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                                            ABSTRACT 

This study conducts a comprehensive literature review on Software Defect with a focus on 

the application of sequential models. Software defects can have severe repercussions, ranging 

from system failures to security vulnerabilities, necessitating the development of effective 

defect prediction techniques. While traditional methods have relied on handcrafted features 

and statistical models, the emergence of sequential models in the form of LSTM, RNN, and 

GRU, originally designed for sequence data, has garnered attention in the software 

engineering field. This review aims to provide an in-depth analysis of existing research on the 

use of sequential models for SDP. The study highlights methodologies, datasets, evaluation 

metrics, advantages, and challenges encountered in applying LSTM, RNN, and GRU for this 

purpose. The findings of this review are intended to guide researchers and practitioners in 

leveraging sequential models to enhance software quality. SDP plays a crucial role in software 

quality assurance, aiming to identify and address potential issues before they lead to failures 

or other adverse consequences. Traditional techniques often face limitations in capturing 

complex relationships between software artifacts and defects. Sequential models have 

emerged as promising alternatives for defect prediction tasks, showcasing improved 

performance and adaptability. 

This paper provides an introduction to software defect prediction, highlighting its importance 

and the challenges it poses, along with conventional approaches. We then delve into sequential 

models, discussing their principles, structure, functionality, and advantages in the context of 

defect prediction. Our review assesses current research on LSTM, RNN, and GRU-based 

software defect prediction, examining key contributions, methodologies, and results. We also 

explore various aspects of sequential models, including data pre-processing, network 

architecture design, and performance evaluation metrics. Through this analysis, we identify 

the strengths and limitations of these models, as well as the challenges and open research 

questions in the field. We conclude by highlighting areas for improvement in terms of 

interpretability, scalability, and robustness of these models. 

Finally, we propose future research directions and potential avenues for advancements in 

software defect prediction using sequential. These recommendations include the exploration 

of novel network architectures, the incorporation of domain-specific knowledge, and the 

development of hybrid models that combine the strengths of both traditional and deep learning 

techniques. Emphasis is also placed on the need for extensive empirical studies and 
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benchmarking efforts to facilitate the comparison and evaluation of different sequential model 

approaches. 
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                                         CHAPTER 1                

                                     INTRODUCTION 

 

1.1 Overview 

Software defects are a common occurrence in the field of software development, and they pose 

significant challenges to both developers and organizations. These defects can take different 

forms, ranging from minor bugs to critical vulnerabilities, which can result in system failures, 

security breaches, and financial losses. Therefore, it is crucial to develop effective defect 

prediction techniques that can help identify and address these issues proactively. 

Traditional approaches to defect prediction often rely on manual inspection, static analysis, and 

statistical modeling. These methods typically involve the extraction of handcrafted features 

from software artifacts, such as source code metrics, and the application of machine learning 

algorithms to classify or predict the presence of defects. While these techniques have been 

valuable, they may struggle to capture the intricate relationships and patterns present in 

software code, particularly in large-scale, complex systems. 

In recent years, the emergence of deep learning and sequential models has brought about 

significant changes in various fields, including NLP, computer vision, and time series analysis. 

Sequential models like LSTM [1][8][20], RNN [10][11][26], and GRU [14][19][28] are 

specifically created to process sequential data, making them ideal for tasks involving temporal 

dependencies and context. 

In the context of software defect prediction, the application of sequential models represents a 

paradigm shift from traditional methods. These models offer the potential to capture complex 

temporal relationships within software artifacts, leading to improved prediction accuracy and 

generalization. By leveraging the inherent structure and semantics of software code, sequential 

models have the capability to uncover hidden patterns and nuances that may evade 

conventional approaches. 

1.2 Motivation 

The purpose of this review is to improve the methodologies used in SDP, which are becoming 

more necessary as modern software systems become more complex and larger in scale. 
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Although traditional techniques can be effective in some situations, they may fall short when 

dealing with the intricacies of real-world software code. Factors such as the interaction between 

multiple software components, changing requirements, and rapid development cycles make it 

challenging to predict defects with accuracy. 

Sequential models offer a promising alternative to address these challenges by providing a 

framework for capturing temporal dependencies and contextual information within software 

artifacts. The ability of these models to learn from sequential data, such as source code 

revisions, execution traces, and user interactions, presents an opportunity to uncover latent 

patterns and correlations that may signify the presence of defects. 

By exploring the application of sequential models in SDP, this review aims to bridge the gap 

between traditional approaches and emerging techniques. By providing insights into the 

strengths, limitations, and practical considerations of using sequential models for defect 

prediction, this review seeks to empower researchers and practitioners to make informed 

decisions and drive advancements in software quality assurance. 

1.3 Problem Statement 

Despite the potential of sequential models in software defect prediction, there exists a gap in 

understanding their effectiveness, applicability, and limitations in real-world scenarios. 

Existing research in this area is fragmented, with studies focusing on specific aspects or 

applications of sequential models without providing a comprehensive overview of the field. 

This fragmentation hinders the development of a cohesive understanding of the strengths and 

weaknesses of sequential models in defect prediction. 

Furthermore, the lack of standardized methodologies, evaluation metrics, and benchmark 

datasets complicates the comparison and reproducibility of results across studies. This 

variability makes it challenging for researchers and practitioners to assess the true efficacy of 

sequential models and identify best practices for their implementation. 

Therefore, there is a need for a structured review that systematically evaluates the existing 

literature on the application of sequential models for software defect prediction. Such a review 

should encompass a broad range of methodologies, datasets, evaluation metrics, and case 

studies to provide a holistic perspective on the capabilities and limitations of sequential models 

in defect prediction tasks. 
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1.4 Objective 

The aim of this review is to conduct a detailed analysis of the existing research on the use of 

sequential models for predicting software defects. Specifically, this review intends to 

categorize and identify the methodologies employed in using sequential models for defect 

prediction, including the model architectures, training strategies, and feature representations. 

The study also intends to scrutinize the datasets used in sequential model-based defect 

prediction studies, considering factors such as size, diversity, and representativeness. 

Furthermore, this review aims to evaluate the performance metrics and evaluation criteria used 

to assess the effectiveness of the sequential models in defect prediction tasks. Additionally, it 

aims to recognize the advantages, limitations, and practical considerations of using sequential 

models for defect prediction in real-world scenarios. 

1.5 Thesis Structure 

The thesis is structured to systematically and comprehensively address the objectives. Chapter 

2, the Literature Review, provides an summary and overview of existing research on the 

application of sequential models for software defect prediction. It covers methodologies, 

datasets, evaluation metrics, and case studies. In Chapter 3, Methodology, the review's 

methodology is outlined, including search strategies, inclusion criteria, data extraction 

methods, and analysis techniques. Chapter 4, Findings and Analysis, presents the findings and 

provides a detailed analysis of the methodologies, datasets, evaluation metrics, and case studies 

identified in the literature. Finally, Chapter 5, Conclusion and Recommendations, this section 

highlights the key findings, examines their implications, and offers recommendations for 

directions in future research and practical applications. 

This structure ensures a systematic and comprehensive examination of the application of 

sequential models for software defect prediction, facilitating a deeper understanding of their 

capabilities and limitations in real-world scenarios. 
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                                            CHAPTER 2            

                                  LITERATURE REVIEW 

2.1 Software Defect Prediction 

An overview of recent studies conducted by different scholars on the topic of finding software 

flaws is given in this section. The research focuses on studies that used dimension reduction, 

pre-processing techniques, and sequential models to create a fault-free prediction model for 

software flaw prediction. Most research is used to build software prediction models, which 

enable software analysts to concentrate more on the code, give an estimate of the amount of 

work required, and determine whether the module has issues. This leads to the production of 

software that is of higher quality and makes better use of available resources.  

Building prediction models to identify software flaws is the main task of SDP. While many 

methods and algorithms have been applied to enhance the performance of SDP models, 

Figure 1 provides a summary of the primary stages of SDP:  

 Gather examples of both good and bad code from software sources.  

 To build a dataset, extract features.  

 If the dataset is unbalanced, correct it.  

 Utilise the dataset to train a prediction model.  

 Forecast the problematic components for a dataset taken from a fresh software project 

(or a   modified version of the trained dataset).  

  Assess the SDP model's performance.  
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                                                 Figure 2.1:  Software Defect Prediction Process 

SDP process starts by collecting both flawless and flawed code samples from various sources 

such as source codes, commit messages, and bug reports. These samples are often obtained 

from archives and repositories. In the second phase of the process, metrics are extracted from 

the software artifacts such as source codes, commit logs, and messages. These metrics serve as 

important input data for model training. Feature extraction is a crucial step in the process as it 

involves dealing with different data types and representations. Data types range from McCabe 

metrics, CK metrics, change histories, assembly code, to source code. Besides traditional 

metric-based approaches, modern Deep Learning (DL) techniques can automatically extract 

features from high-dimensional and complex data. 

An ensuing, optional step addresses data balance, imperative due to the typical scarcity of 

defective instances compared to non-faulty ones in defect datasets. Unfortunately, the class 

imbalance problem plagues most SDP techniques, impacting evaluation metrics. Techniques 

like oversampling are commonly employed to rectify this imbalance and enhance performance 

of SDP. 
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The step four in the process involves identifying any defective segments within the software. 

This requires a careful selection of deep learning (DL) algorithms and techniques, including 

various architectures like LSTM, and machine learning categories such as supervised or 

unsupervised. The level of granularity in identifying defects, whether it be at the module, file, 

class, function, or sentence level, is a critical consideration at this stage. Following this, the 

next step involves predicting defective segments within new test data by using the model 

trained in the previous stage. The predictions generated at this step serve as input for the final 

phase of the SDP process. 

After the SDP process is completed, the final step involves evaluating the developed model. 

Evaluation metrics like F measure or AUC are used to systematically assess the predictive 

models. This facilitates a comparison with other relevant studies within the research domain. 

2.2 Deep Learning based Sequential Models in SDP 

Predicting software faults is an essential task in software engineering, which involves 

identifying potential defects in software systems before they arise. The use of SDP can assist 

software developers and quality assurance team in improving the software products quality and 

reducing maintenance cost. In recent years, sequential models have been employed to predict 

software defects, and the results have been promising. 

Many research papers have shown that sequential models are effective in representing 

sequential data. These models have been utilized in defect prediction to simulate the temporal 

correlations between code changes and the emergence of defects in software systems. 

Sequential models can accept input sequences of varying lengths and can capture long-term 

dependencies in the data. 

How accurately LSTMs forecast software faults has been the subject of numerous studies. 

Wang et al. [1] suggested a Gated Hierarchical LSTM-based approach to predict software 

system issues. In order to utilise both conventional and semantic data, A semantic level LSTM 

and a traditional level LSTM were combined to create a hierarchical LSTMs model. The 

PROMISE dataset, that is the most often used repository for software defect prediction 

research, is the source of the data that they choose to employ. They particularly used ten open 

source Java programmes from the repository. The semantic aspects are taught using the source 

code files' AST token sequences. They take the AST token sequences out of the source code 

files using the open source Python library javalang. The outcomes of GH-LSTM perform better. 
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Farid et al. [3] defined hybrid model CBIL for SDP. It is a combination of CNN and Bi-LSTM. 

CIBIL utilizes CNN to extract semantic features from source code files by using tokens 

generated by the AST whereas Bi-LSTM is used to save data of long term dependencies to 

extract necessary features. Nasir Uddin et al. [6] proposed the SDP-BB to predict 

vulnerabilities. Bi-LSTM, they were able to retrieve contextual information from the word 

embedding token vector. The CIBIL model is tested using seven open source Java apps from 

the Promise repository. They came to the conclusion that the CIBIL model outperforms the 

baseline model by 30% and, on average, improves CNN's F- score by 25%. For CPDP and 

WPDP, respectively, CBIL[3] and SDP-BB[6] are both useful. However, in terms of overall 

performance, CIBIL exceeds SDP-BB. 

Munir et al. [2] presented a novel framework called DP-AGL that makes use of attention-based 

GRU-LSTM to forecast statement-level errors. They worked on the Bi-GRU and Bi-LSTM 

learning models as well as the 32 nodes for the metric. They took relevant properties from the 

LSTM output using an attention-based technique. DP-AGL was evaluated using 100,000 

C/C++ programmes from the open source databank Code 4 Bench [2]. The source code was 

also parsed into an AST format using Clang. For recall, precision, accuracy, and F1 measures, 

the DP-AGL model performed on average at 0.98, 0.617, 0.75, and 0.757, respectively. In terms 

of performance, DP-AGL, a new method for sentence-level granularity, outperforms Random 

Forest and SLDeep [3]. 

A technique for prediction of statement-level software defects was developed by Majd et al. 

[4]. They employed LSTM as the learning model and 32 statement-level measures to analyse 

SLDeep. More than 100,000 C/C++ programmes from the open source repository Code 4 

Bench were used to test this concept. To obtain accurate findings in this model, 10 fold cross 

validation was performed. Majd [4] claims that SLDeep could accurately anticipate phrases 

that were prone to errors with mean performance scores of 0.979, 0.570, and 0.702 in terms of 

recall, precision, and accuracy. Based on the aforementioned findings and validations, it can be 

said that SLDeep appears to be useful for predicting statement-level software defects. 

CM_LSTM was developed by Pemmada et al. [5] to estimate software problems in software 

modules using modelled data. Target variables have been modified in light of the 

characteristics' positive connection with the target variable. In order to address the imbalance 

problem in the SDP data, the prepared data is supplied to the LSTM model. They used five fold 

cross validation to validate the model's ability to forecast software defects. The JM1 dataset, 
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which comprises 21 method-level attributes, was used for the experiment. To solve the problem 

of data imbalance, they employed feature selection technique. The accuracy of CM-LSTM [5] 

is 92.6%, outperforming C-LSTM and other machine learning methods, whose accuracy ranges 

from 75% to 81%. 

A new framework for defect prediction called Seml was introduced by Liang et al. [8]. It 

combines deep learning and word embedding techniques. However, software measurements 

often miss the syntax and semantic content of programs. In order to solve this, a mapping table 

was created by transforming each token in the sequence into a real-valued vector using an 

unsupervised word embedding model. An LSTM network is then constructed using the vector 

sequences and their labels (defective or non-defective). The LSTM model is capable of 

predicting software defects and understanding the semantic content of programs. For the 

experiment, 13 projects were selected from the Apache Project repository and Github, which 

are available as open source. Seml [8] outperforms three cutting-edge defect prediction 

algorithms on most of the projects, giving better results for both WPDP and CPDP. 

LSTM based on bidirectional and tree structure (LSTM-BT) was proposed by Zhot et al. [8]. 

Bidirectional LSTM (BI- LSTM) and tree LSTM are combined in the proposed model. They 

created this methodology to take syntactic and semantic information out of source code. From 

promise dataset eight java projects which are open source were taken to build this paradigm. 

An embedding layer is used to extract features from vectors taken from an abstract syntax tree 

(AST), which are then put into an LSTM-BT to generate predictions. This model beat a number 

of other defect prediction models in terms of the MCC and AUC metrics, according to our 

testing on 8 pairs of projects. Overall, our results demonstrate that LSTM-BT is an effective 

approach for improving SDP performance. 

Hamza et al. [17] introduced a Layered Recurrent Neural Network (LRNN) coupled with 

wrapper feature selection algorithms (Binary Genetic Algorithm, Binary Particle Swarm 

Optimization, and Binary Ant Colony Optimization). The experiments, conducted on 19 Open 

Source Java Projects from the Promise Repository, reveal the LRNN's ability to achieve a 

noteworthy average classification rate of 0.8358 based on AUC results. The study underscores 

the importance of feature selection algorithms in Software Defect Prediction (SDP), 

positioning this iterative approach as a compelling method for enhancing software fault 

prediction across diverse Java projects. 
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Batool at al. [18] leverages two distinct datasets for analysis: Dataset-1, comprising 70 publicly 

available datasets with CK metrics (MFA, CA), and Dataset-2 sourced from the Git repository, 

consisting of 21 static metrics known as the GHPR dataset. Employing deep learning 

techniques, including LSTM, BI-LSTM, and RFCN, Batool conducts comprehensive 

experiments involving over 200 tests, varying hyperparameters, activation functions, and layer 

configurations. Notably, LSTM and BI-LSTM algorithms demonstrate superior performance 

with accuracies of 93.53% and 93.75%, respectively, while RFCN exhibits faster execution. 

The evaluation metrics encompass accuracy, recall, precision, F1-measure, and ROC-AUC, 

showcasing the outperformance of the proposed models against state-of-the-art approaches. 

However, the study acknowledges challenges in handling data imbalance, particularly in 

Dataset-1, where 82% of instances belong to the non-faulty class. The research employs 10-

fold cross-validation, explores correlation coefficients, and adopts standardization for dataset 

normalization, contributing to a robust and meticulously conducted analysis in the domain of 

software fault prediction. 

Wen et al. [24] and Chen et al. [29] both employ BI-LSTM architectures on ten Java Projects 

which are open source from the Promise dataset. Wen introduces BI-LSTM with a self-attention 

mechanism (BSLDP), showcasing its superiority over four baseline methods with significant 

improvements of 14.2%, 34.6%, 32.2%, and 23.6% in terms of F1 for defect prediction. The 

experiments highlighted that, in comparison to standard features examined by logistic 

regression, trained semantic features improve cross-project defect prediction by 34.5% in F1. 

However, the limitation lies in its application exclusively to Java-based projects. On the other 

hand, Chen employs BI-LSTM with attention in DeepCPDP, addressing the data imbalance 

problem through random under-sampling. The combined usage of SimASTToken2Vec, 

BiLSTM, and attention mechanisms proves highly effective, outperforming other state-of-the-

art methods. The experiments, conducted within the CPDP framework, incorporate effort-

aware evaluation measures like ACC and Popt, as well as non-effort aware measures such as 

AUC. Both studies contribute significantly to the domain of CPDP, demonstrating the efficacy 

of deep learning models in enhancing defect prediction across diverse projects. 

A technique introduced by Tian et al. [28] combines the Gated Recurrent Unit (GRU) with the 

System Dependence Graph (SDG) in order to improve predictive performance. In the study, 

the method was evaluated on a set of ten Java Projects which are open source that were 

extracted from the Promise Repository. The results demonstrated a significant increase in 

predictive performance, with an average improvement of 11.0% in F1 measure for within-
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project defect prediction and 10.4% in F1 measure for cross-project defect prediction when 

compared to the existing Tree-LSTM method. Precision, recall, and F-measure were all used 

as evaluation metrics. It should be noted that the experimentation was limited to Java projects 

and the study systematically applied SDG, a graphical representation that effectively captures 

semantic information and program dependence. Additionally, Word2Vec embedding was 

utilized to transform program slices into vectors, which bolstered the model's resilience. 

Xing et al. [22] proposed a novel approach that combines GAN and BI-LSTM called G-LSTM, 

which has demonstrated superior performance in CPDP compared to conventional and state-

of-the-art methods. The study collected data from five public projects in the Promise dataset, 

and the G-LSTM model outperformed other methods in terms of evaluation metrics like AUC 

and Accuracy. The model's generalizability is a significant strength, as it has been tested across 

20 pairs of source-target projects. CBOW word embedding algorithm was used to develop this 

approach, which aligns with the CPDP framework. 

                       Table 2.1 Summary of most recently used models and their parameters. 

Author Year Dataset Accuracy Evaluation 

Parameters 

Models  

 Hao Wang, Weiyuan 

Zhuang, and Xiaofang 

Zhang [1] 

2021 Promise F-Measure, PofB20, 

IFA, Popt 

LSTM 

Hafiz Shahbaz Munir, 

Shengbing Ren Shazib 

Qayyum [2] 

2021 Code4Bench Recall, Precision, 

Accuracy, F1 

Measure 

LSTM with 

attention 

 Ahmed Farid, Ahmed 

Sharaf Eldin ,Enas 

Mohamed Fathy, and 

Laila A. Abd-Elmegid [3] 

2021 Promise(7 Java 

Projects) 

F-Measure and AUC BI-LSTM and 

CNN 

Amirabbas Majd, 

Alireza Khalilian, 

Mojtaba Vahidi-Asl, 

Pooria Poorsarvi 

Tehrani, Hassan 

Haghighi [4] 

2019 Code4Bench Precision, Recall, 

Accuracy, F-

Measure 

LSTM 
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Suresh Kumar 

Pemmada, Janmenjoy 

Nayak, H. S. Behera  

 [5] 

2022 JM1, Promise Accuracy, F1-Score, 

ROC-AUC 

LSTM 

 Md Nasir Uddin, Zafar 

Ali, Bixin Li, Pavlos 

Kefalas, Inayat Khan, 

Islam Zada[6] 

2022 Promise Precision, Recall, F1-

Score 

BI-LSTM  

Xuan Zhou, Lu Lu [7] 2020 Promise MCC, AUC BI-LSTM and 

Tree-LSTM 

Hongliang Liang, Yue Yu, 

Lin Jiang, Zhousi Xie [8] 

  

2019 Promise(8 Java 

Projects), 

GitHub(5 

Projects) 

Precision, Recall, F1-

Score 

LSTM 

 Jiehan Deng, Lu Lu, 

Shaojian Qiu [9] 

2020 Promise F-Measure BI-LSTM 

Guisheng Fan, Xuyang 

Diao, Huiqun Yu, Kang 

Yang, Liqiong Chen [10]  

2019 Apache F1-Measure, AUC RNN with 

attention 

A J Anju, J. E. Judith [11] 2022 JM1 Accuracy, Precision, 

F1-score  

RNN 

Hoa Khanh Dam, Trang 

Pham [12] 

2019 Samsung, 

Promise 

Precision, AUC, 

Recall, F-Measure 

Tree-LSTM 

Guisheng Fan, Huiqun 

Yu, Kang Yang Xuyang 

Diao [13] 

2019 Apache F1-Measure RNN with 

attention 

 Nasraldeen Alnor Adam 

Khleel, Karoly Nehez 

[14] 

2023 Promise Accuracy, AUC, 

Precision, Recall, F-

Measure, MCC, 

AUCPR, MSE 

GRU and CNN 

Nasraldeen Alnor Adam 

Khleel [15] 

2022 GHPR Accuracy, AUC, 

Precision, Recall, F-

Measure, MCC, 

MSE 

CNN and Bi-

LSTM 
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 Prathyusha 

Tadapaneni, Naga 

Chandana Nadella, 

Mudili Divyanjali, 

Dr.Y.Sangeetha [16] 

2022 NASA Accuracy, MAE, 

MSE, R2 Score, 

RMSE 

LSTM, Naïve 

Bayes, DNN 

Hamza Turabieh, Majdi 

Mafarja, Xiaodong Li 

[17]  

2018 Promise AUC RNN, Feature 

Selection 

Algorithms 

 Iqra Batool, Tamim 

Ahmed Khan [18] 

2023 GHPR Accuracy, Recall, 

Precision, F1-

Measure, ROC-AUC 

LSTM, BI-LSTM 

and RFCN 

Nasraldeen Alnor Adam 

Khleel, Karoly Nehez 

[19] 

2023 Promise, 

GitHub 

Accuracy, F-

Measure, Precision, 

MSE, Recall, MCC, 

AUC, AUCPR 

LSTM and GRU 

Sushant Kumar Pandey, 

Anil Kumar Tripathi [20] 

2021 Promise MSE, MAE, Accuracy LSTM with 

attention 

 Emin Borandag [21] 2023 Eclipse, Jira Accuracy, AUC CNN, LSTM, BI-

LSTM, RNN 

Ying Xing [22] 2022 Promise(5 Java 

Projects) 

AUC, Accuracy GAN and BI-

LSTM 

Dingbang Fang , 

Shaoying Liu,  Ai Liu 

[23] 

2022 Promise(9 Java 

Projects) 

Popt, F-Measure BI-LSTM and 

ODCN 

Wanzhi Wen [24] 2022 Promise(10 

Java Projects) 

F1-Measure BI-LSTM with 

self attention. 

 Dingbang Fang,  

Shaoying Liu, Ai Liu [25] 

2021 Promise(7 Java 

Projects) 

F-Measure, AUC, 

MCC 

BI-LSTM and 

ODCN 

Xian Zhang, Kerong Ben, 

Jie Zeng [26] 

2018 Promise Precision, Recall, F1-

Measure, AUC 

LSTM 

Junhao Lin, Lu Lu [27] 2021 Promise(8 Java 

Projects) 

Recall, F-Measure, 

AUC, MCC 

BI-LSTM 

Junfeng Tian,  Yongqing 

Tian [28] 

2020 Promise(10 

Java Projects) 

Precision, Recall, F-

Measure 

GRU 



13 
 

Deyu Chen, Hao Li, 

Xiang Chen, Junfeng 

Xie, Yanzhou Mu [29] 

2019 Promise(10 

Java Projects) 

ACC, Popt and AUC BI-LSTM with 

attention 

Hao Li, Xiang Chen, 

Xiaohong Li, Xiaofei Xie, 

Yanzhou Mu, Zhiyong 

Feng [30] 

2019 Promise(10 

Java Projects) 

AUC BI-LSTM 

 Hani Bani-Salameh, 

Bashar Al shboul, 

Mohammed Sallam [31] 

2020 JIRA bug 

tracking 

system(5 

closed-source 

projects) 

Accuracy, Precision, 

Recall, F-Measure 

and MCC 

RNN-LSTM 
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                                        CHAPTER 3     

                RESEARCH OBJECTIVES AND METHODS 

The methodology plays a crucial role to conduct this research, as it offers a methodical and 

organised strategy to organising, carrying out, deriving conclusions from, and disseminating 

research investigations. Researchers can ensure the validity, reliability, and generalizability of 

the research by following a rigorous methodology, as well as enhance its impact and relevance. 

The systematization of any research may be done through following steps:  

1. Define the research question: Defining the research question that will be examined is the 

first stage review paper will address. Research questions are the central inquiries that guide a 

research study. They are the questions that the researcher seeks to answer through their 

investigation. A research question must be specific, answerable, clear, significant, feasible and 

relevant. A well formulated research question is essential for conducting a successful research 

study. Here are the steps to form research questions: 

                          

                                          Figure 3.1: Steps to define the research question 
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 Identify the research topic: Finding the study subject is the first stage in developing 

research questions. The topic should be specific and focused. The topic chosen here is 

SDP using Convolutional Neural Network. 

 Conduct a literature review: Forming research questions requires performing a 

literature study. It aids in determining the research and knowledge gaps that exist in the 

area.  

 Brainstorm potential research questions: Based on the research topic and literature 

review, brainstorm potential research questions. These questions should be specific, 

clear, and answerable. 

 Evaluate the research questions: Evaluate the potential research questions based on their 

relevance, feasibility, and significance. The research questions should be relevant to the 

research topic, feasible to answer, and significant in contributing to the existing 

knowledge.   

 Refine the research questions: Refine the research questions based on the evaluation. 

The refined research questions should be specific, clear, answerable, relevant, feasible, 

and significant.  

 Finalize the research questions: Finalize the research questions that will guide the 

research study. 

The research question formulated are mentioned and described in the below table: 

                              Table 3.1   Research questions and their description 

ID Research Question Description 

RQ1 What are the different sequential models 

employed for Software Defect Prediction? 

This research question elaborate 

about the type of sequential models 

employed in the study of SDP using 

sequential models. 

RQ2 What are the types of datasets used in the 

studies in SDP using sequential models? 

This research question explains about 

which type of datasets are used in the 

studies in Software Defect 

Prediction(SDP) using sequential 

models whether Open Source, Small 

Experiments or Industrial . 
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RQ3 What are the most commonly  used open-

source datasets across studies in Software 

Defect Prediction(SDP) research? 

This research question will provide 

further information about what are 

the most used datasets which are 

publicly available across studies. 

RQ4 How many number of studies employed 

Effort-Aware and Non-Effort-Aware metrics 

for SDP using sequential models? 

This research question will explore 

whether studies in SDP using 

sequential models employ effort-

aware or non-effort-aware evaluation 

metrics. 

RQ5 What are the most used metrics in non-effort 

aware scenarios across studies in SDP using 

sequential models? 

In this research question what are the 

most commonly used metrics in non-

effort-aware scenarios across studies 

will be discussed. 

RQ6 What are the temporal distribution of studies 

over years in SDP using sequential models? 

This research question describes 

about the interest of researchers or 

research attention in SDP using 

sequential models or number of 

studies across years published.  

 

2. Conduct a literature search: In the next step perform a thorough literature search to identify 

all relevant studies and articles. This can be done using different academic databases such as 

MDPI, ACM Digital Library, Springer, Science Direct and IEEE Xplore. The search included 

keywords such as "Software defect prediction", "SDP", "Long short-term memory", “GRU” 

and "RNN". We have used the advanced search feature to input different combinations of 

keywords for searching the papers.  
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                      Figure 3.2: Number of studies that are reviewed from each publisher 

3. Screen and select articles: After the literature search is finished, the following action is to 

screen and select articles that meet the inclusion criteria. The inclusion criteria used in the 

review include factors such as relevance to the research question, clarity of the technique used, 

well defined methodology and quality of the study.  

4. Extract data: The following step is to extract information from the chosen relevant articles. 

This include information such as the type of sequential models used, the dataset used for 

training and testing, the performance metrics used, metrics used is whether effort-aware or non-

effort aware, statistical test used, advantages and limitations of the study and the results 

obtained.  

5. Analyze and synthesize data: Once the data has been extracted, the next step is to analyze 

and synthesize it. This could involve comparing and contrasting the results obtained by 

different studies, identifying common themes and trends, and highlighting any gaps or 

limitations in the existing research.  

6. Write the review paper: Finally, the data analysis and synthesis can be used to write the 

review paper. The paper should include an introduction that provides background information 
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on SDP and various sequential models, literature review that summarizes the existing research, 

a discussion of the findings, along with a conclusion that summarizes the key findings and 

proposes areas for future research. 

Figure 2 shows process of research which is presented below: 

                              

                                                      Figure 3.3: Process of Research 
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                                        CHAPTER 4        

                           RESULTS AND DISCUSSION 

In this section, we present the results of the research on SDP utilizing sequential models. Our 

goal was to harness the power of models such as RNNs and LSTMs to enhance the accuracy 

of defect prediction in software development. Our experiments covered diverse datasets from 

varying software projects and domains, enabling us to evaluate the efficacy of these models. 

Our findings highlight the potential of sequential models to transform the field of software 

quality assurance by identifying and mitigating software defects. These findings contribute to 

the expanding knowledge base on advanced deep learning techniques for software engineering 

applications, underscoring the importance of sequential models in predicting software defects. 

4.1 Commonly employed Sequential Models employed for Software Defect Prediction. 

Deep learning techniques have brought a revolution in the field of SDP, offering advanced tools 

to analyze complex data from software development. Machine learning is used ingeniously 

through deep learning to automatically learn complex patterns, making predictive analytics a 

popular method in software engineering. Within this framework, sequential models are 

particularly significant, as they are capable of identifying and capturing the temporal 

dependencies that are inherent in the software development process. 

Sequential models have several advantages over traditional approaches, especially in Software 

Defect Prediction. Unlike conventional methods that may struggle to capture intricate temporal 

relationships, sequential models excel in discerning nuanced patterns over time. This temporal 

awareness is crucial in software defect prediction, as the occurrence of defects often depends 

on the historical context of development activities. Moreover, sequential models can gather 

semantic features from the temporal evolution of software processes, providing an advantage 

over traditional, non-sequential models. This semantic understanding enhances the models' 

ability to discern subtle contextual nuances and relationships, resulting in more accurate and 

informed predictions of software defects. 
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                         Figure 4.1: Number of studies for each sequential models employed. 

In 10 studies, Long Short-Term Memory (LSTM)[1][8][20] was used due to its recurrent neural 

network (RNN) architecture that captures prolonged dependencies in sequential data. 

Recurrent Neural Network (RNN) was used in 6 studies, showing its versatility in handling 

sequential data for predictive analytics in detecting software defects. Additionally, Gated 

Recurrent Unit (GRU)[14][19][28] was applied in 4 studies, indicating its role as an alternative 

recurrent neural network architecture that has a simplified structure, yet remains effective in 

modeling sequential dependencies. 

The use of Bidirectional LSTM (BI-LSTM)[3][6][9][15][22] is very common in software 

development, with 14 studies identifying it as a powerful model for processing input data in 

both directions to capture complex temporal dependencies. This makes BI-LSTM highly 

effective in predicting software defects. Additionally, Tree-LSTM[7][12] is mentioned in 2 

studies as a specialized and innovative approach to sequential modeling for tree-structured data 

in the context of software defect prediction. 

The frequent use of sequential models in software defect prediction research highlights their 

importance in advancing the field. These models are particularly effective in capturing and 

utilizing temporal dependencies within software development data. Bidirectional LSTM (BI-

LSTM) is the most commonly used model, appearing in 14 studies, due to its proficiency in 

capturing nuanced temporal dependencies. Long Short-Term Memory (LSTM) is also widely 

used, appearing in 10 studies, which reinforces its relevance in the research landscape. The 

consistent use of advanced sequential models, including GRU, RNN[10][21][26], and Tree-
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LSTM, confirms their significant impact in improving the methodology and reliability of 

software defect prediction models. 

4.2 Types of datasets used in the studies in SDP using sequential models. 

In the realm of SDP research that employs sequential models, the importance of datasets cannot 

be overstated. Datasets form the foundation on which predictive models are built and their 

selection plays a crucial role in ensuring the robustness and generalizability of the findings. It 

is imperative for researchers to carefully curate and explore diverse datasets in order to develop 

effective sequential models that can discern patterns and dependencies within software 

development processes. 

Datasets play a crucial role in SDP research as they have the ability to capture the complexity 

and variability that is inherent in software development. These datasets are essentially 

repositories of historical information that offer valuable insights into the temporal evolution of 

projects. They also help in identifying factors that contribute to software defects. In the context 

of sequential models that are exceptional in capturing temporal dependencies, the importance 

of selecting the right datasets becomes even more critical. Given the complex and collaborative 

nature of software development, it is imperative to have datasets that emulate real-world 

scenarios. 

 

                                    Figure 4.2: Different types of datasets used in studies 
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The types of datasets employed in SDP research using sequential models exhibit a spectrum of 

characteristics. Open Source Projects[1][3][4][11], often sourced from repositories like 

PROMISE, provide a wealth of publicly available data, reflecting the collaborative nature of 

open source software development. Industrial Projects[12][31], such as those from 

Samsung[12], introduce an element of real-world applicability, addressing challenges unique 

to commercial software development. Additionally, Small Experiments[21], involving datasets 

prepared by researchers, allow for controlled exploration and methodological advancements. 

This array of dataset types underscores the need for a multifaceted approach, considering the 

diverse contexts in which software defect prediction models are applied. In the subsequent 

analysis, we delve into the distribution and characteristics of these datasets in the context of 

SDP research utilizing sequential models. 

4.3 Most commonly used open-source datasets across studies in Software Defect 

Prediction(SDP) research. 

Several open-source datasets are commonly used in studies on SDP, including 

PROMISE[1][3][7][9][12], Code4Bench[2][4], JM1[5][11], Samsung[12], GHPR 

(GitHub)[15][18], and others. Among these, the PROMISE dataset is the most frequently used 

in 21 studies, indicating its prevalence and importance in the research landscape. Code4Bench 

and JM1, each utilized in two studies, contribute to the diversity of datasets employed in 

empirical research. The Samsung dataset, featured in one study, provides insights into software 

defect prediction challenges within proprietary software development environments. 

Additionally, the GHPR dataset[15][18] is utilized in two studies, demonstrating the increasing 

reliance on real-world, version-controlled data from collaborative platforms like GitHub. Apart 

from these explicitly mentioned datasets, three other datasets, collectively referred to as 

"Others," are employed in three studies, highlighting the continuous exploration of alternative 

datasets in the pursuit of comprehensive and robust software defect prediction models. The 

variety of datasets, encompassing different project types and metrics, underscores their 

collective significance in advancing the understanding of software quality and maintenance 
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effort in the software development process.

 

                                 Figure 4.3: Common open source datasets across studies. 

PROMISE (Predictive Models in Software Engineering): The PROMISE dataset 

[1][3][7][9][12] is a repository of software engineering datasets that includes data from various 

software projects, both open-source and proprietary. The repository contains datasets related to 

various aspects of software engineering, such as requirements engineering, effort estimation, 

and defect prediction. The goal of the PROMISE repository is to provide a standardized set of 

datasets for researchers to use in their studies, enabling more accurate comparisons between 

different studies and models. The Promise dataset consist of projects such as camel, xerxces, 

jEdit, xalan, ant, ivy, synapse, poi, etc. 

Code4Bench:  

The Code4Bench dataset[2][4] is designed as a comprehensive repository for software defect 

prediction, offering a diverse collection of C/C++ code contributions from different developers 

addressing varied programming problems. In contrast to the PROMISE dataset, Code4Bench 

is specifically tailored for the analysis of code quality and defect occurrences in C/C++ 

projects. Code4Bench offers an extensive dataset for researchers to delve into the complexities 

of software defect prediction within the C/C++ programming domain. The structured format 

of the dataset, including tables explicitly specifying defective and correct versions, enhances 
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its usability for studies focused on understanding the intricate relationships between code 

features and defect occurrences in this specific programming context. 

In Software Defect Prediction (SDP) research, utilizing various datasets with their specific 

strengths and contexts enriches collective knowledge. Open-source datasets such as Promise, 

Code4Bench, JM1, Samsung, GHPR (GitHub), and others, including NASA[16] and JIRA[21] 

datasets, offer a wide range of nuances. NASA dataset[16] is recognized for its broad 

application across various software engineering domains and provides a valuable resource for 

analyzing software defects. On the other hand, JIRA[21], a widely used issue tracking system, 

offers insights into different issue types, including bug reports and enhancements. This 

inclusive approach to dataset utilization deepens researchers' insights into the multifaceted 

nature of software defect prediction when employing sequential models. It encompasses both 

traditional code-centric repositories and broader issue-tracking perspectives. The collective 

exploration of these datasets contributes to advancing the methodologies and reliability of 

software defect prediction models, fostering continuous improvement in the understanding and 

mitigation of software defects. 

4.4 Number of studies employed Effort-Aware and Non-Effort-Aware metrics for SDP 

using sequential models. 

In the field of Software Defect Prediction the distinction between Effort-Aware[1][23][29] and 

Non-Effort-Aware metrics[2][4][5][6][8][11][13][23] takes on a crucial role in shaping the 

methodologies employed by researchers. Effort-Aware metrics[1][23][29], such as Popt, 

PofB20, IFA, and ACC, focus on capturing factors related to the effort expended during the 

software development process. These metrics often include measures that assess the resource 

allocation, complexity, and time spent in creating and maintaining software. Integrating Effort-

Aware metrics into SDP models acknowledges the intrinsic connection between the effort 

exerted in development and the likelihood of encountering defects. This approach enables 

researchers to gain insights not only into the probability of defects but also into the resource 

implications associated with different software components. 
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       Figure 4.4: Number of studies that used effort-aware and non-effort-aware metrics 

On the other hand, there are Non-Effort-Aware metrics in SDP[2][4][5][6][8][11][13][23] that 

focus exclusively on intrinsic code characteristics such as precision, recall, and accuracy, rather 

than the effort or resources invested in software development. These metrics, which include F-

Measure, Precision, Recall, Accuracy, and F1-Measure, are useful in identifying defect-prone 

areas and providing a more code-centric perspective. Non-Effort-Aware metrics are important 

because they allow us to assess the inherent properties of the code and predict software defects 

without considering development effort. 

In the landscape of SDP studies employing sequential models, the distribution of the usage of 

Effort-Aware and Non-Effort-Aware metrics is noteworthy. Thirty one studies have opted for 

Non-Effort-Aware metrics, emphasizing the significance of code-centric characteristics in 

predicting software defects without explicit consideration of development effort. In contrast, a 

more limited number of studies, precisely three, have integrated Effort-Aware metrics, 

reflecting a subset of research endeavors that seek to understand the interplay between 

development effort and defect occurrences. This diversity in metric selection highlights the 

nuanced approaches within SDP research, allowing for a comprehensive exploration of factors 

contributing to software defects when utilizing sequential models. 

4.5 Metrics used in non-effort-aware scenarios across studies in SDP using sequential 

models. 
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In the domain of Software Defect Prediction using sequential models, the selection and 

evaluation of appropriate metrics are paramount to assess the predictive efficacy of models 

without explicit consideration of development effort. Non-Effort-Aware metrics play a pivotal 

role in this context, focusing exclusively on intrinsic code characteristics and defect 

occurrences, disregarding the resources or effort invested in the software development process. 

These metrics provide a code-centric perspective, allowing researchers to gain insights into the 

inherent properties of the codebase and its predictive capabilities. Various non-effort-aware 

metrics that were used in studies are: 

1. F-Measure: F-Measure is a widely employed metric in Non-Effort-Aware scenarios, 

with 13 studies incorporating it into their analyses. F-Measure combines precision and 

recall, offering a unbiased assessment of a models’s results in predicting both positives 

and negatives[1][3][9]. 

2. Precision: Precision is a key metric used in 14 studies, highlighting its importance in 

evaluating the accuracy of positive predictions made by a model. It is particularly 

relevant in scenarios where minimizing false positives is crucial[2][4][18]. 

3. Recall: Recall, used in 15 studies, focuses on the ability of a model to identify all 

relevant instances of a positive class. It is important in situations where capturing as 

many true positives as possible is a primary concern[6][8][12]. 

4. Accuracy: Accuracy, featured in 13 studies, provides a holistic measure of a model's 

correctness by considering both true positives and true negatives in relation to the total 

instances. It is a fundamental metric in classification scenarios[16][18][31]. 

5. F1-Measure: F1-Measure, which appears in 11 studies, evaluates a performance of 

model by considering both false positives and false negatives, offering a balanced 

assessment of precision and recall[10][12][28]. 

6. AUC: Area Under the Receiver Operating Characteristic Curve (AUC), which is 

utilized in 17 studies, assesses the ability of the model to differentiate between positive 

and negative instances by varying the thresholds. It is widely adopted as a metric for 

binary classification tasks [3][5][18][22][25]. 

7. MCC (Matthews Correlation Coefficient): MCC, featured in 7 studies, takes into 

consideration true and false positives and negatives, providing a balanced measure that 

is particularly robust for imbalanced datasets[7][14][25]. 
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8. AUCPR (Area Under the Precision-Recall Curve): AUCPR, employed in 2 studies, 

evaluates the model's performance by considering precision and recall across different 

decision thresholds, offering insights into classification performance in imbalanced 

datasets[14][19]. 

9. MSE (Mean Squared Error): Five studies used Mean Squared Error to quantify 

prediction accuracy, measuring the mean squared difference between actual and 

predicted values[14][19][20]. 

10. MAE (Mean Absolute Error): Mean Absolute Error, appearing in 2 studies, evaluates 

the average absolute difference between predicted and actual values, offering insights 

into the magnitude of errors[16][20]. 

11. R2 Score: R2 Score, as featured in one study, measures the proportion of variance in 

the dependent variable that can be predicted by the independent variables. It provides 

an indicator of prediction quality[16]. 

12. RMSE (Root Mean Squared Error): Root Mean Squared Error, utilized in 1 study, is 

a variation of Mean Squared Error, offering a measure of the average magnitude of the 

errors[16]. 

13. KE (Kappa Error): Kappa Error, featured in 1 study, assesses the agreement between 

predicted and observed values while considering the agreement that could occur by 

chance[1]. 
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                            Figure 4.5: Most used metrics in non-effort-aware scenarios 

Among these metrics, AUC[3][5][18][22][25] stands out as the most commonly utilized, 

featured in 17 studies, showcasing its widespread adoption for assessing model performance in 

distinguishing between positive and negative instances. In contrast, R2 Score[16], Kappa Error 

(KE)[1], and Root Mean Squared Error (RMSE)[16] are the least employed, each appearing in 

only one study. The limited use of these metrics could be attributed to their specific 

applicability or relevance in certain specialized contexts. While AUC serves as a robust 

indicator of classification performance, the less frequently used metrics like R2 Score, KE, and 

RMSE might cater to unique requirements within the broader SDP research landscape. This 

distribution highlights the importance of tailored metric selection based on the specific goals 

and characteristics of individual studies. 

4.6 Distribution of studies over years in SDP using sequential models. 

The use of sequential models, such as LSTM [1][8][20], GRU [14][19][28], and Bidirectional 

LSTM (BI-LSTM) [3][6][9][15][22]  in Software Defect Prediction (SDP) has marked a 

significant shift in recent years. In 2018, a seminal paper[17][26] was published introducing 

the use of a sequential model for SDP, which has since gained considerable traction. This 

pioneering work has paved the way for subsequent studies to explore the potential of sequential 

models in predicting software defects. The increasing number of studies from 2018 onwards 

underscores the growing interest and recognition of the effectiveness of sequential models in 

the field of SDP. Researchers are now relying more on these models to improve predictive 

accuracy and reliability in identifying possible software defects. 



29 
 

 

                                   Figure 4.6: The distribution of studies over years 

The use of sequential models like LSTM, GRU, BI-LSTM has become common in Software 

Defect Prediction (SDP) research. This is because these models are capable of capturing 

semantic features and temporal dependencies within software development data. Unlike 

traditional deep learning models, sequential models are proficient in recognizing patterns and 

trends over time. This is highly beneficial in software development as it is inherently dynamic. 

Sequential models can retain and process information across sequential data, which enables a 

nuanced understanding of the temporal relationships between different code components. This, 

in turn, contributes to an enhancement in defect prediction accuracy. Therefore, researchers can 

more effectively identify and mitigate potential software defects. 

Software defect prediction (SDP) research has seen a significant rise in the use of sequential 

models lately. The year 2022 witnessed a surge in research activity with the publication of eight 

papers utilizing sequential models, indicating a growing interest and appreciation for their 

effectiveness in SDP. Researchers are exploring and leveraging LSTM, GRU, BI-LSTM, and 

other models to advance the methodologies and reliability of SDP beyond traditional deep 

learning models. With the distinct advantages of sequential models and the increasing interest 

in them, they are expected to become pivotal tools in the ongoing evolution of SDP 

methodologies. 
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                                         CHAPTER 5   

                       CONCLUSION AND FUTURE WORK 

The application of sequential models, such as Long Short-Term Memory (LSTM) [1][8][20], 

Bi-Directional LSTM (Bi-LSTM) [3][6][9][15][22], and Gated Recurrent Unit (GRU) 

[14][19][28], in software defect prediction has been a significant development in recent years. 

Among these models, Bi-Directional Long Short-Term Memory (Bi-LSTM) is the most 

commonly used in software defect prediction. However, the reliance on the Promise repository 

as the primary dataset highlights the need for diversification in data sources to improve the 

applicability of predictive models to real-world software environments. It is worth noting that 

most studies mainly use non-effort aware metrics, leaving a gap in the integration of effort-

aware metrics[1][23][29],  like Popt and PofB20 in defect prediction. This observation calls 

for a more comprehensive and nuanced approach to evaluating software defect prediction 

models that aligns with the multifaceted nature of software development and quality 

assessment. 

In order to improve the accuracy and practical applicability of predictive models for software 

defect analysis, it is important to prioritize the exploration of diverse datasets obtained from 

real-world software systems. Currently most of the researchers use dataset from promise 

repository[1][3][7][9][12],  so, reliance on a single dataset may introduce biases and limit the 

representativeness of research findings. Collaborative efforts with industrial partners can 

facilitate the acquisition of such diverse datasets, contributing to the robustness of predictive 

models. By expanding the scope of datasets, researchers can gain a more comprehensive 

understanding of software defects, which will help to improve the reliability of software 

systems in the future. 

In addition, the positive results achieved by hybrid models, such as the combination of Bi-

LSTM and GRU[19], suggest that they should be given more attention in future research. 

Hybrid models demonstrate the possibility of combining different sequential architectures to 

improve predictive performance. Analyzing the complementary strengths of various sequential 

models and hybrid approaches can lead to the development of more robust and versatile 

software defect prediction models. It is essential to conduct further research on improving 

advanced sequential models by diversifying datasets, exploring hybrid models, and addressing 

the challenges associated with interpretability. The transparency of model decision-making 
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processes should be enhanced, especially in safety-critical applications, to instill confidence in 

the predictions made by these models. 

To sum up, the research findings stress the significance of diversifying datasets for software 

defect prediction, exploring hybrid models, and tackling interpretability challenges. By 

following these avenues, the research community can enhance the state-of-the-art in software 

defect prediction, leading to better software quality and decreased development costs. 
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