ensemble PSO frameworks, the ensemble helps the 

researcher to optimize the model parameters, bring acceleration in the convergence rate, 

and enhance the quality of solutions presented in such a way that mission-driven, nuanced, 

and efficient categorization of fruits can be predicated on ripeness. This work provides a 

symbiotic amalgamation of interdisciplinary tenets, spreading from the realms of 

computer vision and optimization theory to agricultural sciences [15], to surmount 

multifaceted challenges underpinning fruit quality assessment in the industrial landscape 

of food. 
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CHAPTER 3 

              BACKGROUND TECHNIQUES 

 

 3.1 ENCODER-DECODER ARCHITECTURES  

Encoder-decoder architectures are simple structures that perform feature extraction by 

generation of feature maps in the first part and detection/segmentation in another part. In 

the proposed system, the architecture is made up of an encoder component, which is used 

for processing input sequences of variable length, along with a decoder component—to 

function as a conditional language model. The encoder takes the input sequence and 

encoding operations are executed on the same to capture the underlying features. On the 

other hand, the decoder uses the encoded input and the previous context of the target 

sequence for target sequence prediction. This dynamic interaction of the encoder and the 

decoder is used to enable accurate prediction of the next token in the target sequence 

based on contextual information. YOLOv7 is also an encoder-decoder architecture, 

where its backbone is the encoder and its head is its decoder. 

 

 

Figure 3.1 An Overview of YOLOv7 Architecture 
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3.2 Traditional Methods of Fruit Inspection 

Traditional methods of fruit inspection have been the cornerstone of fruit quality 

assessment and defect detection for decades [16]. These methods primarily involve 

manual inspection, where trained personnel visually examine individual fruits for various 

attributes such as size, color, shape, and surface defects. While these traditional methods 

have proven effective to some extent, they are not without their limitations. One of the 

primary drawbacks of manual inspection is its subjectivity. Different inspectors may 

perceive fruit quality differently based on their judgment and experience. This subjectivity 

can lead to inconsistencies in assessment outcomes, where the same fruit may be judged 

differently by different inspectors. Such discrepancies undermine the reliability and 

consistency of the inspection process [17], impacting the overall quality control efforts. 

 

Furthermore, manual inspection is labor-intensive, requiring a significant amount of 

manpower, especially for large-scale fruit production and processing operations. Trained 

personnel need to carefully examine each fruit, which not only increases operational costs 

but also extends processing times. The need for manual labor also introduces the potential 

for human error, as inspectors may overlook defects or inaccurately assess fruit quality 

under time constraints or fatigue. Moreover, traditional methods of fruit inspection lack 

scalability, particularly in the face of expanding global supply chains and increasing 

consumer demands. With the globalization of trade and the rise of e-commerce, the 

volume of fruits moving through supply chains has grown exponentially. Manual 

inspection methods struggle to keep pace with this growth, leading to bottlenecks in the 

production and distribution process. 

 

In summary, while traditional methods of fruit inspection have been a mainstay in the 

industry for years, they suffer from inherent limitations. These methods are subjective, 

labor-intensive, and lack scalability, posing challenges for ensuring consistent and 

efficient fruit quality assessment and defect detection. As such, there is a pressing need 
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for innovative solutions that can overcome these challenges and modernize fruit 

inspection practices in the agricultural industry. 

 

3.3 Advancements in Deep Learning 

Recently, the field of artificial intelligence, and especially deep learning, has appeared as 

a changing factor that helps in the revolution of the traditional fruit-checking method. On 

the other hand, deep learning models have become one of the central themes arising, which 

holds the greatest researcher interest at present because of Convolutional Neural Networks 

applied to different image-related tasks, from recognition and classification to object 

detection. More importantly, learning in deep schemes is directed at the automatic 

extraction of features [18] and complex patterns from raw data without manual 

engineering. This is particularly exploited in the context of fruit inspection, where the 

visual appearance of the fruit contains rich information that characterizes its quality and 

its potential defects. Very large datasets, wherein the data is raw but labeled, are used to 

train the deep learning models, which will teach the automated process of recognizing and 

classifying them as well as detecting and localizing the different types of defects. 

From an anatomical point of view, the animal visual cortex provides the main principles 

in organizing an important class of effective models in image analysis: Convolutional 

Neural Networks. CNNs are a type of deep learning model that has been very successful 

in various types of image-related tasks. The basic building blocks of CNN are multiple 

layers of convolutional and pooling, followed by fully connected classification/regression. 

From the perspective of the supervised learning [19] process, raw pixel values serve as 

inputs to CNN to derive an automatic learning strategy for the hierarchy presented in the 

feature representation. 

 The ability of a deep model, like CNN, to learn and classify fruits comes from the ability 

to derive intricate patterns and features from a huge dataset. Such huge image data can be 

effectively processed by these deep learning models in real time or quasi-real time so that 
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accurate prediction or classification may be achieved, with appropriately designed and 

powerful computational resources, particularly with GPU and distributed computing 

systems. Moreover, with deep learning, there is the flexibility of models to be adapted for 

various tasks of fruit inspection, among which quality assessment and defect detection 

stand out. For example, a CNN model trained for the grading of different quality grades 

of fruits by assuming that they have some visual appearances like ripeness, size, and color. 

Bruises, blemishes, or rotting on fruit surfaces may also be similarly located by such 

models. 

Lastly, advances and popularization of deep learning, especially Convolutional Neural 

Networks, have brought radical improvements to fruit inspection. The other advantage of 

deep learning is that their models are allowed to learn the complex patterns and features 

directly from large datasets and powerful computations made to achieve accurate 

predictions/chunked information regarding the good execution of fruit quality assessment 

and defect detection. It is very promising for deep learning [20] to innovate and enhance 

fruit inspection practices in modernized agriculture. 

 

3.4 Importance of Deep Learning in Agriculture 

Deep learning applied in agriculture is a turning point and has far-reaching technological 

implications for various aspects of the value chain in crop management, optimization of 

yield, and quality control. Deep learning has the upper ground compared to traditional 

techniques in assessing fruit quality and detecting defects, hence reasserting its superiority 

in the present agricultural practice. First, deep learning automates the process, which has 

been a paradigm shift because manual processes require a lot of labor for very efficient 

operations. When powerful algorithms and computational resources are deployed, deep 

learning models will automatically process a lot of data, which, in turn, reduces reliance 

on human effort and ensures that the process of decision-making is highly accelerated.  
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Reduced labor but high throughput and greatly enhanced operation efficiency can be 

effected through automation of the examination of fruit quality and defect detection 

throughout the agricultural value chain. More so, deep learning enhances accuracy, as it 

leverages machine learning [21] in extracting more complex patterns and features from 

significant datasets. The very fact that such models are trained on enormous, varied 

datasets containing annotated examples enables the capability of deep learning models to 

pick the lightest nuance up and make objective judgments with a high degree of precision. 

The way this learning system can create complex representations from data leads to more 

consistent and reliable assessments of fruit quality and defects, and that leads further to 

assured improvements made in total product quality and customer satisfaction. 

What is more, deep learning allows scalable technology in the sense that the solution, 

apart from being given at a universal level, can also be given in many different 

environments and productions. Deep learning systems are flexible and scalable according 

to the needs of a small family farm or a large commercial plantation, with unmatched 

operational needs and environmental conditions for traditional inspection methods. This 

scalability is what allows the wide adoption of deep learning technologies in the 

agricultural sector, hence empowering the growers and producers to achieve greater 

efficiency and scale economies. 

In short, the application of deep learning in agriculture, especially in the assessment of 

fruit quality and defect detection, has not had much research done. These deep learning 

technologies indicate that upcoming agribusiness practices in automation, accuracy, and 

scaling exist in a new dimension toward efficiency, productivity, and sustainability. With 

agriculture facing and embracing new opportunities and challenges, deep learning is 

arising as an innovation and transformational factor throughout the whole value chain. 
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3.5 Challenges and Opportunities 

Deep learning has the potential to revolutionize quality inspection of fruits and defect 

detection with automation, better precision, and scalability in most agricultural settings. 

Therein lies an interesting set of challenges relevant to engaging opportunities. Although 

deep learning has the capability of revolutionizing quality inspection [22] of fruits and 

defect detection with automation, better precision, and scalability, the practice of doing 

the process has some barriers: how to make such models generalize to unseen data and 

other varieties of fruits, how to make the process not laborious, time-consuming, logistic 

in all ways, and ethical in concern regarding data privacy, consent, and the mitigation of 

bias.  

 

Challenges: 

1. Data Annotation: 

Labor-Intensive Process: Generally, the protocols designed for large-scale data 

annotation necessitate significant human efforts on the part of annotators [23], who may 

need to undertake the tedious task of labeling thousands or millions of fruit images.  

 

Annotation Consistency: This means that the labeling should be all the time 

consistent between annotators to avoid conflicts and biases in the training dataset. In most 

cases, this would entail strict quality control. Annotations The Complexity of various 

quality attributes and defects in many categories, such as maturity levels, size deviations, 

and multiple defect types, makes the process complex. 

 

2. Model Generalization: 

Domain adaptation: Deep learning models, if trained on one dataset, might not 

generalize well on the other data or different varieties of fruit [24] because of the domain 

shift; hence, techniques like domain adaptation or transfer learning might come in handy.  
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Enable strategies for class imbalance: Since it has imbalances in the samples, it 

also means an imbalance of the distribution of quality attributes and defect categories in 

training sets, leading to biases and poor generalization performance.  

 

Robustness to environmental variability: Deep learning models must be 

invariants toward environmental variability, such as those of light, changes in the 

background, clutter, and occlusions, among others, to guarantee proper performance in 

real-world conditions. 

 

3. Real-world Deployment: 

Hardware Constraints: Implementation of deep-learning systems into the resource-

constrained agriculture domain faces some stringent challenges due to less availability of 

mere computational resources, which hence require optimization of model architectures 

and inference algorithms [25]. The deep learning system should consider compatibility 

and interoperability upon integration with an already existing agricultural infrastructure, 

either through farm management software or IoT devices.  

 

Acquisition and Connectivity: Data transfer from these remote locations to center-

based deep learning systems is likely to be lost due to connectivity issues and bandwidth 

limitations, which means that data collection and sending will be impossible. This then 

calls for offline or edge-computing solutions. 

 

4. Ethical Considerations: 

Observation of data privacy and consent when data owners are human: 

This also includes situating current data protection regulations and ethical guidelines for 

the data. Bias mitigation: Ensure training data are free from bias with demographic 

information or sampling information, which can lead to discriminatory outcomes and 

further deny fairness and equity in model prediction.  
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Model transparency and accountability: There is currently a rising call for open 

deep learning models and ways in which accountability [26] and recourse can be built in 

the case of any erroneous or unintended adverse effect on stakeholders. Consequences are 

critical for building trust and acceptance among stakeholders. 

 

Opportunities: 

1. Innovation in Deep Learning Techniques: 

Architectural innovations: New architectures, like attention mechanisms, and graph 

neural networks, especially for fruit quality assessment to detect defects of better quality, 

leading to more effective and efficient models. 

Optimization algorithms: the special design of optimization algorithms regarding 

the requirements of meta-learning or Bayesian optimization for proper fine-tuning deep 

learning models to agricultural data; facilitating an increase in speed of convergence and 

generalization performance. 

 

Training strategies: New training strategies include, but are not limited to, curriculum 

and self-supervised learning to increase the resilience and adaptability of deep learning 

models under varying production scales of agricultural environments. 

 

2. Scalable and Efficient Solutions: 

Edge Computing Solutions: Development of lightweight and energy-efficient deep 

learning models that can be deployed on edge devices, like drones or field sensors, to 

empower real-time processing and analysis of agricultural data at the point of collection.  

 

Cloud-Based Solutions: The power of cloud computing will help scale model 

training and inference, as well as on-request processing of large-scale agricultural 

datasets, fostering collaboration and knowledge sharing between researchers.  
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Distributed Learning Frameworks: More precisely, it uses distributed learning 

frameworks through federated and ensemble learning frameworks that ensure the privacy 

and security of data while collaboratively training deep learning models across several 

agricultural sites. 

 

3. Interdisciplinary Collaboration: 

Domain Expertise Integration: Teaming deep learning models with domain 

knowledge, in collaboration with domain experts in agriculture [27] such as agronomists, 

horticulturists, and food scientists, make the results contextually meaningful and 

explainable. So, models can claim legitimacy in accuracy when applied within the 

agricultural domain.  

 

 

Cross-disciplinary Research: Working with other computer vision, machine 

learning researchers, robotic engineers, and agricultural engineers promotes even greater 

ease of interchange of ideas and methodologies in the research. Cross-fertilization of 

expertise in devising innovative, efficient solutions for fruit quality assessment and defect 

detection will boost innovative development in such a way that it results in very advanced 

and reliable models. 

 

4. Real-world Impact: 

Socio-economic benefits: Proper exploitation of deep learning potentials in 

agriculture would be realized in the augmentation of agricultural productivity, reduction 

of post-harvest losses, and the uplift of livelihood levels of the farmer and other dwellers 

in rural settings. This improvement in quality and defect detection of fruit aids in the 

effective and efficient utilization of resources, and less use of pesticides [28] thus avoiding 

their wastage, among a lot of other broad aims of sustainability and environmental 

stewardship. 
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It does, however, remain an effort of the researchers, practitioners, policymakers, and 

other stakeholders within the system themselves if the challenges and opportunities that 

will come with the adoption of deep learning within the agricultural systems have to be 

ably dealt with. In dealing with these challenges, deep learning [29] does have the potential 

to revolutionize the assessment of fruit quality and defect detection, impacting the 

sustainability, resilience, and equity of agricultural systems. 
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                                    CHAPTER 4 

PROPOSED METHODOLOGY 

 

  4.1 PROPOSED SYSTEM 

The system depicted in Figure 4.1 utilizes a hybrid approach that combines segmentation 

and object detection technologies [30] to accurately identify and demarcate safe driving 

zones. This methodology takes advantage of the enhanced precision provided by these 

techniques, ensuring reliable delineation of navigable areas. 

                  

Figure 4.1  Proposed System 
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So, since the methodology is based on both segmentation and object detection, it intends 

to improve the accuracy and reliability of the detection of the drivable area. First, the road-

scene images are annotated manually. The vehicles are drawn with bounding boxes, while 

the classes that are segmentation-oriented [31] are annotated with polygon-based 

annotations. Before the training process, the road images undergo an annotation process 

in which each image receives a detailed annotation, and its annotations are written to a 

text file (txt). The numeric values written in the text file indicate floating-point numbers 

lying between 0 and 1, which describe the whole properties of the road scene in brief. 

Then, these annotated images are poured over into the training module where the YOLOv7 

model acts robustly as a central entity. So, three segmentation labels have been used: that 

is, the drivable region, the lane lines, and the pothole; while two object detection labels 

have been used—the cars and trucks. In this approach, instance segmentation has been 

proposed, inspired by YOLOv5 and YOLOv6; based on them, some works have been 

done and developed an anchor-free instance segmentation approach. Finally, the testing 

data have been fed into the trained model [32] to get the detection and segmentation results 

from their heads, respectively. 

 

4.2  YOLOV7 ARCHITECTURE 

YOLOv7 is an encoder-decoder configuration, and the design has been kept very complex. 

It has two parts: the first part is the backbone, and the second part is the neck network. 

Backbone This is a feature extraction network capable of generating feature maps of 

different resolutions. The feature map starts with a size that is one-sixteenth the original 

size, denoted by P1, gradually increasing up to a size that is one-thirty-second of the 

original size, denoted by P5, and occupies the resolution scope in the overall spectrum.  

 

This is a very complex process that the network performs and takes about 50 layers to 

perform it. To elaborate further on the feature-learning capabilities of the backbone, a host 

of advanced methodologies and components have been introduced in the backbone, and 
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these are placed strategically. The following list is the set of modules constituting the 

backbone. E-ELAN, which stands for Extended Efficient Layer Aggregation Network, 

improves the ability of the backbone in feature learning by exploiting the cardinality of 

the "Expand, Shuffle, and Merge" and group convolutional methodologies, and this results 

in a much better diversity in aspects learning, and the gradient pathway remains intact 

with no compromise. This is done using the Max-Pooling (MP) layer. Next, the module 

concatenates the input tensor with the pooled outputs, and multi-scale region aspects are 

obtained by such a pooling and concatenation operation. Convolution Batch 

Normalization layer—In deep learning, a convolution and batch normalization layer are 

merged into a single convolutional layer. This is a very popular technique, as the 

advantages have been proved and include ameliorated efficiency and deductions in 

computational cost. Adding the batch normalization step to the convolution in this way 

promotes the model to learn more informative data representations while also providing 

input normalization for each layer in unison. 
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Figure 4.2  YOLOv7 detailed Architecture 

In this model, YOLOv7 is deep-scaled into fusion with multiple other alternative models 

of various scales with a diverse inference speed. This can be achieved by adapting its scale 

factors and stage adaptation to develop separate-sized prepared models. Depth and width 

factors are scaled to afford models to achieve peak performance without changing the 

properties of the representation. In YOLOv7, the RepConv technique, designed with a 

module-level ensemble, is readied for trainable BoF implementation using the RepConv 

technique. It uses a mix of 3x3 and 1x1 convolutions with an identity connection; 

however, in YOLOv7, RepConvN retains the residuals and concatenation but does not use 

the identity connection. Re-parameterization is further done within CBN for better results. 
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Figure 4.3  E-ELAN Module 

SPP (Spatial Pyramid Pooling) module: It is one of the crucial designs within the 

architecture of the network, which forwards pooling with different kernel sizes without 

loss of resolution of the input (stride == 1). The said usage is made for the maximal 

pooling layers. Thereafter, it concatenates the original input tensor with the pooled 

outputs. This yields multiscale region features since it utilizes pooling and concatenation 

operations. In contrast, the CSPNet has been designed to attack the problem of redundant 

gradient growth. It divides the feature map of the base layer into two parts, where one is 

used for the operation of blocks (like a dense block or a reblock) and then a transition 
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layer, and the other part is then merged with the transmitted feature map for the following 

stage's usage. In this way, the high computation complexity, memory consumption, and 

duplication of gradient information can be well reduced, and the inference speed and 

accuracy of the network are effectively enhanced.  

 

The YOLOv7 model introduces a two-headed novel way to boost its capability toward 

segmenting the object and accurately locating it on the image. The front head is designed 

for the final output, while the assistant head is to help in training with shallow and 

superficial weights along with the assistant loss in guiding. Deep supervision is integrated 

when adding a label assigner. In this framework, a label assigner can produce soft and 

coarse labels in the optimizing learning process. It makes the head capture residual 

information. 

              

 

                                           Figure 4.4 Label Assignment in YOLOv7 
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4.3 SEGMENTATION 

YOLOv7 architecture introduces an instance segmentation technique to build more 

innovatively over the YOLOv5 and YOLOv6 designs, shedding the anchor mechanics and 

using the mechanic of the anchor-free type. Basic to the instance segmentation 

performance by YOLOv7 is the design with components akin to what ProtoNet—a 

compact, fully connected neural network—used. Grandly, the ProtoNet integration within 

the object detection head of YOLOv7 model architecture marries the founding philosophy 

of the ProtoNet with the strong technologies of object detection. This architecture of the 

YOLOv7 ensures, in an unparalleled way, that prototype masks are generated. Further, 

these prototype masks are indeed an important element for the proper operation of the 

instance segmentation model. In this way, the method gains resemblance with that of the 

Fully Convolutional Networks, or FCNs, which are already widely leveraged in use for a 

host of problems in the domain of semantic segmentation. Thereby, YOLOv7 remains 

lightweight and accurate enough for segmenting or breaking down the targeted objects in 

images. The use of YOLOv7 is advantageous based on this dual property: prototype masks 

are generated, and from this, accurate segmentation is ensured. This is the innovative 

confluence of the principles of the ProtoNet network with the advanced object detection 

frameworks. 

 

4.4  LOSS FUNCTION 

The global loss function aggregates the loss of a few components to provide an analysis 

of aspects that relate to the network's task. One of the measures of mismatch that occurs 

between the ground truth and the predicted segmentation mask is segmentation loss. 

Similarly, the bounding box loss measures the mismatch that occurs between the observed 

and predicted bounding boxes. Detection loss measures the mismatch that exists between 

the predicted outcome and an actual object on the ground having been detected. In 

contrast, the classification loss measures the mismatch that exists between the actual class 

labels and the predicted class. A well-trained network can optimize itself for multiple 
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aspects of the given task effectively using these different loss components. 

 

 𝒍𝒐𝒔𝒔 = 𝑺𝒆𝒈𝒎𝒆𝒏𝒕. 𝒍𝒐𝒔𝒔 + 𝑩𝒐𝒖𝒏𝒅𝒊𝒏𝒈 𝑩𝒐𝒙 𝒍𝒐𝒔𝒔 + 𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏 𝒍𝒐𝒔𝒔 + 𝑪𝒍𝒂𝒔𝒔. 𝒍𝒐𝒔𝒔    (4.1) 

 

A loss function forms one of the key building blocks in evaluating how good a model is 

concerning input data. It gives a difference between values that are predicted by the model 

and the actual target value given in the data. 

 

Key highlights are: 

The loss function guides how the neural network is to be trained by giving a measure of 

error that needs to be minimized over the training. It gives the error gradient, and after 

finding that, it updates the weights to minimize this error by optimization algorithms, like 

gradient descent. 

 

Common types of loss functions include  

Mean Squared Error (MSE): Generally used on regression, it simply means 

squaring the difference between the predicted value and that of the actual value and then 

getting the average. It is sensitive to outliers because it squares errors. 

 

Cross-Entropy: This is quite popularly used in classification tasks. For binary 

classification, it is called binary cross-entropy, and for multi-class problems, it is referred 

to as categorical cross-entropy. This quantifies the difference between two probability 

distributions-in this case, the cross-entropy finds the number of bits required to encode the 

ideal coding scheme, according to one distribution when the wrong coding scheme is 

being used to code according to another distribution. 
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Mean Absolute Error (MAE): This is useful for regression: on regression, this 

measures the average magnitude of errors in a set of predictions, without considering 

direction-that is, it aggregates errors by finding their average over the absolute values of 

the errors. 

 

Hinge Loss: Generally used in binary classification problems like those encountered in 

working on the Support Vector Machine algorithms, this loss function is suitable for use 

with binary classification where the target values are in the set {−1,1}. Notice that as 

given, this loss function increases the margin when the sample is classified correctly; it 

will only make updates to the margin when the sample is classified incorrectly. 

 

Huber Loss: Huber Loss is a combination of MSE and MAE but is less sensitive to 

outliers than MSE. Currently, it performs like MSE for small errors and MAE for large 

error 
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CHAPTER  5 

    EXPERIMENTAL RESULTS 

 

5.1 DATASET PREPARATION 

It was initiated by a dataset, consisting of 2,690 different fruit images in their various 

types, varieties, sizes, colors, and environments, properly prepared. High emphasis was 

put on correctly labeling each image by the type of fruit; hence, forming a very strong 

base for the supervised learning framework. All the images have been resized to a common 

224 × 224 dimensions, and the pixels were normalized in the range of 0 to 1 for consistent 

and fast use within the neural networks. To further increase categorical classification, the 

numerical value was encoded against fruit labels. All these have been fed through a new 

dataset, using most of the recommended and common augmentation techniques for 

making a total of 6456 images counted in the below table. 

Table 1: Dataset Summary 

Class No.  of Images Training Validation Test 

Healthy 2000 1760 160 80 

Blemish 1500 1320 120 60 

Pedicel 1200 1056 96 48 

Gangrene 1000 880 80 40 

Mould 756 633 62 31 

Total 6456 5649 538 269 

 

The set of augmentation techniques includes shearing, rotations, flips, scaling, 

translations, and brightness specifications. Given pixels are fundamentally shifted along 

the prescribed axis, shearing augmentation allows the images to be subjected to a 

controlled level of basic distortion. Flipping essentially means changing the orientation of 
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an object; therefore, for a flip, the left and right are changed to their opposite from the 

original. Therefore, rotation and flipping will thereby train the model to recognize fruits 

in different orientations and their mirror images in those orientations. Flipping, like 

rotation, has to do with the change in orientation that the object is brought into view. 

Essentially, scaling helps to train the model with data in the training set to recognize that 

sometimes images change size, though it is of the same thing, and sometimes it is a 

different "distance" away from the camera. In translation, it trains the model to recognize 

pictures as they are "moved" across the different parts of the frame. Finally, adjusting 

brightness would train the model to recognize the same fruit but in various lighting. This 

augmentation is necessary to make the dataset rich in diversity and represent the various 

variations over which the model should generalize for real-world cases of unseen data. 

Thereafter, over 70:20:10%, the data set was stratified into training, validation, and 

evaluation sets. This further vouched for the fact that each set maintained proper 

distributions across all fruit classes, hence the integrity and diversity of this dataset at 

every stage of model development. Quite large training sets were there to fit models, yet 

the significant role of the validation set in hyperparameters and prevention from 

overfitting cannot be ignored. The test set provides an unbiased assessment of the final 

model. This dataset was prepared and augmented carefully to provide a strong base for 

the YOLOv7 model to be trained. This file tunes the VGG16 model using linear network 

topology search for lemon quality classification over 2690 images. 

5.2  PERFORMANCE METRICS 

A diverse range of performance metrics has been employed to assess the effectiveness of 

the model. One key metric is Intersection over Union (IoU), which quantifies the extent 

of overlap between segmented areas by calculating the ratio of their common intersection 

to their union. This metric is crucial for evaluating the segmentation aspect of the model.  
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Figure 5.1 Performance metrics plots 
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detection component, several evaluation measures are adopted: precision, recall, F1-score, 

and mean Average Precision (mAP). Precision measures the proportion of correctly 

identified positive detections out of all detections made, indicating the accuracy of the 

positive predictions. Recall, on the other hand, represents the proportion of actual positive 

instances correctly identified by the model, reflecting its ability to capture all relevant 

instances. 

 

 

Figure 5.2 Generator outputs at the lowest observed loss compared to the final epoch 

The F1-score is a combined metric that balances both precision and recall, providing a 

single measure that accounts for both false positives and false negatives. It is particularly 

useful when there is an uneven class distribution. Lastly, mAP (mean Average Precision) 

calculates the average precision across different object categories, offering an overall 

assessment of the detection performance. mAP is especially valuable for multi-class 
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detection problems as it considers the precision-recall curve for each class and averages 

them to provide a comprehensive performance evaluation. These metrics together provide 

a thorough evaluation of both the segmentation and detection capabilities of the model, 

ensuring its robustness and reliability in various real-world applications. 

                                       𝑹𝒆𝒄𝒂𝒍𝒍(𝑹) =
𝑻𝑷

𝑻𝑷+𝑭𝑵
                                        (𝟓. 𝟏)    
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𝑻𝑷+𝑭𝑷
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                                     𝑭𝟏𝒔𝒄𝒐𝒓𝒆 =
𝟐𝑹𝑷

𝑹+𝑷
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5.3  SYSTEM REQUIREMENTS 

For implementing the proposed methodology, the following setup was used: Ubuntu 

Linux 22.04.01 running on an NVIDIA RTX A5000 GPU for training, validating, and 

testing the model. To train the model with supported strong GPUs like those in the series 

of NVIDIA Tesla, Google Colab was used in coordination with Google Drive for data 

management. I implemented it in Google Colab to get better computational resources; 

otherwise, the following are the details for the environment setup: I have an 11th Gen Intel 

Core i5-1135G7 processor with 16 GB of RAM and Windows 11 Home Single Language 

Version 23H2. 
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5.4   RESULTS AND DISCUSSION 

Results and Discussion Data Pre-processing and Model Training This study adapted a 

dataset containing 2,690 lemons images obtained from the dataset by SoftwareMill. The 

healthy or unhealthy status of the fruit was afterward labeled with two binary labels each. 

Picking 2,400 of these images to create our training set, while taking 290 images for 

validation. We implemented a training procedure for all combinations of the number of 

epochs and batch sizes for each configuration. The training approach was modified in such 

a way that it gave the best result for a batch size of 16 run over 50 epochs using our 

Convolutional Neural Network (CNN) and YOLOv7-based model. 
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Figure 5.3  Model Results. (a) Ground Truth, (b) YOLOv7 Classifications. The YOLOv7 

model demonstrates superior performance in detecting and classifying various fruit 

defects such as blemish, pedicel, gangrene, and mould 
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                                      CHAPTER 6 

    CONCLUSION AND FUTURE SCOPE 

We present a deep learning-based approach for the classification of fruit quality and 

defects using CNN and YOLOv7. Our developed model has achieved an accuracy of 

79.6%, which is slightly lower compared to the 83.77% of the base research paper. 

However, our approach significantly improved the computational efficiency of deep 

learning models by reducing the training and evaluation time to about 10.6 hours on 

standard computational systems compared to 18 hours taken by existing models using 

high-performance GPU systems. 

 

Key Contributions and Findings 

Model efficiency: The derived model shows great improvement in the spent 

computational time. This greatly reduced the training time without using high-end GPUs 

based on the optimization of network architecture and the use of YOLOv7. Therefore, this 

would make the approach more practicable in various environments, more so where 

advanced hardware might not be available. 

         Balancing Performance: Our model balances accuracy with computational demand, 

where the accuracy obtained lies just below the benchmark, hence used to give this model 

an edge—that this type of model is feasible for practical deployment into the real world. 

For Real-Time Robust Architecture: We have been able to make the design for 

a more robust real-time application architecture. Feature diversity is enhanced when it is 

combined with matchless learning capacity through feature extraction and detection by 

advanced methods using YOLOv7. The network in the network: This makes the model 

use the E-ELAN which increases feature diversity and the learning capacity. 
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Future Scope 

The following are a few future research and development opportunities in the 

enhancement and scalability of this approach: Data scarcity can be reduced by integrating 

CGANs in the training process to generate synthetic data. This will enhance the training 

examples to be diverse and realistic, resulting in better generalization into real-world 

applications. This model can be optimized for deployment on the edge and mobile 

platforms to make in-field fruit quality assessment possible in real-time.  

This involves the reduction of the computation requirement of the model and making it 

work efficiently over less powerful hardware. This model could be seamlessly integrated 

with automatic sorting and packaging systems to increase operational efficiency in 

processing plants, which will enable them to detect and classify fruit defects in real-time. 

Reducing the number of sorting processes by classifying a more varied range of fruits and 

more than one type of defect is possible by expanding the dataset and retraining the model. 

Multi-sensory approach in the analysis of fruit quality by building features from the visual 

sensory data and combining it with other sensory data like hyperspectral imaging and 

electronic noses Better levels of accuracy could be obtained by continuous exploration in 

hyperparameter tuning, architecture refinement, and techniques like neural architecture 

search. 

 Development of model capability by the implementation of advanced training techniques 

like self-supervised learning, transfer learning, and fine-tuning on task-specific data The 

use of auto-pruning techniques to reduce the model size and to increase the speed of 

inference for running on resource-constrained devices Model debugging and trust has to 

be built by increasing the explainability of models using techniques such as Grad-CAM. 

Large-scale deployment and real-world trials will bring the capability of generalization 

and scaling up proof of the model, while continuous learning mechanisms will ensure the 

model updates with changes in conditions and new data. Conclusively, this research would 

suggest that deep learning-based fruit quality and defect classification could be made 
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efficient and effective. The model they proposed achieved competitive accuracy with 

much-reduced computational requirements, which made it more feasible for real-world 

applications. The model can still be further fine-tuned with the majority of the outlined 

future works to have higher accuracy, efficiency, and field applications in the agricultural 

industry. 
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