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Abstract

Linear algebra is fundamental to machine learning, robotics, and computer vision, providing the

mathematical foundation for data representation, model training, optimization, transformations,

and complex computations. Its extensive applications, ranging from basic data preprocessing to

advanced algorithm development and system design, make it indispensable for developing and

implementing technologies in these fields.Wavelets and Haar matrices plays a crucial role in

compressing as well as processing audio and video signals.Various different methods are also used

to deal with the problem of curve interpolation.We have also discussed about vector norms which

is used to evaluate model’s error or reduce model’s complexity.The versatility of Singular Value

Decomposition(SVD) in data compresssion, particularly in image processing, solve problems like

least square optimization, dimensionality reduction(PCA),pattern recognition and approximation

also cannot be neglected.

Keywords: Hadamard matrices, Haar bases, Euclidean spaces,Singular Value Decomposition,

Spectral theorem.



Contents

1 Introduction 1

1.1 Vector Spaces, Linear Maps and Bases . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Linear Combination and Linear Independence . . . . . . . . . . . . . . . . . 1

1.1.2 Linear Maps, Linear Forms and Dual Space . . . . . . . . . . . . . . . . . . . 2

1.2 Matrices with Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Matrix Representation of Linear Maps . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Linear Maps and Matrix Multiplication with their compositions . . . . . . . . 6

1.2.3 The Change of Basic Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 Effect of Change of the Bases on Matrices . . . . . . . . . . . . . . . . . . . . 7

2 Determinants,Matrices with their Analysis 9

2.1 Haar bases and Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Haar Bases, Wavelets and Hadamard Matrices . . . . . . . . . . . . . 9

2.1.2 Signal Compression through Haar Wavelets . . . . . . . . . . . . . . . . . . . 9

2.1.3 Characterisitcs of Haar Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Construction of Haar Matrices using Kronecker Product . . . . . . . . . . . . 11

2.1.5 Analysis of Multiresolution Signal using Haar Bases . . . . . . . . . . . . . . 11

2.1.6 Digital Images using Haar Transform . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.7 Hadamard Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Inverse Matrices and Determinants . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Determinant of Linear Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 The Cayley-Hamilton Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Permanents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 LU, Cholesky, Echelon Form, Gaussian Elimination . . . . . . . . . . . . . . 14

2.3.1 Gauss Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 LU-Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 SPD Matrices and Cholesky Decomposition . . . . . . . . . . . . . . . . . . . 16

V



CONTENTS VI

3 Vector norms and Euclidean Spaces 17

3.1 Vector and Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 The Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 The Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 The Subordinate Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.4 Inequalities Involving Subordinate Norms . . . . . . . . . . . . . . . . . . . . 22

3.2 The Dual Space with their Duality . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Linear Forms and The Dual Space E∗ . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Duality and Pairing Between E and E∗ . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Transpose of Matrix and Linear Map . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 4 Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Orthogonality and Duality in Euclidean Spaces . . . . . . . . . . . . . . . . . 29

3.3.2 Orthogonal Transformations or Linear Isometries . . . . . . . . . . . . . . . 30

3.3.3 Rodrigues Formula- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.4 Some Applications of Euclidean Geometry . . . . . . . . . . . . . . . . . . . . 31

3.3.5 QR-Decomposition for Invertible Matrices . . . . . . . . . . . . . . . . . . . . 32

3.4 Arbitrary Matrices QR-Decomposition . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Orthogonal Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Using Householder Matrices for QR-Decomposition . . . . . . . . . . . . . . . 35

4 Hermitian Spaces and Spectral theorems 36

4.1 Hermitian Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Hermitian Forms and Spaces, Pre-Hilbert Spaces, Sesquilinear Forms . . . . 36

4.1.2 Duality, Orthogonality and Adjoint of Linear Map . . . . . . . . . . . . . . . 38

4.1.3 The Unitary Matrices and Group . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.4 Hermitian Reflections with QR-Decomposition . . . . . . . . . . . . . . . . . 40

4.2 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Eigenvalues and Eigenvectors of Linear Map . . . . . . . . . . . . . . . . . . . 41

4.2.2 Reduction to an Upper Triangular Form . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 Eigenvalues Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Euclidean and Hermitian Spaces: Spectral Theorems . . . . . . . . . . . . . 44

4.3.1 Eigenvalues and Eigenvectors of Normal Linear Maps . . . . . . . . . . . . . 44

4.3.2 Spectral Theorem: Normal Linear Maps . . . . . . . . . . . . . . . . . . . . . 46

4.4 Computing Eigenvectors and Eigenvalues . . . . . . . . . . . . . . . . . . . . 47

4.4.1 The Basic of QR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.2 A Hessenberg Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.3 Arnoldi Iteration for Krylov Subspaces . . . . . . . . . . . . . . . . . . . . . 48

4.4.4 Lanczos Iteration for the GMRES and the Hermitian Case; . . . . . . . . . . 49



CONTENTS VII

5 Spectral Graphs ,SVD and its applications 51

5.1 Graphs and Graph Laplacians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Directed and Undirected Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.2 Undirected graph- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.3 Weighted Graphs and Laplacian Matrices in Graph Theory . . . . . . . . . . 54

5.1.4 Unnormalized graph- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.5 Normalized Laplacian Matrices of Graphs- . . . . . . . . . . . . . . . . . . . . 55

5.2 Spectral Graph Drawing- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Graph Drawing and Energy Minimization . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Algorithm used in Graphical Drawings- . . . . . . . . . . . . . . . . . . . . . 58

5.3 Singular value decomposition and Polar form- . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Propeties of f∗of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.2 Singular Values of a Linear Map: . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.3 Singular Value Decomposition for Square Matrices . . . . . . . . . . . . . . . 59

5.3.4 Single valued decomposition: . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.5 Polar form for square matrices- . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.6 Weyl’s Inequalities: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.7 Singular Value Decomposition for Rectangular Matrices- . . . . . . . . . . . . 61

5.4 Applications of Singular Value Decomposition (SVD) . . . . . . . . . . . . 61

5.4.1 Application of SVD and Pseudo-Inverse- . . . . . . . . . . . . . . . . . . . . . 62

5.4.2 Moore-Penrose Pseudo-inverse via Singular Value Decomposition (SVD) . . . 62

5.4.3 Properties of the Pseudo-inverse- . . . . . . . . . . . . . . . . . . . . . . . . . 63

Conclusion 65



Chapter 1

Introduction

1.1 Vector Spaces, Linear Maps and Bases

1.1.1 Linear Combination and Linear Independence

For the [1] linear optimization problems, we frequently encounter the systems of linear equations.

For instance, let the problem of solving the system of linear equations with 3 variables: x1, x2, x3

ϵ R where

2x1 − x2 + 2x3 = 1

x1 + x2 + 2x3 = 3

x1 − 2x2 − x3 = 2

Easiest method to solve this kind of problem is to introduce the vectors: a, b, c and u given by

a =

2

1

1

 , b =

−1

1

−2

 , c =

 2

2

−1

 , u =

1

3

2


and to represent our linear system of given equations as a linear combination of a, b, c ; i.e.

x1a+ x2b+ x3c = u

where [1] a, b, c are the vectors and xi′s are scalars.

Hence, the vectors are said to be linearly independent as there is no triple (x1, x2, x3) ̸= 0 i.e.

x1a+ x2b+ x3c = 03

1
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Here, 03 is a zero vector : 03 =

0

0

0


Thus, every vector z ϵ R3×1 could be represented uniquely in the form of a linear combination:

z = x1a+ x2b+ x3c

then this linear combination [1] can be written in the matrix form also as2 −1 2

1 1 2

1 −2 −1

 ×

x1x2
x3

 =

1

3

2


has a unique solution with the values:

x1 = 1.47, x2 = −0.87, x3 = 1.2

Determinant of a, b, c :

∣∣∣∣∣∣∣
2 −1 2

1 1 2

1 −2 −1

∣∣∣∣∣∣∣ = −3 ̸= 0

This means if the determinant of a, b, c is non-zero then these vectors are linearly independent.

1.1.2 Linear Maps, Linear Forms and Dual Space

Definition: A linear map between any 2 vector spaces [2] E and F be a function f : E→F

fulfilling the following properties:

f(x+y) = f(x) + f(y) , for all x,y ϵ E;

f(λx) = λ f(x) for all λ ϵ R, x ϵ E.

When we putting x and y be 0 in the 1st condition and getting f(0) = 0.The basic property of the

linear maps is that they can transform linear combinations into linear combinations. Let any

finite family (ui)iϵI of the vectors in E and (λi)iϵI of scalars in R, we get:

f(
∑

iϵI λiui) =
∑

iϵI λif(ui)

Definition: Given any [1] linear map f : E→F, we can explain its image (or range) Im f=f(E) as :

Im f = {yϵF |(∃xϵE)(y = f(x))},
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and its Kernel (or nullspace) Ker f = f−1(0) as:

Ker f = {xϵE|f(x) = 0}.

Note: Given any linear map f : E→F, the rank (or rk(f)) of f is the dimension of the image Im f

of f.

Definition: Given any vector space E with the vector space Hom(E,K) of a linear maps from E

to K (field) is said to be its dual space (or dual) of E.

The space Hom(E,K) is also represent as E∗ and the linear maps in E∗ are known as the linear

forms (or covectors).

[2] [1] The dual space E∗∗ of the space E∗ is said to be the bidual of E.

Theorem:(Existence of dual bases) Let E be any vector space of the dimension n which holds the

mentioned condition:

For each basis (u1, ..., un) of vector space E and the family of coordinate forms (u∗1, ...., u
∗
n) is a

basis of E∗ is known as the dual basis of (u1, ..., un) [1] .

1.2 Matrices with Linear Maps

1.2.1 Matrix Representation of Linear Maps

Let any 2 [2] vector spaces E and F with the basis (uj)jϵJ of E, each linear map f : E → F is

distinctive set on the family of (f(uj))jϵJ of images under f of the vectors in the basis (uj)jϵJ .

Therefore, similarly [2] a basis (vi)iϵI of F, then each vector f(uj) will be represented uniquely as -

f(uj) =
∑

iϵI aijvi,

where jϵJ , for family of scalars (aij)iϵI .

Hence, w.r.t. two bases (uj)jϵJ and (vi)iϵI of E and F respectively, the linear map f will be

entirely set on by [1] I × J - matrix i.e.

M(f) = (aij)iϵI ,j ϵJ .

Let I and J be finites then say |I| = c and |J | = d . Then, f which is a linear map is aimed by the

matrix M(f) whose entries in the j-th column are the constituents of the vector f(uj) over the

basis (v1, v2, ...., vc) i.e.
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M(f) =


a11 a12 . . . a1d

a21 a22 . . . a2d
...

...
. . .

...

ac1 ac2 . . . acd



whose enteries [1] on row i and column j is aij(1 ≤ i ≤ c, 1 ≤ j ≤ d)

Then, we prove that E and F having finite dimensions. As we can simply represent linear maps by

the [2] matrices and the composition of linear maps corresponds to the matrix multiplication.

[2] Let E and F be 2 vector spaces with finite bases (u1, u2, ...., ud) and (v1, v2, ..., vc) respectively.

From previous, we proven that each vector x ϵ E and y ϵ F can be written uniquely as-

x = x1u1 + x2u2 + ......+ xdud

y = y1v1 + y2v2 + ......+ ycvc

Let f : E → F be a linear mapping between vector spaces E and F. Thus, for every

x = x1u1 + .....+ xdud in E (using linearity) we get -

f(x) = x1f(u1) + .......+ xdf(ud)

Letting f(uj) = a1jv1 + .......+ acjvc

i.e. f(uj) =
∑ c

i= 1 aijvi

for all j, 1 ≤ j ≤ d.

We also expressed this by [2] the coefficients a1j , a2j , ...., acj of the f(uj) over the basis

(v1, v2, ...., vc) as j-th column of the matrix M(f) as:


v1

v2
...

vc





f(u1) f(u2) . . . f(ud)

a11 a12 . . . a1d

a21 a22 . . . a2d
...

...
. . .

...

ac1 ac2 . . . acd


Now, we will putting the RHS of every [2] f(uj) into the expression f(x) and getting-
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f(x) = x1(
∑ c

i= 1 ai1vi) + .......+ xd(
∑ c

i= 1 aidvi)

= (
∑ d

j= 1 a1jxj)v1 + ......+ (
∑ d

j= 1 acjxj)vc

Now, letting: f(x) = y = y1v1 + .....+ ycvc which gives:-

yi =
∑ d

j= 1 aijxj

for all i, 1 ≤ i ≤ c

Taking a case where c=2 and d=3:

f(u1) = a11v1 + a21v2

f(u2) = a12v1 + a22v2

f(u3) = a13v1 + a23v2

which is expressed in the matrix.

v1
v2


f(u1) f(u2) f(u3)

a11 a12 a13

a21 a22 a23


and for any x = x1u1 + x2u2 + x3u2, we have-

f(x) = f(x1u1 + x2u2 + x3u3) = x1f(u1) + x2f(u2) + x3f(u3)

= x1(a11v1 + a21v2) + x2(a12v1 + a22v2) + x3(a13v1 + a23v2)

= (a11x1 + a12x2 + a13x3)v1 + (a21x1 + a22x2 + a23x3)v2

Since, y = y1v1 + y2v2

We have:

y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3

This truely agree with the matrix equation:(
y1

y2

)
=

(
a11 a12 a13

a21 a22 a23

)
×

x1x2
x3


Now we will easily formalize the presentation of the linear maps by matrices.

Definition: Given [1] E and F be any 2 vector spaces with their bases (u1, ......, ud) and

(v1, ....., vc) respectively where every vector x ϵ E convey in the basis (u1, ......, ud) as the linear

combination: x = x1u1 + .....+ xdud is presented by the column matrix-
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M(x) =


x1

x2
...

xd


[1] and likewise for the every vector y ϵ F which is indicated in the basis (v1, ....., vc) .

1.2.2 Linear Maps and Matrix Multiplication with their compositions

Definition: Let [3] U = (u1, ....., ud) and V = (v1, ...., vc) for the bases of E and F respectively

and denoted by Mu,v(f), the matrix of f w.r.t the bases of U and V respectively. Therefore, use

xU for the co-ordinates of M(x) = (u1, ....., ud) of x ϵ E w.r.t basis U and then write the yV for

the corresponding co-ordinates M(y) = (v1, ...., vc) of y ϵ F w.r.t basis V. Hence,

y = f(x)

is showed in a matrix form by:

yV =MU ,V (f)xU

Propositions: 1) Let any 3 matrices be A [2] ϵ Mm,n(K) , B ϵ Mn,p(K) and C ϵ Mp,q(K), we

get:

(AB)C = A(BC);

i.e. a matrix multiplication (which is associative).

Proof: For each [1] m × n matrix A = (aij) which explains the function fA : Kn → Km given as:

fA(x) = Ax,

for each x ϵ Kn. This is instantly proved [2] that fA is a linear and a matrix M(fA) represents

the fA over the cannonical bases in Kn and Km is equal to A.

Hence, M(fAofB) = [3] M(fA)M(fB) = AB,

here we get -

M((fAofB)ofC) = M(fAofB)M(fC)= (AB)C

and M(fAo(fBofC)) = M(fA)M(fBofC) = [1] A(BC)

hence, the composition of functions is associative, we have

(fAofB)ofC = fAo(fBofC)
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which implies that :

(AB)C = A(BC)

2) Let any 2 [2] matrices A, B ϵ Mm,n(K) and C, D ϵ Mn,p(K), for all λϵK, we get:

(A+B)C=AC +BC

A(C+D)=AC+AD

(λA)C = λ(AC)

A(λC) = λ(AC)

then, the matrix multiplication . : Mm,n(K)×Mn,p(K) →Mm,p(K) is bilinear. [2]

3) Any 3 vector spaces A, B, C with their [5] respective bases (u1, ...., up), (v1, ...., vn) and

(w1, ....., wm), a mapping M: Hom(A,B) →Mn,p that will connects the matrix M(g) to a linear

map g : A→ B serves the following conditions for every x ϵ A, g, h : A→ B and f : B → C:

M(g(x)) = M(g)M(x)

M(g+h)=M(g)+M(h)

M(λg) = λM(g)

M(f o g)= M(f)M(g)

where M(x) is the column vector connected with the vector x and M(g(x)) is the column vector

which is connected with the g(x).

1.2.3 The Change of Basic Matrix

Proposition: Let A be any vector space with a basis (u1, ....., ud). For each family (v1, ...., vd),

let P = (aij) be a matrix explained as vj =
∑ d

i= 1 aijui. The matrix P is an invertible iff

(v1, ...., vd) is also a basis of E.

Definition: Let any vector space E with dimension d, for some 2 [1] bases (u1, ....., ud) and

(v1, ...., vd) of E, assume P = (aij) be an invertible matrix explained as:

vj =
∑ d

i= 1 aijui

NOTE: [2] Change of the basis matrix from U to V is indicated by PV ,U such that

PU ,V = P−1
V ,U

1.2.4 Effect of Change of the Bases on Matrices

Proposition: Let A and B be 2 vector spaces where let U = (u1, u2, ....., un) and

U ′ = (u′1, u
′
2, ...., u

′
n) be the 2 bases of A and then, let V = (v1, v2, ...., vm) and

V ′ = (v′1, v
′
2, ....., v

′
m) be the 2 bases of B.
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Assume P = PU ′
,U

[1] and Q = PV ′
,V

be a change of basis of matrix from U to U’ and V to V’

respectively.

Now, for some linear map f : A→ B, let M(f) =MU ,V (f) and M
′(f) =MU ′

,V
′(f) be the matrix

related to f with respect to the bases U, V and U’, V’ respectively. We get:

M ′(f) = Q−1M(f)P

or simply-

MU ′
,V

′(f) = P−1
V ′

,V
MU ,V (f) PU ′

,U

= PV ,
′
V MU ,V (f) PU ′

,U

Definition: Two n × n matrices E and F are known as similar if and only if there is some

invertible matrix P so that-

F = P−1EP



Chapter 2

Determinants,Matrices with their

Analysis

2.1 Haar bases and Determinants

2.1.1 Haar Bases, Wavelets and Hadamard Matrices

Wavelets have a significant role in compressing as well as processing audio and video signals.In

this process long signals are compressed into small ones without losing enough information due to

which when we listen or see it, we find no difference. The functional matrices in computer science

are Haar matrices & Hadamard matrices.

2.1.2 Signal Compression through Haar Wavelets

Lets discuss it with the help of an example. first consider haar wavelet from R4.Consider four

vectors which are pairwise orthogonal.Thus we can recall that they are independent as well.

U1 =


1

1

1

1

 , U2 =


1

1

−1

−1

 , U3 =


1

−1

0

0

 , U4 =


0

0

1

−1


Now U = u1, u2, u3, u4 is the Haar basis and also let us assume W = w1, w2, w3, w4 is basis of R4

which is canonical. Matrix change ,i.e, from W to v is determined by-

u =


1 1 1 0

1 1 −1 0

1 −1 0 1

1 −1 0 −1



9
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Also the inverse that can be calculated easily -

u−1 =


1/4 0 0 0

0 1 0 0

0 0 1/2 0

0 0 0 1/2



1 1 1 1

1 1 −1 −1

1 −1 0 0

0 0 1 −1


Take an arbitrary vector b = (6, 4, 9, 3) over the basis W that becomes d = (d1, d2, d3, d4) over the

Haar basis V 
d1

d2

d3

d4

 =


1/4 0 0 0

0 1/4 0 0

0 0 1/2 0

0 0 0 1/2



1 1 1 1

1 1 −1 −1

1 −1 0 0

0 0 1 −1



6

4

9

3

 =


10

4

2

1


We were given a signal b, first of all we tranformed it into its coefficients d = (d1, d2, d3, d4) over

Haar basis by computing d = V −1b.

d1 =
(b1 + b2 + b3+4)

4

This is the calculated mean value of the signal given.d1 is the image background part or of

sound.d2 gives rough details of b ,d3 corresponds to [2] details in the 1st part of b and d4 yields

the details in 2nd half of b.

An excellent compression is that in which we set the values of some coefficients equal to

0,denoting the compressed signal by b̂ and then also the crucial information is not lost due to

which the reconstructed signal equally effective as the original one was. Thus the reconstructed

signal b̂ is given by b̂ = V d̂ Such compression is used in modern day video conferences.

2.1.3 Characterisitcs of Haar Wavelets

Haar wavelet is used for its scaling property.Such method can be used for any signal of length 2n.

Now consider n = 3.The Haar basis is given by the matrix-

U =



1 1 1 0 1 0 0 0

1 1 1 0 −1 0 0 0

1 1 −1 0 0 1 0 0

1 1 −1 0 0 −1 0 0

1 −1 0 1 0 0 1 0

1 −1 0 1 0 0 −1 0

1 −1 0 −1 0 0 0 1

1 −1 0 −1 0 0 0 −1


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The columnn of this matrix are orthogonal and also

U−1 = diag(1/8, 1/8, 1/4, 1/4, 1/2, 1/2, 1/2, 1/2, V T )

Here we can see a pattern developing .It seems like Haar basis vector generated all the other basis

vectors excluding v1 which is there to determine the average.In general,

u2 = (1, · · · , 1,−1, · · · ,−1)

Similarly other vectors can be deduced by shifting and scaling of Haar basis.

2.1.4 Construction of Haar Matrices using Kronecker Product

This method for construction of Haar matrix Vn of dimension 2n will clear why we are

emphasising so much on pairwise orthogonal matrices.If we divide Vn into 2 matrix,i.e, 2k × 2k−1,

so 2nd matrix having last 2n−1 column of Vk has quite ordinary structure, which is made up of

vector,

(1,−1, 0, · · · , 0)

2k−1 − 1 shifted copies of it. The matrix manipulation can be done by product operation as well

which is known as Kronecker product.

2.1.5 Analysis of Multiresolution Signal using Haar Bases

One more marvellous feature of Haar bases is multiresolution signal analysis.Let us consider we

are given a signal s, if s = (s1, s2, · · · s2n) is Haar coefficient vector.Here coefficient with lesser

value represents rough information about s, coefficient with more value gives minute details about

the signal,e.g,if s is an audio signal corresponding to Diljit Dosanjh concert, then s1 corresponds

to background noise, s2 corresponds to bass, s3 corresponds to first cello, s4 corresponds to

second cello, and the rest coefficients corresponds to the other instrument sounds created during

the concert.The multiresolution is used where we set some coefficients equal to zero,i.e, lesser

coefficients represent the signal.

2.1.6 Digital Images using Haar Transform

One more characteristics of Haar transform is we can apply it to matrices with no extra effort,

due to which compression of digital image is possible.Before that let us deal with the issue of

normalization first. We have noticed that the Haar basis have orthogonal column vectors, but

these column does not have length 1 as final result.

2.1.7 Hadamard Matrices

One of the known family of matrices which is like Haar matrices are Hadamard , the only

difference is they have entries as +1 and −1 A real m×m matrix is Hadamard if vjk = +1,−1 for
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each j, k such that 1 ≤ j, k ≤ m and if

V TV = mIm

. [2]So the Hadamard columns are pairwise orthogonal because H is square matrix. According to

the above equation H is invertible. Some examples of Hadamard matrix are as follows:-

V2 =

(
1 1

1 −1

)
, V4 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


A basic question that comes to our mind is that to determine the positive integer value of m using

which a matrix of Hadamard type having dimension m exists, which still remains an open

question.The speculation of Hadamard is that for each +ve value having the form m = 4p, we

have a Hadamard matrix with dimension m. Sylvester presented a collection of [1] Hadamard

matrices and proved the existence of Hadamard matrices having dimension 2n for all n ≤ 1 by

utilizing the theorem mentioned below-

Proposition- Let V be a Hadamard matrix of n dimension, then we have a block matrix(
V V

V −V

)
of dimension 2m, which is a Hadamard matrix as well.

If we begin with V2, we get a infinite dimension collection of Hadamard matrices which are

symmetric in nature, commonly known as Sylvester Hadamard matrices that can be written as

H2m . The examples of such matrix are V2,V4 etc which are shown above. There are various

applications of Hadamard matrices like error correcting codes, numerical and linear algebra and

signal processing as well.

2.2 Determinants

Determinant can be defined as alternating multi linear maps having value 1 on unit

matrix.Irrespective of the approach we follow , we need certain preliminaries about permutation

on a finite set It can be defined as

G :Mn(K) → K, i.e. mapping of n columns in domain matrix is alternating in which G(In) = 1

for identity matrix In.

2.2.1 Inverse Matrices and Determinants

Let us consider a matrix Q ∈Mn(K) where K is a commutative ring then Q = (cjk) is a matrix

defined as cjk = (−1)(j+k)det(Rkj) where cjk is cofactor of akj . Each matrix Qkj is called a

minor of matrix Q.It is nothing but the transpose of cofactors of elements of Q. Here,we have a
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result deduced by using the above fact which is stated below: Let the commutative ring be K

then for some matrix R we have

RR̃ = R̃R = det(R)In

⇒ RRT = RTR = Det(R)In

from this, R can be concluded as invertible if Det (R) is invertible if so R−1 = (Det(R))−1R̃

2.2.2 Determinant of Linear Mapping

Let us consider P , a vector space with finite dimension m , whose basis can be represented as

(u1, ..., um) then for each map f : P → P , [2] if M(f) is a matrix w.r.t. given basis (u1, ..., um),

then we have det(f) = det(M(f)) [4]. Additionally if we consider (x1, ..., xn) as [2] some other

basis of P and if Q is any change of basis, then the matrix of f w.r.t. basis (x1, ..., xn) is

Q−1M(f)Q

we know that det(BC) = det(B).det(C).

Using this rule, we have-

det(Q−1M(f)Q) = det(Q−1).det(M(f)).det(Q)

⇒ det(Q−1).det(Q).det(M(f))

⇒ det(M(f))

So here we can conclude that det(f) is independent to basis of P.

A very crucial result deduced from this is stated below:

For [1] any vector space Q of finite dimension n, a linear map f : Q→ Q is invertible

if det(f) is non zero.

2.2.3 The Cayley-Hamilton Theorem

We are all well known with the concept of characteristic polynomial and here we consider any

commutative ring K .

[1] This theorem states that for each m×m matrix B ∈Mm(K), the characteristic polynomial

QB(X) of B is the determinant such that-

QB(X) = Det(XI −B)

.
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2.2.4 Permanents

Permanent is a multilinear symmetric form.They don’t have any natural geometric interpretation

like determinants have.Infact, the computation of permanents is very typical as compared to

determinants.They have many conjuctional interpretations and one of them is in terms of perfect

matching of bipartite graphs.

Now we need to understand bipartite graphs first in order to understand permanents.

A bipartite graph is a undirected graph H = (U,E) [2] whose set of nodes can be partitioned into

two non empty disjoint sets U1 and U2 such that every edge e ∈ E has one end point in U1 and

the other in U2

2.3 LU, Cholesky, Echelon Form, Gaussian Elimination

Curve interpolation is another important problem faced in robotics as well as computer graphics.A

way to tackle this problem is through usage of cubic splines to find the solution.They [1] consist of

cubic Bezier curves,they are used as it gives more flexibility.A Bezier curve is specified by 4

control points (c0, c1, c2, c3) and is yielded in paramteric form using the given equation

B(x) = (1− x)3c0 + 3(1− x)2xc1 + 3(1− x)x2c2 + x3c3

Here we have B(0) = c0, B(1) = c3 and for x ∈ [0, 1],the point B(x) ∈ convex hull of c0, c1, c2, c3

and the polynomials involved are known as Bernstein polynomials of degree 3.The location of

control points rigorously affects curve shape .The cases of self intersection of curve can also be

seen. In interpolation problems we find curves traverse to some points(given), which satisfies

certain conditions additionally.

A bezier spline curve F which consists of, say m curve fragment known as bezier curve namely

C1, C2, ...Cmwhere(m ⩾ 2).Also we need some smoothness between any two junction points,i.e,

C0 − continuity and C2 − continuity are necessary which actually [1] ensures that the tangents as

well as curvatures agree. In order to solve cubic spline we come across system of linear equations

which needs to be solved . So now we will discuss the most efficient methods to solve such linear

systems.

2.3.1 Gauss Elimination

[1] Let C be n× n invertible matrix and D ∈ Rn be n dimensional.We are aiming to solve the

linear system Cx = D.As we know C is invertible thus the system yields a unique solution

x = C−1D.The following facts can be stated from this which are as follows:

(1) We can avoid to compute C−1 explicitly.because it would lead to solving n linear systems.
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(2) We don’t need to solve linear systems by computing determinants as this specific methodology

needs a certain number of addition and respective multiplications also that are in proportion to

(n+ 1)!(resp (n+ 2)!.

The primary idea of gauss elimination method is-if C is [2] upper triangular which means cij = 0

for 1 ≤ j < i ≤ n (resp lower triangular which means that bij = 0 for 1 ≤ i < j ≤ n, then

computing x is trivial.

b11 b12 · · · b1n−2 b1n−1 b1n

0 b22 · · · b2n−2 b2n−1 b2n

0 0
. . .

...
...

...

. . .
...

...
...

0 0 · · · 0 bm−1m−1 bm−1m

0 0 · · · 0 0 bnn


Let the above matrix be C. Det(C) = b11b22 · · · bnn which means bii ̸= 0 [2] for i = 1, 2, · · ·n and

now we can solve the system Cx = D using bottom up approach by method of backward

substitution.Also for lower triangular matrix we solve it by forward substitution from top down

approach.

Theorem: Let b [2] be a n× n matrix(invertible or non-invertible), then there is a invertible

matrix M such that U =MA is a upper triangular.The pivots are all nonzero iff A is invertible [1]

.

2.3.2 LU-Factorization

Suppose C is an invertible matrix then if we can write C in the form C = LU , where U is

upper-triangular L is lower-triangular s.t. Lii = 1 for i = 1, · · ·n. We have a n× n matrix

C = (cij) for any k s.t. 1 ≤ k ≤ n,let D(1:k,1:k) be submatrix of C whose entries are (cij), where

1 ≤ i, j ≤ k.e.g. if C is a 4× 4 matrix

C =


c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

 then D(1 : 2, 1 : 2) =

(
d11 d12

d21 d22

)

Theorem-Let C be a m×m matrix then C has LU-factorization C = LU if and only if

D(1 : k, 1 : k) [2] is invertible for k = 1, · · ·n. Additionally, when C has LU-factorization, we have

det(D(1 : k, 1 : k)) = π1π2π3 · · ·πk for k = 1, 2 · · · , n

where πk is obtained pivot after k-1 no. of elimination steps. So we can get kth pivot by
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πk =

{
c11 = det(D(1 : 1, 1 : 1)) for k = 1

det(D(1:k,1:k))
det(D(1:k−1,1:k−1)) for k = 2, · · ·n

Corollary- Suppose C as [2] an invertible n× n matrix. [1] If every matrix C(1:k,1:k) is

invertible for k = 1, · · ·n then Gauss elimination method do not require any pivoting to get the

LU- factorization C = LU .

2.3.3 SPD Matrices and Cholesky Decomposition

Positive-Definite A m×m real symmetric matrix B is positive-definite iff xTBx > 0 for each

xϵRn with x ̸= 0 Also B is said to be symmetric +ve definite iff its each eigen value is strictly

positive. The following facts can be deduced using this information-

(1) The matrix B will be invertible.

(2) For each m×m real as well as invertible matrix X , we have the matrix XTBX as real,

symmetric and +ve [1] definite iff B is real symmetric positive definite.

(3) We have βii > 0 [1] for i = 1 · · ·n (Notice that for x = ei, the ith canonical basis vector of Rn

we get, ei
TBei = βii > 0

(4) The set m×m real symmetric and +ve definite matrix will be convex, which means if B and c

are two m×m symmetric and +ve definite matrix then for any arbitrary λ ∈ R where 0 ≤ λ ≤ 1

the matrix (1− λB) + λC is also +ve definite and symmetric. For some x ∈ Rn where x is

non-zero, we get xTBx > 0 and xTCx > 0, so

xT ((1− λ)B + λC)x = (1− λ)xTBx+ λxTCx > 0 as 0 ≤ λ ≤ 1 =⇒ (1-λ) ≥ 0 and also λ ≥ 0. It

should be noted that λ and (1− λ) cannot be 0 .

(5) The set of m×m +ve definite and real symmetric matrix is a conical shape which means that

if is positive and real B is symmetric as well as positive definite then B is also symmetric and

positive definite.

Cholesky Factorization- Consider a real, symmetric as well as positive definite matrix B then -

∃ a lower triangular matrix A such that B = AAT .Also A must be chosen in such a way that its

diagonal entries are strictly positive so that A is unique. We can verify the unique characteristic

of Cholesky decomposition by LU-decomposition.

Theorem- Let X be a real symmetric matrix the following conditions implies the same thing-

(a) X is +ve definite.

(b) Each principal minor of X is positive,i.e, Det(X(1 : k, 1 : k)) = det(Q)2 > 0 =⇒ X is positive

definite.

(c) X has LU-factorization and each pivots is non-negative.

(d) X has LDLT − factorization and each pivots is non-negative.



Chapter 3

Vector norms and Euclidean

Spaces

3.1 Vector and Matrix Norms

It outlines the definition and key properties of a norm on a vector space E over either the real

numbers (R) or complex numbers (C). A norm is a function that assigns a non-negative real

number to each vector and satisfies three conditions: positivity, homogeneity and the triangle

inequality.

It establishes a relation between these 3 properties, particularly focusing on the triangle

inequality. It concludes that in a normed vector space E, the absolute difference between the

norms of two vectors x and y is always less than or equal to the norm of their difference:

|∥x∥ − ∥y∥| ≤ ∥x− y∥ for all x, y ∈ E. This inequality denotes the closeness of vectors in terms of

their norms within the vector space.

In the context where E represents either the vector space of complex numbers (Cn) or real

numbers (Rn), it can be stated that for any real number p ≥ 1, the p-norm qualifies as a valid

norm [2].

3.1.1 The Normed Vector Spaces

[1]In order to define the closeness of 2 vectors or 2 matrices and also to define the order of

convergence of sequence of vectors or matrices, we can use norm.

Definition: Let F be a vector space over the field K, where K is either the field C of complex

numbers or the field R of real numbers. A norm on F is a function ∥ · ∥ : F → R+ that assigns a

non-negative real number ∥u∥ to any vector u ∈ F . This function must satisfy [1]the following

conditions for all x, y ∈ F and λ ∈ K [1]:

17
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1. Positivity:

∥x∥ ≥ 0 and ∥x∥ = 0 ⇐⇒ x = 0

[2]

2. Homogeneity (or Scaling):

∥λx∥ = |λ|∥x∥

3. Triangle Inequality:

∥x+ y∥ ≤ ∥x∥+ ∥y∥

A vector space F equipped with a norm || || is called a normed vector space.

[1]Examples: 1) Let F= R and ||b|| = |b|, is the absolute value of b.

2) Let F= C and ||k|| = |k|, is the modulus of k.

3) [1]Let F = Rn (orCn), [1]then there are 3 standard norms for every (x1, ......, xn) ϵ F. we have

a norm which is defined as :

||x||1 = |x1|+......+|xn|

then we have the Euclidean norm, defined such that:

||x||2 = (|x1|2+......+|xn|2) 1/2

and the lp-norm (for p≥ 1)by :

||x||p = ( |x1|p+......+|xn|p) 1/p

at last, we define the sup-norm as:

||x||∞ = max {|xi||1 ≤ i ≤ n}

Corollary: (Holder’s Inequalities) For any of real numbers p, q ≥ 1 and

1
p + 1

q = 1,

with q = +∞ if p = 1 and p = +∞ if q=1, we have the inequalities

∑ n
i= 1 |uivi| ≤ (

∑ n
i= 1 |ui|p)1/p (

∑ n
i= 1 |vi|q)1/q [2]

and

| < u, v > | ≤ ||u||p ||v||q

Now, for p = 2 , we have a standard Cauchy-Schwarz inequality.

For lp-norm , the triangle inequality will be known as Minkowski’s inequality i.e.
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(
∑ n

i= 1 (|ui + vi|)p)1/p ≤ (
∑ n

i= 1 |ui|p)1/p +(
∑ n

i= 1 |vi|q)1/q

Remark: For 0 < p < 1 [2], the function x 7→ ∥x∥p does not qualify as a norm because it does

not satisfy the triangle inequality. To illustrate this, [1] consider the vectors x = (2, 0) and

y = (0, 2). [1]Their sum is x+ y = (2, 2), and we have: [1]

∥x∥p = 2, ∥y∥p = 2.

Thus, we get: [1]

∥x+ y∥p = 2
p+1
p .

Therefore, [1]

∥x+ y∥p = 2
p+1
p and ∥x∥p + ∥y∥p = 4.

For 0 < p < 1, it holds that 2p < p+ 1, which implies p+1
p > 2, leading to 2

p+1
p > 4. This

demonstrates that the inequality ∥x+ y∥p ≤ ∥x∥p + ∥y∥p does not hold.

Definition: In a [2] real or complex vector space F , two norms ∥∥u and ∥∥v are considered

equivalent if there exist positive constants c1 and c2 such that:

∥a∥u ≤ c1∥a∥v and ∥a∥v ≤ c2∥a∥u, for all a ∈ F.

3.1.2 The Matrix Norms

Definition: A norm ∥∥ defined on the set of square matrices n× n within Mn(K), where K can

be either R or C, is termed a matrix norm. [1] It possesses an additional property known as

submultiplicativity, [1] denoted as ∥AB∥ ≤ ∥A∥∥B∥ for every matrices A,B ∈Mn(K) [1]. A

matrix norm that satisfies this property is referred to as a submultiplicative matrix norm.

For any matrix A = (aij) in Mm,n(C) [2]:

1. The conjugate of A, denoted as A, is defined element-wise as Aij = aij for 1 ≤ i ≤ m and

1 ≤ j ≤ n.

2. The transpose of A, denoted as AT , is obtained by interchanging the rows and columns,

resulting in a n×m matrix with elements (AT )ij = aji for 1 ≤ i ≤ m and 1 ≤ j ≤ n [1].

3. The adjoint of A, denoted as A∗, is the transpose of the conjugate, i.e., A∗ = (AT ) = (A)
T
.

For real matrices, A∗ equals the transpose, A∗ = AT .

4. A is termed Hermitian if its adjoint equals itself, i.e., A∗ = A.

5. A is considered symmetric if its transpose equals itself, i.e., AT = A.

6. A is termed normal if it commutes with its adjoint, i.e., AAT = ATA.

7. A unitary matrix U ∈Mn(C) satisfies UU∗ = U∗U = I.
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8. An orthogonal matrix Q ∈Mn(R) satisfies QQT = QTQ = I.

9. [2]The trace tr(A) of a matrix A is the sum of its diagonal elements, given by

tr(A) = a11 + . . .+ ann [2].

To demonstrate linearity of the trace of a matrix A, we need to verify the following two properties:

1. tr(λA) = λtr(A)

2. tr(A+B) = tr(A) + tr(B)

Definition: Any square matrix A ϵ Mn(C), a complex number λ ϵ C is said to be an eigenvalue

of A if there is some non-zero vector u ϵ Cn,

Au = λu

[2] If λ is an eigenvalue of a matrix A, then the non-zero vectors u ϵ Cn such that Au = λu are

called the eigenvectors of A associated w.r.t. λ, along with the zero-vector these eigenvectors form

a subspace of Cn denoted by Eλ(A) and called the eigenspace associated with λ [1] .

Definition: Any square n × n matrix A ϵ Mn(C), the polynomial

det(λI - A) = λn - tr(A)λn−1 + .......+ (−1)ndet(A)

[1] is called the characteristic polynomial of A. Here, n (not necessarily distinct) roots λ1, ....., λn

of the characteristic polynomial are all eigenvalues of A and constitute the spectrum of matrix A.

We let : ρ(A) = max1≤i≤n |λi|
be the largest modulus of eigenvalues of A which is called the spectral radius of A.

Note: tr(A) = λ1 + λ2 + ......+ λn and det(A)= λ1λ2......λn

Definition: The Frobenius norm (denoted by || ||F ) is defined that for every sqaure n × n matrix

AϵMn(C),

||A||F = (
∑ n

i,j= 1 |aij |2)1/2 =
√
tr(AA∗) =

√
tr(A∗A)

The Frobenius norm is a matrix norm on Mn(C) which satisfies the following properties:

1- || ||F is matrix norm i.e. ||AB||F ≤ ||A||F ||B||F , for all A,B ϵ Mn(C)

2- || ||F is unitarily invariant which means that for all the unitary matrices U,V: we have -

||A||F = ||UA||F = ||AV ||F = ||UAV ||F

3-
√
ρ(A∗A) ≤ ||A||F ≤

√
n
√
ρ(A∗A), for all A ϵ Mn(C)
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3.1.3 The Subordinate Norms

Definition: If [2] any norm (|| ||) on Cn, we will define the function || ||op on Mn(C) by:

||A||op = supxϵCn,x ̸=0
||Ax||
||x||

= supxϵCn,||x||=1 ||Ax||

The function A→ ||A||op is said to be a subordinate matrix norm or operator norm induced by

the || ||.

We can easily check that the fuction A→ ||A||op is indeed a norm as by definition it will satisfy

the property:

||Ax|| ≤ ||A||op ||x|| , for all x ϵ Cn.

If the [2] norm || ||op on Mn(C) satisfying this above property then it is said to be subordinate to

the vector norm || || on Cn. [2] As a result of above inequality, we have:

||ABx|| ≤ ||A||op ||Bx|| ≤ ||A||op ||B||op ||x||,

for all x ϵ Cn which implies that [2]

||AB||op ≤ ||A||op ||B||op for all A,B ϵ Mn(C).

[2]showing that A→ ||A||op is a matrix norm (which is submultiplicative).

[2]The operator norm is also defined by :

||A||op= inf { λ ϵ R | ||Ax|| ≤ λ ||x||, for all x ϵ Cn }.

Hence, the function x→ ||Ax|| is continous as
||Ay|| - ||Ax|| ≤ ||Ay −Ax|| ≤ CA||x− y||

and the unit sphere Sn−1 = {x ϵ Cn | ||x|| = 1 } is compact, there is some x ϵCn

and ||Ax|| = ||A||op

Equivalently, there is some of x ϵ Cn such that x ̸= 0 and

||Ax|| = ||A||op ||x|| [1].

The definition of an operator norm also implies that: ||I||op = 1

Definition: [1] If K = R or C, for any norms (|| ||) on Mm,n(K) and for any 2 norms || ||a and ||
||b on Kn and Km respectively, we also say that the norm || || is subordinate to the norms || ||a
and || ||b if
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||Ax||b ≤ ||A|| ||x||a , for all A ϵ Mm,n(K) and x ϵ kn.

Definition: For A = (aij) ϵ Mn(C), [1]the norm ||A||2 is said to be a spectral norm.

Here, using the property : [1]√
ρ(A∗A) ≤ ||A||F ≤

√
n
√
ρ(A∗A), for all A ϵ Mn(C)

we can say that ||A||2 ≤ ||A||F ≤
√
n ||A||2 which proves that the Frobenius norm will be an

upper bound on the spectral norm and much easier to compute than the spectral norm [1].

3.1.4 Inequalities Involving Subordinate Norms

Proposition: [2]Let || || be any matrix norm and let A ϵ Mn(C) such that ||A||<1

1) If the norm (|| ||) is a subordinate matrix norm, then the matrix I + A is invertible and also

defined as:

||(I +A)−1|| ≤ 1
1−||A||

Proof: We see that (I+A)v = 0 which implies that Av = -v so,

||v|| = ||Av||

using, ||Av|| ≤ ||A|| ||v||

for every subordinate norm. Hence, ||A|| < 1, if v ̸= 0, thus

||Av|| < ||v||

which contradicts ||v|| = ||Av||.

Therefore, [3] we have v = 0 which proves that the I + A is injective and bijective i.e. invertible

here.

Then, [3] we have: (I +A)−1 + A(I +A)−1 = (I +A)(I +A)−1 = I

so we get , [3] (I +A)−1 = I - A(I +A)−1

which shows : [3]

||(I +A)−1|| ≤ 1 + ||A|| ||(I +A)−1||

which finally proves that : [3]

||(I +A)−1|| ≤ 1
1−||A||
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2) If the matrix of the form I + A will be singular, then the ||A|| ≥ 1 for every matrix norm (not

necessarily a subordinate norm).

Proof: If the matrix I+A will be singular, then -1 will be an eigenvalue of A and using preposition

( [2] Any matrix norm || || on a Mn(C) and for any square n X n matrix Aϵ Mn(C) such that:

ρ(A) ≤ ||A||)

which implies that, 1 ≤ ρ(A) ≤ ||A||

This [5] result is used to deal with the convergence of the sequences of powers of the matrices,

Proposition: For any matrix A ϵ Mn(C) and for every ϵ > 0, there will be some subordinate

matrix norm such that

||A|| ≤ ρ(A) + ϵ

3.2 The Dual Space with their Duality

3.2.1 Linear Forms and The Dual Space E∗

Definition: Let E be a vector space, the Hom(E,K) of linear maps from E to the field is called

the dual space(or dual) of E. The space (E,K) denoted by E∗ are called the linear forms, or

covectors. [2]

The dual space E∗∗ of the space E∗ is called the bidual of E [1].

Definition: Given any vector space E and any basis (ui)iϵI for E, for every i ϵ I, there is a

unique linear form u∗i such that

u∗i (uj) = 1 if i=j and 0 if i ̸=j

for every j ϵ I. The linear form u∗i is called the coordinate form of index i w.r.t. the basis (ui)iϵI .

Proposition: [2] Let (u1, u2, ...., un) and (v1, v2, ...., vn) be any two bases of E and let P = (aij)

be the change of basis matrix from (u1, u2, ...., un) to (v1, v2, ...., vn) so that

vj =

n∑
i=1

aijui

Then, the change of the basis from dual basis (u∗1, ....., u
∗
n) to the dual basis (v∗1 , ....., v

∗
n) is (P

−1)T

and for any linear form ψ, the new coordinates ψ
′

j of ψ are expressed in terms of the old

coordinates ψi of ψ using the matrix PT i.e.

(ψ
′

1,.....,ψ
′

n) = (ψ1,.....,ψn)P
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3.2.2 Duality and Pairing Between E and E∗

Here a linear form u∗ ϵ E∗ and a vector v ϵ E, the result u∗(v) of applying u∗ to v is also denoted

by < u∗, v >. This defines a binary operation < −,− >:E∗×E → K satisfying the following

properties:

< u∗1 + u∗2, v > = < u∗1, v > + < u∗2, v >

< u∗, v1 + v2 > = < u∗, v1 > + < u∗, v2 >

< λu∗, v > = λ < u∗, v >

< u∗, λv > = λ < u∗, v >

These above identities means that < −,− > [2] is a bilinear map, as it is linear in each argument.

It is also often called the cannonical pairing between E∗ and E.

With the help of above identities, given any fixed vector v ϵ E, the map evalv:E
∗→K (i.e.

evaluation at v) defined such that:

evalv(u
∗) = < u∗.v > = u∗(v) for every u∗ ϵ E∗

is a linear map from E∗ to K,i.e. evalv is a linear form in E∗∗.

Again using the above identities, the map evalE : E → E∗∗ defined such that

evalE(v) = evalv for every v ϵ E,

is a linear map. We see that

evalE(v)(u
∗) = evalv(u

∗) = < u∗, v > = u∗(v), for all v ϵ E and all u∗ ϵ E∗

Definition: Given any [2] vector space E and its dual E∗, we also say that a vector v ϵ E and a

linear form u∗ ϵ E∗ are orthogonal iff < u∗, v > = 0.

Theorem: [3]( Duality Theorem) Let E be a vector space of dimension n and the following

properties hold:

1) For every basis (u1, ...., un) of E, the family of coordinates forms (u∗1, ...., u
∗
n) is a basis of E∗

(i.e. the dual basis of (u1, ...., un)).

2) [3] For every subspace V of E, we have V 00 = V [3].

3) [1]For every pair of subspaces V and W of E such that E = V
⊕

W, with V of dimension m,

for every basis (u1, ...., un) of E such that (u1, ...., um) is a basis of V and (um+1, ...., un) is a basis

of W, [3]the family (u∗1, ...., u
∗
m) is a basis of the orthogonal W 0 of W in E∗, so that [3]

dim(W) + dim(W 0) = dim(E).
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Further, [3]we have W 00 = W.

4) [3]For every subspace U of E∗, we have

[3]

dim(U) + dim(U0) = dim(E).

where U0 is the orthogonal of U in E and U00 = U. [3]

3.2.3 Transpose of Matrix and Linear Map

Definition: Given a linear map f : E → F, the transpose fT : F ∗ → E∗ of f is the linear map

defined such that

fT (v∗) = v∗of, for every v∗ ϵ F ∗.

Equivalently, the linear map fT : F ∗ → E∗ is defined such that

< v∗, f(u) >=< fT (v∗), u >

for all u ∈ E and all v∗ ∈ F ∗ [2].

It is very easy to verify that the following properties hold:

(f + g)T = fT + gT

(g o f)T = fT o gT

idTE = idE

The property (g o f)T = fT o gT implies the following proposition:

[2] If f : E → F is any linear map, then the following properties hold:

1) If f is injective, then fT is surjective.

2) If f is surjective, then fT is injective [1].

Theorem: Given a linear map f: E → F, the following properties hold [1].

a) The dual (Imf)∗ of Im f is isomorphic to Im fT = fT (F ∗),i.e.

(Imf)∗ ∼= ImfT [1].

b) If F is finite dimensional, then rk(f) = rk(fT ) [1].
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Proposition: [2] If f : E → F is any linear map, then the following identities hold:

ImfT = (Ker(f))0

Ker(fT ) = (Imf)0

Imf = (Ker(fT ))0

Ker(f) = (ImfT )0

3.2.4 4 Fundamental Subspaces

Given any linear map f : E → F (where E and F are finite dimensional) [2].

Here, we using the preposition where any linear map f : E → F , for any subspace V of E, we have

f(V )0 = (fT )−1 (V 0) = { w∗ ϵ F ∗ | f t(w∗) ϵ V 0 }

As a result,

KerfT = (Imf)0 and Kerf = (ImfT )0.

[1]This preposition revealed that the four spaces are

Im f, ImfT , [1] Ker f, KerfT

play a special role. They are often called the fundamental subspaces associated with f [1].

3.3 Euclidean Spaces

The concept of Euclidean geometry stands out for its capacity to introduce crucial geometric

measurements like angles, distances, and orthogonality into the realm of vector spaces. While the

framework of vector spaces in linear algebra forms a fundamental basis, it lacks these essential

geometric aspects. Euclidean geometry enriches this framework by incorporating a metric

structure, enabling the measurement of angles, distances, and relationships between vectors.

Euclidean geometry encompasses several fundamental concepts:

1. Inner Products and Euclidean Spaces: Inner products extend the concept of the dot

product to general vector spaces, allowing the definition of angles, lengths, and

orthogonality.

2. Rigid Motions and Transformations: Rigid motions are transformations that maintain

the distances between points. These transformations, such as rotations and reflections, hold

significant importance in Euclidean geometry.
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3. Orthogonality: Vectors in Euclidean spaces are deemed orthogonal if their inner product

equals zero. This concept extends to subspaces, bases, and the creation of orthonormal

bases, where vectors are both mutually orthogonal and normalized.

4. Orthonormal Bases: Bases in Euclidean spaces where vectors are not only linearly

independent but also normalized (having unit length) and orthogonal to one another.

5. Gram-Schmidt Procedure: A method used to generate an orthonormal basis from a

given set of vectors, ensuring independence and orthogonality among them.

6. QR-Decomposition: A matrix factorization into an orthogonal matrix and an upper

triangular matrix, often derived using the Gram-Schmidt procedure [3].

7. [3] Linear Isometries (Orthogonal Transformations): Transformations that preserve

inner products and distances, thus maintaining the Euclidean structure of the space.

The applications of Euclidean geometry span various disciplines such as physics, computer

graphics, signal processing, and more. Its ability to model and comprehend geometric

relationships in both physical and abstract spaces makes it invaluable in understanding real-world

phenomena.

A comprehensive study of Euclidean geometry often involves exploring properties invariant under

rigid motions, analyzing the behavior of linear transformations on Euclidean spaces, and applying

these concepts in practical contexts.

Initially, we establish a Euclidean form within [2] a vector space. [1]Formally, a Euclidean form on

a vector space E is established by a symmetric bilinear form possessing specific additional

conditions [1]. Remember that any [2] bilinear form ϕ : E ×E → R is considered definite, for each

u ∈ E, u ̸= 0 suggest that ϕ(u, u) ̸= 0, and positive , for each u ∈ E, ϕ(u, u) ≥ 0.

Definition- A Euclidean space refers to a real vector space E endowed with any symmetric

bilinear form ϕ : E × E → R i.e. positive definite [1]. More directly, the bilinear form

ϕ : E × E → R agrees the following conditions:

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v),

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2),

ϕ(λu, v) = λϕ(u, v),

ϕ(u, λv) = λϕ(u, v),

ϕ(u, v) = ϕ(v, u),

u ̸= 0 implies that ϕ(u, u) > 0.

[2] The real number ϕ(u, v) is also referred to as the inner product (or scalar product) of u and

v [2]. We explain the associated quadratic form with ϕ as the function Φ : E → R+, so that
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Φ(u) = ϕ(u, u), for each u ∈ E [2]. Hence, [2] ϕ is bilinear, we deduce ϕ(0, 0) = 0. Additionally,

due to its positive definiteness, we establish the more robust certainity that ϕ(u, u) = 0 if and

only if u = 0, which translates to Φ(u) = 0 if and only if u = 0.

Let any inner product ϕ : E × E → R on a vector space E, alternative notations for ϕ(u, v)

include u · v, ⟨u, v⟩, or (u|v), while Φ(u) can be denoted by ∥u∥.

It illustrates the standard instance of a Euclidean space as Rn equipped with the inner product ·.
This inner product is defined by:

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + x2y2 + . . .+ xnyn.

In this context, En represents the Euclidean space where vectors are n-dimensional tuples in Rn.

Example: Consider [2]the set C[a, b] representing continuous functions f : [a, b] → R. It can be

simply verified that C[a, b] constitutes an infinite-dimensional vector space. For any 2 functions f

and g within C[a, b], explain the inner product ⟨f, g⟩ as follows:

⟨f, g⟩ =
∫ b

a

f(t)g(t) dt.

Demonstrating that ⟨−,−⟩ forms an inner product on C[a, b] is a simple exercise. By considering

a = −π and b = π (or a = 0 and b = 2π, which yields similar outcomes), one can put [2]

⟨sin(px), sin(qx)⟩, ⟨sin(px), cos(qx)⟩, and ⟨cos(px), cos(qx)⟩ for each natural numbers p and q

greater than or equal to 1. These calculations form the basis for Fourier analysis.

Example: Let any vector space E =Mn(R) of n× n real matrices. [1] By considering a matrix

A ∈Mn(R) as a ”tall” column vector attained by arranging its columns consecutively, the inner

product of 2 matrices A and B ∈Mn(R) can be defined as: [1]

⟨A,B⟩ =
n∑

i,j=1

aijbij ,

or equivalently: [1]

⟨A,B⟩ = tr(ATB) = tr(BTA).

Hence, [2] this may be interpreted as the Euclidean product within Rn2

, it establishes an inner

product on Mn(R). The relative norm ∥A∥F is determined by [1]:

∥A∥F =
√
tr(ATA).

Proposition: [1] The bilinear form ϕ(u, v) is related to the quadratic form Φ(u) by the

expression:

ϕ(u, v) =
1

2
[Φ(u+ v)− Φ(u)− Φ(v)]

This relationship defines ϕ as the polar form of Φ.
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Proposition: [2] In a Euclidean space E equipped with inner product ϕ and corresponding

quadratic form Φ, the following inequalities hold for any u, v ∈ E:

• The Cauchy–Schwarz inequality: |ϕ(u, v)|2 ≤ Φ(u)Φ(v), where equality holds iff u and v are

linearly dependent.

• The Minkowski inequality:
√

Φ(u+ v) ≤
√

Φ(u) +
√
Φ(v), with equality if and only if u and

v are linearly dependent [1]. Moreover, when u ̸= 0 and v ̸= 0, then u = λv for any λ > 0 [1].

3.3.1 Orthogonality and Duality in Euclidean Spaces

In spaces with inner products, orthogonality defines non-zero vectors that are mutually

orthogonal, forming linearly independent sets termed orthogonal families. Finite-dimensional

spaces always allow the discovery of orthogonal bases, crucial for efficient coordinate

computations in Fourier series. For finite-dimensional E, [1] its inner product makes a natural

isomorphism between E and its dual E∗, enabling an intrinsic definition of linear map adjoints.

Orthonormalizing bases, particularly in finite dimensions, is feasible via two methods: duality and

the constructive Gram–Schmidt orthonormalization procedure.

DEFINITION OF ORTHOGONALITY- In the realm of Euclidean spaces, the concept of

vector orthogonality—where two vectors u and v are perpendicular if their dot product u · v
equals zero—is fundamental. When we consider a collection (ui)i∈I of vectors within such a

space, we describe this group as orthogonal if every pair of distinct vectors ui and uj , where i and

j belong to the set I, yields a dot product of zero, implying perpendicularity between them.

Now, if this collection of vectors (ui)i∈I is termed orthonormal, it encompasses not just

orthogonality but also the property that each vector has a norm (magnitude) of 1, denoted by

∥ui∥ = ui · ui = 1 for every vector ui in the set.

Additionally, for any subset F of vectors within the Euclidean space E, the orthogonal

complement F⊥ denotes a set that contains all vectors v ∈ E, satisfying the condition that they

are perpendicular to every vector in subset F , i.e., u · v = 0 for all u ∈ F .

It’s crucial to understand that while the condition u · v = 0 for every v ∈ E implies orthogonality,

it doesn’t mandatory that the vector u must be the zero vector. Instead, it signifies that u is

perpendicular to all vectors within the space E.

Proposition: For given Euclidean space E, and any family (ui)i∈I of non-null vectors in E, if

(ui)i∈I is orthogonal, then it is said to be linearly independent.

Proposition- For a given Euclidean space E, any arbitrary u, v ∈ E are orthogonal vectors iff

∥u+ v∥2 = ∥u∥2 + ∥v∥2.

Definition- Given [2] some vector u ∈ E, consider ϕu : E → R be the map defined so that

ϕu(v) = u · v, for every v ∈ E.
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Hence, the inner product is bilinear and the map ϕu is a linear form in E∗. [1]Therefore, we have

a map [·] : E → E∗, explained so that [u] = ϕu.

3.3.2 Orthogonal Transformations or Linear Isometries

Here, we explore linear transformations linking [1]Euclidean spaces that uphold the Euclidean

norm. These transformations, often referred to as rigid motions, bear significant importance in

the realm of geometry.

Definition- For any 2 non-trivial [1] Euclidean spaces E and F with equivalent finite dimensions

n, a function f : E → F is termed an orthogonal transformation or a linear isometry if it satisfies

two conditions: it is linear and conserves the Euclidean norm, i.e., ||f(u)|| = ||u|| [2] for every
u ∈ E.

Remarks:

1. [1]A linear isometry is commonly known as a linear mapping f for which

||f(v)− f(u)|| = ||v − u|| holds true for every u, v ∈ E [1]. Hence, the function f is linear,

both definitions are equivalent [1]. The latter definition particularly emphasizes the

preservation of vector distances [1].

2. Occasionally, a linear map fulfilling the criteria in above definition is termed a metric map,

and a linear isometry is specifically defined as a bijective metric map.

3. [1]The dimension assumption is necessary to prove that property (3) implies property (1)

when f is not assumed to be linear. However, the proof demonstrates that property (1)

implies injectivity of f [1].

4. The implication that property (3) leads to property (1) holds under the assumption of

surjectivity for f , even in scenarios where the vector space E has infinite dimensions.

Proposition -Let any 2 non-trivial [2] Euclidean spaces E and F of the same finite dimension n,

for each function f : E → F , if

∥f(v)− f(u)∥ = ∥v − u∥ for all u, v ∈ E,

then f be an affine map, and its related linear map g is an isometry.

3.3.3 Rodrigues Formula-

A skew-symmetric matrix A refers to a square matrix (n× n) where its transpose equals the

negative of the matrix itself, denoted as AT = −A. For a 3× 3 skew-symmetric matrix

represented as:
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A =

 0 −c b

c 0 −a
−b a 0


The exponential of a skew-symmetric matrix A can be expressed using the power series expansion:

eA = I +A+
A2

2!
+
A3

3!
+
A4

4!
+ . . .

For a 3× 3 matrix, A2 is a symmetric matrix, and A3 will be skew-symmetric again. The

computation of the exponential of a skew-symmetric matrix involves a series expansion, leading to

an interesting property:

1. For any skew-symmetric matrix A, the result eA is an orthogonal matrix [1].

2. Eigenvalues of skew-symmetric matrix are purely imaginary or zero.

There might be additional variables, like θ or matrix B, introduced possibly to simplify the

expression for eA. However, further context or equations are necessary to provide a specific

formula without ambiguity or incomplete data.

3.3.4 Some Applications of Euclidean Geometry

Within matrix analysis, symmetric matrices hold significance due to their possession of real

eigenvalues and their capacity to be diagonalized by orthogonal matrices. This property allows

the representation of a symmetric matrix A while A = PDPT , where D is a diagonal matrix and

P is orthogonal.

Though not universally applicable, several decompositions involving orthogonal matrices are

notably practical. The QR-decomposition, for instance, expresses any real matrix A while

A = QR, where Q is orthogonal and R is upper triangular. Techniques like Gram-Schmidt

orthonormalization or Householder matrices facilitate obtaining this decomposition.

Another essential factorization is the polar decomposition, representing a real matrix A while [2]

A = QS, where Q and S is orthogonal and symmetric positive semidefinite respectively. This

separation of stretching from rotation holds significance in fields like continuum mechanics and

robotics.

[1]The singular value decomposition (SVD) states that a real matrix A can be decomposed as

A = V DUT , where U and V are orthogonal matrices, and D be a diagonal matrix with

non-negative entries [1]. The SVD leads to the concept of pseudo-inverse, widely used in

engineering applications, particularly in solving least squares problems.
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Additionally, [1] the method of least squares, introduced by Gauss and Legendre in the 1800s, is a

significant application of Euclidean geometry. It addresses inconsistent linear systems by

minimizing the Euclidean norm ∥Ax− b∥2, identifying a unique solution x+ that minimizes

∥Ax− b∥2. This solution x+ satisfies the square system ATAx = AT b.

These applications illustrate the versatile and fundamental role of Euclidean geometry across

mathematical domains and practical problem-solving scenarios.

3.3.5 QR-Decomposition for Invertible Matrices

The process of Gram-Schmidt is a technique used to orthogonalize a set of vectors within an inner

product space. It begins with a set of linearly independent vectors and transforms them into an

orthogonal (or orthonormal) set of vectors that still span the same subspace.

Given a matrix A, applying the Gram-Schmidt process allows us to achieve a QR-decomposition.

This decomposition expresses A as the product of an orthogonal matrix Q and R be an upper

triangular matrix.

Here’s how the Gram-Schmidt process leads to the QR-decomposition:

1. Orthogonalization: Initially, the process takes a set of linearly independent columns from

matrix A, denoted as {a1, a2, . . . , an}. The Gram-Schmidt process works on these columns

to produce an orthogonal set of vectors {q1, q2, . . . , qn}.

2. Normalization: After obtaining the orthogonal vectors, the next step involves normalizing

them to create an orthonormal set {q1, q2, . . . , qn}. This normalization step entails dividing

each orthogonal vector by its magnitude, resulting in unit vectors.

3. Matrix Construction: These orthonormal vectors serve as the columns of matrix Q.

Simultaneously, the coefficients derived during the orthogonalization process form an upper

triangular matrix R. Essentially, R encapsulates how the original vectors were combined to

obtain the orthonormal vectors.

Therefore, by implementing the Gram-Schmidt process, one can derive an orthogonal matrix Q

and R be an upper triangular matrix in a method that satisfies A = QR [1].

Proposition:The proposition states that for any invertible real n× n matrix A, there exists Q be

an orthogonal matrix and R be an upper triangular matrix with the positive diagonal entries such

that A = QR [2].

This proposition aligns with the concept of QR-decomposition derived from the Gram-Schmidt

process. It implies that for an invertible matrix, it’s always possible to express it as the product of

an orthogonal matrix and an upper triangular matrix with positive diagonal entries.
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This decomposition method holds significance in various numerical algorithms, aiding in solving

linear systems, least squares problems, eigenvalue computations, and other applications across

mathematics and engineering domains.

Proposition (Hadamard): Let some real n× n matrix A = (aij), we get [2]

|det(A)| ≤
n∏

i=1

 n∑
j=1

|aij |2
1/2

and

|det(A)| ≤
n∏

j=1

(
n∑

i=1

|aij |2
)1/2

.

Moreover, equality holds if and only if either A has a zero row in the left inequality or a zero

column in the right inequality, or A is orthogonal [2].

3.4 Arbitrary Matrices QR-Decomposition

3.4.1 Orthogonal Reflections

Householder matrices are crucial tools used in various numerical techniques, notably in solving

linear equations, least squares problems, eigenvalue computations, and transforming symmetric

matrices into tridiagonal [2] forms. They represent reflections across hyperplanes and play a

pivotal role in these computational methods.

To derive the QR-decomposition of arbitrary matrices using Householder matrices [1], a simple

geometric lemma can be proven. This lemma offers a direct method to express matrices in terms

of these reflection matrices.

One essential application of Householder matrices lies in isometry, particularly in representing

orthogonal symmetries. Before delving into these applications, it’s beneficial to revisit the concept

of projections.

Consider a vector space E, comprising subspaces F and G, which together [2] form a direct sum

E = F ⊕G. Each vector u in E can be uniquely decomposed as u = v + w, where v belongs to F

and w belongs to G. This decomposition allows the definition of two projection mappings,

denoted as pF : E → F and pG : E → G. In earlier sections, these mappings were denoted as π1

and π2; however, for the current context, using pF and pG proves more convenient.

It can be demonstrated straightforwardly that pF and pG are linear transformations satisfying

certain properties: p2F = pF , p
2
G = pG, pF ◦ pG = pG ◦ pF = 0, and pF + pG = id (identity

transformation) [1]. These properties are fundamental in understanding and utilizing projections

within the direct sum of subspaces F and G.
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Definition- Let E be any vector space and some 2 subspaces F and G that will form a direct

sum E = F ⊕G, the symmetry (or the reflection) w.r.t. [1] F and parallel to G is the linear map

s : E → E explained as

s(u) = 2pF (u)− u,

for each u ∈ E.

As pF + pG = id, also gives

s(u) = pF (u)− pG(u)

and

s(u) = u− 2pG(u),

s2 = id, s is the identity on F , and s = −id on G.

Now, we let that E is an Euclidean space of finite dimension.

In Euclidean space E of dimension n, if 2 subspaces F and G form a direct sum E = F ⊕G

and [2] are orthogonal (F = G⊥), the orthogonal symmetry or reflection w.r.t. [1]F and parallel to

G is denoted as s : E → E. This symmetry, s, is defined as: [1]

s(u) = 2pF (u)− u = pF (u)− pG(u),

for all u ∈ E [1]. Therefore, F represents a hyperplane, s is termed a hyperplane symmetry or

reflection about F [1]. If G is a plane (dim(F ) = n− 2), s is referred to as a flip about F .

Applying the bilinearity property of the inner product to any pair of vectors u, v ∈ E, it’s

straightforward to establish the identity:

∥u+ v∥2 − ∥u− v∥2 = 4(u · v). (∗)

In the specific case where u · v = 0, it results in ∥u+ v∥ = ∥u− v∥. Expressing u as

u = pF (u) + pG(u) and s(u) as s(u) = pF (u)− pG(u), given the orthogonality of F and G, we

deduce that pF (u) · pG(v) = 0. Utilizing identity (∗), we derive:

∥s(u)∥ = ∥pF (u)− pG(u)∥ = ∥pF (u) + pG(u)∥ = ∥u∥,

illustrating [2] that s acts as an isometry.

[1] It becomes feasible to determine an orthonormal basis (e1, . . . , en) for E, encompassing both

an orthonormal basis for F and G. Assuming F possesses dimension p and G has dimension

n− p, regarding the orthonormal basis (e1, . . . , en), the symmetry operator s can be defined by a

matrix in the form: [2] (
Ip 0

0 −In−p

)
.
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3.4.2 Using Householder Matrices for QR-Decomposition

Proposition- Given E be any non-trivial [3] Euclidean space of dimension n. For some

orthonormal basis (e1, . . . , en) and some n-tuple of vectors (v1, . . . , vn), there exists a sequence of

n isometries h1, . . . , hn so that hi is a hyperplane reflection or the identity [2]. If (r1, . . . , rn) are

the vectors defined as [1]

rj = hn ◦ . . . ◦ h2 ◦ h1(vj),

then each rj can be expressed as [2] a linear combination of the vectors (e1, . . . , ej) for 1 ≤ j ≤ n.

Similarly, the matrix R whose columns are the components of rj over the basis (e1, . . . , en) is an

upper triangular matrix. [1]Moreover, the hi can be selected so that the diagonal entries of R are

non-negative [2].

Remarks:

(1) [2]As each hi is a hyperplane reflection or the identity, ρ = hn ◦ . . . ◦ h2 ◦ h1 represents an

isometry [2].

(2) Allowing negative diagonal entries in R enables the omission of the last isometry hn [2].



Chapter 4

Hermitian Spaces and Spectral

theorems

4.1 Hermitian Spaces

4.1.1 Hermitian Forms and Spaces, Pre-Hilbert Spaces, Sesquilinear

Forms

We specialized the primary outcomes of the Euclidean geometry over the complex numbers. For

instance, linear maps always have complex eigenvalues but may not have real eigenvalues.

Further, some of very necessary [1] classes of linear maps can be easily diagonalized as long as

they are easily expanded to the complexification of vector space (real). This case is basically for

the normal and orthogonal matrices.

Take some complex number p ϵ C, if p = c + id, where c, d ϵ R. [3] Then, let c and d be the real

and imaginary part respectively of p. Hence, the conjugate of p will be

p̄ = c− id

and the absolute value (or modulus or length) of p is |p|.

Recollect that |p|2 = pp̄=c2 + d2.

Here are countless pure cases where a map ψ : E × X → C is linear in its 1st argument with only

semilinear in its 2nd argument, i.e. ψ(c, βd) = β̄ψ(c, d) as in opposition to the ψ(c, βd) = βψ(c, d).

Take an instance of the natural inner product to assign along the function f : R→C, mostly for

the [1] Fourier series is:

< f, h > =
∫ π

−π
f(x)h(x)dx

36
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which is a semilinear in function h. Hence, we overlook a consequence from the real case of an

Euclidean space to the complex one and check our proofs that it will not rely on the linearity in

second argument.

Definition: Given any 2 vector spaces A, B over the field C which is complex, a function

f : A→ B is a semilinear if

f(c+d) = f(c) + f(d),

f(λc) = λ̄f(d).

for every c, d ϵ A and every λϵC.

Then, it is very simple way to verify that the [1] function f : A ϵ C is semilinear iff

f : ĀϵC

Now, we easily define the sesquilinear forms and the Hermitian forms.

Definition: Let any complex vector space A, a function ψ: A × A → C is known as [2]

sesquilinear form if it has linear in its 1st argument with semilinear in its 2nd argument as :

ψ(a1 + a2, b) = ψ(a1, b) + ψ(a2, b),

ψ(a, b1 + b2) = ψ(a, b1) + ψ(a, b2),

ψ(λa, b) = λψ(a, b),

ψ(a, βb) = β̄ψ(, b).

for all a, b, a1, a2, b1, b2 ϵ A and all λ , β ϵ C. A function ψ: A× A → C is known as [1] Hermitian

form if it is a sesquilinear and if

ψ(a, b) = ψ(a, b)

for every a, b ϵ A.

It is so obvious that ψ(0, b) [1] = ψ(a, 0) = 0. We [1] also note that if ψ: A × A → C is a

sesquilinear and if ψ: A × A → C is a Hermitian, we have

ψ(λa+ βb, λa+ βb) = |λ|2ψ(a, a) + 2Re(λβ̄ψ(a, b))+|β|2ψ(b, b)

Definition: Given any sesquilinear form ψ: A × A → C, the fuction Φ : A→ C so that

Φ(a) = ψ(a, a) for every a ϵ A is known as the quadratic form associated with the ψ.

The basic instance for the [1] Hermitian form on Cn is the map ψ explained so that

ψ((a1, ......, an), (b1, ....., bn)) = a1b1 + a2b2 + ........+ anbn

Proposition: Given any complex vector space A, the after conditions will hold:
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(1) A sesquilinear form ψ: A × A → C is a Hermitian formiff ψ(a, a)ϵR for all a ϵ A.

(2) If ψ: A × A → C is a sesquilinear form, then

4ψ(a, b) = ψ(a+ b, a+ b)-ψ(a− b, a− b)+iψ(a+ ib, a+ ib)-iψ(a− ib, a− ib)

and

2 ψ(a, b) = (1 + i)(ψ(a, a) + ψ(b, b)) - ψ(a− b, a− b) - iψ(a− ib, a− ib)

These are called the polarization identities.

The quantity ψ(a, b) is generally called the Hermitian product of a and b.

Any given pre-Hilbert space < A,ψ > in case of the Euclidean space, we also signify ψ(a, b) by

a.b either < a, b >

and
√
Φ(a)as||a||.

Example: Cn be a complex vector space under the Hermitian form

ψ((x1, ...., xn), (y1, ..., yn)) = x1y1 + x2y2 + .....+ xnyn

is the Hermitian space.

Definition: [2] The matrix G related with the Hermitian product is known as Gram matrix of

the Hermitian space w.r.t. the basis (e1, ...., e2).

4.1.2 Duality, Orthogonality and Adjoint of Linear Map

We will conducting with Hermitian space and indicate the Hermitian inner product by a.b or

< a, b >. All the ideas of orthogonal [1] family of vectors, orthogonality and orthogonal

complement of a set of vectors remains unchanged from the Euclidean case.

Take an example of the set C[−π, π] of the continuous function f : [−π, π] → C is a Hermitian

space under the product

< f, h > =
∫ π

−π
f(x)h(x)dx

and the family of the (eikx)kϵZ is orthogonal.

In the [1] Euclidean spaces of finite dimensions, the Hermitian product activates a cannonical

bijection i.e. not dependent on the choice of bases linking the vector spaces A and A∗.

Let any Hermitian space A, for some vector a ϵ A, assume ψl
a : A → C be the map explained so

that
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ψl
a(b) = a.b, for every b ϵ A

Like, for any vector b ϵ A, ψr
b : A → C be the map defined as

ψr
b (a) = a.b , for all a ϵ A

Hence, [2] Hermitian product is linear in its 1st argument a with map ψr
b is a linear form in A∗

and as it is semilinear in its 2nd argument b with map ψl
a which is also linear form in A∗.

Therefore, we get 2 maps bl : A→ A∗ and br : A→ A∗ explained so that

bl(a) = ψl
a and br(b) = ψr

b

Theorem: Given any Hermitian space A, the map b : A→ A∗ defined so that

b(a) = ψl
a = ψr

a for every a ϵ A

is semilinear as well as injective. Hence, A is also of finite dimension then, the map b : Ā→ A∗ is

a cannonical isomorphism [1].

Given any Hermitian space A of the finite dimensions, for each linear map f : A→ A, the unique

linear maps f∗ : A→ A so that

f∗(a).b = a.f(b), for every a,b ϵ A

is said to be [1] the adjoint of f (w.r.t. the Hermitian product).

4.1.3 The Unitary Matrices and Group

As a result [2] of the Gram-Schmidt orthonormalization process we get the QR-decomposition for

an invertible matrices. [1] The matrix of adjoint of the linear map in the Hermition is not

provided by its transpose but by its conjugate of the original matrix.

Definition: Let any complex m × n matrix E, the transpose ET of E is the n × m matrix where

ET = (ei
T
j ) explained as:

ei
T
j = eji

and the conjugate E of E is the m × n matrix where E = (fij) explained as:

(fij) = ēij

for every i, j, 1 ≤ i ≤ m, 1 ≤ i ≤ n.

The adjoint E∗ of E is the matrix explained as:
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E∗ = (ET ) = (E)
T

Definition: Any complex n x n matrix is said to be a unitary matrix if

EE∗ = E∗E = In

Definition: Let any [1] Hermitian space A of dimensions n, the set of the isometries f : A→ A

forms a subgroup of GL(A,C) denotes U(A) or U(n) when A = Cn then it is known as the

unitary group (of A).

4.1.4 Hermitian Reflections with QR-Decomposition

If there is any n × n complex singular matrix say A, which is not surely unique but there is some

QR-decomposition A = QR with any unitary matrix Q which is the product of [1] an upper

triangular matrix be R and Householder reflections.

Definition: Given E be any Hermitian space of the finite dimensions. Let random hyperplane H,

for some non-null vector u which is [2] orthogonal to H such that E = H ⊕ G, where G = Cu, a

Hermitian reflection about H of angle θ is a linear map of the form ρH,θE → E, explained so that

ρH,θE(w) = pH(w) + eiθpG(w)

for some unit complex number eiθ ̸= 1 (orθ ̸= k2π). For any non-zero vector u ϵ E, we represent it

by ρu,θ [2] the Hermitian reflection present by ρH,θ where H be the hyperplane orthogonal to the

u.

Hence, [2] w = ρH(w) + pG(w), the Hermitian reflection ρu,θ is also indicates as

ρu,θ(w) = w + (eiθ − 1)pG(w)

also

ρu,θ(w) = w + (eiθ − 1) (w.u)
||u||2 u

Note: The example of a basic hyperplane reflection is attained when eiθ = -1, i.e. θ = π.

Now, the situation arises:

ρu,π(w) = w - 2 (w.u)
||u||2 u

and the matrix of this type of reflections is a Householder matrix except that u may be a complex

vector.

We will easily examine that ρu,θ [1] is an isometry and the inverse of ρu,θ is ρu,−θ. If we choose

an orthogonal basis (e1, e2, ....., en) so that (e1, e2, ....., en−1) is an orthonormal basis of H and the

matrix of ρu,θ is
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In−1 0

0 eiθ

)

We now conclude that any 2 different [1] vectors u and v so that ||u|| = ||v||, not always a
hyperplane reflection mapping u to v as this can be ended by using 2 Hermition reflections.

4.2 Eigenvalues and Eigenvectors

4.2.1 Eigenvalues and Eigenvectors of Linear Map

Let any vector space B which is a finite-dimensional , assume the defined funtion g : B → B be

any linear map and there exists a basis (e1, ...., em) of B w.r.t. g is written by a diagonal matrix

D =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . .
. . . 0

0 . . . 0 λm



then work of g on B is extremely basic in the each direction i.e. ei and we get:

g(ei) = λiei.

Here, we conclude the function g as a transformation which shrinks or stretches the space across

the direction of the basis (e1, ...., em) (if B be a real vector space). The above concept gives the

certainity [2] that there exits an invertible matrix P and also a diagonal matrix D so that the

matrix B can be factored as

B =PDP−1

If it is satisfy then, we can say that the function g (or B) is diagonalizable, λ′is are said to be an

eigenvalues of g and e′is are the eigenvectors of g.

Every symmetric matrix can be diagonalized.

Definition: Let [1] any vector space B of the finite dimension m and a linear map g : B → B, a

scalar λ ϵ K is known as an eigenvalue (or the characteristic value or the proper value) of g if

there exists some non-zero vector v ϵ B so that
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g(v) = λv

Therefore, λ be an eigenvalue of g if Ker(λid− g) ̸= 0(i.e. non-trivial) iff λid− g is not an

invertible (Here, we used the truth that B is a finite-dimensional; a linear map from B to itself is

injective if and only if it is invertible).

A vector v ϵ B is said to be an eigenvector of g if v ̸= 0 and if there exists any λϵK so that

g(v) = λv

where the λ, a scalar is the eigenvalue and v is said to be an eigenvector related with λ.

Let any eigenvalue λ ϵ K, the non-trivial subspace ker(λid− g) contain every eigenvectors

related [1] with λ jointly with the zero vector and the subspace is usually represented by Bλ(g) or

B(λ, g) or Bλ and known as the eigenspace related with λ (or proper subspace related with λ).

Definition: Let B be any vector space of the dimension m, for some linear map f : B → B, the

polynomial Pg(X) = §g(X) = det(Xid− g) is said to be a [2] characteristic polynomial of g. For

some square matrix E, the polynomial PE(X) = §E(X) = det(XI − E) is said to be a

characteristic polynomial of E.

Definition: Let E be any m × m matrix over the K-field and let all the roots of the characteristic

polynomial §E(X) = det(XI−E) of E belongs to the field K, which measures that we may express

det(XI − E) = (X − λ1)
k1 .....(X − λn)

kn

where λ1, ...., λnϵK are the different roots of det(XI - E) and k1 + ....+ kn = m. The integers ki is

known as the algebraic multiplicity of the eigenvalue λi (denoted by alg(λi)) [2] and the

dimension of the eigenspace Eλi
= ker(λiI − E) is known as the geometric multiplicity of λi

(denoted by geo(λi))

4.2.2 Reduction to an Upper Triangular Form

As we can say that not each linear map on the complex vector space can be diagonalized . Hence,

we have to study about the ”triangularize” which process to find the basis over which the matrix

has 0 entries below the main diagonal [1]

Let B be a square upper triangular matrix if it has the below standard shape:
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

a11 a12 a13 . . . a1m−1 a1m

0 a22 a23 . . . a2m−1 a2m

0 0 a33 . . . a3m−1 a3m
...

...
...

. . .
...

...

0 0 0 . . . a(m−1)m−1 am−1m

0 0 0 . . . 0 amm



i.e. aij = 0 whenever j < i, 1 ≤ i, j ≥ m.

Theorem: Let some [2] finite dimensional vector space over a K-field , for some linear map

g:E → E, there exists a basis (u1, ..., um) w.r.t. which g is written by an upper triangular matrix

(in Mn(L)) if and only if all eigenvalues of g belongs to L. Similarly, for each m × m matrix

BϵMm(L), there exists [2] an invertible matrix P and D be an upper triangular matrix (both in

Mm(L)) so that

B = PDP−1

if and only if all the eigenvalues of B ϵ L.

Theorem: (Schur decomposition) Let [1] any linear map g : E → E over a complex Hermitian

space E, there exists an orthonoraml basis (u1, ...., um) w.r.t. which g is written by an upper

triangular matrix. Similarly, for each m × m matrix BϵMm(C), there exists an U be [3] a unitary

matrix and D be an upper triangular matrix so that

B = UDU∗

If B is a real matrix with all its real eigenvalues then, there exists Q be an orthogonal matrix and

D be an upper triangular matrix so that

B = QDQT

4.2.3 Eigenvalues Location

Let B be an m x m real (or complex) matrix , it will help us to know that [2] where the

eigenvalues of B are detected in the complex plane C. The Gershgorin disc also give any of

important fact about this.

Definition: Let B be any complex m × m matrix , for i = 1,....,m and assume

R′
i(B) =

∑m
j=1 |aij |
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and

G(B)=
⋃n

i=1 {zϵC | |z − aij | ≤ R′
i(B)}

Each disc {z ϵ C | |z − aij | ≤ R′
i(B)} is known as Gershgorin disc and G(B) be their union is said

to be a Gershgorin domain.

Theorem: (Gershgorin’s disc theorem) Let B be any complex m × m matrix and every

eigenvalues of B ϵ G(B). Therefore, the through conditions hold:

1) Let any strictly row diagonally dominant matrix B, i.e.

|aij | >
∑m

j=1,j ̸=i |aij |,for i = 1,.....,m

then B is invertible [1] .

2) If B is a strictly row diagonally dominant and if aii > 0 for i= 1,...,m then every eigenvalue of

B has a strictly positive real part [1] .

4.3 Euclidean and Hermitian Spaces: Spectral Theorems

In this section, we will try to prove that here we have some nice normal forms for the symmetric,

orthogonal, normal and skew-symmetric [2] matrices. [1] The spectral theorem for the symmetric

matrices defines that the eigenvalues are real and they can be easily diagonalized over an

orthonormal basis. For the Hermitian matrices, the spectral theorem defines that they also have

real eigenvalues but they can be diagonalized over a complex orthonoraml basis.

[3] The spectral result for the symmetric matrices can be helpful to prove 2 characterizations of

the eigenvalues of a symmetric matrix in labels of the Rayleigh ratio, where 1st characterization is

the Rayleigh-Ritz theorem and the 2nd one is the Courant-Fischer theorem. [2] [1] Normal real

matrices can be a block diagonalized over an orthonoraml basis with the blocks having a size of at

most 2 and for the skew-symmetric , orthogonal matrix there are some refinements of this normal

form.

Here, all the vector spaces are finite-dimensional real (or complex) vector spaces [1] .

4.3.1 Eigenvalues and Eigenvectors of Normal Linear Maps

Definition: Given any A be an [1] Euclidean or Hermitian space , a linear map g : A→ A is said

to be normal if

g o g∗ = g∗ o g

A linear map g : A→ A is said to be self-adjoint if g = g∗ and orthogonal if g o g∗ =

g∗ o g = id.
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It is obvious that skew-self-adjoint, [2] self-adjoint or orthogonal linear map is a normal linear

map.

Firstly, we have to show that every normal map g : A→ A then there exists an orthonoraml [1]

basis (w.r.t. < −,− >) so that the matrix of g over this assumed basis has an especially nice form

which is a block diagonal matrix where the blocks are either 1D matrices (that is single entries) or

2D matrices of the form (
λ β

-β λ

)

Hence, this normal form can be lately refined if g is skew-self-adjoint, orthogonal or self-adjoint,

as firstly, we have to prove that when g is normal then g∗ and g have the same kernel.

Now, there are some following prepositions:

1) Let A be any Euclidean space , if g : A→ A is a normal linear map, then

Ker g = Ker g∗.

2) Let any [1] Hermitian space A, for some normal linear map g : A→ A, we get

Ker(g)
⋂

Im(g) = (0).

3) Given any Hermitian space A, for any linear map g : A→ A, a vector v is an eigenvector of g

for the eigenvalue λ (in C) iff for the eigenvalue λ̄, v is an eigenvector of [1] g∗.

4) Let any Hermitian space A, for some linear map g : A→ A, if eigenvectors of g be a and b

related with the eigenvalues λ and β (in C) where λ ̸= β, then

< a, b >= 0

5) Let any Hermitian space A, every [1] eigenvalues of any self-adjoint linear map g : A→ A are

real.

Definition: Given A be a real vector space and EC be the form of A × A under the addition

operation

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2),

and [3] consider multiplication by a complex scalar z = u + iv be explained as

(u + iv).(a,b) = (ua - vb, va + ub)

Here, the space EC is said to be the complexification of E.
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4.3.2 Spectral Theorem: Normal Linear Maps

Theorem: (Spectral theorem for self-adjoint linear maps on a Euclidean space) Let any

Euclidean space A of dimension n, for each self-adjoint linear map f:A→ A, there exists an

orthonormal basis (e1, ..., en) of eigenvectors of f so that the matrix of f with respect to this basis

is a diagonal matrix [2]


λ1 . . .

λ2 . . .
...

...
. . .

...

. . . λn


with λi ϵ R.

Theorem: (Main Spectral Theorem) Let any Euclidean space A of dimension n, for each normal

linear map f:A→ A, there exists an orthonormal basis (e1, ..., en) so that the matrix of f with

respect to this basis is a block diagonal matrix of the form [1]


E1 . . .

E2 . . .
...

...
. . .

...

. . . Ep


so that every block Ej is either a 1D matrix i.e. a real scalar or the 2D matrix of the form

Ej =

(
λj −µj

µj λj

)

where λj , µj ϵ R, with µj > 0

Theorem: [2] (Spectral theorem for normal linear maps on a Hermitian space) Let any

Hermitian space A of dimension n, for each normal linear map f : A→ A there exists an

orthonormal basis (e1, ...., en) of eigenvectors of f so that the matrix of f with respect to this basis

is a diagonal matrix
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
λ1 . . .

λ2 . . .
...

...
. . .

...

. . . λn


where λj ϵ C.

4.4 Computing Eigenvectors and Eigenvalues

After solving the problems of the [1] linear system, the new problem arises of computing the

eigenvectors and eigenvalues of a real (or complex) matrix. Therefore, methods which are

performing better exists only for the symmetric matrices which are special types of matrices.

4.4.1 The Basic of QR Algorithm

Given C [1] be any n × n matrix which both diagonalizable and invertible. Then, the basic QR

Algorithm made up of 2 very easy steps. Initially C1 = C, we make a sequences of the matrices

(CL), (QL), (RL)and(PL) as follows:

Factor C1 = Q1R1

Set C2 = R1Q1

Factor C2 = Q2R2

Set C3 = R2Q2

.

.

.

Factor AL = QLRL

Set AL+1 = RLQL

.

.

Therefore, the CL+1 is contained from the QR-factorization of CL as CL = QLRL by swappings

the QL and RL. Also, explain the PL as

PL = Q1Q2....QL.

Hence, CL = QLRL then we get RL = Q∗
LCL and using CL+1 = RLQL, we get
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CL+1 = Q∗
LCLQL

The clear induction proves that

CL+1 = Q∗
L....Q

∗
1C1Q1....QL = P ∗

LCPL

i.e. CL+1 = P ∗
LCPL

Hence, CL+1 and C are alike as they also have the similar eigenvalues.

4.4.2 A Hessenberg Matrices

Definition: A real (or complex) n × n matrix H is [1] an (upper) Hessenberg matrix if it will

almost a triangular excluding that it may have an extra non-zero diagonal below the main

diagonal. Practically, hj l = 0 [1] for every (j,l) so that j − l ≥ 2.

For example: Let 5 × 5 [2] Hessenberg matrix.

H =


∗ ∗ ∗ ∗ ∗
h21 ∗ ∗ ∗ ∗
0 h32 ∗ ∗ ∗
0 0 h43 ∗ ∗
0 0 0 h54 ∗


Definition: [1] An upper Hessenberg n × n matrix H is said to be unreduced if hi+1i ̸= 0 for i =

1,...,n-1.

The Hessenberg matrix H is known as reduced when it is not unreduced

.

4.4.3 Arnoldi Iteration for Krylov Subspaces

Let the dimension of the square real (or complex) matrix A be n. Let n × n [2] matrix A has been

lowered to an upper Hessenberg form H as A = UHU∗. For some m ≤ n, let the (m+ 1)×m be

an [2] upper left block

H̃n =



h11 h12 h13 . . . h1m

h21 h22 h23 . . . h2m

0 h32 h33 . . . h3m
...

. . .
. . .

. . .

0 . . . 0 hmm−1 hmm

0 . . . 0 0 hm+1m


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of H and then m × m upper [2] Hessenberg matrix Hm acquired by removing the last row of the

H̃m;

H =



h11 h12 h13 . . . h1m

h21 h22 h23 . . . h2m

0 h32 h33 . . . h3m
...

. . .
. . .

. . .

0 . . . 0 hmm−1 hmm


If we indicate the Um the n × n matrix consisting of the 1st m columns of U, indicated u1, ...., um,

then the matrix consisting of 1st n columns of matrix UH = AU can be written as [1]

AUm = Um−1H̃m.

It also accompany [1] that the nth column of this matrix can be written as

Aum = h1mu1 + ....+ hmmum + hm+1mum+1.

Hence, (u1, ...., um) forms an orthonormal basis and we can deduce the above equation as:

< uj , Aum >= u∗jAum = hjm, j = 1,...,m.

From the recent above 2 equations we can prove that Um+1 and H̃m can be calculated constantly

by using the below algorithm due to Arnoldi, i.e. Arnoldi iteration:

Let any random non-zero vector b ϵ Cn and [2] u1 = b/||b||;

for m = 1, 2, 3,...do

z := Aum; for j = 1 to n do hjm := u∗jz;

z := z - hjmuj

endfor

hm+1m := ||z||;
if hm+1m = 0 quit

um+1 = z/hm+1m

We will stop at hm+1m=0 (breakdown of the Arnoldi iteration.)

4.4.4 Lanczos Iteration for the GMRES and the Hermitian Case;

Let E be an n × n invertible matrix and a non-zero vector, b in Cn. Suppose x0 = E−1b, is an

unique solution of Ex = b. We can easily show that x0 ϵ Km(E, b) for few m ≤ n. Also, there

exists a distinctive monic polynomaial [2] p(z) of the minimal degree s ≤ n so that p(E)b = 0, so

x0 ϵ Ks(E, b). As it builds sight to look for the solution of Ex = b in the Krylov spaces of

dimensions n ≤ s.
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We use the concept of finding the approximation xn ϵ Km(E, b) [2] of x0 so that rm = b− Exm is

minimized i.e. ||rm||2 = ||b− Exm||2 is also minimized over xn ϵ Kn(E, b) .

[1] This minimized [1] problem can be expressed as:

minimize ||rm||2 = ||Exm − b||2, xm ϵ Km(E, b).

This is the least-squares problem where rm is said to be residual and this method consist in the

minimizing ||rm||2 is said to be GMRES for the generalized minimial residuals.

If A be an n × n [1] symmetric or Hermitian matrix therefore, Arnoldi’s method is much easier

and capable. So, in the Hermitian (also symmetric) case we can easily see the upper Hessenberg

matrix Hm [2] and thus tridiagonal. Therefore, the eigenvalues of A and Hm are real and we can

write

Hm =



α1 β1

β1 α2 β2

β2 α3
. . .

. . .
. . . βm−1

βm−1 αm


Three term recurrence

Aum = βm−1um−1 + αmum + βmum+1

We also have an Arnoldi’s algorithm i.e. αm = u∗mAUm which turn the mention algorithm [1] as

Lanczos iteration (or Lanczos algorithm).

[1] The inner loop on j from 1 to n has been removed and changed by a single assignment. Let

any random non-zero vector b ϵ Cn and [2] u1 = b/||b||;

for m 1, 2, .... do

z := Aum;

αm := u∗mz;

z := z − βm−1um−1 − αmum

βm := ||z||;
if βm = 0 quit

um+1 = z/βm

We will stop at βm = 0 (breakdown of the Lanczos iteration)



Chapter 5

Spectral Graphs ,SVD and its

applications

5.1 Graphs and Graph Laplacians

Here we will discuss about implementation of linear algebra in graph theory.We can define graph

in terms of many different kind of matrices like Incidence and Adjacency.

By incidence matrix we mean a matrix that shows the relationship between two classes of objects

and by adjacency matrix we meant a connection matrix containing rows and columns used to

represent a simple labelled graph.Certain connectivity properties are involved by properties of

these matrices.

One of the significant matrix is the Graph Laplacian which is related to undirected graph. The

former is symmteric, +ve definite and its corresponding eigen values involve certain characteristic

of the graph underlying [1].

The graph Laplacian is related to an undirected graph [1].For both of them we have a degree

matrix, say P, the incidence matrix,say Q and the adjacency matrix A.Also let us define a

weighted graph. [1] It is actually a pair (U,W ), where U is finite and W is m×m symmetric

matrix having non-negative entry and zero at diagonals. [1]

Degree matrix ,i.e.,P is the diagonal matrix. ∀ node ui ∈ U the degree d(ui) is total sum of

weights of the edges adjoining to ui.

di = d(ui) =

n∑
j=1

wij

[2] The earliest way to define [3] unnormalized graph Laplacian L of an undirected graph is by

51
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displaying that for some random orientation of a graph H

QQT = P −A = L

is referred as an invariant.Additionally it can a be defined as of weighted graph H = (U,W ) as

L = P −W .

Graph drawing is a fascinating field where the objective is to represent a given graph in a

low-dimensional space, typically in Euclidean space Rn where n≪ m, the no. of vertices in graph.

Then our objective is to find a drawing that minimizes this energy function. However, the trivial

solution, where all vertices are mapped to the same point (e.g., the origin), results in zero energy.

Therefore, additional constraints or regularization techniques are often employed to prevent this

trivial solution and encourage meaningful representations of the graph structure. As there are

infinitely many graphs possible, so we must be having a criterion to decide which graph is

better.Taking inspiration from a physical model which has edges as springs,it is absolutely correct

to acknowledge the representation to be better when the springs are not extended or they are

least extended. [2] Also the graph having minimum energy function are considered as Good

graphs.The most simple representation corresponding to zero matrix is good choice in order to

rule out trivial solutions we need to impose a few extra constraints.

Now we will discuss some of the graph drawings-

5.1.1 Directed and Undirected Graph

A directed graph, often denoted as H = (U,E), comprises a set of vertices U = {u1, . . . , um}
representing nodes, and a set of edges E ⊆ U × U consisting of ordered pairs (t, u) where t and u

are distinct vertices in U . These ordered pairs denote directional relationships between vertices.

For any given edge e = (t, u), the vertex t is termed the source, denoted by s(e) = t, while u is

referred to as the target, denoted by t(e) = u.

In the [2] realm of graph theory, specifically pertaining to a graph H = (U,E) comprising a

collection of vertices U and edges E, we define the concept of vertex degree.

For any given vertex U belonging to the set of vertices U , its degree, denoted d(u), signifies the

count of edges connected to that particular vertex. This encompasses both incoming and outgoing

edges, thereby encapsulating the total number of edges incident upon the vertex.

Expressed formally, the degree of vertex u is determined by cardinality of a set containing vertices

u ∈ V for which either the edge (t, u) or (u, t) is present in the edge set E.

To succinctly represent the degree of each vertex within a graph, we employ the degree matrix

P (G). This matrix is structured as a diagonal matrix, whose every diagonal entry corresponds to
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degree of the respective vertices. Thus, if there are m vertices in the graph, P (G) emerges as an

m×m matrix, with every diagonal element representing the degree of associated vertices.

P (G) =


d1 0 · · · 0

0 d2 · · · 0
...

...
. . .

...

0 0 · · · dm


Incidence matrix-

Consider a directed graph H = (U,E), where U = {u1, . . . , um} represents a set of m nodes and

E = {e1, . . . , en} denotes the set of n edges. The incidence matrix Q(H) for H is constructed as

an m× n matrix. Its entries aij are defined as follows:

• If the source vertex of edge ej is ui, then aij = +1.

• If the target vertex of edge ej is ui, then aij = −1.

• else, aij = 0.

For instance, consider a directed graph G1 with the corresponding incidence matrix Q. Each

column of Q has precisely 2 non-zero entries, i.e.,+1 and −1, representing the connection between

nodes and edges:

B =


1 1 0 0 0 0 0

−1 0 −1 −1 1 0 0

0 −1 1 0 0 0 1

0 0 0 1 0 −1 −1

0 0 0 0 −1 1 0


Each row corresponds to a node, and each column corresponds to an edge. The +1 and −1 entries

denote the direction of the edge relative to the node,while 0 indicates no connection.

Furthermore, in [1] a directed graph with m nodes u1, . . . , um [1] and n edges e1, . . . , en, a vector

x ∈ Rm can be viewed as a function x : U → R, assigning the value xi to node ui [1]. In this

interpretation, Rm is considered as RU . [2]

5.1.2 Undirected graph-

In the realm of graph theory, a graph, often termed as an undirected graph, is characterized as a

pair H = (U,E), where U = {u1, . . . , um} denotes a set comprising nodes or vertices, and E

signifies a set containing [2] pairs of elements selected from U . These pairs, denoted as {t, u},
consist of two distinct vertices t and u belonging to U , thereby ensuring the absence of self-loops.

Remark:
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It is necessary to notice that each edge within the graph G is represented by a subset {u, v},
where u and v are distinct vertices. This condition eliminates the possibility of self-loops,

ensuring that each edge connects precisely two distinct vertices. Consequently, for any given pair

of nodes {u, v}, there exists at most one edge connecting u and v [2]. These graphs are commonly

referred to as simple graphs, reflecting the straightforwardness of their edge structure.

5.1.3 Weighted Graphs and Laplacian Matrices in Graph Theory

In graph theory, a weighted graph is described by the pair H = (U,W ), where U = {u1, . . . , um}
is the set of vertices, W is the weight matrix, a symmetric matrix with specific properties. The

entries wjk of W satisfy wjk ≥ 0 ∀ j, k ∈ {1, ,m} and wjj = 0 for j = 1, . . . ,m. An edge {uj , uk}
exists if and only if wjk > 0. The undirected graph (U,E), where E = {{uj , uk} | wjk > 0}, is
known as underlying graph of H.

Laplacian Matrices of Graphs

For an undirected graph H with any chosen orientation σ, let Qσ be an incidence matrix of

directed graph Hσ, A the adjacency matrix, and P the degree matrix [2] with Pii = p(ui). It

follows that QσQ
T
σ ≥ P −A. Therefore, the Laplacian matrix L = QσQ

T
σ is invariant under any

orientation σ of H, and P −A is both symmetric as well as positive semi-definite, indicating its

eigenvalues to be real and positive [1].

5.1.4 Unnormalized graph-

For some weighted graph H = (U,W ) with U = {u1, . . . , um}, unnormalized Laplacian matrix

L(H) can be defined as:

L(H) = P (H)−W,

where P (H) is the degree matrix of H, represented as diag(p1, . . . , pm). Each diagonal entry pi is

calculated as summation of weights of all edges connected to vertex ui. Specifically,

pi =

m∑
j=1

wij .

Definition- In the context of a weighted graph H = (U,W ) with U = {u1, . . . , um}, and with

edges {e1, . . . , en} representing the connections in the underlying graph of H [2] (where {ui, uj} is

considered an edge if wij > 0), the incidence matrix Qσ of any oriented graph Hσ (obtained by

assigning a direction to the underlying graph of H) is a m× n matrix. The entries qij are defined

as follows: [2]

qij =


+
√
wij if s(ej) = ui,

−√
wij if t(ej) = ui,

0 otherwise.

For instance, considering the weight matrix
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W =


0 3 6 3

3 0 0 3

6 0 0 3

3 3 3 0


the incidence matrix Q to orientation of underlying graph of W , where an edge (i, j) is oriented

positively if i < j, [2] :

Q =


1.7121 2.4595 1.7221 0 0

−1.7321 0 0 1.7321 0

0 −2.4495 0 0 1.7321

0 0 −1.7321 −1.7321 −1.7321


It should be verified by the reader that BBT = D −W .

5.1.5 Normalized Laplacian Matrices of Graphs-

Definition: In the context of [1] a weighted graph H = (U,W ), [1] a vertex u ∈ U is considered

isolated when it is not connected with some other vertex [1]. This implies that each row of the

weight matrix W has at least one that is strictly greater than 0 [1]. If H has 0 isolated vertices,

then the degree matrix P has positive entries, making it invertible [1]. Hence, the matrix P−1/2 is

well-defined, given by P−1/2 = diag(p
−1/2
1 , . . . , p

−1/2
m ), and similarly for any real exponent α [2].

Definition: For any weighted directed graph H = (U,W ) with 0 isolated vertices, and [2] where

U = {u1, . . . , um}, the (normalized) graph Laplacians LSym and Lrw of H are defined as follows:

LSym = P−1/2LP−1/2 = I − P−1/2WP−1/2

Lrw = P−1L = I − P−1W

5.2 Spectral Graph Drawing-

When dealing with undirected graphs, it’s common to visualize them by assigning points in either

2D or 3D space to each vertex and connecting points with line segments whenever there’s an edge

between the corresponding vertices. This process utilizes the graph Laplacian and can yield

effective visual representations.

5.2.1 Graph Drawing and Energy Minimization

Consider a graph H = (U,E) with m vertices. A graph drawing involves assigning a point η(vi) in

Rn to every vertex ui ∈ U . We then create a matrix S, where each row represents the coordinates

of the corresponding vertex in Rn.

For practical purposes, we aim for n to be less than or equal to m, often preferring n = 2 or 3.
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A drawing is considered balanced if the sum of each column in the matrix S equals zero, denoted

by 1T · S = 0. If a drawing isn’t balanced, we can make it so by adjusting the positions

accordingly.

Additionally, it’s beneficial for the columns of S to be linearly independent. Therefore, we

typically assume n ≤ m.

It’s important to note that a graph drawing need not be one-to-one, meaning different vertices

might be represented by the same point. This concept is termed graph immersion to differentiate

from injective graph embeddings used in differential geometry.

When discussing graph drawing, it’s intuitive to evaluate the effectiveness of a representation

based on how much the connections (edges) are stretched. This concept can be formalized by

encircling energy of a drawing, denoted as E(S), which sums up the squared distances between

connected vertices:

E(S) =
∑

{ui,uj}∈E

∥η(ui)− η(uj)∥2,

where η(ui) denotes the position of the ith vertex represented as the ith row of the drawing matrix

S, and ∥η(ui)− η(uj)∥2 represents the squared Euclidean length between η(ui) and η(uj).

Therefore, we aim for ”good drawings” that reduces this energy function E to its minimum.

However trivial solution of a zero matrix is the optimal representation, so we need to introduce

additional constraints to avoid this.

[2]In a broader scenario where the connections (edges) have varying strengths, [2] we introduce a

weight matrix which is symmetric W = (wij) with wij ≥ 0. [2]This adjustment modifies the

energy function as follows:

E(S) =
∑

{ui,uj}∈E

wij∥η(ui)− η(uj)∥2.

[1]Interestingly, this function can be expressed using the Laplacian L = P −W , where P

represents the diagonal matrix containing the degrees of the vertices.

Proposition- [1] Let H = (U,W ) denote a weighted graph with |U | = m vertices and W

representing an m×m symmetric matrix. [1]Suppose S is the matrix corresponding to a graph

drawing η of H in Rn, where S is an m× n matrix. [1] If L = P −W represents the unnormalized

Laplacian matrix associated with W , [1]then the energy E(S) of the drawing S can be expressed

as:

E(S) = tr(STLS).

The symmetry of STLS implies it possesses real eigenvalues. Given that L is positive

semidefinite, STLS inherits this property, making its trace equivalent to sum of its non-zero

eigenvalues, which corresponds to the energy E(S) of the graph drawing.
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Suppose S represents the matrix of a graph drawing in Sn [1]. For some invertible n× n matrix

M [2], associating η(ui)M with ui generates another valid graph drawing of H. Both

representations contain the same information, emphasizing that a graph drawing is essentially

defined by the column space of S. Thus, assuming orthogonal columns with unit length in S is a

reasonable choice, satisfying the condition STS = I.

Definition: A graph drawing is labeled as orthogonal if its corresponding matrix S adheres to

STS = I. This criterion also eliminates trivial representations.

Following this guideline allows us to ascertain minimum energy orthogonal balanced graph

drawings, especially for connected graphs. Recall L1 = 0.

Theorem. Consider a weighted graph H = (U,W ) with |U | = m. Let L = P −W represent the

unnormalized Laplacian of H, where P is the degree matrix. Suppose the eigenvalues of L are

ordered as

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λm.

Then, the minimum energy required for any balanced orthogonal graph drawing of H in Sn equals

λ2 + · · ·+ λn+1, indicating that the dimension n is less than m [1].

[2]To achieve this minimal energy, we can construct [2] an m× n matrix R using any unit

eigenvectors u2, . . . , un+1 associated with eigenvalues λ2 ≤ · · · ≤ λn+1. [1] This matrix R defines a

balanced orthogonal graph drawing with minimal energy, satisfying the condition STS = I.

[2]Due to the fact that the nullspace of L is spanned by 1, including u1 (which belongs to the

kernel of L) as one of the vectors in S would lead to all points representing vertices of G having

the same first coordinate [3]. This would confine the drawing to a hyperplane in Sn, which is

undesirable, especially when n = 2 as all vertices would [2] then lie on a single line. Therefore, we

exclude the first eigenvector u1.

It’s worth noting that for any orthogonal matrix Q of size n× n, the energy of the graph drawing

remains unchanged when we apply QT to the rows of S. This implies that the matrix SQ also

results in a minimum energy orthogonal graph drawing.

To summarize, if the second smallest eigenvalue λ2 > 0, [1] a simple method for drawing a graph

in S2 is as follows:

1. Calculate two smallest non-zero eigenvalues λ2 ≤ λ3 of Laplacian graph LL, considering

that λ3 = λ2 if λ2 is an eigenvalue which is multiple in nature [2].

2. Obtain 2 eigenvectors(unit) u2 and u3 corresponding to λ2 and λ3, and construct the matrix

S = [u2 u3] of size m× 2, with u2 and u3 as its columns.
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3. Position each vertex ui at the coordinates represented by the ith row of [2] S, i.e., (Si1, Si2).

While such method usually yields satisfactory results, it’s important to note that identical rows in

S may result in non-unique assignments of images to distinct nodes, although this is infrequent in

practice.

5.2.2 Algorithm used in Graphical Drawings-

Consider a scenario where you have a random graph with four nodes. To represent the

connections between these nodes, we create an adjacency matrix, denoted as A. Let’s denote this

matrix as follows:

A =


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


To analyze such graph further, we utilize a computational approach. First, we compute the

Laplacian matrix L, which is derived from the adjacency matrix A. L is defined as the difference

between the degree matrix P and the adjacency matrix A.

Next, we find the eigenvectors and eigenvalues of the Laplacian matrix. These eigenvectors and

eigenvalues provide valuable insights into the structure and properties of the graph.

With the obtained eigenvectors, we visualize the graph using a spectral layout technique. This

technique leverages the eigenvalues to determine the positions of the nodes in a visually

meaningful way.

Through this computational process, we gain a deeper understanding of the graph’s connectivity

and structure, which can be crucial for various applications in network analysis and graph theory.

5.3 Singular value decomposition and Polar form-

5.3.1 Propeties of f ∗of

[2]In this section, we delve into the properties of linear maps within Euclidean spaces, exploring

their potential for diagonalization. We introduce (SVD),the powerful concept in linear algebra

that enables to reduce any linear map provided we’re open to employing two orthonormal bases.

A crucial observation lies in the self-adjoint nature of f∗ ◦ f and f ◦ f∗. This self-adjoint property
ensures that these compositions can be diagonalized, as well as guaranteeing that their

eigenvalues are real.

The central proposition we tackle is the nonnegativity of the eigenvalues of f∗ ◦ f and f ◦ f∗. This
proposition is pivotal, and its proof is built upon the self-adjointness of these compositions.
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The essence of the proof lies in demonstrating that for any eigenvalue λi of f
∗ ◦ f , and

corresponding eigenvector ui, the associated λi is non-negative. Similarly, for any eigenvalue µi of

f ◦ f∗, with eigenvector vi, the corresponding µi is also nonnegative.

This affirmation is established by scrutinizing the inner products of f(vi) and f
∗(ui), respectively,

and leveraging the properties of self-adjointness. Through this analytical lens, we unveil the

non-negativity of the eigenvalues, underscoring a fundamental property of linear maps.

5.3.2 Singular Values of a Linear Map:

Consider a [1]linear map f : E → F , the square roots σi > 0 of +ve eigen values of f∗ ◦ f (and

f ◦ f∗) are termed as the singular values of f .

Positive Semidefinite and Positive Definite Linear Maps: A self-adjoint linear map

f : E → E is labeled positive semidefinite (or positive) if its eigenvalues are nonnegative [1].

Additionally, if f is invertible, it’s termed as positive definite, signifying that each eigenvalue of f

is strictly positive.

Given any linear map f : E → F [1], it’s now apparent that both f∗ ◦ f and f ◦ f∗ qualify as

positive semidefinite self-adjoint linear maps [1]. This observation leads to an intriguing

realization: every linear map can be decomposed in two significant ways: [1]

1. The Polar Form

2. The Singular Value Decomposition (SVD)

Proposition: For any linear map f : E → F between 2 Euclidean spaces E and F , where E has

dimension n and F has dimension m [2], the following relationships hold:

1. Ker f = Ker (f∗ ◦ f),

2. Ker f∗ = Ker (f ◦ f∗),

3. Ker f = (Im f∗)⊥,

4. Ker f∗ = (Im f)⊥,

5. dim(Im f) = dim(Im f∗),

6. The ranks of f, f∗, f∗ ◦ f, and f ◦ f∗ are identical.

[1]

5.3.3 Singular Value Decomposition for Square Matrices

Now, our objective is to establish the existence of a Singular Value Decomposition (SVD) for

every square matrix. To achieve more robust results, we can initially explore the polar form,

leveraging its uniqueness properties to derive the SVD. This approach allows us to delve deeper

into the structure of linear transformations and unveil significant insights.
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Theorem: (Singular Value Decomposition) For any real square matrix A, there exists 2

orthogonal matrices U and V along a diagonal matrix D such that A = V DUT [1]. The diagonal

matrix D takes the form:

D =


σ1

σ2
. . .

σn

 ,

where σ1, . . . , σr represent the singular values of A [2]. These singular values are the positive

square roots of the nonzero eigenvalues of both ATA and AAT , while σr+1 = . . . = σn = 0 [2].

Furthermore, the columns of U correspond to the eigenvectors of ATA, while the columns of V

correspond to the eigenvectors of AAT . [2]

5.3.4 Single valued decomposition:

A triplet (U,D, V ) satisfying A = V DUT , where U and V are orthogonal matrices, and D is a

diagonal matrix with nonnegative entries (i.e., positive semidefinite), is termed as a Singular

Value Decomposition (SVD) of A.

MATLAB command to compute SVD A = V DUT of a matrix A is given by:

[V,D,U ] = svd(A).

5.3.5 Polar form for square matrices-

Another concept closely linked to Singular Value Decomposition (SVD) is the polar form of

matrices [1].

Polar decomposition of A : A pair (R,S) such that A = RS, where R is orthogonal and S is

symmetric as well as +ve semi-definite, is termed as polar decomposition of A [1].

5.3.6 Weyl’s Inequalities:

[1] For any complex square matrix A, [1]where λ1, . . . , λn denote its [1] eigenvalues and

σ1, . . . , σn represent its singular values [1], both ordered such that |λ1| ≥ . . . ≥ |λn| and
σ1 ≥ . . . ≥ σn ≥ 0, the following hold:

1. Product of absolute values of the eigenvalues equals the product of the singular values:

|λ1| · . . . · |λn| = σ1 · . . . · σn.

2. For each k = 1, . . . , n− 1, the product of absolute values of first k eigenvalues is less than or

equal to the product of the first k singular values: |λ1| · . . . · |λk| ≤ σ1 · . . . · σk.

These inequalities provide valuable insights into the relationships between the eigenvalues and

singular values of a matrix. [1]
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5.3.7 Singular Value Decomposition for Rectangular Matrices-

Theorem:(Singular Value Decomposition) For any real m× n matrix A, there exist two

orthogonal matrices U (n× n) and V (m×m) along with a diagonal m× n matrix D, such that

A = V DUT . The matrix D takes one of the following forms: [1]

D =


σ1 0 · · · 0

σ2 0 · · · 0

. . .
...

. . .
...

σr 0 · · · 0

 ,

or [1]

D =


σ1 0 · · · 0

σ2
. . .

...

. . . 0
... σm 0

 ,

where σ1, . . . , σr denote the singular values of A [1]. These values are the positive square roots of

the nonzero eigenvalues of [1] ATA and AAT , and σr+1 = . . . = σp = 0, where p = min(m,n) [1].

The columns of U correspond to the eigenvectors of ATA, while the columns of V correspond to

the eigenvectors of [2]AAT .

The polar form is essential in continum mechanics, aiding in the separation of stretching and

rotation during deformations, a fundamental requirement in deformation analysis. The real

eigenvalues σ1, σ2, . . . , σr of S serve as indicators of stretch or compression factors. The ability to

diagonalize S using an orthogonal matrix implies a natural alignment of axes, known as the

principal axes. [1]

5.4 Applications of Singular Value Decomposition (SVD)

1. Pseudo-inverse and Least Squares Method: SVD is crucial for solving overdetermined

systems of linear equations (Ax = b) using method of least squares. When the matrix A has

more equations (rows) than unknowns (columns) (m > n), a direct solution x satisfying

Ax = b may not exist. Instead, SVD helps compute the pseudo-inverse A+ of A which

minimizes the residual vector b−Ax in the Euclidean norm sense, providing the ”best”

approximate solution.

2. Data Compression: SVD is used for data compression by reducing the dimensions of a

dataset while retaining important information. By retaining only the most significant

singular values and their corresponding vectors, SVD enables efficient representation of data

in a lower-dimensional space.
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3. Principal Component Analysis (PCA): PCA is a statistical technique used to identify

patterns and reduce dimensionality of high-dimensional data. SVD plays a crucial role in

PCA by computing the principal components (eigenvectors) of the covariance matrix of the

data. These principal components capture the maximum variance of the data and facilitate

data visualization and feature extraction.

4. Best Affine Approximation: SVD is also applied in determining the best affine

approximation of a dataset. This involves finding a linear transformation (represented by a

matrix) that minimizes the average squared distance between the original data points and

their transformed counterparts.

5.4.1 Application of SVD and Pseudo-Inverse-

In this section we would discuss various applications of SVD.The first being one being psuedo

inverse.It plays a major role in solving system of linear equations by least square method [2].

Some other applications are data compresssing, principal component analysis(PCA) etc.

Least square method is used to solve an overdetermined sytem of linear equations.By

overdetermined system we mean the case when no. of equations is more than the no. of unknown

variables.

[3]The reason behind this process is that we take repeated measurements for minimizing the

errors. [3]It produces an overdetermined and often inconsistent system of linear equations.For

example ,Gauss solved a system of 11 equations with 6 unknowns to determine the orbit of

asteroid Pallas [3].

5.4.2 Moore-Penrose Pseudo-inverse via Singular Value Decomposition

(SVD)

Definition: Given a nonzero m× n matrix A of rank r, with its singular value decomposition

(SVD) A = UDV T [3], where:

• U is an m×m orthogonal matrix,

• D is an m× n diagonal matrix with singular values λ1, λ2, . . . , λr (nonzero singular values of

A),

• V is an n× n orthogonal matrix.

The Moore-Penrose pseudo-inverse A+ is computed as follows:

1. Construction of D+ (Pseudo-inverse of D):

D+ =

[
Λ−1 0

0 0

]
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where Λ−1 is an r × r diagonal matrix with entries 1
λ1
, 1
λ2
, . . . , 1

λr
(reciprocals of nonzero

singular values), and the remaining entries are zeros.

2. Computation of A+ (Pseudo-inverse of A):

A+ = UD+V T

resulting in an n×m matrix A+ that behaves like a pseudo-inverse of A.

[2]Given matrix D:

D =


1 0 0 0 0

0 5 0 0 0

0 0 3 0 0

0 0 0 0 0


[2] The pseudo-inverse D+:

D+ =


1 0 0 0

0 1
5 0 0

0 0 1
3 0

0 0 0 0

0 0 0 0


5.4.3 Properties of the Pseudo-inverse-

Property :-*Moore-Penrose Pseudo-Inverse for Matrices with Full Rank

When A has full rank:

• **Case m ≥ n (More rows than columns):**

A+ = (ATA)−1AT

Here, AT is the transpose of A. This results in A+A = (ATA)−1ATA = I, indicating A+ is

a left inverse of A [1].

• **Case n ≥ m [2] (More columns than rows):**

A+ = AT (AAT )−1

This implies AA+ = AAT (AAT )−1 = I, showing A+ is a right inverse of A.

In both cases, A+ is a pseudo-inverse of A that satisfies the properties:

AA+A = A (left inverse property)

A+AA+ = A+ (right inverse property)
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These expressions demonstrate how the Moore-Penrose pseudo-inverse is computed based on the

dimensions of A and its full rank, providing a generalized form of matrix ”inversion” for

non-square matrices.

Property :-Projection and Relationship between Range and Null Space

The Moore-Penrose pseudo-inverse A+ can be interpreted as the projection matrix onto the kernel

(null space) of A, denoted by Pker(A), where:

A+A = Pker(A)

This means A+A projects any vector onto the space of vectors that A maps to zero, effectively

identifying the components of the vector that lie in the null space of A.

[1]The relationship between the range range(A) (denoted Im(A)) and the null space ker(A)

(denoted ker(A)) of A is important. [1] The range of A represents all possible outputs of A when

applied to vectors in its domain. The orthogonal complement of the range of A, denoted

range(A)⊥ or Im(AT ), is equal to the null space (kernel) of the transpose of A, i.e.:

range(A)⊥ = ker(AT ) = Im(AT )

Therefore, A+ can also be seen as providing the projection onto the null space ker(A), and A+A

projects onto ker(A), capturing the essence of the decomposition of the vector space based on the

action of A.



Conclusion

A framework for comprehending vector spaces, which is crucial to machine learning, is provided

by linear algebra. The data is represented by vectors, and it is manipulated and transformed

using different concepts of linear algebra. Images can be represented as matrices in linear algebra

through the use of image representation, which makes processing and analysis of picture data

more effective.

This project has demonstrated the pivotal role of linear algebra in machine learning, computer

vision, and robotics. By providing a framework for understanding vector spaces, linear algebra

enables the representation and manipulation of data, optimization of functions, and solution of

systems of equations. Its applications in computer vision, such as image processing, object

detection, and facial recognition, have revolutionized the field. Moreover, linear algebra’s

contributions to machine learning, including neural network optimization and dimensionality

reduction, have significantly improved model performance. Finally, its role in robotics,

particularly in motion planning, has enabled the development of more efficient and accurate

robotic systems. As the fields of machine learning, computer vision, and robotics continue to

evolve, the importance of linear algebra will only continue to grow.

Linear algebra offers a strong foundation for resolving issues in robotics, computer vision, and

machine learning. It is utilized to represent and work with data, optimize functions, and resolve

equation systems—all crucial abilities for any professional working in these domains.

Machine learning, computer vision, and robotics will all be impacted by linear algebra’s continued

spurring of innovation, which will open up new avenues and completely transform these industries

in the process. Its uses will keep growing, encompassing fields like: Autonomous Systems,

Healthcare and Biomedical Imaging and Cybersecurity.
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