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Examining ML algorithms for Parkinson’s detection through speech
datasets: A comparative analysis

Shikha Kadyan

ABSTRACT

Parkinson's disease or PD, the most well-known neurological condition impacting the
human neurological system, causes dopamine-producing neurons in the midbrain to
degenerate. It is a primary concern to detect PD in its early stages to slow down its
progress by engaging patients in early medical therapies and foster a better quality of
life for them. Although new research appears to indicate that majority of the PD
patients experience speech impairments in the early stages of the disease, the primary
impacts of PD are on motor and cognitive function. Within the framework of this
study, a number of machine learning (ML) models, including Principal Component
Analysis (PCA), Random Forest (RF), Gaussian Naive Bayes (GNB), K-Nearest
Neighbours (KNN), Decision Tree (DT), Logistic Regression (LR), Extreme Gradient
Boosting (XGB), and Support Vector Machine (SVM), have been comparatively
analysed on two different speech datasets consisting multiple attributes, using three
different approaches for classification. The models were assessed and evaluated, for
their efficiency in PD classification, using different scoring metrics such as accuracy,
precision, recall, and F1-score. Here, we discovered that the XGB and SVM models
of the second approach—where the data was oversampled—were the most efficient
models. XGB demonstrated 98.30% accuracy and 96.67% precision with Dataset |
while SVM achieved 97.8% accuracy and 99.1% precision with Dataset 2. They also
depicted maximum area under the curve for ROC curve, highlighting their capability
to discriminate between true positives and true negatives. The highest degree of
accuracy and precision in the early detection of PD has been rendered attainable by
ML algorithms. When trained on an extensive set of data, these additionally possess
the potential to offer 100% accuracy, or clinical-grade accuracy, through hyper-
parameter optimisation.
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CHAPTER 1

INTRODUCTION

A neurological condition that progresses over time, PD is typified by a
broad spectrum of motor and non-motor symptoms. Tremors, rigidity of the muscles,
bradykinesia, and unsteady posture constitute typical motor symptoms [1]. The
principal molecular mechanisms of PD include misfolding and clumping of a-
synuclein proteins; malfunctions in the energy-producing mitochondria of the cell;
challenges in eliminating unwanted proteins owing to troubles with the ubiquitin-
proteasome and autophagy-lysosomal systems; nervous system inflammation; and
oxidative stress [2]. Interruptions in the pathways of neurotransmitters such as
dopamine, adrenaline, adenosine, serotonin, and glutamate, further complicate the
symptoms of PD [3], [4]. Early diagnosis is very crucial to hinder its progression and
significantly improve PWP’s lives. It additionally allows patients to engage in
specialized and early treatment plans for enhanced results.

There is an urgent need to introduce novel technologies to ensure early and
accurate diagnosis of PD. Keeping this in mind, Al emerges as a promising
technology, with the capability of generating machines akin to human intelligence for
detecting biological changes. This is achieved by collecting significant data from the
patient and then comparing it with the already available large datasets for analysis,
which allows healthcare professionals to make informed and accurate decisions. The
intersection of healthcare and advanced technological applications has ushered in a
new era in diagnosing and managing diseases, particularly in neurodegenerative
disorders [5]. Patient classification as either healthy or Parkinson's can be done using
ML models, an inexpensive, streamlined, reliable, and efficient approach.

Studies have shown that assessing voice abnormalities can act as a marker
for early PD identification [6], [7]. Reduced intensity, pitch, and monotonous
loudness, as well as decreased tension, tense silence, rapid speech bursts, erratic
tempo, ambiguous consonant enunciation, and dysphonia, which is characterised by
hoarse and whispering voices, are common speech impairments associated with PD
[8], [9]. It has been estimated that in the earliest phases of the disease, voice and
difficulties with speech impact 90% of Parkinson's patients [ 10]. Given that vocal cord
abnormalities are very easy to quantify and can be evaluated remotely, it can be
beneficial to identify and track these impairments early in PD.
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Therefore, this study aims to investigate numerous ML models for the
early detection of PD utilising different approaches and two speech datasets, Dataset
1 comprising 195 voice recordings and 22 variables, while Dataset 2 comprising 756
voice recordings and 754 variables . The findings show that the XGB and SVM models
outperforms all other models in terms of performance accuracy, post-training on 22
characteristics using over-sampled data i.e., the second approach used in the
methodology. XGB displayed an impressive accuracy of 98.30% and precision of
96.67% with Dataset 1, while SVM achieved 97.8% accuracy and 99.1% precision
with Dataset 2.
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CHAPTER 2

LITERATURE REVIEW

2.1 Neurodegenerative Disease

The term "neurodegenerative diseases (NDD)" encompasses an umbrella
of diseases such as PD, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS),
Huntington's disease (HD), among others, wherein the nervous system's structure and
function gradually deteriorate, impairing movement, cognitive function, and other
neurological operations. Based upon the location in the brain where the loss of neurons
is taking place, specific disease can be identified by their specific manifestations.
Usually, there is a clear correlation between the degree of neuronal death and the onset
and development of clinical manifestations. In AD, neuronal loss occurs early in the
hippocampus, impacting memory formation, while in PD, symptoms like tremor,
movement sluggishness, and imbalanced body posture typically appear after
substantial loss of dopamine generating neurons in the substantia nigra (SN). Protein
aggregates, such as o -synuclein in PD, huntingtin protein in HD, TAR DNA-binding
protein 43 in ALS and amyloid-beta plaques in AD, serve as a distinctive
characteristic for NDD [11-13]. These aggregates cause disruptions of regular cellular
functions and are implicated in the malfunction and demise of neurons. Other
pathological mechanisms such as inflammation in the brain, excitotoxicity of
glutamate receptors, oxidative stress, and mitochondrial dysfunction that leads to
impaired calcium homeostasis and ATP production, further aggravate the neuronal
and brain damage, hastening the advancement of NDDs [14], [15]. The predominant
risk-enhancer contributor for NDD is age, individuals aged 45 years and above are
more vulnerable to NDD. It is revealed that an individual's genetic constitution, way
of living, and environment also contribute to risk enhancement [16-18]. Genetic
abnormalities may occur via various mutations or by altering the regulation of some
key genes. Environmental factors such as pollutants, exposure to toxins, brain injuries,
and the way of living further modulate the disease onset and advancement [19].
Diagnosing NDDs in the preliminary stages can be very challenging, as these are
marked by only a few common symptoms such as mobility problems, behavioural
changes, and cognitive impairments. Therefore, it is necessary to comprehend all these
factors thoroughly to diagnose NDD and develop novel treatment plans. Making
noteworthy changes in the lifestyle, such as a healthy diet, regular yoga and exercising,
and regular cognitive activities, could significantly manage NDD symptoms and
enhance the well-being of the patients. R&D advancements have paved the way for
researchers to delve more into novel approaches such as gene therapy, stem cell
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therapy, protein targeting therapy, brain simulation techniques and discovering more
neuroprotective agents. [20], [21].

2.2 Parkinson’s Disease

The 2nd most prevalent NDD, Parkinson's disease (PD) is epitomised by
a gradual diminishment of dopamine- generating neuronal cells in the SN pars
compacta of the midbrain. Dopaminergic neurons loss in PD brain results in a decline
in dopamine levels, a neurotransmitter that regulates motor functions, enthusiasm,
cognitive functions, memory, and other processes. The reduction in dopamine levels
in the PD brain is the root cause for deficiency in motor functions and may also be the
cause for decline in cognitive functions that some PWP perceive. PD involves
multiple neuronal networks and various organs, including the adrenal glands, heart,
skin, and retina. It is characterized by the widespread presence of abnormal protein
aggregates called a-synuclein-containing Lewy bodies and Lewy neurites within cells
and initial signs of pathology often appear in the olfactory bulb and gastrointestinal
tract [22]. The motor symptoms associated with PD such as rigidity in the muscles,
bradykinesia, imbalanced posture, and resting tremor are collectively referred to as
parkinsonism [23]. PD advances in stages, beginning with moderate symptoms
emerging only on one side of the human body and progressing to bilateral symptoms,
significant issues related to balance and coordination, severe symptoms seeking aid,
end-stage mobility impairment, and cognitive decline [24]. There is a substantial gap
in the emergence of clinical symptoms in PD from the time that cells in vulnerable
nervous system nuclei are first damaged. Typically, PD symptoms and signs do not
appear until 70-80% of dopaminergic neurons have been lost [25]. It is crucial to
stumble upon reliable molecular biomarkers in order to diagnose PD, gauge its
progression, and assess the efficacy of current treatments. The four main categories of
these biomarkers are genetic, biochemical, imaging, and clinical. PD typically appears
in elderly individuals, genetic variations may manifest in younger patients, genetic
variations may manifest in younger patients. By 2030, the prevalence of PD is
expected to increase by almost 30% owing to the increase in aging population [26].
Although there is no known cure for PD, but individuals affected with PD can
significantly improve their quality of life and alleviate their symptoms with the aid of
timely interventions in treatments such as medication, physical therapies, along with
deep brain stimulation [27].

2.3 Role of Al in NDD diagnosis

The co-relation between neuroscience and Al is inextricably linked, with
Al offering a broad spectrum of applications across different domains, all aimed at
endowing machines with human-like intelligence to effectively perform complex tasks
such as speech recognition, gaming, autonomous driving, intelligent traffic
management, robotic surgery, image and video analytics, natural language processing

(% Scanned with OKEN Scanner



(NLP), and more. Simultaneously, neuroscience, by studying the structure and
functionality of the brain, contributes to the efficient detection and diagnosis of various
neurological disorders. Among the innovative approaches gaining prominence are ML
and deep learning (DL) techniques. These computational methodologies have
demonstrated remarkable potential in revolutionizing the diagnosis of NDD, offering
a paradigm shift from traditional diagnostic approaches [28-30]. NDDs like AD and
PD (among many others) hamper the victim’s quality of life and often lead to
discomfort and a challenging life, both for the patient and the caretaker(s). Therefore,
correct diagnosis at the appropriate time 1s a pre-requisite for the treatment course of
any ailment to ensure maximum help from the healthcare staff. ML algorithms
designed for disease detection are computational models that analyze medical data to
identify indications of diseases at an early stage, potentially preventing severe
outcomes. Over the last decade, advancements in technology have facilitated the swift
collection of extensive patient data, including ultrasonography and MRI results, omics
profiles from biological samples, electronically recorded clinical, behavioural, and
activity data, as well as information sourced from social media [31]. These large health
datasets are characterized by high dimensionality, indicating that the number of
features or variables documented per observation may occasionally surpass the total
count of observations [32]. By leveraging the power of algorithms and neural
networks, ML and DL contribute significantly to early detection, efficient
classification, and personalized treatment plans for individuals affected by conditions
such as AD, PD, and other NDD. This exploration delves into the role of ML and DL
in enhancing diagnostic precision, thereby shaping the future landscape of NDD
diagnosis and treatment.

2.4 Different types of Machine Learning techniques

ML algorithms streamline the clinical decision-making procedure by
autonomously categorizing and forecasting the advancement of diseases through
computer-aided diagnosis (CAD) [32]. This replaces the manual interpretation
typically conducted by medical professionals. For example, in medical imaging,
algorithms can analyze intricate patterns within images to identify anomalies,
providing efficient and rapid diagnostic support. By automating the classification and
prediction tasks, ML not only expedites the decision-making procedure but also
reduces the risk of human error. ML comprises diverse methodologies, and it can be
categorized into three fundamental types (as illustrated in Fig. 2.1): Supervised,
Unsupervised and reinforcement Learning [33].

Supervised ML: In this, algorithms are trained on labelled dataset,
signifying that each input is matched with its intended or desired output. Healthcare
experts annotate datasets with specialized human input, including Neuropsychologists
for cognitive assessments, Neuroscientists and clinicians for CSF biomarkers or tau
protein, and Radiologists for MRI scans. The algorithm identifies features, links them
to labels, and predicts new labels for unlabelled data by considering recent input
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features [34]. Two fundamental categories of supervised ML methods include
classification and regression [35]. Classification algorithms, like DT, SVM, naive
Bayes, KNN, and ensemble classifiers, predict categorical responses in areas such as
medical image processing or speech recognition [36]. On the other hand, Regression
algorithms like linear and LR, support vector regression, and ensemble methods, are
tailored for predicting continuous output variables, such as forecasting the rate of
cognitive decline over time [37]. Collectively, classification and regression contribute
to identifying patient subgroups, clustering similar areas in data, offering insights into
personalized patient profiles, and enhancing targeted healthcare interventions.

Supervised Learning Unsupervised Learning Reinforcement Learning

Patients Data Labels

66 O iy
86 & il

~[]| Input Data

l Heterogeneous gl .
patient population cat g
. [ Select and
) implement ] )
Model Training Insufficient
Data, Dynamic
Conditions,
Ambiguous
Symptoms,
ormal ML Algorithm Inadequate
Features
Effective?
Diseased Biomarker-based
Test Data unsupervised clustering
o 0 O 9 o 00 [ ]
Assessment,
| Reward/Penalty
Diseased Normal
Output Cluster 1 Cluster 2
Fig. 2.1: Different types of ML techniques: supervised, unsupervised and
reinforcement

Unsupervised ML: Unlike supervised ML, unsupervised learning
examines datasets without predefined labels, operating autonomously through a data-
centric approach, without requiring human intervention [38]. It utilizes clustering
algorithms to categorize individuals based on similarities in medical images (MRI,
PET) or biomarkers, exposing distinctive disease patterns [39]. Simultaneously,
methods for reducing dimensionality of the dataset such as Principal Component
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Analysis (PCA) help visualize complex data [40]. PCA transforms dimensionality
(higher to lower) of the dataset while conserving the dataset’s key attributes. In a study,
researchers proposed an ML approach for PD diagnosis using data partitioning and
PCA for feature selection. The LR algorithm, SVM with GNB, and weighted KNN
classifiers demonstrated lower accuracies compared to the integrated approach
involving classifiers, data partitioning, and feature selection, showcasing the efficacy
of PCA in classification [41].

Semi-supervised learning: This blends aspects of supervised and
unsupervised learning [42]. Initially, the algorithm learns from small labelled data sets
and refines predictions. It then leverages the broader insights from unlabelled data to
enhance overall performance .

Reinforcement learning: In this, machines or software agent develop
decision-making abilities by engaging with their environment. As they explore
through trial and error, these agents obtain feedback in the form of a reward or penalty
[43]. This process supports adaptive behaviour, fostering continuous improvement
over time. For instance, an agent, representing a diagnostic system, learns from patient
data such as brain imaging, genetic markers, and clinical history, receiving rewards
for accurate predictions and penalties for errors, optimizing its ability to identify
disease [44].

2.5 ML algorithms

ML algorithms forms the backbone for developing models that learns from
the dataset to make prediction for disease classification. Some of the important
algorithms used in this thesis are:

Support Vector Machine: SVM seeks to determine the optimal
hyperplane that effectively segregates the datapoints of different classes for
classification purpose [45]. The optimal hyperplane is the one that enlarges the margin
between different classes, as depicted in Fig.2.2. The datapoints nearest to the
hyperplane are regarded as support vectors. SVM employs kernel trick to handle non-
linear datasets, which involves mapping the dataset into a higher dimensional space
which offers the possibility of linear separation [46], [47]. It is well renowned for its
versatility, memory efficiency and effectiveness in handling high-dimensional datasets
proficiently.
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Fig. 2.2 : SVM linear classifier

Logistic Regression: LR is a statistical technique employed for
classification tasks that simulates the likelihood or probability of a binary outcome
depending upon one or more predictor elements or variables [48], [49]. The resulting
probability is constrained to lie between 0 and 1. Fig. 2.3 illustrates the S-shaped curve
of LR. This technique employs the sigmoid function for modelling the relationship
between dependent and independent variables. It is recognized for its simplicity and
probabilistic output.

T
«—— S curve

I'hreshold value

v

X

Fig. 2.3 : Logistic regression curve

K-nearest neighbours: KNN is a non-parametric algorithm that lacks an
explicit training phase. KNN works on the principle of “similarity” [50]. It assigns a
class to ta new datapoint by considering the class of ‘k” neighbours in the proximity.
Thus, selecting an optimal ‘k’ value is crucial for achieving superior performance.
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Euclidean distance is typically used for measuring the similarity with the neighbours
[51]. Fig. 2.4 illustrates an example of new data point classification using KNN.

K=5\ e o o o
Y ee : y KNN e '. L
o of —ClssB =P o o o% —ChasB
: ® ®e
" New data e New data
point point assigned to
\ \ Class B
Class A Class A

Fig. 2.4 : Classification of a new data point using KNN

Decision Tree: It a highly versatile algorithms that operates by
partitioning the dataset into subsets recursively, generating tree like structures
ultimately [52], [53]. Each internal node signifies a choice made in compliance with
target value and each terminal or leaf node signifies the anticipated outcome [54]. Fig.
2.5 illustrates the framework of DT. It is highly crucial to select an optimal feature at
every node in order to achieve the best performance. Information gain is used as a
measure to check the effectiveness of the model. DT employs pruning technique to
mitigate over-fitting problems.

Condition ——
Decision Node

Sub- Root
" Node
free e Alternatives
| [ 1
Decision Node Decision Node
Leaf Leaf Leaf Decision Node
outcomes —.
Node Node Node
Leaf Leaf
Node Node

Fig. 2.5 : Framework of Decision tree
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Random Forest: RF algorithm develops and aggregates a multitude of
DTs for outcome prediction [55]. Each DT is developed by utilising a random subset
of the training data. RF basically employs “bagging” technique i.e., bootstrap plus
aggregation [56], [57]. Accumulation of more number of DTs boosts up the
performance of the RF model, as depicted in Fig. 2.6. It is well known for its accurate
predictions, scalability and robustness to overfitting.

Training Data

— T

T T
ARAX KNAR " KAAN

lMajurity Voting

QOutcome

Fig. 2.6 : Framework of Random Forest

Extreme Gradient Boosting: XGB is widely known as the ‘gold
standard” of ensemble learning. It operates by generating multiple DTs in a series
manner and consecutively rectifying the errors of its predecessors by employing an
optimisation technique regarded as gradient descent [58], [59]. Then a powerful
predictive model is constructed by clustering all the DTs together. XGB has a unique
method of mitigating over-fitting issues, which involves pruning, regularisation terms
as well as learning rate. Some other exceptional characteristics of this algorithm are
high accuracy, capability to handle large and missing datasets, and parallel processing.

Gaussian Naive Bayes: GNB, a probabilistic classifier, presumes that
each feature is independent of other and determine the class of a new datapoint based
on this assumption [60]. It operates calculating the likelihood that the data point
belongs to each class and then assigning the most likely class to the new data point[61].
GNB is recognised for its easy implementation, scalability and proficient
computational efficiency.

Principal Component analysis: PCA is based on the principle of
“orthogonal transformation” which generates new set of features referred as
component features [62], [63]. These new features are the linear combination of the
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original features based on the variance they account. PCA basically reduces the
complexity of the dataset by extracting key features. Thus, it is highly critical to choose
the optimal number of key features for attaining proficient results.

2.6 NDD related data types used by ML algorithms

In numerous neurodegenerative conditions like AD, PD, and motor neuron
disease (MND), symptoms often remain latent until a significant neuronal loss has
transpired, posing a substantial challenge for early diagnosis [64]. Therefore, there is
an increasing interest in leveraging ML models for early detection within the research
community [65]. In this section, the major data types related to NDDs (for example —
Magnetic Resonance Imaging (MRI), Electroencephalogram (EEG), Biomarker
studies, etc.) will be discussed briefly. These data types are then used for ML models
training for disease classification.

Neuroimaging: Diagnosis of NDDs posing a great challenge of
undetectability is often conducted with the help of neuroimaging techniques such as
MRI, CT, and PET scans. Various quantification methods offer complementary
insights, and therefore, optimal outcomes are achieved by employing multiple
quantification techniques. The findings of [66] indicate the feasibility of automatic
quantification methods and computerized decision support systems in clinical practice.
They furnish comprehensive information that could aid clinicians in the foreseeable
future. Research has been conducted to perform differential diagnosis of NDDs using
structural MRI data [66], most investigations into distinct NDDs utilizing structural
MRI predominantly rely on visual ratings for characterization [66-70], volumetry [68],
[71-74] and morphometry analysis [66], [72], [75-81]. In a separate study [82], PD was
targeted for diagnosis using an ML-based framework of neuroimaging. In diagnosing
Parkinsonism, two primary considerations involve distinguishing between conditions
causing tremor without the deficiency of dopamine (e.g., essential tremor or dystonic
tremor) and those leading to an akinetic-rigid syndrome, like multiple system atrophy
(MSA) or progressive supranuclear palsy (PSP).

Cognitive performance tests: A cognitive performance test in the realm
of NDDs is a thorough assessment devised to gauge multiple aspects of cognitive
function, encompassing memory, focused attention, executive function, language, and
visuospatial skills, among others [83]. These tests typically comprise a series of
standardized tasks, exercises, or queries aimed at evaluating different cognitive
domains. Examples of tasks may include recalling lists of words, solving puzzles,
following instructions, naming objects, drawing specific shapes, and performing
mathematical calculations. The outcomes of these assessments furnish valuable
insights into an individual's cognitive strengths and weaknesses, as well as any
impairments or deteriorations in cognitive function indicative of a NDD. For instance
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a study offers initial evidence indicating that performance metrics collected via
webcam, utilizing Al algorithms to capture gaze and facial expression data, can
reliably identify individual and group disparities in neurobehavioral function [84].

Motor performance tests: The majority of NDDs experience motor
deficits at certain phases. Symptoms of motor impairment include muscle spasms
extrapyramidal stiffness, bradykinesia, and gait problems including slowing down or
being careful when walking [85]. More attention is being placed on diagnostic
methods, as well as the creation and selection of therapies that address motor
impairments and the ensuing constraints on activities, without categorising individuals
based solely on medical diagnoses [86]. Tests that evaluate various aspects of motor
control and coordination, for instance Imple Reaction Time, Choice Reaction Time,
Movement Time, Fitts' Law tasks, and thorough gait analysis, can be used to assess
these impairments [87]. Then the Key aspects including response times, mistake rates,
and gait patterns are extracted from the data generated from these tests through a
thorough analysis.

EEG: The EEG has emerged as a valuable diagnostic and research tool for
dementia, particularly in the context of AD. It aids in both the differential diagnosis
and prediction of disease progression. It can be challenging to diagnose AD as its
symptoms are similar to other age-related cognitive variations. Therefore, health
professionals must conduct a meticulous evaluation to rule out possibilities of other
conditions. This can be achieved by conducting comprehensive tests, neurological
examinations, blood tests, imaging scans, spinal fluid tests, and psychological tests
like mini-mental state examination. EEG signals in patients with dementia often have
less intricacy and fewer functional associations, as revealed by non-linear dynamic
EEG data analysis. This highlights the potential of EEG for diagnosing and monitoring
dementia-related brain function variations.

Transcriptomic data: Transcriptomics involves the examination of RNA
transcript levels by employing microarray technology. RNA microarrays, usually
consisting of known sets of transcripts, are utilized for this objective [88], [89].
Research in transcriptomics has assisted in characterizing genes with differing
expressions and understanding critical biological processes and pathways,
significantly aiding neurodevelopmental studies. This progress has fostered the
assessment of NDDs from a perspective of transcriptomics, enhancing our
comprehension of these conditions. The outcomes of transcriptomics studies aid in
developing personalized medicines, and gene therapy, and discovering distinct
biomarkers for every illness [90]. RNA sequencing is crucial for diagnosing
individuals with NDD who haven’t received a genetics diagnosis before [91]. Several
algorithms have been used for conducting mRNA analysis for diagnosing NDDs.
FRASER stands out as a newly devised algorithm designed to detect anomalies in
mRNA splicing with a high degree of precision [91], [92].
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Biomarker data: Genetic biomarkers serve as crucial indicators of
diseases, rooted in the variations found within an individual's DNA sequence [93].
These variations, commonly referred to as genetic polymorphisms, have the aptitude
for influencing the expression or functionality of specific genes, potentially
heightening an individual's susceptibility to NDDs. Biomarkers play a critical role in
aiding the diagnosis of NDDs, especially in the early stages where symptoms may not
be readily discernible. One such example is the utilization of imaging techniques to
observe brain changes, aiding in the diagnosis of AD [93]. Researchers are actively
investigating specific biomarkers present in blood or cerebrospinal fluid that could
facilitate the early identification of various disorders. Measurement of protein
concentrations in the cerebrospinal fluid is one avenue being explored to assist in
diagnosing illnesses [94-96].

Metabolomic data: Metabolomics is an area of science that's growing
quickly. It's all about studying the small molecules in cells, tissues, organs, or whole
organisms [97], [98]. These molecules are like unique signatures that tell us a lot about
how cells work and what's happening inside them [99], [100]. Metabolomics has
shown promise in helping diagnose PD, assessing the likelihood of family members
developing it, measuring how drugs work in the body, and making drug development
more efficient. Currently, researchers have identified fifty-six metabolites linked to
PD in the Human Metabolome Database [101]. Moreover, a unified analysis of
metabolomics and proteomics has revealed disruptions in the metabolism of lipid,
including an activated metabolism of sphingolipid and reduced apolipoproteins in the
plasma of PWP [101], [102].

2.7 Speech impairment as a biomarker for early PD diagnosis

Early and accurate differential diagnosis of NDDs is crucial for several
reasons. Firstly, research indicates that early diagnosis, when paired with existing
treatments, can significantly delay the advancement of the disease and alleviate the
need for hospitalization [66], [ 103]. Furthermore, as potential disease-modifying drugs
are developed, the significance of early diagnosis is expected to increase even further
[104]. Secondly, developing new treatments necessitates the precise identification of
target populations at an early stage. It has been suggested that the failure of certain
pharmaceutical trials in the past could be attributed to the inclusion of overly
heterogeneous study populations. Therefore, early and accurate diagnosis plays a vital
role in both enhancing patient outcomes and facilitating successful clinical research
aimed at developing novel therapies for NDDs [66], [105]. PD has five stages of its
progressions and most symptoms remains latent until many neurons has been
degenerated. But according to research, stage 0 of PD is marked by vocal cord
impairment in more than 90% PD affected individuals. Dysfunctions in the speech
mechanisms during any of the basic motor processes necessary for producing speech
give rise to speech disorders [106]. In PD, lack of coordination of the muscles
producing sound or impaired vibratory activities of vocal cords could be the reason
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behind phonetic impairment [107]. Abnormalities such as poor articulation, shaking
or hoarseness, altered frequencies, diminished quality of sound, decreased rhythm,
absence of emotional expressivity, and fluctuations in tone, are the common
characteristics of speech impairment [108]. In today’s digital era, it is quite easy to
measure the voice abnormalities using voice recordings from digital devices or smart
phones. These recordings can then be analysed by healthcare professionals for PD
detection using automated technologies for higher accuracy. Following detection,
doctors can then halt the course of PD by reactivating dopamine-producing neurons in
the brain by deep brain stimulation or pharmaceutical therapies ensuring better quality
of life for patients. This method can have vital applications in telemedicine,
revolutionizing the delivery of medical services in remote areas. There is no cure for
PD presently owing to its complex nature, but early medical interventions could help
patients to live a normal life.

2.8 Revolutionizing traditional diagnostics with Al innovations

Interpreting medical images, including X-rays, MRI, and CT scans
requires a more sophisticated approach than basic equations, as medical imaging
diagnoses need to be learned through dedicated training processes. The ML and DL
algorithms learn by examining training data and generating predictions when
presented with new data, providing enhanced precision and reliability compared to
conventional manual interpretation, particularly when managing large datasets [109-
113]. Thus, Al models demonstrate efficiency in analyzing extensive imaging data and
identifying nuanced patterns, anomalies, and structural changes that might not be
immediately discernible to human observers [114]. The heterogeneity in NDD
presents challenges in understanding and treatment due to diverse manifestations and
disease trajectories among individuals, complicating efforts to decipher common
mechanisms and develop targeted treatments [115-117]. ML can anticipate the
trajectory of the disease and possible new symptoms, which might not be apparent to
humans. It also provides flexibility in the healthcare industry, independent of
predetermined rules and assumptions [118], [119]. To detect subtle alterations, it can
potentially analyze distinct data types such as medical scans, voice recordings, clinical
records, and molecular profiles [120], [121]. For instance, ML algorithms can detect
impaired cognitive issues by spotting minute changes in how an individual remembers
things over time or by recognizing variations in speech attributes such as the
pronunciation of vowels, fundamental frequencies, fluency, and many more [122],
[123]. 1t also assesses individuals' performance in tasks like attention and problem-
solving, furnishing physicians with richer insights beyond self-reported symptoms
[124]. Al has the capability to discern novel molecular biomarkers associated with the
pathology of NDD, by evaluating the multi-omics data from large-scale studies.
Conventional methods typically consider only a small group of individuals with
limited attributes, resulting in oversimplifying the complexities of NDD. Subtype and
Stage Inference (SuStaln), an ML method, overcomes this problem by taking into
account diverse data of patients to determine different phenotypes of the disease and
advancement in stages. In a study SuStaln successfully identified different groups and
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their unambiguous brain degeneration pattern, affirming its potential to categorize
different subtypes in genetic frontotemporal dementia [ 125]. The fusion of IoT and Al,
especially ML, has revolutionized the healthcare industry. [oT sensors are capable of
tracking individuals, monitoring the activity of patients, and predicting their health
status. This technology generates vast amounts of medical data, predicts disease, and
enables real-time monitoring of patients [126]. To meet the rising demand for remote
healthcare, an ML-based application, utilizing sensors and Al, known as AloMT
(Artificial Intelligence of Medical Things), has been developed [127]. In the face of
disease progression, changing patient dynamics, and limited specialist availability, ML
and DL models present encouraging solutions to address diagnostic challenges [128].

2.9 AI-ML tools in Telemedicine

Telemedicine refers to any medical activity that happens when the doctor
and patient are not in the same place. This could include talking over the phone, video
calls, or using other communication tools. It's been around for a long time, like when
doctors used radios to advise to ship captains far out at sea. As diseases like NDDs
progress, patients' motor and cognitive functions keep getting worse over time. This
makes it really hard for them and their caregivers to travel to hospitals for medical
help. Things like not having good transportation, living far away from hospitals, and
not having enough money can make this even harder. So, keeping in touch between
patients and doctors becomes a big problem for giving care, keeping track of the
disease, and helping out when needed. This is where telehealth and telemedicine come
in handy. Telehealth means using electronic devices to give health services. In this
case, it can help make sure patients with long-term NDDs get consistent care.
Telehealth includes things like telemedicine, which is having appointments with
doctors over video calls, tele-coaching, and telecare [129]. Telemedicine has been
proven to help manage patients with dementia. It allows doctors to monitor the
progression of the disease by giving cognitive tests and staying in touch with patients
virtually. This became especially important during the recent COVID-19 pandemic
when regular visits to hospitals were difficult. ML algorithms can be utilised for
remotely analysing MRI scans for AD pattern detections, motor symptoms for PD
[130], and movement and sleep patterns in HD. This will allow for early diagnosis and
personalised treatments in order to enhance patient care and results in remote areas.
Patients and caregivers find telemedicine convenient, especially when they can fill out
questionnaires on their own. However, it can be challenging for some patients who
may not have access to or know how to use technology, especially those living in long-
term care facilities.
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CHAPTER 3

METHODOLOGY

3.1 Data extraction

The two speech datasets were extracted from ML repository of UCIL. The
first dataset comprised 195 voice recording with 24 different voice attributes or
features such as shimmer, jitter. MDVP, fundamental frequency and many more. Out
of 195 voice recordings, 147 belonged to Parkinson’s patients and 48 to normal
individuals, represented as 1 and 0 respectively in the “status” column. On the other
hand, the second dataset comprised 756 voice instances each with 754 attributes such
as PPE, DFA, RPDE, TWQT features and many more. Out of 756 instances, 564
recordings belonged to Parkinson’s patients (107 men and 81 women) and 192 to the
control group i.e., normal individuals (23 men and 41 women), represented as 1 and 0
respectively in the “class” column. The microphone was pre-set to 44. 1KHz frequency
for audio capturing and continuous vocalisation of the vowel by each subject was
recorded thrice.

3.2 Datasets Pre-processing

Both the datasets underwent pre-processing in order to clean the data,
handle missing values and have elaborate understanding for the datasets and the trends
in their features. Correlation heat map was generated each dataset to have an
understanding of correlation between different attributes. Next, the feature (X) and
target (Y)) were separated. Feature variable comprised all the attributes except for name
or id, status or class and target variable comprised “status” or “class”. Subsequently,
each dataset was segmented into training and testing subsets.

3.3 Model Training

Seven different ML algorithms, comprising SVM, LR, KNN, DT, RF,
GNB, and XGB, were used as ML models and underwent training using training
dataset.
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3.4 Model assessment

Post training, the efficiency of each model was assessed using the testing

dataset.
Dataset Data Separating
Preprocessing ——p features (X)
and target (Y)

hree approaches

Zl l3

SMOTE 1
(over- (selecting key
sampling) features)

|—) Split Data (—l

l (Ratio=8:2) l

Training Testing
Data Data
Training Model
Models Assessment —> Accuracy
l L—3 Precision
Model —> F1-score
Evaluation
—> Recall
—> ROC curve
L3 Confusion
Matrix

Fig. 3.1: Outline of the methodology
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3.5 Model evaluation

The effectiveness of each ML model was evaluated by employing scoring
metrics such as accuracy, precision, recall, F1 score, ROC curve and confusion matrix.
The formulae for these scoring criteria are shown in Equations 3.1-3.4. True Positives
(TP), True Negatives (TN), False Negatives (FN), and False Positives (FP) are the
terms in the metrics equation.

P8 /i
Precision = (3.1
TP+FP
TP+TN
Accuracy = ————— (3.2)
TP+FP+TN+FN
TP
Recall = (3.3)
TP+FN
Precision.Recall 2TP
Fl=2—— = (3.4)
Precision+Recall 2TP+FP+FN

ROC curve is the graphical portrayal of the performance. It plots true
positives rate (TPR) against the false positives rates (FPR). Their formulae are
depicted below in equations 5 and 6 respectively. Best model will showcase highest
area under the curve (AUC) and higher TPR for a lower FPR.

3.6 Three main approaches

As illustrated in Fig. 3.1, three different approaches were employed during
the methodology for each datasets and are described below in detail:

Approach 1: Training the ML models on complete datasets

e Retrieval of audio dataset from UCI website

e Conducting datasets pre-processing to handle missing values, duplicates and gain
understanding about attribute patterns. Dropping the columns “name” and “status™ in
dataset 1 and “id” and “class” in dataset 2.

e Partitioning the dataset into 2 subsets: 80% as training subset and 20% as testing
subset

e Standardize the features of training subsets using StandardScaler from the scikit-learn
library
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e Utilise the data to train ML models
e Assessing and evaluating model performance using various scoring metrics

Approach 2: Over-sampling of the dataset

® Retrieval of audio dataset from UCI website

e Conducting datasets pre-processing to handle missing values, duplicates and gain
understanding about attribute patterns. Dropping the columns “name” and “status’ in
dataset 1 and “id” and “class™ in dataset 2.

e Employ SMOTE (Synthetic Minority Over-sampling Technique) from the imlearn
library to rectify the imbalance in the number of voice recording for normal and PD
patient. Overs-sampling both the classes to equal number of recording, 294 recordings
for each class in dataset 1 and 1128 recordings for each class in dataset 2

e Partitioning the dataset into 2 subsets: 80% as training subset and 20% as testing
subset

e Standardize the features of training subsets using StandardScaler from the scikit-learn
library

e Utilise the data to train ML models

e Assessing and evaluating model performance using various scoring metrics

Approach 3: Training the ML models on 5 key features extracted by PCA algorithm
e Retrieval of audio dataset from UCI website
e Conducting datasets pre-processing to handle missing values, duplicates and gain
understanding about attribute patterns. Dropping the columns “name” and “status™ in
dataset 1 and “id” and “class™ in dataset 2.
e Use PCA to identify the top five features from all of the characteristics for model

training

e Partitioning the dataset into 2 subsets: 80% as training subset and 20% as testing
subset

e Standardize the features of training subsets using StandardScaler from the scikit-learn
library

e Utilise the data to train ML models
e Assessing and evaluating model performance using various scoring metrics
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Findings of approach 1 : Training models on entire dataset

The dataset was partitioned into two subsets, training and testing, in a
ratio of 8:2. Followed by data standardization and model training. Performance of the
models are evaluated using scoring metrics.

Table 4.1: Results of scoring metrics of ML models trained on dataset 1 and 2
in approach 1
ML models

Metric SVM LR DT RF  KNN GNB  XGB
Dataset 1

Accuracy 0949 0872 0795 0974 0923 0692  0.949

Precision 0964 0871 0857 0966 0963 0944 0933

Recall 0964 0964 0857 1000 0939 0607  1.000

Fl-score 0964 0915 0857 0982 0945 0739 0966
Dataset 2

Accuracy 0914 0867 0816 0908 0868 0803 0921

Precision 0932 0944 0900 0911 0900 0922 0941

Recall 0957 0879 0853 0974 0931 0810 0957

F1- score 0.944 0.911 0.876 0.942 0.915 0.862 0.949

The performance metrics of ML models across two datasets in approach 1
are presented in Table 4.1. For dataset 1, RF model standout as the best model with an
impressive 97.4% accuracy, 96.6% precision and recall of 1.00, highlighting its
excellence in classification tasks. 'Auto' for maximum features, 225 estimators,
maximum depth of 8, and 'entropy' as the criterion are the best hyperparameters for
this model. SVM and XGB rank as the second most effective models, each
demonstrating an accuracy of 94.9% and F1-score of 0.96. KNN also performs well
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with 92.3 % accuracy, 96.3% precision and Fl-score of 0.945. GNB model
underperforms all models, with only 69.2% accuracy and 0.607 recall, suggesting its
shortcomings in handling the dataset complexities. For dataset 2, XGB model excels
with 92.1% accuracy, 94.1 precision and Fl-score of 0.949. SVM model closely
follows the XGB model with 91.4% accuracy, 93.2% precision and F1-score of 0.944,
underscoring their reliability. RF model also performs well with 90.8% accuracy and
highest recall of 0.974, indicating its robustness. LR and KNN models exhibits similar
performance in terms accuracy and F1-score. DT and GNB models shows the weakest
performance with 81.6% and 80.3% accuracy, respectively.

Dataset 1
Confusion matrix of RF model ROC curves of all model
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10 3
= Logistic (auc = 0.800)
B . —— KNN (auc = 0.919)
0.2 — DT (auc = 0.747)
S —— XGB (auc = 0.909)
— RFC (auc = 0.955)
0.0 GNB (auc = 0.758)
' -0
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Fig. 4.1: Graphical representation of approach 1 results for
both datasets 1 and 2

Fig. 4.1. above showcases the essential performance visualisation of all the
model across both the datasets in approach 1. Subfigure (a) presents the confusion
matrix of RF model, demonstrating outstanding performance with 28 TP, 10 TN, 1 FP

(% Scanned with OKEN Scanner



22

and 0 FN and subfigure (c) presents the confusion matrix of XGB model, highlighting
its effectiveness, with 111 TP, 29 TN, 7 FP and 5 FN. Subfigure (b) and (d) represents
ROC curves of all models across dataset 1 and 2, respectively. In dataset 1, RF
classifier exhibits the highest AUC (0.955), closely trailed by SVM model with AUC
0f 0.937. This highlights their exceptional performance. XGB also performs well with
0.909 AUC. In dataset 2, highest AUC (0.881) is achieved by XGB model, followed
by SVM model with AUC of 0.867. LR and RF models also displays respectable AUC
values of 0.856 and 0.834, respectively, while DT and GNB trails with AUC values of
0.774 and 0.794, respectively.

4.2 Findings of approach 2 : Training models on over-sampled dataset

Table 4.2: Results of scoring metrics of ML models trained on dataset 1 and 2 in
approach 2

ML models
Metric — Symr LR DT RF  KNN  GNB  XGB
Dataset 1
Accuracy 0966  0.864 0898 0949 0932 0864 0983
Precision 1000 0889 0925 0933 1000 0957 0967
Recall 0931 0827 0862 0966 0862 0759 1000
Fl-score 0964 0857 0893 0949 0926 0864 0983
Dataset 2
Accuracy 0978 0934 0841 0942 0876 0810 0973
Precision 0991 0981 0839 0972 1000 0802  0.991
Recall 0966 0888 0853 0914 0758 0836 0957

F1- score 0.978 0.932 0.846 0.942 0.862 0.819 0.973

Results of performance metrics of all models across two datasets in
approach 2 are depicted in Table 4.2, revealing their competencies and weaknesses. In
dataset 1, The XGB classifier model leads with an impressive accuracy of 98.30% and
F-1 score of 0.983, coupled with a perfect recall score of 1.00, demonstrating
exceptional performance on the balanced dataset, surpassing the effectiveness of other
models in terms of classification. The model was optimised using hyperparameters
such as random state set as 300, learning rate of 0.5 and maximum depth at 5. SVM is
yet another a top contender, with 96.6% accuracy and 100%, highlighting its
robustness. RF classifier also performs well with 94.9 % accuracy and 0.966 recall.
LR and GNB models underperforms, each with 86.4% accuracy. In dataset 2, SVM
model still maintains its lead with accuracy (97.8%), precision (99.1%) and F-1 score
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(0.978). XGB model closely follows, sustaining high accuracy of 97.3% and F-1 score
0f 0.973, although with a little lower recall. RF remains a robust model with consistent
94.2 % accuracy and 0.942 F-1 score. KNN also performs well with 100% precision,
but GNB still remains the least effective model.
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Fig. 4.2: Graphical representation of approach 2 results for
both datasets 1 and 2

A comprehensive performance visualization of various models across
datasets 1 and 2 in approach 2 is provided in Fig. 4.2. The subfigure (a) presents the
confusion matrix of XGB model, the best model, in dataset 1 , showing an exemplary
performance with 29 TP, 29 TN, 1 FP and 0 FN. On the other hand, subfigure (c)
showcases the confusion matrix of SVM model of dataset 2, revealing 112 TP, 109
TN, 1 FP and 4 FN. Subfigure (b) and (d) displays the ROC curves of all the models
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in approach2 across datasets 1 and 2, respectively. In dataset 1, highest AUC of 0.983
is achieved by XGB model, highlighting superior performance of XGB in
classification tasks. SVM also performs well with AUC of 96.6. In dataset 2, SVM
model achieved the highest AUC of 0.978, closely followed by XGB model with AUC
of 0.974, indicating their outstanding competence in discriminating between TP and
TN classes.

4.3 Findings of approach 3 : Training models on key features only

The scoring metrics of ML models in approach 3 depicted in Table 4.3
reveals significant difference in their performances. For dataset 1, RF and XGB
models outperformed other models with 97.4% accuracy and 0.98 F1- score each,
highlighting their powerful generalisation expertise and robustness. KNN and DT
model also performs commendably, with 96.4 % and 96.3% precision, showcasing
their ability to effectively handle FP and FN results. For dataset 2, SVM turns out to
be the best model in term of accuracy (88.1%) and F1-score (0.929). It also maintains
high recall across both the datasets, indicating its efficiency in locating pertinent
instances. KNN also performs well with 84.2% accuracy and recall of 0.917. RF and
XGB models displayed similar proficiency in performance with 83.5% accuracy and
precision of 86.4% and 88.7%, respectively. Whereas GNB model underperforms
across both the datasets, suggesting its limitation for handling the complexity of the
datasets.

Table 4.3: Results of scoring metrics of ML models trained on dataset 1 and 2 in
approach 3

ML models
Metric SVM LR DT RF KNN GNB  XGB
Dataset 1
Accuracy 0897 0872 0923 0974 0949 0872 0974
Precision 0962 0871 0963 0965 0964 0960 0965
Recall 0893 0964 0929 1000 0964 0857  1.000
Fl-score 0926 0915 0945 0982 0964 0906 0982
Dataset 2
Accuracy 0881 0822 0737 0835 0842 0690  0.836
Precision 0887 0867 0865 0864 0888 0785  0.887
Recall 0975 0917 0793 0943 0917 0843 0909

F1- score 0.929 0.891 0.827 0.901 0.902 0.813 0.897
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Fig. 4.3: Graphical representation of approach 3 results for
both datasets 1 and 2

Key performance visualisation of all models across both the dataset in
approach 3 is presented in Fig. 4.3. above. Subfigure (a) displays the confusion matrix
of XGB model on dataset 1, revealing 28 TP, 10 TN, 1 FP and 0 FN, whereas subfigure
(c) displays the confusion matrix of SVM model on dataset 1, revealing 118 TP, 16
TN, 15 FP and 3 FN. ROC curves of all models on dataset 1 and 2 are depicted by
subfigures (b) and (d), respectively. The AUC values are particularly noteworthy. In
dataset 1, the highest AUC of 0.955 is attained by RF and XGB models, highlighting
their superior classification ability. KNN and SVM also performs well. In dataset 2,
SVM leads with an AUC of 0.746, followed by XGB at 0.729. Most models witnessed
a decline in performance, with GNB having the least AUC (0.470).
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CHAPTER 5

CONCLUSION

PD is one of the most widespread NDD, with its prevalence increasing
with age. Nearly 10 million individuals are affected PD across globe, typically in older
age groups. It presents significant challenges due to absence of cure. So it becomes
primary concern to diagnose PD in preliminary stages in order to delay or prevent its
progression into a potentially severe conditions. The fusion of healthcare and Al has
marked the commencement of a new era for diagnosing and managing diseases,
particularly NDD. Leveraging the vast amounts of data available today, Al is poised
to revolutionize healthcare by automating diagnosis tasks. ML algorithms designed for
disease detection are computational models that analyse medical data to identify
indications of diseases at an early stage. In this study, we conducted comparative
analysis of seven different ML models, comprising SVM, LR, DT, RF, KNN, XGB
and GNB, utilising two different speech datasets with multiple attributes. Three
different approaches were adopted during the methodology: Conducting model
training on the entire dataset, over-sampling the dataset to equalise the number of
recordings in both the classes, and training the models only on 5 key attributes
extracted by PCA. Outcomes reveal that the SVM, RF and XGB are the most reliable
models, exhibiting superior performance across both the datasets in all the approaches.
Conversely, LR and GNB models exhibited lowest efficiencies in all tests, highlighting
their limitations in handling the complexities of the datasets. It is also observed that
SVM and XGB models performed exceptionally well when trained on balanced
datasets, in the second approach, scoring highest scores in all the scoring metrics. XGB
showcased highest accuracy of 98.3% in dataset 1, while SVM achieved highest
accuracy of 97.8% in dataset 2. Third approach also revealed promising results,
indicating the importance feature selection for model training. SVM and XGB models
has the potential to offer accuracy of clinical level when trained on best hyper-
parameters and large datasets. These could also serve potential application in
telemedicine or remote healthcare, by analysing and interpreting the voice recordings
or other biomarkers captured by patients using smart technologies, enabling early,
accurate and real-time diagnoses and personalized care. Thus enhancing the outcomes
in remote healthcare settings.
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Abstract—Parkinson’s disease (PD) is the most ubiquitous
neurological disease in the globe which affects the human
neurological system. It is a primary concern to detect PD in its
early stages to slow down its progress with proper treatment and
foster a better quality of life for affected individuals. PD
primarily impacts motor and cognitive function, recent studies
also revealed that 90% of Parkinson’s patients encounter speech
difficulties in the preliminary phase of the disease. In the
framework of this study, we have conducted a comparative
analysis of various machine learning (ML) models, including
Support Vector Machine (SVM), Gaussian Naive Bayes (GNB),
K-Nearest Neighbors (KNN), Decision Tree (DT), Logistic
Regression (LR), Random Forest (RF), Extreme Gradient
Boosting (XGB), and Principal Component Analysis (PCA), for
the precise identification of PD in early phase using a speech
dataset. Three different approaches are employed for
classification. The XGB model performed remarkably well, with
98.30% accuracy and 96.67% precision. The results hold
significant promise for enhancing early-stage PD diagnosis in
healthcare centres as well as within the home environment.

Keywords— Speech recognition, machine learning models,
telemedicine, SVM, KNN, XGB, GNB, hyperparameters, Principal
component analysis, ROC-AUC.

I. INTRODUCTION

The distinctive characteristic of Parkinson’s disease
(PD) is the steady decrease of neuronal cells that produce
dopamine in the substantia nigra (Snp), located in the
midbrain. These neurons perform a vital function in
coordinating movement at the muscular level [1]. A decline
in their number results in dopamine deficiency in the basal
ganglia, causing impaired motor functions such as resting
tremors, stiffness of the muscles, bradykinesia and
imbalanced posture [2]. Because symptoms and disease
progression of the disease differ, PD may remain
undiagnosed for an extended period. Although a cure for PD
is presently unavailable, treatments focus on managing
symptoms and elevating the overall quality of life for
patients, Therefore, the early and accurate diagnosis of PD
holds profound significance in facilitating timely intervention
and support for patients. New approaches are required for PD
diagnosis. Hence, cost-effective, straightforward, and
credible methods ought to be employed for accurate diagnosis
and treatment assurance. Machine learning (ML) models are
used to categorise mdmduals as either as healthy individuals
or PD patients. R h d that evaluating vocal
irregularities can serve as an indicator for early PD detection
[3]. Reduced intensity, pitch, monotonous loudness, tense
quiet, rapid speech bursts, ambiguous consonant
enunciation, erratic tempo, and dysphonia, particularly
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characterised by hoarse and hushed voices, constitute typical
speech impairments in PD [4]. According to reports, in the
earliest phases of the disease, voice and speech difficulties
impact about 90% of PD patients [5]. Early vocal cord
impairment detection and monitoring in PD can be beneficial
owing to its fairly simple measurement and the possibility of
remote evaluation. Considering this, it would be appropriate
for applications involving telemedicine or remote healthcare
[6]. Timely and efficient diagnosis of PD can be achieved by
listening and drawing conclusions from audio recordings in
case medical intervention is not possible on the spot, as in the
case of remote and rural areas. This can be achieved by
healthcare experts or ML-based systems by analysing
recordings captured via digital devices and smartphone
applications.

In order to catch PD in the preliminary stage, this
study focuses on evaluating various ML models by analyzing
a dataset of 195 voice recordings of different subjects. This
would ensure that the patient receives an appropriate
treatment plan for a better prognosis and quality of life. The
findings of this study unveil that in terms of accuracy of
performance, other models failed to beat the Extreme
Gradient Boosting (XGB) model displaying an exceptional
accuracy of 98.30% post-training on 22 distinct attributes
from the over-sampled voice data.

II. METHODOLOGY

The reservoir of audio recording used in this
methodology were the ML archive of the University of
California, Irvine (UCI) and Parkinson's Progression Markers
Initiative (PPMI). The focus was directed towards the
identification of variations lying in the voice attributes of PD
patients. The dataset comprised 22 peculiar voice attributes
such as fundamental frequency, shimmer, jitter, multi-
dimensional voice programmer (MDVP) measurements,
dysphonia, and many more. To have an elaborate
understanding of the dataset pre-processing was performed.
Random Forest Classifier (RF), Gaussian Naive Bayes
classifier (GNB), Logistic Regression (LR), Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), XGB and
Decision Tree (DT) were the seven distinct ML models
subjected to training using 80% of the voice recordings to
spot the distinctions in voice attributes when compared
between PD patients and healthy individuals, frequency
variation  being  the  most  reliable  factor.
Following training, the models underwent testing and
performance evaluation.

This research aims to determine the crucial factors
in classifying individuals with Parkinson's and assess how the
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data imbalances impact medical classification. To achieve
this aim, three different approaches were employed: Training
the models on the all the attributes of the dataset to establish
a baseline for classification, Over-sampling the dataset
followed by training the models and Training the models on
the major five attributes identified through PCA (Principal
Component Analysis). Three approaches are delineated as
follows:

Approach 1: Training the models on 22 data-derived
attributes
e Collection of audio recording data from PPMI or
UCI databases
e Conduct data analysis to identify outliers, skewness,
duplicate entries, missing values, and variable
distribution patterns. Removal of columns named
"Name" and "Status"
e  Split dataset into testing and training sets, with 80%
designated for training
e Apply StandardScaler from the scikit-learn library
to standardize the features of data
e  Train the various models including SVM, LR, DT,
RF, KNN, GNB, and XGB using the data
e Examine classification outcomes by analyzing the
confusion matrix, scoring metrics, and ROC-AUC
curve

Approach 2: Over-sampling the dataset

e Collection of audio recording data from PPMI or
UCI databases

e  Conduct data analysis to identify outliers, skewness,
duplicate entries, missing values, and variable
distribution patterns. Removal of columns named
"Name" and "Status"

e The dataset exhibits an imbalance, comprising 147
records of individuals with PD and 48 records of
normal individuals. To mitigate this imbalance,
employ SMOTE (Synthetic Minority Over-
sampling Technique) from the imlearn library,
oversampling both classes to 294 records each

e Split dataset into testing and training sets, with 80%
designated for training

s Apply StandardScaler from the scikit-learn library
to standardize the features of data

e Train the various models including SVM, LR, DT,
RF, KNN, GNB, and XGB using the data

e Examine classification outcomes by analyzing the
confusion matrix, scoring metrics, and ROC-AUC
curve

Approach 3: Model training on five key attributes identified

by PCA algorithm
e Collection of audio recording data from PPMI or
UCI databases

*  Conduct data analysis to identify outliers, skewness,
duplicate entries, missing values, and variable
distribution patterns. Removal of columns named
"Name" and "Status"

o Apply PCA to extract the five most significant
features out of all for training the models

o Split dataset as 20% testing and 80% training sets.

e  Apply StandardScaler from the scikit-learn library
to standardize the features of data

e Train the various models including SVM, LR, DT,
RF, KNN, GNB, and XGB using the data

e Examine classification outcomes by analyzing the
confusion matrix and scoring metrics

Data
Dataset Preprocessing
SMOTE Separating PCA
(over-  e——— features (X) —» (selecting key
~ampling) and target (Y) features)
Split Data
Train Test
Data Data
Training
Models
Testing
Model
Evaluation

Figure 1. Architecture Overview

Fig. 1 demonstrates an outline of the standard
methodology employed. It showcases the steps involved in
extracting data from the PPMI or UCI database, dividing the
data into two subsets one as test and another as train, training
seven models using the data, verifying the outcomes using the
test data and finally evaluating models using scoring metrics.

A. Data Collection

The dataset is easily accessible and can be procured
via the ML archive of ucCI
(https://archive.ics.uci.eduw/ml/machine-learning-
databases/parkinsons/parkinsons.data) or the PPMI website
encompassing diverse biomedical voice metrics gathered
from 31 individuals, of whom 23 are diagnosed with PD [7].
Every entry in the dataset complies to a distinct voice
recording, identified by the "name" column, while the
columns delineate specific vocal measurements, which
include 22 different attributes. The main objective is to make
a distinction among a population pool comprising individuals
who are healthy and those affected with PD, with the "status"
column representing 0 as healthy and 1 as PD. The data,
formatted in ASCII CSV, comprises a total of 195 voice
recordings, with an average of approximately six recordings
per individual.

B. Data Processing

Data processing involves cleansing the data,
managing missing attributes and dropping redundant
columns within the dataset. After that correlation of different
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features was observed using a correlation heat map.
Subsequently, the target and features were separated
followed by segmenting the data into the test dataset and the
training dataset. The target variable indicated the status i.e.,
whether an individual had PD or not and features comprised
all the attributes except for name and status. Finally, the
dataset underwent standardization using the standard scaler
from sklearn library.

C. Model Training
The model undergoes training employing a
spectrum of ML algorithms.

Support Vector Machine (SVM)

SVM discerns optimal hyperplane that efficiently
separates data points associated with separate groups, as
illustrated in Fig. 2. SVM optimizes the margin between these
distinet classes, rendering it resilient to outliers and proficient
in managing datasets with high dimensionality .

X2
e
e Hyperplane for
l -, rst class

Support
Vectors
Hyperplane for i
second class =
X1

Figure 2.8VM hypcmiane plot

In addressing a training dataset characterized by a
nonlinear decision surface, as exemplified by PD voice data,
SVM strategically employs the kernel technique, a method
that entails transforming the data into a feature space with
high dimensions [8]. In this space, a linear equation
effectively delineates the distinct classes.

Logistic Regression for classification (LR)

LR is mainly used for binary classification. Unlike
linear regression, it predicts class probabilities using the
logistic function employed to input features [9]. The graphs
for linear regression and logistic regression have been
illustrated below in Fig. 3. The resulting S-shaped curve
determines class assignments based on a threshold, typically
0.5. If the anticipated probability exceeds this threshold, the
occurrence is allocated to class 1; or else, it's allocated to class
0. Ideal for audio data, this approach is well-suited because
the attributes influencing the classification of PD do not
exhibit linear correlation but instead adhere to an exponential
pattern.
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Figure 3. Comparison between the curve of Linear Regression and Logistic
Regression classifier

K-Nearest Neighbors (KNN)

KNN, an ML algorithm, classifies through
leveraging the closest neighbours' majority vote from the
training dataset. Distance, often Euclidean, is calculated
between the input point and all training data [10]. It excels
with a well-balanced audio dataset containing 109 records,
attributed to its compact size. Efficiently, 2 clusters are
formed one for PD and another for healthy data. Being a
sluggish learning system, KNN avoids preconceptions,
enabling learning novel patterns from the training data.

Decision Tree Classifier (DT)

The decision tree classifier, an ML algorithm,
decides outcomes using input features. It recursively divides
datasets into subsets, as shown in Fig. 4,choosing the optimal
feature at each node for maximum information gain or
minimum impurity [11]. This iterative process halts upon
meeting a specified condition, forming a tree structure. The
end nodes, or leaves, signify the final classification results.

_Root Nod
Decsion Node
Sub-tree
Decision Node Decision Node
| |
! ) ! !

Leaf Leaf Leaf Dechion Node

Node Node Node
Leaf Leat
Node Node

Figure 4. Decision Tree architecture

Random Forest Classifier (RF)

RF classifier, a well-known ensemble learning
method, generates multiple decision trees to ascertain the
most common class prediction. Every tree is formed by
harnessing a subset of the dataset along with random features,
thus boosting the model's proficiency to generalize [12]. As
the forest accumulates more trees, its performance boosts,
simultaneously retaining robustness against outliers and
reducing susceptibility to overfitting, thereby setting it apart
from individual decision trees.
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Gaussian Naive Bayes Classifier (GNB)

GNB classifier, a probabilistic model within ML,
follows the Gaussian (bell curve) distribution and relies on
the feature independence hypothesis. Given the class label, it
is presumed that all the features standalone from one another
to determine the class of a data point, the GNB classifier first
computes how likely the data point corresponds to each class,
and then chooses the most probable one [13]. The classifier’s
simplicity, scalability, high computational efficiency and
probability-based framework high computational efficiency
make it beneficial for datasets with numerous features.

Extreme Gradient Boosting Classifier (XGB)

Xgboost, a powerful ensemble learning algorithm, is
renowned for its exceptional performance accuracy for
classification purposes. It works by orderly constructing DTs
in a series fashion and subsequently identifies and addresses
errors of predecessors using a technique known as gradient
descent optimization. This results in fine-tuning a differential
loss function so that errors can be minimised throughout the
training phase [14]. It then clusters all these DTs together to
build a potent predictive model. Regularization terms, along
with pruning and learning rate bolster XGB to mitigate
overfitting problems. High speed, accuracy, streamlined
parallel processing, proficiency in handling large datasets,
and missing values are a few other peculiar features of this
algorithm.

Principal Component analysis (PCA)

PCA reduces the dimensionality of a data in order to
simplify the data while retaining vital features [15]. The
method by which it works is “orthogonal transformation™
which utilises the original collection of features to create a
new set of orthogonal features known as component features.
These component features are the linear combinations of
original features, ranked based on the variance they account
for within the data. PCA optimizes computational efficiency,
diminishes redundancy, and safeguards essential information
crucial for training.

D. Model Evaluation

Following model training on the dataset, the models
were assessed to gauge their performance. Accuracy,
confusion matrix, F1 score, precision, Receiver Operating
Characteristic (ROC) curve and recall, are the various scoring
metrics opted to compare different models and make
informed decisions about model selection and tuning.
Equations 1-5 depict the formulas for these scoring metrics.
The equation of the metrics involves TP (True Positives), TN
(True Negatives), FN (False Negatives), and FP (False
Positives).

wi TP
Precision = T (1
_ TP4TN
AcCUracy = o TNTEN @
Specificity = —— 3)
Recall = —2— @)
TP+FN

ooy Precision.Recall 2TP

= )

“Precision+Recall 2TP+FP+FN

F1

Accuracy assesses the ratio of accurate predictions,
with higher values indicating superior overall predictive
performance. Specificity gauges the proportion of accurately
predicted actual negatives, reflecting the ability to identify
normal individuals. Precision signifies the relevance of
predicted positives. The Fl score combines precision and
recall in a single value, ranging between 0 and 1, high score
signifies high model accuracy. The ROC curve visually
depicts the probability curve, and the extent beneath this
curve is determined by the Area under the Curve (AUC),
serving as a quantification of the algorithm’s effectiveness.

III. RESULT AND DISCUSSION

The dataset underwent segmentation into training
and testing sets, adhering to an 8:2 ratio, where 80%
constituted the training dataset and the remaining constituted
the testing dataset. Then it was standardized using a standard
scaler before performing model training.

Precision, accuracy, recall, and Fl-score were
utilized as scoring metrics for optimal model selection.

TABLE I. RESULTS OF APPROACH 1 SCORING METRICS

ML models
SVM LR br RF | ENN | GNB | XGB

Metric

Accuracy | 0949 | 0872 | 0795 | 0974 | 0923 | 0.692 | 0.949

Precision | 0964 | 0.871 | 0.857 | 0.966 | 0.963 | 0.944 | 0.933

Recall 0.964 | 0.964 | 0.857 | 1.000 | 0939 | 0.607 | 1.000

Fl-score | 0964 | 0915 | 0.857 | 0.982 | 0945 | 0.739 | 0.966

The results obtained from approach 1 are depicted
above in Table I. RF classifier, a model composed of multiple
decision trees, demonstrated outstanding results, attaining a
97.43% accuracy rate and the highest precision of 96.55%,
surpassing the efficacy of other models. Hyperparameter
tuning was applied to optimize the RF model. The optimal
settings for the RF model included parameters like ‘auto' for
maximum features, 225 estimators, maximum depth of 8, and
‘entropy' as the criterion.

0 1
Figure 5. Confusion Matrix of RF classifier model in approach 1

Fig. 5 illustrates the confusion matrix, showing 28
true positives (Parkinson's patients), 10 true negatives (non-
Parkinson's), 1 false positive, and 0 false negatives.
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Fig. 6 displays the ROC AUC curves of all models,
where a larger area indicates superior performance.

Fig. 7 presents the confusion matrix of this model,
wherein the model classifies 29 true positives (Patient with
Parkinson’s), 29 true negatives (no PD), 1 false positive and

Table II below. An equal amount of data recordings from PD
patients as well as unaffected individuals were employed to
train the models. This approach of balancing assures that both
groups receive fair consideration in the model's learning

- 0 false negatives. In Fig. 8, All of the models' ROC AUC
¥ curves are shown; larger areas denotes greater efficiency.
0.8 1.0
a
@
gose 0.8
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= A
8 .
. SVM (auc = 0.937) 506
g Logistic (auc = 0.800) v
—— KNN (auc = 0.919) 2
0.2 —— DT (auc = 0.747) & 04
XGB (auc = 0.909) o —— SVM (auc = 0.966)
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Figure 6. ROC-AUC curves of ML models in approach 1 00 2
0.0 0.2 0.4 0.6 0.8 10
The outcomes from approach 2 are presented in False Positive Rate —>

Figure 8. ROC-AUC curves of ML models in approach 2

The results obtained from approach 3 are showcased
in Table III. In this particular approach, the PCA algorithm is

process. leveraged to extract five most significant attributes.
Subsequently, models are trained and evaluated based on
TABLEL. RESUI;‘;.?A%FE¢PPROACH 2:BALANCED these five attributes, leading to the following outcomes:
Metric ML ol TABLE IIL. RESULTS OF APPROACH 3 SCORING
S¥M LR DT RF KNN | GNB | XGB METRICS
Accuracy | 0966 | 0.864 | 0.898 | 0.049 | 0.932 | 0.864 | 0.983 . ML models
Precision | 1,000 | 0.889 | 0925 | 0933 | 1.000 | 0957 | 0.967 Meedes SVM | LR DT | RF | KNN | GNB | XGB
Recall 0931 | 0.827 | 0.862 | 0.966 | 0.862 | 0.759 | 1.000 Accuracy | 0897 | 0872 | 0923 | 0974 | 0949 | 0872 | 0.974
Fl-score | 0964 | 0.857 | 0.893 | 0949 | 0.926 | 0.864 | 0.983 Precision | 0962 | 0.871 | 0963 | 0.965 | 0.964 | 0.960 | 0.965
Recall 0.893 | 0964 | 0929 | 1.000 | 0.964 | 0.857 | 1.000
The XGB classifier model showcased remarkable Fl-score | 0926 | 0915 | 0945 | 0982 | 0.964 | 0.906 | 0.982

performance on the balanced dataset, attaining an impressive
accuracy of 98.30% alongside the highest recall score of 1.00,
surpassing the effectiveness of other models. The ideal
configuration for the XGB classifier included a learning rate
of 0.5, a random state set to 300, and a maximum depth of 5.
During the classification process, every attribute is equally
vital.

The RF and XGB classifier models emerge as the
top performers in approach 3, displaying impressive accuracy
rates of 97.43% and precision scores of 96.55%. This
underscores the effectiveness of utilizing a reduced set of
features, highlighting the efficiency of feature selection and
dimensionality reduction techniques in the modelling phase.

25 25
= o4 10 1
20 20
15 15

-0

1

0 1

Figure 7. Confusion Matrix of XGB classificr model in approach 2 Figure 9. Confusion Matrix of RF and XGB classifier model in approach 3
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Figure 10. ROC-AUC curves of ML models in approach 3

The confusion matrix of both the RF classifier
model as well as the XGB classifier model in approach 3 was
the same and is depicted by Fig. 9, wherein the model
classifies 28 true positives (Patient with Parkinson’s), 10 true
negatives (no PD), 1 false positive and 0 false negatives. In
Fig. 10, the ROC curves of every model in approach 3 are
depicted, with larger areas denoting better performance. The
ROC curves of both the RF and XGB classifier models
overlap, showcasing the highest AUC values.

IV. CoNCLUSION

The automated ML algorithms allow for PD
detection in the preliminary phase with the highest accuracy
and precision. Our study compares the efficacy of various ML
classifies in PD diagnosis, employing complex and noisy
voice data. Results reveal that the XGB classifier model
trained with an over-sampled dataset in approach 2
demonstrates the best performance, scoring 1.00 for recall,
98.30% for accuracy, and 97.67% for precision. This model
has the potential to offer an accuracy of 100% i.e., clinical-
grade accuracy through hyper-parameter tuning when trained
on a substantial dataset. It could serve as a valuable asset in
telemedicine or remote healthcare applications.
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