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Abstract
The thesis is divided into seven chapters, the contents which are organized as follows:

Chapter1 of the thesis covers the literature and historical foundation of certain important

approximation operators. We give a brief overview of the chapters that make up this thesis and

talk about some of the preliminary tools we’ll use to get to the subject depth.

Chapter 2 introduces a new sequence of operators involving Apostol-Genocchi polynomials

and their integral variants. We estimate some direct convergence results using the second-order

modulus of continuity, Voronovskaja type approximation theorem. Moreover, we find weighted

approximation results of these operators. Finally, we derive the Kantorovich variant of the

given operators involving Apostol-Genocchi polynomials, and their approximation properties

are studied.

Next Chapter 3 is mainly focused on the Bézier variant of the Bernstein-Durrmeyer type

operators. First, we estimate the moments for these operators. Then, we determine the rate of

approximation of the operators R̆(ρ,α)
n,r,s ( f ;x) in terms of the Ditzian-Totik modulus of continuity

and over the Lipschitz-type spaces. It is addressed how smooth functions with derivatives

of bounded variation converge. Finally, graphic depiction of the theoretical findings and the

efficiency of these operators are shown.

Chapter 4 deals with certain approximation properties of Cheney-Sharma Chlodovsky Dur-

rmeyer operators. Using the moments of these operators Bohman-Korovkin’s theorem is val-

idated. After that, the convergence of the CSCD operators is discussed over Lipschitz-type

space and in terms of modulus of continuity. In the next section, the weighted approximation

result is obtained. Lastly, some estimates on the A-Statistical convergence of these operators

are established.

Chapter 5 provides the generalization of the family of Bernstein polynomials over a differ-

ent set of operators proposed by Mache and Zhou [66]. We investigate certain approximation

properties for these operators, such as the rate of convergence via second-order modulus of

continuity, Lipschitz space, Ditzian-Totik moduli of smoothness, Voronovskaya theorem, Gruss-

Voronovskaya theorem, and weighted approximation properties. Finally, we have illustrated the

convergence of our operators graphically. In the next section of this chapter, we consider the

Durrmeyer variant of modified Bernstein polynomials. First, we provide the auxiliary results

and demonstrate the Bohman-Korovkin theorem. Then, we explore some approximation prop-

erties such as the rate of convergence using the Ditzian-Totik modulus of continuity, Vorono-

vaskaja type and weighted approximation theorem for these operators. Finally, the convergence

behavior have been shown graphically.
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The aim of Chapter 6 is to introduce and study a new sequence of operators using Appell

polynomials of class A2. First, the moments for these operators are established. Then, we study

an estimate of error in approximation in terms of modulus of continuity and rate of convergence

in weighted space for these operators. Finally, we obtain the rate of convergence for the function

having the derivatives of bounded variation.

The thesis is summarised in Chapter 7, before providing some insight into the author’s

thoughts about the future research.
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Chapter 1

Introduction

1.0.1 Historical Backdrop Review

One of the branches of mathematical analysis, the theory of approximation plays a principal

role. The theory of convergence of these types of sequences has been a major field of research

in the past couple of decades. The approximation theory contains both theoretical and prac-

tical components. Even after not being the best approximation polynomials, linear positive

operators have some desirable characteristics, such as the willingness to approximate deriva-

tives, maintain certain function properties (convexity, smoothness), and classify prioritizes of

functions according to the degree of approximation that can be accomplished.

One of the most fundamental theorems of approximation theory was stated by Weierstrass

in the year 1885 and is also known as the Weierstrass approximation theorem. This theorem

states that given any continuous function f (x) on an interval [a,b] and a sufference ε > 0, a

polynomial pn(x) on sufficiently degree n exists, such that | f (x)− pn(x)| < ε, for x ∈ [a,b]. The

sequence of polynomials can be used to approximate any continuous function f (x) uniformly.

In the case of trigonometric polynomials, the Weierstrass theorem says that if a continuous

function f has period 2π on the real axis then this function f can be uniformly approximated

by a trigonometric polynomials Tn(x) on an interval.

After that, important mathematicians affiliated with the Weierstrass approximation theorem

include Runge, Lebesgue, Landau, Vallee-Poussin, Fejer, Jackson, and Bernstein. Lebesgue,

Landau, and Sergei Natanovich Bernstein gave the analytical proof of the Weierstrass theorem

in respective publications in the year 1898, 1908 and 1912, respectively. Russian mathematician

Bernstein [14] developed the Bernstien polynomial and this polynomial sequence uniformly

converges to f on [0,1], also its derivative converges to f as n→ ∞, providing useful proof of

3



the Weierstrass theorem. Bernstein Operators Bn : C[0,1]→ R are given by

Bn( f ,x) =
n

∑
k=0

pn,k(x) f
(

k
n

)
, x ∈ [0,1],

where the basis function pn,k(x)=
(n

k

)
xk(1−x)n−k. Bn( f ,x) are a convex combination of f (0), f (1

n), · · · f (1).

These operators are linear and positive.

Stancu polynomials [90], Durrmeyer polynomials [27], Szász operators [96], Cheney–Sharma

operators [16], modified Berstein polynomials, modified Szász operators, Kantorovich operators

[60], Baskakov operators [12], and more are just a few examples of other approximation operators

whose construction are proposed by the Bernstein polynomials as a result of there continuous

form.

Myriad researchers worked on these finite summation polynomials and achieved approximation

results on the finite intervals. Over the last few years several mathematicians have worked on

new modifications of such operators and studied the approximation properties like the degree

of approximation and asymptotic formula (cf.[21, 22, 42, 44, 46] and [55]).

Addressing the main concepts of approximation theory (rate of convergence and asymptotic

behavior) is the goal of a general approximation method. To bring it to the appropriate stage,

the accuracy can be established. We are also concerned about the computation that be required

to accomplish this accuracy. A direct theorem gives the order of approximation for functions

with a certain level of smoothness. In modeling real-world processes, asymptotic analysis is a

crucial tool for investigating the ordinary and partial differential equations that occur there. A

convergent sequence approaches its limit quickly according to the rate of convergence.

Working continuously in this area, S. Mirakyan [68] and O. Szász [96] proposed the extension

of the Bernstein operators for [0,∞) in 1941 and 1950, defined as:

Sn( f ,x) =
∞

∑
k=0

e−nx (nx)k

k!
f
(

k
n

)
, x ∈ [0,∞), (1.1)

where f is a continuous function on [0,∞). These operators are called Szász-Mirakyan operators

in (1.1). Generalization of Szász operators for the approximation in the infinite interval was

presented by Jakimovski et al..

In 1972, one step forward in the field of the industry was given by Bézier, who invented the

Renault vehicle and introduced the curve is known as Bézier curves. Symmetry of these curves

makes them valuable for computer-aided design. In 1983, Chang [35] discussed the generalized

Bernstein-Bézier polynomials and calculated the rate of convergence. Zeng and Piriou [102]

studied the rate of convergence of two Bernstein-Bézier type operators for bounded variation

functions. The order of approximation of the summation-integral type operators for functions

4



with derivatives of bounded variation is estimated in [7, 100, 103]. Various authors have studied

the approximation behaviour of such Bézier type operators (see [1, 39, 48, 85, 89]).

Positive linear operators prompted various researchers interest in the theory of approximation

of functions following the work of Bohman and Korovkin. Several examples of new sequences

and classes of linear positive operators were created and investigated as well as the previously

established cases. Operators are broadly applied in many computer science and mathematics

applications. Moments serve a vital significance for comprehending how a sequence of linear

positive operators converges. Moments can be obtained using a multitude of methods, involv-

ing direct computations, recurrence relations, and the use of hypergeometric series. Degree of

approximation and the asymptotic formula are two approximation qualities that many mathe-

maticians have been studying recently while working on novel adaptations of these operators.

In the study of the major theorems of approximation theory, rate of convergence, asymp-

totic behavior are important aspects. The order of approximation for functions of a particular

smoothness is given by a direct theorem. When modeling real-world processes mathemati-

cally, asymptotic analysis is a crucial tool for investigating the ordinary and partial differential

equations results.

Many connections exist between mathematics and other applied sciences, including machine

learning, computer-aided geometric design (CAGD), and combinatorics, due to the generating

functions. The purpose of generating functions is to efficiently transfer issues involving se-

quences into problems involving functions. Many researchers have used Genocchi polynomials

and found results from generating functions in their studies. Counting the number of up-down

ascent sequences is one of the applications of Genocchi numbers that Jeff Remmel studied. Sri-

vastava et al.[84] proposed a new form of Euler-type polynomials with the aid of their generating

function and presented an analog abstraction of the closely related Genocchi-type polynomials.

Approximation of continuous functions by linear positive operators using the statistical con-

vergence or matrix summability approach is one of the most actively researched topics in ap-

proximation theory. In mathematics perception, when a sequence is not convergent, we use

uniform convergence alongside statistical convergence and utilize gesture approximation for dif-

ferent function spaces. Initial approach to address statistical convergence for linear positive

operator sequences was put forward in 2002 by A. D. Gadjiev and C. Orhan. Many researchers

have turned to approximation theory as an outcome of this technique’s proven fruitfulness.

It has been noted in the statistical convergence theory that certain sequences have statistical

convergence but not regular convergence. Inspired by above fact, our focus is to derive positive

linear operators of integral type and study their statistical approximation effects.
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1.1 Definitions and well-known operators

1.1.1 Definitions

Definition 1.1.1 (Positive linear operators). Assume that X ,Y are two real function linear spaces. A

linear operator is defined as a mapping L : X → Y , if

L(a f +bg;x) = aL( f ;x)+bL(g;x), f ,g ∈ X , & a,b ∈ R.

The operators L is a positive linear operator if for all f ≥ 0, f ∈ X such that L( f ;x)≥ 0.

Proposition 1.1.1. Consider L : X→Y be a of positive linear operator. Then the following inequalities

are true:

• If f ,g ∈ X, with f ≤ g, then L( f ;x)≤ L(g;x),

• |L( f ;x)| ≤ L(| f |;x).

Definition 1.1.2 (Modulus of continuity). As a long history of the modulus of smoothness (continuity),

In 1911, D. Jackson used it in his Ph.D. thesis, this work is known today as Quantitative Approximation

Theory. Continuation work in this area, In the year 1987, Ditzian and Totik proposed a natural modulus

of smoothness which is a better outfit to give out with the rate of best approximation.

For k ∈ N, δ ∈ R+ and f ∈C[a,b], then the modulus of smoothness of order k is defined by

ωk( f ,δ ) = sup{|∆k
h f (x)| |0≤ h≤ δ , x,x+ kh ∈ [a,b]},

where

∆
k
δ

f (x) =
k

∑
j=0

(
k
j

)
(−1)k− j f (x+ jδ ).

Definition 1.1.3 (Peetre-K functional). The regular modulus of continuity of f ∈C[a,b] by

ω( f , t) = sup
0<h≤t

sup
x,x+h∈[a,b]

| f (x+h)− f (x)|.

Let f ∈C[a,b], the Peetre’s K -functional is defined by

K2( f ; t) = inf
g∈C2[a,b]

{‖ f −g‖+ t‖g′‖+ t2‖g′′‖}, t > 0

and C2[a,b] = {g ∈C[a,b] : g′,g′′ ∈C[a,b]}. By [16], there exists an absolute constant C > 0 such that

K2( f ; t)≤Cω2( f ;
√

t). (1.2)
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For f ∈CB[0,∞) and δ > 0, Peetre-K functional, a different technique to estimate the smoothness of

a functions is given by

K2( f ,δ ) = inf
g∈W 2
{‖ f −g‖+δ‖g′′‖},

where W 2 = {g∈CB[0,∞) : g′,g′′ ∈CB[0,∞)} and ‖ f‖= sup{| f (x)| : x∈ [0,∞)}. By ([24] p.177, Thm.

2.4), there exists an absolute constant C > 0 such that

K2( f ,δ )≤C ω2( f ,
√

δ ), (1.3)

where

ω2( f ,
√

δ ) = sup
0<h≤

√
δ

sup
x∈[0,∞)

| f (x+2h)−2 f (x+h)+ f (x)|

is the second order modulus of smoothness.

Definition 1.1.4 (Ditzian-Totik modulus of smoothness). The Ditzian-Totik modulus of smoothness

ωφ ( f , t), t ∈ [0,1] (cf. [25]). For φ(x) =
√

x(1− x), f ∈C[0,1], the first order modulus of smoothness

is given by

ωφ ( f ; t) = sup
0<h≤t

{∣∣∣∣ f (x+
hφ(x)

2

)
− f

(
x− hφ(x)

2

)∣∣∣∣ , x± hφ(x)
2
∈ [0,1]

}
,

and the appropriate Peetre’s K−functional is defined by

Kφ ( f ; t) = inf
g∈Wφ

{‖ f −g‖+ t‖φg′‖+ t2‖g′‖} (t > 0),

where Wφ = {g : g ∈ ACloc,‖φg′‖ < ∞,‖g′‖ < ∞} and ‖.‖ is the uniform norm on C[0,1]. It is known

from ([25], Thm. 3.1.2) that Kφ ( f ; t)∼ ωφ ( f ; t) which means there exists a constant M > 0 such that

M−1
ωφ ( f ; t)≤ Kφ ( f ; t)≤Mωφ ( f ; t). (1.4)

Definition 1.1.5 (Lipschitz class). Spaces of the Lipschitz type are defined as:

LipM(σ) =

{
f ∈CB[0,∞) : | f (t)− f (x)| ≤ M

|t− x|σ

(t + x)
σ

2

}
.

Özarslan and Aktuğlu [71], consider the Lipschitz-type space with two parameters a,b > 0, we have

Lipa,b
M (σ) =

{
f ∈CB[0,∞) : | f (t)− f (x)≤ M

|t− x|σ

(t +ax2 +bx)
σ

2

}
,

where 0 < x, t < ∞, M > 0 is a constant and 0 < σ ≤ 1.
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Definition 1.1.6 (Weighted Approximation). Consider the space

C∗τ [0,∞) =

{
f ∈CB[0,∞) : lim

x→∞

| f (x)|
τ(x)

exists and is finite
}
.

Yüksel and Ispir defined the weighted modulus of continuity Ω∗( f ;δ ), as

Ω
∗( f ;δ ) = sup

x∈[0,∞),0<h<δ

| f (x+h)− f (x)|
1+(x+h)2 ,

where f ∈C∗τ [0,∞), τ(x) = 1+ x2.

Proposition 1.1.2. Let f ∈C∗τ [0,∞). Then the following results hold:

1. Ω∗( f ;δ ) is a monotonically increasing function of δ ;

2. lim
δ→0+

Ω
∗( f ;δ ) = 0;

3. For each m ∈ N, Ω∗( f ;mδ )≤ mΩ∗( f ;δ );

4. For each λ ∈ (0,∞), Ω∗( f ;λδ )≤ (1+λ )Ω∗( f ;δ ).

Definition 1.1.7 (Statistical Convergence). Steinhaus first laid out the concept of statistical conver-

gence over sixty years ago [94]. Fast [28] explored it further, as well as several authors glanced into it.

Various researchers have engaged in the statistical affiliation Korovkin type approximation theorems for

positive linear operators after Gadjiev and Orhan [31]. The essential objective underlying the statistical

convergence of a sequence is that we just incorporate the majority of the sequence’s components and

discard the remaining elements. The sequence of numbers (xn) is called statistical convergent to l, if

for every ε > 0,

lim
j

|{n≤ j : |xn− l| ≥ ε}|
j

= 0.

It is denoted by st − lim
n

xn = l. The hypothesis is basically depends on the non-negative regular

summability matrix A = (a jn). Then, the A− transformation of x, denoted by Ax = ((Ax) j), where

(Ax) j =
∞

∑
n=1

a jnxn, on condition that the series converges for each j. The summability matrix A is

regular if lim
j
(Ax) j = l whenever lim

j
x j = l.

In 1981, Freedman et.al. defined the A-density of K ⊂ N by

δA(K) = lim
j ∑

n∈K
a jn,

on condition that the limit exists.

A sequence x = (xn) is said to be A-statistically convergent to l, if for every ε > 0,

lim
j ∑

n:|xn−l|≥ε

a jn = 0
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holds, and it is denoted by

stA− lim
n

xn = l,

if for every ε > 0,δA{n ∈ N : |xn− l| ≥ ε}= 0. In the particular case, when A =C1 = [c jn], where the

Cesáro matrix is given by

c jn =

 1
j , if1≤ n≤ j,

0, otherwise.

the Cesáro matrix of order one, A-statistical convergence coincides with the statistical convergence

[30], i.e., stC1− lim
n

xn = st− lim
n

xn = l. When we have take A = I, the identity matrix then A-statistical

convergence reduces to the ordinary convergence, i.e., stI− limx = limx = l. Kolk [61] proved that in

the case of lim
j

max |a jn|= 0. A-statistical convergence is stronger than ordinary convergence.

Definition 1.1.8 (Derivative of Bounded Variation (DBV)). Let DBV[a,b] be the class of all functions

in CB[a,b] having a derivative that is local of bounded variation on [a,b]. The function f ∈DBV [a,b] is

defined as

f (x) =
∫ x

0
g(t)dt + f (0),

where g is a function of bounded variation on every finite subintervals of [a,b].

Definition 1.1.9 (Bohman-Korovkin result). [62] The essential condition for the feasibility of the

function is an approximation approach using linear positive operators. The Bohmn-Korovkin theorem,

are a result of this explanatory problem. This explanatory problem gives credence to the Bohman-

Korovkin theorem. If following conditions

1. Ln(e0;x) = 1+αn(x).

2. Ln(e1;x) = x+βn(x)

3. Ln(e2;x) = x2 + γn(x)

are satisfied by the positive linear operators Ln : C[a,b]→C[a,b] such that αn(x), βn(x), and γn(x) uni-

formly converges to zero in [a,b] then Ln( f ;x) converges uniformly to f (x). T. Popoviciu, H. Bohman,

and P. P. Korovkin, three eminent mathematicians, presented this hypothesis in the years 1951, 1952,

and 1953, respectively.

Definition 1.1.10 (Hölder inequality (finite form)). For 1 < p < ∞, 1 < q < ∞ and
1
p
+

1
q
= 1, the

Hölder inequality is defined as

n

∑
l=0
|ξlηl| ≤

(
n

∑
l=0

(ξl)
p

) 1
p
(

n

∑
l=0

(ηl)
q

) 1
q

,

where ξl,ηl ∈ R.
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Definition 1.1.11 (Cauchy-Schwarz inequality (finite form)). The Cauchy-Schwarz inequality is de-

fined as
n

∑
l=0
|ξlηl| ≤

(
n

∑
l=0

(ξl)
2

) 1
2
(

n

∑
l=0

(ηl)
2

) 1
2

,

where ξl,ηl ∈ R.

1.1.2 Some well-known operators

This section deals with some well-studied operators.

(i) The linear positive operator Kn : C[0,1]→ C[0,1] was proposed and investigated in the

year 1930, by L. V. Kantorovich [60], which are defined as:

Kn ( f ;x) = n
n

∑
k=0

pn,k(x)

k+1
n∫

k
n

f (t)dt.

(ii) With the use of a Lebesgue integrable function on the interval [0,1], Durrmeyer con-

structed an integral modification of the Bernstein polynomials in 1967 [27], which are as

follows: Dn : C[0,1]→C[0,1]

Dn( f ,x) = (n+1)
n

∑
k=0

pn,k(x)
∫ 1

0
pn,k(t) f (t)dt,

where 0≤ x≤ 1, f ∈ [0,1].

(iii) In 1985, Mazhar and Totik studied what they called Szász-Durrmeyer operators, which

are integral modifications of Szász operators. They are as:

Sn( f ,x) = n
∞

∑
k=0

e−nx (nx)k

k!

∫
∞

0
e−nt (nt)k

k!
f (t)dt.
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Chapter 2

Approximation by a New Sequence of

Operators Involving Apostol-Genocchi

Polynomials and its Summation-Integral

form

The Italian mathematician Angelo Genocchi discovered the unique class of polynomials known as

Genocchi polynomials in the 18th century. By using these polynomials, he worked out the Genocchi

numbers. Layout of this chapter is based on two sections. In the first section, we present a new

sequence of operators involving Apostol-Genocchi polynomials, Here, we address the preliminary

results and estimate some direct convergence outcomes using the second-order modulus of continuity

and the Voronovaskaja-type asymptote. Furthermore, we find the weighted approximation results

and the Kantorovich variant using the proposed operators. Next section, we provide the integral

variant of the proposed operators given in the first section and study approximation results using the

second-order modulus of continuity, Voronovskaja-type asymptotic theorem, Lipschitz-space, and

Ditzian-Totik modulus of smoothness. Finally, we present the weighted approximation results using

the integral variant.

2.1 Introduction

A group of polynomials on the real number field that includes numerous classical polynomial

systems. P. E. Appell [10] established their Appell polynomials. The description of the Appell
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polynomial series An(x) is as:

ext f (t) =
∞

∑
n=0

An(x)
tn

n!
,

where f (t) be a formal power series in t. This polynomial found stunning applications in several

field of mathematics, see [49, 86, 87]. One special case known as Genocchi polynomials Gn(x)

are defined by

2text

et +1
=

∞

∑
n=0

Gn(x)
tn

n!
, |t|< π.

In this case the Genocchi numbers Gn have many applications in number theory, special func-

tions, combinatorics and numerical analysis, where

2t
et +1

=
∞

∑
n=0

Gn
tn

n!
, |t|< π.

The Apostol-Genocchi polynomials Gα
k (x;β ), β ∈ R, of order α (non negative integers) are

defined and found some results in [49].

Motivated by such work we proposed a new sequence of the operators by the use of Apostol-

Genocchi polynomials defined as:

M α,β
n ( f ;x) = e−nx

(
1+ eβ

2

)α ∞

∑
k=0

Gα
k (nx;β )

k!
f
(

k
n

)
, f ∈C[0,∞), (2.1)

where Gα
k (x;β ) is generalized Apostol-Genocchi polynomials, which have the generating func-

tion of the form (
2t

1+βet

)α

ext =
∞

∑
k=0

Gα
k (x;β )

tk

k!
, (α,β ∈ C, |t|< π). (2.2)

The Apostol-Genocchi polynomials and their properties are studied by many researchers for

the detail here we refer (cf. [11, 54, 63, 64, 72, 88]).

In [65], the following explicit formula for the Apostol-Genocchi polynomials Gα
k (x;β ) is given:

Gα
k (x;β ) = 2α

α!
(

k
α

) k−α

∑
i=0

β i

(1+β )α+i

(
k−α

i

)(
α + i−1

i

)
×

i

∑
j=0

(−1) j
(

i
j

)
ji(x+ j)k−i−α

2F1[α + i− k, i; i+1; j/(x+ j)],

where k,α ∈ N∪{0}, β ∈ C\{−1} and 2F1[a,b;c;z] denotes the Gaussian hypergeometric func-
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tion defined by

2F1[a,b;c;z] =
∞

∑
n=0

(a)n (b)n

(c)n

zn

n!
=

ab
c

z
1!

+
a(a+1)b(b+1)

c
z2

2!
+ · · · ,

where (α)0 = 1, (α)n = α(α +1) · · ·(α +n−1) = Γ(n+α)
Γ(α) , (n≥ 1), (see [93], pp. 37).

Remark 2.1.1. For α = 1 and β = λ our operators (2.1) reduces to following operators

Mn,λ ( f ;x) =
eλ +1
2enx

∞

∑
k=0

Gk(nx;λ )

k!
f
(

k
n

)
, (2.3)

where Gk(x;λ ) are the Apostol-Genocchi polynomials generated by the function

2text

etλ +1
=

∞

∑
k=0

Gk(x;λ )
tk

k!
, (|t + logλ |< π,λ 6= 1; x ∈ R) .

When λ = 1 the operators (2.3) involves the classical Genocchi polynomials.

For λ = 1 and x= 0, the Apostol Genocchi polynomials reduce to the Genocchi numbers which

have many applications from Combinatorics to numerical analysis and other fields of applied

mathematics like number theory. As such, it makes this very appealing to use for applications

in Combinatorics. One of the applications of Genocchi numbers that was investigated by Jeff

Remmel in [78] is counting the number of up-down ascent sequences. Another application of

Genocchi numbers is in Graph Theory. For instance, Boolean numbers of the associated Ferrers

Graphs are the Genocchi numbers of the second kind [20].

The aim of this section is first to give moments for given operators (2.1). Then, we estimated

the direct theorem and Voronovskaja type asymptotic formula. Next, we have established

weighted approximation results for these operators. In the last, we have given the Kantorovich

variant of the given operators. Then we discussed the convergence of the operators (2.7) using

Korovkin’s theorem and the order of approximation in terms of modulus of continuity.

2.2 Approximation by the Operators involving Apostol-Genocchi Poly-

nomials

2.2.1 Preliminaries

The auxiliary results of the M α,β
n operators are estimated in this section, which will be useful

in the main outcome.
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Lemma 2.2.1. For M α,β
n (tm;x), m = 0,1,2,3 and 4, we have

M α,β
n (1;x) = 1;

M α,β
n (t;x) = x+

α

n(1+ eβ )
;

M α,β
n (t2;x) = x2 +

(1+2α + eβ )

n(1+ eβ )
x+

α2−2αeβ −αe2β 2

n2(1+ eβ )2 ;

M α,β
n (t3;x) = x3 +

(3+3α +3eβ )

n(1+ eβ )
x2 +

(
3α2 +3α + e2β 2−3αe2β 2−3αeβ +2eβ +1

)
n2(1+ eβ )2 x

+

(
α3−6α2eβ −3α2e2β 2−5αeβ −4αe2β 2−αe3β 3

)
n3(1+ eβ )3 ;

M α,β
n (t4;x) = x4 +

(3+2α +3eβ )

n(1+ eβ )
x3 +

(
6α2 +25e2β 2−50eβ −6αe2β 2 +12α +25

)
n2(1+ eβ )2 x2

+
x

n3(1+ eβ )3 (4α
3 +6α

2 +42eβ +48eαβ −18eα
2
β +42e2

β
2 +6e2

αβ
2

−12e2
α

2
β

2 +14e3
β

3−10e3
αβ

2 +40α +14)

+
1

n4(1+ eβ )4 (16α
4−1056eαβ +256eα

2
β −192eα

3
β −1888e2

αβ
2 +224e2

α
2
β

2

−96e2
α

3
β

2−1312e3
αβ

3 +128e3
α

2
β

3−304e4
αβ

4 +48e4
α

2
β

4 +288α
2−80α).

Proof. From the generating functions of the classical Euler polynomials given by (2.2), we obtain

∞

∑
k=0

Gα
k (nx;β )

k!
k = enx

(
2

1+ eβ

)α [
nx+

α

1+ eβ

]
;

∞

∑
k=0

Gα
k (nx;β )

k!
k2 = enx

(
2

1+ eβ

)α [
n2x2 +

nx(1+2α + eβ )

(1+ eβ )

+

(
α2−2αeβ −αe2β 2

)
(1+ eβ )2

]
;

∞

∑
k=0

Gα
k (nx;β )

k!
k3 = enx

(
2

1+ eβ

)α [
n3x3 +

3n2x2 (1+α + eβ )

(1+ eβ )

+
nx
(
3α2 + e2β 2−3αe2β 2 +3α−3αeβ +2eβ +1

)
(1+ eβ )2

+

(
α3−6α2eβ −3α2e2β 2−5αeβ −4αe2β 2−αe3β 3

)
(1+ eβ )3

]
;

∞

∑
k=0

Gα
k (nx;β )

k!
k4 = enx

(
2

1+ eβ

)α [
n4x4 +

(3+2α +3eβ )

(1+ eβ )
n3x3 +

n2x2

(1+ eβ )2 (6α
2 +25e2

β
2

−50eβ −6αe2
β

2 +12α +25)+
nx

(1+ eβ )3 (4α
3 +6α

2 +42eβ +48eαβ

−18eα
2
β +42e2

β
2 +6e2

αβ
2−12e2

α
2
β

2 +14e3
β

3−10e3
αβ

2 +40α +14)

+
1

(1+ eβ )4 (16α
4−1056eαβ +256eα

2
β −192eα

3
β −1888e2

αβ
2

+224e2
α

2
β

2−96e2
α

3
β

2−1312e3
αβ

3 +128e3
α

2
β

3−304e4
αβ

4
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+48e4
α

2
β

4 +288α
2−80α)

]
.

In view of these equalities, we get the required result.

Remark 2.2.2. From Lemma 2.2.1 and simple computation, we have

M α,β
n (t− x;x) =

α

n(1+ eβ )
;

M α,β
n ((t− x)2;x) =

x
n
+

(
α2−2eαβ −αe2β 2

)
n2(1+ eβ )2 ;

M α,β
n ((t− x)3;x) =

x
n2 +

3αx
n2 (1+ eβ )

+

(
α3−6eα2β −3e2α2β 2−5eαβ −4e2αβ 2−αe3β 3

)
n3(1+ eβ )3 .

Remark 2.2.3. The limiting case of the central moments of the given operators M α,β
n ((t− x)m;x) are

as:

lim
n→∞

nM α,β
n (t− x;x) =

α

(1+ eβ )
;

lim
n→∞

nM α,β
n ((t− x)2;x) = x.

2.2.2 Direct Result and Asymptotic Formula

In this section, we will discuss the direct result and Voronovskaja type asymptotic formula.

Theorem 2.2.4. For f ∈CB[0,∞), we have

|M α,β
n ( f ;x)− f (x)| ≤Cω2( f ,

√
δ )+ω

(
f ,

α

n(1+ eβ )

)
,

where C is a positive constant and δ =
∣∣∣M α,β

n ((t− x)2;x)
∣∣∣+( α

n(1+eβ )

)2
.

Proof. We introduce auxiliary operators Hα,β
n (t;x) as follows:

Hα,β
n ( f ;x) = M α,β

n ( f ;x)− f
(

x+
α

n(1+ eβ )

)
+ f (x).

In view of Lemma 2.2.1, linear functions are preserved by Hα,β
n . Let g ∈ W 2. From the Taylor’s

expansion of g, we have

g(t) = g(x)+(t− x)g′(x)+
∫ t

x
(t−u)g′′(u)du.

Applying the operator Hα,β
n on above, we get

Hα,β
n (g;x) = g(x)+g′(x)Hα,β

n ((t− x);x)+Hα,β
n

(∫ t

x
(t−u)g′′(u)du;x

)
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|Hα,β
n (g;x)−g(x)| =

∣∣∣∣Hα,β
n

(∫ t

x
(t−u)g′′(u)du;x

)∣∣∣∣
≤

∣∣∣∣M α,β
n

(∫ t

x
(t−u)g′′(u)du;x

)∣∣∣∣+ ∣∣∣∣∫ x+ α

n(1+eβ )

x

(
x+

α

n(1+ eβ )
−u)g′′(u)

)
du
∣∣∣∣

≤
[∣∣∣∣M α,β

n

(∫ t

x
(t−u)du;x

)∣∣∣∣+ ∣∣∣∣∫ x+ α

n(1+eβ )

x

(
x+

α

n(1+ eβ )
−u
)

du
∣∣∣∣]‖g′′‖

≤

[∣∣∣M α,β
n ((t− x)2;x)

∣∣∣+( α

n(1+ eβ )

)2
]
‖g′′‖

= δ‖g′′‖,

where δ =
∣∣∣M α,β

n ((t− x)2;x)
∣∣∣+( α

n(1+eβ )

)2
.

|M α,β
n ( f ;x)− f (x)| = |Hα,β

n ( f −g;x)− ( f −g)(x)|+ |Hα,β
n (g;x)−g(x)|

+

∣∣∣∣ f (x+
α

n(1+ eβ )

)
− f (x)

∣∣∣∣
≤ 2‖ f −g‖+δ‖g′′‖+ω

(
f ,
∣∣∣∣ α

n(1+ eβ )

∣∣∣∣)
= 2‖ f −g‖+δ‖g′′‖+ω

(
f ,

α

n(1+ eβ )

)
.

Taking infimum over all g ∈W 2, we get

|M α,β
n ( f ;x)− f (x)| ≤ K2( f ,δ )+ω

(
f ,

α

n(1+ eβ )

)
.

In view of (1.3), we obtain

|M α,β
n ( f ;x)− f (x)| ≤ Cω2( f ,

√
δ )+ω

(
f ,

α

n(1+ eβ )

)
,

which proves the theorem.

Theorem 2.2.5. (Voronvaskaja type theorem) For any function f ∈C2[0,∞) such that f ′, f ′′ ∈C2[0,∞),

we have

lim
n→∞

n[M α,β
n ( f ;x)− f (x)] =

α

(1+ eβ )
f ′(x)+

x
2

f ′′(x),

for every x≥ 0.

Proof. Let f , f ′, f ′′ ∈C2[0,∞) and x ∈ [0,∞) be fixed. By Taylor expansion we can write

f (t) = f (x)+(t− x) f ′(x)+
(t− x)2

2!
f ′′(x)+ r(t,x)(t− x)2,

where r(t,x) is the Peano form of the remainder, r(t,x) ∈CB[0,∞) and lim
t→x

r(t,x) = 0. Applying M α,β
n ,
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we get

n[M α,β
n ( f ;x)− f (x)] = f ′(x)nM α,β

n (t− x;x)+
f ′′(x)

2!
nM α,β

n ((t− x)2;x)

+nM α,β
n (r(t,x)(t− x)2;x).

Therefore,

lim
n→∞

n[M α,β
n ( f ;x)− f (x)] = f ′(x) lim

n→∞
nM α,β

n (t− x;x)+
f ′′(x)

2!
lim
n→∞

nM α,β
n ((t− x)2;x)

+ lim
n→∞

nM α,β
n (r(t,x)(t− x)2;x)

=
α

1+ eβ
f ′(x)+

x
2

f ′′(x)+ lim
n→∞

nM α,β
n
(
r(t,x)(t− x)2;x

)
=

α

1+ eβ
f ′(x)+

x
2

f ′′(x)+R.

By Cauchy-Schwarz inequality, we have

R = lim
n→∞

nM α,β
n (r2(t,x);x)

1
2 M α,β

n
(
(t− x)4;x

) 1
2 . (2.4)

Observe that r2(x,x) = 0 and r2(x,x) ∈C2[0,∞). Then, it follows that

lim
n→∞

nM α,β
n (r2(t,x);x) = r2(x,x) = 0 (2.5)

uniformly with respect to x ∈ [0,∞). Now from (2.4) and (2.5), we obtain

lim
n→∞

nM α,β
n (r(t,x)(t− x)2;x) = 0.

Hence R = 0. Thus, we otained

lim
n→∞

n[M α,β
n ( f ;x)− f (x)] =

α

1+ eβ
f ′(x)+

x
2

f ′′(x),

which completes the proof.

2.2.3 Weighted Approximation results

Theorem 2.2.6. (Weighted approximation) For each f ∈C∗τ [0,∞), we have

lim
n→∞
‖M α,β

n ( f ; .)− f‖τ = 0

Proof. Using [32], we see that it is sufficient to verify the following conditions

lim
n→∞
‖M α,β

n (tr;x)− xr‖τ = 0, r = 0,1,2. (2.6)
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Since M α,β
n (1;x) = 1, therefore for r = 0 (2.6) holds. By Lemma 2.2.1, we have

‖M α,β
n (t;x)− x‖τ = sup

x∈[0,∞)

|M α,β
n (t;x)− x|

1+ x2

≤
∣∣∣∣ α

n(1+ eβ )

∣∣∣∣ sup
x∈[0,∞)

1
1+ x2

≤ α

n(1+ eβ )
,

the condition (2.6) holds for r = 1 as n→ ∞.

Again by Lemma 2.2.1, we have

‖M α,β
n (t2;x)− x2‖τ = sup

x∈[0,∞)

|M α,β
n (t2;x)− x2|

1+ x2

≤ sup
x∈[0,∞)

1
1+ x2

[(
x2 +

(1+2α + eβ )

n(1+ eβ )
x+

(α2− eαβ (2+ eβ ))

n2(1+ eβ )2

)
− x2

]
≤

[
(1+2α + eβ )

n(1+ eβ )

]
sup

x∈[0,∞)

x
1+ x2 +

(α2− eαβ (2+ eβ ))

n2(1+ eβ )2 sup
x∈[0,∞)

1
1+ x2

≤ (1+2α + eβ )

n(1+ eβ )
+

(α2− eαβ (2+ eβ ))

n2(1+ eβ )2

the condition (2.6) holds for r = 2 as n→ ∞. Hence the theorem proved.

Corollary 2.2.7. For each f ∈C∗τ [0,∞), and α > 0, we have

lim
n→∞

sup
x∈[0,∞)

|M α,β
n ( f ;x)− f (x)|

(τ(x))α
= 0.

Proof. For any fixed x0 > 0,

sup
x∈[0,∞)

|M α,β
n ( f ;x,a)− f (x)|

(1+ x2)α
≤ sup

x≤x0

|M α,β
n ( f ;x)− f (x)|
(1+ x2)α

+ sup
x≥x0

|M α,β
n ( f ;x)− f (x)|
(1+ x2)α

≤ ‖M α,β
n ( f ; .)− f‖C[0,x0]+‖ f‖x2 sup

x≥x0

|M α,β
n (1+ t2;x)|
(1+ x2)α

+ sup
x≥x0

| f (x)|
(1+ x2)α

.

The first term of the above inequality tends to zero from Theorem 2.2.5. By Lemma 2.2.1 for any fixed

x0 it is easily seen that sup
x≥x0

|M α,β
n (1+ t2;x)|
(1+ x2)α

tends to zero as n→ ∞. We can choose x0 so large that

the last part of above inequality can be made small enough. Thus the proof is completed.
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2.3 Kantorovich variant of T α,β
n operators

In this section, we will discuss the Kantorovich type generalization of the operators T α,β
n with

the help of the operators (2.1) and we obtain main theorem with the help of Korovkin’s theorem

and estimate the order of approximation by modulus of continuity. The operators is defined as

T α,β
n ( f (t) ;x) =

n
enx

(
1+ eβ

2

)α ∞

∑
k=0

Gα
k (nx;β )

k!

∫ k+1
n

k
n

f (t)dt. (2.7)

Lemma 2.3.1. For T α,β
n (tm;x), m = 0,1,2 and 3, we have

T α,β
n (1;x) = 1;

T α,β
n (t;x) = x+

(1+2α + eβ )

2n(1+ eβ )
;

T α,β
n (t2;x) = x2 +

2(1+α + eβ )

n(1+ eβ )
x+

1
n2(1+ eβ )2 (3α

2−3eαβ −3e2
αβ

2 +3α

+e2
β

2 +2eβ +1);

T α,β
n (t3;x) = x3 +

(9+6α +9eβ )

2n(1+ eβ )
x2 +

6α2 +7(1+ eβ )2−6α(−2+ e2β 2)

2n2(1+ eβ )2 x+

1
4n3(1+ eβ )3 (4α

3−4eα
4
β

3 +(1+ eβ )3−6α
2(−1+3eβ +2e2

β
2)

−2α(−2+12eβ +15e2
β

2 +3e3
β

3)).

Proof. Using Lemma 2.2.1, we get the proof.

Remark 2.3.2. From Lemma 2.3.1 and simple computation, we have

T α,β
n ((t− x);x) =

(1+2α + eβ )

2n(1+ eβ )
;

T α,β
n ((t− x)2;x) =

x
n
+

(3α2−3eαβ −3αe2β 2 +3α + e2β 2 +2eβ +1)
n2(1+ eβ )2 ;

T α,β
n ((t− x)3;x) =

(−12α2 +(1+ eβ )2)+6α(−1+3eβ +2e2β 2)

2n2(1+ eβ )2 x

+
1

4n3(1+ eβ )3

(
4α

3−4eα
4
β

3 +(1+ eβ )3−6α
2(−1+3eβ +2e2

β
2)

−2α(−2+12eβ +15e2
β

2 +3e3
β

3)

)
.

Theorem 2.3.3. Let f ∈C[0,∞)∩E∗. Then

lim
n→∞

T α,β
n ( f ;x) = f (x).
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The operators given by (2.7) converge uniform in each compact subset [0,∞), where

E∗ =
{

f : [0,∞)→ R, |F(x)|=
∣∣∣∣∫ x

0
f (t)dt

∣∣∣∣≤ KeBx, B ∈ R and K ∈ R+

}
.

Proof. From Lemma 2.3.1, we get

lim
n→∞

T α,β
n ( f ;x) = xi, i = 0,1,2,3.

The proof is established by virtue of above uniform convergence in each compact subset of [0,∞) and

Korovkin’s theorem.

Theorem 2.3.4. Let f ∈C[0,∞]∩E∗, for the operators T α,β
n given by (2.7) hold the estimation

∣∣∣T α,β
n ( f ;x)− f (x)

∣∣∣≤{1+
[

x+
3α2−3αeβ −3αe2β 2 +3α + e2β 2 +2eβ +1

n(1+ eβ )2

] 1
2
}

ω ( f ,δ ) . (2.8)

Proof. From Lemma 2.3.1 and the property of modulus of continuity, we have

T α,β
n ( f ;x)− f (x) = ne−nx

(
1+ eβ

2

)α ∞

∑
k=0

Gα
k (nx;β )

k!

∫ k+1
n

k
n

( f (t)− f (x))dt,

⇒

∣∣∣T α,β
n ( f ;x)− f (x)

∣∣∣≤ ne−nx
(

1+ eβ

2

)α ∞

∑
k=0

Gα
k (nx;β )

k!

∫ k+1
n

k
n

| f (t)− f (x)|dt.

By using the Cauchy-Schwarz inequality for the integral, we have

∣∣∣T α,β
n ( f ;x)− f (x)

∣∣∣≤
1+

1
δ

e−nx
(

1+ eβ

2

)α ∞

∑
k=0

Gα
k (nx;β )

k!

(
n
∫ k+1

n

k
n

(t− x)2dt

) 1
2

ω ( f ,δ ) . (2.9)

Applying the Cauchy-Schwarz inequality in the above sum, (2.9) becomes

∣∣∣T α,β
n ( f ;x)− f (x)

∣∣∣ ≤
1+

1
δ

(
e−nx

(
1+ eβ

2

)α ∞

∑
k=0

Gα
k (nx;β )

k!

) 1
2

×

(
ne−nx

(
1+ eβ

2

)α ∞

∑
k=0

Gα
k (nx;β )

k!

∫ k+1
n

k
n

(t− x)2dt

) 1
2

ω ( f ,δ )

≤ 1+
1
δ

[
T α,β

n ((t− x)2,x)
] 1

2
ω ( f ,δ )

≤

{
1+

1
δ

[
x
n
+

3α2−3αeβ −3αe2β 2 +3α + e2β 2 +2eβ +1
n2(1+ eβ )2

] 1
2
}

ω ( f ,δ )

≤

{
1+
[

x+
3α2−3αeβ −3αe2β 2 +3α + e2β 2 +2eβ +1

n(1+ eβ )2

] 1
2
}

ω ( f ,δ ) ,
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if we choose δ = 1√
n , which gives (2.8) .

Remark 2.3.5. We define the Stancu type generalization of the operators M α,β
n based on two parame-

ters ζ and η with the property 0≤ ζ < η as follows:

Sζ ,η
n,α,β ( f ;x) = e−nx

(
1+ eβ

2

)α ∞

∑
k=0

Gα
k (nx;β )

k!
f
(

k+ζ

n+η

)
.

One can study the approximating properties for the operators Sζ ,η
n,α,β similar manner as in [99].

2.4 Approximation by integral form of M
α,β
n operators

In 2007, Srivastava et al. [84] proposed a family of summation-integral type operators and

estimated rate of convergence and function having derivative of bounded variation. Here we

refer to some more articles related to summation-integral type operators ([37, 45, 67]) for the

readers. Inspired by the work (2.1), for any non-negative integer α and f ∈C[0,∞) we give the

integral-type generalization of the operators, which are as:

T α,β
n,ρ ( f ,x) = e−nx

(
1+ eβ

2

)α
(

Gα
0 (nx;β ) f (0)+

∞

∑
k=1

Gα
k (nx;β )

k!

∫
∞

0
Θ

ρ

n,k (t,c) f (t)dt

)
, (2.10)

where ρ > 0, and

Θ
ρ

n,k(t,c) =


nρ

Γ(kρ)
e−nρt(nρt)kρ−1, c = 0,

Γ
(nρ

c + kρ
)

Γ(kρ)Γ
(nρ

c

) ckρtkρ−1

(1+ ct)
nρ

c +kρ
, c = 1,2,3, ...

.

It can we easily observed by simple computation that:

∫
∞

0
Θ

ρ

n,k (t,c) trdt =


Γ(kρ+r)

Γ(kρ)

1
∏

r
i=1 (nρ− ic)

, r 6= 0

1, r = 0
. (2.11)

This section is dedicated to a new sequence of summation-integral type operators involving

Apostol-Genocchi polynomials, and estimated their moments and central moments in order

to study Voronovskaja type asymptotic theorem, Lipschitz space, Ditzian-Totik modulus of

smoothness, and second-order modulus of continuity. Finally, the Weighted approximation is

obtained.

2.4.1 Preliminaries

This section estimates the auxiliary operator T α,β
n,ρ outcomes that will be helpful in the main

result.
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Lemma 2.4.1. The moments of the proposed operator T α,β
n,ρ
(
t i,x
)
, i = 0,3, we have

T α,β
n,ρ (1,x) = 1;

T α,β
n,ρ (t,x) =

nρ

(nρ− c)
x+

αρ

(nρ− c)(1+ eβ )
;

T α,β
n,ρ
(
t2,x

)
=

n2ρ2

(nρ− c)(nρ−2c)
x2 +

nρ2 +2nαρ2 +nρ2eβ

(nρ− c)(nρ−2c)(1+ eβ )
x+

α2ρ2−2αρ2eβ −αρ2e2β 2

(nρ− c)(nρ−2c)(1+ eβ )2 ;

T α,β
n,ρ
(
t3,x

)
=

n3ρ3

(nρ− c)(nρ−2c)(nρ−3c)
x3 +

3n2ρ2 +3n2ρ3 +3αn2ρ3 +3n2ρ2eβ +3n2ρ3eβ

(nρ− c)(nρ−2c)(nρ−3c)(1+ eβ )
x2

+
x

(nρ− c)(nρ−2c)(nρ−3c)(1+ eβ )2

[
nα

2
ρ

3 +9nαρ
2 +nρ

2e2
β

2(3−2nρ)

+3nαρ
2eβ +nρ(1+ eβ )2 +8nρ

2eβ +3nρ
2 +nρ

]
+

1
(nρ− c)(nρ−2c)(nρ−3c)(1+ eβ )3

[
α

3
ρ

3 +3α
2
ρ

2eβ (1−2ρ−ρeβ )+3α
2
ρ

2

−5αρ
3eβ −αρ

2e2
β

2(4ρ +ρeβ +9eβ +3)−6αρ
2eβ +2αρ +2αρe2

β
2 +4αρeβ

]
.

Proof. The proof the above Lemma follows from (2.10), (2.11) and Lemma 2.2.1.

Remark 2.4.2. Using Lemma 2.4.1 and simple estimation, we have

T α,β
n,ρ (t− x,x) =

cx
(nρ− c)

+
αρ

(nρ− c)(1+ eβ )
;

T α,β
n,ρ
(
(t− x)2,x

)
=

nρc+2c2

(nρ− c)(nρ−2c)
x2 +

nρ2 +nρ2eβ +4cαρ

(nρ− c)(nρ−2c)(1+ eβ )
x

+
α2ρ2−2αρ2eβ −αρ2e2β 2

(nρ− c)(nρ−2c)(1+ eβ )2 .

Remark 2.4.3. For the central moments T α,β
n,ρ ((t− x)m;x) for m = 1,2, we have

lim
n→∞

nT α,β
n,ρ ((t− x);x) =

xc
ρ

+
α

(1+ eβ )
;

lim
n→∞

nT α,β
n,ρ ((t− x)2;x) =

x(cx+ρ)

ρ
.

Remark 2.4.4. For n ∈ N, the bound for the second moment is as follows:

T α,β
n,ρ ((t− x)2;x)≤ 2φ 2(x)

nρ
, where φ(x) =

√
x(cx+ρ).

Lemma 2.4.5. Let f ∈CB[0,∞), 0≤ x < ∞ and n ∈ N, then

|T α,β
n,ρ ( f ;x)| ≤ ‖ f‖,

where ‖.‖ is the uniform norm on [0,∞).

22



Proof. We have T α,β
n,ρ (e0;x) = 1, so

|T α,β
n,ρ ( f ;x)| ≤ T α,β

n,ρ (e0;x)‖ f‖= ‖ f‖.

2.4.2 Direct Results

In this section, we establish the uniform convergence of the operators (2.10) using the

Bohman-Korovkin theorem, the rate of convergence with the aid of different kind of modu-

lus of smoothness and for functions in Lipschitz type spaces, and asymptotic theorem.

Theorem 2.4.6. (Fundamental convergence theorem) Let f ∈C[0,∞) and adequately large n, then the

sequence {T α,β
n,ρ ( f , .)} converges uniformly to f in [a,b] , where 0≤ a < b < ∞.

Proof. From Lemma 2.4.1 we have T α,β
n,ρ (1,x) = 1 for every n ∈ N,

T α,β
n,ρ (t,x) =

nρ

(nρ− c)
x+

αρ

(nρ− c)(1+ eβ )

tends to x and

T α,β
n,ρ
(
t2,x

)
=

n2ρ2

(nρ− c)(nρ−2c)
x2 +

nρ2 +2nαρ2 +nρ2eβ

(nρ− c)(nρ−2c)(1+ eβ )
x+

α2ρ2−2αρ2eβ −αρ2e2β 2

(nρ− c)(nρ−2c)(1+ eβ )2

tends to x2 as n→ ∞, similarly T α,β
n,ρ
(
t3,x

)
tends to x3 uniformly on every compact subset of [0,∞).

Hence, by Bohman-Korovkin theorem the required results hold.

Theorem 2.4.7. Let f ∈CB[0,∞) and x ∈ [0,∞). Then we have

∣∣∣T α,β
n,ρ ( f ,x)− f (x)

∣∣∣≤Cω2

(
f ,
√

δn

)
+ω ( f , |α2|) ,

where C is a positive constant, δn =
1
2 [α1+α2

2 ], α1 =T α,β
n,ρ
(
(t− x)2,x

)
and α2 =

(
cx

nρ−c +
αρ

(nρ−c)(1+eβ )

)
.

Proof. Define the auxiliary operators Lα,β
n,ρ : CB[0,∞)→CB[0,∞) as follows:

Lα,β
n,ρ ( f ,x) = T α,β

n,ρ ( f ,x)− f
(

nρ

(nρ− c)
x+

αρ

(nρ− c)(1+ eβ )

)
+ f (x). (2.12)

These operators are linear and Lα,β
n,ρ (t− x,x) = 0.

Let j ∈W 2 and x, t ∈ [0,∞). By Taylor’s series expansion

j(t) = j(x)+(t− x) j′(x)+
∫ t

x
(t−u) j′′(u)du.
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Applying the operator Lα,β
n,ρ on above, we obtain

Lα,β
n,ρ ( j;x) = j(x)+ j′(x)Lα,β

n,ρ ((t− x);x)+Lα,β
n,ρ

(∫ t

x
(t−u) j′′(u)du;x

)
implies that

∣∣∣Lα,β
n,ρ ( j,x)− j(x)

∣∣∣≤ Lα,β
n,ρ

(∣∣∣∣∫ t

x
(t−u) j′′(u)du

∣∣∣∣ ,x)
≤ T α,β

n,ρ

(∣∣∣∣∫ t

x
(t−u) j′′(u)du

∣∣∣∣ ,x)
+

∣∣∣∣∣
∫ nρ

(nρ−c) x+ αρ

(nρ−c)(1+eβ )

x

(
nρ

(nρ− c)
x+

αρ

(nρ− c)(1+ eβ )
−u
)

j′′(u)du

∣∣∣∣∣
≤ 1

2
T α,β

n,ρ
(
(t− x)2,x

)
|| j′′||

+

∣∣∣∣∣
∫ nρ

(nρ−c) x+ αρ

(nρ−c)(1+eβ )

x

(
nρ

(nρ− c)
x+

αρ

(nρ− c)(1+ eβ )
−u
)

du

∣∣∣∣∣ || j′′||

∣∣∣Lα,β
n,ρ ( j,x)− j(x)

∣∣∣≤ 1
2

[
T α,β

n,ρ
(
(t− x)2,x

)
+

(
nρ

(nρ− c)
x+

αρ

(nρ− c)(1+ eβ )
− x
)2
]
|| j′′||

≤ 1
2

[
T α,β

n,ρ
(
(t− x)2,x

)
+

(
c

nρ− c
x+

αρ

(nρ− c)(1+ eβ )

)2
]
|| j′′||

≤ 1
2
[
α1 +α

2
2
]
|| j′′||= δn|| j′′||. (2.13)

Since

∣∣∣T α,β
n,ρ ( f ,x)

∣∣∣≤ e−nx
(

1+ eβ

2

)α
(

Gα
0 (nx;β ) | f (0) |+

∣∣∣∣∣ ∞

∑
k=1

Gα
k (nx;β )

k!

∫
∞

0
Θ

ρ

n,k (t,c) f (t)dt

∣∣∣∣∣
)
≤ || f ||.

Now by (2.12), we have

||Lα,β
n,ρ ( f , .)|| ≤ ||T α,β

n,ρ ( f , .)||+2|| f || ≤ 3|| f ||, f ∈CB[0,∞). (2.14)

Using (2.12), (2.13) and (2.14), we have

∣∣∣T α,β
n,ρ ( f ,x)− f (x)

∣∣∣≤ ∣∣∣Lα,β
n,ρ ( f − j,x)− ( f − j)(x)

∣∣∣+ ∣∣∣Lα,β
n,ρ ( j,x)− j(x)

∣∣∣
+

∣∣∣∣ f ( nρ

(nρ− c)
x+

αρ

(nρ− c)(1+ eβ )

)
− f (x)

∣∣∣∣
≤ 4|| f − j||+δn|| j′′||+

∣∣∣∣ f (x)− f
(

nρ

(nρ− c)
x+

αρ

(nρ− c)(1+ eβ )

)∣∣∣∣
≤ 4|| f − j||+δn|| j′′||+ω( f ,α2).

Taking infimum over all j ∈W 2, and using (1.3), we get the required result.
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Our next result is the Voronovskaja-type asymptotic formula.

Theorem 2.4.8. (Voronvaskaja type theorem) Let f be a bounded and integrable function on [0,∞) such

that f ′′(x) exist at 0≤ x < ∞, then

lim
n→∞

n
[
T α,β

n,ρ ( f ,x)− f (x)
]
=

[
cx
ρ

+
α

(1+ eβ )

]
f ′(x)+

[
c
ρ

x2 + x
]

f ′′(x)
2!

.

Proof. Using the well known Taylor’s series expansion

f (t) = f (x)+(t− x) f ′(x)+
(t− x)2

2!
f ′′(x)+σ(t,x)(t− x)2,

where σ(t,x)→ 0 as t→ x and the function ρ is bounded on [0,∞).

Now,

n
[
T α,β

n,ρ ( f ,x)− f (x)
]
= n

[
T α,β

n,ρ (t− x,x) f ′(x)+
T α,β

n,ρ
(
(t− x)2,x

)
2!

f ′′(x)+T α,β
n,ρ
(
σ(t,x)(t− x)2,x

)]

= n
[(

cx
(nρ− c)

+
αρ

(nρ− c)(1+ eβ )

)
f ′(x)+

nρc+2c2

(nρ− c)(nρ−2c)
x2

2!
f ′′(x)

+
nρ2 +nρ2eβ +4cαρ

(nρ− c)(nρ−2c)(1+ eβ )

x
2!

f ′′(x)+
α2ρ2−2αρ2eβ −αρ2e2β 2

2!(nρ− c)(nρ−2c)(1+ eβ )2 f ′′(x)
]

+ h̄(n,x),

where

h̄(n,x) = e−nx
(

1+ eβ

2

)α
(

Gα
0 (nx;β )σ(0,x)(−x)2 +

∞

∑
k=1

Gα
k (nx;β )

k!

∫
∞

0
Θ

ρ

n,k (t,c)σ(t,x)(t− x)2dt

)
.

Now it is sufficient to show that h̄(n,x)→ 0 as large n. Since σ(t,x)→ 0 as t → x, for a given ε > 0,

there exists δ > 0 such that |σ(t,x)|< ε , whenever −δ < t− x < δ ,

|h̄(n,x)| ≤ e−nx
(

1+ eβ

2

)α ∞

∑
k=1

Gα
k (nx;β )

k!

[∫
|t−x|<δ

Θ
ρ

n,k (t,c) |σ(t,x)|(t− x)2dt

+
∫
|t−x|≥δ

Θ
ρ

n,k (t,c) |σ(t,x)|(t− x)2dt
]

+e−nx
(

1+ eβ

2

)α

Gα
0 (nx;β )σ(0,x)(−x)2

≤ I1 + I2.

By using the Remark 2.4.2, we have I1 = σO(1) and for m≥ 2, we have

I2 ≤Ce−nx
(

1+ eβ

2

)α
(

Gα
0 (nx;β )σ(0,x)(−x)2 +

∞

∑
k=1

Gα
k (nx;β )

k!

∫
∞

0
Θ

ρ

n,k (t,c)
(t− x)2m

δ 2m−2 dt

)
= O(n−m+1),
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where C = sup
t∈[x,∞)

|σ(t,x)|. Due to arbitrariness of ε > 0, h̄(n,x)→ 0 for sufficiently large n. This

completes the proof.

In the following theorem, we provide the rate of convergence of the proposed operators for

functions in Lipschitz-type spaces.

Theorem 2.4.9. (Lipschitz class) Let f ∈ Lip∗M(σ) and 0 < σ ≤ 1. Then for each x ∈ (0,∞), we have

|T α,β
n,ρ ( f (t);x)− f (x)| ≤ M

(
T α,β

n,ρ ((t− x)2;x)
x

) σ

2

.

Proof. Let f ∈ Lip∗M(σ) and x ∈ (0,∞), t ∈ [0,∞), we have

|T α,β
n,ρ ( f (t);x)− f (x)| ≤ T α,β

n,ρ (| f (t)− f (x)|;x)

≤M.T α,β
n,ρ

(
|t− x|σ

(t + x)
σ

2
;x
)

≤ M
x

σ

2
T α,β

n,ρ (|t− x|σ ;x). (2.15)

Taking p = 2
σ

and q = 2
2−σ

and applying Hölder’s inequality, we obtain

T α,β
n,ρ (|t− x|σ ;x)≤

{
T α,β

n,ρ (|t− x|2;x)
} σ

2
.
{

T α,β
n,ρ (1

2
2−σ ;x)

} 2−σ

2

≤
{

T α,β
n,ρ (|t− x|2;x)

} σ

2
. (2.16)

Using (2.15) and (2.16), we get the required result

|T α,β
n,ρ ( f (t);x)− f (x)| ≤M

(
T α,β

n,ρ ((t− x)2;x)
x

) σ

2

.

Theorem 2.4.10. (Ditzian-totik modulus of smoothness) For f ∈CB[0,∞) and x ∈ (0,∞), we have

|T α,β
n,ρ ( f (t);x)− f (x)| ≤Cωφ γ

(
f ;

φ 1−γ(x)
√

nρ

)
,

for sufficiently large n and constant C > 0 is independent of f and n.

Proof. For j ∈Wγ , we get

j(t) = j(x)+
∫ t

x
j′(u)du. (2.17)
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Applying T α,β
n,ρ in (2.17) and using Hölder’s inequality, we obtain

|T α,β
n,ρ ( j(t);x)− j(x)| ≤ T α,β

n,ρ

(∫ t

x
| j′|du;x

)
≤ ‖φ γ j′‖T α,β

n,ρ

(∣∣∣∣∫ t

x

du
φ γ(u)

∣∣∣∣ ;x
)

≤ ‖φ γ j′‖T α,β
n,ρ

(
|t− x|1−γ

∣∣∣∣∫ t

x

du
φ(u)

∣∣∣∣γ ;x
)
. (2.18)

Take A =
∣∣∣∫ t

x
du

φ(u)

∣∣∣, we find

A≤
∣∣∣∣∫ t

x

du√
u

∣∣∣∣ ∣∣∣∣( 1
√

cx+ρ
+

1
√

ct +ρ

)∣∣∣∣
≤ 2|
√

t−
√

x|
(

1
√

cx+ρ
+

1
√

ct +ρ

)
≤ 2

|t− x|
√

x+
√

t

(
1

√
cx+ρ

+
1

√
ct +ρ

)
≤ 2
|t− x|√

x

(
1

√
cx+ρ

+
1

√
ct +ρ

)
. (2.19)

Using the inequality |a+b|γ ≤ |a|γ + |b|γ , 0≤ γ ≤ 1 and (2.19), we get

‖
∫ t

x

du
φ(u)

‖γ ≤ 2β |t− x|γ

x
γ

2

(
1

(cx+ρ)
γ

2
+

1

(ct +ρ)
γ

2

)
. (2.20)

From (2.18), (2.20) and using Cauchy-Schwarz inequality, we get

|T α,β
n,ρ ( j(t);x)− j(x)| ≤ 2γ‖φ γ j′‖

x
γ

2
T α,β

n,ρ

(
|t− x|

(
1

(cx+ρ)
γ

2
+

1

(ct +ρ)
γ

2

)
;x

)

≤ 2γ‖φ γ j′‖
x

γ

2

(
1

(ct +ρ)
γ

2
(T α,β

n,ρ ((t− x)2;x))
1
2

+(T α,β
n,ρ
(
(t− x)2;x)

) 1
2 .(T α,β

n,ρ
(
(ct +ρ)−γ ;x)

) 1
2

)
.

If n is adequately large, then we get

(
T α,β

n,ρ
(
(t− x)2;x

)) 1
2 ≤

√
2

nρ
φ(x), (2.21)

where φ(x) =
√

x(cx+ρ).

For each x ∈ (0,∞), T α,β
n,ρ ((ct +ρ)−γ ;x)→ (cx+ρ)−γ as n→ ∞. For ε > 0, there exists n0 ∈ N such

that

T α,β
n,ρ
(
(ct +ρ)−γ ;x

)
≤ (cx+ρ)−γ + ε, ∀ n≥ n0 = n0(c,x,ρ,β ).
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By choosing ε = (cx+ρ)−γ , then we obtain

T α,β
n,ρ
(
(ct +ρ)−γ ;x

)
≤ 2(cx+ρ)−γ , ∀ n≥ n0. (2.22)

From (2.18) to (2.22), we get

|T α,β
n,ρ ( j(t);x)− j(x)| ≤ 2γ‖φ γ j′‖

√
2

nρ
φ(x)

(
φ
−γ(x)+

√
2x
−γ

2 (cx+ρ)
−γ

2

)
≤ 2γ+ 1

2 (1+
√

2)‖φ γ j′‖

√
2

nρ
φ

1−γ(x). (2.23)

We may write

|T α,β
n,ρ ( f (t);x)− f (x)| ≤ |T α,β

n,ρ ( f (t)− j(x);x)|

+ |T α,β
n,ρ ( j(t);x)− j(x)|+ | j(x)− f (x)|

≤ 2‖ f − j‖+ |T α,β
n,ρ ( j(t);x)− j(x)|. (2.24)

From (2.23) to (2.24) and for adequately large n, we get

|T α,β
n,ρ ( f (t);x)− f (x)| ≤ 2‖ f − j‖+2γ+ 1

2 (1+
√

2)

√
2

nρ
φ

1−γ‖φ β j′‖

≤ m1

{
‖ f − j‖+ φ 1−γ(x)

√
nρ
‖φ γ j′‖

}
≤CKφ γ

(
f ,

φ 1−γ(x)
√

nρ

)
, (2.25)

where m1 = max(2,2γ+ 1
2 (1+

√
2)
√

2), from (1.4) and (2.25), we get the appropriate result.

2.4.3 Weighted Approximation

In this section, we will examine the weighted estimation hypothesis of the operators (2.10).

Theorem 2.4.11. (Weighted approximation) For each f ∈C∗τ [0,∞) and n > 2c, we have

lim
n→∞
||T α,β

n,ρ ( f )− f ||τ = 0.

Proof. Using Lemma 2.4.1, we see that it is sufficient to verify the following conditions

lim
n→∞
||T α,β

n,ρ (tr,x)− xr||τ = 0, r = 0,1,2. (2.26)
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Since T α,β
n,ρ (1,x) = 1, for r = 0, (2.26) holds. For nρ > c, we have

||T α,β
n,ρ (t,x)− x||τ = sup

x∈[0,∞)

|T α,β
n,ρ (t,x)− x|

1+ x2

= sup
x∈[0,∞)

1
1+ x2

∣∣∣∣ nρx
(nρ− c)

+
αρ

(nρ− c)(1+ eβ )
− x
∣∣∣∣

≤
[

nρ

(nρ− c)
−1
]

sup
x∈[0,∞)

x
1+ x2 +

αρ

(nρ− c)(1+ eβ )
sup

x∈[0,∞)

1
1+ x2

the condition (2.26) holds for r = 1 asn→ ∞. Again nρ > 2c, we have

||T α,β
n,ρ (t2,x)− x2||τ = sup

x∈[0,∞)

|T α,β
n,ρ (t2,x)− x2|

1+ x2

= sup
x∈[0,∞)

1
1+ x2

∣∣∣∣ n2ρ2

(nρ− c)(nρ−2c)
x2

+
nρ2(1+2α + eβ )

(nρ− c)(nρ−2c)(1+ eβ )
x

+
ρ2(α2−2αeβ −αe2β 2)

(nρ− c)(nρ−2c)(1+ eβ )2 − x2
∣∣∣∣

≤
[

n2ρ2

(nρ− c)(nρ−2c)
−1
]

sup
x∈[0,∞)

x2

1+ x2

+
nρ2(1+2α + eβ )

(nρ− c)(nρ−2c)(1+ eβ )
sup

x∈[0,∞)

x
1+ x2

+
ρ2(α2−2αeβ −αe2β 2)

(nρ− c)(nρ−2c)(1+ eβ )2 sup
x∈[0,∞)

1
1+ x2 .

The condition (2.26) holds for r = 2 asn→ ∞.

This completes the proof of the theorem.

Corollary 2.4.12. For each f ∈Cτ [0,∞), and α > 0, we have

lim
n→∞

sup
x∈[0,∞)

|T α,β
n,ρ ( f ;x)− f (x)|

(τ(x))α
= 0.

Proof. For any fixed x0 > 0,

sup
x∈[0,∞)

|T α,β
n,ρ ( f ;x)− f (x)|
(1+ x2)1+α

≤ sup
x≤x0

|T α,β
n,ρ ( f ;x)− f (x)|
(1+ x2)1+α

+ sup
x≥x0

|T α,β
n,ρ ( f ;x)− f (x)|
(1+ x2)1+α

≤ ‖T α,β
n,ρ ( f ; .)− f‖C[0,x0]+‖ f‖x2 sup

x≥x0

|T α,β
n,ρ ( f ;x)− f (x)|
(1+ x2)1+α

+ sup
x≥x0

| f (x)|
(1+ x2)1+α

.

From the Theorem 2.4.7, in the above inequality first term tends to zero and by Lemma 2.4.1 for any
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fixed x0 it can be easily seen that

sup
x≥x0

|T α,β
n,ρ (1+ t2;x)− f (x)|

(1+ x2)1+α
≤ ϕ

(1+ x2
0)

α
.

Constant ϕ > 0 is independent of x, and choose adequately large x0 the right-hand side of the earlier

inequality and last part can be made small, we get the required result.
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Chapter 3

Approximation by Bézier Variant of

Bernstein-Durrmeyer Blending type

Operators

Bézier curves are parametric curves that have been used extensively in image processing, time

domain, and computer graphics. These techniques are primarily utilized in curve fitting, approxi-

mation, and interpolation. Fierre Bezier introduced this method and design curves for the Renault

automobile bodywork in 1960. In the present chapter, we construct the Bézier variant of Bernstein-

Durrmeyer blending type operators. We estimate the moments of these operators. Subsequently, we

demonstrate the rate of approximation of the given operators in terms of Ditzian-Totik modulus of

continuity and Lipschitz–type space. We also obtain the rate of convergence for functions having a

bounded variation for these operators. Lastly, we reveal the rate of convergence of these operators

to a certain function by graphics.

3.1 Introduction

D.D. Stancu has received admiration from all over the world for his thorough study and

noteworthy findings. In the year 1998, Stancu [91] proposed the Bernstein-type operators

which are as follows:

Dn,r,s f (x) =
n−sr

∑
µ=0

pn−sr,µ(x)
s

∑
ν=0

ps,ν(x) f
(

µ +νr
n

)
, (3.1)
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where parameters r,s ∈ N∪{0}, and found some approximation results using these operators.

For r,s = 0, the given operators reduce to classical Bernstein operators. In the literature survey,

various authors have studied the approximation behaviour of these mixed type operators [2, 3,

4, 5, 6, 23, 24, 32, 41, 42, 46, 47, 52, 56, 62, 70, 74, 75].

Incitation by above work Kajla and Goyal [58], introduced the Durrmeyer variant of the

operators (3.1) depending on three parameters r,s and ρ with ρ > 0 as follows:

L
(ρ)
n,r,s( f ;x) =

n−sr

∑
µ=0

pn−sr,µ(x)
s

∑
ν=0

ps,ν(x)
∫ 1

0
ϕ
(ρ)
n,µ+νr(t) f (t)dt, (3.2)

where x ∈ [0,1] and

ϕ
(ρ)
n,µ+νr(t) =

t(µ+νr)ρ(1− t)(n−(µ+νr))ρ

B((µ +νr)ρ +1,(n− (µ +νr))ρ +1)
.

They proved the order of convergence and discuss some important results of these operators.

In 1983, Chang [35] discussed the generalized Berstein-Bézier polynomials. Zeng and Piriou

[102] studied the rate of convergence of two Berstein-Bézier type operators for bounded variation

functions. The order of approximation of the summation-integral type operators for functions

with derivatives of bounded variation is estimated in [7, 100, 103]. Various authors have studied

the approximation behaviour of these Bézier type operators [1, 39, 48, 85, 89].

Motivated by such remarkable work in this area, we introduce the Bézier variant of Bernstein-

Durrmeyer blending type operators L(ρ)
n,r,s is defined as:

R̆(ρ,α)
n,r,s ( f ;x) =

n−sr

∑
µ=0

Q(α)
n,µ (x)

∫ 1

0
ϕ
(ρ)
n,µ+νr(t) f (t)dt, (3.3)

where f ∈C[0,1], x ∈ [0,1] and ρ, α ≥ 1, Q(α)
n,µ (x) = [Jn,µ(x)]α − [Jn,µ+1(x)]α and

Jn,µ(x) =
n−sr

∑
j=µ

pn−sr, j(x)
s

∑
ν=0

ps,ν(x),

when µ ≤ n− sr and 0 otherwise.

The operator (3.3) can be rewrite as:

R̆(ρ,α)
n,r,s ( f ;x) =

∫ 1

0
U(ρ,α)

n,r,s (x, t) f (t)dt, x ∈ [0,1],

where

U(ρ,α)
n,r,s (x, t) =

n−sr

∑
µ=0

Qα
n,µ(x)ϕ

(ρ)
n,µ+νr(t)dt.
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The focus of the present chapter is to discuss some useful results for the generalized operators

(3.3). We study rate of convergence using Lipschitz-type space and Ditzian-Totik modulus of

continuity. Next, we estimate rate of convergence for functions having a derivative of bounded

variation for the given operators. In the last, we show graphical representation of the theoretical

results and the effectiveness of the operators. Throughout this chapter ρ > 0.

3.2 Preliminaries

The results used in our primary findings are discussed in this section.

Lemma 3.2.1. [58] The moments of the operator L(ρ)
n,r,s(em(x) = xm);x), m = 0,3, we have

L
(ρ)
n,r,s(e0;x) = 1;

L
(ρ)
n,r,s(e1;x) =

nρx+1
nρ +2

;

L
(ρ)
n,r,s(e2;x) =

x2ρ2[n(n−1)− rs(r−1)]+ xρ[n(3+ρ)+ rsρ(r−1)]+2
(nρ +3)(nρ +2)

;

L
(ρ)
n,r,s(e3;x) =

x3ρ3[n(n−1)(n−2)+ r(r−1)(2−3n+2r)s]
(nρ +4)(nρ +3)(nρ +2)

+
3x2ρ2[n2(2+ρ)− rs(r−1)(2+ρ + rρ)+n(r2sρ− (1+2sr)(2+ρ)+ rs(4+ρ))]

(nρ +4)(nρ +3)(nρ +2)

+
xρ(rsρ(r−1)(6+ρ + rρ)+n(11+ρ(6+ρ)))

(nρ +4)(nρ +3)(nρ +2)

+
6

(nρ +4)(nρ +3)(nρ +2)
.

Lemma 3.2.2. The central moments of the operators L(ρ)
n,r,s((t− x)m;x), for m = 1,2, we have

L
(ρ)
n,r,s((t− x);x) =

1−2x
nρ +2

;

L
(ρ)
n,r,s((t− x)2;x) =

(ρ(n+(n+(r−1)rs)ρ)−6)x(1− x)+2
(nρ +2)(nρ +3)

.

Lemma 3.2.3. For the operators L(ρ)
n,r,s((t− x)m;x) for m = 1,2, we have

lim
n→∞

nL(ρ)
n,r,s((t− x);x) =

1−2x
ρ

;

lim
n→∞

nL(ρ)
n,r,s((t− x)2;x) =

(1+ρ)x(1− x)
ρ

.

Remark 3.2.4. For n ∈ N, we have

L
(ρ)
n,r,s((t− x)2;x)≤ χ

ρ
r,s x(1− x)

nρ
, (3.4)

where χ
ρ
r,s is a positive constant depending on r,s and ρ .
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Remark 3.2.5. We have

R̆(ρ,α)
n,r,s (e0;x) =

n−sr

∑
µ=0

Q(α)
n,µ (x) = [Jn,0(x)]α

=
n−sr

∑
j=0

pn−sr, j(x)
s

∑
ν=0

ps,ν(x) = 1.

Lemma 3.2.6. Let f be a real-valued continuous bounded function on [0,1], then

|L(ρ)
n,r,s( f )| ≤ ‖ f‖,

where sup-norm ‖.‖ is defined as ‖ f‖= sup
x∈[0,1]

| f (x)|.

Lemma 3.2.7. Let f ∈C[0,1] , then for x ∈ [0,1] and α ≥ 1, we have

|R̆(ρ,α)
n,r,s ( f )| ≤ α‖ f‖.

Proof. We know the inequality

|aα −bα | ≤ α|a−b| with 0≤ a, b≤ 1, andα ≥ 1,

using the provided inequality, we obtain

0 < [Jn,µ(x)]α − [Jn,µ+1(x)]α ≤ α(Jn,µ(x)− Jn,µ+1(x)) = α[pn−sr,µ(x)].

Hence, from the definition of the Bézier variant operators R̆(ρ,α)
n,r,s ( f ;x) and Lemma 3.2.6, we get

|R̆(ρ,α)
n,r,s ( f )| ≤ α‖L(ρ)

n,r,s( f )‖ ≤ α‖ f‖.

3.3 Direct Results

Here, we estimate rate of convergence of the function f ∈ Lip∗M(σ) by the operators R̆(ρ,α)
n,r,s .

Theorem 3.3.1. (Lipschitz class) Let f ∈ Lip∗M(σ) and σ ∈ (0,1]. Then for all x ∈ (0,1), we have

|R̆(ρ,α)
n,r,s ( f (t);x)− f (x)| ≤ αM

(
L
(ρ)
n,r,s((t− x)2;x)

x

) σ

2

,

where L
(ρ)
n,r,s((t− x)2;x) =

(ρ(n+(n+(r−1)rs)ρ)−6)x(1− x)+2
(nρ +2)(nρ +3)

.
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Proof. From the Remark 3.2.5, we have

|R̆(ρ,α)
n,r,s ( f (t);x)− f (x)| ≤ R̆(ρ,α)

n,r,s (| f (t)− f (x)|;x)

≤ αL
(ρ)
n,r,s(| f (t)− f (x)|;x)

≤ αML
(ρ)
n,r,s

(
|t− x|σ

(t + x)
σ

2
;x
)

≤ αM
x

σ

2
L
(ρ)
n,r,s(|t− x|σ ;x). (3.5)

Taking p = 2
σ

and q = 2
2−σ

and applying Hölder’s inequality, we obtain

L
(ρ)
n,r,s(|t− x|σ ;x) ≤

{
L
(ρ)
n,r,s(|t− x|2;x)

} σ

2
.
{
L
(ρ)
n,r,s(1

2
2−σ ;x)

} 2−σ

2

≤
{
L
(ρ)
n,r,s(|t− x|2;x)

} σ

2
. (3.6)

Combining (3.5, 3.6), we get the required result

|R̆(ρ,α)
n,r,s ( f (t);x)− f (x)| ≤ αM

(
L
(ρ)
n,r,s((t− x)2;x)

x

) σ

2

.

Hence the proof follows.

Theorem 3.3.2. Let f ∈C[0,1] and ρ ≥ 1, αn ∈ [0,1], we get

|R̆(ρ,α)
n,r,s ( f (t);x)− f (x)| ≤Cω2

 f ;

√
χ

ρ
r,s

16nρ

 ,

for sufficient large n and C is a positive constant.

Proof. Let g ∈C2[0,1], followed by well-known Taylor series expansion, we have

g(t) = g(x)+g′(x)(t− x)+
∫ t

x
(t−u)g′′(u)du.

We have S(ρ)n (1;x) = 1, applying S(ρ)n (.;x) to both sides of the above equation, we get

R̆(ρ,α)
n,r,s (g;x) = g(x)+g′(x)R̆(ρ,α)

n,r,s (t− x;x)+ R̆(ρ,α)
n,r,s

(∫ t

x
(t−u)g′′(u)du;x

)
.

By the Cauchy-Schwarz inequality and using equations of Lemma 3.2.2 and 3.4.1, we have

|R̆(ρ,α)
n,r,s (g;x)−g(x)| ≤ |g′(x)||R̆(ρ,α)

n,r,s (|t− x|;x)|+ |R̆(ρ,α)
n,r,s

(∫ t

x
(t−u)g′′(u)du;x

)
|

≤ ‖g′‖R̆(ρ,α)
n,r,s (|t− x|;x)+

‖g′′‖
2

R̆(ρ,α)
n,r,s ((t− x)2;x)

≤ ‖g′‖
√

R̆(ρ,α)
n,r,s ((t− x)2;x)+

‖g′′‖
2

R̆(ρ,α)
n,r,s ((t− x)2;x)
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≤
√

α‖g′‖
√
L
(ρ)
n,r,s((t− x)2;x)+

α‖g′′‖
2

L
(ρ)
n,r,s((t− x)2;x)

≤
√

α‖g′‖

√
χ

ρ
r,s

4nρ
+

α‖g′′‖
2

χ
ρ
r,s

4nρ

≤
√

α‖g′‖
2

√
χ

ρ
r,s

nρ
+

α‖g′′‖
8

χ
ρ
r,s

nρ
.

Then, using the above inequality, we have

|R̆(ρ,α)
n,r,s ( f ;x)− f (x)| ≤ |R̆(ρ,α)

n,r,s ( f −g;x)|+ |( f −g)(x)|+ |R̆(ρ,α)
n,r,s (g;x)−g(x)|

≤ 2‖ f −g‖+
√

α

2
‖g′‖

√
χ

ρ
r,s

nρ
+

α

8
‖g′′‖χ

ρ
r,s

nρ

≤ 2

‖ f −g‖+
√

α

4
‖g′‖

√
χ

ρ
r,s

nρ
+

α

16
‖g′′‖χ

ρ
r,s

nρ


≤ 2

‖ f −g‖+‖g′‖

√
αχ

ρ
r,s

16nρ
+‖g′′‖αχ

ρ
r,s

16nρ

 .

Hence, taking infimum on the right-hand side over all g ∈C2[0,1], we get

|R̆(ρ,α)
n,r,s ( f ;x)− f (x)| ≤ 2K2

(
f ;

χ
ρ
r,s

4nρ

)
and using (1.3), we get the desired result

|R̆(ρ,α)
n,r,s ( f ;x)− f (x)| ≤ Cω2

 f ;

√
χ

ρ
r,s

16nρ

 .

Theorem 3.3.3. (Ditzian-totik modulus of continuity) Let f ∈C[0,1] and α ≥ 1, then for any x∈ (0,1),

we have

|R̆(ρ,α)
n,r,s ( f ;x)− f (x)| ≤Cωφ

(
f ;

φ(x)
√

nρ

)
,

where φ(x) =
√

x(1− x) and C is a constant independent of n and x.

Proof. By the definition of Kφ ( f ; t), for fixed n,x, we can choose g = gn(x) ∈Wφ such that

‖ f −g‖+ 1
√

nρ
‖φg′‖+ 1

nρ
‖g′‖

≤ 2Kφ

(
f ;

1
√

nρ

)
. (3.7)

36



Using remark (3.2.5), we can write

|R̆(ρ,α)
n,r,s ( f ;x)− f (x)| ≤ |R̆(ρ,α)

n,r,s ( f −g;x)|+ | f −g|+ |R̆(ρ,α)
n,r,s (g;x)−g(x)|

≤ 2‖ f −g‖+ |R̆(ρ,α)
n,r,s (g;x)−g(x)|. (3.8)

We only need to compute the second term in the above equation. We will have to split the estimate into

two domains, i.e, x ∈ Fc
n = [0, 1

n ] and x ∈ Fn = (1
n ,1).

Using the representation g(t) = g(x)+
∫ t

x g′(u)du, we may write

|R̆(ρ,α)
n,r,s (g;x)−g(x)|=

∣∣∣∣R̆(ρ,α)
n,r,s

(∫ t

x
g′(u)du;x

)∣∣∣∣ . (3.9)

If x ∈ Fn = (1
n ,1) then L

(ρ)
n,r,s ≤ φ 2(x)

nρ
, we have

∣∣∣∣∫ t

x
g′(u)du

∣∣∣∣≤ ‖φg′‖
∣∣∣∣∫ t

x

1
φ(u)

du
∣∣∣∣ . (3.10)

For any x, t ∈ (0,1), we find that

∣∣∣∣∫ t

x

1
φ(u)

du
∣∣∣∣ =

∣∣∣∣∣
∫ t

x

1√
u(1−u)

du

∣∣∣∣∣
≤

∣∣∣∣∫ t

x

(
1√
u
+

1√
1−u

)
du
∣∣∣∣

≤ 2|t− x|
(

1√
t +
√

x
+

1√
1− t +

√
1− x

)
< 2|t− x|

(
1√
x
+

1√
1− x

)
≤ 2

√
2|t− x|
φ(x)

. (3.11)

Combining (3.9 - 3.11) and using the Cauchy-Schwarz inequality, we have

|R̆(ρ,α)
n,r,s (g;x)−g(x)| < 2

√
2‖φg′‖φ−1(x)R̆(ρ,α)

n,r,s (|t− x|;x)

≤ 2
√

2‖φg′‖φ−1(x)(R̆(ρ,α)
n,r,s (|t− x|;x))

1
2

≤ 2
√

2‖φg′‖φ−1(x)(αL
(ρ)
n,r,s((t− x)2;x))

1
2 .

Now, using the relation

L
(ρ)
n,r,s((t− x)2;x)≤ χ

ρ
r,s φ(x)

nρ
,

we have

|R̆(ρ,α)
n,r,s (g;x)−g(x)| <

C‖φg′‖
√

nρ
. (3.12)
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For x ∈ Fc
n = [0, 1

n ], L
(ρ)
n,r,s((t−x)2;x)∼ 1√

nρ
and |

∫ t
x g′(u)du≤ ‖g′‖|t−x|. Therefore using the Cauchy-

Schwarz inequality, we have

|R̆(ρ,α)
n,r,s (g;x)−g(x)| ≤ ‖g′‖R̆(ρ,α)

n,r,s (|t− x|;x)

≤ ‖g′‖α.L
(ρ)
n,r,s(|t− x|;x)

≤ C‖g′‖
nρ

. (3.13)

From (3.12) and (3.13), we have

|R̆(ρ,α)
n,r,s (g;x)−g(x)| ≤C

(
‖φg′‖
√

nρ
+
‖g′‖
nρ

)
. (3.14)

Using (1.2), (3.8) and (3.14), we get the desired result.

3.4 Rate of convergence

Lemma 3.4.1. Let x ∈ (0,1], then for α ≥ 1 and sufficiently large n, we have

ξ
(ρ,α)
n,r,s (x,y) =

∫ y

0
U (ρ,α)

n,r,s (x, t)dt ≤ α

(x− y)2
χ
(ρ)
r,s φ 2(x)

nρ
, 0≤ y < x and

1−ξ
(ρ,α)
n,r,s (x,z) =

∫ 1

z
U (ρ,α)

n,r,s (x, t)dt ≤ α

(z− x)2
χ
(ρ)
r,s φ 2(x)

nρ
, x < z < 1.

Proof. From (3.4) and (3.6), we get

ξ
ρ,α
n,r,s(x,y) =

∫ y

0
Uρ,α

n,r,s(x, t)dt ≤
∫ y

0

(
x− t
x− y

)2

Uρ,α
n,r,s(x, t)dt

= R̆(ρ,α)
n,r,s ((t− x)2;x)(x− y)−2

≤ α.L
(ρ)
n,r,s((t− x)2;x)(x− y)−2

≤ α

(x− y)2
χ
(ρ)
r,s φ 2(x)

nρ
.

and

1−ξ
ρ,α
n,r,s(x,z) =

∫ 1

z
Uρ,α

n,r,s(x, t)dt ≤
∫ 1

z

(
x− t
z− x

)2

Uρ,α
n,r,s(x, t)dt

= (z− x)−2
∫ 1

z
(x− t)2Uρ,α

n,r,s(x, t)dt

= R̆(ρ,α)
n,r,s ((t− x)2;x)(z− x)−2

≤ α.L
(ρ)
n,r,s((t− x)2;x)(z− x)−2

≤ α

(z− x)2
χ
(ρ)
r,s φ 2(x)

nρ
.
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Theorem 3.4.2. (Derivative of bounded variation) Let f ∈DBV(0,1), α ≥ 1 and let
b∨
a

(
f ′x
)

be the total

variation of f ′x on [a,b]⊂ [0,1]. Then for every x ∈ (0,1) and for sufficiently large n, we have

|R̆(ρ,α)
n,r,s ( f ;x)− f (x)| ≤ 1

α +1

∣∣∣∣ f ′(x+)+α f ′(x−)
∣∣∣∣
√

αχ
(ρ)
r,s

nρ
φ(x)

+

√
αχ

(ρ)
r,s

nρ
φ(x).

α

α +1

∣∣∣∣ f ′(x+)+α f ′(x−)
∣∣∣∣

+α.
χ
(ρ)
r,s (1− x)

nρ

[
√

n]

∑
k=1

x∨
x−( x

k )

( f ′x)+
x√
n

x∨
x−
(

x√
n

)( f ′x)

+
αχ

(ρ)
r,s x

nρ
.
[
√

n]

∑
k=1

x+ (1−x)
k∨

x
( f ′x)+

1− x√
n

x+ (1−x)√
n∨

x
( f ′x),

where χ
(ρ)
r,s > 0 and the total variation function f ′x is defined by

f ′x(t) =


f ′(t)− f ′(x−), 0≤ t < x

0, t = x

f ′(t)− f ′(x+), x < t ≤ 1.

Proof. Since R̆(ρ,α)
n,r,s (1;x) = 1, we have

R̆(ρ,α)
n,r,s ( f ;x)− f (x) =

∫ 1

0
| f (t)− f (x)|U (ρ)

n,r,s(x, t)dt

=
∫ 1

0

(∫ t

x
f ′(u)du

)
U (ρ)

n,r,s(x, t)dt. (3.15)

From the definition of the function f ′x, for any f ∈ DBV(0,1), we can write

f ′(t) =
1

α +1
( f ′(x+)+α f ′(x−))+ f ′x(t)+

1
2
( f ′(x+)− f ′(x−))

(
sgn(t− x)+

α−1
α +1

)
+δx(t)

(
f ′(x)− 1

2

(
f ′(x+)+ f ′(x−)

))
, (3.16)

where delta function δx is defined as

δx(t) =
{

1, x = t

0, x 6= t
.

It is clear that

∫ 1

0

(∫ t

x

(
f ′(t)− 1

2

(
f ′(x+)+ f ′(x−)

))
δx(t)du

)
U (ρ)

n,r,s(x, t)dt = 0. (3.17)
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Using Lemma 3.4.1, we get

A1 =
∫ 1

0

(∫ t

x

1
α +1

(
f ′(x+)+α f ′(x−)

)
du
)

U (ρ)
n,r,s(x, t)dt

=
1

α +1
( f ′(x+)+α f ′(x−))

∫ 1

0
(t− x)U (ρ)

n,r,s(x, t)dt

=
1

α +1
( f ′(x+)+α f ′(x−))R̆(ρ,α)

n,r,s ((t− x);x) (3.18)

and

A2 =
∫ 1

0
Uρ

n,r,s(x, t)
(∫ t

x

1
2
( f ′(x+)− f ′(x−))

(
sgn(u− x)+

α−1
α +1

)
du
)

dt

=
1
2
( f ′(x+)− f ′(x−))

[
−
∫ x

0

(∫ x

t

(
sgn(u− x)+

α−1
α +1

)
du
)

U (ρ)
n,r,s(x, t)dt

+
∫ 1

x

(∫ t

x

(
sgn(u− x)+

α−1
α +1

)
du
)

U (ρ)
n,r,s(x, t)dt

]
≤ α

α +1
( f ′(x+)− f ′(x−))

∫ 1

0
|t− x|U (ρ)

n,r,s(x, t)dt

≤ α

α +1
( f ′(x+)− f ′(x−))R̆(ρ,α)

n,r,s ((t− x);x). (3.19)

Using Lemma 3.4.1 and (3.15-3.19) and applying Cauchy-Schwarz inequality, we obtain

|R̆(ρ,α)
n,r,s ( f ;x)− f (x)| ≤ 1

α +1
| f ′(x+)+α f ′(x−)|

√
αδn,ρ(x)+

α

α +1
| f ′(x+)−α f ′(x−)|

√
αδn,ρ(x)

+

∣∣∣∣∫ x

0

(∫ t

x
f ′x(u)du

)
Uρ

n,r,s(x, t)dt
∣∣∣∣+ ∣∣∣∣∫ 1

x

(∫ t

x
f ′x(u)du

)
U (ρ)

n,r,s(x, t)dt
∣∣∣∣. (3.20)

Now, let

A(ρ,α)
n,r,s ( f ′x,x) =

∫ x

0

∫ t

x
f ′x(u)duU (ρ)

n,r,s(x, t)dt,

and

B(ρ,α)
n,r,s ( f ′x,x) =

∫ 1

x

∫ t

x
f ′x(u)duU (ρ)

n,r,s(x, t)dt.

Our claim is that to calculate the estimates of the terms A(ρ,α)
n,r,s ( f ′x,x) and Bρ,α

n,r,s( f ′x,x).

From the definition of ξ
(ρ,α)
n,r,s given in Lemma 3.4.1, we can write

A(ρ,α)
n,r,s ( f ′x,x) =

∫ x

0

(∫ t

x
f ′x(u)

)
∂

∂ t
ξ
(ρ,α)
n,r,s (x, t)dt.

Applying the integration by parts, we get

|A(ρ,α)
n,r,s ( f ′x,x)| ≤

∫ x

0
| f ′x(t)|ξ ρ,α

n,r,s(x, t)dt
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≤
∫ x− x√

n

0
| f ′x(t)|ξ ρ,α

n,r,s(x, t)dt +
∫ x

x− x√
n

| f ′x(t)|x−
x√
n

≤ I1 + I2.

Since f ′x(x) = 0 and ξ
ρ,α
n,r,s(x, t)≤ 1, we have

I2 =
∫ x

x− x√
n

| f ′x(t)− f ′x(x)|ξ ρ,α
n,r,s(x, t)dt ≤

∫ x

x− x√
n

(
x∨
t

f ′x

)
dt

≤

(
x∨
t

f ′x

)∫ x

x− x√
n

dt =
x√
n

(
x∨
t

f ′x

)
.

By applying Lemma 3.4.1 and considering t = x− x
u , we get

I1 ≤ αδ
2
n,ρ(x)

∫ x− x√
n

0
| f ′x(t)− f ′x(x)|

dt
(x− t)2

≤ αδ
2
n,ρ(x)

∫ x− x√
n

0

(
x∨
t

f ′x

)
dt

(x− t)2

≤
αδ 2

n,ρ(x)
x

∫ √n

1

 x∨
x− x

u

f ′x

du

≤
αδ 2

n,ρ(x)
x

√
n

∑
k=1

 x∨
x− x

k

f ′x

 .

Therefore,

|A(ρ,α)
n,r,s ( f ′x,x)| ≤

αδ 2
n,ρ(x)
x

√
n

∑
k=1

 x∨
x− x

k

f ′x

+
x√
n

(
x∨
t

f ′x

)
. (3.21)

Also, using integration by parts in B(ρ,α)
n,r,s ( f ′x,x) and applying Lemma 3.4.1 with z = x+ (1−x)√

n , we have

|B(ρ,α)
n,r,s ( f ′x,x)| =

∣∣∣∣∫ 1

x

(∫ t

x
f ′x(u)du

)
U (ρ)

n,r,s(x, t)dt
∣∣∣∣

=

∣∣∣∣∫ 1

x

(∫ t

x
f ′x(u)du

)
∂

∂ t
(1−ξ

(ρ,α)
n,r,s (x, t))dt

+
∫ 1

z

(∫ t

x
f ′x(u)du

)
∂

∂ t
(1−ξ

(ρ,α)
n,r,s (x, t))dt

∣∣∣∣
=

∣∣∣∣[∫ t

x
( f ′x(u)du)(1−ξ

(ρ,α)
n,r,s (x, t))

]z

x
−
∫ z

x
f ′x(t)(1−ξ

(ρ,α)
n,r,s (x, t))dt

+
∫ 1

z

∫ t

x
( f ′x(u)du)

∂

∂ t
(1−ξ

(ρ,α)
n,r,s (x, t))dt

∣∣∣∣
=

∣∣∣∣∫ z

x
( f ′x(u)du)(1−ξ

(ρ,α)
n,r,s (x,z))−

∫ z

x
f ′x(t)(1−ξ

(ρ,α)
n,r,s (x, t))dt

+

[∫ t

x
( f ′x(u)du)(1−ξ

(ρ,α)
n,r,s (x, t))

]1

z
−
∫ 1

z
f ′x(t)(1−ξ

(ρ,α)
n,r,s (x, t))dt

∣∣∣∣∣
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=

∣∣∣∣∫ z

x
f ′x(t)(1−ξ

(ρ,α)
n,r,s (x, t))dt +

∫ 1

z
f ′x(t)(1−ξ

(ρ,α)
n,r,s (x, t))dt

∣∣∣∣
≤ αδ

2
n,ρ(x)

∫ 1

z

(
t∨
x

f ′x

)
(t− x)−2dt +

∫ z

x

t∨
x

f ′xdt

≤ αδ
2
n,ρ(x)

∫ 1

x+ (1−x)√
n

(
t∨
x

f ′x

)
(t− x)−2dt +

(1− x)√
n

x+ (1−x)√
n∨

x
f ′x

 .

Substituting u = (1−x)
(t−x) in the above equation, we get

|B(ρ,α)
n,r,s ( f ′x,x)| ≤ αδ

2
n,ρ(x)

∫ √n

1

x+ (1−x)
u∨

x
f ′x

(1− x)−1du+
(1− x)√

n

x+ (1−x)√
n∨

x
f ′x


≤

αδ 2
n,ρ(x)

(1− x)

[
√

n]

∑
k=1

x+ (1−x)
k∨

x
f ′x

+
(1− x)√

n

x+ (1−x)√
n∨

x
f ′x

 . (3.22)

Using the equations (3.20- 3.22), we get the required result.

3.5 Numerical Results with Conclusions

Using a function and various parameter values, we show the convergence of the operators

(3.2) and (3.3) with the help of Mathematica software in this section.

Let f (x) =−x3 + x2−1 for r = 1, s = 1, ρ = 1 and n ∈ {10,50,110,200}. The operators L(ρ)
n,r,s

converges to the function f (x) for large n are shown in figure (a) and proposed Bézier variant

operators R̆(ρ,α)
n,r,s for α = 1.05, r = 1, s = 1, ρ = 1 and n ∈ {10,50,110,200}, converges to the

function f (x) for large n are shown in figure (b).

0.0 0.2 0.4 0.6 0.8 1.0

-1.00

-0.95

-0.90

-0.85

n=200

n=110

n=50

n=10

f[x]

Figure 3.1: Figure:(a) This graph shows how the Blending type Bernstein-Durrmeyer operators uni-
formly converge.
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-1.00
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-0.85
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n=110

n=50

n=10

f[x]

Figure 3.2: Figure:(b) convergence of the Bézier variant of Bernstein-Durrmeyer blending type opera-
tors.

The Figure (a), and Figure (b) give out with the uniform convergence of the operators (3.2)

and (3.3).

43





Chapter 4

Approximation by a Durrmeyer Variant

of Cheney-Sharma Chlodovsky Operators

For the sequence of linear positive operators to figure out the convergence in Approximation The-

ory, one useful research is the statistical convergence theory. This chapter is a study of precise

approximation properties of Cheney-Sharma Chlodovsky Durrmeyer operators. Using the preliminary

results of these operators we verify Bohman-Korovkin’s theorem. We study Lipschitz-type space and

the second-order modulus of continuity. In the next section, the weighted approximation result is

obtained. Moreover, we obtain some approximation properties in terms of A-Statistical convergence

of these operators.

4.1 Introduction

In 1932, Chlodovsky [17] introduced the generalization of Bernstein polynomial known as

classical Bernstein-Chlodovsky polynomials on an unbounded interval. These polynomials Cn :

C[0,∞)→C[0,∞), n ∈ N is defined as

Cn( f ,x) =


n

∑
ν=0

f
(

ν

n
bn

)(n
ν

)(
x
bn

)ν(
1− x

bn

)n−ν

, 0≤ x≤ bn

f (x), x > bn

,

where f ∈C[0,∞), x ∈ [0,∞) and 0≤ x≤ bn and {bn} is a positive sequence with lim
n→∞

bn = ∞, and

lim
n→∞

bn

n
= 0.

The Bernstein polynomials and its generalized operators have been extensively studied by sev-

eral researchers. These operators have many important applications in the field of Mathematics,
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computer science, and graphic design. For the more information about the Durrmeyer operators

and their properties, readers should refer the following articles (cf.[38, 43, 74, 77, 81, 99]).

The eminent Norwegian mathematician Niels Henrik Abel gave famous equality as:

(x+ y)n =
n

∑
ν=0

(
n
ν

)
x(x−νβ )ν−1(y+νβ )n−ν , β ≥ 0.

Use of above equality we mention more Abel type formulas

(x+ y+nβ )n =
n

∑
ν=0

(
n
ν

)
x(x+νβ )ν−1(y+(n−ν)β )n−ν ,

(x+ y+nβ )n =
n

∑
ν=0

(
n
ν

)
(x+νβ )νy(y+(n−ν)β )n−ν−1,

(x+ y+nβ )n−1 =
n

∑
ν=0

(
n
ν

)
x(x+νβ )ν−1y[y+(n−ν)β ]n−ν−1,

(x+ y)(x+ y+nβ )n−1 =
n

∑
ν=0

(
n
ν

)
x(x+νβ )ν−1y[y+(n−ν)β ]n−ν−1,

where x,y ∈R. Using these equalities, Cheney-Sharma [16] introduced a generalization of Bern-

stein polynomial as follows:

Ψn( f ,x) = (1+nβ )1−n
n

∑
ν=0

f
(

ν

n

)(n
ν

)
x(x+ kβ )ν−1(1− x)[1− x+(n−ν)β ]n−ν−1. (4.1)

For β = 0 above operators reduce to the classical Bernstein operators.

In 2020, Söylemez and Taşdelen [82] proposed Cheney-Sharma-Chlodovsky operators depend-

ing on some parameters as follows:

Gn( f ,x) = (1+nβ )1−n
n

∑
ν=0

f
(

ν

n
bn

)(n
ν

)
x
bn

(
x
bn

+β

)ν−1(
1− x

bn

)
×

[
1− x

bn
+(n−ν)β

]n−ν−1

(4.2)

for 0 ≤ x ≤ bn and f (x) for x > bn. Here sequence {bn} is the same as defined in classical

Bernstein-Chlodovsky polynomials. They proved the order of convergence and discuss some

important results of these operators. For bn = 1 the operators (4.2) reduce to (4.1).

Encouraged by the above work, we introduced a new type of Cheney-Sharma-Chlodovsky

-Durrmeyer operators, with the help of Lebesgue integrable function on [0,bn] as

D̃n( f ,x) =
(n+1)

bn

n

∑
ν=0

℘n,ν ,β

(
x
bn

)∫ bn

0
ϑn,ν

(
x
bn

)
f (x)dx, (4.3)
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where 0≤ x≤ bn, lim
n→∞

bn→ ∞, lim
n→∞

bn

n
= 0,

℘n,ν ,β

(
x
bn

)
= (1+nβ )1−n

(
n
ν

)
x
bn

(
x
bn

+νβ

)ν−1(
1− x

bn

)[
1− x

bn
+(n−ν)β

]n−ν−1

,

and

ϑn,ν

(
x
bn

)
=

(
n
ν

)(
t

bn

)ν(
1− t

bn

)n−ν

.

The aim of this chapter is to study some approximation properties of the operators (4.3).

First, we find lemmas and auxiliary results to prove our main results. Then, we verified the

Bohman-Korovkin theorem and find direct results in terms of modulus of continuity, Lipschitz-

type space, and Ditzian-Totik. We also studied weighted approximation and statistical conver-

gence.

4.2 Preliminaries

Here, we provide Moments and Central Moments for the given operators, which help us to

show our main results.

Lemma 4.2.1. [82] The moments of the operators Gn((er(t) = tr),x), r = 0,2, we have

Gn(e0,x) = 1,

Gn(e1,x) = x,

Gn(e2,x) ≤ x2(1+2nβ )+ x
(

bn

n
+2nβ

2bn +n2
β

3bn +2β (1+nβ )bn +nβ
2(1+nβ )bn

)
.

Lemma 4.2.2. The moments of the operators D̃n(tr,x), r = 0,2, we have

D̃n(e0,x) = 1,

D̃n(e1,x) =
nx+bn

n+2
,

D̃n(e2,x) ≤
n2x2(1+2nβ )+nx(4+2nβ +5n2β 2 +2n3β 3)b2 +2b2

n

(2+n)(3+n)
.

Proof. After simple computations, we find a relation of the given operators (4.3)

D̃n(tr,x) =
(n+1)!

(n+ r+1)!
br

n

n

∑
ν=0

℘n,ν ,β

(
x
bn

)
(ν + r)!

ν!
. (4.4)

Substitute r = 0 in the equation (4.4), we obtain the result D̃n(e0,x) = 1.

Again, take r = 1 in the equation (4.4), we get

D̃n(e1,x) =
(n+1)!
(n+2)!

bn

n

∑
ν=0

℘n

(
x
bn

)
(ν +1)!

ν!
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=
bn

(n+2)

{
n

∑
ν=0

(
ν

n
bn

) n
bn

℘n

(
x
bn

)
+

n

∑
ν=0

℘n

(
x
bn

)}

=
n

(n+2)

n

∑
ν=0

(
ν

n
bn

)
℘n

(
x
bn

)
+

bn

(n+2)

n

∑
ν=0

℘n

(
x
bn

)
=

n
(n+2)

Gn(t,x)+
bn

(n+2)
Gn(1,x)

=
n

(n+2)
x+

bn

(n+2)
,

thus

D̃n(e1,x) =
nx+bn

n+2
.

Now, take r = 2 in the equation (4.4), we find the result

D̃n(e2,x) =
(n+1)!
(n+3)!

b2
n

n

∑
ν=0

℘n

(
x
bn

)
(ν +2)!

ν!

=
b2

n

(n+2)(n+3)

{
n

∑
ν=0

ν
2
℘n

(
x
bn

)
+

n

∑
ν=0

3ν℘n

(
x
bn

)
+

n

∑
ν=0

2℘n

(
x
bn

)}

=
b2

n

(n+2)(n+3)

{
n

∑
ν=0

(
ν2

n2 b2
n

)(
n2

b2
n

)
℘n

(
x
bn

)
+3

n

∑
ν=0

(
ν

n
bn

)( n
bn

)
℘n

(
x
bn

)

+2
n

∑
ν=0

℘n

(
x
bn

)}

=
n2

(n+2)(n+3)
Gn(t2,x)+

3nbn

(n+2)(n+3)
Gn(t,x)+

2b2
n

(n+2)(n+3)
Gn(1,x)

≤ n2x2(1+2nβ )+nx(4+2nβ +5n2β 2 +2n3β 3)b2 +2b2
n

(2+n)(3+n)
.

Hence

D̃n(e2,x)≤
n2x2(1+2nβ )+nx(4+2nβ +5n2β 2 +2n3β 3)b2 +2b2

n

(2+n)(3+n)
.

The Central moment of the operators D̃n((t− x)2,x), we have

D̃n((t− x)2,x) ≤ x2(6−n+2n3β )+ x(−6+2n+2n2β +5n3β 2 +2n4β 3)nn +2b2
n

(2+n)(3+n)
.

Lemma 4.2.3. Let f be a real-valued continuous bounded function on [0,1], then

|D̃n( f )| ≤ ‖ f‖,

where sup-norm ‖.‖ is defined as ‖ f‖= sup
x∈[0,bn]

| f (x)|.
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4.3 Approximation Results

In the present section, we verified the Bohman-Korovkin theorem and estimated local approx-

imation in terms of modulus of continuity, Lipschitz-type space, and Ditzian-totik modulus of

smoothness.

Theorem 4.3.1. (Fundamental convergence theorem) Let D̃n be the operators given by (4.4) and h ∈

C[0,∞)∩E, then the following relations holds

lim
n→∞

D̃n( f ,x) = f (x)

uniformly on each compact subset of [0,∞), where

E =

{
f : x ∈ [0,∞),

f (x)
1+ x2 is convergent as x→ ∞

}
.

Here β as a sequence of positive real numbers such that β = βn and lim
n→∞

nβn = 0.

Proof. It is sufficient to prove that the operators D̃n verify the conditions, use of Korovkin’s theorem

lim
n→∞

D̃n(er,x) = xr, r = 0,2

uniformly on each compact subset of [0,∞). From the Lemma 4.2.2,

D̃n(e0,x) = 1, for every n ∈ N

tends to 1,

D̃n(e1,x) =
nx+bn

n+2

tends to x, and

D̃n(e2,x)≤
n2x2(1+2nβ )+nx(4+2nβ +5n2β 2 +2n3β 3)b2 +2b2

n

(2+n)(3+n)

tends to x2 as n large.

In the following theorem, we obtain the rate of convergence of the operators D̃n for functions

in Lip∗M(σ).

Theorem 4.3.2. (Lipschitz class) Let f ∈ Lip∗M(σ) and 0 < σ ≤ 1. Then for each x ∈ (0,∞), we have

|D̃n( f (t);x)− f (x)| ≤M
(

D̃n((t− x)2;x)
x

) σ

2

.
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Proof. Let f ∈ Lip∗M(σ) and x ∈ (0,∞), t ∈ (0,∞), we have

|D̃n( f (t);x)− f (x)| ≤ D̃n(| f (t)− f (x)|;x)

≤ M.D̃n

(
|t− x|σ

(t + x)
σ

2
;x
)

≤ M
x

σ

2
D̃n(|t− x|σ ;x). (4.5)

Taking p = 2
σ

and q = 2
2−σ

and applying Hölder’s inequality, we obtain

D̃n(|t− x|σ ;x) ≤
{

D̃n(|t− x|2;x)
} σ

2 .
{

D̃n(1
2

2−σ ;x)
} 2−σ

2

≤
{

D̃n(|t− x|2;x)
} σ

2 . (4.6)

Using (4.5) and (4.6), we get the required result

|D̃n( f (t);x)− f (x)| ≤M
(

D̃n((t− x)2;x)
x

) σ

2

.

Theorem 4.3.3. Let f ∈CB[0,∞), we have

|D̃n( f ,x)− f (x)| ≤Cω2( f ,
√

δ )+ω

(
f ,

bn

n+2

)
,

where C is a positive constant and δ = |D̃n((t− x)2,x)|+
(

bn
n+2

)
.

Proof. We define operators Hn(h,x) as follows

Hn(h,x) = D̃n(h,x)−h
(

nx+bn

n+2

)
+h(x).

The operators Hn are linear and Hn(t− x,x) = 0 in view of Lemma 4.2.1. Let g ∈W 2 from the Taylors

expansion of g, we have

g(t) = g(x)+(t− x)g′(x)+
∫ t

x
(t−u)g′′(u)du.

Applying the operator Hn on above, we obtain

Hn(g,x) = g(x)+g′(x)Hn((t− x),x)+Hn

(∫ t

x
(t−u)g′′(u)du,x

)
|Hn(g,x)−g(x)| = |Hn

(∫ t

x
(t−u)g′′(u)du,x

)
|

≤ |D̃n

(∫ t

x
(t−u)g′′(u)du,x

)
|+

∣∣∣∣∣
∫ nx+bn

n+2

x

(
nx+bn

n+2
−u
)

g′′(u)du

∣∣∣∣∣
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≤

{∣∣∣∣D̃n

(∫ t

x
(t−u)du,x

)∣∣∣∣+
∣∣∣∣∣
∫ nx+bn

n+2

x

(
nx+bn

n+2
−u
)

du

∣∣∣∣∣
}
‖g′′‖

≤

{
|D̃n((t− x)2,x)|+

(
bn

n+2

)2
}
‖g′′‖

= δ‖g′′‖,

where δ = |D̃n((t− x)2,x)|+
(

bn
n+2

)2
.

Now,

|D̃n( f ,x)− f (x)| = |Hn( f −g,x)− ( f −g)(x)|+ |Hn(g,x)−g(x)|

+

∣∣∣∣ f (nx+bn

n+2

)
−h(x)

∣∣∣∣
≤ 2‖ f −g‖+δ‖g′′‖+ω

(
f ,

bn

n+2

)
.

Taking infimum over all g ∈W 2, we get

|D̃n( f ,x)− f (x)| ≤ K2( f ,δ )+ω

(
f ,

bn

n+2

)
.

In view of (1.3), we obtain the result

|D̃n( f ,x)− f (x)| ≤Cω2( f ,
√

δ )+ω

(
f ,

bn

n+2

)
.

4.4 Weighted approximation theorem

In this section, we obtained the weighted result of the given operators. Consider the class of

function Ck
τ(R+) =

{
f ∈Cτ(R+); lim

x→∞

f (x)
τ(x)

= k f

}
and the norm ‖ f‖τ = sup

x∈R+

| f (x)|
τ(x)

, where τ(x) =

1+ x2 and k f is a constant depending on f .

Theorem 4.4.1. (Weighted approximation) Suppose that {bn} and {βn} are sequence of positive num-

bers such that lim
n→∞

bn = ∞, lim
n→∞

bn

n
= 0 and lim

n→∞
nβn = 0, for each h ∈Ck

τ(R+) and n ∈ N, then

lim
n→∞
‖D̃n( f )− f‖τ = 0.

Proof. Using Lemma 4.2.2, it is sufficient to verify the following conditions

‖D̃n(tr,x)− xr‖τ = 0, r = 0,2. (4.7)

Since lim
n→∞
‖D̃n(1,x)− 1||τ = 0, for r = 0, (4.7) holds. And lim

n→∞
‖D̃n(t,x)− x||τ = 0, for r = 1, also
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holds.

Again,

‖D̃n(t,x)− x2||τ ≤ sup
{∣∣∣∣ n2x2(1+2nβ )

(1+ x2)(2+n)(3+n)

∣∣∣∣+ ∣∣∣∣nx(4+2nβ +5n2β 2 +2n3β 3)bn

(1+ x2)(2+n)(3+n)

∣∣∣∣
+

∣∣∣∣ 2b2
n

(1+ x2)(2+n)(3+n)

∣∣∣∣}
Hence

lim
n→∞
‖D̃n(t2,x)− x2||τ = 0.

the condition (4.7) holds for r = 2.

4.5 Statistical convergence

In this section, we estimate A−statistical convergence of the given operators D̃n to identity

operators on the weighted spaces.

Firstly, we discuss the weighted Korovkin type approximation theorem for the A−statistical

convergence given by Duman and Orhan [26] in 2004 and, Dilek and Mehmet [83] in 2017.

Theorem 4.5.1. Let A=(anν) be a nonnegative regular summability matrix and ρ1,ρ2 weight functions

such that

lim
|x|→∞

ρ1(x)
ρ2(x)

= 0. (4.8)

Assume that (Tn)n≥1 is a sequence of positive linear operators from Cρ1
(R) into Bρ2

(R). Now stA−

lim
n
‖Tn f − f‖ρ1

, for all f ∈Cρ1
(R) iff

stA− lim
n
‖Tn fυ − fυ‖ρ1

= 0, υ = 0,1,2,

where

fυ(x) =
xυρ1(x)
1+ x2 , υ = 0,1,2.

Corollary 4.5.2. [26]. Let A = (anν) be a nonnegative regular summability matrix and let (Ln) be a

sequence of positive linear operators acting from Cρo(R
+) into Bρλ

(R+), λ > 0 one has

stA− lim
n
‖Ln f − f‖ρλ

= 0, f ∈Cρo(R
+),

iff

stA− lim
n
‖Lnei− ei‖ρo = 0, i = 0,1,2, (4.9)
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where ρo(x) = 1+ x2 and ρλ (x) = 1+ x2+λ , λ > 0.

Using the above results we will estimate the korovkin type statical theorem for given operators.

Theorem 4.5.3. Let (bn) and (βn) be a sequences of positive numbers such that stA− lim
n→∞

bn

n
= 0, stA−

lim
n→∞

nβn = 0 and A = (ank) be a nonnegative regular summability matrix. Then for each h ∈Ck
ρ(R+),

we have

stA− lim
n→∞
‖D̃n f − f‖ρλ

= 0,

where ρo(x) = 1+ x2 and ρλ (x) = 1+ x2+λ , λ > 0.

Proof. From the above results, it is sufficient to prove that the operators D̃n verify (4.7), we get

stA− lim
n→∞
‖D̃n(e0; .)− e0‖ρo = 0

and

stA− lim
n→∞
‖D̃n(e1; .)− e1‖ρo = 0.

Now,

‖D̃n(e2)− x2‖ρo ≤ sup
{∣∣∣∣ x2

1+ x2
(2βn3−5n−6)
(2+n)(3+n)

∣∣∣∣+ ∣∣∣∣ x
1+ x2

n(4+2nβ +5n2β 2 +2n3β 3)b2

(2+n)(3+n)

∣∣∣∣
+

∣∣∣∣ 1
1+ x2

2b2
n

(2+n)(3+n)

∣∣∣∣}
=

2βn3−5n−6
(2+n)(3+n)

+
n(4+2nβ +5n2β 2 +2n3β 3)b2

(2+n)(3+n)
+

2b2
n

(2+n)(3+n)
= Jn.

For a given ε > 0, we define the following sets

N = {ν : ‖D̃n(e2; .)− e2‖ρo ≥ ε},

N1 =

{
ν :

2βn3−5n−6
(2+n)(3+n)

≥ ε

3

}
,

N2 =

{
ν :

n(4+2nβ +5n2β 2 +2n3β 3)b2

(2+n)(3+n)
≥ ε

3

}
,

N3 =

{
ν :

2b2
n

(2+n)(3+n)
≥ ε

3

}
.

Then, we see that N ⊆ N1∪N2∪N3. Therefore, we get

∑
n:‖D̃n(e2;.)−e2‖ρo≥0

anν ≤ ∑
n∈N1

anν + ∑
n∈N2

anν + ∑
n∈N3

anν ,
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taking the limit ν → ∞ in above, we get the result

stA− lim
n
‖D̃n(e2; .)− e2‖ρo = 0.
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Chapter 5

Approximation by α−Bernstein operators

based on certain parameters and the

Durrmeyer variant of modified Bernstein

polynomials

The family of Bernstein polynomials has been extended over a distinct set of operators by Mache and

Zhau [66] in the first section of this chapter. We explore a certain approximation depicts for these

operators, including Lipschitz space, the rate of convergence via the second-order modulus of conti-

nuity, the Voronovskaya and Grüss-Voronovskaya theorems, the Ditzian-Totik moduli of smoothness,

and weighted approximation properties. At last, we have used Matlab software to graphically illus-

trate the convergence of our operators. This chapter continues with a discussion of the Durrmeyer

form of modified Bernstein polynomials. We begin with Bohman-Korovkin theorem and give further

results. Next, we examine several approximation properties, such as rate of convergence, weighted

approximation theorem, Voronovaskaja type, and Ditzian-Totik modulus of continuity via means of

these operators. Lastly, a graphic representation of the convergence behavior has been given.
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5.1 Approximation results for α-Bernstein operators

5.1.1 Introduction

In the year 2017, Chen et al. [15] proposed the generalization of Bernstein operators with

shape parameter β ∈ [0,1]. These operators are defined as follows:

Bn,β ( f ;x) =
n

∑
k=0

fkb̃n,k(β ;x), x ∈ [0,1] , (5.1)

where fk = f
( k

n

)
. For n > 2, the polynomial b̃n,k(β ;x) of degree n is defined by b̃1,0(β ;x) = 1−x,

b̃1,1(β ;x) = x, and

b̃n,k(β ;x) =

 n−2

k

(1−β )x +

 n−2

k−2

(1−β )(1− x) +

 n

k

βx(1− x)

xk−1(1− x)n−k−1

and studied another interesting proof of the Weierstrass theorem. They also studied its fun-

damental properties, the rate of convergence, and the Voronovskaya type asymptotic estimate

formula.

Mache and Zhou [66] also introduced the generalized form of Bernstein operators for some

parameters and they are defined as:

Bn( f ;x) =
n

∑
k=0

bn,k(x)
∫ 1

0 f (t)tdk+a(1− t)d(n−k)+bdt∫ 1
0 tdk+a(1− t)d(n−k)+bdt

, a,b >−1

where bn,k(x) =

 n

k

xk(1− x)n−k and d be a special sequence in n and λ with n∈N, 0≤ λ < ∞

defined as:

d := dn :=
[
nλ

]
,

the integral parts. For these operators, they gave some characterization theorem to discuss

the importance of their operators concerning the previous several existing operators. They

also established some local and global approximation results using second-order modulus of

continuity, Lipschitz space, Ditzian-Totik modulus of smoothness, and many more.

Motivated from the above-stated work, we introduce the generalized form of Bernstein oper-

ators for αn ∈ [0,1], ρ > 0 defined as follows:

Dn( f ;x) =
n

∑
k=0

b̃n,k(β ;x)
∫ 1

0 f
(
αnt +(1−αn)

k
n

)
tρk+a(1− t)ρ(n−k)+bdt∫ 1

0 tρk+a(1− t)ρ(n−k)+bdt
. (5.2)

Special Cases:
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1. For αn = 0, the operators (5.2) reduce to (5.1) and again take β = 1, we get well-known

Bernstein operators [14].

2. For αn = 1, ρ = 1, a = b = 0, the operators (5.2) reduce to family of Bernstein Durrmeyer

operators proposed by Kajla and Tucer [57] and β = 1, we get Bernstein-Durrmeyer

operators [27].

3. For αn = 1, a = b = 0, we get generalized Bernstein Durrmeyer operators considered by

Kajla and Goyal [59] and again take β = 1, we get Păltănea operators [76].

The main aim of this section is to establish the approximation results for our proposed

operators using second-order modulus of continuity, Lipschitz space, Ditzian-Totik modulus of

smoothness, Voronovskaya type asymptotic and weighted approximation results.

5.1.2 Preliminaries

In this section, we discuss some useful Lemmas which will be used in our main results.

Lemma 5.1.1. The moments of the operators Dn (em;x) , m = 0,1 and 2, we have

Dn(e0;x) = 1;

Dn(e1;x) = A1x+A2;

Dn(e2;x) = B1
(−n+n2−2(1−α))

n2 x2 +

(
B2 +

B1(2+n−2α)

n2

)
x+B3;

where,

A1 =
(2+a+b+ρn− (2+a+b)αn)

(2+a+b+ρn)
;

A2 =
(1+a)αn

(2+a+b+ρn)
;

B1 =

[
1− 2(2+a+b)αn

(2+a+b+ρn)
+

(6+a2 +5b+b2 +a(5+2b)−ρn)α2
n

(2+a+b+ρn)(3+a+b+ρn)

]
;

B2 =

[
(6+2ρn−2a2(−1+αn)−2b(−1+αn)−6αn +ρnαn +2a(4+b+ρn−4αn−bαn))αn

(2+a+b+ρn)(3+a+b+ρn)

]
;

B3 =

[
(2+3a+a2)α2

n

(2+a+b+ρn)(3+a+b+ρn)

]
.

Proof. We get these results using (5.2) and direct computation with the help of Mathematica software.

Lemma 5.1.2. The Central moments of the operator Dn ((t− x)m;x), m=1 and 2, we have

Dn((t− x);x) = x(A1−1)+A2;
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Dn((t− x)2;x) =

(
1−2A1 +

B1(−n+n2 +2(1−α))

n2

)
x2 +

(
−2A2 +B2 +

B1(2+n−2α)

n2

)
x

+B3.

Proof. The proof follows from (5.2) and Lemma 5.1.1.

Lemma 5.1.3. The operators Dn verify

lim
n→∞

nDn((t− x);x) =
αn(1+a(1− x)− (2+b)x)

ρ
;

lim
n→∞

nDn((t− x)2;x) =
(ρ +α2

n )

ρ
x(1− x)

=
(ρ +α2

n )

ρ
φ

2(x);

lim
n→∞

n2Dn((t− x)4;x) = 3
(

ρ +α2
n

ρ

)2

x2(1− x)2

= 3
(

ρ +α2
n

ρ

)2

φ
4(x),

where φ 2(x) = x(1− x).

Lemma 5.1.4. Let f ∈C[0,1], x ∈ [0,1] and n ∈ N, then

|Dn( f ;x)| ≤ ‖ f‖,

where ‖.‖ is the uniform norm on [0,1].

Proof. We have Dn(e0;x) = 1, so

|Dn( f ;x)| ≤ Dn(e0;x)‖ f‖= ‖ f‖.

5.1.3 Direct Results

Theorem 5.1.5. (Fundamental convergence theorem) Let f ∈ C[0,1] and n→ ∞, then the sequence

{Dn ( f ;x)} converges uniformly to f (x) in each compact subset of [0,1].

Proof. In view of Lemma 5.1.1, Dn (1,x) = 1 Dn(e1;x) = A1x+A2 tends to x and Dn(e2;x) tends to x2

as n→ ∞, uniformly on every compact subset of [0,1]. Hence, by Bohman-Korovkin’s theorem [62]

the required result holds.

The following theorem provides the rate of convergence in terms of modulus of continuity.
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Theorem 5.1.6. Let f ∈C[0,1], we have

|Dn( f ;x)− f (x)| ≤Cω2( f ,δ )+ω ( f ,A2) ,

where C is a positive constant, δ =
[
Dn
(
(t− x)2,x

)
+(A2)

2
]
.

Proof. Define the auxiliary operators Ln : C[0,1]→C[0,1] as follows:

Ln( f ;x) = Dn( f ;x)− f (A1x+A2)+ f (x). (5.3)

These operators are linear and Ln(t− x,x) = 0.

Let g ∈C2[0,1] and x, t ∈ [0,1]. By Taylor’s expansion

g(t) = g(x)+(t− x)g′(x)+
∫ t

x
(t−u)g′′(u)du.

Applying the operators Ln on above, we have

Ln(g;x) = g(x)+g′(x)Ln((t− x);x)+Ln

(∫ t

x
(t−u)g′′(u)du;x

)
implies that

|Ln(g,x)−g(x)| ≤ Ln

(∣∣∣∣∫ t

x
(t−u)g′′(u)du

∣∣∣∣ ,x)
≤ Dn

(∣∣∣∣∫ t

x
(t−u)g′′(u)du

∣∣∣∣ ,x)
+

∣∣∣∣∫ A1x+A2

x
(A1x+A2−u)g′′(u)du

∣∣∣∣
≤ 1

2
Dn
(
(t− x)2,x

)
||g′′||

+

∣∣∣∣∫ A1x+A2

x
(A1x+A2−u)du

∣∣∣∣ ||g′′||
≤ 1

2

[
Dn
(
(t− x)2,x

)
+(A2)

2
]
||g′′||

≤
[
Dn
(
(t− x)2,x

)
+(A2)

2
]
||g′′||

= δn||g′′||, (5.4)

where δn =
[
Dn
(
(t− x)2,x

)
+(A2)

2
]
.

|Dn( f ;x)− f (x)| = |Ln( f −g,x)− ( f −g)(x)|+ |Ln(g,x)−g(x)|

+ | f (A1x+A2)− f (x)|

≤ 4|| f −g||+δn||g′′||+ω ( f ,A2) .
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Taking infimum over all g ∈C2[0,1], we get the desired result.

|Dn( f ;x)− f (x)| ≤ K2( f ,δ )+ω ( f ,A2) .

From the equation (1.3), we obtain the required result.

Theorem 5.1.7. (Lipschitz class) Let f ∈ Lip(β ,γ)M (σ) and 0 < σ ≤ 1 then for all x∈ [0,1], the following

inequality holds:

|Dn( f ;x)− f (x)| ≤M.

(
ηn,β (x)

βx2 + γx

) σ

2

,

where ηn,β (x) = Dn((t− x)2;x).

Proof. The result is true for σ = 1. Then for f ∈ Lip(β ,γ)M (σ) and x ∈ (0,1), we have

|Dn( f ;x)− f (x)| ≤ Dn(| f (t)− f (x)|;x)

≤ MDn

(
|t− x|

(t +βx2 + γx)
1
2

;x

)
.

Applying Cauchy-Schwarz inequality for sum and 1

(t+βx2+γx)
1
2
≤ 1

(βx2+γx)
1
2

, we obtain

|Dn( f ;x)− f (x)| ≤ M

(βx2 + γx)
1
2

[
Dn((t− x)2;x)

] 1
2

≤ qM
{

ηn,β (x)
βx2 + γx

} 1
2

.

Therefore result holds for σ = 1.

Further we prove the result for 0 < σ < 1.

For f ∈ Lipβ ,γ
M (σ), using the same argument as in the previous case and applying Holder’s inequality

with p = 2
σ
, q = 2

(2−σ) , we finally get

|Dn( f ;x)− f (x)| ≤ M
(βx2 + γx)

σ

2

[
Dn((t− x)2;x)

] σ

2

≤ M
{

ηn,β (x)
βx2 + γx

} σ

2

.

Hence the theorem proved.

5.1.4 Rate of approximation

In this section, we discuss Ditzian-totik modulus of smoothness for the operators Dn.

Theorem 5.1.8. (Ditzian-totik modulus of smoothness) For any f ∈C2[0,1] and sufficiently large n the
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following inequality holds

|Dn( f ,x)− f (x)−ψn(x)| ≤
Mξ

nρ
φ

2(x)ωφ

1

(
f ′′,

√
ρ +α2

n

nρ

)
, (5.5)

where γ is a positive constant and

ψn(x) = (x(A1−1)+A2) f ′(x)+
{(

1−2A1 +
B1(−n+n2 +2(1−α))

n2

)
x2

+

(
−2A2 +B2 +

B1(2+n−2α)

n2

)
x+B3

}
f ′′(x)

2!
.

Proof. For f ∈C2[0,1], x, t ∈ [0,1], by Taylor’s expansion

f (t) = f (x)+(t− x) f ′(x)+
∫ t

x
(t− y) f ′′(y)dy

or

f (t)− f (x)− (t− x) f ′(x)− (t− x)2 f ′′(x)
2!

=
∫ t

x
(t− y) f ′′(y)dy−

∫ t

x
(t− y) f ′′(x)dy

=
∫ t

x
(t− y)[ f ′′(y)− f ′′(x)]dy.

Applying operators Dn(.;x) on the above equality, we obtain

Dn( f ;x)− f (x)−Dn((t− x);x) f ′(x)−Dn((t− x)2;x)
f ′′(x)

2!

= Dn

(∫ t

x
(t− y)[ f ′′(y)− f ′′(x)]dy;x

)
|Dn( f ;x)− f (x)−ψn(x)| ≤

∣∣∣∣Dn

(∫ t

x
(t− y)[ f ′′(y)− f ′′(x)]dy;x

)∣∣∣∣
≤ Dn

(∣∣∣∣∫ t

x
|t− y|| f ′′(y)− f ′′(x)|dy

∣∣∣∣ ;x
)
. (5.6)

From ([29], p.337), the inequality
∣∣∣∣∫ t

x
|t− y|| f ′′(y)− f ′′(x)|dy

∣∣∣∣
∣∣∣∣∫ t

x
|t− y|| f ′′(y)− f ′′(x)|dy

∣∣∣∣ ≤ 2‖ f ′′−g‖(t− x)2 +2‖φg′‖φ−1(x)(t− x)3, (5.7)

where x ∈ (0,1), g ∈Wφ [0,1], for x ∈ {0,1} the inequality (5.5) verified.

There exists a constant ξ > 0 such that for n sufficiently large and using Lemma 5.1.3, we obtain

Dn((t− x)2;x)≤ ξ
(ρ +α2

n )

nρ
φ

2(x) and Dn((t− x)4;x)≤ ξ

(
c+α2

n

nρ

)2

φ
4(x). (5.8)
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Applying the Cauchy-Schwarz inequality and from relations (5.6), (5.7) and (5.8), we get

|Dn( f ;x)− f (x)−ψn(x)| ≤ 2‖ f ′′−g‖Dn((t− x)2;x)+2‖φg′‖φ−1(x)Dn((t− x)3;x)

≤ ξ
(ρ +α2

n )

nρ
φ

2(x)‖ f ′′−g‖+2‖φg′‖φ−1(x)×

{Dn((t− x)2;x)}
1
2 .{Dn((t− x)4;x)}

1
2

≤ ξ
(ρ +α2

n )

nρ
φ

2(x)‖ f ′′−g‖+φ
2(x)γ

(ρ +α2
n )

nρ

√
ρ +α2

n

nρ
‖φg′‖

≤ ξ
(ρ +α2

n )

nρ
φ

2(x)

{
‖ f ′′−g‖+

√
ρ +α2

n

nρ
‖φg′‖

}
.

Taking infimum over g ∈Wφ [0,1], we get

|Dn( f ,x)− f (x)−ψn(x)| ≤
ξ

nρ
.φ 2(x)Kφ

(
f ′′,

√
ρ +α2

n

nρ

)
.

Using relation (1.4), we obtain the required result.

Corollary 5.1.9. Let f ∈C2[0,1], then

lim
n→∞

n{Dn( f ,x)− f (x)−ψn(x)}= 0,

where

ψn(x) = (x(A1−1)+A2) f ′(x)+
{(

1−2A1 +
B1(−n+n2 +2(1−α))

n2

)
x2

+

(
−2A2 +B2 +

B1(2+n−2α)

n2

)
x+B3

}
f ′′(x)

2!
.

5.1.5 Grüss-Voronovskaya type theorem

Motivated by the Grüss type inequalities for certain positive linear operators studied in [8, 36],

in the following we prove a Grüss-Voronovskaya type theorem of Dn operators.

Define an auxiliary operators:

Ω( f g;x) = Dn( f g;x)−Dn( f ;x)Dn(g;x).

Theorem 5.1.10. (Grüss-Voronovskaya type theorem) Let f ,g ∈ C2[0,1] and ρ > 0. Then for each

x ∈ [0,1],

lim
n→∞

nΩ( f ,g;x) =
(ρ +α2

n )

ρ
x(1− x) f ′(x)g′(x).
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Proof. Since

( f g)(x) = f (x)g(x), ( f g)′(x) = f ′(x)g(x)+ f (x)g′(x)

and ( f g)′′(x) = f ′′(x)g(x)+2 f ′(x)g′(x)+ f (x)g′′(x).

Now, we can write

Ω( f ,g;x) = Dn( f g;x)−Dn( f ;x)Dn(g;x)

=

{
Dn( f g;x)− f (x)g(x)− ( f g)′(x)Dn((t− x);x)− ( f g)′′(x)

2!
Dn((t− x)2;x)

}
−g(x)

{
Dn( f ;x)− f (x)− f ′(x)Dn((t− x);x)− f ′′(x)

2!
Dn((t− x)2;x)

}
−Dn( f ;x)

{
Dn(g;x)−g(x)−g′(x)Dn((t− x);x)− g′′(x)

2!
Dn((t− x)2;x)

}
+

1
2!

Dn((t− x)2;x){ f (x)g′′(x)+2 f ′(x)g′(x)−g′′(x)Dn( f ;x)}

+Dn((t− x);x){ f (x)g′(x)−g′(x)Dn( f ;x)}.

Consequently,

lim
n→∞

n.Ω( f ,g;x) = lim
n→∞

n{Dn( f g;x)−Dn( f ;x)Dn(g;x)}

= lim
n→∞

n.g′(x){ f (x)−Dn( f ;x)}Dn((t− x);x)+ lim
n→∞

n. f ′(x)g′(x)Dn((t− x)2;x)

+ lim
n→∞

n.
g′′(x)

2!
{ f (x)−Dn( f ;x)}Dn((t− x)2;x).

From Theorem 5.1.5, it follows that for each x ∈ [0,1], Dn( f ;x) converges to the function f , as n→ ∞

and in view of Lemma 5.1.3, lim
n→∞

nDn((t− x)2;x) is finite. Hence

lim
n→∞

nΩ( f ,g;x) =
(ρ +α2

n )

ρ
x(1− x) f ′(x)g′(x).

5.1.6 Weighted Approximation

In this section, we discuss a weighted approximation results for the operators Dn.

Theorem 5.1.11. (Weighted approximation) For each f ∈C∗τ [0,∞), we have

lim
n→∞
‖Dn( f ; .)− f‖τ = 0
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Proof. Using [32], we see that it is sufficient to verify the following conditions

lim
n→∞
‖Dn(tr;x)− xr‖τ = 0, r = 0,1,2. (5.9)

Since Dn(1;x) = 1,therefore for r = 0 (5.9) holds.

By Lemma (5.1.1), we have

‖Dn(t;x)− x‖τ = sup
x∈[0,∞)

|Dn(t;x)− x|
1+ x2

≤ (1+b)αn

(2+a+b+ρn)
,

the condition (5.9) holds for r = 1 as n→ ∞.

Again by Lemma (5.1.1), we have

‖Dn(t2;x)− x2‖τ = sup
x∈[0,∞)

|Dn(t2;x)− x2|
1+ x2

≤ sup
x∈[0,∞)

1
1+ x2

[(
B1

(n2−n−2(1−α))

n2 x2

+

(
B2 +

B1(2+n−2α)

n2

)
x+B3

)
− x2

]
≤

∣∣∣∣B1
(n2−n−2(1−α))

n2 −1
∣∣∣∣+ ∣∣∣∣B2 +

B1(2+n−2α)

n2

∣∣∣∣+ |B3| ,

the condition (5.9) holds for r = 2 as n→ ∞.

Hence the theorem proved.

Corollary 5.1.12. For each f ∈C∗τ [0,∞), and β > 0, we have

lim
n→∞

sup
x∈[0,∞)

|Dn( f ;x)− f (x)|
(1+ x2)β

= 0.

Proof. For any fixed x0 > 0,

sup
x∈[0,∞)

|Dn( f ;x)− f (x)|
(1+ x2)β

≤ sup
x≤x0

|Dn( f ;x)− f (x)|
(1+ x2)β

+ sup
x≥x0

|Dn( f ;x)− f (x)|
(1+ x2)β

≤ ‖Dn( f ; .)− f‖C[0,x0]+‖ f‖x2 sup
x≥x0

|Dn(1+ t2;x)|
(1+ x2)β

+ sup
x≥x0

| f (x)|
(1+ x2)β

.

The first term of the above inequality tends to zero from Theorem 5.1.5. By Lemma 5.1.1 for any fixed

x0 it is easily seen that sup
x≥x0

|Dn(1+ t2;x)|
(1+ x2)β

tends to zero as n→ ∞. We can choose x0 so large that the

last part of above inequality can be made small enough. Thus the proof is completed.
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5.1.7 Numerical Results and Discussion

Example 1. Let f (x) = xcos
(7πx

3

)
, β = 2/3, ρ = 1, αn = 0.5, a = 1, b = 2 and n ∈ {10,20,30}. The

convergence of our proposed operators Dn( f ;x) towards the function f (x) and absolute error function

En(x) = |Dn( f ;x)− f (x)| are shown in figure: 1(a), and figure: 1(b) respectively.

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

n=10

n=20

n=30

f(x)

Figure 5.1: Figure:1(a) Uniform Convergence of the given operators

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E10

E20

E30

Figure 5.2: Figure:1(b) Absolute error of the proposed operators

Example 2. Let f (x)= x3−sin(1− 9πx
4 ) and n= 30. The convergence of family of Bernstein-Durrmeyer

operators [57] P1(β = .65,ρ = 1,αn = 1,a = 0,b = 0), Paltanea type Bernstein operators [59] P2(β =

.65,ρ = 2,αn = 1,a = 0,b = 0), Lupas and Meche operators P3(β = 1,ρ = 1,αn = 1,a = b =−1/2)

and our proposed operators P4(β = .65,ρ = 2,αn = 0.25,a = 15,b = 8) are shown in figure:2(a). And

the absolute error functions Di = |Dn( f ;x)− f (x)| for Di, i = 1,2,3 and 4 are shown in figure: 2(b).

The figures: 1(a), and figure: 1(b) deal with uniform convergence of our proposed operators

(5.2) and in figure: 2(a), and figure: 2(b), it can be easily seen the convergence of our operators

are better with comparing of other existing operators. This justifies the study of our proposed

operators.
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Figure 5.3: Figure: 2(a) Comparison of the existing operators

Figure 5.4: Figure: 2(b) Absolute error of the existing operators

5.2 Approximation by Durrmeyer variant of modified Bernstein polyno-

mials

In this section, we study on the Durrmeyer variant of modified Bernstein polynomials. First,

we provide the auxiliary results and then verify Bohman-Korovkin’s theorem. Following that, we

find some of the approximation properties for these operators, including the rate of convergence

via the Ditzian-Totik modulus of continuity, Voronovaskaja type, and weighted approximation

theory. Finally, a graphic depiction of the convergence behavior has been shown.

Continuation recent work in the field of approximation theory, Usta [97] constructed a new
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modification of Bernstein operators

B∗n( f ;x) =
1
n

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1 f

(
k
n

)
, (5.10)

where f ∈C(0,1), x∈ (0,1) and n∈N. Usta found some important results like asymptotic formu-

las, weighted approximation, rate of convergence and also conclude numerically and graphically

of the proposed operators using following lemma:

Lemma 5.2.1. For the operators B∗n(lr;x) where lr = tr, r = 0,4, we have

B∗n(l0;x) = 1;

B∗n(l1;x) =
(n−2)

n
x+

1
n

;

B∗n(l2;x) =
(n2−7n+6)

n2 x2 +
(5n−6)

n2 x+
1
n2 ;

B∗n(l3;x) =
(n3−15n2 +38n−24)

n3 x3 +12
(n2−4n+3)

n3 x2

+
(13n−14)

n3 x+
1
n3 ;

B∗n(l4;x) =
(n4−26n3 +131n2−226n+120)

n4 x4

+
(22n3−186n2 +404n−240)

n4 x3

+
(61n2−211n+150)

n4 x2 +
(29n−30)

n4 x+
1
n4 .

To approximate Lebesque integrable functions on the interval (0,1), we have constructed

Durrmeyer variant of the operators (5.10), introduced by Usta, as follows:

Bn( f ;x) =
n+1

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

×
∫ 1

0

(
n
k

)
(k−nt)2tk−1(1− t)n−k−1 f (t)dt, (5.11)

where f ∈C(0,1) be a continuous real valued function on the interval (0,1) and 0 < x < 1, n∈N.

5.2.1 Preliminaries

Lemma 5.2.2. The moments of the given operators Bn((lr = tr);x), r = 0,4, we have

Bn(l0;x) = 1;

Bn(l1;x) =
(n2−4n+4)

n(n+2)
x+

(3n−2)
n(n+2)

;

Bn(l2;x) =
(n3−13n2 +48n−36)

n(n+2)(n+3)
x2 +

(12n2−56n+48)
n(n+2)(n+3)

x+
14n−12

n(n+2)(n+3)
;
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Bn(l3;x) =
(n4−27n3 +218n2−480n+288)

n(n+2)(n+3)(n+4)
x3 +

(27n3−333n2 +954n−648)
n(n+2)(n+3)(n+4)

x2

+
(126n2−540n+432)
n(n+2)(n+3)(n+4)

x+
(78n−72)

n(n+2)(n+3)(n+4)
;

Bn(l4;x) =
(n3−6n2 +11n−6)(n−20)2

n(n+1)(n+2)(n+3)(n+4)(n+5)
x4

+
16(3n4−71n3 +432n2−844n+480)

n(n+2)(n+3)(n+4)(n+5)
x3 +

72(7n3−73n2 +186n−120)
n(n+2)(n+3)(n+4)(n+5)

x2

+
96(13n2−52n+40)

n(n+2)(n+3)(n+4)(n+5)
x+

24(16n−15)
n(n+2)(n+3)(n+4)(n+5)

.

Proof. Using the Lemma 5.2.1 and simple calculation in the equation (5.11), we obtain the result

Bn(l0;x) = 1.

For r = 1, we calculate

Bn(l1;x) =
(n+1)

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

∫ 1

0

(
n
k

)
(k−nt)2tk(1− t)n−k−1dt

=
(n+1)

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

{
(k(n−2)+2n)

(n
k

)
Γ(k+1)Γ(n− k+1)

Γ(n+3)

}

=
(n+1)

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

{
k(n−2)

(n+1)(n+2)
+

2n
(n+1)(n+2)

}
=

(n−2)
(n+2)

B∗n(e1;x)+
2

(n+2)
B∗n(e0;x)

=
(n2−4n+4)

n(n+2)
x+

(3n−2)
n(n+2)

.

For r = 2, we have

Bn(l2;x) =
(n+1)

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

∫ 1

0

(
n
k

)
(k−nt)2tk+1(1− t)n−k−1dt

=
(n+1)

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

{
(k(n−6)+6n)

(n
k

)
Γ(k+2)Γ(n− k+1)

Γ(n+4)

}

=
(n+1)

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

{
(k+1)(k(−6+n)+6n)
(n+1)(n+2)(n+3)

}
=

(n+1)
n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

{
k2(n−6)+ k(7n−6)+6n

(n+1)(n+2)(n+3)

}
=

n(n−6)
(n+2)(n+3)

B∗n(e2;x)+
(7n−6)

(n+2)(n+3)
B∗n(e1;x)+

6
(n+2)(n+3)

B∗n(e0;x)

=
(n3−13n2 +48n−36)

n(n+2)(n+3)
x2 +

(12n2−56n+48)
n(n+2)(n+3)

x+
14n−12

n(n+2)(n+3)
.

For r = 3, we have

Bn(l3;x) =
(n+1)

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

×
∫ 1

0

(
n
k

)
(k−nt)2tk+2(1− t)n−k−1dt
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=
(n+1)

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

×

{
(k(−12+n)+12n)

(n
k

)
Γ(k+3)Γ(n− k+1)

Γ(n+5)

}

=
(n+1)

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

×
{

k3(n−12)+ k2(15n−36)+ k(38n−24)+24n
(n+1)(n+2)(n+3)(n+4)

}
=

n2(n−12)
(n+2)(n+3)(n+4)

B∗n(e3;x)+
n(15n−36)

(n+2)(n+3)(n+4)
B∗n(e2;x)

+
(38n−24)

(n+2)(n+3)(n+4)
B∗n(e1;x)+

24
(n+2)(n+3)(n+4)

B∗n(e0;x)

=
(n4−27n3 +218n2−480n+288)

n(n+2)(n+3)(n+4)
x3 +

(27n3−333n2 +954n−648)
n(n+2)(n+3)(n+4)

x2

+
(126n2−540n+432)
n(n+2)(n+3)(n+4)

x+
(78n−72)

n(n+2)(n+3)(n+4)
.

For r = 4, we have

Bn(l4;x) =
(n+1)

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

×
∫ 1

0

(
n
k

)
(k−nt)2tk+3(1− t)n−k−1dt

=
(n+1)

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

×

{
(k(n−20)+20n)

(n
k

)
Γ(4+ k)Γ(n+1− k)

Γ(6+n)

}

=
(n3−6n2 +11n−6)(n−20)2

n(n+1)(n+2)(n+3)(n+4)(n+5)
x4

+
16(3n4−71n3 +432n2−844n+480)

n(n+2)(n+3)(n+4)(n+5)
x3 +

72(7n3−73n2 +186n−120)
n(n+2)(n+3)(n+4)(n+5)

x2

+
96(13n2−52n+40)

n(n+2)(n+3)(n+4)(n+5)
x+

24(16n−15)
n(n+2)(n+3)(n+4)(n+5)

.

Lemma 5.2.3. The Central moments of the operators Bn( f (t) = (t− x)r,x), r = 1,2,4, we have

Bn(t− x;x) =
(4−6n)
n(n+2)

x+
(3n−2)
n(n+2)

;

Bn((t− x)2;x) =
−(6n2−70n+60)

n(n+2)(n+3)
x2 +

(6n2−70n+60)
n(n+2)(n+3)

x+
(14n−12)

n(n+2)(n+3)
;

Bn((t− x)4;x) =
12(7n3−333n2 +1436n−1120)

n(n+2)(n+3)(n+4)(n+5)
x4 +

−24(7n3−333n2 +1436n−1120)
n(n+2)(n+3)(n+4)(n+5)

x3

+
12(7n3−411n2 +1958n−1560)

n(n+2)(n+3)(n+4)(n+5)
x2 +

24(39n2−261n+220)
n(n+2)(n+3)(n+4)(n+5)

x

+
24(16n−15)

n(n+2)(n+3)(n+4)(n+5)
.
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Proof. Using Lemma 5.2.2 and simple calculation, we get the Central moments of the given operators.

Lemma 5.2.4. We have also find some limiting results as follows:

lim
n→∞

nBn((t− x);x) = −6x+3;

lim
n→∞

nBn((t− x)2;x) = 6x(1− x);

lim
n→∞

n2Bn((t− x)4;x) = 84x2(x−1)2.

Lemma 5.2.5. For n ∈ N, the bound for second central moment is given by

Bn((t− x)2;x) ≤ 12x(1− x)
n

.

5.2.2 Main Results

Lemma 5.2.6. Let 0 < x < 1 and f ∈C(0,1), we get result

|Bn( f ;x)| ≤ ‖ f‖.

Proof. Using the given operators (5.11), we have

|Bn( f ;x)| =

∣∣∣∣∣n+1
n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

×
∫ 1

0

(
n
k

)
(k−nt)2tk−1(1− t)n−k−1 f (t)dt,

∣∣∣∣
≤ n+1

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

×
∫ 1

0

(
n
k

)
(k−nt)2tk−1(1− t)n−k−1| f (t)|dt

≤ ‖ f‖Bn(1;x)

= ‖ f‖.

Theorem 5.2.7. (Fundamental convergence theorem) Suppose that f ∈C(0,1), then

‖Bn( f ;x)− f (x)‖→ 0,

uniformly as n→ ∞.

Proof. From the lemma 5.2.2 and apply Korovkin theorem [62], we get the results for the value r = 0,4
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of the given operators

lim
n→∞

Bn(lr;x) = xr.

The modulus of continuity of the function f is defined as:

ω
∗( f ,δ ) = sup

|t−x|≤δ

sup
x∈(0,1)

| f (t)− f (x)|,

| f (t)− f (x)| ≤
(

1+
(t− x)2

δ 2

)
ω
∗( f ,δ ), δ > 0 (5.12)

and modulus of continuity also satisfy the inequality[9]

ω
∗( f , tδ )≤ (1+ t)ω∗( f ,δ ),

for every f ∈C(0,1) and δ > 0.

Theorem 5.2.8. For every 0 < x < 1 and f ∈C(0,1), we have

|Bn( f ;x)− f (x)| ≤ 2ω
∗( f ,δn),

where

δ = δn =

√
−(6n2−70n+60)x2 +(6n2−70n+60)x+(14n−12)

n(n+2)(n+3)
. (5.13)

Proof. Using the linearity property and equation (5.12), we get

|Bn( f ;x)− f (x)| =

∣∣∣∣(n+1)
n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

×
∫ 1

0

(
n
k

)
(k−nt)2tk−1(1− t)n−k−1 f (t)dt− f (x)

∣∣∣∣
≤ (n+1)

n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

×
∫ 1

0

(
n
k

)
(k−nt)2tk−1(1− t)n−k−1| f (t)− f (x)|dt

≤ (n+1)
n2

n

∑
k=0

(
n
k

)
(k−nx)2xk−1(1− x)n−k−1

×
∫ 1

0

(
n
k

)
(k−nt)2tk−1(1− t)n−k−1

(
1+

(t− x)2

δ 2

)
ω
∗( f ,δ )dt

=

(
1+

1
δ 2

1
n(n+2)(n+3)

{−(6n2−70n+60)x2

+(6n2−70n+60)x+(14n−12)}
)

ω
∗( f ,δ ),
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hence

|Bn( f ;x)− f (x)| ≤ 2ω
∗( f ,δn),

where

δ = δn =

√
−(6n2−70n+60)x2 +(6n2−70n+60)x+(14n−12)

n(n+2)(n+3)
.

Theorem 5.2.9. (Lipschitz class) Let f ∈ Lip∗M(σ) and 0 < σ ≤ 1 then we obtain

|Bn( f ;x)− f (x)| ≤Mδ
σ
n (x),

where δn(x) is defined in equation (5.13).

Proof. Suppose that f ∈ Lip∗M(σ), 0 < σ ≤ 1 and from the equation (6.10) by using the linearity,

monotonicity of the given operators Bn, we get

|Bn( f ;x)− f (x) | ≤ Bn(| f (t)− f (x)|;x)

≤ MBn(|t− x|σ ;x).

Choose p = 2
σ
,q = 2

2−σ
in the Hölder inequality, we get

|Bn( f ;x)− f (x) | ≤ M{Bn((t− x)2;x)}
σ

2

≤ M σ

√
−(6n2−70n+60)x2 +(6n2−70n+60)x+(14n−12)

n(n+2)(n+3)

≤ Mδ
σ
n (x).

Theorem 5.2.10. (Peetre’s K-functional) Let 0 < x < 1 and f ∈ C(0,1). Then for each n ∈ N, there

exists a positive constant M such that

|Bn( f ;x)− f (x)| ≤Mω2( f ,ψ2
n (x))+2ω( f ,ξn(x)),

where

ψ
2
n (x) =

1
2n2(2+n)2(3+n)

{
12(2x−1)2−12n4x(x−1)−16n(23x2−23x+5)

+n3(37−152x+152x2)+n4(47−220x+220x2)
}
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and

ξn(x) =
∣∣∣∣(4−6n)x+(3n−2)

n(n+2)

∣∣∣∣ .

Proof. Define the auxiliary operator zn : C∗(0,1)→C∗(0,1) by

zn(h;x) = Bn(h;x)−h
(
(n−2)2x+(3n−2)

n(n+2)

)
+h(x). (5.14)

From Lemma 5.2.2, we have

zn(1;x) = 1,

now

zn(t− x;x) = Bn((t− x);x)−
(
(n−2)2x+(3n−2)

n(n+2)
− x
)
+ x− x

=
(4−6n)
n(n+2)

x+
(3n−2)
n(n+2)

−
(
(n−2)2x+(3n−2)

n(n+2)
− x
)
+ x− x

= 0. (5.15)

We write the Taylor’s expansion is in this form

h(t) = h(x)+(t− x)h′(x)+
∫ t

x
(t− v)h′′(v)dv, t ∈ (0,1) (5.16)

Applying zn operator to both sides of the equation (5.16), we obtain

zn(h;x) = zn

(
h(x)+(t− x)h′(x)+

∫ t

x
(t− v)h′′(v)dv;x

)
= h(x)+zn((t− x)h′(x);x)+zn

(∫ t

x
(t− v)h′′(v)dv

)
.

Or

zn(h;x)−h(x) = h′(x)zn((t− x);x)+zn

(∫ t

x
(t− v)h′′(v)dv

)
.

From the equation (5.14) and (5.16), we get

zn(h;x)−h(x) = zn

(∫ t

x
(t− v)h′′(v)dv

)
= Bn

(∫ t

x
(t− v)h′′(v)dv

)
−
∫ (n−2)2x+(3n−2)

n(n+2)

x

(
(n−2)2x+(3n−2)

n(n+2)
− v
)

h′′(v)dv

+
∫ x

x

(
(n−2)2x+(3n−2)

n(n+2)
− v
)

h′′(v)dv. (5.17)
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Furthermore ∣∣∣∣∫ t

x
(t− v)h′′(v)dv

∣∣∣∣ ≤ ∫ t

x
|t− v||h′′(v)|dv≤ ‖h′′‖

∫ t

x
|t−u|dv

≤ (t− x)2‖h′′‖, (5.18)

and ∣∣∣∣∣
∫ (n−2)2x+(3n−2)

n(n+2)

x

(
(n−2)2x+(3n−2)

n(n+2)
− v
)

h′′(v)dv

∣∣∣∣∣
≤ ‖h′′‖

∫ (n−2)2x+(3n−2)
n(n+2)

x

(
(n−2)2x+(3n−2)

n(n+2)
− v
)

h′′(v)dv

=
‖h′′‖

2

(
(n−2)2x+(3n−2)

n(n+2)
− x
)2

=
‖h′′‖

2

(
(4−6n)x+(3n−2)

n(n+2)

)2

. (5.19)

Using the equation (5.18) and (5.19), we rewrite the absolute value of the equation (5.17), we obtain

|zn(h;x)−h(x)| ≤ ‖h′′‖Bn((t− x)2;x)+
‖h′′‖

2

(
(n−2)2x+(3n−2)

n(n+2)
− x
)2

= ‖h′′‖ψ2
n (x),

where

ψ
2
n (x) = Bn((t− x)2;x)+

1
2

(
(n−2)2x+(3n−2)

n(n+2)
− x
)2

=
1

2n2(2+n)2(3+n)

{
12(2x−1)2−12n4x(x−1)−16n(23x2−23x+5)

+n3(37−152x+152x2)+n4(47−220x+220x2)
}
.

Again we find the bound of the defined operator zn(h;x) and using Cauchy’s Schwarz inequality, we

obtain

|zn(h;x)| =

∣∣∣∣Bn(h;x)−h
(
(n−2)2x+(3n−2)

n(n+2)

)
+h(x)

∣∣∣∣
≤ |Bn(h;x)|+

∣∣∣∣h((n−2)2x+(3n−2)
n(n+2)

)∣∣∣∣+ |h(x)|
≤ 3‖h‖.

Finally,

|Bn( f ;x)− f (x)| =

∣∣∣∣zn( f ;x)− f (x)+ f
(
(n−2)2x+(3n−2)

n(n+2)

)
− f (x)

+h(x)−h(x)+zn(h;x)−zn(h;x)|
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≤ |zn( f −h;x)− ( f −h)(x)|+ |zn(h;x)−h(x)|

+

∣∣∣∣ f ((n−2)2x+(3n−2)
n(n+2)

)
− f (x)

∣∣∣∣
≤ 4‖ f −h‖+‖h′′‖ψ2

n (x)+ω
∗( f ,ξn(x))


∣∣∣ (n−2)2x+(3n−2)

n(n+2) − x
∣∣∣

ξn(x)
+1


= 4(‖ f −h‖+‖h′′‖ψ2

n (x))+2ω

(
f ,
∣∣∣∣(4−6n)x+(3n−2)

n(n+2)

∣∣∣∣) , (5.20)

where ξn(x) =
∣∣∣ (4−6n)x+(3n−2)

n(n+2)

∣∣∣.
Hence, for all f ∈C(0,1) by taking the infimum of the equation (5.20), we get

|Bn( f ;x)− f (x)| ≤ 4k(h,ψ2
n (x))+2ω( f ,ξn(x)). (5.21)

The final required results

|Bn( f ;x)− f (x)| ≤ Mω2( f ,ψ2
n (x))+2ω( f ,ξn(x)).

Theorem 5.2.11. (Ditzian-Totik modulus of smoothness) Let f ∈ (0,1) and ρ(x) =
√

x(1− x), then

|Bn( f ;x)− f (x)| ≤C.ωρ

(
f ;

√
1
n

)
.

Proof. Using the equality g(s) = g(x)+
∫ s

x g′(w)dw, we rewrite

|Bn(g;x)−g(x)|=
∣∣∣∣Bn

(∫ s

x
g′(w)dw;x

)∣∣∣∣ . (5.22)

For any x,s ∈ (0,1), we have ∣∣∣∣∫ s

x
g′(w)dw

∣∣∣∣≤ ‖ρg′‖.
∣∣∣∣∫ s

x

1
ρ(w)

dw
∣∣∣∣ . (5.23)

Therefore,

∣∣∣∣∫ s

x

1
ρ(w)

dw
∣∣∣∣ =

∣∣∣∣∣
∫ s

x

1√
w(1−w)

dw

∣∣∣∣∣≤
∣∣∣∣∫ s

x

(
1√
w
+

1√
1−w

)
dw
∣∣∣∣

≤ 2
(
|
√

s−
√

x|+ |
√

1− s−
√

1− x|
)

= 2|s− x|

(
1√

s+
√

x
+

1√√
1− s+

√
1− x

)

< 2|s− x|
(

1√
x
+

1√
1− x

)
≤ 2
√

2|s− x|
ρ(x)

. (5.24)
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Combining equations (1.4) and (5.22–5.24) and applying the Cauchy-Schwarz inequality for linear

positive operators, we have

|Bn(g;x)−g(x)|< 2
√

2‖ρg′‖ρ−1(x)Bn(|l1− x|;x)≤ 2
√

2‖ρg′‖ρ−1(x)
(
Bn((l1− x)2;x)

) 1
2 .

From the Lemma 5.2.5, we have

|Bn(g;x)−g(x)|< 2
√

2‖ρg′‖ρ−1(x)
(

12ρ2(x)
n

) 1
2

<C.

√
1
n
‖ρg′‖. (5.25)

It is clear that

|Bn(g)−g| ≤ |Bn( f −g;x)|+ |Bn(g;x)−g(x)| ≤C.

(
‖ f −g‖+

√
1
n
‖ρg′‖

)
.

Taking infimum on the right-hand side of the above relation over all g ∈Wρ , we get

|Bn( f ;x)− f (x)| ≤C.K̄ρ

(
f ;

√
1
n

)
≤C.ωρ

(
f ;

√
1
n

)
.

5.2.3 Voronovskaya Type Theorem

In this section, we verify Voronovskaya-type asymptotic formula for the given operators

Bn( f ;x).

Theorem 5.2.12. (Voronvaskaja type theorem) Let the integrable function f on the interval (0,1), and

f ′, f ′′ exist at a fixed point in the interval (0,1). Then we have

lim
n→∞

n(Bn( f ;x)− f (x)) = (−6x+3) f ′(x)+3x(1− x) f ′′(x).

Proof. The Taylor’s formula is defined as

f (t) = f (x)+(t− x) f ′(x)+
(t− x)2

2
f ′′(x)+R(t,x)(t− x)2, (5.26)

where R(t,x) = f ′′(ε)− f ′′(x)
2 is the remainder and ε is located between x and t. Also lim

t→x
R(t,x) = 0.

Apply the given operator Bn on the equation (5.26), we obtain

Bn( f ;x)− f (x) = f ′(x)Bn((t− x);x)+
f ′′(x)

2
Bn((t− x)2;x)

+Bn(R(t,x)(t− x)2;x), (5.27)
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multiplying n and take limit n→ ∞ of the above equation (5.27), we get

lim
n→∞

n(Bn( f ;x)− f (x)) = lim
n→∞

n f ′(x)Bn((t− x);x)+ lim
n→∞

n
f ′′(x)

2
Bn((t− x)2;x)

+ lim
n→∞

nBn(R(t,x)(t− x)2;x).

Using Lemma 5.2.4, we get

lim
n→∞

n(Bn( f ;x)− f (x)) = (−6x+3) f ′(x)+3x(1− x) f ′′(x)

+ lim
n→∞

nBn(R(t,x)(t− x)2;x). (5.28)

By using the Cauchy-Schwarz inequality in the remainder term, we get

nBn(R(t,x)(t− x)2;x)≤
√

n2Bn(R2(t,x);x)
√

Bn((t− x)4;x). (5.29)

Since R2(.;x) is continuous at t ∈ (0,1) and lim
t→x

R(t,x) = 0, we analyse that

lim
n→∞

Bn(R2(t,x);x) = R2(x,x) = 0. (5.30)

Thus, from the equation (5.29), (5.30) and Lemma 5.2.3, we obtain

lim
n→∞

nBn(R(t,x)(t− x)2;x) = 0. (5.31)

We obtain the required result using the equations (5.28) and (5.31)

lim
n→∞

n(Bn( f ;x)− f (x)) = (−6x+3) f ′(x)+3x(1− x) f ′′(x).

The Grüss-Voronovskaja type result for the given operators Bn as follows:

Theorem 5.2.13. (Grüss-Voronovskaja type theorem) Let f ,g ∈ (0,1)→ R. If f ,g ∈C2(0,1), then

lim
n→∞

n(Bn(( f g);x)−Bn( f ;x).Bn(g;x)) = f ′(x)g′(x)6x(1− x).

Proof. Suppose that the given relation holds

Bn( f g;x)−Bn( f ;x).Bn(g;x) = Bn( f g;x)− f (x)g(x)− ( f g)′(x)Bn((t− x);x)
1
2
( f g)′′(x)Bn((t− x)2;x)−g(x)(Bn( f ;x)− f (x)

− f ′(x)Bn((t− x);x)− 1
2

f ′′(x)Bn((t− x)2;x)
)

−Bn( f ;x)
(
Bn(g;x)−g(x)−g′(x)Bn((t− x);x)
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−1
2

g′′(x)Bn((t− x)2;x)
)
+

1
2
Bn((t− x)2;x)

×
(

f (x)g′′(x)+2 f ′(x)g′(x)−g′′(x)Bn( f ;x)
)

+Bn((t− x);x)( f (x)g′(x)−g′(x)Bn( f ;x)).

Taking lim
n→∞

and multiply n both sides of the above equation, we get

lim
n→∞

n{Bn( f g;x)−Bn( f ;x).Bn(g;x)}

= lim
n→∞

n{Bn( f g;x)− f (x)g(x)− ( f g)′(x)Bn((t− x);x)
1
2
( f g)′′(x)Bn((t− x)2;x)

−g(x)
(

Bn( f ;x)− f (x)− f ′(x)Bn((t− x);x)− 1
2

f ′′(x)Bn((t− x)2;x)
)

−Bn( f ;x)
(

Bn(g;x)−g(x)−g′(x)Bn((t− x);x)− 1
2

g′′(x)Bn((t− x)2;x)
)

+
1
2
Bn((t− x)2;x)

(
f (x)g′′(x)+2 f ′(x)g′(x)−g′′(x)Bn( f ;x)

)
+Bn((t− x);x)( f (x)g′(x)−g′(x)Bn( f ;x))}.

Using Theorem 5.2.7, 5.2.12 and Lemma 5.2.4, we get the final result

lim
n→∞

n{Bn(( f g);x)−Bn( f ;x).Bn(g;x)}= f ′(x)g′(x)6x(1− x).

5.2.4 Weighted Approximation

In this segment, we discuss the korovkin’s type theorem for the weighted approximation

results of the given modified operators Bn, for each n ∈N. Consider τ(x) = 1+x2 as a weighted

function which is continuous on (0,1) and lim
|x|→∞

τ(x) = ∞.

Lemma 5.2.14. (Weighted approximation) Suppose that f ∈ C∗τ (0,1), the given modified operators

following the inequality holds:

‖Bn( f )‖τ ≤M‖ f‖τ .

Theorem 5.2.15. (Weighted approximation) Suppose that f ∈ C∗τ (0,1), then the following equalities

holds for the operators Bn

lim
n→∞
‖Bn( f )− f‖τ = 0.

Proof. It is sufficient to prove that

lim
n→∞
‖Bn(lr)− lr‖τ = 0, r = 0,1,2,3,4.
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The result holds trivially for l0, i.e., ‖Bn(l0;x)− l0(x)‖= 0. Next,

‖Bn(l1)− l1‖τ = sup
x∈(0,1)

|Bn(l1;x)− l1(x)|
1+ x2

= sup
x∈(0,1)

∣∣∣ (n−2)2x
n(n+2) +

(3n−2)
n(n+2) − x

∣∣∣
1+ x2

= sup
x∈(0,1)

1
1+ x2

∣∣∣∣(3n−2)
n(n+2)

− (6n−4)
n(n+2)

x
∣∣∣∣

≤
∣∣∣∣(3n−2)
n(n+2)

∣∣∣∣ sup
x∈(0,1)

1
1+ x2 +

∣∣∣∣(6n−4)
n(n+2)

∣∣∣∣ sup
x∈(0,1)

x
1+ x2 ,

the condition is hold as n→ ∞.

Again we have to show that ‖Bn(l2)− l2‖τ = 0.

Now,

‖Bn(l2)− l2‖τ = sup
x∈(0,1)

|Bn(l2;x)− l2(x)|
1+ x2

= sup
x∈(0,1)

1
1+ x2

∣∣∣∣(n3−13n2 +48n−36)
n(n+2)(n+3)

x2 +
(12n2−56n+48)

n(n+2)(n+3)
x

+
14n−12

n(n+2)(n+3)
− x2

∣∣∣∣
= sup

x∈(0,1)

1
1+ x2

∣∣∣∣ −2(6−7n)
n(n+2)(n+3)

− 2(−24+28n−6n2)

n(n+2)(n+3)
x

+
−2(18−21n+9n2)

n(n+2)(n+3)
x2
∣∣∣∣

≤
∣∣∣∣ 2(6−7n)
n(n+2)(n+3)

∣∣∣∣ sup
x∈(0,1)

1
1+ x2 +

∣∣∣∣2(−24+28n−6n2)

n(n+2)(n+3)

∣∣∣∣
× sup

x∈(0,1)

1
1+ x2 +

∣∣∣∣2(18−21n+9n2)

n(n+2)(n+3)

∣∣∣∣ sup
x∈(0,1)

1
1+ x2 .

condition is hold as n large. Similarly the result is hold for others. Hence, the proof is completed

5.2.5 Numerically Analysis

Here, we discuss the convergence behavior of the given operators Bn numerically and graph-

ically by taking the function f (x) = x(1− x)3, where x ∈ (0,1) for the different values of n.

Here, we get the error values and graphs by incorporating the Mathematica tool. Consider

(En,m f )(x) = |(Bn f )(x)− f (x)|, for n = {50,100,500,1000} and different values of x be the ap-

proximate error functions obtained by the given operators Bn. In 5.5. In the meantime, we

compute the error of approximation for (En,m f )(x), which is shown in the table. Finally, we also

shown the error graph 5.6 corresponding to (En,m f )(x). The conclusion is that when increas-

ing the value of n, the rate of convergence of the operators Bn fast towards the graph of the
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corresponding function f (x).
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0.00
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n=500

n=100

n=50

f(x)

Figure 5.5: Convergence behavior of Bn

Table 2 : Approximation Error (En,m f )(x) = |(Bn f )(x)− f (x)|, for n = {50,100,500,1000}
x (E50,1 f )(x) (E100,2 f )(x) (E500,3 f )(x) (E1000,3 f )(x)

0.0 0.0434277 0.0254601 0.00580391 0.00295049

0.2 0.0171665 0.00990509 0.00223403 0.00113433

0.4 0.0111363 0.00601322 0.00127705 0.000643255

0.6 0.00636095 0.00390173 0.000920816 0.000470095

0.8 0.00923331 0.00484605 0.00100104 0.00050229

1.0 0.000454032 0.0000663776 6.03945×10−7 7.67344×10−8
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Figure 5.6: Error of Approximation En,m
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Chapter 6

Approximation by Szász-Păltănea type

Operators using the Appell Polynomials of

class A2

Numerous polynomial sequences use the theory of Appell polynomials of classes, which is utilized in

several mathematical fields, including Combinatorics and number theory. This chapter is a study of

a new sequence of operators using Appell polynomials of class A2. We study an estimate of error in

approximation in terms of modulus of continuity and rate of convergence in weighted space for these

operators. Then, we discuss the convergence for the function having the derivatives of bounded

variation.

6.1 Introduction

In 1950, Szász summarized the work of the Bernstein polynomials on the infinite interval and

obtained the convergence results. These polynomials also play an important role in the field of

approximation theory. Szász polynomials are as follows:

Sn( f ;x) = e−nx
∞

∑
k=0

(nx)k

k!
f
(

k
n

)
, (6.1)

where f ∈ C[0,∞), for each x ∈ [0,∞). Given the work done in the field of Szász operators,

Jakimovski et al. [53], gave popularization of Szász operators with the help of the Appell

polynomials.

Consider an analytic function in the disc |z|<R, (R> 1) and g(z) =
∞

∑
k=0

akzk (a0 6= 0) with g(1) 6=
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0. The Appell polynomials pk(x) contains generating function in the form g(u)eux =
∞

∑
k=0

pk(x)uk.

Jakimovski and Leviatan build the following positive linear operators Pn( f ;x) defined as:

Pn( f ;x) =
e−nx

g(1)

∞

∑
k=0

pk(nx) f
(

k
n

)
, ∀ n ∈ N, (6.2)

and they deliberate the approximation results on the basis of Szász operators (6.1). In [101],

Wood studied the approximation properties of the operators (6.2) on [0,∞) iff ak
g(1) ≥ 0, for

k ∈ N. When g(u) = 1, then operators (6.2) reduces to (6.1). Using the above certitude, Ciupa

([18, 19]) gave another variants of the operators and obtained the approximation properties by

the goodness of Korovkin’s theorem.

In 1974, Ismail [51], studied another generalization of Szász operators in the view of Sheffer

polynomials and operators Pn( f ;x). Let A(z) =
∞

∑
k=0

akzk, (a0 6= 0) and H(z) =
∞

∑
k=1

hkzk (h1 6= 0) be

analytic functions in the disc |z|< R, (R> 1), where ai and hi in real. In view of the following

assumptions

1. pk(x)≥ 0, for x ∈ [0,∞).

2. A(1) 6= 0 and, H ′(1) = 1.

The set of polynomials pk(x); k ≥ 0 are sheffer polynomials ⇔ the generating function of the

form

A(ζ )exH(ζ ) =
∞

∑
k=0

pk(x)ζ k, |ζ |< R.

Finally, Ismail found the approximation properties of the given function

ℑn( f ;x) =
e−nxH(1)

A(1)

∞

∑
k=0

pk(nx) f
(

k
n

)
, n > 0. (6.3)

Substitute H(ζ ) = ζ in the equation (6.3), then the operators reduces to Leviatan operators

(6.2). And another way, we supposing H(ζ ) = ζ , A(ζ ) = 1, then the operators (6.3) reduces to

the Szász operators (6.1). Continuation on the above work, In 2015, Sezgin Sucu and, Serhan

Varma [95] obtained Stancu form of the ℑn operators (6.3) and estimated their approxima-

tion properties. In 2019, M. Mursaleen et. al [69], proposed the Jakimovski-Leviatan-Stancu-

Durrmeyer type operators and obtained approximation properties like A-Statistical convergence

with the help of Korovkin’s theorem and also found rth derivative of a function using proposed

operators. Many more researchers have worked on the field of szász operators. These operators

are extensively used in computer algebra systems, data science, machine learning, and image

processing.
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Very recently, Varma and Sucu [98], introduced the generalization of Szász operators using

the Appell polynomials of class A2 as follows:

Tn( f ;x) =
1

A(1)enx +B(1)e−nx

∞

∑
k=0

pk(nx) f
(

k
n

)
, (6.4)

with the restrictions A(1)> 0,B(1)≥ 0 and pk(x)> 0 for all k = 0,1, . . . The Appell polynomials

pk(x) of class A2 are obtained by the following generating function

A(ζ )exζ +B(ζ )e−xζ =
∞

∑
k=0

pk(x)ζ k, (6.5)

where A(ζ ) =
∞

∑
k=0

ak

k!
ζ

k and B(ζ ) =
∞

∑
k=0

bk

k!
ζ

k are power series defined over the disc |z|<R (R> 1)

with a2
0−b2

0 6= 0. They found some axillary results by using newly proposed operators and got

approximation results using the modulus of continuity and also studied some kind of sequence

of operators containing Gould-Hopper polynomials.

Because of some research articles ([45, 67]), we studied several summation-integral type op-

erators and with the help of Varma and Sucu’s work, we introduce a new generalization of

Szász-Păltănea operators using the Appell polynomials of class A2 on the interval [0,∞), define

as

Sρ
n ( f ;x) =

1
A(1)enx +B(1)e−nx

[
∞

∑
k=1

pk(nx)
∫

∞

0
φ

ρ

n,k(ζ ,c) f (ζ )dζ +(a0enx +b0e−nx) f (0)

]
,(6.6)

where

φ
ρ

n,k(ζ ,c) =


nρ

Γ(kρ)
e−nρζ (nρζ )kρ−1,c = 0

Γ
(nρ

c + kρ
)

Γ(kρ)Γ
(nρ

c

) ckρζ kρ−1

(1+ cζ )
nρ

c +kρ
,c = 1,2,3, ...

.

It can we easily observed by simple computation that:

∫
∞

0
φ

ρ

n,k (ζ ,c)ζ
rdζ =


Γ(kρ + r)

Γ(kρ)

1
∏

r
j=1 (nρ− jc)

, r 6= 0

1, r = 0.

On the other hand, given operators (6.6) can be write as

Sρ
n ( f ;x) =

∫
∞

0
An(x,ζ ) f (ζ )dζ , (6.7)
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where

An(x,ζ ) =
1

A(1)enx +B(1)e−nx

[
(a0enx +b0e−nx)δ (t)+

∞

∑
k=1

pk(nx)φ ρ

n,k(ζ ,c)

]
,

and δ (t) is the Dirac-delta function.

For β > 0, let Cβ [0,∞) = { f ∈ C[0,∞) : f (ζ ) ≤ N(1+ ζ β )}, for some M > 0 endowed with the

norm

‖ f‖β = sup
ζ∈[0,∞)

| f (ζ )|
(1+ζ β )

.

Remark 6.1.1. • For A(ζ ) = 1 and B(ζ ) = 0 in the equations (6.4) and (6.6), we obtain the famous

Szász operators [92] and Szász-Păltănea operators [77].

• For A(ζ ) = 1, B(ζ ) = 0 and ρ = 1, the operators (6.6) reduces to Philips operators [73].

6.2 Preliminaries

Prior to proceeding to our main results, we prepare some general lemmas which are useful

throughout this chapter. Besides, we have used Mathematica software to calculate the moments

and central moments of the proposed operators.

In the equation (6.5), substitute ζ = 1 and replace x with nx, we get

∞

∑
k=0

pk(nx) = A(1)enx +B(1)e−nx.

By taking the first four derivatives of the equation (6.5) and substituting ζ = 1, and then

replacing x with nx, we obtained

∞

∑
k=0

kpk(nx) = nx(A(1)enx−B(1)e−nx)+A′(1)enx +B′(1)e−nx,

∞

∑
k=0

k(k−1)pk(nx) = x2n2(A(1)enx +B(1)e−nx)+2nx(A′(1)enx−B′(1)e−nx)

+(A′′(1)enx +B′′(1)e−nx),
∞

∑
k=0

k(k−1)(k−2)pk(nx) = n3x3(A(1)enx−B(1)e−nx)+3x2n2(A′(1)enx +B′(1)e−nx)

+3nx(A′′(1)enx−B′′(1)e−nx)+(A′′′(1)e−nx +B′′′(1)e−nx),
∞

∑
k=0

k(k−1)(k−2)(k−3)pk(nx) = n4x4(A(1)enx +B(1)e−nx)+4n3x3(A′(1)enx +B′(1)e−nx)

+6n2x2(A′′(1)enx +B′′(1)e−nx)+4nx(A′′′(1)enx−B′′′(1)e−nx)

+(A′′′′(1)enx +B′′′′(1)e−nx).
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Lemma 6.2.1. The operators Tn(ζ
m;x), m = 0,4, we have

Tn(1;x) = 1;

Tn(ζ ;x) =

(
A(1)enx−B(1)e−nx

A(1)enx +B(1)e−nx

)
x+

A′(1)enx +B′(1)e−nx

n[A(1)enx +B(1)e−nx]
;

Tn(ζ
2;x) = x2 +

(
[2A′(1)+A(1)]enx− [2B′(1)+B(1)]e−nx

n[A(1)enx +B(1)e−nx]

)
x

+
[A′′(1)+A′(1)]enx +[B′′(1)+B′(1)]e−nx

n2[A(1)enx +B(1)e−nx]
;

Tn(ζ
3;x) =

(
A(1)enx−B(1)e−nx

A(1)enx +B(1)e−nx

)
x3 +

1
n[A(1)enx +B(1)e−nx]

[(3A(1)

+2A′(1))enx +(3B(1)+2B′(1))e−nx]x2

+
1

n2[A(1)enx +B(1)e−nx]

{
(A(1)+(n+6)A′(1)+2nA′′)enx

−(B(1)+(6−n)B′(1)+2nB′′(1))e−nx}x

+
(A′(1)+A′′′)enx +(B′(1)+B′′′(1))e−nx

n3[A(1)enx +B(1)e−nx]
;

Tn(ζ
4;x) = x4 +

{3(2A(1)+A′(1))enx−3(2B(1)+B′(1))e−nx}
n[A(1)enx +B(1)e−nx]

x3

+
1

n2[A(1)enx +B(1)e−nx]

{
(7A(1)+13A′(1)+4A′′(1))enx

+(7B(1)+11B′(1)+4B′′(1))e−nx}x2

+
1

n4[A(1)enx +B(1)e−nx]

{
((−6−5n)A(1)+n(2(7+3n)A′(1)

+2(1+6n)A′′(1)+(2+n)A′′′(1)))enx +((−6+5n)B(1)

+n(2(−7+3n)B′(1)+(2−12n)B′′(1)−3B′′′(1)))e−nx}x

+
1

n5[A(1)enx +B(1)e−nx]

{
((6−5n)A′(1)+n(13A′′(1)+7A′′′(1)

+A′′′′(1)))enx +((6−5n)B′(1)+n(B′′(1)+5B′′′(1)+B′′′′(1)))e−nx} .
Lemma 6.2.2. For the proposed operators Sρ

n (ζ m;x), m = 0,4, we have

Sρ
n (1;x) = 1;

Sρ
n (ζ ;x) =

1
(nρ− c)[A(1)enx +B(1)e−nx]

{
nρx[A(1)enx−B(1)e−nx]

+ρ[A′(1)enx +B′(1)e−nx]
}

;

Sρ
n (ζ

2;x) =
n2ρ2

(nρ− c)(nρ−2c)
x2

+
1

(nρ− c)(nρ−2c)[A(1)enx +B(1)e−nx]
{(nρ((A(1)

+2ρA′(1))enx− (B(1)+2ρB′(1))e−nx))x+(ρ((A′(1)

+ρA′′(1))enx +(B′(1)+ρB′′(1))e−nx))
}

;

Sρ
n (ζ

3;x) =
1

(nρ− c)(nρ−2c)(nρ−3c)[A(1)enx +B(1)e−nx]

{
n3

ρ
3(A(1)enx

−B(1)e−nx)x3 +3n2
ρ

2((A(1)+ρA′(1))enx +(B(1)
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+ρB′(1))e−nx)x2 +(nρ((2A(1)+3ρ(2A′(1)+ρA′′(1)))enx

−(2B(1)+3ρ(2B′(1)+ρB′′)(1))e−nx))x+ρ((2A′(1)+ρ(3A′′(1)

+ρA′′′(1)))enx +(2B′(1)+ρ(3B′′(1)+ρB′′′(1)))e−nx)
}

;

Sρ
n (ζ

4;x) =
n4ρ4

(nρ− c)(nρ−2c)(nρ−3c)(nρ−4c)
x4

+
1

(nρ− c)(nρ−2c)(nρ−3c)(nρ−4c)[A(1)enx +B(1)e−nx]
×{

2n3
ρ

3((3A(1)+2ρA′(1))enx− (3B(1)+2ρB′(1))e−nx)x3

+n2
ρ

2((11A(1)+6ρ(3A′(1)+ρA′′(1)))enx +(11B(1))

+6ρ(3B′(1)+ρB′′(1)))e−nx)x2 +(2nρ((3A(1)+ρ(11A′(1)

+9ρA′′(1)+2ρ
2A′′′(1)))enx)− (3B(1)+ρ(11B′(1)+9ρB′′(1)

+2ρ
2B′′′(1)))e−nx)x+ρ((6A′(1)+ρ(11A′′(1)+6ρA′′′(1)

+ρ
2A′′′′(1)))enx +(6B′(1)+ρ(11B′′(1)

+6ρB′′′(1)+ρ
2B′′′′(1)))e−nx)

}
.

Proof. This Lemma is an immediate consequence of Lemma 6.2.2 and equation (6.6). Hence the details

of its proof are omitted.

Lemma 6.2.3. The central moments of the operators Sρ
n ((ζ − x)m;x), for m = 1, 2 and 4, we have

Sρ
n (ζ − x;x) =

{−2nρB(1)e−nx + c[A(1)enx +B(1)e−nx]}
(nρ− c)[A(1)enx +B(1)e−nx]

x

+
ρ[A′(1)enx +B′(1)e−nx]

(nρ− c)[A(1)enx +B(1)e−nx]
;

Sρ
n ((ζ − x)2;x) =

1
(nρ− c)(nρ−2c)[A(1)enx +B(1)e−nx]

{cnρ((A(1)

+2c2A(1))enx +(−7B(1)+(4n2
ρ

2 +2c2)B(1))e−nx)x2

+ρ((nA(1)+4cA′(1))enx +(4cB′(1)−n(B(1)

+4ρB′(1)))e−nx)x+ρ((A′(1)+ρA′′(1))enx +(B′(1)

+ρB′′(1))e−nx)
}

;

Sρ
n ((ζ − x)4;x) =

1
(nρ− c)(nρ−2c)(nρ−3c)(nρ−4c)[A(1)enx +B(1)e−nx]{
((46c3nρA(1)+24c4A(1)+3c2n2

ρ
2A(1))enx +(−146c3nρB(1)

−104cn3
ρ

3B(1)+16n4
ρ

4B(1)+24c4B(1)

+211c2n2
ρ

2B(1))e−nx)x4 +((96ρc3A′(1)+4c2n(9A(1)

+5ρA′(1))+3cn2
ρA(1))enx +(96c3B′(1)−36c2nB(1)

−124c2nρB′(1)−4n3
ρ

2(3B(1)+4ρB′(1))+15cn2
ρB(1)

+84cn2
ρ

2B′(1))e−nx)x3 +(ρ((72c2(A′(1)+ρA′′(1))

+3n2
ρA(1)−2cn(16A(1)+3ρ(9A′(1)+ρA′′(1)))))enx
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+(72c2B′(1)+72c2
ρB′′(1)+n2

ρ(19B(1)+24ρ(2B′(1)

+ρB′′(1)))+2cn(−16B(1))−3ρ(23B′(1)+15ρB′′(1)))e−nx)x2

−((2ρ(−8c(2B′(1)+3ρB′′(1))−8cn3
ρ

2B′′′(1)+2n4
ρ

3B′′′(1)

+n(3B(1)+ρ(15B′(1)+ρ(15B′′(1)+2ρB′′′(1))))))e−nx

−(3nA(1)+16cA′(1)+nρ(7A′(1)+3ρA′′(1)))enx)x

+((ρ(6A′(1)+ρ(11A′′(1)+6ρA′′′(1)+ρ
2A′′′′(1)))enx

+(6B′(1)+ρ(11B′′(1)

+6n3
ρB′′′(1)+ρ

2B′′′′(1)))e−nx))
}
.

Proof. The Proof of the above lemma can be easily found by using the following equalities:

Sρ
n ((ζ − x);x) = Sρ

n (ζ ;x)− xSρ
n (1;x);

Sρ
n ((ζ − x)2;x) = Sρ

n (ζ
2;x)−2xSρ

n (ζ ;x)+ x2Sρ
n (1;x);

Sρ
n ((ζ − x)4;x) = Sρ

n (ζ
4;x)−4xSρ

n (ζ
3;x)+6x2Sρ

n (ζ
2;x)−4x3Sρ

n (ζ ;x)+ x4Sρ
n (1;x).

Lemma 6.2.4. The limiting values of the Lemma 6.2.3, we have

lim
n→∞

nSρ
n ((ζ − x);x) =

cx
ρ

+
A′(1)
A(1)

;

lim
n→∞

nSρ
n ((ζ − x)2;x) =

x(1+ cx)
ρ

;

lim
n→∞

n2Sρ
n ((ζ − x)4;x) =

3x2(1+ cx)2

ρ2 .

6.3 Approximation Results

In the whole chapter, we take ρn(x) = Sρ
n ((ζ − x)2;x).

Bohman-Korovkin delegated an easy and supporting theorem to provide for continuous func-

tions in a compact space for positive linear operators, which strongly converges to the identity

operators. In the following theorem, we obtained an approximation result of the operators Sρ
n

making use of the Bohman-Korovkin’s theorem.

Theorem 6.3.1. (Fundamental convergence theorem) Let f be a continuous function on the interval

[0,∞), then

lim
n→∞

Sρ
n ( f ;x) = f (x)

holds uniformly in x ∈ [0,∞).
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Proof. The proof is based on the conditions by the Korovkin’s theorem. By using Lemma 6.2.2, we

obtain

lim
n→∞

Sρ
n (ζ

r;x) = xr, r = 0,4.

In the following result, we find the rate of convergence of the given operators Sρ
n for the Lips-

chitz space. Due to the existence of x in the denominator, we obtain pointwise approximation.

From the Szász operators [92], x drop foremost to the uniform convergence.

Theorem 6.3.2. (Lipschitz class) Let f ∈ Lip∗M(σ) and σ ∈ (0,1]. Then the inequality holds:

|Sρ
n ( f ;x)− f (x)| ≤M

(
ρn(x)

x

) σ

2

,

for all x ∈ (0,∞).

Proof. Using the linearity and positivity of the proposed operators (6.7), we write as

|Sρ
n ( f ;x)− f (x)| ≤

∫
∞

0
An(x,ζ )| f (ζ )− f (x)|dζ .

Applying Hölder’s inequality with p = 2
σ

and q = 2
2−σ

and Lemma 6.2.2, we obtain

|Sρ
n ( f ;x)− f (x)| ≤

(∫
∞

0
An(x,ζ )| f (ζ )− f (x)|

2
σ dζ

) σ

2
(∫

∞

0
An(x,ζ )dζ

) 2−σ

2

≤
(∫

∞

0
An(x,ζ )| f (ζ )− f (x)|

2
σ dζ

) σ

2

≤ M
(∫

∞

0
An(x,ζ )

(ζ − x)2

(ζ + x)
dζ

) σ

2

≤ M
(

ρn(x)
x

) σ

2

.

We get the required result.

In the present theorem, we set up a Voronvaskaja type approximation theorem.

Theorem 6.3.3. (Voronvaskaja type theorem) Let f ∈ C2[0,∞) and f ′, f ′′ exists at a pont x ∈ [0,∞),

then the equality holds

lim
n→∞

n(Sρ
n ( f ;x)− f (x)) =

(
cx
ρ

+
A′(1)
A(1)

)
f ′(x)

+

(
cx2

ρ
+

x(A(1)+(2−A′(1)ρ))
A(1)ρ

)
f ′′(x)

2
.
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If f ′′ is continuous on [0,∞), then the above result holds uniformly in the interval [0,b] ⊂ [0,∞) with

b > 0.

Proof. We know that the Taylor’s series expansion

f (ζ ) = f (x)+ f ′(x)(ζ − x)+
f ′′(x)

2
(ζ − x)2 +σ(ζ ,x)(ζ − x)2, (6.8)

where σ(ζ ,x) ∈C2[0,∞) and lim
n→∞

σ(ζ ,x) = 0. Applying the given operator Sρ
n from the equation (6.7)

on both sides of the equation (6.8), we have

lim
n→∞

n(Sρ
n ( f ;x)− f (x)) = lim

n→∞
nSρ

n ((ζ − x);x) f ′(x)+ lim
n→∞

nSρ
n ((ζ − x)2;x)

f ′′(x)
2

+ lim
n→∞

nSρ
n (σ(ζ ,x)(ζ − x)2;x). (6.9)

In the last term of the equation (6.9), using the Cauchy-Schwarz inequality, we obtain

nSρ
n (σ(ζ ,x)(ζ − x)2;x)≤

√
Sρ

n (σ2(ζ ,x);x)
√

n2Sρ
n ((ζ − x)4;x).

Since σ(ζ ,x)→ 0, as t→ x, applying Theorem 6.3.1, we get lim
n→∞

Sρ
n (σ

2(ζ ,x);x) = σ
2(x;x) = 0. And

applying Lemma 6.2.4, for large n, and x ∈ [0,∞), we have

n2Sρ
n ((ζ − x)4;x) = O(1). (6.10)

Hence,

lim
n→∞

nSρ
n (σ(ζ ,x)(ζ − x)2;x) = 0. (6.11)

The required result are obtained from the equations (6.9), (6.11) and Lemma 6.2.4, we have

lim
n→∞

n(Sρ
n ( f ;x)− f (x)) =

(
cx
ρ

+
A′(1)
A(1)

)
f ′(x)

+

(
cx2

ρ
+

x(A(1)+(2−A′(1)ρ))
A(1)ρ

)
f ′′(x)

2
.

The uniformity declaration holds from the uniform continuity of f ′′ on [0,b] and in general

other results also holds uniformly in [0,b], b > 0. In the following theorem, we discussed the

approximation results of the proposed operators, using classical modulus of continuity.

Theorem 6.3.4. For f ∈C2[0,∞), then the inequality holds

|Sρ
n ( f ;x)− f (x)| ≤ 4M f (1+ x2)ρn(x)+2ωb+1( f ;

√
ρn(x)).
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where ω( f ;ρn(x)) is the modulus of continuity of f on [0,b+1].

Proof. From [50], for ζ ∈ (b+1,∞) and x ∈ [0,b], we have

| f (ζ )− f (x)| ≤ 4M f (t− x)2(1+ x2)+

(
1+
|ζ − x|

δ

)
ωb+1( f ,δ ), δ > 0.

Applying the cauchy-Schwarz inequality, we get

|Sρ
n ( f ;x)− f (x)| ≤ 4M f (1+ x2)Sρ

n ((ζ − x)2;x)

+

(
1+

(Sρ
n ((ζ − x)2;x))

1
2

δ

)
ωb+1( f ,δ )

≤ 4M f (1+ x2)ρn(x)+ωb+1( f ,δ )

(
1+

√
ρn(x)
δ

)
.

Hence suppose δ =
√

ρn(x), we obtained the result.

Theorem 6.3.5. (Ditzian-Totik modulus of smoothness) For f ∈CB[0,∞), then the inequality holds for

the large value of n

|Sρ
n ( f ;x)− f (x)| ≤Cω

∗
ψτ

(
f ;

ψ1−τ(x)√
n

)
,

where C is a constant independent of f and n.

Proof. By the definition of K−functional, choose g ∈Wτ such that

‖ f −g‖+ ψ1−τ(x)√
n
‖ψτg′‖ ≤ 2K∗ψτ

(
f ;

ψ1−τ(x)√
n

)
. (6.12)

Now,

|Sρ
n ( f ;x)− f (x)| ≤ |Sρ

n ( f −g;x)|+ |Sρ
n (g;x)−g(x)|+ |g(x)− f (x)|

≤ 2‖ f −g‖+ |Sρ
n (g;x)−g(x)|. (6.13)

Consider

g(t) = g(x)+
∫

ζ

x
g′(u)du

and

|Sρ
n (g;x)−g(x)| ≤ Sρ

n

(∣∣∣∣∫ ζ

x
g′(u)du

∣∣∣∣ ;x
)
. (6.14)
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Applying Hölder’s inequality, we have

∣∣∣∣∫ t

x
g′(u)du

∣∣∣∣≤ ‖ψτg′‖
∣∣∣∣∫ ζ

x

du
ψτ(u)

∣∣∣∣≤ ‖ψτg′‖|ζ − x|1−τ

∣∣∣∣∫ ζ

x

du
ψ(u)

∣∣∣∣τ ,
we may write

∣∣∣∣∫ ζ

x

du
ψ(u)

∣∣∣∣≤ ∣∣∣∣∫ ζ

x

du√
u

∣∣∣∣
(

1√
1+ x

+
1√

1+ζ

)
.

Using the inequality |α +β |r ≤ |α|r + |β |r, 0≤ r ≤ 1, we have

∣∣∣∣∫ ζ

x
g′(u)du

∣∣∣∣ ≤ 2τ‖ψτg′‖|ζ − x|
x

τ

2

(
1√

1+ x
+

1√
1+ζ

)τ

≤ 2τ‖ψτg′‖|ζ − x|
x

τ

2

(
1

(1+ x)
τ

2
+

1
(1+ζ )

τ

2

)
. (6.15)

Thus, from the equation (6.14), (6.15), using Cauchy-Schwartz inequality, Theorem 6.3.1, and suffi-

ciently large n, we obtain

|Sρ
n (g;x)−g(x)| ≤ 2τ‖ψτg′‖

x
τ

2
Sρ

n

(
|ζ − x|

(
1

(1+ x)
τ

2
+

1
(1+ζ )

τ

2

)
;x
)

≤ 2τ‖ψτg′‖
x

τ

2

(
1

(1+ x)
τ

2

√
Sρ

n ((ζ − x)2;x)

+

√
Sρ

n ((ζ − x);x)
√

Sρ
n ((1+ζ )−τ ;x)

)
≤ 2τ‖ψτg′‖

√
Sρ

n ((ζ − x)2;x)
{

ψ
−τ(x)+ x

−τ

2

√
Sρ

n ((1+ζ )−τ ;x)
}

≤ 2τC‖φ τg′‖φ(x)√
n
{ψ−τ(x)+ x

−τ

2 (1+ x)
−τ

2 }

≤ 2τ+1 ‖ψτg′‖ψ1−τ(x)√
n

. (6.16)

Hence, from the equations (6.12 - 6.14), and (6.16), we get the required result

|Sρ
n ( f ;x)− f (x)| ≤ 2‖ f −g‖+2τ+1C‖ψτg′‖ψ1−τ

√
n

≤ C
{
‖ f −g‖+ ψ1−τ

√
n
‖ψτg′‖

}
≤ 2CK∗ψτ

(
f ;

ψ1−τ(x)√
n

)
≤ Cω

∗
ψτ

(
f ;

ψ1−τ(x)√
n

)
.

Here, we will discuss the results are given by Rasás and Steklov function and find approxima-

tion results using the second-order modulus of continuity. The modulus of continuity is defined

93



as:

ω2(φ ,δ ) = sup
0<ζ≤δ

‖φ(.+2ζ )−2φ(.+ζ )+φ(.)‖.

Now consider {Ln}n≥0 be a sequence of linear positive operators with virtue Ln(ei;x) = xi. Then

according to the Rasás result [34], we have

|Ln(g;x)−g(x)| ≤ ‖g′‖
√

Ln((ζ − x)2;x)+
1
2
‖g′′‖Ln((ζ − x)2;x),

where g ∈C2[0,a]. And for f ∈C[a,b], the second-order Steklov function is as follows

fh(x) =
1
h

∫ h

−h

(
1− |ζ |

h

)
f (h;x+ζ )dζ , x ∈ [a,b],

where f (h; .) : [a−h,b+h]→ R, h > 0 by

fh(x) =


P−(x); a−h≤ x≤ a

f (x); a≤ x≤ b

P+(x); b < x≤ b+h

and P−, P+ they are linear best approximation to the function f on the given interval.

Theorem 6.3.6. Let φ ∈C[0,∞). Then, we obtain

|Sρ
n (φ ;x)−φ(x)| ≤

(
3
2
+

3a
4
+

3h2

4

)
ω2(φ ;h)+

2h2

a
‖φ‖.

Proof. From some calculations and using well-known properties, we have

|Sρ
n (φ ;x)−φ(x)| ≤ Sρ

n (|φ −φh|;x)+ |Sρ
n (φh;x)−φh(x)|+ |φh(x)−φ(x)|

≤ 2‖φ −φh‖+ |Sρ
n (φh;x)−φh(x)|, (6.17)

where, φh ∈ C2[0,a) be the second-order Steklov function of φ . From the Rasa’s result and Landau

inequality, we have

|Sρ
n (φ ;x)−φ(x)| ≤ ‖φ ′h‖

√
Sρ

n ((ζ − x)2;x)+
1
2
‖φ ′′h ‖Sρ

n
(
(ζ − x)2;x

)
≤

(
2
a
‖φh‖+

a
2
‖φ ′′h ‖

)√
Sρ

n ((ζ − x)2;x)

+
1
2
‖φ ′′h ‖Sρ

n
(
(ζ − x)2;x

)
≤

(
2
a
‖φ‖+ 3a

4h2 ω2(φ ;h)
)√

Sρ
n ((ζ − x)2;x)

+
3

4h2 ω2(φ ;h)Sρ
n
(
(ζ − x)2;x

)
. (6.18)
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Using the relation given by Zhuk [104], between Steklov function and ω2(φ ;h) as: ‖φ−φh‖≤ 3
4 ω2(φ ;h),

from the equations (6.17, 6.18), we obtain

|Sρ
n (φ ;x)−φ(x)| ≤ 3

2
ω2(φ ;h)+

(
2
a
‖φ‖+ 3a

4h2 ω2(φ ;h)
)√

Sρ
n ((ζ − x)2;x)

+
3

4h2 ω2(φ ;h)Sρ
n
(
(ζ − x)2;x

)
.

Choose h2 =
√

Sρ
n ((ζ − x)2;x) and, by the simple calculation, we get the required result.

6.4 Weighted Approximation results

In this section, we study the approximation results on the space C∗τ [0,∞) using the weighted

modulus of continuity. We know that in general the classical modulus of continuity of first order

does not tend to zero on an infinite interval. Now, we develop an approximation theorem using

the weighted space of the continuous function C∗τ [0,∞) of the given operators Sρ
n .

Theorem 6.4.1. (Weighted approximation) For f ∈C∗τ [0,∞) and α > 0, we have

lim
n→∞

sup
x∈[0,∞)

|Sρ
n ( f ;x)− f (x))|
(τ(x))1+α

= 0.

Proof. Suppose that x0 be an arbitrary fixed point, then

sup
x∈[0,∞)

|Sρ
n ( f ;x)− f (x))|
(1+ x2)1+α

≤ sup
x≤x0

|Sρ
n ( f ;x)− f (x))|
(1+ x2)1+α

+ sup
x>x0

|Sρ
n ( f ;x)− f (x))|
(1+ x2)1+α

≤ ‖Sρ
n ( f ; .)− f‖C[0,x0]+‖ f‖2 sup

x>x0

Sρ
n (1+ζ 2);x
(1+ x2)1+α

+ sup
x>x0

| f (x)|
(1+ x2)1+α

. (6.19)

Since | f (x)| ≤ ‖ f‖2(1+ x2), we have

sup
x>x0

| f (x)|
(1+ x2)1+α

≤ ‖ f‖2

(1+ x2
0)

α
.

Choose a number υ > 0 and x0 to be large, then

‖ f‖2

(1+ x2
0)

α
<

υ

6
⇒ sup

x>x0

‖ f‖2

(1+ x2
0)

α
<

υ

6
. (6.20)

Using Theorem 6.3.1, there exist n1 ∈ N such that

‖ f‖2
Sρ

n (1+ζ 2;x)
(1+ x2)1α

≤ ‖ f‖2

(1+ x2)α

(
1+ x2 +

υ

3‖ f‖2

)
, ∀n > n1

≤ ‖ f‖2

(1+ x2
0)

α
+

υ

3
, ∀n > n1, x > x0.
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Hence,

‖ f‖2 sup
x>x0

Sρ
n (1+ζ 2;x)
(1+ x2)1+α

≤ υ

2
, ∀n > n1. (6.21)

Applying Theorem 6.3.3, there exist n2 ∈ N such that

‖Sρ
n ( f ; .)− f‖c[0,x0] <

υ

3
, n > n2. (6.22)

Consider n0 = max(n1,n2). Thus combining (6.19 - 6.22), we obtained the result

sup
x∈[0,∞)

|Sρ
n ( f ;x)− f (x)|
(1+ x2)1+α

< υ , ∀n > n0.

In the next theorem, we find the order of approximation for the weighted space corresponding to the

proposed operators Sρ
n .

Theorem 6.4.2. (Weighted approximation) Let f ∈C∗τ [0,∞), and sufficiently large n, we have

|Sρ
n ( f ;x)− f (x)| ≤C(x)Ω∗

(
f ;

1√
n

)
. (6.23)

Proof. For x ∈ (0,∞) and δ > 0, using definition of Ω∗ ( f ;δ ) and Lemma 1.1.2, we have

| f (ζ )− f (x)| ≤ (1+(x+ |x− t|)2)Ω∗( f ; |t− x|)

≤ 2(1+ x2)(1+(t− x)2)

(
1+
|ζ − x|

δ

)
Ω
∗( f ;δ ).

Applying Sρ
n (.;x) on both sides, we get

|Sρ
n ( f ;x)− f (x)| ≤ 2(1+ x2)Ω∗( f ;δ )

{
1+Sρ

n ((ζ − x)2;x)

+Sρ
n

(
(1+(ζ − x)2 |ζ − x|

δ
;x)
)}

. (6.24)

Applying the Cauchy-Schwarz inequality of the above equation, we get

Sρ
n

(
(1+(ζ − x)2)

|ζ − x|
δ

;x
)
≤ (Sρ

n ((ζ − x)2;x))
1
2

δ

+

{
1
δ
(Sρ

n ((ζ − x)4;x))
1
2

×(Sρ
n ((ζ − x)2;x))

1
2

}
, (6.25)

compile the equations (6.23 - 6.25) and, taking δ = 1√
n , we get the required result.
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6.5 Rate of convergence

In Approximation theory, a fascinating topic of study is the rate of convergence for functions

with derivatives of bounded variation.

Lemma 6.5.1. [79] Let θ = θ(n)→ 0, as n→ ∞ and, lim
n→∞

nθ(n) = l ∈ R. For adequately large n, we

have

(i) ξn(x,ζ ) =
∫

ζ

0
An(x,ζ )du≤ C1|ϖ(x)|

(x−ζ )2

(ii) 1−ξn(x,ζ ) =
∫

∞

ζ

An(x,ζ )du≤ C1|ϖ(x)|
(ζ − x)2 ,

where x ∈ (0,∞) and, ϖ(x) =
x(1+ cx)

ρ
.

Proof. From the Lemma 6.2.2, we have

ξn(x,ζ ) =
∫

ζ

0
An(x,ζ )du

≤
∫

ζ

0

(
x−u
x− t

)2

An(x,ζ )(x,u)du

≤ 1
(x− t)2 Sρ

n ((u− x)2;x)

≤ C1|ϖ(x)|
(x−ζ )2 ,

when n is large. Similarly proof for (ii).

Theorem 6.5.2. (Derivative of bounded variation) Let f ∈ DBV [0,∞), for every x ∈ (0,∞) and, suffi-

ciently large n, we have

|Sρ
n ( f ;x)− f (x)| ≤

{
{−2nρB(1)e−nx + c[A(1)enx +B(1)e−nx]}

(nρ− c)[A(1)enx +B(1)e−nx]
x

+
ρ[A′(1)enx +B′(1)e−nx]

(nρ− c)[A(1)enx +B(1)e−nx]

}∣∣∣∣ f ′(x+)+ f ′(x−)
2

∣∣∣∣
+
√

C1|ϖ(x)|
∣∣∣∣ f ′(x+)− f ′(x−)

2

∣∣∣∣+ C1|ϖ(x)|
x

[
√

n]

∑
i=1

 x∨
x− x

i

f ′x


+

x√
n

 x∨
x− x√

n

f ′x

+

(
4M f +

M f + | f (x)|
x2

)
C1|ϖ(x)|

+| f ′(x+)|
√

C1|ϖ(x)|

+
C1|ϖ(x)|

x2 | f (2x)− f (x)− x f ′(x+)|+ x√
n

x+ x√
n∨

x
f ′x


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+
C1|ϖ(x)|

x

[
√

n]

∑
i=1

x+ x√
n∨

x
f ′x

 .

Here C1 be a positive constant and
b∨
a

f denotes the total variation of the function f on [a,b] and, f ′x is

defined as:

f ′x(ζ ) =


f ′(ζ )− f ′(x−), 0≤ ζ < x,

0, ζ = x,

f ′(ζ )− f ′(x+), x < ζ < ∞.

(6.26)

Proof. Suppose for any function f ∈ DBV [0,∞), and using equation (6.26), we write as

f ′(u) =
1
2
( f ′(x)+ f ′(x−))+ f ′x(u)+

1
2
( f ′(x+)− f ′(x−))sgn(u− x)

+δx(u)
(

f ′(u)− 1
2
( f ′(x+)+ f ′(x−))

)
, (6.27)

where

δx(u) =

1, u = x,

0, u 6= x
.

We have Sρ
n (1;x) = 1 and, using (6.27) for every x ∈ (0,∞), we obtain

Sρ
n ( f ;x)− f (x) =

∫
∞

0
An(x,ζ )( f (ζ )− f (x))dζ

=
∫

∞

0
An(x,ζ )

(∫
ζ

x
f ′(u)

)
d(ζ )

= −
∫ x

0

(∫ x

ζ

f ′(u)du
)

An(x,ζ )dζ

+
∫

∞

x

(∫
ζ

x
f ′(u)du

)
An(x,ζ )dζ . (6.28)

Let us suppose that

L1 =
∫ x

0

(∫ x

t
f ′(u)du

)
An(x,ζ )dζ ,

L2 =
∫

∞

x

(∫
ζ

x
f ′(u)du

)
An(x,ζ )dζ .

We know that
∫

ζ

x δx(u)du = 0 and, from (6.27), we have

L1 =
∫ x

0

{∫ x

ζ

(
1
2
( f ′(x+)+ f ′(x−))+ f ′x(u)+

1
2
( f ′(x+)− f ′(x−))sgn(u− x)

)
du
}

An(x,ζ )dζ
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=
1
2
( f ′(x+)+ f ′(x−))

∫ x

0
(x−ζ )An(x,ζ )dζ +

∫ x

0

(∫ x

ζ

f ′(x)(u)du
)

An(x,ζ )dζ

−1
2
( f ′(x+)− f ′(x−))

∫ x

0
(x−ζ )An(x,ζ )dζ . (6.29)

Similarly, we find L2

L2 =
∫

∞

x

{∫
ζ

x

(
1
2
( f ′(x+)+ f ′(x−))+ f ′x(u)+

1
2
( f ′(x+)− f ′(x−))sgn(u− x)

)
du
}

An(x,ζ )dζ

=
1
2
( f ′(x+)+ f ′(x−))

∫
∞

x
(ζ − x)An(x,ζ )dζ +

∫
∞

x

(∫
ζ

x
f ′x(u)du

)
An(x,ζ )dζ

+
1
2
( f ′(x+)− f ′(x−))

∫
∞

x
(ζ − x)An(x,ζ )dζ . (6.30)

Combining the equations (6.28 - 6.29), we get

Sρ
n ( f ;x)− f (x) =

1
2
( f ′(x+)+ f ′(x−))

∫
∞

0
(ζ − x)An(x,ζ )dζ

+
1
2
( f ′(x+)− f ′(x−))

∫
∞

0
|ζ − x|An(x, t)dζ

−
∫ x

0

(∫ x

ζ

f ′x(u)du
)

An(x,ζ )dζ +
∫

∞

x

(∫
ζ

x
f ′x(u)du

)
An(x,ζ )dζ .

Hence,

|Sρ
n ( f ;x)− f (x)| ≤

∣∣∣∣ f ′(x+)+ f ′x−
2

∣∣∣∣ |Sρ
n ((ζ − x);x)|

+

∣∣∣∣ f ′(x+)− f ′(x−)
2

∣∣∣∣Sρ
n (|ζ − x|;x)

+

∣∣∣∣∫ x

0

(∫ x

ζ

f ′x(u)du
)

An(x,ζ )dζ

∣∣∣∣
+

∣∣∣∣∫ ∞

x

(∫
ζ

x
f ′x(u)du

)
An(x,ζ )dζ

∣∣∣∣ . (6.31)

Again, take it

Cn( f ′x,x) =
∫ x

0

(∫ x

ζ

f ′x(u)du
)

An(x,ζ )dζ

and,

Dn( f ′x,x) =
∫

∞

x

(∫
ζ

x
f ′x(u)du

)
An(x,ζ )dζ .

Our aim is to calculate Cn( f ′x,x), Dn( f ′x,x). From the definition ξn(x,ζ ) and applying integration by

parts, we get

Cn( f ′x,x) =
∫ x

0

(∫ x

ζ

f ′x(u)du
)

∂ξn(x,ζ )
∂ζ

dζ =
∫ x

0
f ′x(ζ )ξn(x,ζ )dζ .
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Thus,

|Cn( f ′x,x)| =
∫ x

0
| f ′x(ζ )|ξn(x,ζ )dζ

≤
∫ x− x

sqrtn

0
| f ′x(ζ )|ξn(x,ζ )dζ +

∫ x

x− x√
n

| f ′x(ζ )|ξn(x,ζ )dζ .

Since f ′x(x) = 0 and ξn(x,ζ )≤ 1, we get

∫ x

x− x√
n

| f ′x(ζ )|ξn(x,ζ )dζ =
∫ x

x− x√
n

| f ′x(ζ )− f ′x(x)|ξn(x,ζ )dζ ≤
∫ x

x− x√
n

(
x∨
t

f ′x

)
dζ

≤

 x∨
x− x√

n

f ′x

∫ x

x− x√
n

dζ =
x√
n

 x∨
x− x√

n

f ′x

 .

From the Lemma 6.5.1 and, take ζ = x− x
u , we have

∫ x− x√
n

0
| f ′x(ζ )|ξn(x,ζ )dζ ≤ C1|ϖ(x)|

∫ x− x√
n

0

| f ′x(ζ )|
(x−ζ )2 dζ

≤ C1|ϖ(x)|
∫ x− x√

n

0

 x∨
ζ

f ′x

 dζ

(x−ζ )2

=
C1|ϖ(x)|

x

∫ √n

1

 x∨
x− x

u

f ′x


≤ C1|ϖ(x)|

x

[
√

n]

∑
i=1

 x∨
x− x

i

f ′x

 .

Finally, we get

|Cn( f ′x,x)|=
C1|ϖ(x)|

x

[
√

n]

∑
i=1

 x∨
x− x

i

f ′x

+
x√
n

 x∨
x− x

i

f ′x

 .

Similarly integration by parts on Dn( f ′x,x) and using Lemma 6.5.1, we obtain

|Dn( f ′x,x)| ≤
∣∣∣∣∫ 2x

x

(∫
ζ

x
f ′x(u)du

)
∂

∂ζ
(1−ξn(x,ζ ))dζ

∣∣∣∣
+

∣∣∣∣∫ ∞

2x

(∫
ζ

x
f ′x(u)du

)
An(x,ζ )dζ

∣∣∣∣
≤

∣∣∣∣∫ 2x

x
f ′x(u)du

∣∣∣∣ |1−ξn(x,2x)|+
∫ 2x

x
| f ′x(ζ )|(1−ξn(x,ζ ))dζ

+

∣∣∣∣∫ ∞

2x
( f (ζ )− f (x))An(x,ζ )dζ

∣∣∣∣+ | f ′(x+)|
∣∣∣∣∫ ∞

2x
(ζ − x)An(x,ζ )dζ

∣∣∣∣ .
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Also, we have

∫ 2x

x
| f ′x(ζ )|(1−ξn(x,ζ ))dζ =

∫ x+ x√
n

x
| f ′x(ζ )|(1−ξn(x,ζ ))dζ

+
∫ 2x

x+ x√
n

| f ′x(ζ )|(1−ξn(x,ζ ))dζ

J1 + J2. (6.32)

Since f ′x(x) = 0 and, 1−ξn(x,ζ )≤ 1, we have

J1 =
∫ x+ x√

n

x
| f ′x(ζ )− f ′x(x)|(1−ξn(x,ζ ))dζ

≤
∫ x+ x√

n

x

x+ x√
n∨

x
f ′x

dζ

=
x√
n

x+ x√
n∨

x
f ′x

 .

From the Lemma 6.5.1 and, assuming ζ = x+ x
u , we get

J2 ≤ C1|ϖ(x)|
∫ 2x

x+ x√
n

1
(ζ − x)2 | f

′
x(ζ )− f ′x(x)|dζ

≤ C1|ϖ(x)|
∫ 2x

x+ x√
n

1
(ζ − x)2

x+ x
u∨

x
f ′x

du

=
C1|ϖ(x)|

x

∫ √n

1

x+ x
u∨

x
f ′x

du≤ C1|ϖ(x)|
x

[
√

n]

∑
i=1

∫ i+1

i

x+ x
u∨

x
f ′x

du

≤ C1|ϖ(x)|
x

[
√

n]

∑
i=1

x+ x
i∨

x
f ′x

 .

Substitute the values of J1 and, J2 in (6.32), we have

∫ 2x

x
| f ′x(ζ )|(1−ξn(x,ζ ))dζ ≤ x√

n

x+ x√
n∨

x
f ′x

+
C1|ϖ(x)|

x

[
√

n]

∑
i=1

x+ x
u∨

x
f ′x

 .

Applying the Cauchy-Schwarz inequality and Lemma 6.5.1, we get

|Dn( f ′x,x)| ≤ M f

∫
∞

2x
(1+ζ

2)An(x,ζ )dζ + | f (x)|
∫

∞

2x
An(x,ζ )dζ

+| f ′(x+)|
√

C1|ϖ(x)|+ C1|ϖ(x)|
x2 | f (2x)− f (x)− x f ′(x+)|

+
x√
n

x+ x√
n∨

x
f ′x

+
C1|ϖ(x)|

x

[
√

n]

∑
i=1

x+ x
i∨

x
f ′x

 . (6.33)
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Since ζ ≤ 2(ζ − x) and, x≤ ζ − x when ζ ≥ 2x, we have

M f

∫
∞

2x
(1+ζ

2)An(x,ζ )dζ + | f (x)|
∫

∞

2x
An(x,ζ )dζ

≤ (M f + | f (x)|)
∫

∞

2x
An(x,ζ )dζ +4M f

∫
∞

2x
(ζ − x)2An(x,ζ )dζ

≤
M f + | f (x)|

x2

∫
∞

0
(ζ − x)2An(x,ζ )dζ +4M f

∫
∞

0
(ζ − x)2An(x, t)dζ

≤
(

4M f +
M f + | f (x)|

x2

)
C1|ϖ(x)|. (6.34)

Using the above inequality, we have

|Dn( f ′x,x)| ≤
(

4M f +
M f + | f (x)|

x2

)
C1|ϖ(x)|+ | f ′(x+)|

√
C1|ϖ(x)|

+C1
1+ x2

nx2 | f (2x)− f (x)− x f ′(x+)|

+
x√
n

x+ x√
n∨

x
f ′x

+
C1|ϖ(x)|

x

[
√

n]

∑
i=1

x+ x
i∨

x
f ′x

 . (6.35)

We obtain, the required result using (6.31, 6.33) and, (6.35).
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Chapter 7

Conclusions and Future Prospects

In this chapter, findings of studies carried out in this thesis along with significant topics allied

to the new aspects of analysis that identify present and future potential research aspects has

been presented.

7.1 Conclusion

Approximation process is the key to identifying solutions in an analysis that are closest to

the exact solutions. This thesis is focused principally on certain approximation operators and

analysing the convergence outcomes. Chapter 1 has covered the literature survey, definitions,

tools, and historical background of some approximation operators.

Many researchers studied Appell polynomials and established the approximation outcomes.

Chapter 2 is based on the Apostol-Genocchi polynomials. We have proposed a new sequence of

operators and studied the rate of convergence using multiple tools. Additionally, we have incor-

porated Kantorovich variant of the given operators to look at the properties of approximation.

We show the integral modification and discuss few approximation properties of the proposed

operators.

In chapter 3, we have derived the Bézier variant of Bernstein-Durrmeyer type operators

and determined rate of approximation in terms of Ditzian-Totik modulus of continuity and

Lipschitz-type space. Also, we have found the derivative of bounded variation and checked the

smoothness of functions. In the last, we show the graphical depiction of these operators.

The fourth chapter presents Cheney-Sharma Chlodovsky Durrmeyer operators and discusses

the convergence via Lipschitz-type space, modulus of continuity, and weighted approximation

theorem. We have also studied the A-statistical convergence of the given operators.

In the chapter 5, first section deals with the inspiration of Mache and Zhou’s [66] work on

Bernstein polynomials over a different set of operators. We have looked into certain properties
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of these operators such as the rate of convergence, Lipschitz-type space, Ditzian-Totik modulus

of smoothness, Voronovskaya theorem, Grüss-Voronovskaya theorem, and weighted approxima-

tion results. We have also established the convergence of above operators graphically. In the

second section, we have discussed the Durrmeyer variant of modified Bernstein polynomials.

Some approximation properties of the given operators and the convergence behavior has been

investigated graphically.

In the chapter 6, we have considered an Appell polynomial of class A2 and introduced a

new generalization of Szász-păltănea operators. Approximation study in terms of modulus

of continuity and rate of convergence in the weighted space of given operators also has been

done. Moreover, we have obtained the rate of convergence for functions whose derivatives are

of bounded variation.

7.2 Future plans for academics

Many academics studied the convergence results as they worked on the linear operators.

The max-product approach was generalised by Barnabás et al. [13] implementing well-known

operators such as Bernstein, Szász, Baskakov, and Picard. Sorin G. Gal [33] worked on non-

linear maximum product operators after taking on this concept. In this study, Sorin obtained

max-product nonlinear (sublinear) operators by replacing the ∑ operators with the max-product

operators
∨
. In future, I am inclined to work in this direction on the modified operators to

give a higher quality order of approximation with the help of classical and weighted modulus

of continuity.

One branch of mathematical analysis known as Summability theory deals with the study of

series and sequences, in particular, that might not converse in the routine sense. It provides

techniques to connect divergent series with particular limits or average limits to give them

meaningful values. This theory in terms of power series was developed by Borwein in 1957. A

strong framework for performing uncertainty and inaccuracy in a variety of mathematical fields

is provided by fuzzy mathematics. It is used in fields like control systems, optimization, and

decision-making.

Recently, Digvijay and Karunesh [80] extended their work in this area. They studied fuzzy

operators based on Q-Bernstein-Chlodowsky-Durrmeyer operators in two variables over the

space of all fuzzy numbers and also verified the Korovkin theorem. I intend to study this

hypothesis and extend it to other operators to find the convergence outcomes.

The exponential-type operators are an important class of operators in approximation theory.

A wide range of research has been done, and many of them used the exponential and its

generalised approach to study convergence. Recently, Gupta [40], has purely turned out new
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studies on Laguerre polynomials. He addressed the direct convergence results and presented the

composition via the Rathore, Szász-Durrmeyer, Post-Widder, and semi-Post-Widder operators.

Since these novel exponential operators are still not extensively explored, I intend to look into

them and analyse the approximation results in terms of modulus of continuity.
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