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ABSTRACT 

 

 Microfiltration is one of the most suitable processes for protein recovery from whey due to 

low energy consumption and no use of heat and chemicals. However, membrane fouling is one 

of the limiting factors in the microfiltration process preventing its commercial use. In this 

study, an Artificial Neural Network (ANN) based model was employed to study the effects of 

different operating parameters on the membrane fouling in whey concentration. 

Transmembrane pressure, Reynolds number, and temperature of feed were selected as the input 

parameters. Experimental data from the available studies were used to train ANN. ANN with 

23 neurons gave minimum mean squared error (MSE) for trans-membrane pressure and 

Reynolds number. ANN with 7 neurons gave minimum MSE for feed temperature. Predicted 

values from both ANNs well fitted with the experimental results with R2 < 0.99. Simulations 

showed that membrane fouling increased as flux reduction increased from 36.3 % to 76.39 % 

when trans-membrane pressure increased from 0.5 to 2 bar. While a 19.96 % reduction in flux 

was observed by increasing the Reynolds number from 750 to 2500. An increment of 77.37 % 

of flux was observed with increasing feed temperature from 30 ºC 40 ºC. Simulations 

confirmed that trans-membrane pressure, Reynolds number, and temperature of feed all three 

operating parameters strongly influence the membrane fouling. ANN based approach was 

found most accurate results in comparison to theoretical models. Among all theoretical models, 

the intermediate blocking model gave the most accurate results with a mean relative error of 

0.185. 
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CHAPTER- 1 

INTRODUCTION 

 

Whey is a by-product of the cheese production industry, containing mainly water (93 to 94%), 

lactase, milk proteins, lactic acids, fats, citric acid, other nitrogen compounds, and vitamins (B 

group) [1, 2]. In the past, whey was considered waste and either used as animal feed, spared in 

fields as fertilizers, or disposed of as waste [1]. However, because the biological oxygen 

demand of whey ranges from 35000 mg/l to 55,000 mg/l [1], disposal of whey in any water 

body without any treatment may lead to major environmental issues. Moreover, compounds 

present in the whey as described above have high nutritional values, mainly lactose, amino 

acids, proteins, minerals, and vitamins [3], and are used in several food processing industries. 

Therefore, recovery of these compounds from whey efficiently and economically becomes a 

major challenge for the worldwide dairy industry [1-3].  

Several processes can be used to concentrate or recover the various nutrients from whey such 

as drying using evaporation, crystallization of lactose, heat precipitation or coagulation of whey 

proteins, chromatographic separation of whey proteins, and membrane-based separation 

processes [1]. However, heat-based thermal processes such as drying and thermal coagulation 

may alter the molecular structure of the whey protein. Moreover, these processes are highly 

energy-consuming processes. On the other hand, chromatographic processes are only suitable 

for lab-scale operations and difficult to scale up for industrial-scale production [1,3].  

Membrane-based separation processes are more useful as these processes work at room 

temperature. Furthermore, different membrane-based processes can be used for a variety of 

operations. For example, whey solids can be concentrated by using reverse osmosis and nano-

filtration. Lactose can be separated and concentrated by nanofiltration and different proteins 

and lipids can be separated, concentrated, and purified through ultrafiltration and  
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microfiltration [1-3]. In this study, microfiltration is investigated for the 

separation/concentration of whey proteins.  

A number of experimental studies are available on the separation of different whey components 

[4-19]. G. Gsan et. al [4] analyzed the effects of operating conditions on microfiltration 

performance for the separation of whey proteins. They found that operating conditions such as 

rate of change of permeation flux, tangential flow, and magnitude of wall shear stress have 

profound effects on membrane fouling and thus overall performance of the microfiltration. An 

instantaneous change in permeation flux leads to better protein transmission while also 

resulting in lower permeate flux in comparison to a gradual change in permeate flux. In a 

similar study, G. Gsan et. al [5] investigated the effects of trans-membrane pressure gradient 

and transient operating conditions on membrane fouling. Their experiments showed that the 

dynamic counter-pressure mode of operation gives lower fouling, longer operational time, and 

higher protein recovery than the static pressure mode. S.T. Kelly et. al [6] compared the fouling 

behavior of different kinds of model proteins present in the whey. MarijanaĐ. Carić et. al [7] 

studied the fouling of inorganic membranes for whey protein separation and concluded that the 

adsorption-related pore-plugging mechanism dominates the process.  

Blanpain-Avet et. al [8] investigated the effects of multiple fouling and cleaning cycles on the 

performance of ceramic microfiltration membranes for whey protein separation. They 

concluded that hydraulic cleaning is not sufficient for recycling the membranes. Effects of 

different process parameters such as cross-membrane pressure, feed temperature, feed flow 

rate, feed pH, and feed concentrations on membrane fouling and membrane performance for 

whey protein separation were also investigated in a number of studies [9-19]. All of the above-

mentioned studies [4-19] suggest that membrane fouling is an important phenomenon in the 

case of whey processing using a microfiltration process. Moreover, it also depends on multiple 

factors including membrane characteristics, operating parameters, and feed composition [4-

19]. This makes the study of membrane fouling an important aspect of commercializing 

microfiltration for whey processing.    
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Membrane fouling in microfiltration is generally modeled by different mechanisms based on 

how particles present in the feed block the membrane’s pore. The main models include the cake 

filtration model, intermediate blockage model, standard blockage model, and complete 

blockage model [20, 21]. The mathematical expression of all of these models contains constants 

that are determined by experimental results of fouling tests conducted in either constant 

pressure mode or constant flux mode [20, 21]. However, these models do not represent the 

effects of different factors such as membrane characteristics, operating parameters such as feed 

temperature, cross-membrane pressure feed flow rate, and feed composition on membrane 

fouling. Effects of all these parameters on membrane fouling are very complex phenomena and 

difficult to model by traditional transport models or empirical models. The Artificial Neural 

Network (ANN) based MODELING approach is very useful for such problems. ANN mimics 

the working human brain to determine the inherent correlations between the input and output 

parameters based on experience or available experimental results [22-24].   

This study focused on analyzing the effects of different operating parameters including the 

effects of trans-membrane pressure, feed flow rate, and feed temperature on flux at different 

intervals of the operations. First, the experimental results from the different studies [11, 17] 

were used to train, validate and test the ANN. The number of neurons in ANN was also 

optimized to reduce the mean squared error between experimental results and ANN predictions. 

The system was also modeled with traditional models to compare the efficiency of trained ANN 

concerning traditional models. Trained ANN was then used to determine the effects of different 

operating parameters on the whey protein separation.   

  



4 
 

 

 CHAPTER 2 

THEORY 

 

2.1 Microfiltration process and membrane fouling 

A schematic diagram of a microfiltration process is shown in Figure 1. It is a pressure-driven 

membrane-based filtration process, used to separate microparticles from a liquid suspension. 

Microfiltration membranes are generally made of polymeric or ceramic materials having a pore 

size of more than 100,000 Da [20]. On the other hand, ultrafiltration membranes have pore 

sizes between 1000 Da to 100,000 Da and can be used to separate smaller particles.  In a cross-

flow microfiltration process feed enters at the one end of the feed channel at high pressures. 

Solvent molecules permeate through the porous membrane due to the trans-membrane pressure 

difference and at last, the remaining concentrated retentate solution comes out from the other 

end of the feed channel [34].   

During cross-flow microfiltration, some of the solute particles are also forced towards the 

membrane surface in the feed section with solvent. However, as membrane pores size are less 

these particles may be adsorbed on the surface of the membrane or inside the membrane pores. 

This causes a continuous reduction of the permeate flux, which prevents running the 

microfiltration process for a longer time in continuous mode [20, 21]. Thus, the microfiltration 

membranes need to be regenerated after some time to remove the membrane fouling and 

increase the trans-membrane flux. The regeneration process is done by backwashing and/or by 

using different chemicals. However, all fouling may remain permanent and cannot be removed 

during the regeneration process. Thus, membrane fouling is an important and limiting 

phenomenon in the microfiltration process [20, 21]. The microfiltration process can only be 

commercialized for a given feed system when fouling can be controlled and the membrane can  
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be regenerated. Therefore, studying membrane fouling is an important step in investigating the 

viability of the microfiltration process for a particular system.  

 

Figure 1: Cross-flow microfiltration process and Membrane fouling 

2.2 Different membrane fouling mechanisms 

Membrane fouling in microfiltration may be described by different mechanisms including 

standard blocking mechanism, complete blocking mechanism, intermediate blocking 

mechanism, and cake filtration mechanism [2]. The working of these mechanisms is depicted 

in Figure 2.  
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(a) (b) (c) (d) 

 

Figure 2: Membrane fouling mechanisms: (a) Standard blocking; (b) Complete blocking; (c) 

Intermediate blocking; (d) Cake filtration 

In a standard blocking mechanism, the solute is adsorbed or deposited inside the membrane 

pores, which obstructs the flow of solvent across the membrane (Figure 2 (a). The deposition 

of these particles increases with time and membrane pores are completely blocked after some 

time. In the complete blocking stage, membrane pores are completely blocked by solute 

particles (Figure 2 (b)). On the other hand, in the intermediate blocking stage pores are partially 

blocked by solute particles (Figure 3 (c)) and deposited layer by layer on the membrane surface. 

Later a thick layer of the foulant is deposited on the membrane surface leading to a reduction 

of hydraulic and solute permeability [20, 21]. This mechanism is called the cack filtration 

mechanism (Figure 4 (d)). In constant trans-membrane pressure operations, Eq. (1 – 4) 

represents standard blocking, complete blocking, intermediate, and cake filtration mechanisms 

respectively.  

𝐽

𝐽𝑜
= (1 + 𝑘𝑡)−2 (1) 
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𝐽

𝐽𝑜
= 𝑙𝑛(−𝑘𝑡) 

(2) 

 

𝐽

𝐽𝑜
= (1 + 𝑘𝑡)−1 (3) 

 

𝐽

𝐽𝑜
= (1 + 𝑘𝑡)−0.5 (4) 

 

Where 𝐽𝑜 (m/s or L/m2h) is the initial cross membrane flux; 𝐽 (m/s or L/m2h) is the flux after 

time 𝑡 (s), and 𝑘 (s-1) is a constant. 

In several cases, the fouling mechanism may be a combination of more than one of these 

phenomena [20, 21]. Moreover, these models do not incorporate the effects of different 

operating parameters such as trans-membrane pressure, feed flow rate, feed temperature, etc, 

which are required to design and operate commercial-scale operations.  

2.3 ANN-based MODELING  

The Artificial Neural Network-based approach is a machine learning tool, that mimics the 

working of the human mind. It reorganizes the inherent correlations between input and output 

parameters based on the experience of the available dataset [23]. Thus, it is an empirical 

MODELING technique and works for complex non-linear problems, where the physics behind 

the process is not well known or difficult to solve [23]. An ANN algorithm contains three layers 

i.e., the input layer, hidden layer, and output layer. These layers are connected to each other by 

neurons. These neurons process the available dataset and extract useful information, which  



8 
 

 

correlates with the input and output parameters. Details of the ANN functions used in this study 

may be found in [22, 23].  

 

 

 

 

CHAPTER-3 

PROCEDURE 

In this study, experimental data from two published studies were used to train, validate, and 

test the ANN [11, 17]. In [11], a PES flat sheet membrane of nominal pore size 0.45 µm was 

used to separate whey proteins from the model whey solution. Similarly, in [17], a PES flat 

sheet membrane with a nominal pore size of 0.1 µm was used to separate whey protein β-

lactoglobulin from the model whey solution. 224 experimental data points of [11] were used to 

train ANN to study the effects of trans-membrane pressure and Reynolds number of feed 

streams. On the other hand, 51 experimental data points [17] were used to train the ANN to 

study the effects of feed temperature. The range of different input and output parameters is 

given in Table 1. Details of the experimental data points are reported in Appendix 1.  
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Reference Parameter Range 

[11] 

Operation Time 0 – 2500 s 

Trans-membrane pressure 0.5 – 2 bar 

Reynolds number of feed 

solution 

750 – 2500 

Flux  0 – 55 L/h.m2 

[17] 

Operation Time 0 – 170 s 

Feed temperature 30 – 40 oC 

Flux 0 - 22 × 10-5 m/s 

 

Table 1: Range of different parameters 

 

In this study, the Levemberg- Marquardt Algorithm in the Feed Forward Approach [22, 23] 

was used as an ANN algorithm coded in MATLAB Deep Learning Toolbox. It consists of a 

single hidden layer containing several neurons. Initially, several neurons in the hidden layer 

were optimized to minimize the mean squared error between experimental results and model 

predictions used in all training validation and testing of the ANN. 70% of the data points were 

used to train the ANN. 15 % of data points were used to train the ANN and 15 % of data points 

were used to test the ANN. Trained was used for Artificial Neural Networking. Since, the 

experimental results from both studies [11, 17] were performed with different membranes and 

feed systems, ANN was trained separately for both studies.  Levenberg-Marquardt Algorithm 

in the Feed-forward approach was used in simulations. A single hidden layer containing the  
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number of neurons is applied in ANN. Initially, simulations were conducted to determine the 

optimum neurons in the hidden layer to minimize the MSE between experimental results and 

model predictions. Trained ANN with the optimum number of the ANN was then used to 

simulate the effects of different operating parameters. Simulations were conducted by varying 

a single operating parameter along with time to understand the reduction in flux representing 

the fouling in the membrane.  

Value of k in Eqs. (1 – 4) is a constant, depending on the operating variables. Thus, the value 

of k was determined for each model as well as for each set of operating parameters by fitting 

the experimental results in Eqs. (1 – 4). An objective function shown in Eq. (5) was defined as 

the function of k. 

𝑓(𝑘)  = ∑ 𝑎𝑏𝑠 (1 −  
𝐽𝑖,𝑒𝑥𝑝

𝐽𝑖,𝑡ℎ𝑒
)

𝑁

𝑖=1

 

(5) 

 

Where, 𝐽𝑖,𝑒𝑥𝑝 is the experimental flux at 𝑖𝑡ℎ data point, 𝐽𝑖,𝑡ℎ𝑒  is the theoretical flux at 𝑖𝑡ℎ data 

point, N is the total number of data points, and 𝑓(𝑘) is the objective function. This function is 

minimized by using the nonlinear simplex optimization method. The value of k where the 

objective function is minimized, is considered the true value of k, which is then used to 

determine the value of theoretical flux at different data points. This parameter estimation 

method along with simulation was coded in MATLAB and the MATLAB optimization toolbox 

was used to run the nonlinear simplex optimization method.  
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CHAPTER-4 

RESULTS AND DISCUSSION 

4.1 ANN Training and Validation 

ANN was trained separately for the experimental results extracted from the articles [11] and 

[17]. Experimental results from the first article [11] were used to study the effects of trans-

membrane pressure and Reynolds number. Similarly, experimental results from the second 

article were used to study the effects of feed temperature. Details of the experimental data 

points extracted from both articles are reported in Appendix 1 and 2.  

Figure 3 shows values of mean squared error (MSE) with respect to the number of neurons in 

the hidden layer. Results show that for trans-membrane pressure and Reynolds number, 

minimum MSE (0.18) was obtained with 23 neurons in the hidden layer (Figure 3 (a)). On the 

other hand, for feed temperature minimum MSE (0.004) was obtained with 7 neurons in the 

hidden layer (Figure 3 (b)). Simulations showed that a lesser number of neurons are required 

to train ANN in case of feed temperature than trans-membrane pressure and Reynolds number. 

Moreover, the value of minimum MSE achieved for feed temperature (0.004) was also 

significantly lower than trans-membrane pressure and Reynolds number. This may be due to 

the higher number of input parameters i.e., 2 in the case of the first study (Figure 3 (a)) than 

the second study (Figure 3 (b)). Additionally, experiments were performed for longer periods 

of time (0 – 2500 s) in the first study than in the second study (0 – 170 s), which may also affect 

the number of neurons required to train the ANN. Trained ANNs with minimum MSE (23 in 

the first study and 7 in the second study were used for further simulations and analysis. 
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(a) 

 

(b) 

Figure. 3: Optimization of the number of neurons in the hidden layer: (a) ANN trained for 

trans-membrane pressure and Reynolds number; (b) ANN trained for feed temperature 
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Figure 4 compares the experimental results and ANN predictions on all experimental data 

points. Simulations showed that ANN predictions were well-fitted with experimental results 

for both studies. The value of the coefficient of determination (R2) was calculated at 0.9954 for 

the first study and 0.9999 for the second study, which validates the train ANN and proves the 

correctness of the ANN predictions at different operating conditions. Now, after validation, 

trained ANNs can be used to analyze the effects of operating parameters on membrane fouling 

during whey processing.     

 

(a) 
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(b) 

Figure. 4: Regression study, comparison of experimental results and model predictions: (a) 

ANN trained for trans-membrane pressure and Reynolds number; (b) ANN trained for feed 

temperature 

 

4.2 Effects of operating parameters on membrane fouling 

4.2.1 Effects of trans-membrane pressure 

Figure: 5 shows the effects of trans-membrane pressure on the membrane flux with varying 

operational time. Trans-membrane pressure varied from 0.5 to 2 bar for 0 – 2500 s operation. 

Results showed that the initial value of flux increased with increasing trans-membrane pressure 

which acts as the driving force. However, after 1000 s of operations this trend was reversed 

and lower flux was observed at high pressure.  These results indicate that the initial value of 

fluxes is higher at high trans-membrane pressure. However, higher pressure also causes high 

fouling as it pushes more solute particles towards the membrane surface. Thus, the value of 

flux reduces significantly at higher pressure after some time. On the other hand, a lesser  
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reduction in flux was observed at lower pressure due to lower fouling. In simulations, 36.3 % 

flux reduction was observed at 0.5 bar pressure in a 2500 s run. While 76.39 % of flux reduction 

was observed at 2 bar pressures in a 2500 s run. These results suggest that the microfiltration 

system should operate at lower pressure to minimize the fouling and increase the operational 

time before the cleaning cycle.  

 

Figure. 5: Effects of transmembrane pressure on flux 

 

4.2.2 Effects of Reynolds number 

Figure 6 shows the effects of the Reynolds number of the flux with varying operational time. 

These simulations were performed with varying Reynolds numbers from 500 to 2500 for 2500 

s of operation. Results showed that the value of flux reduced drastically with time at a lower 

Reynolds number due to the membrane fouling. However, the fouling effect became less 

dominant with increasing Reynolds number, as higher Reynolds number promoted mixing and 

turbulence. 70.53 % of flux reduction was observed after 2500 s of operation at 750 Reynolds  
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number. While 50.57 % of flux reduction was observed in the same duration at 2500 Reynolds 

number. Turbulence in the feed stream prevents the solute particles from agglomerating at the 

membrane surface hence reducing the fouling. These results suggest that the microfiltration 

process should run at Reynolds number to promote turbulence in the feed section. This may be 

achieved by running the microfiltration at higher flow rates by reducing the diameter of the 

feed channel or by reducing the viscosity or density of the feed.   

 

 

 

Figure. 6: Effects of Reynolds number on flux 

 

4.2.3 Effects of Feed Temperature 

Figure 7 shows the effects of feed temperature on the flux with varying operational time. 

Results showed that initially at t=0, flux increased with increasing feed temperature from 30 

oC to 40 oC. Higher feed temperature increases diffusive and convective mass transport due to 
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an increase in diffusivity coefficients and reduction of viscosity and density of the fluid, which 

altimetry increases the flux at the initial stage of operation. However, higher fluid flux also 

forces more solute particles on the surface of the membrane, which quickly start to agglomerate 

at the surface of the membrane, and thus, the membrane fouls very rapidly and causes the rapid 

reduction of flux at higher temperatures.  Therefore, a drastic reduction of flux was observed 

at higher temperatures. At 30 oC, a 10.01 % flux reduction was observed after 170 s of 

operations. On the other hand, 87.38 % flux reduction was observed at 40 oC with the same 

duration of operation.   These results suggest that the microfiltration process should operate at 

lower temperatures to reduce the effects of membrane fouling and increase the operational 

time. 

 

Figure. 7: Effects of feed temperature on flux 

 

4.3 Comparison of the performance ANN with other mathematical models  

Membrane fouling in microfiltration can also be modeled by using different theoretical models 

as reported in Eq. 1 to Eq. 4. Experimental results from [11] were fitted in these models by 
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minimizing Eq. 5 as reported in Eq. 4. Comparison of experimental results with model 

predictions (including ANN) are reported in the Appendix 1 and 2 

The average relative error between experimental readings and various fouling model 

predictions is reported in Table 2.  Simulations showed that the ANN based model predictions 

are far more accurate than the all-different theoretical models. This proves that the ANN based 

approach is more accurate in predicting the fouling in the microfiltration process.  

Among all theoretical models, the intermediate blocking model showed the least average 

relative error (0.185), which indicates that fouling occurred in the microfiltration membrane 

through the intermediate blocking mechanism.   

 

Name of the Model Average relative error between 

experimental readings and model 

predictions 

Standard blocking 0.283 

Complete blocking 0.365 

Intermediate blocking 0.185 

Cake filtration 0.303 

ANN based model  0.0165 

 

Table 2: Values of Average relative errors between experimental readings and model 

predictions    for different models 
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CHAPTER-5  

CONCLUSION 

This study proves that an artificial neural network-based approach can be successfully applied 

to model the effects of operating parameters on membrane fouling in case of protein separation 

from milk whey. Furthermore, comparison with other theoretical models also confirms that 

ANN based technique provides much better predictions. A low to moderate number of neurons 

(7 to 23) in the hidden layer is enough to successfully train the ANN for the prediction of 

membrane fouling.  

Simulations showed that the trans-membrane pressure, Reynolds number of the feed stream, 

and feed stream temperature all are the influencing operating parameters affecting the 

membrane fouling. Moreover, low to moderate trans-membrane pressure and high Reynolds 

number are preferred operating conditions to minimize the effects of membrane fouling. Higher 

trans-membrane pressure forces the solute particles on the surface of the membrane leading to 

more fouling. On the other hand, a high Reynolds number enhances the turbulence in the feed 

stream, which reduces the membrane fouling. Similarly, a lower feed temperature is the 

preferred operating condition to minimize the effects of fouling, as a higher feed temperature 

enhances the solvent flux which forces the solute particles toward the membrane surface due 

to convective effects.  

Overall, this study proves that ANN based MODELING is a very useful tool to predict the 

effects of operating conditions in microfiltration in case of whey protein concentration. ANN 

can help to minimize the effects of membrane fouling by running the system at optimal 

conditions.  
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APPENDICES 

Appendices-1   

Comparison of experimental results [11] and ANN predictions 

Trans-

membrane 

pressure 

(bar) 

Reynolds 

number  
Time (s) 

Theoretical 

flux 

(L/m2s) 

Experimental 

flux (L/m2s) 

Relative 

error 

1 750 200 15.96 16.14 -0.01 

1 750 220 15.83 15.72 0.01 

1 750 270 14.63 14.73 -0.01 

1 750 290 14.10 14.36 -0.02 

1 750 330 13.84 13.66 0.01 

1 750 350 13.17 13.33 -0.01 

1 750 380 12.77 12.87 -0.01 

1 750 420 12.51 12.31 0.02 

1 750 440 12.24 12.05 0.02 

1 750 460 12.11 11.81 0.02 

1 750 490 11.71 11.47 0.02 

1 750 530 11.31 11.06 0.02 

1 750 560 11.18 10.78 0.04 

1 750 590 11.18 10.52 0.06 

1 750 720 9.71 9.59 0.01 

1 750 780 9.18 9.25 -0.01 

1 750 830 8.51 8.99 -0.06 

1 750 900 8.38 8.67 -0.04 

1 750 950 8.65 8.47 0.02 

1 750 1020 7.98 8.22 -0.03 

1 750 1080 7.98 8.02 0.00 

1 750 1140 7.72 7.84 -0.02 

1 750 1200 7.85 7.69 0.02 

1 750 1500 7.45 7.14 0.04 

1 750 1800 7.05 6.90 0.02 
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1 750 2100 6.52 6.77 -0.04 

1 750 2400 6.65 6.69 -0.01 

1 1250 200 17.69 17.07 0.04 

1 1250 220 17.16 16.66 0.03 

1 1250 240 16.36 16.26 0.01 

1 1250 260 15.70 15.89 -0.01 

1 1250 290 15.30 15.36 0.00 

1 1250 320 15.17 14.87 0.02 

1 1250 350 14.63 14.43 0.01 

1 1250 400 14.24 13.77 0.03 

1 1250 420 14.37 13.54 0.06 

1 1250 450 13.70 13.21 0.04 

1 1250 480 13.44 12.92 0.04 

1 1250 520 13.17 12.57 0.05 

1 1250 570 12.51 12.19 0.03 

1 1250 600 12.64 11.99 0.05 

1 1250 650 11.57 11.70 -0.01 

1 1250 720 11.18 11.35 -0.02 

1 1250 780 11.18 11.11 0.01 

1 1250 840 11.18 10.89 0.03 

1 1250 900 11.04 10.71 0.03 

1 1250 950 10.64 10.58 0.01 

1 1250 1020 10.38 10.42 0.00 

1 1250 1080 10.38 10.29 0.01 

1 1250 1120 10.11 10.22 -0.01 

1 1250 1200 9.98 10.09 -0.01 

1 1250 1500 9.58 9.75 -0.02 

1 1250 1800 9.45 9.39 0.01 

1 1250 2100 9.05 8.93 0.01 

1 1250 2400 8.78 8.59 0.02 

1 1750 200 21.29 20.53 0.04 
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1 1750 220 20.22 20.16 0.00 

1 1750 240 19.56 19.80 -0.01 

1 1750 260 19.56 19.46 0.00 

1 1750 300 18.76 18.84 0.00 

1 1750 320 18.23 18.56 -0.02 

1 1750 350 17.83 18.16 -0.02 

1 1750 390 17.83 17.68 0.01 

1 1750 420 17.29 17.36 0.00 

1 1750 490 16.50 16.73 -0.01 

1 1750 510 16.36 16.57 -0.01 

1 1750 540 16.23 16.35 -0.01 

1 1750 570 16.23 16.15 0.00 

1 1750 600 16.10 15.97 0.01 

1 1750 660 15.57 15.65 -0.01 

1 1750 720 15.17 15.38 -0.01 

1 1750 790 15.03 15.11 -0.01 

1 1750 840 15.17 14.94 0.01 

1 1750 900 14.90 14.77 0.01 

1 1750 960 14.77 14.61 0.01 

1 1750 1020 14.50 14.47 0.00 

1 1750 1080 14.37 14.35 0.00 

1 1750 1140 14.24 14.24 0.00 

1 1750 1200 14.24 14.14 0.01 

1 1750 1500 13.44 13.69 -0.02 

1 1750 1800 13.30 13.26 0.00 

1 1750 2100 12.77 12.98 -0.02 

1 1750 2400 12.90 12.87 0.00 

1 2500 190 25.54 25.52 0.00 

1 2500 220 24.88 25.06 -0.01 

1 2500 240 24.48 24.77 -0.01 

1 2500 260 24.21 24.50 -0.01 
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1 2500 280 24.21 24.25 0.00 

1 2500 300 24.21 24.02 0.01 

1 2500 330 23.55 23.70 -0.01 

1 2500 360 23.41 23.41 0.00 

1 2500 380 23.15 23.24 0.00 

1 2500 450 23.02 22.73 0.01 

1 2500 480 22.88 22.54 0.01 

1 2500 500 22.48 22.43 0.00 

1 2500 540 22.08 22.24 -0.01 

1 2500 570 22.08 22.10 0.00 

1 2500 590 21.82 22.02 -0.01 

1 2500 660 21.82 21.78 0.00 

1 2500 720 21.55 21.62 0.00 

1 2500 900 21.29 21.23 0.00 

1 2500 950 21.02 21.15 -0.01 

1 2500 1020 20.89 21.03 -0.01 

1 2500 1080 20.89 20.94 0.00 

1 2500 1140 21.02 20.87 0.01 

1 2500 1200 20.89 20.79 0.00 

1 2500 1500 20.62 20.54 0.00 

1 2500 1800 20.35 20.35 0.00 

1 2500 2100 19.96 20.12 -0.01 

1 2500 2400 19.96 19.75 0.01 

0.5 1250 200 12.54 12.88 -0.03 

0.5 1250 220 12.38 12.63 -0.02 

0.5 1250 240 12.62 12.39 0.02 

0.5 1250 260 11.89 12.16 -0.02 

0.5 1250 300 11.56 11.74 -0.02 

0.5 1250 360 11.15 11.21 -0.01 

0.5 1250 390 10.90 10.98 -0.01 

0.5 1250 420 11.31 10.79 0.05 
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0.5 1250 480 10.66 10.46 0.02 

0.5 1250 510 10.41 10.32 0.01 

0.5 1250 540 10.16 10.20 0.00 

0.5 1250 570 10.33 10.10 0.02 

0.5 1250 590 10.00 10.03 0.00 

0.5 1250 660 9.84 9.83 0.00 

0.5 1250 720 9.67 9.69 0.00 

0.5 1250 780 9.67 9.56 0.01 

0.5 1250 900 9.34 9.31 0.00 

0.5 1250 960 9.02 9.20 -0.02 

0.5 1250 1020 9.10 9.08 0.00 

0.5 1250 1080 8.77 8.97 -0.02 

0.5 1250 1140 8.77 8.86 -0.01 

0.5 1250 1200 8.85 8.76 0.01 

0.5 1250 1500 8.36 8.34 0.00 

0.5 1250 1800 8.44 8.05 0.05 

0.5 1250 2100 7.95 7.90 0.01 

0.5 1250 2400 7.87 7.92 -0.01 

1 1250 200 17.38 17.07 0.02 

1 1250 220 16.64 16.66 0.00 

1 1250 240 15.90 16.26 -0.02 

1 1250 260 15.33 15.89 -0.04 

1 1250 280 14.92 15.53 -0.04 

1 1250 300 14.67 15.19 -0.04 

1 1250 330 14.18 14.72 -0.04 

1 1250 360 14.10 14.29 -0.01 

1 1250 380 13.52 14.02 -0.04 

1 1250 420 13.36 13.54 -0.01 

1 1250 450 13.20 13.21 0.00 

1 1250 480 12.79 12.92 -0.01 

1 1250 500 12.54 12.74 -0.02 
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1 1250 540 12.30 12.41 -0.01 

1 1250 560 12.13 12.26 -0.01 

1 1250 600 11.97 11.99 0.00 

1 1250 660 11.64 11.64 0.00 

1 1250 710 11.39 11.40 0.00 

1 1250 780 11.07 11.11 0.00 

1 1250 840 11.15 10.89 0.02 

1 1250 900 10.82 10.71 0.01 

1 1250 950 10.49 10.58 -0.01 

1 1250 1020 10.25 10.42 -0.02 

1 1250 1080 10.00 10.29 -0.03 

1 1250 1140 9.84 10.19 -0.04 

1 1250 1200 10.08 10.09 0.00 

1 1250 1500 9.43 9.75 -0.03 

1 1250 1800 9.10 9.39 -0.03 

1 1250 2100 8.77 8.93 -0.02 

1 1250 2400 8.52 8.59 -0.01 

1.5 1250 200 21.89 20.94 0.04 

1.5 1250 220 20.49 20.44 0.00 

1.5 1250 240 20.08 19.95 0.01 

1.5 1250 260 19.51 19.49 0.00 

1.5 1250 290 18.85 18.82 0.00 

1.5 1250 300 18.28 18.61 -0.02 

1.5 1250 330 17.46 18.01 -0.03 

1.5 1250 360 17.38 17.45 0.00 

1.5 1250 380 16.31 17.10 -0.05 

1.5 1250 420 16.07 16.45 -0.02 

1.5 1250 450 15.90 16.00 -0.01 

1.5 1250 480 15.74 15.59 0.01 

1.5 1250 510 15.16 15.21 0.00 

1.5 1250 600 14.34 14.22 0.01 
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1.5 1250 660 14.10 13.67 0.03 

1.5 1250 720 13.44 13.19 0.02 

1.5 1250 780 12.87 12.76 0.01 

1.5 1250 840 12.70 12.39 0.02 

1.5 1250 900 12.30 12.06 0.02 

1.5 1250 960 12.30 11.77 0.04 

1.5 1250 1020 11.64 11.53 0.01 

1.5 1250 1080 11.15 11.31 -0.01 

1.5 1250 1140 11.07 11.13 -0.01 

1.5 1250 1200 10.74 10.98 -0.02 

1.5 1250 1500 10.74 10.59 0.01 

1.5 1250 1800 10.33 10.40 -0.01 

1.5 1250 2100 10.08 10.02 0.01 

1.5 1250 2400 9.67 9.44 0.02 

2 1250 180 18.61 19.02 -0.02 

2 1250 210 18.61 18.34 0.01 

2 1250 240 18.03 17.70 0.02 

2 1250 260 17.46 17.29 0.01 

2 1250 280 16.23 16.90 -0.04 

2 1250 300 16.31 16.53 -0.01 

2 1250 330 15.98 16.02 0.00 

2 1250 360 15.41 15.54 -0.01 

2 1250 390 14.84 15.10 -0.02 

2 1250 420 14.75 14.70 0.00 

2 1250 450 14.26 14.34 -0.01 

2 1250 480 14.26 14.01 0.02 

2 1250 500 13.77 13.81 0.00 

2 1250 540 13.77 13.44 0.02 

2 1250 570 13.44 13.19 0.02 

2 1250 600 12.95 12.96 0.00 

2 1250 660 12.46 12.57 -0.01 
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2 1250 720 12.38 12.23 0.01 

2 1250 775 12.05 11.96 0.01 

2 1250 840 11.89 11.69 0.02 

2 1250 900 11.48 11.46 0.00 

2 1250 960 11.31 11.27 0.00 

2 1250 1020 11.15 11.09 0.01 

2 1250 1080 10.82 10.93 -0.01 

2 1250 1140 10.74 10.78 0.00 

2 1250 1200 10.41 10.64 -0.02 

2 1250 1500 10.08 10.16 -0.01 

2 1250 1800 9.84 9.84 0.00 

2 1250 2100 9.59 9.48 0.01 

2 1250 2400 9.10 9.06 0.00 
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Appendix-2   

 Comparison of experimental results [17] and ANN predictions 

Temperature 

(oC) 
Time (s) 

Theoretical 

flux (L/m2s) 

Experimental 

flux (L/m2s) 

Relative 

error 

30 4.92 19.87 19.86 0.03 

30 15.00 19.87 19.87 -0.03 

30 24.85 19.87 19.88 -0.03 

30 34.93 19.87 19.87 -0.02 

30 45.01 19.87 19.87 0.00 

30 54.86 19.87 19.87 0.00 

30 64.94 19.87 19.87 -0.01 

30 75.02 19.87 19.87 -0.02 

30 84.86 19.87 19.87 -0.02 

30 94.95 19.87 19.87 -0.02 

30 104.79 19.87 19.87 -0.01 

30 114.87 19.87 19.87 -0.01 

30 124.95 19.87 19.88 -0.03 

30 135.03 19.87 19.88 -0.07 

30 144.88 19.87 19.90 -0.13 

30 154.96 19.92 19.91 0.01 

30 164.81 19.87 19.94 -0.34 

35 4.92 20.38 20.51 -0.63 

35 15.00 19.12 19.09 0.16 

35 24.85 17.68 17.68 -0.03 

35 34.93 16.23 16.20 0.19 

35 44.78 14.74 14.73 0.04 

35 54.86 13.25 13.25 -0.02 

35 64.94 11.80 11.82 -0.20 

35 75.02 10.49 10.49 0.05 

35 85.10 9.28 9.27 0.18 

35 94.95 8.21 8.19 0.28 

35 104.79 7.18 7.22 -0.52 

35 114.87 6.34 6.34 0.00 

35 124.95 5.55 5.57 -0.40 

35 134.80 4.90 4.91 -0.35 

35 144.88 4.34 4.33 0.20 

35 154.73 3.82 3.84 -0.34 

35 164.81 3.40 3.41 -0.16 

40 4.92 20.71 20.70 0.06 

40 15.00 17.16 17.14 0.12 

40 25.08 13.20 13.25 -0.40 

40 34.93 9.89 9.88 0.03 

40 44.78 7.32 7.33 -0.06 

40 54.86 5.55 5.49 1.15 
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40 64.94 4.24 4.21 0.88 

40 75.02 3.31 3.30 0.43 

40 84.86 2.61 2.65 -1.48 

40 94.95 2.19 2.16 1.31 

40 104.79 1.87 1.81 2.83 

40 114.87 1.54 1.55 -0.50 

40 124.95 1.35 1.35 0.38 

40 134.80 1.21 1.20 1.31 

40 144.88 1.07 1.07 0.00 

40 154.96 0.93 0.97 -3.94 

40 164.81 0.89 0.88 0.21 
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