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Objectives 

 
 Absorption spectrum and emission spectrum of Naphthalene, 

Anthracene and their derivatives. 

 

 Impact of solvent polarity on absorption spectrum of Naphthalene, 

Anthracene and their derivatives. 

 

 Impact of solvent polarity on emission spectrum of Naphthalene, 

Anthracene and their derivatives.  

 

 Effect of amino – substituent on absorption spectra of Naphthalene 

and Anthracene. 

 

 Effect of amino – substituent on emission spectra of Naphthalene and 

Anthracene. 
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ABSTRACT 

 

The Ultraviolet absorption spectra and emission spectrum of polycyclic aromatic 

hydrocarbons (PAHs) are studied at different solvents i.e. acetone, hexane, dimethyl 

sulfoxide, ethyl acetate, of varying polarity. The effect of amino substituents at naphthalene 

and Anthracene have also been investigated. The solvent polarity impacts the absorption 

maxima and intensity maxima of emission spectra by change in physiochemical properties 

of solvent like dipole moment, charge transfer, H-bonding. The relation between absorption 

wavelength and emission intensity with solvent polarity indicates that there are solute-

solvent interactions in the prepared solution. The orientation polarizability was associated 

with bathochromic or hypsochromic shift and Stoke’s shift. The effect of solvents on the 

absorption band shifts reflects how much charge of solute particles are reorganized in 

response to electrical stimulation. The nature of substituents also influences the emission 

and absorption spectrum. These co-relations are studied in detail in this project. The emission 

and absorption spectrum of PAHs in 3 varying polarity solvents are in accordance with the 

previously reported results.  

 

Keywords:  

PAHs, Naphthalene, Anthracene, absorption spectra, emission spectra 
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Polycyclic aromatic hydrocarbons, also known as PAHs, comprise organic 

contaminants arising from both natural and man-made activities, including 

urbanization and industrialization[1] .They typically come from the processes that 

include combustion[2] . PAHs are persistent, semi-volatile contaminants found in the 

environment. They consist of 2 or more than 2 fused rings of benzene with lipophilic 

and hydrophobic double bond across the hydrocarbon rings. When three or less fused 

rings are present in a PAH, it is categorized as low molecular weight, and when four 

or more fused rings are present it is designated as high molecular weight[3] .One 

common low molecular weight PAH with three fused rings is phenanthrene (PHE), 

which is found in high concentrations in PAH containing surroundings[1], [4] . Four 

fused benzene rings make pyrene (PYR) a high molecular weight PAH, which is 

generated when fossil fuels like biomass or low rank coil are partially burned at high 

temperatures, particularly during gasification or pyrolysis process[1], [5]. The ratio 

of hydrophobicity to lipophilicity increases with molecular weight[3].  

PAHs mainly include Naphthalene (NAP), Acenaphthalene (ACY), Pyrene (PYR), 

Anthracene (ANT), Fluorene (FL), Perylene (PER), Fluoranthene (FLU) etc. along 

its derivatives [1], [2]. In this paper, we are focusing on naphthalene, anthracene and 

their amino derivatives. NAP is produced from tar of coil that comes from robust 

petroleum components during refining.  This is used in 2-napthol production, 

pigments and as a precursor for many dyes [1], [6]. ANT is an organic contaminant 

in water that is primarily produced during partial combustion of organic materials. 
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ANT was recently categorized as an essential contaminant because of its 

carcinogenicity, mutagenicity, bioaccumulation and toxicity  [7]. Moreover, due to its 

chemical stability, ANT is exceedingly hydrophobic and has minimal 

biodegradability [1], [8]. These two polycyclic aromatic hydrocarbons, naphthalene, 

anthracene, are then substituted with amino group to know the impact of substituents 

on emission and absorption spectrum. 

 

 

 

                         Naphthalene                  Anthracene 

 

Fig.1(a): Structure of Naphthalene and Anthracene. 
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                 Amino-naphthalene        Amino-anthracene 

 

Fig.1(b): Structure of Amino-naphthalene and Amino-anthracene. 

 

The term “solvation” refers to the process of more or less tightly bound solvent shells 

encircling the dissolved solute species as a result of intermolecular and interionic 

attractive forces between the solutes and solvents [9]. The ability of a solvent to 

dissolve apolar or dipolar and charged or neutral entities is known as solvent polarity 

[10] . Dipole moments, relative permittivities, and refractive indices are used as 

physical parameters of solvent polarity because electrostatic solventation models are 

straightforward. The solute/solvent interactions occur at molecular-microscopic level 

[9], [10].  A more practical definition of solvent polarity would be the solvent’s total 

solvation capability, also known as solvation power, which would include every 

potential specific intermolecular force and non-specific intermolecular forces in 

solute-solvent but would exclude all the interactions that would result in a clear 

chemical modification of the solute [9] .  
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Solvent polarity characteristics were determined using solvent-sensitive reference 

chemicals that absorb or emit radiations in several spectral regions that correspond to 

UV-vis, IR, Fluorescence and NMR respectively [10]. Here we are going to focus on 

UU-Vis and Fluorescence spectroscopy. UV-Vis spectroscopy is employed for 

quantitative analysis of various analytes. The absorbing molecule comprises of a 

chromophore, which is responsible for the absorption of light in UV-Visible 

spectrum. When two or more chromophores are separated by many bonds, the 

absorption is cumulative. However, when chromophores are separated by a single 

bond, the effects are more noticeable. This shifts the maximum absorption to longer 

wavelength, making it suitable for spectrophotometers. This effect is known as 

bathochromic shift, which is characterized by a rise in maximum intensity and often 

known as hyperchromic effect. The opposing changes, known as hypsochromic shift 

and hypochromic effect, are common when a chromophoric system is altered, such as 

by changing pH [11]. The process of photo emission known as Alzheimer’s 

Fluorescence happens when molecules relax from electronic excited states. These 

photonic activities include the polyatomic fluorescent compounds from electronic to 

vibrational states [12].  

In this dissertation work, we will discuss: 

I. The impact of solvent polarity  

II. The impact of substituents  

in detail on the emission and absorption spectra/spectrum of naphthalene, 

anthracene and their amino derivatives. 
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Chapter 2 

 

POLYCYCLIC AROMATIC HYDROCARBONS 
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 PAHs are organic molecules commonly perceived in the soil, water and air [13]. These are 

carcinogenic in nature [14], [15], [16], [17]. 16 PAHs have been identified by USEPA as the 

most important chemicals to be examined in a variety of environmental matrices. These 

chemicals include fluorine, anthracene, benzo(a)anthracene, naphthalene, phenanthrene, 

chrysene, acenaphthene, dibenzo(a,h)anthracene, pyrene, acenaphthylene, 

benzo(b)fluoranthene, benzo(a)pyrene, fluoranthene, indeno(1,2,3-c ,d)pyrene, 

benzo(k)fluoranthene, and benzo(g,h,i)perylene [18].   
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Fig.2: Structure of 16 PAHs 
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 In recent times, the quantity of PAHs derived from fossil fuels and partial 

combustion has increased [13]. PAHs in the ecosystem are classified into four 

distinct categories [19];  

 

 Petrogenic (produced from fuels) 

 Pyrogenic (obtained from partial combustion) 

 Biogenic (derived from organic metabolism) 

 Diagenetic (derived from sediment transformation) 

 

 

2.1 Sources of PAHs 

 

 

PAHs may originate from both sources natural and human-caused (anthropogenic) 

including wood burning and coal [20], [21], [22], [23], [24], [25], [26] , combustion 

of diesel oil and petrol [27], [28], [29] , and industrial operations [30], [31].  Natural 

sources of PAHs include forest fires [32], [33], combustion of waste, eruptions and 

hydrothermal activities [33], [34], [35], [36]. PAHs global distribution can be 

attributed to both natural and anthropogenic sources, as well as global transport 

process. They are mostly created as a result of combustion of fossil fuels via heating 

operations, waste disposal and automotive exhausts. These environmental pollutants 

are widely disseminated and have negative biological consequences, carcinogenicity, 

toxicity and mutagenicity. The PAHs’ concentration in environment varies based on 

factors like development of industries, proximity of the source and the mode of 

transport [37].  PAHs are found in large quantities in fossil fuel products, automotive 

traffic emission and refining, biomass combustion [38] , tobacco [39], [40] , wood 

smoke [24], [41] , charcoals [42] , wood [23], [25] and garbage [43].  
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Fig. 2.1: PAHs’ sources [1].  

 

2.2 PHYSIOCHEMICAL Properties 

 

 

The physiochemical characteristics are crucial in forecasting how PAH will behave 

in the environment [44], [45], [46]. They consist of carbon and hydrogen, but they 

can easily substitute with nitrogen, oxygen, and sulfur in benzene ring to create 

heterocyclic aromatic compounds, which are typically classified alongside PAHs. 

Furthermore, alkyl-substituted PAHs are commonly detected in environment 

matrices with PAHs [47]. Common characteristics of PAHs include less vapour 

pressure, extremely lower solubility, high melting and boiling temperature, and so 

on [3]. PAHs have tendency to decrease in aqueous solubility and vapour pressure as 

molecular weight grows; nonetheless they are resistant to oxidation and reduction 

grows with raise in their molecular weight.  Thus, the water solubility these falls with 

every extra ring [18].  
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Fig.2.2 (a): PAHs’ water solubility as a function of ring count [48]. 

 

 

 

 
 

Fig. 2.2 (b): PAHs’ Vapor Pressure as a function of ring count [48]. 
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Fig.2.2 (c): PAHs’ Boiling Point as a function of ring count [48]. 

 

 

Figure 2.2 (a), (b), (c) illustrate some of the PAHs’ physio-chemical characteristics 

to show how they vary with ring number. Boiling points ranges of PAH’s increases 

as the number of rings increases which can be seen in fig. 2.2 (c). Figure 2.2 (b) and 

2.2 (a) depict that vapour pressure and water solubilities indicate steady decline from 

2-ring PAH to 10-ring PAH [48].  

 

 

2.3 EFFECT OF PAHs 

 

2.3.1 Effect on Human Health 

 

The impact of PAHs on health of humans is mostly determined by exposure duration, 

pace, concentration and individual toxicity [15], [49]. Pre-existing health state, personal 
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attributes, routines, other pollutants and age may all influence the impacts of PAHs on 

humans [49]. It is difficult to attribute health consequences to particular one PAHs, as 

most exposures involves many PAHs. However, exposure to high concentrations of 

particular PAHs has been connected throughout time to adverse effects [3].  

Various effects of PAHs on health of human include [3], [15], [50]:  

 Cancer 

 Oral Cancer 

 Leukaemia 

 Prostate Cancer 

 Lymphomas 

 Gastrointestinal Cancer 

 Cataracts 

 Decreased immune system 

 Kidney damage 

 Liver damage 

 Asthma 

 Immunotoxicity 

 Genotoxicity 

 Anaemia 

 Nausea 

 Diarrhoea 
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 Dermatitis 

 Inflammation 

 Vomiting 

 Skin irritation 

 Eye irritation 

 

 

 

Fig.2.3.1:  Effect of PAHs on Human Health [50].  
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2.3.2 Effect on Aquatic Ecosystem 

 

PAHs are a type of persistent organic contaminants that contaminate the aquatic 

environment. The majority of PAHs found in aquatic environments arise from 

pyrogenic origin [51] .  

Sources of PAHs in aquatic ecosystem is [2]:  

 

 Oil 

 Oil Spill 

 Marine Oil 

 Bunker Fuel Spill 

 Crude Oil Spill 

 Sediment 

 River Sediment 

 Lake Sediment 

 Marine Sediment 

 Habor Sediment 

 Wastewater 

 

Effects of PAHs on aquatic organisms are: 

 

 PAHs bio-accumulate in fish bile, liver or food of aquatic organisms [13], 

[52].  

 PAHs might interrupt the reproduction of fish [53].  

 PAHs are carcinogenic for aquatic organisms. 
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Chapter 3 

 

LITERATURE SURVEY 
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3.1    IMPACT OF SOLVENT POLARITY ON ABSORPTION AND 

EMISSION SPECTRUM 

 

 

Verdasco et al., 1995, shows that variations in absorption maxima, excitation maxima and 

emission maxima occur when solvent polarity is changed. Higher shifts are observed with 

dimethyl sulfoxide (DMSO) and acetone. Solvents with higher dipole moments also show 

increase in emission maxima and this effect in fluorescence emission maxima is greater than 

the absorption maxima. Some solvents have the ability to increase excited state ionization, 

which can increase the Stokes shift that is related to solvent changes. DMSO have more 

pronounced effect in this Stokes shift. It is depicted that the compound’s excited state is 

more susceptible to the polarity of the solvent than their ground state. 

 

 

Porobić et al., 2020, demonstrates that absorption and emission maxima show bathochromic 

shift when substituted with electron donor group in comparison to unsubstituted compounds. 

While in case of electron withdrawing substituents, show bathochromic shift in polar solvent 

and hypsochromic shift in non-polar solvents. The solvent’s dipole moment and electrons 

mobility cause the solvent’s polarity to have effect on Stokes shift.  

 

 

Zakerhamidi et al., 2010, depicts that source of Stokes shifts is the way solvent polarity 

affects absorption and fluorescence. The difference of energy between ground states and 

excited states is influenced by solute-solvent interactions. Solvent polarity has more 

pronounced effect on emission spectra as compared to absorption spectra. High dipole 

moments increase the absorption and emission shifts. Hydrogen bonding also effects the 

absorption and emission spectra. 
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Saroj et al., 2011, shows that as polarity increases the absorption band shifts to higher 

bathochromic shift. Interactions like charge-transfer also increases the bathochromic shift. 

In the more polar solvents, more interaction will take place between the solute and solvent 

resulting into broad absorption spectra. When polar solvents were used instead of non-polar 

ones, the intensity of fluorescence increases. When solvent polarity increases, Stokes shift 

and emission bandwidth increases due to charge transfer. 

 

 

Hammud et al., 2008, states that the absorption spectra band undergoes a red shift while 

moving from non-polar to polar solvent because the interactions between solute and solvent 

stabilise the π∗ orbital in polar solvents. DMSO accepts hydrogen.  

  

 

 

3.2    IMPACT OF SUBSTITUENT ON ABSORPTION AND 

EMISSION SPECTRUM 

 

 

Verdasco et al., 1995, depicts that presence of substituent (amine group) on PAHs results in 

bathochromic shift in absorption maxima due to conjugation. Ionized amines have more 

positive charge which increase the resonance in response to that excited state becomes stable 

and, therefore, emission maxima changes. 

 

 

 

Porobić et al., 2020, demonstrates that absorption and emission maxima shift to higher 

wavelength when the benzene is substituted with electron donor group at para position 

regardless of solvent while when it’s substituted with electron withdrawing group then 

absorption and emission maxima will depend on solvent. The red shifts in emission and 
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absorbance spectra were predicted by electron donating substituents stabilizing the excited 

state by extended conjugation. 

 

 

Zakerhamidi et al., 2010, shows that hydrogen bonds increase the absorption and emission 

spectra. So, if substituent can make H-bond with solvent then the absorption and emission 

maxima increase. 

 

 

Saroj et al., 2011, depicts that electron withdrawing group show the absence of fluorescence 

due to efficient decay (non-radiative). 

 

 

Cisse et al., 2020, shows that electron donating substituent decreases the Stokes shift and red 

shift was taken place in absorption and emission spectra while in case of electron 

withdrawing group Stokes shift increases and blue shifts takes place. Electron donating 

group lessen the difference in energy between the molecular orbital involved in π bonding 

and π* antibonding. 
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Chapter 4 

 

MATERIALS AND SYNTHESIS 
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4.1   MATERIALS USED  

 

 
Naphthalene, Anthracene, Amino-Naphthalene, Amino-Anthracene, Acetone, 

Chloroform, Hexane, Dimethyl sulfoxide (DMSO), Ethyl acetate. 

 

 

4.2   SYNTHESIS OF SAMPLES 

 
1 mmol solutions of Naphthalene, Amino-Naphthalene, Anthracene, Amino-Anthracene 

were prepared. 

 

 

 

4.2.1 Preparation of Naphthalene  

 

0.773 mg of Naphthalene was dispersed in 4 ml of chloroform.  

 

 

 

4.2.2  Preparation of Amino-naphthalene  

 

0.573 mg of Amino-naphthalene was dispersed in 4 ml of chloroform.  

 

 

 

4.2.3    Preparation of Anthracene  

 

0.713 mg of Anthracene was dispersed in 4 ml of chloroform.  
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4.2.4   Preparation of Amino-anthracene 

 

0.773 mg of Amino-Anthracene was dispersed in 4 ml of chloroform. 

    

 

 

(a)                                          (b) 

 

 

Figure 4(a): Solution of required PAHs (b) Solution of required PAHS in 

Chloroform. 
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4.3 CHARACTERIZATION METHODS 

 

 

4.3.1 UV-Vis Spectroscopy 

 

 
UV-Vis spectroscopy is commonly utilized to analyse various compounds. The 

fundamental principle of this spectroscopic technique is light absorption. This is the 

most ancient spectrophotometric technique to examine the lights’ intensity in 10-40 

nm (UV) and 400-800 nm (Vis) ranges, as a function of wavelength. The interactions 

between matter and EMR UV-vis range are the primary objective of ultraviolet-

visible spectroscopy. A UV-Vis spectrometer’s visual setup consists of one or more 

polychromatic source of light, wavelength selectors, detectors, sample holder, 

recorders. UV region includes 10-380 nm of spectrum. The UV spectrum is then 

categorized into 3 sub-parts: UVA, UVB, UVC. This UV-Vis spectral regions across 

the electronic energy levels figure out the absorption bands. UV and visible rays may 

react with matter in numerous ways, including reflection, transmission, emission and 

absorption as photoluminescence, diffusion at different wavelengths compared to the 

incoming monochrome radiations.   

 

 

UV-Vis spectroscopy relies on the light’s absorption, the quantity of the light 

absorbed corresponding directly to analyte’s concentration in sample solution. 

Increasing analyte concentration, leads to linear increase in light’s absorption and 

exponential decrease in light’s transmission [59], [60].  
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Figure 4.3.1: UV-Vis Spectrophotometer. 

 

 

 

4.3.2 Fluorescence Spectroscopy 

 

 
Fluorescence spectroscopy is one of the primary key techniques used in biochemistry 

and biophysics. But nowadays, Fluorescence is widely applied in flow cytometry, 

sequencing of DNA, biotechnology, health care diagnostics, forensics and analysis 

of genetics. This is quite fast, sensitive, low-cost and highly specific technique. It is 

used for both types of analysis, quantitative as well as qualitative. Spectrofluorometer 

consists of light source, monochromators, sample cells and detectors. 

 

Luminescence is light’s emission from a substance, which can be categorized into 

Fluorescence and Phosphorescence. Fluorophores serve the major function in 

fluorescence spectroscopy. These are the components which enable them to glow. 

Mostly, Fluorophores are aromatic molecules. Absorption of Ultraviolet or Vis rays 

result in electrons’ transition from singlet ground to excited state. This unstable state 

generates Ultraviolet or Vis light before returning to ground state. Fluorescence 

emission happens when fluorophores fall from electronic excited state to permissible 
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vibrational level of ground state. Fluorescence excitation spectra represent 

vibrational levels in ground state while fluorescence emission spectra represent 

vibrational levels in excited state [12], [61].  

 

 

 
 

 

 

Figure 4.3.2: Spectrofluorometer. 
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CHAPTER 5 

 

 

 

DISCUSSION AND RESULT 
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The experiment was carried out in Lambda 25 UV/Vis spectrometer and Fluorescence 

spectrometer. 

 

5.1.1   IMPACT OF SOLVENT POLARITY ON ABSORPTION 

SPECTRUM 

 

Absorption spectra of naphthalene, anthracene, amino-naphthalene and amino-anthracene is 

reported as a function of solvent polarity of hexane (low polar), acetone (intermediate polar), 

dimethyl sulfoxide (highly polar). The graph of absorbance vs wavelength was made in 

origin software.  

 

The reported absorption maxima (fig. 5.1, fig. 5.1.1, fig. 5.1.2, fig 5.1.3) of naphthalene in 

DMSO, acetone and hexane are 278 nm, 210 nm, 238 nm respectively while in case of 

anthracene is 262 nm, 210 nm and 252 nm respectively.  While, the λmax of amino-

naphthalene in DMSO, acetone and hexane are 337 nm, 331 nm and 243 nm, λmax of amino-

anthracene is 270 nm, 210 nm and 236 nm for DMSO, acetone and hexane respectively.  

 

The data depicts that λmax is highest for DMSO which has the highest polarity. But the 

intermediate and lower polar solvents do not follow particular trend. 

From the graphs and data, it is clearly understood that absorption spectra of PAHs do not 

only depends of polarity of the solvent. Many factors like, dipole moment, dielectric 

constant, charge transfer, refractive index, solvation energy, H-bonding, other specific or 

non-specific interactions, influence the Stokes shift value. DMSO also have hydrogen 

accepting tendency.  

So, the solvents typically cause displacements in absorption peaks rather than fundamental 

shift in the spectrum.  



40 
 

 

 

Fig. 5.1 Absorption spectrum of naphthalene in DMSO, acetone and 

hexane. 

 

Fig. 5.1.1 Absorption spectrum of anthracene in DMSO, acetone and 

hexane. 



41 
 

 

 

Fig. 5.1.2 Absorption spectrum of amino-naphthalene in DMSO, acetone 

and hexane. 

 

 

Fig. 5.1.3 Absorption spectrum of amino-anthracene in DMSO, acetone 

and hexane. 
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5.1.2   IMPACT OF SOLVENT POLARITY ON EMISSION SPECTRUM 

Emission spectra of naphthalene, anthracene, amino-naphthalene and amino-anthracene is 

reported as a function of solvent polarity of hexane (low polar), ethyl acetate (intermediate 

polar), dimethyl sulfoxide (highly polar). The graph of intensity vs wavelength was made in 

origin software. Emission spectra were found structureless for naphthalene at 330 nm, 

anthracene at 405 nm, amino-naphthalene at 415 nm and amino-anthracene at 438 nm 

approximately respectively as seen in graphs. The shape and location of bands are 

approximately same in case of each molecule which indicates that transition of naphthalene, 

anthracene, amino-naphthalene, amino-anthracene takes place in same electronic level in all 

solvents.  

 

From the graphs, it is clearly depicted that the fluorescence intensity decreases with increase 

in polarity or vice-versa. Intensity of naphthalene, anthracene, amino-naphthalene, and 

amino-anthracene follows the same trend. Intensity peak is low for highly polar solvent i.e. 

DMSO followed by intermediately polar ethyl acetate and peak is highest for weakly polar 

hexane. The hypsochromic shift and increase in intensity takes place for low polarity solvent. 

 

Distinctive interaction between solvent and fluorophore either specific or non-specific 

results in decrease or increase of intensity and Stokes shift.  
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 Fig. 5.2 Emission spectrum of naphthalene in DMSO, ethyl acetate, 

hexane. 

 

Fig. 5.2.1 Emission spectrum of anthracene in DMSO, ethyl acetate, 

hexane. 

 

Fig. 5.2.2 Emission spectrum of amino-naphthalene in DMSO, ethyl 

acetate, hexane. 



44 
 

 

 

Fig. 5.2.3 Emission spectrum of amino-anthracene in DMSO, ethyl 

acetate, hexane. 

 

5.1.3   IMPACT OF SUBSTITUENT ON ABSORPTION AND 

EMISSION SPECTRUM 

The nature of the substituent present on the PAHs impacts the spectrum. The substituent is 

either electron donor or electron acceptor influences the emission and absorption spectrum. 

The amino (NH2) present on naphthalene and anthracene is electron donating in nature. As 

we studied in literature survey that electron donating substituent decrease the Stokes shift 

value due to extended conjugation.  

From fig. 5. and fig 5.1.2. it is understood that absorption maxima of naphthalene in DMSO 

and acetone decreases as substituted with amino group. Stokes shift also decrease in case of 

amino substituted naphthalene. In case of anthracene, the effect is not so pronounced. 

Fig. 5.2 and fig. 5.2.2 shows the blue shift in emission intensity i.e. emission intensity 

decreases take place due to the presence of amino substituent in naphthalene. The same 

behaviour of decrease in emission intensity is observed in case of anthracene and amino-

anthracene.  
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From fig. 5.2.1. and fig. 5.2.3, it is seen that due to addition of amino group, some extra 

peaks or shifts are detected due to conjugation.  
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CONCLUSION 
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In this paper, we reported the structures of PAHs, effects of PAHs on human and aquatic 

organisms and the photophysical characteristics of PAHs. PAHs photophysical 

characteristics like water solubility, vapour pressure and boiling points depends on the 

number of fused rings present in PAHs. Boiling point ranges increase with increase in 

benzene rings while water solubility and vapor pressure decrease with increase in benzene 

rings. The effect of solvent polarity at low polarity (hexane), intermediate polarity (acetone, 

ethyl acetate), and high polarity (DMSO) solvents on emission and absorption spectrum of 

naphthalene and anthracene is explained in detail. Alongside with it, substituent present on 

PAHs also influence the emission and absorption spectrum. The results obtained show that 

solvent polarity and nature of substituent play very crucial role. As the solvent polarity 

increases, naphthalene, anthracene and their derivatives depict the positive 

solvatochromism. With increase in dipole moment, charge transfer interactions and H-

bonding, the Stokes shift of absorption maxima and emission maxima increases. The 

electron donating and electron withdrawing effect of substituent influences the absorption 

spectra and emission spectrum, decrease and increase the Stokes shift value respectively.  
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