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ARTIFICIAL NEURAL NETWORK BASED MODELING OF THE 

FOULING PHENOMENA IN MEMBRANE BASED BIOREACTORS  

Pranav Tyagi(2k22/MSCCHE/25) & Srishti Duber(2k22/MSCCHE/41) 

 

ABSTRACT 

 

 

Membrane-based bioreactors represent a pivotal technology in various biological 

processes, offering unique advantages such as selective product removal and 

continuous nutrient replenishment, which are conducive to optimizing reaction 

efficiency and sustainability. However, the pervasive issue of membrane fouling 

presents a significant obstacle to the efficacy of these systems. Fouling, characterized 

by the accumulation of particulates and microorganisms that obstruct membrane pores, 

leads to decreased flux rates and increased operational costs. Traditional approaches 

to modeling membrane fouling in bioreactors often fall short due to the complex and 

nonlinear nature of the phenomenon. In response to this challenge, this study employs 

an Artificial Neural Network (ANN) approach, leveraging its ability to capture 

intricate relationships and nonlinearities within the fouling process. ANNs offer a data-

driven framework that can learn and adapt from experimental data, making them well-

suited for modeling the dynamic behavior of fouling in membrane-based bioreactors. 

The ANN model developed in this study is trained and validated using experimental 

data sourced from literature, ensuring its accuracy and reliability in capturing the 

underlying fouling mechanisms. Through meticulous optimization of the ANN 

architecture, including the determination of an optimal number of neurons in the 

hidden layer, the model achieves minimal error and demonstrates robust performance 

in predicting experimental outcomes. Optimization reveals that an ANN with seven 

neurons in the hidden layer yields the minimum error, with validation demonstrating 

relative errors of less than 10% between theoretical and experimental results for all 

data points. Subsequently, the trained ANN serves as a powerful tool for exploring the 

effects of various operational parameters, such as flux, backwashing duration, and 

interval of relaxation, on membrane fouling dynamics. These findings offer valuable 

insights into optimizing membrane-based bioreactor performance and suggest avenues 

for future research in this field. Specifically, there is a need for the development of 

more sophisticated modeling techniques and the exploration of novel membrane 

recovery strategies to further enhance the efficacy and sustainability of membrane-

based bioreactors across diverse biological applications. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

1.1 MEMBRANE-BASED BIOREACTORS 

 

                   Membrane-based bioreactors (MBRs) have revolutionized wastewater 

treatment by integrating biological processes with membrane filtration. These systems 

efficiently remove contaminants from wastewater while producing high-quality 

effluent. 

                   MBRs combine suspended growth bioreactors with membrane filtration 

units, enabling simultaneous treatment and solid-liquid separation. Unlike 

conventional activated sludge processes, where settling is used for biomass separation, 

MBRs employ membranes with precise pore sizes to retain suspended solids and 

microorganisms while allowing permeate to pass through. 

                   By integrating biological treatment and membrane separation into a single 

compact unit, MBRs offer numerous advantages, including enhanced treatment 

efficiency, reduced footprint, and greater flexibility in system design and operation[1]. 

. 

                   In our research project, we address the challenges of membrane fouling in 

MBRs and aim to develop predictive models using artificial neural networks (ANNs) 

to optimize system performance and mitigate fouling. 

 

 

1.2 SIGNIFICANCE OF MEMBRANE FOULING 

                    Membrane fouling remains a formidable challenge in the operation of 

membrane-based bioreactors (MBRs), posing significant obstacles to their efficiency 

and sustainability. Fouling occurs due to the accumulation of organic and inorganic 

substances on the surfaces of membranes, resulting in the obstruction of water flow 
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and decreased permeate flux. This phenomenon leads to increased energy 

consumption and operational costs, making fouling mitigation a critical aspect of 

MBR operation. 

                     Our research endeavors to address the complexities of membrane fouling 

by exploring innovative techniques and methodologies, particularly focusing on the 

utilization of artificial neural networks (ANNs) for predictive modeling and fouling 

mitigation. The mechanisms of fouling are complex and multifaceted, influenced by 

factors such as membrane material, pore size distribution, feedwater quality, and 

hydrodynamic conditions[2]. 

 

1.3 STUDY OBJECTIVE 

                        Evaluate the effectiveness of ANN models in predicting the dynamics 

of membrane fouling based on various operational parameters and environmental 

factors. 

 Investigate the influence of key variables such as flux rates, backwashing intervals, 

and relaxation methods on membrane fouling. 

 Develop and propose optimized approaches for managing and controlling fouling 

in MBR systems, with the goal of enhancing overall performance and extending 

membrane lifespan. 
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CHAPTER 2 

 

THEORY 

 

 
2.1 MEMBRANE FOULING IN BIOREACTOR 

 

                     The accumulation of various substances such as organic matter, 

colloids, microorganisms, and other particulate materials on the surface of 

membranes presents a significant challenge in the operation of membrane-

based bioreactors (MBRs). This phenomenon, known as membrane fouling, 

results in the formation of a fouling layer, leading to decreased permeate flux 

and increased energy consumption. The integration of these two processes 

offers several advantages, including higher effluent quality, reduced footprint, 

and improved process control[3]. 

                       The fouling layer acts as a barrier, impeding the transport of 

water molecules across the membrane, and thus reducing the permeate flux. As 

a result, the operational performance of MBRs is compromised, leading to 

decreased treatment efficiency and increased energy consumption. Moreover, 

membrane fouling necessitates frequent cleaning and maintenance activities, 

which incur additional operational costs and downtime. 

                      Understanding the mechanisms and factors contributing to 

fouling is essential for developing effective fouling mitigation strategies in 

MBRs. By elucidating the underlying causes of fouling, researchers can 

identify potential intervention points and design targeted approaches to 

minimize fouling and maximize membrane performance[4]. 

 

2.1.1 TYPES OF FOULING 

                    Fouling in membrane bioreactors (MBRs) presents itself in diverse 

forms, each with unique traits and root causes. Grasping the nuances of these 
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various fouling types is pivotal for devising efficient strategies to mitigate 

fouling and enhance the performance of MBR systems[2]. 

Particulate Fouling: 

                   This type of fouling arises when suspended solids within the incoming 

water accumulate on the membrane surface, creating a physical barrier that hinders 

water flow. It is frequently observed in MBRs treating wastewater with elevated 

levels of suspended solids or colloidal particles. 

Cake Fouling:  

                    Cake fouling occurs when organic substances and microbial biomass 

gather on the membrane surface, forming a gel-like layer termed a cake. This cake 

layer acts as an additional barrier, further obstructing water flow and raising 

hydraulic resistance. Cake fouling is common in MBRs treating wastewater streams 

rich in organic matter, as often found in industries such as food processing or 

pharmaceuticals. 

Biofouling:  

                    Biofouling emerges when microorganisms adhere to the membrane 

surface and develop a biofilm, which can modify membrane properties and 

encourage additional fouling. Biofouling poses a significant challenge in MBRs 

operating under aerobic conditions, where microbial proliferation is favored. 
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                                                    Fig 2.1: Types of membrane fouling 

 

2.1.2 MECHANISM OF FOULING 

                   The complicated processes of fouling in membrane bioreactors are 

impacted by a number of variables, such as feedwater qualities, membrane 

properties, and operating conditions. The following mechanisms have been shown to 

be involved in fouling phenomena in MBRs. 

Cake Formation:  

                 A cake is a dense layer that progressively builds up on the membrane 

surface as a result of suspended particles or organic matter accumulating there. By 

physically preventing water from passing through and decreasing membrane 

permeability. 
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Pore Blockage: 

                   Pore blockage occurs when particles or foulants are deposited within the 

membrane pores, obstructing water flow and reducing filtration efficiency. Pore 

blockage is particularly problematic in membranes with smaller pore sizes, where even 

small particles can cause significant flux decline. 

Biofilm Development: 

 

                   The development of a biofouling by microorganisms adhering to the 

membrane surface causes biofouling, which can alter the membrane's characteristics 

and promote further fouling. In MBRs working in aerobic circumstances, where 

microbial multiplication is encouraged, biofouling presents a serious problem[5]. 

 

 

2.2 FOULING CONTROL METHODS 

                    Techniques for controlling fouling are essential to preserving the 

longevity and effectiveness of membrane bioreactors (MBRs). This section examines 

several methods used to reduce fouling and enhance MBR efficiency. 

2.2.1 PHYSICAL CLEANING METHOD 

                    In physical cleaning techniques, foulants are removed from the membrane 

surface by applying mechanical or hydraulic forces. These techniques are necessary 

for the regular upkeep and recovery of membrane flux.  

Typical methods for physical cleaning consist of: 

 

2.2.1.1 BACKWASHING TECHNIQUE IN MBRs: 

                  In backwashing, the membrane module is filled with clean water or 

permeate in the opposite direction of the filtration flow. By dislodging and flushing 
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away accumulated foulants, this hydraulic activity restores the permeability of the 

membrane. 

Efficiency and impact on fouling: 

 

                    The efficacy of the backwashing technique in reducing fouling and 

regaining membrane permeability in MBRs is well known. Backwashing contributes 

to stable flow rates and increases membrane longevity by dislodging and clearing 

accumulated foulants from the membrane surface. A number of variables, such as 

membrane characteristics and operating conditions, backwash frequency, duration, 

and intensity, can affect how effective backwashing is[6]. 

 

2.2.1.2 RELAXATION TECHNIQUE IN MBRs: 

                  The filtration process is periodically stopped in the relaxation technique, 

often referred to as idle or no-filtration operation, to allow the foulants that have 

accumulated on the membrane surface to separate and disperse.  

 

                  The transmembrane pressure (TMP) progressively drops and the influent 

flow is halted during relaxation periods, which makes it easier for foulants to escape 

the membrane surface[7]. Operating needs, membrane type, and fouling severity can 

all influence the length and frequency of relaxation cycles. 

 

 

Productivity and Effect on Fouling: 

 

                  By lessening the buildup of foulants on the membrane surface, the 

relaxation approach has been demonstrated to successfully minimize fouling in 

membrane bioreactors[6], [8]. This method contributes to stable flow rates and 

increases membrane longevity by enabling foulants to separate and scatter during 
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relaxation periods. However, the efficiency of the relaxation technique may vary 

depending on factors such as membrane material, operating conditions, and 

wastewater characteristics[8]. 

 

  

2.2.1.3 AIR SCOURING METHOD IN MBRs:  

 

                     By injecting compressed air or gas bubbles into the membrane module, a 

physical cleaning method known as "air scouring" is employed in membrane 

bioreactors (MBRs) to eliminate foulants from the membrane surface. Bubbles are 

created that rise through the membrane sheets or fibers as a result of the air being 

distributed through porous membranes or nozzles placed at the bottom of the 

membrane tank. Foulants are dislodged and suspended from the membrane surface by 

the turbulence and shear forces created by this ascending bubble. The bioreactor's 

circulating flow then removes the entrained foulants, stopping them from adhering to 

the membrane. 
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2.2.2 CHEMICAL CLEANING METHOD: 

                  Chemical cleaning methods entail utilizing cleaning agents or solutions to 

dissolve, disperse, or neutralize foulants adhering to the membrane surface. These 

approaches become necessary when physical cleaning alone proves insufficient or 

when fouling primarily stems from organic or biological sources. Typical chemical 

cleaning methods encompass:  

Citric Acid Cleaning:  

             This method relies on citric acid, a widely utilized cleaning agent prized 

for its efficacy in dissolving inorganic scale and mineral deposits present on the 

membrane surface. 

Sodium Hypochlorite Disinfection: 

                    Sodium hypochlorite serves dual roles as both a disinfectant and a 

cleaning agent, employed to combat biofouling and curb microbial proliferation. Its 

action effectively deactivates and eliminates bacteria, algae, and other microorganisms 

adhering to the membrane. 

2.3 MODLING OF MEMBRANE FOULING  

                     The complicated phenomena of membrane fouling are influenced by a 

number of variables, including the properties of the membrane, the feedwater, and the 

working environment. To comprehend fouling mechanisms, forecast fouling behavior, 

and maximize MBR performance, modeling techniques are crucial[9]. 

2.3.1 TRADITIONAL MODELING APPROACHES 

                 Traditional modeling approaches for membrane fouling typically involve 

empirical correlations or mathematical equations based on experimental data. These 

models aim to describe fouling kinetics, fouling mechanisms, and the impact of 
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operational parameters on fouling behavior[10]. While traditional models provide 

valuable insights, they often have limitations in capturing the complex and nonlinear 

nature of fouling processes observed in MBRs. 

 

2.3.2 ARTIFICIAL NEURAL NETWORK (ANNs) IN MODELING 

                  Artificial Neural Networks (ANNs) have risen as potent computational 

instruments to model intricate and nonlinear systems, rendering them especially adept 

at comprehending and forecasting membrane fouling within membrane bioreactors 

(MBRs). ANNs present numerous benefits compared to conventional modeling 

methods, notably their capacity to discern intricate associations and patterns within 

fouling data sans dependence on explicit mathematical formulations.       

2.3.2.1Overview: 

                The design and operation of artificial neural networks, or ANNs, are based 

on the principles of biological neural networks found in the human brain. An artificial 

neural network (ANN) is made up of interconnected nodes or neurons layered in input, 

hidden, and output layers. ANNs learn from data by modifying the connection weights 

between neurons to reduce prediction errors through a procedure called training. 

Because of their capacity for adaptive learning, ANNs are able to identify complex 

patterns and correlations in fouling datasets that would be difficult to identify with 

more conventional modeling techniques[11][10]. 

An Artificial Neural Network (ANN) is structured into three primary layers: 

the input layer, hidden layer(s), and output layer. 

1. Input Layer:  

                 This initial layer acts as the conduit for external data, transferring it 

into the network. Each node within the input layer signifies a distinct feature 



11 
 

 
 
 
 

or attribute of the input data. Its function is to serve as the gateway for data 

entry without engaging in computational processes. 

2. Hidden Layer(s):  

                 The hidden layer(s) undertake the task of processing the data relayed 

from the input layer. Comprising neurons, these layers conduct computations 

on the input data through weighted connections. Every neuron in the hidden 

layer receives inputs from the preceding layer, applies a transformation 

function (such as the sigmoid or rectified linear unit function), and transmits 

the outcome to the subsequent layer. 

3. Output Layer:  

                  Positioned at the final stage, the output layer generates the 

conclusive result or prediction of the network. Each node within the output 

layer represents a feasible outcome or classification. By leveraging the 

processed information from the hidden layer(s), the output layer executes 

computations to deliver the ultimate output of the network. 

 

 

2.3.2.2ANN Process: 

 Training: 

• During the training phase, the ANN learns from a dataset containing input-

output pairs. 

• It adjusts the connection weights between neurons to minimize errors in 

predicting outputs. 

• Optimization algorithms like gradient descent or the Levenberg-Marquardt 

algorithm are commonly used for this purpose. 

• The primary objective of training is to fine-tune the network parameters to 

accurately forecast outputs based on given inputs[9]. 
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 Validation: 

• Following training, the ANN's performance is assessed using a distinct 

validation dataset. 

• This dataset comprises data that the network hasn't encountered during 

training. 

• By comparing the network's predictions with actual outputs on the validation 

dataset, metrics like accuracy, precision, and recall are calculated[12]. 

• Validation aids in evaluating the network's ability to generalize to new data and 

identifies potential issues like overfitting. 

 Simulation: 

• Once trained and validated, the ANN is ready for practical use in making 

predictions or classifications on new, unseen data. 

• The input data is fed into the trained network, which processes it through its 

layers to generate an output[13], [14] 

• Depending on the application, such as predicting fouling behavior in 

membrane bioreactors or categorizing data, the output is interpreted 

accordingly. 

• By simulating real-world scenarios, the ANN can effectively address problems 

and make informed decisions based on learned patterns from the training data. 
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Fig 2.2- Schematic diagram of artificial neural network (ANN) architecture 

 

 

 

 

 

 

 

2.3.3 APPLICATIONS IN MEMBRANE FOULING 

  

 
• Prediction of Fouling: ANNs are trained to forecast fouling occurrences based on 

various input parameters like feedwater properties, membrane characteristics, and 

operational settings. By scrutinizing historical fouling data, ANNs discern patterns 

and trends to accurately predict future fouling incidents.      
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• Identification of Fouling Mechanisms: ANNs contribute to understanding 

the fundamental mechanisms underlying fouling in MBRs. Through analyzing 

correlations between fouling parameters and experimental observations, ANNs 

deduce the primary fouling mechanisms and their respective impacts on overall 

fouling dynamics. 

 

• Optimization of Fouling Control Strategies: ANNs play a pivotal role in 

refining strategies to mitigate fouling and enhance MBR efficiency. By 

simulating diverse operational scenarios and assessing their influence on 

fouling behavior, ANNs facilitate the selection of optimal operational 

conditions and cleaning protocols. 

 

2.3.4 LEVNBERG-MARQUARDT ALGORITHM 

                               The Levenberg-Marquardt algorithm is a popular method for 

training ANNs, particularly in regression and optimization tasks. It combines the 

advantages of gradient descent and Gauss-Newton methods, offering fast convergence 

and robust performance[15] 

. 

 

2.3.4.1 Introduction to Levenberg-Marquardt Algorithm 

                 The Levenberg-Marquardt algorithm adjusts the connection weights 

between neurons in an ANN by iteratively minimizing the sum of squared errors 

between predicted and actual outputs. It incorporates a damping parameter that 

controls the step size during weight updates, allowing for efficient convergence even 

in ill-conditioned optimization problems[16]. 
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2.3.4.2 Use in ANN Training 

                   In membrane fouling modeling, the Levenberg-Marquardt algorithm 

holds significant importance in training Artificial Neural Networks (ANNs) to forecast 

fouling behavior[17]. This algorithm is instrumental in optimizing network 

parameters, thereby facilitating accurate predictions regarding fouling based on input 

factors like feedwater characteristics, membrane attributes, and operational 

parameters. By leveraging the Levenberg-Marquardt algorithm[18], ANNs can 

provide reliable insights crucial for informed decision-making in the operation and 

maintenance of Membrane Bioreactors (MBRs).      

 

2.4 IDENTIFICATION OF RESEARCH GAP 

 

                      Despite significant advancements in membrane fouling modeling 

through the utilization of Artificial Neural Networks (ANNs) and other computational 

methodologies, several research voids remain, necessitating further exploration. 

                       One such gap pertains to the adequacy of datasets utilized in modeling 

endeavors. Existing datasets often lack diversity in terms of encompassing a wide 

array of operational circumstances and membrane configurations[19]. Consequently, 

the predictive capabilities of fouling models developed with ANNs may be 

constrained. Broadening the scope of data collection initiatives to encompass a more 

expansive range of scenarios could bolster the reliability and applicability of fouling 

prediction models[20]. 

 

                    Additionally, there is a discernible need for heightened transparency and 

reproducibility in the formulation and validation of fouling models. Many studies 

utilizing ANNs in fouling prediction neglect to furnish detailed insights into network 

architecture, training methodologies, and validation protocols[20], impeding efforts 

for result replication and validation by peers. Standardizing protocols and reporting 

guidelines for the creation and assessment of fouling prediction models using ANNs 

could bridge this gap[1], [19], [20]. 

                    Through concerted efforts to amass comprehensive datasets, devise 

transparent modeling frameworks, integrate real-time monitoring technologies, and 
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assess long-term model performance, researchers can advance the frontier of 

membrane fouling modeling using Artificial Neural Networks, fostering sustainable 

MBR operation. 
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CHAPTER 3 

 

PROBLEM STATEMENT AND PROCEDURE 

 

3.1 PROBLEM STATEMENT  

                         Membrane bioreactors, or MBRs, are an essential wastewater 

treatment technology that provide benefits including compact footprint and good 

effluent quality. However, the ongoing problem of membrane fouling, which raises 

operating costs and decreases system efficiency, prevents MBRs from being widely 

used. Because fouling phenomena are complicated and nonlinear, traditional fouling 

models frequently fail to capture their essence[21]. Thus, there is an urgent need for 

sophisticated modeling techniques that can both help optimize operating measures to 

minimize fouling and properly forecast fouling behavior[22]. 

 

3.2 RESEARCH OBJECTIVES 

                            This study aims to develop an Artificial Neural Network (ANN) 

model to effectively predict membrane fouling behavior in MBRs based on key 

operational parameters. By accurately modeling the relationships between inputs 

such as run duration, instantaneous flux, and time, and the output variable, 

transmembrane pressure (TMP), the ANN can provide valuable insights into 

fouling dynamics. The objective further includes optimizing the ANN model to 

achieve minimal prediction error, thereby serving as a reliable tool for guiding 

MBR operation and maintenance. 
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3.3 DATA COLLECTION 

 

                          The data utilized for this study were sourced from a comprehensive 

review of relevant literature on MBR operations incorporating relaxation and 

backwashing methods. Key operational parameters and corresponding TMP values 

were extracted from these studies[23]. The dataset includes variables such as run 

duration, instantaneous flux, and time, which are essential for training the ANN 

model. The extracted data were preprocessed to ensure consistency and accuracy, 

forming a robust basis for model development. 

 

 

3.4 ARTIFICIAL NEURAL NETWORK APPROACH (PROCEDURE) 

 

3.4.1 ANN ARCHITCTURE   

 

 
                     The ANN model developed for this study consists of an input layer, 

hidden layers, and an output layer. The input layer has three neurons, each 

representing one of the input parameters: run duration, instantaneous flux, and time. 

The output layer contains a single neuron corresponding to TMP. One or more hidden 

layers with varying numbers of neurons are used to capture the complex relationships 

between the inputs and the output[24]. The optimal architecture, including the number 

of hidden layers and neurons, is determined through experimentation and 

validation[21]. 
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                                          Fig 3.1 Architecture of ANN model 

                       In the present investigation, the ANN was trained using the relaxation 

and backwashing data. Table 4,5 presents an analysis of the experimental data from 

the reference work [6] and the ANN assumptions. The ANN model made use of 

MATLAB's neural network fitting toolkit, which makes use of a multi-layer network. 

In order to determine the minimum MSE for the set of 40 experimental data points for 

each technique—which had been randomly divided into 3 sets to train, test, and 

simulate an artificial neural network—neurons in the hidden layer were optimized to 

layer size 7 for the relaxation technique and size 12 for the backwashing technique. 

 

 

3.4.2 TRAINING AND VALIDATION 

 

                     Training the ANN involves feeding input data into the network and 

adjusting the weights to minimize prediction error. The Levenberg-Marquardt 

algorithm is employed for this purpose due to its efficiency in handling 

nonlinear optimization problems[25].  
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The dataset is split into training and validation sets, with the former used for 

training the model and the latter for performance assessment[26]. The model's 

accuracy is evaluated using metrics such as Mean Squared Error (MSE) and R-

squared (R²) value19. 

                

     Table 1 reports the functioning parameter's higher and lower values. The data was 

simulated using the feedforward technique and the algorithm developed by Levenberg-

Marquardt within the same range. By running simulations with two input parameters 

varied within the range as shown in Table 1, a surface graph was produced. Plotting 

the surface graphs requires modifying another input parameter, one of which is 

regarded as run time. This made it possible to examine how these parameters affected 

TMP and the overall fouling behavior that is observed and examined, as well as how 

these two parameters' fluctuations interacted with one another. 

 

 

Table 1: Input Parameters used for training the ANN model 

INPUT PARAMETERS RANGE OF PARAMETERS 

Run Duration (hr) 1-24 

Instantaneous flux (L2/mh) 24.5-34 

Run Count 1-5 
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3.5 EXPERIMENTAL SETUP 

3.5.1 DESCRIPTION OF LAB SCALE MBR 

 

                      The experimental setup features a lab-scale MBR designed to replicate 

real-world conditions. The MBR includes a membrane module, aeration system, and 

control unit to regulate operational parameters. Feedwater characteristics, including 

suspended solids and organic content, are monitored to ensure they reflect typical 

wastewater treatment scenarios[27]. 

 

Fig 3.2-Schematic diagram of lab scale MBR treatment system. 
 

3.5.2 OPERATIONAL PARAMETERS 

 

                    Operational parameters such as instantaneous flux, backwashing and 

relaxation duration, and run count are systematically varied to create a 

comprehensive dataset. The impact of these parameters on TMP and overall fouling 

behavior is recorded and analyzed. This data is essential for training and validating 

the ANN model. 

 



22 
 

 
 
 
 

3.6 OPTIMIZATION TECHNIQUES 

3.6.1 SELCTION OF HIDDEN NEURONS 

 

                   Selecting the optimal number of hidden neurons is crucial for the 

ANN's performance. Too few neurons can lead to underfitting, while too many 

can cause overfitting[28]. A systematic approach involving cross-validation 

and performance evaluation is used to determine the ideal number of hidden 

neurons. This process ensures that the model generalizes well to unseen 

data[29]. 

 

3.6.2 PERFORMANCE METRICS 

                            Mean Squared Error (M.S.E.) is the function we define to quantify the 

difference between generated and experimental outcomes.  

The network's prediction performance is assessed using the mean squared error (MSE) 

function. For a given input data collection, it calculates the average squared difference 

between the expected and actual output[27]. The prediction is more accurate when the 

MSE value is smaller, indicating that.  

Mean square error = 1/n ∑i
n

=1 (Y𝑒𝑥𝑝 -Y𝑚𝑜𝑑𝑒𝑙)2 

where n is the data point's number. The variables 𝑦exp and 𝑦model denote the model 

predictions and the experimental results, respectively 
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CHAPTER 4 

 

RESULT AND DISCUSSION 

 

 

4.1 ANN TRAINING AND VALIDATION RESULT 

 

 

                     Upon training, testing, and validating some percent of the data from the 

experimental findings of [6] were randomly selected, with fifteen percent going toward 

testing, fifteen percent toward validation, and seventy percent toward training. The 

training dataset is a labeled dataset that the model uses to learn from during training. 

Using an optimization approach, the model optimizes its internal parameters in order 

to reduce the variation between the expected outputs and the actual labels[30]. In order 

to allow the model to update its parameters by computing gradients and propagating 

them through the network, the training dataset is usually segmented into batches or 

mini-batches[31]. 

 

4.1.1 FOR RELAXATION METHOD 

   

                     The relaxing technique produced the lowest Mean Squared Error (MSE) 

when the ideal number of neurons in the hidden layer was found to be 7. Table 2 

displays the MSE and correlation coefficients (R) between the model predictions for 

the trained data and the experimental findings. The regression plot, which shows the 

relationship between the experimental and projected data, is shown in Figure 4.1. A 
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correlation factor more than 0.91, which denotes good prediction accuracy, in this 

figure validates the ANN model's capacity to predict data. 

 

                    When comparing the experimental and predicted outcomes for the 

relaxation condition, we determined a maximum relative error of 4.7% and 

8.6% is the absolute error, as seen in Table 4. 

 

Table 2: MSE and R value in training, validation and testing (Layer size 7) 

Process No. of data points MSE Correlation coefficient between 

experimental and model prediction (R) 

Training 50 507.8973 0.9393 

Validation 11 554.3361 0.9173 

Testing 11 465.2070 0.9158 
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         Fig 4.1 Regression Plots of Experimental and Model predicted results 

 

 

 

4.1.2 FOR BACKWASHING METHOD 

 

                   The hidden layer was optimized to include 12 neurons, the lowest Mean 

Squared Error (MSE) was obtained. Table 3 provides a detailed breakdown of the MSE 

and correlation coefficients (R) between results from the experiment and model 

predictions. High predictive accuracy is confirmed by a correlation factor greater than 

0.98 in the regression plot of Figure 4.2, which shows the link between experimental 

and anticipated data. This shows the ANN model's predictive accuracy. 
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                    After comparing the experimental and expected outcomes for the 

backwashing procedure, we discovered a maximum relative error of 14.3% and an 

absolute error of 21.4%, which are shown in Table 4. 

 

Table 3: MSE and R values of training, validation, and testing (Layer size 12) 

 

Process No. of data points MSE Correlation coefficient between 

experimental and model prediction (R) 

Training 84 265.9982 0.9808 

Validation 18 187.3680 0.9861 

Testing 18 219.9259 0.9722 
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              Fig 4.2 Regression Plots of Experimental and Model predicted results 
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4.2 SURFACE PLOTS FOR RELAXATION AND BACKWASHING  

4.2.1 EFFECT OF INSTANTANEOUS FLUX:  

For relaxation:  

Effect of instantaneous flux- The influence of run duration and instantaneous 

flux on trans-membrane pressure for the relaxation strategy employed to prevent 

membrane fouling is shown in Fig. 4.3. Trans-membrane pressure (TMP) increased 

as run time and flux increased. An increase in TMP with rising instantaneous flux 

and run time intensifies membrane fouling.  

 

 

  

                 Fig 4.3 Effect of Instantaneous flux and run time on TMP 
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Effect of Run count and run time on TMP-  

Fig 4.4 depicts that TMP increases with both run time and run count, indicating 

progressive membrane fouling as operational duration and cycles extend the increase 

in TMP shows that fouling resistance builds up over time. Implementing relaxation 

techniques (periodic cessation of flow) can help alleviate fouling. 
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                       Fig 4.4 Effect of run count and run time on TMP. 

 

For Backwashing:    

Effect of Flux - Fig 4.5 depicts that as both the instantaneous flux and run time 

increase, TMP also rises. 

 Impact on Membrane Fouling: Higher flux rates lead to more particles depositing on 

the membrane, increasing fouling. Similarly, longer run times allow more fouling 

agents to accumulate, further raising the TMP. Effective fouling control measures like 

periodic cleaning or backwashing are crucial to maintain membrane performance and 

longevity. 
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                    Fig 4.5 Effect of Instantaneous Flux and run time on TMP. 

 

Effect of run count and duration- As the run time increases, the TMP tends to 

increase across all run counts as shown in Fig 4.6. For each run count, there is a clear 

trend of rising TMP with increasing run time, indicating a buildup of fouling over time. 

Optimize backwashing frequency, duration, pressure, and chemical cleaning to reduce 

TMP and control membrane fouling. 
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       Fig 4.6 Effect of Run time and count on TMP in case of backwashing. 

 

 

 

 

 

 

 

CHAPTER 5 

 

CONCLUSION  

 

                           Based on the findings of this study, the application of artificial neural 

networks demonstrated effectiveness in modeling fouling phenomena within 
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membrane-based bioreactors. The model exhibited its most favorable performance 

with seven nodes in the hidden layer, achieving a correlation factor of 0.91 using the 

relaxation technique data points, and with twelve nodes, yielding a correlation factor 

of 0.98 using the backwashing technique data points. Notably, prolonged operational 

durations correlated with heightened trans-membrane pressure in tandem with 

instantaneous flux. Conversely, shorter operational durations characterized by lower 

instantaneous flux and minimal run counts corresponded to reduced fouling 

occurrences. Consequently, optimal conditions for minimizing fouling in membrane-

based bioreactors, as extrapolated from relaxation and backwashing data, were 

identified as operational durations ranging from (1.02 to 12 hours), a flux value of (21 

L2/mh), and a minimized number of run counts. 
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APPENDICES 1 

Table 4: Correlation of model prediction and experimental findings for backwashing 

technique and relaxation technique (Experimental data sourced from [6]). 

Type 

of 

Process  

Run Instantaneous 

flux (L/m2h) 

Time 

(hour) 

Experimental 

Result TMP 

(mbar) 

Theoretical 

Result (TMP 

(mbar)) 

Absolute Error Relative Error in 

% 

1 1 34 1.05 259.68 258.3367731 -1.343226947 0.519951895 

1 1 34 2.1 298.39 299.6534567 1.263456661 0.421639275 

1 1 34 3.04 343.55 332.3391129 -11.21088708 3.373327616 

1 1 34 4.08 343.55 363.2349056 19.6849056 5.419332035 

1 1 34 5.13 351.61 388.8462162 37.23621622 9.576077808 

1 1 34 6.08 433.87 407.5695099 -26.30049013 6.453007278 

1 1 34 7.12 453.23 423.8581268 -29.37187316 6.92964728 

1 1 34 8.11 438.71 435.9532089 -2.756791144 0.632359411 

1 1 34 9.1 450 445.3704935 -4.629506475 1.0394731 

1 1 34 10.08 432.26 452.6168213 20.35682132 4.497583909 

1 1 34 11.12 437.1 458.5777236 21.47772356 4.683551436 

1 1 34 12.11 440.32 463.0158306 22.69583063 4.901739666 

1 1 34 13.11 485.48 466.6094087 -18.87059129 4.044194339 

1 1 34 14.09 467.74 469.5140905 1.774090549 0.377856721 

1 1 34 15.07 446.77 471.9927105 25.22271045 5.343877118 

1 1 34 16.06 464.52 474.1885398 9.668539782 2.0389653 

1 1 34 17.12 516.13 476.2586057 -39.87139425 8.371795023 

1 1 34 18.15 470.97 477.9570585 6.987058517 1.46185905 

1 1 34 19.19 469.35 479.2077028 9.857702766 2.057083538 

1 1 34 20.13 498.39 479.7204175 -18.66958255 3.891763175 

1 1 34 21.23 490.32 479.264516 -11.05548402 2.30676039 

1 1 34 22.04 490.32 478.0702953 -12.24970471 2.562322911 
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1 1 34 23.13 451.61 475.4284777 23.81847765 5.009897129 

1 1 34 24.18 479.03 472.373775 -6.656224992 1.409101297 

1 2 26.4 1.04 212.9 194.8965705 -18.00342955 9.237427577 

1 2 26.4 1.97 245.16 215.2485677 -29.91143227 13.89622824 

1 2 26.4 3.14 266.13 236.7837439 -29.34625615 12.39369547 

1 2 26.4 4.07 280.65 250.8983504 -29.75164956 11.85804909 

1 2 26.4 4.99 274.19 262.6546488 -11.53535117 4.391832097 

1 2 26.4 6.04 283.87 273.9674006 -9.902599393 3.61451741 

1 2 26.4 7.09 291.94 283.6479328 -8.292067159 2.923365975 

1 2 26.4 8.01 291.94 291.1860953 -0.753904674 0.258908199 

1 2 26.4 9.06 296.77 298.9654934 2.195493422 0.734363487 

1 2 26.4 10.1 300 305.8081745 5.808174525 1.899286876 

1 2 26.4 11.09 291.94 311.295512 19.35551199 6.217729212 

1 2 26.4 11.96 306.45 315.02975 8.579750008 2.723472944 

1 2 26.4 13.12 300 318.173739 18.17373904 5.711891591 

1 2 26.4 14.11 304.84 319.368879 14.52887901 4.549246958 

1 2 26.4 15.1 312.9 319.8065958 6.906595751 2.159616419 

1 2 26.4 16.14 312.9 320.3103097 7.410309741 2.313478373 

1 2 26.4 17.07 306.45 321.361682 14.91168204 4.640155585 

1 2 26.4 18.11 314.52 323.4142156 8.894215557 2.750100376 

1 2 26.4 19.16 325.81 326.2198688 0.409868849 0.125641902 

1 2 26.4 20.08 314.52 328.9550019 14.43500186 4.388138736 

1 2 26.4 21.07 320.97 331.8579658 10.88796576 3.280911379 

1 2 26.4 22.06 325.81 334.4841655 8.67416546 2.593296292 

1 2 26.4 23.1 327.42 336.8079118 9.387911847 2.787319275 

1 2 26.4 24.09 325.81 338.5720032 12.7620032 3.769361637 

1 3 26.4 1.02 148.39 192.8544183 44.46441825 23.05595 

1 3 26.4 2.06 138.71 215.569733 76.85973298 35.65423212 
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1 3 26.4 3.01 222.58 233.1891888 10.60918878 4.549605765 

1 3 26.4 3.99 212.9 248.4383254 35.53832544 14.30468724 

1 3 26.4 5.04 238.71 261.980474 23.27047403 8.8825223 

1 3 26.4 6.04 264.52 272.7828048 8.262804772 3.02907831 

1 3 26.4 7.08 272.58 282.4528753 9.872875305 3.495406196 

1 3 26.4 8.13 279.03 291.0851888 12.0551888 4.14146417 

1 3 26.4 9.06 303.23 298.0030343 -5.226965744 1.753997491 

1 3 26.4 10.05 309.68 304.614778 -5.065222034 1.662828727 

1 3 26.4 11.09 316.13 310.4866513 -5.643348677 1.817581739 

1 3 26.4 12.02 325.81 314.4998429 -11.31015706 3.596236157 

1 3 26.4 13.13 325.81 317.5080904 -8.301909629 2.61470806 

1 3 26.4 14.17 325.81 318.7591466 -7.050853364 2.211968955 

1 3 26.4 15.04 329.03 319.1447282 -9.885271805 3.097426005 

1 3 26.4 16.15 335.48 319.6608391 -15.81916088 4.948732828 

1 3 26.4 17.07 333.87 320.6771205 -13.19287949 4.114069464 

1 3 26.4 18.11 324.19 322.690721 -1.499278952 0.464617931 

1 3 26.4 19.1 325.81 325.2858004 -0.524199648 0.161150486 

1 3 26.4 20.03 335.48 328.0129983 -7.467001685 2.276434691 

1 3 26.4 21.13 325.81 331.2061179 5.396117924 1.629232563 

1 3 26.4 22.06 338.71 333.6463136 -5.063686437 1.517680919 

1 3 26.4 23.05 351.61 335.8578001 -15.75219994 4.690139676 

1 3 26.4 24.04 348.39 337.6378973 -10.75210271 3.184507069 

1 4 24.5 1.03 206 210.3366716 4.33667161 2.061776283 

1 4 24.5 2.08 219 217.153426 -1.846573961 0.850354514 

1 4 24.5 3.01 232 221.9514733 -10.04852668 4.527352995 

1 4 24.5 4.06 232 226.6553522 -5.344647818 2.358050567 

1 4 24.5 5.04 239 230.8591185 -8.140881537 3.526341776 

1 4 24.5 6.03 242 235.1996473 -6.800352744 2.891310775 
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1 4 24.5 6.96 245 239.3749031 -5.625096936 2.349910899 

1 4 24.5 8 248 243.8934846 -4.106515442 1.683733147 

1 4 24.5 8.99 245 247.5873552 2.58735521 1.045027202 

1 4 24.5 10 252 250.256181 -1.743819008 0.696813562 

1 4 24.5 11 255 251.6024466 -3.397553366 1.35036579 

1 4 24.5 12.1 253 251.9729606 -1.027039374 0.407599042 

1 4 24.5 13 258 252.1049779 -5.895022061 2.338320373 

1 4 24.5 14 261 252.8994334 -8.1005666 3.203078192 

1 4 24.5 15 261 254.9288217 -6.071178276 2.38151898 

1 4 24.5 16 261 258.3070248 -2.692975171 1.042548174 

1 4 24.5 17.1 268 263.263679 -4.736321014 1.799078791 

1 4 24.5 18.1 261 268.4290102 7.429010166 2.767588407 

1 4 24.5 19 266 273.2487607 7.248760697 2.652806431 

1 4 24.5 20 281 278.480141 -2.519859029 0.904861302 

1 4 24.5 21.1 287 283.8107615 -3.189238537 1.123720087 

1 4 24.5 22.1 300 288.1160632 -11.88393681 4.124704703 

1 4 24.5 23.1 313 291.8356641 -21.1643359 7.252141702 

1 4 24.5 24 316 294.6694389 -21.3305611 7.238810099 

1 5 24.5 1.03 203 209.7635299 6.763529896 3.224359306 

1 5 24.5 2.08 213 216.6062576 3.606257587 1.664890769 

1 5 24.5 3.01 213 221.4193275 8.419327519 3.802435683 

1 5 24.5 4 226 225.8759044 -0.124095623 0.054939735 

1 5 24.5 5.04 234 230.3511397 -3.648860282 1.584042643 

1 5 24.5 6.03 227 234.707517 7.707517021 3.283881624 

1 5 24.5 7.07 235 239.3979152 4.39791517 1.837073296 

1 5 24.5 8 240 243.4489431 3.448943102 1.416700791 

1 5 24.5 9.05 235 247.3649115 12.36491151 4.998652169 

1 5 24.5 10.1 248 250.0535811 2.053581137 0.821256439 
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1 5 24.5 11.1 248 251.2840296 3.284029559 1.306899433 

1 5 24.5 12.1 245 251.569394 6.569394025 2.61136457 

1 5 24.5 13.1 252 251.7035784 -0.296421628 0.117766156 

1 5 24.5 14.1 255 252.5518616 -2.44813836 0.969360647 

1 5 24.5 15.1 255 254.6590868 -0.340913214 0.13387043 

1 5 24.5 16.1 256 258.1012993 2.101299274 0.814137426 

1 5 24.5 17.1 260 262.5964304 2.596430353 0.988753103 

1 5 24.5 18.1 260 267.7104786 7.710478632 2.880155708 

1 5 24.5 19 277 272.4898175 -4.510182532 1.655174705 

1 5 24.5 20.1 273 278.1849912 5.184991196 1.863864464 

1 5 24.5 21.1 300 282.9760491 -17.02395091 6.016039509 

1 5 24.5 22 284 286.8502872 2.850287184 0.993649758 

1 5 24.5 23 274 290.6038902 16.6038902 5.713581531 

1 5 24.5 24 281 293.7593023 12.75930228 4.343454721 

2 100 21 1.02 136 134.102594 -1.897405964 1.41489132 

2 100 21 2.03 155 151.8004557 -3.199544261 2.10773034 

2 100 21 3.05 162 164.963964 2.963964028 1.796734242 

2 100 21 3.95 170 172.8812944 2.881294403 1.666631669 

2 100 21 5.02 174 178.937519 4.937519009 2.759353676 

2 100 21 5.98 174 182.515674 8.515673964 4.665722006 

2 100 21 6.94 185 185.3011076 0.30110764 0.162496406 

2 100 21 8.01 188 188.1309537 0.13095373 0.069607753 

2 100 21 8.97 192 190.6802056 -1.319794429 0.692150727 

2 100 21 10 195 193.4965501 -1.503449927 0.77699056 

2 100 21 11 198 196.2993452 -1.700654798 0.866357856 

2 100 21 12.1 200 199.4277481 -0.572251897 0.286946978 

2 100 21 13.1 205 202.2918144 -2.708185619 1.338751955 

2 100 21 14 208 204.8784296 -3.121570387 1.523620809 
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2 100 21 15.1 209 208.0508575 -0.949142517 0.456206972 

2 100 21 16 212 210.6587655 -1.341234476 0.636685814 

2 100 21 17 215 213.5745515 -1.42544851 0.667424325 

2 100 21 18.1 215 216.810292 1.810291994 0.834965894 

2 100 21 19.1 221 219.7828948 -1.217105202 0.553776127 

2 100 21 20 221 222.4868255 1.486825468 0.668275735 

2 100 21 21.1 223 225.8317061 2.831706079 1.253901026 

2 100 21 22.1 226 228.9131836 2.913183646 1.272615059 

2 100 21 23 230 231.7212192 1.721219211 0.742797408 

2 100 21 24.1 232 235.199684 3.199683996 1.36041169 

2 200 22 0.96 145 144.9194497 -0.080550301 0.055582809 

2 200 22 1.97 167 167.5620968 0.562096776 0.335455803 

2 200 22 2.99 191 189.801378 -1.198622014 0.631513863 

2 200 22 4.01 208 209.820948 1.820947984 0.867858048 

2 200 22 5.02 227 226.8203553 -0.179644705 0.079201316 

2 200 22 5.98 239 240.6541031 1.65410308 0.68733633 

2 200 22 7 250 253.6160139 3.616013878 1.425782948 

2 200 22 8.01 265 265.358007 0.358007025 0.134914725 

2 200 22 8.97 274 275.8276458 1.827645761 0.662604271 

2 200 22 10 288 286.3737505 -1.626249497 0.567876593 

2 200 22 11 294 295.8741439 1.874143913 0.633426054 

2 200 22 12 302 304.5919714 2.591971373 0.8509651 

2 200 22 13 312 312.5265662 0.526566178 0.168486854 

2 200 22 14 317 319.7315911 2.731591059 0.854338807 

2 200 22 15 330 326.2959582 -3.704041759 1.13517856 

2 200 22 16.1 333 332.9003278 -0.09967217 0.029940544 

2 200 22 17.1 342 338.4550354 -3.544964553 1.047396015 

2 200 22 17.9 348 342.6555228 -5.344477227 1.559723066 
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2 200 22 19.1 348 348.6460601 0.646060088 0.185305432 

2 200 22 20.1 356 353.4258395 -2.574160541 0.728345314 

2 200 22 21.1 358 358.068767 0.068767016 0.019204975 

2 200 22 22 364 362.1646247 -1.835375291 0.506779284 

2 200 22 23.1 368 367.0999958 -0.900004163 0.245165942 

2 200 22 24.2 365 371.9895317 6.989531683 1.878959241 

2 300 22 0.96 135 135.6870753 0.68707531 0.506367544 

2 300 22 1.97 155 152.4144274 -2.585572602 1.696409353 

2 300 22 3.11 167 167.4564053 0.456405299 0.272551712 

2 300 22 3.95 176 175.7774334 -0.222566649 0.126618443 

2 300 22 4.96 177 183.5134465 6.513446451 3.549302014 

2 300 22 5.98 191 190.3169807 -0.683019345 0.358885131 

2 300 22 7 202 197.5620308 -4.437969193 2.24636747 

2 300 22 8.01 209 205.8848515 -3.11514852 1.513053776 

2 300 22 9.03 215 215.3805885 0.380588545 0.176705128 

2 300 22 10.1 226 225.9327979 -0.067202054 0.029744267 

2 300 22 11.1 230 235.7197348 5.719734817 2.42649807 

2 300 22 12.1 239 244.9828022 5.982802169 2.442131495 

2 300 22 13 248 252.6700938 4.670093799 1.848297014 

2 300 22 14.1 258 261.1481241 3.148124129 1.205493679 

2 300 22 15 265 267.3649938 2.364993778 0.884556256 

2 300 22 16 274 273.6030393 -0.396960679 0.145086356 

2 300 22 17 279 279.2503056 0.250305643 0.089634868 

2 300 22 18.1 283 284.9203242 1.920324234 0.673986399 

2 300 22 19.1 288 289.6966235 1.696623525 0.585655264 

2 300 22 20 294 293.763592 -0.236407997 0.080475594 

2 300 22 21.1 302 298.5158377 -3.48416235 1.167161641 

2 300 22 22 303 302.2757066 -0.724293369 0.23961349 
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2 300 22 23.1 312 306.7661728 -5.233827171 1.706129174 

2 300 22 24 320 310.3855703 -9.614429679 3.09757624 
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